

Intel® Quartus® Prime Pro Edition
User Guides - Combined

This auto-generated document contains the following user guides. To
download individual standalone documents, click on the respective
PDF/HTML links.

• Getting Started (PDF|HTML)
• Platform Designer (PDF|HTML)
• Deign Recommendations (PDF|HTML)
• Design Compilation (PDF|HTML)
• Design Optimization (PDF|HTML)
• Programmer (PDF|HTML)
• Block-Based Design (PDF|HTML)
• Partial Reconfiguration (PDF|HTML)
• Third-party Simulation (PDF|HTML)
• Third-party Synthesis (PDF|HTML)
• Third-party Logic Equivalence Checking Tools (PDF|HTML)
• Debug Tools (PDF|HTML)
• Timing Analyzer (PDF|HTML)
• Power Analysis and Optimization (PDF|HTML)
• Design Constraints (PDF|HTML)
• PCB Design Tools (PDF|HTML)
• Scripting (PDF|HTML)

Auto-generated Date: May 19, 2024

https://cdrdv2.intel.com/v1/dl/getContent/683463
https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://cdrdv2.intel.com/v1/dl/getContent/683609
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://cdrdv2.intel.com/v1/dl/getContent/683082
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://cdrdv2.intel.com/v1/dl/getContent/683236
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://cdrdv2.intel.com/v1/dl/getContent/683641
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://cdrdv2.intel.com/v1/dl/getContent/683039
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://cdrdv2.intel.com/v1/dl/getContent/683247
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
https://cdrdv2.intel.com/v1/dl/getContent/683834
https://cdrdv2.intel.com/v1/dl/getContent/683870
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://cdrdv2.intel.com/v1/dl/getContent/683122
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://cdrdv2.intel.com/v1/dl/getContent/683881
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://cdrdv2.intel.com/v1/dl/getContent/683819
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://cdrdv2.intel.com/v1/dl/getContent/683243
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://cdrdv2.intel.com/v1/dl/getContent/683174
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://cdrdv2.intel.com/v1/dl/getContent/683143
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://cdrdv2.intel.com/v1/dl/getContent/683768
https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://cdrdv2.intel.com/v1/dl/getContent/683432
https://www.intel.com/content/www/us/en/docs/programmable/683432.html

Quartus® Prime Pro Edition User
Guide
Getting Started

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q What do I need for FPGA design?
A FPGA Basic Design Prerequisites on page 10

Q What do I need to download to use Quartus?
A Intel FPGA Design Software for Download on page 5

Q Which Quartus version should I use?
A Quartus Design Suite Overview on page 5

Q How do I setup a project?
A Select a Starting Point for Your Project on page 22

Q Do you have an example design to start with?
A Start a Project from a Design Example on page 24

Q Does Quartus work with my other tools?
A Integrate Other EDA Tools on page 99

Q How do I add my IP?
A Add Your IP to IP Catalog on page 58

Q How do I migrate an old project?
A Migrate to Quartus Prime Pro Edition on page 33

Q Do you have basic tool training?
A Intel FPGA Technical Training Curriculum on page 10

Online Version

Send Feedback UG-20129

683463

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683463.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Introduction to Quartus® Prime Pro Edition..5
1.1. Before You Begin... 9

1.1.1. Prerequisite Knowledge and Training...10
1.1.2. Navigate Content Through Tasks.. 10
1.1.3. Acronyms... 11

2. Planning FPGA Design for RTL Flow.. 13
2.1. Design Planning...13
2.2. Selecting the Design Methodology..17

2.2.1. Flat Design Vs. Incremental Block-based Design ..18
2.2.2. Partial Reconfiguration Design... 20

2.3. Related Trainings... 20

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project.......................... 22
3.1. Creating a New FPGA Design Project...22

3.1.1. Using the Board-Aware Flow..23
3.2. Migrating Projects from Other Quartus Prime Editions to Quartus Prime Pro Edition.......33

3.2.1. Keeping Pro Edition Project Files Separate... 33
3.2.2. Upgrading Project Assignments and Constraints... 33
3.2.3. Upgrading IP Cores and Platform Designer Systems......................................39
3.2.4. Upgrading Non-Compliant Design RTL...40

3.3. Migrating Your AMD* Vivado* Project to Quartus Prime Pro Edition............................. 45
3.4. Migrating Projects Across Operating Systems...45

3.4.1. Migrating Design Files and Libraries..45
3.4.2. Design Library Migration Guidelines.. 47

3.5. Migrating Project From One Device to Another... 47
3.6. Related Trainings... 49

4. Working With Intel FPGA IP Cores.. 50
4.1. IP Catalog and Parameter Editor.. 51

4.1.1. The Parameter Editor..52
4.2. Installing and Licensing Intel FPGA IP Cores.. 53

4.2.1. Intel FPGA IP Evaluation Mode... 53
4.3. IP General Settings.. 57
4.4. Adding IP to IP Catalog...58
4.5. Best Practices for Intel FPGA IP..59
4.6. Specifying the IP Core Parameters and Options (Quartus Prime Pro Edition).................59

4.6.1. Applying Preset Parameters for Specific Applications..................................... 61
4.6.2. Customizing IP Presets... 63

4.7. IP Core Generation Output (Quartus Prime Pro Edition)...66
4.8. Scripting IP Core Generation... 68
4.9. Modifying an IP Variation.. 69
4.10. Upgrading IP Cores.. 69

4.10.1. Upgrading IP Cores at Command-Line...73
4.10.2. Migrating IP Cores to a Different Device.. 73
4.10.3. Troubleshooting IP or Platform Designer System Upgrade............................ 74

4.11. Simulating Intel FPGA IP Cores.. 75
4.11.1. Generating IP Simulation Files... 76

Contents

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.11.2. Scripting IP Simulation..77
4.12. Generating Simulation Files for Platform Designer Systems and IP Variants................80
4.13. Synthesizing IP Cores in Other EDA Tools.. 81
4.14. Instantiating IP Cores in HDL...82

4.14.1. Example Top-Level Verilog HDL Module... 82
4.14.2. Example Top-Level VHDL Module..82

4.15. Support for the IEEE 1735 Encryption Standard... 83
4.16. Related Trainings and Resources.. 84

5. Managing Quartus Prime Projects...85
5.1. Viewing Basic Project Information.. 85

5.1.1. Using the Compilation Dashboard...87
5.1.2. Exploring Quartus Prime Project Contents... 88
5.1.3. Viewing Design Hierarchy and Adding Missing Source Files............................ 90
5.1.4. Viewing Project Reports.. 90
5.1.5. Viewing Project Messages... 91

5.2. Managing Project Settings...95
5.3. Viewing Parameter Settings From the Project Navigator.. 96
5.4. Managing Logic Design Files.. 96

5.4.1. Including Design Libraries... 97
5.4.2. Creating a Project Copy.. 98

5.5. Managing Timing Constraints...98
5.6. Integrating Other EDA Tools.. 99
5.7. Exporting Compilation Results... 99

5.7.1. Exporting a Version-Compatible Compilation Database 100
5.7.2. Importing a Version-Compatible Compilation Database102
5.7.3. Creating a Design Partition.. 102
5.7.4. Exporting a Design Partition...104
5.7.5. Reusing a Design Partition...107
5.7.6. Viewing Quartus Database File Information..107
5.7.7. Clearing Compilation Results..109

5.8. Archiving Projects.. 109
5.8.1. Manually Adding Files To Archives...110
5.8.2. Archiving Projects for Service Requests... 110
5.8.3. Archiving Projects for External Revision Control..111
5.8.4. Creating Database-Only Archives..112

5.9. Command-Line Interface...113
5.9.1. Project Revision Commands...114
5.9.2. Project Archive Commands.. 114
5.9.3. Project Database Commands... 115

5.10. Related Trainings..116

A. Next Steps After Getting Started...117
A.1. Additional Resources.. 117
A.2. Training.. 118

B. Using the Design Space Explorer II.. 119
B.1. Optimizing Project Settings... 119

B.1.1. Optimizing Settings with Design Space Explorer II......................................119
B.1.2. Optimizing Settings with Project Revisions...121
B.1.3. Back-Annotating Optimized Assignments... 123

B.2. Running DSE II..124

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

B.3. Setting Up Remote Farm Using Design Space Explorer II... 124

C. Document Revision History for Quartus Prime Pro Edition User Guide Getting
Started.. 127

D. Quartus Prime Pro Edition User Guides...134

Contents

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Introduction to Quartus® Prime Pro Edition
This user guide describes basic concepts, files, and design flow of the Quartus® Prime
Pro Edition software, including initial design planning considerations, selecting a
starting point to set up your Quartus Prime Pro Edition project and managing those
projects and working with intellectual property (IP).

The Quartus Prime design suite is a comprehensive development platform to design
with Intel FPGAs(1), from design entry and synthesis to optimization, verification,
simulation, and binary generation. The Quartus Prime software supports fast design
processing, straightforward device programming, and integration with other industry-
standard EDA tools. The user interface makes it easy for you to focus on your design—
not on the design tool. The modular compiler streamlines the FPGA development
process and ensures the highest performance for the least effort.

Quartus Prime Pro Edition Software Quick Start Steps

Determine the
System

Requirements

1

Download
Intel® Quartus®

Prime Pro
Software

2 4

Generate
90-Days

Fixed-Node
License

3

Install
the

Software

5

Start
the

Software

6

Set Up
Generated License in

Intel Quartus
Prime Pro Software

7

Get Started with the
Intel Quartus

Prime Pro Software

(1) A field-programmable gate array (FPGA) is a specialized integrated circuit that you can
customize and reconfigure multiple times. To learn about and select a target Intel FPGA device
family, refer to https://www.intel.com/content/www/us/en/products/details/fpga.html.

683463 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/products/details/fpga.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Use the following links to get started with the Quartus Prime Pro Edition software:

Table 1. Quartus Prime Pro Edition Software Quick Start Steps

Step Useful Links

Determine the
System
Requirements

Verify hardware and software requirements and
review Quartus Prime Pro Edition software release
notes.

• Reviewing the Quartus Prime Installer
Software Release Notes

• Determining Hardware Requirements
• Determining Software Requirements

Download the
software

Download the latest Quartus Prime Pro Edition
software.

• Quartus Prime Design Software
Download Page

• FPGA Software Download Center
• Downloading Software Using the

Quartus Prime Installer or Quartus
Prime Installer (GUI mode)

• Downloading Software Packages
Manually

Install the software Install the latest Quartus Prime Pro Edition
software.

• Quartus Prime Installer (GUI mode) or
Installing Intel® FPGA Software Through
Quartus Prime Installer

• Installing the Intel FPGA Software
Manually

• Setting Quartus Prime Environment
Variables

Generate 90-days
Fixed-node License

Generate 90- days free license in Intel FPGA Self-
Service Licensing Center (SSLC).

• Intel FPGA Self-Service Licensing Center
• Intel FPGA SSLC No-cost/Evaluation

License Setup
• Setting up Intel FPGA SSLC No-cost/

Evaluation License

Start the software On Windows:
Use one of the following options:
• On the desktop, double-click the Intel FPGA

software icon.

• Click Start ➤ All Programs ➤ Intel FPGA
<Version> Pro Edition ➤ Quartus (Quartus
Prime Pro <Version>

• At the command prompt, type:
<installation-directory>
\bin64\quartus

On Linux:
• At the command prompt, type:

<installation-directory>/
quartus/bin/quartus

Starting the Quartus Prime Software

Set up the
generated license in
the Quartus Prime
Pro Edition software

In the Quartus Prime Pro Edition software, click
Tools ➤ License Setup, browse and select the
license file, and click OK.

• Intel FPGA Self-Service Licensing Center
(SSLC)

• Setting up Intel FPGA SSLC No-cost/
Evaluation License

• Summary of Intel FPGA Software
Licenses Required

• Licensing Intel FPGA Software
Walkthrough

continued...

1. Introduction to Quartus® Prime Pro Edition

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

6

https://www.intel.com/content/www/us/en/docs/programmable/683472/current/reviewing-the-software-release-notes.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/reviewing-the-software-release-notes.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/minimum-hardware-requirements.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/software-requirements-07130.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/resource.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/resource.html
https://www.intel.com/content/www/us/en/collections/products/fpga/software/downloads.html?edition=pro&s=Newest
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/downloading-software-using-the-installer.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/downloading-software-using-the-installer.html
https://www.youtube.com/watch?v=Ie9eKoQCOns&t=40s
https://www.youtube.com/watch?v=Ie9eKoQCOns&t=40s
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/downloading-software-packages-manually.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/downloading-software-packages-manually.html
https://www.youtube.com/watch?v=Ie9eKoQCOns&t=40s
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/installing-fpga-software-through-installer.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/installing-fpga-software-through-installer.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/installing-the-fpga-software-manually.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/installing-the-fpga-software-manually.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/setting-environment-variables-67330.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/setting-environment-variables-67330.html
https://fpgasupport.intel.com/Licensing/license/index.html
https://www.youtube.com/watch?v=s9sJEv9YApY&t=6s&ab_channel=IntelFPGA
https://www.youtube.com/watch?v=s9sJEv9YApY&t=6s&ab_channel=IntelFPGA
https://www.youtube.com/watch?v=s9sJEv9YApY
https://www.youtube.com/watch?v=s9sJEv9YApY
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/starting-the-software.html
https://fpgasupport.intel.com/Licensing/license/index.html
https://fpgasupport.intel.com/Licensing/license/index.html
https://www.youtube.com/watch?v=s9sJEv9YApY
https://www.youtube.com/watch?v=s9sJEv9YApY
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/types-of-fpga-software-licenses.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/types-of-fpga-software-licenses.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/licensing-fpga-software-walkthrough.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/licensing-fpga-software-walkthrough.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Step Useful Links

Quartus Prime
Software Home Page

Main page of the Quartus Prime software.

Plan FPGA Design
for RTL Flow

Planning for RTL flow is an essential step for
advanced FPGA design. Determining your design
priorities early on helps you to choose the best
device, tools, features, and methodologies for your
design.

Plan FPGA Design for RTL Flow

Create your FPGA
project

The Quartus Prime software makes it easy for you
to quickly setup a new FPGA design project.

Creating a New FPGA Design Project on
page 22

Quartus Prime Software Editions

The Quartus Prime Software is available in three editions based on your design
requirements:

Table 2. Quartus Prime Software Editions

Pro Edition Standard Edition Lite Edition

Optimized to support the
advanced features in Intel
FPGAs and SoCs with the
following device families:
• Agilex™ 5
• Agilex 7
• Stratix® 10
• Arria® 10
• Cyclone® 10 GX

Includes extensive support
for earlier device families in
addition to the following
device families:
• Cyclone 10 LP
• MAX® 10

An ideal entry point to
Intel’s high-volume device
families and is available as a
free download with no
license file required.

1. Introduction to Quartus® Prime Pro Edition

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Supported Features

The following is the Quartus Prime feature support matrix:

Figure 2. Quartus Prime Feature Support Matrix

Software Features

New Hybrid Placer & Global Router

Intel Quartus® Prime
Pro Edition

New Timing Analyzer

New Physical Synthesis

Incremental Fitter Optimization

Interface Planner (formerly BluePrint)

Platform Designer (formerly Qsys)

Partial Reconfiguration

Block-Based (Hierarchical) Design Flows

Intel Quartus® Prime
Standard Edition

Intel Agilex® 7 Device Support

Intel Stratix® 10 Device Support

Intel Agilex® 5 Device Support

The following features are only available in the Quartus Prime Pro Edition software:

Table 3. Supported Features of the Quartus Prime Pro Edition Software

Feature Description

Hyper-Aware Design Flow Use Hyper-Retiming to reach the highest performance in Agilex 5, Agilex 7, and Stratix 10
devices.

Advanced synthesis Integrates new, stricter language parser supporting all major IEEE RTL languages, with
enhanced algorithms, and parallel synthesis capabilities, and support for SystemVerilog
2009.

Hierarchical project
structure

Preserves individual post-synthesis, post-placement, and post-place and route results for
design instances. Optimizes without impacting other partition placement or routing.

Incremental Fitter
Optimizations

Run and optimize Fitter stages incrementally. Each Fitter stage generates detailed reports.

Faster, more accurate I/O
placement

Plan interface I/O in Interface Planner.

Platform Designer (Pro) Builds on the system design and custom IP integration capabilities of Platform Designer
(Standard). Platform Designer (Pro) introduces hierarchical isolation between system
interconnect and IP components.

Block-Based Design Flows Preserve and reuse design blocks at various stages of compilation.

1. Introduction to Quartus® Prime Pro Edition

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Pro Edition software does not support the following Quartus Prime
Standard Edition features:

• I/O Timing Analysis

• NativeLink third party tool integration (other third-party tool integration available)

• Video and Image Processing Suite IP Cores

• Talkback features

• Various register merging and duplication settings

• Saving a node-level netlist as .vqm or RTL to schematic conversion

Supported Intel FPGA Developmental Tools

The Quartus Prime software suite supports the following Intel FPGA development
tools:

Table 4. Intel FPGA Developmental Tools Supported by the Quartus Prime Software
Suite

Tools Description

Questa*-Intel FPGA Edition Simulates FPGA designs using Intel-specific simulation libraries. It includes all features
of Siemens EDA Questa* Core, including behavioral simulation, HDL test benches, and
Tcl scripting.

Intel Advanced Link Analyzer Analyzes jitter/noise and evaluates high-speed serial link performance. It is an ideal
predesign tool supporting Intel FPGA IBIS-AMI standards and enhanced models to help
you understand how Intel FPGA solutions can fit your system requirements.

Intel SoC FPGA Embedded
Development Suite

A comprehensive tool suite for embedded software development on Intel SoC FPGAs.

Ashling* RiscFree* IDE for
Intel FPGAs

Integrated development environment for creating embedded applications on the RISC-
V-based Nios® V soft processors and the Arm*-based hard processor system.

Intel HLS Compiler A high-level synthesis (HLS) tool that accepts untimed C++ code as an input and
generates production-quality register transfer level (RTL) code optimized for Intel
FPGAs. This tool accelerates verification time over RTL by raising the abstraction level
for FPGA hardware design. Models developed in C++ have typically verified orders of
magnitude faster than RTL.

DSP Builder for Intel FPGAs Supports a model-based design flow from algorithms to hardware in a common
environment.

Intel oneAPI Base Toolkit Enables you to target FPGAs for heterogeneous acceleration and simulate entire system
flows by abstracting some parts of the hardware.

Intel Simics® simulator for
Intel FPGAs

A full-system simulator that supports defining, developing, and deploying virtual
platforms.

FPGA AI Suite Provides several components to help in enabling Artificial Intelligence (AI) and creating
optimized Intel FPGA AI platforms efficiently.

Intel FPGA Power and
Thermal Calculator

Estimates your design's power consumption and provides thermal design parameters
for Intel FPGA devices, such as Agilex 5, Agilex 7, and Stratix 10.

1.1. Before You Begin

Before you get started with setting up your Quartus Prime Pro Edition project, review
the following topics:

1. Introduction to Quartus® Prime Pro Edition

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.1.1. Prerequisite Knowledge and Training

Using the Quartus Prime software to create a basic FPGA design requires the following
basic knowledge. There are several training modules available if you need help.

Prerequisite Knowledge

• Basic knowledge of digital logic design.

• Basic knowledge of how to describe a hardware design using VHDL, Verilog HDL,
SystemVerilog, or EDA schematic tools.

Note: You can accelerate design creation and success by starting your design project from a
pre-verified design example that targets an Intel FPGA development board, as
Creating a New Project from a Design Example on page 24 describes.

Prerequisite Training

If you are new to FPGA or the Quartus Prime software, you can review the following
training modules:

• Read Me First!

• How to Begin a Simple FPGA Design

• University Self-Guided Lab: Become an FPGA Designer in 4 Hours

• Beginner Workshop for Intel FPGAs

• University Self-Guided Lab: Introduction to FPGAs and the Quartus Prime Software

• Basics of Programmable Logic: History of Digital Logic Design

• Basics of Programmable Logic: FPGA Architecture

• The Quartus Prime Software: Foundation (Pro Edition) (Online Training)

• Instructor-Led Training: Using Quartus Prime Software

• Using the Quartus Prime Standard Edition Software: An Introduction

• Verilog HDL Basics

• Verilog HDL Advanced

• VHDL Basics

• SystemVerilog with the Quartus Prime Software

• Introduction to Tcl Scripting

Related Information

• Intel FPGA Software Installation and Licensing

• FPGAs for Dummies eBook

1.1.2. Navigate Content Through Tasks

Use the following navigation diagram to navigate this guide through user-tasks:

1. Introduction to Quartus® Prime Pro Edition

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

10

https://learning.intel.com/developer/learn/course/internal/view/elearning/393/read-me-first
https://cdrdv2.intel.com/v1/dl/getContent/652967?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/653012?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/653123?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652856?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652848?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/653014?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652950?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/653090?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652910?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652924?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652864?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652842?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652904?explicitVersion=true
https://learning.intel.com/developer/learn/course/external/view/elearning/207/introduction-to-tcl
https://www.intel.com/content/www/us/en/docs/programmable/683472.html
https://plan.seek.intel.com/psg_WW_psgem_LPCD_EN_2021_FPGAforDummiesbook-EN
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6. Navigate Content Through Tasks

Plan FPGA Design for RTL
Flow
or

Work With Intel FPGA IP
Cores

Create a New Project
or

Migrate Your Existing Project
to Quartus Prime Pro Edition

Software

Manage Your Quartus Prime
Pro Edition Projects

Review Next Steps

1.1.3. Acronyms

This document uses the following acronyms throughout:

Acronym Meaning

ALR Additional Logic Resources

DSE Design Space Explorer

DSP Digital Signal Processing

EDA Electronic Design Automation

EDS Embedded Design Suite

EPE Early Power Estimator

FIFO First In, First Out

FPGA Field Programmable Gate Arrays

GUI Graphical User Interface

HDL Hardware Description Language

HTML HyperText Markup Language

HPS Hard Processor System

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

JTAG Joint Test Action Group

LAB Logic Array Block

LAI Logic Analyzer Interface

MTBF Mean Time Between Failures

PCB Printed Circuit Board

PLD Programmable Logic Devices

PLLs Phase-Locked Loops

PTC Power and Thermal Calculator

PVT Process, Voltage, and Temperature

QSF Quartus Settings File

continued...

1. Introduction to Quartus® Prime Pro Edition

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Acronym Meaning

RAM Random-Access Memory

RTL Register-Transfer Level or Register-Transfer Logic

SDC Synopsys* Design Constraints

Tcl Tool Command Language

UART Universal Asynchronous Receiver-Transmitter

VCS Verilog Compiler and Simulator

VHDL Very High Speed Integrated Circuit Hardware Description Language

VPN Virtual Private Network

VREF Voltage Reference

1. Introduction to Quartus® Prime Pro Edition

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Planning FPGA Design for RTL Flow
Navigating Content Through Tasks

Use the following navigation diagram to navigate this guide through user-tasks:

Plan FPGA Design for RTL
Flow
or

Work With Intel FPGA IP
Cores

Create a New Project
or

Migrate Your Existing Project
to Quartus Prime Pro Edition

Software

Manage Your Quartus Prime
Pro Edition Projects

Review Next Steps

Planning for RTL flow is an essential step for advanced FPGA design. This chapter
provides some useful tips and programming methods to consider in your planning
process to help you detect and solve potential problems early in the design cycle.
Determining your design priorities early on helps you to choose the best device, tools,
features, and methodologies for your design.

Review the following topics to help you get started with the planning process:

2.1. Design Planning

Design planning is an essential step in advanced FPGA design. System architects must
consider the target device characteristics in order to plan for interface I/O, integration
of IP, on-chip debugging tools, and use of other EDA tools. Designers must consider
device power consumption and programming methods when planning the layout. You
can solve potential problems early in the design cycle by following the design planning
considerations in this chapter.

By default, the Quartus Prime software optimizes designs for the best overall results.
However, you can adjust settings to better optimize one aspect of your design, such as
performance, routability, area, or power utilization. Consider your own design
priorities and trade-offs when reviewing the techniques in this chapter. For example,
certain device features, density, and performance requirements can increase system
cost. Signal integrity and board issues can impact I/O pin locations. Power, timing
performance, and area utilization all affect one another. Compilation time is affected
when optimizing these priorities.

Determining your design priorities early on helps you to choose the best device, tools,
features, and methodologies for your design.

683463 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Table 7. Checklist for Design Planning

Item Considerations Links

Create a design
specification and
test plan

• Create detailed design specifications that define the
system.

• Specify the I/O interfaces for the FPGA.
• Identify the different clock domains.
• Include a block diagram of basic design functions.
• Create a test plan for verification and ease of

manufacture.
• Consider a common design directory structure or

source control system to make design integration
easy.

• Consider whether you want to standardize on an
interface protocol for each design block.

Planning for Target
Device or Board

• Refer to the Product Selector tool to compare the
specifications and features of Intel FPGA devices and
development kits.

• Refer to the device family documentation for
detailed device characteristics. View a summary of
each device's resources by selecting a device in the
Device dialog box (Assignments ➤ Device).

• Consider whether the device family meets your
design requirements for high-speed transceivers,
global or regional clock networks, and the number of
phase-locked loops (PLLs).

• Consider the density requirements of your design.
— Devices with more logic resources and higher I/O

counts can implement larger and more complex
designs, but at a higher cost.

— Smaller devices use lower static power.
— Select a device larger than what your design

requires if you may want to add more logic later
in the design cycle, or to reserve logic and
memory for on-chip debugging.

• Consider requirements for types of dedicated logic
blocks, such as memory blocks of different sizes, or
digital signal processing (DSP) blocks to implement
certain arithmetic functions.

• Alternatively, create a system that targets a specific
development board to accelerate the process of
appropriately configuring, connecting, and validating
IP for the target board.

• Product Selector Guide Tool
• Using the Board-Aware Flow

Planning for Device
Migration

• Determine whether you want to migrate your design
to another device density to allow flexibility when
your design nears completion.

• Target a small (less expensive) device and move to
a larger device if necessary to meet your design
requirements.

• Develop a prototype of your design in a larger
device to reduce optimization time and achieve
timing closure more quickly, and then migrate to a
smaller device after prototyping.

Note: Selecting a migration device impacts pin
placement because some pins may serve
different functions in different device densities
or package sizes.

Planning for
Intellectual
Property (IP) Cores

Plan which I/O interfaces or blocks in the system you
want to implement using IP cores.
Integrate functions into your design using Intel FPGA IP
cores, many of which are available for production use in
the Quartus Prime software without additional license.

• Working With Intel FPGA IP Cores
on page 50

• Intel FPGA IP Portfolio Web Page

continued...

2. Planning FPGA Design for RTL Flow

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

14

https://ark.intel.com/content/www/us/en/ark.html#%40Intel%C2%AEFPGAs
https://www.intel.com/content/www/us/en/products/programmable/intellectual-property.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Item Considerations Links

For IP cores that require additional licenses for
production, use the Intel FPGA IP Evaluation Mode,
which allows you to program the FPGA to verify the IP
in the hardware before you purchase the IP license.

Planning for
Standard Interfaces

• Use standard interfaces in system design to ensure
compatibility between design blocks from different
design teams or vendors.

• Use the Quartus Prime Interface Planner to
accurately plan constraints for design
implementation, prototype interface
implementations, and rapidly define a legal device
floorplan.

• Use the Quartus PrimePlatform Designer system
integration tool to use standard interfaces and
speed-up system-level integration.

Quartus Prime Pro Edition User Guide:
Platform Designer

Planning for Device
Power Consumption

Estimating power consumption early in the design cycle
allows you to plan power budgets and avoid unexpected
results when designing the PCB.
• Use the Early Power Estimator (EPE) spreadsheet for

older devices, such as the Arria 10 and Cyclone 10
families or to estimate power consumption before
compiling or creating any source code.

• Use the Quartus Prime Power Analyzer to ensure
that your design satisfies thermal and power supply
requirements.

• Use the Intel FPGA Power and Thermal Calculator
(PTC) to estimate power utilization for your design
for Stratix 10, Agilex 7, and Agilex 5 device families.
PTC does not support older devices.

• Quartus Prime Pro Edition User
Guide: Power Analysis and
Optimization

• Intel FPGA Power and Thermal
Calculator User Guide

Planning for I/O
Interfaces

• Create a preliminary pin-out for an Intel FPGA with
the Quartus Prime Pin Planner before you develop
the source code, based on standard I/O interfaces
(such as memory and bus interfaces) and any other
I/O requirements for your system.

• Configure how to connect the functions and cores to
each other by specifying matching node names for
selected ports.

• Create other I/O-related assignments for these
interfaces or other design I/O pins in the Pin
Planner.

• Compile your design to automatically run I/O
Assignment Analysis in Fitter to validate I/O-related
assignments that you created or modified
throughout the design process.

• Quartus Prime Pro Edition User
Guide: Design Optimization

• I/O Planning Overview

Planning for Other
EDA Tools

• Use supported standard third-party EDA synthesis
tools to synthesize your Verilog HDL or VHDL design,
and compile the resulting output netlist file in the
Quartus Prime software.

• Use the simulator version that your Quartus Prime
software version supports for best results. You must
also use the model libraries provided with your
Quartus Prime software version. Libraries can
change between versions, which might cause a
mismatch with your simulation netlist.

• Quartus Prime Pro Edition User
Guide: Third-party Synthesis

• Quartus Prime Pro Edition User
Guide: Third-party Synthesis

continued...

2. Planning FPGA Design for RTL Flow

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

15

https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683445.html
https://www.intel.com/content/www/us/en/docs/programmable/683445.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683143/current/i-o-planning-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Item Considerations Links

Planning for On-
Chip Debugging
Tools

• Consider whether to include on-chip debugging tools
early in the design process. Adding the debugging
tools late in the design process can be more time-
consuming and error-prone.

• Consider the following debugging requirements
when planning your design to support debugging
tools:
— JTAG connections—required to perform in-

system debugging with JTAG tools. Plan your
system and board with JTAG ports that are
available for debugging.

— Additional logic resources (ALR)—required to
implement JTAG hub logic. If you set up the
appropriate tool early in your design cycle, you
can include these device resources in your early
resource estimations to ensure that you do not
overload the device with logic.

— Reserve device memory—required if your tool
uses device memory to capture data during
system operation. To ensure that you have
enough memory resources to take advantage of
this debugging technique, consider reserving
device memory to use during debugging.

— Reserve I/O pins—required if you use the
Logic Analyzer Interface (LAI), which requires
I/O pins for debugging. If you reserve I/O pins
for debugging, you do not have to later change
your design or board. The LAI can multiplex
signals with design I/O pins if required. Ensure
that your board supports a debugging mode, in
which debugging signals do not affect system
operation.

— Instantiate an IP core in your HDL code—
required if your debugging tool uses an Intel
FPGA IP core.

— Instantiate the Signal Tap Logic Analyzer IP
core—required if you want to manually connect
the Signal Tap Logic Analyzer to nodes in your
design and ensure that the tapped node names
do not change during synthesis.

• Factors to Consider When Using
Debugging Tools During Design
Planning Stages

• Quartus Prime Pro Edition User
Guide: Debug Tools

Planning HDL
Coding Styles

• Use synchronous design practices to consistently
meet your design goals. In a synchronous design, a
clock signal triggers all events. When you meet all
register timing requirements, a synchronous design
behaves in a predictable and reliable manner for all
process, voltage, and temperature (PVT) conditions.
You can easily target synchronous designs to
different device families or speed grades.
Note: Problems with asynchronous design

techniques include reliance on propagation
delays in a device, incomplete timing
analysis, and possible glitches.

• Use dedicated clock pins and clock routing for best
results, and if you have PLLs in your target device,
use the PLLs for clock inversion, multiplication, and
division.

• For clock multiplexing and gating, use the dedicated
clock control block or PLL clock switchover feature
instead of combinational logic, if these features are
available in your device. If you must use internally
generated clock signals, register the output of any
combinational logic used as a clock signal to reduce
glitches.

• Quartus Prime Pro Edition User
Guide: Design Recommendations

• Quartus Prime Pro Edition User
Guide: Timing Analyzer

continued...

2. Planning FPGA Design for RTL Flow

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

16

https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Item Considerations Links

• Consider the architecture of the device you choose
so that you can use specific features in your design.
For example, the control signals should use the
dedicated control signals in the device architecture.
Sometimes, you might need to limit the number of
different control signals used in your design to
achieve the best results.

• HDL coding styles can have a significant effect on
the quality of results for programmable logic
designs. Follow the coding guidelines for inferring
Intel FPGA IP and targeting dedicated device
hardware, such as memory and DSP blocks.

• Ensure that your design accounts for
synchronization between any asynchronous clock
domains. Consider using a synchronizer chain of
more than two registers for high-frequency clocks
and frequently-toggling data signals to reduce the
chance of a metastability failure.

• Use the Quartus Prime software to analyze the
average mean time between failures (MTBF) due to
metastability when a design synchronizes
asynchronous signals, and optimize your design to
improve the metastability MTBF.

Planning your
Project Path Length

Design files with lengthy file paths might cause an
internal error in the Windows* version of the Quartus
Prime Pro Edition software. Windows has a 260-
character maximum path length limitation on the
combined length of a file name and its file path.
To reduce the length of a file path to a design file, Intel
strongly recommends creating, storing, or moving your
Quartus Prime project to a shorter path. For example:
C:\quartus_pro\<version>\project

Tip: There are several third-party software freely
available to help you fix the long path issue for
Windows.

Maximum Path Length Limitation

Table 8. Factors to Consider When Using Debugging Tools During Design Planning
Stages

Design Planning Factor Signal
Tap

Logic
Analyzer

System
Console

In-
System
Memory
Content
Editor

Logic
Analyzer
Interface

(LAI)

Signal
Probe

In-
System
Sources

and
Probes

Virtual
JTAG IP

Core

JTAG connections Yes Yes Yes Yes — Yes Yes

Additional logic resources — Yes — — — — Yes

Reserve device memory Yes Yes — — — — —

Reserve I/O pins — — — Yes Yes — —

Instantiate IP core in your HDL code — — — — — Yes Yes

2.2. Selecting the Design Methodology

When creating an FPGA design, you must consider various design methodologies the
Quartus Prime software offers, such as the incremental block-based design, flat
design, and partial reconfiguration design. You can use these design flows with or
without EDA design entry and synthesis tools. Refer to the following topics for more
information about each of these methodologies.

2. Planning FPGA Design for RTL Flow

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

17

https://learn.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.1. Flat Design Vs. Incremental Block-based Design

With the Quartus Prime Pro Edition software, you can either develop a flat design or a
block-based design:

2. Planning FPGA Design for RTL Flow

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Flat Designs: In a flat compilation flow, the design hierarchy is flattened without
design partitions and the Quartus Prime software compiles the entire design in a
“flat” netlist. Although the source code may be hierarchical, the compiler flattens
and synthesizes all the design logic. Whenever you recompile the project, the
compiler re-performs all available logic and placement optimizations on the entire
design.

The flat compilation flow does not require any planning for design partitions.
However, because the Quartus Prime software recompiles the entire design
whenever you change your design, flat design practices may require more overall
compilation time for large designs. Additionally, you may find that the results for
one part of the design change when you change a different part of your design.

If you plan to develop a small design with no plans to reuse or preserve blocks,
use a flat design. However, flat designs are generally more difficult to optimize and
debug because you cannot always isolate the timing issue.

• Block-based designs: In block-based (hierarchical) flows, you can divide your
design by creating design partitions. Block-based design flow is also known as
modular or hierarchical design flow. You can designate a design block as a design
partition to preserve or reuse the block. A design partition is a logical, named,
hierarchical boundary assignment that you can apply to a design instance.
Hierarchical flows allow you to isolate, optimize, and preserve compilation results
for specific design blocks but require more design planning to ensure effective
results.

Using a hierarchical design methodology offers several advantages, such as:

— Reuse design blocks with the same periphery configuration, share a
synthesized design block with another designer, or replicate placed and routed
IP in another project.

— Design, implement, and verify core or periphery blocks once, and then reuse
those blocks multiple times across different projects that use the same device.

— Perform easier debugging and optimization of individual design blocks.

— Assign the design hierarchy elements into logical partitions that are
functionally independent.

— Perform stand-alone block verification.

— Use design blocks for reuse and preserve synthesis and timing results for
blocks that are fully coded and meeting timing.

— Preserve earlier results for a block you do not want to change when you
change RTL code or compiler settings for another block in the design. The
compiler produces different compilation results compared to previous settings
and can cause timing violations in blocks that do not reflect the same
corresponding code or setting changes. Block-based incremental compilation
flow allows for preserving the block.

— Partition a design, compile the design partitions separately, and reuse the
results for unchanged partitions. You can preserve the performance of
unchanged blocks and reduce the number of design iterations. The
performance preservation of incremental block-based compilation allows you
to focus timing closure on unpreserved partitions or on blocks that have
difficulty meeting timing requirements

For more information about the block-based designing, refer to the Quartus Prime Pro
Edition User Guide: Block-Based Design.

2. Planning FPGA Design for RTL Flow

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Quartus Prime Pro Edition: Block-Based Design

2.2.2. Partial Reconfiguration Design

Partial reconfiguration (PR) allows you to reconfigure a portion of the FPGA
dynamically while the remaining FPGA design continues to function. You can define
multiple personas for a particular region in your design without impacting operation in
areas outside this region. This methodology is effective in systems with various
functions that time-share the same FPGA device resources. PR enables the
implementation of more complex FPGA systems.

The Quartus Prime Pro Edition software supports the PR feature for the Agilex 5,
Agilex 7, Stratix 10, Arria 10, and Cyclone 10 GX device families.

PR provides the following advantages over a flat design:

• Allows run-time design reconfiguration.

• Increases scalability of the design through time-multiplexing.

• Lowers cost and power consumption through efficient use of board space.

• Supports dynamic time-multiplexing functions in the design.

• Improves initial programming time through smaller bitstreams.

• Reduces system downtime through line upgrades.

• Enables easy system updates by allowing remote hardware change.

• Supports a simplified compilation flow for partial reconfiguration.

For more information about the PR design, refer to the Quartus Prime Pro Edition User
Guide: Partial Reconfiguration.

Related Information

Quartus Prime Pro Edition: Partial Reconfiguration

2.3. Related Trainings

You can take up the following training to help you when planning FPGA design for RTL
flow:

• Creating Reusable Design Blocks: Introduction to IP Reuse with the Quartus Prime
Software

• Design Block Reuse in the Quartus Prime Pro Edition Software

• Incremental Block-Based Compilation in the Quartus Prime Pro Edition Software:
Introduction

• Incremental Block-Based Compilation in the Quartus Prime Pro Edition Software:
Design Partitioning

• Incremental Block-Based Compilation in the Quartus Prime Pro Edition Software:
Timing Closure & Tips

• Partial Reconfiguration in Quartus Prime

• Partial Reconfiguration for Intel FPGA Devices: Introduction & Project Assignments

2. Planning FPGA Design for RTL Flow

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

20

https://www.intel.com/content/www/us/en/docs/programmable/683247.html
https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.youtube.com/watch?v=XDSNAwkHfGA
https://www.youtube.com/watch?v=XDSNAwkHfGA
https://www.youtube.com/watch?v=P5Ar6pd7FYk
https://learning.intel.com/developer/learn/course/internal/view/elearning/250/incremental-block-based-compilation-in-the-intel-quartusr-prime-pro-software-introduction
https://learning.intel.com/developer/learn/course/internal/view/elearning/250/incremental-block-based-compilation-in-the-intel-quartusr-prime-pro-software-introduction
https://learning.intel.com/developer/learn/course/internal/view/elearning/251/incremental-block-based-compilation-in-the-intel-quartusr-prime-pro-software-design-partitioning
https://learning.intel.com/developer/learn/course/internal/view/elearning/251/incremental-block-based-compilation-in-the-intel-quartusr-prime-pro-software-design-partitioning
https://learning.intel.com/developer/learn/course/internal/view/elearning/252/incremental-block-based-compilation-in-the-intel-quartusr-prime-pro-software-timing-closure-tips
https://learning.intel.com/developer/learn/course/internal/view/elearning/252/incremental-block-based-compilation-in-the-intel-quartusr-prime-pro-software-timing-closure-tips
https://www.youtube.com/watch?v=YwDZCTmAkRM
https://learning.intel.com/developer/learn/course/internal/view/elearning/376/partial-reconfiguration-for-intel-fpga-devices-introduction-project-assignments
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Partial Reconfiguration for Intel FPGA Devices: Design Guidelines & Host
Requirements

• Partial Reconfiguration for Intel FPGA Devices: PR Host IP & Implementations

• Partial Reconfiguration for Intel FPGA Devices: Output Files & Demonstration

2. Planning FPGA Design for RTL Flow

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

21

https://learning.intel.com/Developer/learn/course/internal/view/elearning/377/partial-reconfiguration-for-intel-fpga-devices-design-guidelines-host-requirements
https://learning.intel.com/Developer/learn/course/internal/view/elearning/377/partial-reconfiguration-for-intel-fpga-devices-design-guidelines-host-requirements
https://learning.intel.com/developer/learn/course/internal/view/elearning/378/partial-reconfiguration-for-intel-fpga-devices-pr-host-ip-implementations
https://learning.intel.com/developer/learn/course/internal/view/elearning/379/partial-reconfiguration-for-intel-fpga-devices-output-files-demonstration
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Selecting a Starting Point for Your Quartus Prime Pro
Edition Project

Navigating Content Through Tasks

Use the following navigation diagram to navigate this guide through user-tasks:

Plan FPGA Design for RTL
Flow
or

Work With Intel FPGA IP
Cores

Create a New Project
or

Migrate Your Existing Project
to Quartus Prime Pro Edition

Software

Manage Your Quartus Prime
Pro Edition Projects

Review Next Steps

There are multiple ways you can set up your project depending on your design needs
Either you can create a new project with project files and libraries or with a design
example, or you can import an existing project into the Quartus Prime Pro Edition
software.

Select one of the following methods to set up your Quartus Prime Pro Edition project:

Creating a New FPGA Design Project on page 22

Migrating Projects from Other Quartus Prime Editions to Quartus Prime Pro Edition on
page 33

Migrating Your AMD* Vivado* Project to Quartus Prime Pro Edition on page 45

Migrating Projects Across Operating Systems on page 45

Migrating Project From One Device to Another on page 47

Related Trainings on page 49

3.1. Creating a New FPGA Design Project

The Quartus Prime software makes it easy for you to quickly setup a new FPGA design
project.

683463 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Use the quick access icons on the home page to set up your FPGA design project:

• New Project Wizard: Use this option to create a project either by specifying
project files, libraries, target device family, and EDA tool settings, or using an
existing design example.

• Open Example Project: Use this option if you want to base your current project
on a pre-installed and verified design example.

• Open Project: Use this option to browse and open your existing projects.

The wizard guides you through specifying various options for new project setup and
includes access to helpful project templates and design examples that allow you to
preconfigure project settings for specific applications, FPGA devices, and target
boards.

3.1.1. Using the Board-Aware Flow

The Quartus Prime Pro Edition software allows you to create a system that targets a
specific development board, rather than only targeting a specific FPGA device. When
you target a specific development board, the Quartus Prime software is aware of the
target board (board-aware) which accelerates the process of appropriately configuring,
connecting, and validating IP for the target board.

What is the Quartus Prime Software Board-Aware Flow?

In the board-aware flow, you can optionally start your project from a pre-verified
design example (rather than an empty project) and target a specific Intel FPGA
development board. You can also create appropriate IP presets to target the specific
board. The Quartus Prime Platform Designer system integration tool is also board-
aware, allowing you to automatically set pin assignments and export appropriate
system interfaces for the target board.

The board-aware flow simplifies the application of appropriate parameters and pin
assignments for the instantiated IP in your project, thereby reducing the chance of
configuration errors. You can also save and reuse your preferred and verified board
and IP configurations for use in other projects that target the same IP or board.

The board-aware flow helps to ensure the proper hand-off, consistency, and reuse of
configuration options across multiple projects, developers, and boards.

Note: To define new boards and IP preset files in Platform Designer, refer to Intel Quartus
Prime Pro Edition User Guide: Platform Designer and AN 988: Using the Board-Aware
Flow in the Intel Quartus Prime Pro Edition Software.

Related Information

• Creating a New Project from a Design Example on page 24

• Specifying a Target Board for the Project on page 32

• Applying Preset Parameters for Specific Applications on page 61

• Intel Quartus Prime Pro Edition User Guide: Platform Designer

• AN 988: Using the Board-Aware Flow in the Intel Quartus Prime Pro Edition
Software

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

23

https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/757339.html
https://www.intel.com/content/www/us/en/docs/programmable/757339.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.1.1. Creating a New Project from a Design Example

The Quartus Prime software provides access to installed and online platform- and
board-specific design examples that you can use as a starting point for your own
design. You can accelerate your design progress by starting from a pre-validated
design example that installs with the Quartus Prime software or is available online.

This technique can be especially helpful if you are new to FPGA design or EDA design
tools. The design example can help you to quickly analyze a validated design on a
board and appropriately configure it in various ways to match your users’ needs.
Alternatively, you can start with an Empty Project for which you specify all settings
and design files.

• Pre-installed design examples—you can immediately access the design
examples that install along with the Quartus Prime software installation at:
<quartus>\acds\quartus\common\board_designs.

• Online design examples—you can access design examples hosted online, which
includes designs from the Intel FPGA Design Store or directly from Quartus Prime
software by clicking Open Example Project from the home page. For more
information, refer to Design Example Discovery.

• Downloaded design examples—you can access your previously downloaded
design examples, or any design example that you store in a local drive, under
downloaded reference designs.

To create a new Quartus Prime project that is based on a design example, follow these
steps:

1. the Quartus Prime software, click File ➤ New Project Wizard. Click Next to
view the Family, Device & Board Settings wizard page.

2. Under the Select the type of project to create, select Design Example and
click Next. The Family, Device & Board Settings page appears, allowing you to
find and select the design example from which to base your project.

Figure 4. Family, Device & Board Settings Page of New Project Wizard

3. Under What is the working directory for this project?, specify the directory to
store your project files and click Next.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

24

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/design-store.html?s=Newest
https://www.youtube.com/watch?v=hPUyUOEl1G0&t=61s
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Under Find Options, select the Family, Development Kit, and Vendor design
example you want to use. Refer to Family, Device & Board Settings on page 25.

Figure 5. Board Tab in New Project Wizard

The search results display the design examples that meet your search criteria.

5. Select the design example that you want in the search results and click Next. If
the design example is licensed by Intel FPGA, a Software License Agreement
page appears that prompts you to accept the license agreement before you can
proceed.

6. Click Next to proceed to the Summary page.

7. Click Finish to deploy the selected design example in the Quartus Prime software.
When a design example downloads, the design's .par downloads to the download
path that you define in More Settings, but the design itself extracts to the
project working directory that you specify.

Also refer to Accessing Online Design Examples on page 27 and Accessing
Downloaded Design Examples on page 31.

Related Information

Intel FPGA Design Examples

3.1.1.1.1. Family, Device & Board Settings

The following options are available in the Family, Device & Board Settings page of
the New Project Wizard. Specify these options to locate and deploy a validated
design example targeting a specific board as a starting point for your FPGA design
project. Some options are only available from File ➤ Open Example Project

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

25

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/design-examples-overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 9. Family, Device & Board Settings Page Options

Option Description

Select the type of project to create • Empty—create a new empty FPGA design project to which you add all design
files, settings, and constraints.

• Design example—create a new project from an existing design example.
You can access installed or online available design examples.

What is the working directory for
this project?

Specifies the directory where you want to extract and deploy the design
example.

Find Options Allows you to filter design example search results by one of the following facets:
• Load from >Pre-installed design examples—specifies that search

includes examples installed with the Quartus Prime software.
• Load from > User downloaded design examples—search includes design

examples that you download or your own design examples that you store in a
local repository.

• Load from > Online design examples—search includes design examples
hosted online, including examples from the Intel FPGA Design Store.

• Family—search only includes design examples for the device families that
you specify. You can specify multiple values.

• Quartus Prime version—search only includes design examples that support
the Quartus Prime software version that you specify. You can specify multiple
pipe separated values.

• Development kit—search only includes design examples that support the
Intel FPGA development kit that you specify. You can specify multiple pipe
separated values.

More settings button Opens the Options panel that allows you to configure the Internet
Connectivity and Design Examples connection and download settings, as
Design Examples Options on page 30 describes.

Reset button Resets the Find Options to default settings.

Legend panel Displays the meaning of design example status icons in the search results.
Design example status is validated (checkmark icon), unvalidated (question
mark icon), or unsupported for the current Intel Quartus Prime software version
(x icon).

Filter text box Specifies a text string to further filter design example search results according to
any text string you specify.

Search results list Displays the design examples, status, and location that match your search
filters.

Details panel Displays a detailed description and diagram of the selected design example.

Design Store button Opens the Design Store website in your default web browser from which you can
download available Intel FPGA validated design examples.

3.1.1.1.2. Accessing Pre-Installed Design Examples

The Quartus Prime software installation includes design examples for your immediate
use.

You can access the pre-installed design examples while using the Quartus Prime
software using the following methods:

• Click File ➤ New Project Wizard ➤ Family, Device & Board Settings page.

• Click Open Example Project on the Home tab (Help ➤ Home).

• Click File ➤ Open Example Project.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To create a new project based on pre-installed design examples, follow these steps
Quartus Prime Pro Edition software:

1. Click File ➤ Open Example Project. The Design Example page of the New
Project Wizard opens.

2. For What is the working directory for this project?, specify the directory
location to store your project files.

Figure 6. Find Options Locate Pre-Installed Design Example

3. Under Find Options, specify the following settings to filter the list of design
examples for the target device and board. Also refer to Family, Device & Board
Settings on page 25.

a. In Load from, select the Pre-Installed design examples, repository.

b. In Family, select your target FPGA device family.

c. In Intel Quartus Prime version, select the software version.

d. In Development kit, select the target kit or board.

4. Under Design name, select the design example to base your project on.

5. Click Next, and then click Finish. The design extracts to the working directory
and opens in the Quartus Prime software.

Related Information

Design Example Discovery

3.1.1.1.3. Accessing Online Design Examples

You can create a new project based on a design example that you access from an
online repository. To use this method, you may need to specify a proxy server for
access and the download path.

To create a new project in the Intel Quartus Prime software based on online design
examples, follow these steps:

1. Click File ➤ Open Example Project. The Design Example page of the New
Project Wizard opens.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

27

https://www.youtube.com/watch?v=hPUyUOEl1G0
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Open Example Project Icon on Home Page

2. For What is the working directory for this project?, specify the directory
location to store your project files.

3. Click the More Settings button. The Options dialog box opens with the Internet
Connectivity tab open by default.

Figure 8. Intel Quartus Prime Software Internet Connectivity Settings

4. If your internet connection requires a proxy server (using VPN), turn on the
Access online design examples using a proxy server option, and then specify
your proxy Address, Port, User name, and Password. If your internet
connection does not require a proxy server, skip this step.

5. On the Design Example Search Locations tab, specify the Download path for
download of the design example .par file.

6. Click OK.

7. Under Find Options, specify the following settings. Also refer to Family, Device &
Board Settings on page 25.

a. In Load from, select Downloaded design examples.

b. In Family, Intel Quartus Prime version, and Development kit fields
select the values to match your target design and board.

8. In the design example list, select the design that you want to deploy.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Online Agilex 7 - I/O PLL Reconfiguration Design

9. Click Next, and then click Finish. The design extracts to the working directory
and opens in the Quartus Prime software.

Internet Connectivity Options
You can specify the following internet connectivity options that determine how the
Quartus Prime software connects to the internet for various functions, such as
accessing Help and design examples, with either of the following:

• Click Tools ➤ Options ➤ Internet Connectivity

Or

• Click More Settings on the Design Example page of the New Project Wizard
(File ➤ New Project Wizard).

The following options are available on the Internet Connectivity options page.

Table 10. Internet Connectivity Options

Option Description

Web browser Specifies the web browser that deploys when the Quartus Prime software
accesses the internet, including the Intel FPGA Design Store web page. Enable
Use custom web browser to specify the path to your preferred supported web
browser.

Proxy server Specify options if connecting to the internet through a proxy server. To access
online design examples specify the appropriate option:
• Access online design examples using a proxy server—turn on this

option if you are connected to the internet through a VPN. Turn off this option
if you are not connected to the internet through a VPN (such as connection
through a private network).

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. Internet Connectivity Page

Related Information

Design Example Options Page on page 30

Design Examples Options
You can click the following to specify options that determine how the Quartus Prime
software accesses available design examples.

• Click File ➤ New Project Wizard and then click the More Settings button on
the Design Example page of the New Project Wizard.

Table 11. Design Examples Options

Option Description

Design Example search directory Specifies the local directories that the Quartus Prime software searches for
design examples. This setting determines which directories you include in search
when using the New Project Wizard to start a project from an existing design
example. Click Add, Remove, Up, or Down to change the search order and
contents in the Directories list.

Directories Lists the various directories that you include in the design example search path
for the New Project Wizard.

Download path Specifies the path for download of online design examples.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Design Examples Page

3.1.1.1.4. Accessing Downloaded Design Examples

You can create a new project from a design example that you have previously
downloaded. Download a design example .par file from an online repository (such as
the Intel FPGA Design Store) into your working directory. Designs that you create
yourself and store in a local drive also appear as downloaded examples.

To create a new project based on downloaded design examples, follow these steps:

1. Download a design example, as Accessing Online Design Examples on page 27
describes.

2. Click the Open Example Project icon on the Quartus Prime Pro Edition Home
page. The Design Example page of the New Project Wizard opens.

3. For What is the working directory for this project?, specify the directory
location to store your project files.

4. Under Find Options, specify the following settings. Refer to Family, Device &
Board Settings on page 25.

a. In Load from, select Downloaded design examples.

b. In Family, Intel Quartus Prime version, and Development kit fields
select the values to match your target design and board.

5. In the design example list, select the design that you want to deploy.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Downloaded Agilex 7 I/O PLL Reconfiguration Design

6. Click Next, and then click Finish. The design extracts to the working directory
and opens in the Quartus Prime software.

3.1.1.2. Specifying a Target Board for the Project

You can specify the target for a new project in the New Project Wizard, or you can
specify a target board for an existing project by clicking Assignments ➤ Device. To
specify a target board for an existing project, follow these steps:

1. Click Assignments ➤ Device. The Device dialog box appears.

2. Click the Board tab. The Board tab allows you to target a specific FPGA device
board, rather than just a specific FPGA device.

Figure 13. Board Tab Settings

3. In the Family, Intel Quartus Prime version, and Development kit fields,
select the values to match your target design and board.

4. Click the desired board in the list. The board details appear in the right pane.

5. Click OK. Your project now targets the specified board and device.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2. Migrating Projects from Other Quartus Prime Editions to
Quartus Prime Pro Edition

The Quartus Prime Pro Edition software supports migration of Quartus Prime Standard
Edition, Quartus Prime Lite Edition, and Quartus II software projects.

Note: The migration steps for Quartus Prime Lite Edition, Quartus Prime Standard Edition,
and the Quartus II software are identical. For brevity, this section refers to these
design tools collectively as "other Quartus software products."

Migrating to Quartus Prime Pro Edition requires the following changes to other Quartus
software product projects:

1. Upgrade project assignments and constraints with equivalent Quartus Prime Pro
Edition assignments.

2. Upgrade all Intel FPGA IP core variations and Platform Designer systems in your
project.

3. Upgrade design RTL to standards-compliant VHDL, Verilog HDL, or SystemVerilog.

This document describes each migration step in detail.

Related Information

Migrating to the Quartus Prime Pro Edition Software

3.2.1. Keeping Pro Edition Project Files Separate

The Quartus Prime Pro Edition software does not support project or constraint files
from other Quartus software products. Do not place project files from other Quartus
software products in the same directory as Quartus Prime Pro Edition project files. In
general, use Quartus Prime Pro Edition project files and directories only for Quartus
Prime Pro Edition projects, and use other Quartus software product files only with
those software tools.

Quartus Prime Pro Edition projects do not support compilation in other Quartus
software products, and vice versa. The Quartus Prime Pro Edition software generates
an error if the Compiler detects other Quartus software product's features in project
files.

Before migrating other Quartus software product projects, click Project ➤ Archive
Project to save a copy of your original project before making modifications for
migration.

3.2.2. Upgrading Project Assignments and Constraints

Quartus Prime Pro Edition software introduces changes to handling of project
assignments and constraints that the Quartus Settings File (.qsf) stores. Upgrade
other Quartus software product project assignments and constraints for migration to
the Quartus Prime Pro Edition software. Upgrade other Quartus software product
assignments with Assignments ➤ Assignment Editor, by editing the .qsf file
directly, or by using a Tcl script.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

33

https://www.youtube.com/watch?v=HXZV9tRtFTI&t=1529s
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If you open a Quartus Prime Standard Edition software project in the Quartus Prime
Pro Edition software, and that project contains unsupported junction temperature
setting values, you can modify these settings by clicking Assignments ➤ Settings ➤
Operating Settings and Conditions ➤ Temperature. Click OK, and then click Yes
when prompted to update the values.

The following sections detail the various types of project assignment upgrade that
migration requires.

Related Information

• Modifying Entity Name Assignments on page 34

• Resolving Timing Constraint Entity Names on page 34

• Verifying Generated Node Name Assignments on page 35

• Replace Logic Lock (Standard) Regions on page 35

• Modifying Signal Tap Logic Analyzer Files on page 37

• Removing Unsupported Feature Assignments on page 38

3.2.2.1. Modifying Entity Name Assignments

Quartus Prime Pro Edition software supports assignments that include instance names
without a corresponding entity name.

• "a_entity:a|b_entity:b|c_entity:c" (includes deprecated entity names)

• “a|b|c” (omits deprecated entity names)

While the current version of the Quartus Prime Pro Edition software still accepts entity
names in the .qsf, the Compiler ignores the entity name. The Compiler generates a
warning message upon detection of an entity names in the .qsf. Whenever possible,
you should remove entity names from assignments, and discontinue reliance on
entity-based assignments. Future versions of the Quartus Prime Pro Edition software
may eliminate all support for entity-based assignments.

3.2.2.2. Resolving Timing Constraint Entity Names

The Quartus Prime Pro Edition Timing Analyzer honors entity names in Synopsys
Design Constraints (.sdc) files.

Use .sdc files from other Quartus software products without modification. However,
any scripts that include custom processing of names that the .sdc command returns,
such as get_registers may require modification. Your scripts must reflect that
returned strings do not include entity names.

The .sdc commands respect wildcard patterns containing entity names. Review the
Timing Analyzer reports to verify application of all constraints. The following example
illustrates differences between functioning and non-functioning .sdc scripts:

Apply a constraint to all registers named "acc" in the entity "counter".
This constraint functions in both SE and PE, because the SDC
command always understands wildcard patterns with entity names in them
set_false_path –to [get_registers “counter:*|*acc”]

This does the same thing, but first it converts all register names to
strings, which includes entity names by default in the SE
but excludes them by default in the PE. The regexp will therefore
fail in PE by default.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

#
This script would also fail in the SE, and earlier
versions of Quartus II, if entity name display had been disabled
in the QSF.
set all_reg_strs [query_collection –list –all [get_registers *]]
foreach keeper $all_reg_strs {
 if {[regexp {counter:*|:*acc} $keeper]} {
 set_false_path –to $keeper
 }
}

Removal of the entity name processing from .sdc files may not be possible due to
complex processing involving node names. Use standard .sdc whenever possible to
replace such processing. Alternatively, add the following code to the top and bottom of
your script to temporarily re-enable entity name display in the .sdc file:

This script requires that entity names be included
due to custom name processing
set old_mode [set_project_mode -get_mode_value always_show_entity_name]
set_project_mode -always_show_entity_name on

<... the rest of your script goes here ...>

Restore the project mode
set_project_mode -always_show_entity_name $old_mode

3.2.2.3. Verifying Generated Node Name Assignments

Quartus Prime synthesis generates and automatically names internal design nodes
during processing. The Quartus Prime Pro Edition uses different conventions than
other Quartus software products to generate node names during synthesis. When you
synthesize your other Quartus software product project in Quartus Prime Pro Edition,
the synthesis-generated node names may change. If any scripts or constraints depend
on the synthesis-generated node names, update the scripts or constraints to match
the Quartus Prime Pro Edition synthesis node names.

Avoid dependence on synthesis-generated names due to frequent changes in name
generation. In addition, verify the names of duplicated registers and PLL clock outputs
to ensure compatibility with any script or constraint.

3.2.2.4. Replace Logic Lock (Standard) Regions

Quartus Prime Pro Edition software introduces more simplified and flexible Logic Lock
constraints, compared with previous Logic Lock regions. You must replace all Logic
Lock (Standard) assignments with compatible Logic Lock assignments for migration.

To convert Logic Lock (Standard) regions to Logic Lock regions:

1. Edit the .qsf to delete or comment out all of the following Logic Lock
assignments:

set_global_assignment -name LL_ENABLED*
set_global_assignment -name LL_AUTO_SIZE*
set_global_assignment -name LL_STATE FLOATING*
set_global_assignment -name LL_RESERVED*
set_global_assignment -name LL_CORE_ONLY*
set_global_assignment -name LL_SECURITY_ROUTING_INTERFACE*
set_global_assignment -name LL_IGNORE_IO_BANK_SECURITY_CONSTRAINT*
set_global_assignment -name LL_PR_REGION*
set_global_assignment -name LL_ROUTING_REGION_EXPANSION_SIZE*
set_global_assignment -name LL_WIDTH*

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_global_assignment -name LL_HEIGHT
set_global_assignment -name LL_ORIGIN
set_instance_assignment -name LL_MEMBER_OF

2. Edit the .qsf or click Tools ➤ Chip Planner to define new Logic Lock regions.
Logic Lock constraint syntax is simplified, for example:

set_instance_assignment -name PLACE_REGION "1 1 20 20" -to fifo1
set_instance_assignment -name RESERVE_PLACE_REGION OFF -to fifo1
set_instance_assignment -name CORE_ONLY_PLACE_REGION OFF -to fifo1

Compilation fails if synthesis finds other Quartus software product's Logic Lock
assignments in an Quartus Prime Pro Edition project. The following table compares
other Quartus software product region constraint support with the Quartus Prime
Pro Edition software.

Table 12. Region Constraints Per Edition

Constraint Type Logic Lock (Standard) Region Support
Other Quartus Software Products

Logic Lock Region Support
Quartus Prime Pro Edition

Fixed rectangular,
nonrectangular or non-
contiguous regions

Full support. Full support.

Chip Planner entry Full support. Full support.

Periphery element
assignments

Supported in some instances. Full support. Use “core-only” regions to
exclude the periphery.

Nested (“hierarchical”)
regions

Supported but separate hierarchy from the user
instance tree.

Supported in same hierarchy as user
instance tree.

Reserved regions Limited support for nested or nonrectangular
reserved regions. Reserved regions typically
cannot cross I/O columns; use non-contiguous
regions instead.

Full support for nested and
nonrectangular regions. Reserved
regions can cross I/O columns without
affecting periphery logic if the regions
are "core-only".

Routing regions Limited support via “routing expansion.” No
support with hierarchical regions.

Full support (including future support
for hierarchical regions).

Floating or autosized
regions

Full support. No support.

Region names Regions have names. Regions are identified by the instance
name of the constrained logic.

Multiple instances in the
same region

Full support. Support for non-reserved regions.
Create one region per instance, and
then specify the same definition for
multiple instances to assign to the same
area. Not supported for reserved
regions.

Member exclusion Full support. No support for arbitrary logic. Use a
core-only region to exclude periphery
elements. Use non-rectangular regions
to include more RAM or DSP columns as
needed.

3.2.2.4.1. Logic Lock Region Assignment Examples

The following examples show the syntax of Logic Lock region assignments in the .qsf
file. Optionally, you can enter these assignments in the Assignment Editor, the Logic
Lock Regions Window, or the Chip Planner.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 1. Assign Rectangular Logic Lock Region

Assigns a rectangular Logic Lock region to a lower left corner location of (10,10), and
an upper right corner of (20,20) inclusive.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"

Example 2. Assign Non-Rectangular Logic Lock Region

Assigns instance with full hierarchical path "x|y|z" to non-rectangular L-shaped Logic
Lock region. The software treats each set of four numbers as a new box.

set_instance_assignment –name PLACE_REGION –to x|y|z "X10 Y10 X20 Y50; X20 Y10
X50 Y20"

Example 3. Assign Subordinate Logic Lock Instances

By default, the Quartus Prime software constrains every child instance to the Logic
Lock region of its parent. Any constraint to a child instance intersects with the
constraint of its ancestors. For example, in the following example, all logic beneath
“a|b|c|d” constrains to box (10,10), (15,15), and not (0,0), (15,15). This
result occurs because the child constraint intersects with the parent constraint.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name PLACE_REGION –to a|b|c|d "X0 Y0 X15 Y15"

Example 4. Assign Multiple Logic Lock Instances

By default, a Logic Lock region constraint allows logic from other instances to share
the same region. These assignments place instance c and instance g in the same
location. This strategy is useful if instance c and instance g are heavily interacting.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X20 Y20"

Example 5. Assigned Reserved Logic Lock Regions

Optionally reserve an entire Logic Lock region for one instance and any of its
subordinate instances.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name RESERVE_PLACE_REGION –to a|b|c ON

The following assignment causes an error. The logic in e|f|g is not
legally placeable anywhere:
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X20 Y20"

The following assignment does *not* cause an error, but is effectively
constrained to the box (20,10), (30,20), since the (10,10),(20,20) box is
reserved
for a|b|c
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X30 Y20"

3.2.2.5. Modifying Signal Tap Logic Analyzer Files

Quartus Prime Pro Edition introduces new methodology for entity names, settings, and
assignments. These changes impact the processing of Signal Tap Logic Analyzer Files
(.stp).

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you migrate a project that includes .stp files generated by other Quartus software
products, you must make the following changes to migrate to the Quartus Prime Pro
Edition:

1. Remove entity names from .stp files. The Signal Tap Logic Analyzer allows
without error, but ignores, entity names in .stp files. Remove entity names
from .stp files for migration to Quartus Prime Pro Edition:

a. Click View ➤ Node Finder to locate and remove appropriate nodes. Use Node
Finder options to filter on nodes.

b. Click Processing ➤ Start ➤ Start Analysis & Elaboration to repopulate the
database and add valid node names.

2. Remove post-fit nodes. Quartus Prime Pro Edition uses a different post-fit node
naming scheme than other Quartus software products.

a. Remove post-fit tap node names originating from other Quartus software
products.

b. Click View ➤ Node Finder to locate and remove post-fit nodes. Use Node
Finder options to filter on nodes.

c. Click Processing ➤ Start Compilation to repopulate the database and add
valid post-fit nodes.

3. Run an initial compilation in Quartus Prime Pro Edition from the GUI. The Compiler
automatically removes Signal Tap assignments originating other Quartus software
products. Alternatively, from the command-line, run quartus_stp once on the
project to remove outmoded assignments.

Note: quartus_stp introduces no migration impact in the Quartus Prime Pro
Edition. Your scripts require no changes to quartus_stp for migration.

4. Modify .sdc constraints for JTAG. Quartus Prime Pro Edition does not support
embedded .sdc constraints for JTAG signals. Modify the timing template to suit
the design's JTAG driver and board.

3.2.2.6. Removing References to .qip Files

In Quartus Prime Standard Edition projects, Platform Designer (Standard)
generates .qip files. These files describe the parameterized IP cores to the Compiler,
and appear as assignments in the project's .qsf file. However, in Quartus Prime Pro
Edition projects, the parameterized IP core description occurs in .ip files. Moreover,
references to .qip files in a project's .qsf file cause synthesis errors during
compilation.

• When migrating a project to Quartus Prime Pro Edition, remove all references
to .qip files from the .qsf file.

3.2.2.7. Removing Unsupported Feature Assignments

The Quartus Prime Pro Edition software does not support some feature assignments
that other Quartus software products support. Remove the following unsupported
feature assignments from other Quartus software product .qsf files for migration to
the Quartus Prime Pro Edition software.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Incremental Compilation (partitions)—The current version of the Quartus Prime
Pro Edition software does not support Quartus Prime Standard Edition incremental
compilation. Remove all incremental compilation feature assignments from other
Quartus software product .qsf files before migration.

• Quartus Prime Standard Edition Physical synthesis assignments. Quartus Prime
Pro Edition software does not support Quartus Prime Standard Edition Physical
synthesis assignments. Remove any of the following assignments from the .qsf
file or design RTL (instance assignments) before migration.

PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA
 PHYSICAL_SYNTHESIS_COMBO_LOGIC
 PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION
 PHYSICAL_SYNTHESIS_REGISTER_RETIMING
 PHYSICAL_SYNTHESIS_ASYNCHRONOUS_SIGNAL_PIPELINING
 PHYSICAL_SYNTHESIS_MAP_LOGIC_TO_MEMORY_FOR_AREA

Note: If you open a Quartus Prime Standard Edition software project in the Quartus Prime
Pro Edition software, and that project contains unsupported junction temperature
setting values, you can modify these settings by clicking Assignments ➤ Settings ➤
Operating Settings and Conditions ➤ Temperature. Click OK, and then click Yes
when prompted to update the values.

3.2.3. Upgrading IP Cores and Platform Designer Systems

Upgrade all IP cores and Platform Designer systems in your project for migration to
the Quartus Prime Pro Edition software. The Quartus Prime Pro Edition software uses
standards-compliant methodology for instantiation and generation of IP cores and
Platform Designer systems. Most Intel FPGA IP cores and Platform Designer systems
upgrade automatically in the Upgrade IP Components dialog box.

Other Quartus software products use a proprietary Verilog configuration scheme within
the top level of IP cores and Platform Designer systems for synthesis files. The
Quartus Prime Pro Edition does not support this scheme. To upgrade all IP cores and
Platform Designer systems in your project, click Project ➤ Upgrade IP
Components.(2)

Table 13. IP Core and Platform Designer System Differences

Other Quartus Software Products Quartus Prime Pro Edition

IP and Platform Designer system generation
use a proprietary Verilog HDL configuration
scheme within the top level of IP cores and
Platform Designer systems for synthesis files.
This proprietary Verilog HDL configuration
scheme prevents RTL entities from ambiguous
instantiation errors during synthesis.
However, these errors may manifest in
simulation. Resolving this issue requires
writing a Verilog HDL configuration to
disambiguate the instantiation, delete the
duplicate entity from the project, or rename
one of the conflicting entities. Quartus Prime
Pro Edition IP strategy resolves these issues.

IP and Platform Designer system generation does not use proprietary
Verilog HDL configurations. The compilation library scheme changes in the
following ways:
• Compiles all variants of an IP core into the same compilation library

across the entire project. Quartus Prime Pro Edition identically names
IP cores with identical functionality and parameterization to avoid
ambiguous entity instantiation errors. For example, the files for every
Arria 10 PCI Express* IP core variant compile into the
altera_pcie_a10_hip_151 compilation library.

• Simulation and synthesis file sets for IP cores and systems instantiate
entities in the same manner.

• The generated RTL directory structure now matches the compilation
library structure.

(2) For brevity, this section refers to Quartus Prime Standard Edition, Intel Quartus Prime Lite
Edition, and the Quartus II software collectively as "other Quartus software products."

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For complete information on upgrading IP cores, refer to Managing Quartus Prime
Projects.

Related Information

• Working With Intel FPGA IP Cores on page 50

• Managing Quartus Prime Projects on page 85

3.2.4. Upgrading Non-Compliant Design RTL

The Quartus Prime Pro Edition software introduces a new synthesis engine
(quartus_syn executable).

The quartus_syn synthesis enforces stricter industry-standard HDL structures and
supports the following enhancements in this release:

• Support for modules with SystemVerilog Interfaces

• Improved support for VHDL2008

• New RAM inference engine infers RAMs from GENERATE statements or array of
integers

• Stricter syntax/semantics check for improved compatibility with other EDA tools

Account for these synthesis differences in existing RTL code by ensuring that your
design uses standards-compliant VHDL, Verilog HDL, or SystemVerilog. The Compiler
generates errors when processing non-compliant RTL. Use the guidelines in this
section to modify existing RTL for compatibility with the Quartus Prime Pro Edition
synthesis.

Related Information

• Verifying Verilog Compilation Unit on page 40

• Updating Entity Auto-Discovery on page 41

• Ensuring Distinct VHDL Namespace for Each Library on page 42

• Removing Unsupported Parameter Passing on page 42

• Removing Unsized Constant from WYSIWYG Instantiation on page 42

• Removing Non-Standard Pragmas on page 43

• Declaring Objects Before Initial Values on page 43

• Confining SystemVerilog Features to SystemVerilog Files on page 43

• Avoiding Assignment Mixing in Always Blocks on page 44

• Avoiding Unconnected, Non-Existent Ports on page 44

• Avoiding Invalid Parameter Ranges on page 44

• Updating Verilog HDL and VHDL Type Mapping on page 45

3.2.4.1. Verifying Verilog Compilation Unit

Quartus Prime Pro Edition synthesis uses a different method to define the compilation
unit. The Verilog LRM defines the concept of compilation unit as “a collection of one or
more Verilog source files compiled together” forming the compilation-unit scope.
Items visible only in the compilation-unit scope include macros, global declarations,

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and default net types. The contents of included files become part of the compilation
unit of the parent file. Modules, primitives, programs, interfaces, and packages are
visible in all compilation units. Ensure that your RTL accommodates these changes.

Table 14. Verilog Compilation Unit Differences

Other Quartus Software Products Quartus Prime Pro Edition

Synthesis in other Quartus software products follows the Multi-
file compilation unit (MFCU) method to select compilation unit
files. In MFCU, all files compile in the same compilation unit.
Global definitions and directives are visible in all files.
However, the default net type is reset at the start of each file.

Quartus Prime Pro Edition synthesis follows the Single-
file compilation unit (SFCU) method to select compilation
unit files. In SFCU, each file is a compilation unit, file
order is irrelevant, and the macro is only defined until the
end of the file.

Note: You can optionally change the MFCU mode using the following assignment:
set_global_assignment -name VERILOG_CU_MODE MFCU

3.2.4.1.1. Verilog HDL Configuration Instantiation

Quartus Prime Pro Edition synthesis requires instantiation of the Verilog HDL
configuration, and not the module. In other Quartus software products, synthesis
automatically finds any Verilog HDL configuration relating to a module that you
instantiate. The Verilog HDL configuration then instantiates the design.

If your top-level entity is a Verilog HDL configuration, set the Verilog HDL
configuration, rather than the module, as the top-level entity.

Table 15. Verilog HDL Configuration Instantiation

Other Quartus Software Products Quartus Prime Pro Edition

From the Example RTL, synthesis automatically finds the
mid_config Verilog HDL configuration relating to the
instantiated module.

From the Example RTL, synthesis does not find the
mid_config Verilog HDL configuration. You must instantiate
the Verilog HDL configuration directly.

Example RTL:

config mid_config;
design good_lib.mid;
instance mid.sub_inst use good_lib.sub;
endconfig

module test (input a1, output b);
mid_config mid_inst (.a1(a1), .b(b));
// in other Quartus products preceding line would have been:
//mid mid_inst (.a1(a1), .b(b));
endmodule

module mid (input a1, output b);
sub sub_inst (.a1(a1), .b(b));
endmodule

3.2.4.2. Updating Entity Auto-Discovery

All editions of the Quartus Prime and Quartus II software search your project directory
for undefined entities. For example, if you instantiate entity “sub” in your design
without specifying “sub” as a design file in the Quartus Settings File (.qsf), synthesis
searches for sub.v, sub.vhd, and so on. However, Quartus Prime Pro Edition
performs auto-discovery at a different stage in the flow. Ensure that your RTL code
accommodates these auto-discovery changes.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16. Entity Auto-Discovery Differences

Other Quartus Software
Products

Quartus Prime Pro Edition

Always automatically searches
your project directory and
search path for undefined
entities.

Always automatically searches your project directory and search path for undefined
entities. Quartus Prime Pro Edition synthesis performs auto-discovery earlier in the flow
than other Quartus software products. This results in discovery of more syntax errors.
Optionally disable auto-discovery with the following .qsf assignment:
set_global_assignment -name AUTO_DISCOVER_AND_SORT OFF

3.2.4.3. Ensuring Distinct VHDL Namespace for Each Library

Quartus Prime Pro Edition synthesis requires that VHDL namespaces are distinct for
each library. The stricter library binding requirement complies with VHDL language
specifications and results in deterministic behavior. This benefits team-based projects
by avoiding unintentional name collisions. Confirm that your RTL respects this change.

Table 17. VHDL Namespace Differences

Other Quartus Software Products Quartus Prime Pro Edition

For the Example RTL, the analyzer searches all libraries in an unspecified
order until the analyzer finds package utilities_pack and uses items
from that package. If another library, for example projectLib also
contains utilities_pack, the analyzer may use this library instead of
myLib.utilites_pack if found before the analyzer searches myLib.

For the Example RTL, the analyzer uses the
specific utilities_pack in myLib. If
utilities_pack does not exist in library
myLib, the analyzer generates an error.

Example RTL:

library myLib; use
myLib.utilities_pack.all;

3.2.4.4. Removing Unsupported Parameter Passing

Quartus Prime Pro Edition synthesis does not support parameter passing using
set_parameter in the .qsf. Synthesis in other Quartus software products supports
passing parameters with this method. Except for the top-level of the design where
permitted, ensure that your RTL does not depend on this type of parameter passing.

Table 18. SystemVerilog Feature Differences

Other Quartus Software Products Quartus Prime Pro Edition

From the Example RTL, synthesis overwrites
the value of parameter SIZE in the instance
of my_ram instantiated from entity mid-
level.

From the Example RTL, synthesis generates a syntax error for detection of
parameter passing assignments in the .qsf. Specify parameters in the RTL.
The following example shows the supported top-level parameter passing
format. This example applies only to the top-level and sets a value of 4 to
parameter N:

set_parameter -name N 4

Example RTL:

set_parameter –entity mid_level –to my_ram –name SIZE 16

3.2.4.5. Removing Unsized Constant from WYSIWYG Instantiation

Quartus Prime Pro Edition synthesis does not allow use of an unsized constant for
WYSIWYG instantiation. Synthesis in other Quartus software products allows use of
SystemVerilog (.sv) unsized constants when instantiating a WYSIWYG in a .v file.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Pro Edition synthesis allows use of unsized constants in .sv files for
uses other than WYSIWYG instantiation. Ensure that your RTL code does not use
unsized constants for WYSIWYG instantiation. For example, specify a sized literal, such
as 2'b11, rather than '1.

3.2.4.6. Removing Non-Standard Pragmas

Quartus Prime Pro Edition synthesis does not support the
vhdl(verilog)_input_version pragma or the library pragma. Synthesis in
other Quartus software products supports these pragmas. Remove any use of the
pragmas from RTL for Quartus Prime Pro Edition migration. Use the following
guidelines to implement the pragma functionality in Quartus Prime Pro Edition:

• vhdl(verilog)_input_version Pragma—allows change to the input version in
the middle of an input file. For example, to change VHDL 1993 to VHDL 2008. For
Quartus Prime Pro Edition migration, specify the input version for each file in
the .qsf.

• library Pragma—allows changes to the VHDL library into which files compile. For
Quartus Prime Pro Edition migration, specify the compilation library in the .qsf.

3.2.4.7. Declaring Objects Before Initial Values

Quartus Prime Pro Edition synthesis requires declaration of objects before initial value.
Ensure that your RTL declares objects before initial value. Other Quartus software
products allow declaration of initial value prior to declaration of the object.

Table 19. Object Declaration Differences

Other Quartus Software Products Quartus Prime Pro Edition

From the Example RTL, synthesis initializes the output
p_prog_io1 with the value of p_progio1_reg, even though the
register declaration occurs in Line 2.

From the Example RTL, synthesis generates a syntax
error when you specify initial values before declaring
the register.

Example RTL:

1 output p_prog_io1 = p_prog_io1_reg;
2 reg p_prog_io1_reg;

3.2.4.8. Confining SystemVerilog Features to SystemVerilog Files

Quartus Prime Pro Edition synthesis does not allow SystemVerilog features in Verilog
HDL files. Other Quartus software products allow use of a subset of SystemVerilog
(.sv) features in Verilog HDL (.v) design files. To avoid syntax errors in Quartus
Prime Pro Edition, allow only SystemVerilog features in Verilog HDL files.

To use SystemVerilog features in your existing Verilog HDL files, rename your Verilog
HDL (.v) files as SystemVerilog (.sv) files. Alternatively, you can set the file type in
the .qsf, as shown in the following example:

set_global_assignment -name SYSTEMVERILOG_FILE <file>.v

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 20. SystemVerilog Feature Differences

Other Quartus Software Products Quartus Prime Pro Edition

From the Example RTL, synthesis interprets $clog2 in a .v
file, even though the Verilog LRM does not define the
$clog2 feature. Other Quartus software products allow
other SystemVerilog features in .v files.

From the Example RTL, synthesis generates a syntax error
for detection of any non-Verilog HDL construct in .v files.
Quartus Prime Pro Edition synthesis honors SystemVerilog
features only in .sv files.

Example RTL:

localparam num_mem_locations = 1050;
wire mem_addr [$clog2(num_mem_locations)-1 : 0];

3.2.4.9. Avoiding Assignment Mixing in Always Blocks

Quartus Prime Pro Edition synthesis does not allow mixed use of blocking and non-
blocking assignments within ALWAYS blocks. Other Quartus software products allow
mixed use of blocking and non-blocking assignments within ALWAYS blocks. To avoid
syntax errors, ensure that ALWAYS block assignments are of the same type for
Quartus Prime Pro Edition migration.

Table 21. ALWAYS Block Assignment Differences

Other Quartus Software Products Quartus Prime Pro Edition

Synthesis honors the mixed blocking and non-blocking
assignments, although the Verilog Language Specification
no longer supports this construct.

Synthesis generates a syntax error for detection of mixed
blocking and non-blocking assignments within an ALWAYS
block.

3.2.4.10. Avoiding Unconnected, Non-Existent Ports

Quartus Prime Pro Edition synthesis requires that a port exists in the module prior to
instantiation and naming. Other Quartus software products allow you to instantiate
and name an unconnected port that does not exist in the module. Modify your RTL to
match this requirement.

To avoid syntax errors, remove all unconnected and non-existent ports for Quartus
Prime Pro Edition migration.

Table 22. Unconnected, Non-Existent Port Differences

Other Quartus Software Products Quartus Prime Pro Edition

Synthesis allows you to instantiate and name unconnected
or non-existent ports that do not exist on the module.

Synthesis generates a syntax error for detection of mixed
blocking and non-blocking assignments within an ALWAYS
block.

3.2.4.11. Avoiding Invalid Parameter Ranges

Quartus Prime Pro Edition synthesis generates an error for detection of constant
numeric (integer or floating point) parameter values that exceed the language
specification. Other Quartus software products allow constant numeric (integer or
floating point) values for parameters that exceed the language specifications. To avoid
syntax errors, ensure that constant numeric (integer or floating point) values for
parameters conform to the language specifications.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.4.12. Updating Verilog HDL and VHDL Type Mapping

Quartus Prime Pro Edition synthesis requires that you use 0 for "false" and 1 for
"true" in Verilog HDL files (.v). Other Quartus software products map "true" and
"false" strings in Verilog HDL to TRUE and FALSE Boolean values in VHDL. Quartus
Prime Pro Edition synthesis generates an error for detection of non-Verilog HDL
constructs in .v files. To avoid syntax errors, ensure that your RTL accommodates
these standards.

3.2.4.13. Converting Symbolic BDF Files to Acceptable File Formats

Starting from the Quartus Prime Pro Edition software version 23.3, the compiler
cannot synthesize schematic Block Design File (.bdf). You must convert it to an
acceptable format, such as Verilog HDL or VHDL using the Intel Quartus Prime
Standard Edition command quartus_map as shown in the following:

• To convert your .bdf file to Verilog Design File (.v):

quartus_map <project_name> --convert_bdf_to_verilog=<bdf_file_name>

• To convert your .bdf file to VHDL Design File (.vhd):

quartus_map <project_name> --convert_bdf_to_vhdl=<bdf_file_name>

3.3. Migrating Your AMD* Vivado* Project to Quartus Prime Pro
Edition

Designing for Intel FPGA devices is similar in concept and practice to designing for
AMD* Xilinx* FPGA devices. In most cases, you can import your RTL into the Quartus
Prime Pro Edition software and compile your design to the target device.

Refer to the AN 307: Intel FPGA Design Flow for AMD* Xilinx* Users, which covers the
following information:

• A comparison of the current AMD* Xilinx* and Intel FPGA technologies, features,
and devices available for different process technologies.

• A comparison between the design flows in the AMD* Vivado* software and
Quartus Prime Pro Edition software.

• Guidelines to convert AMD* Vivado* designs to the Quartus Prime Pro Edition
software, including AMD* Xilinx* IP catalog modules and instantiated primitives.

• Guidelines to translate device and design constraints.

3.4. Migrating Projects Across Operating Systems

Consider the following cross-platform issues when moving your project from one
operating system to another (for example, from Windows* to Linux*).

3.4.1. Migrating Design Files and Libraries

Consider file naming differences when migrating projects across operating systems.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

45

https://www.intel.com/content/www/us/en/docs/programmable/683562.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Use appropriate case for your platform in file path references.

• Use a character set common to both platforms.

• Do not change the forward-slash (/) and back-slash (\) path separators in
the .qsf. The Quartus Prime software automatically changes all back-slash (\)
path separators to forward-slashes (/)in the .qsf.

• Observe the target platform’s file name length limit.

• Use underscore instead of spaces in file and directory names.

• Change library absolute path references to relative paths in the .qsf.

• Ensure that any external project library exists in the new platform’s file system.

• Specify file and directory paths as relative to the project directory. For example,
for a project titled foo_design, specify the source files as: top.v,
foo_folder /foo1.v, foo_folder /foo2.v, and foo_folder/
bar_folder/bar1.vhdl.

• Ensure that all the subdirectories are in the same hierarchical structure and
relative path as in the original platform.

Figure 14. All Inclusive Project Directory Structure

3.4.1.1. Use Relative Paths

Express file paths using relative path notation (../).

For example, in the directory structure shown you can specify top.v as ../source/
top.v and foo1.v as ../source/foo_folder/foo1.v.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15. Quartus Prime Project Directory Separate from Design Files

3.4.2. Design Library Migration Guidelines

The following guidelines apply to library migration across computing platforms:

1. The project directory takes precedence over the project libraries.

2. For Linux, the Quartus Prime software creates the file in the altera.quartus
directory under the <home> directory.

3. All library files are relative to the libraries. For example, if you specify the
user_lib1 directory as a project library and you want to add the /user_lib1/
foo1.v file to the library, you can specify the foo1.v file in the .qsf as foo1.v.
The Quartus Prime software includes files in specified libraries.

4. If the directory is outside of the project directory, an absolute path is created by
default. Change the absolute path to a relative path before migration.

5. When copying projects that include libraries, you must either copy your project
library files along with the project directory or ensure that your project library files
exist in the target platform.

• On Windows*, the Quartus Prime software searches for the quartus2.ini
file in the following directories and order:

• USERPROFILE, for example, C:\Documents and Settings\<user name>

• Directory specified by the TMP environmental variable

• Directory specified by the TEMP environmental variable

• Root directory, for example, C:\

3.5. Migrating Project From One Device to Another

The Quartus Prime Pro Edition software supports migrating project from one device to
another by providing a list of compatible migration devices available for the device
your design targets.

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To migrate your device, launch Migration Devices using one of the following options
in the Quartus Prime Pro Edition software GUI:

• Right-click on your device in the Project Navigator and select Device ➤
Migration Devices.

• Assignments ➤ Device ➤ Migration Devices

Figure 16. Device Migration

In the Migration Devices dialog box, click >, >>, <, and << to move migration
devices between the Compatible migration devices list and the Selected
migration devices list.

A device name in the Selected migration devices list with the text (current
device) indicates that the device is currently specified in the Available devices list
in the Device dialog box.

A device name in the Compatible migration devices list with the text (not
installed) indicates that the device is supported in the Quartus Prime Pro Edition
software, but support for the device is not installed in your copy of the software. To
move this device to the Selected migration devices list, you must first install
support for the device by running a custom installation procedure of the Quartus
Prime software. For more information, refer to the Downloading Device Support in the
Intel FPGA Software Installation and Licensing or contact Intel Support.

If you want the Quartus Prime software to display all compatible migration devices in
the Compatible migration devices list regardless of a migration device's speed
grade, turn on the Show All Speed Grades checkbox. If you want the Quartus Prime
software to display in the Compatible migration devices list only the compatible
migration devices that have the same speed grade as the target device, turn off Show
all speed grades.

Related Information

• Migrating to the Quartus Prime Pro Edition Software

• AN 822: Intel FPGA Configuration Device Migration Guideline

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

48

https://www.intel.com/content/www/us/en/docs/programmable/683472/current/downloading-device-support.html
https://www.intel.com/content/www/us/en/support/contact-intel.html
https://www.youtube.com/watch?v=HXZV9tRtFTI&t=1529s
https://www.intel.com/content/www/us/en/docs/programmable/683340.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.6. Related Trainings

You can take up the following training to help you select your starting point for your
project:

• Getting Started with the Quartus Prime New Project Wizard

• Creating a New Project with Quartus Prime Pro Edition Software

• Migrating to the Quartus Prime Pro Edition Software

• Migrating an Quartus Prime Project to a Different Intel FPGA Device

• Quartus Prime Software Pin Migration

• Preserve Compilation Results for migration to newer Quartus Prime Software
releases

3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

49

https://www.youtube.com/watch?v=ogVwZuXdKlk
https://www.youtube.com/watch?v=jsun4ieaCFA&t=127s
https://cdrdv2.intel.com/v1/dl/getContent/653067?explicitVersion=true
https://www.youtube.com/watch?v=-Gr8Sx0ex6c&t=5s
https://www.youtube.com/watch?v=DqtJRZaDrbY
https://www.youtube.com/watch?v=CMCBVokchhI
https://www.youtube.com/watch?v=CMCBVokchhI
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Working With Intel FPGA IP Cores
Intel and strategic IP partners offer a broad portfolio of configurable IP cores
optimized for Intel FPGA devices.

The Quartus Prime software installation includes the Intel FPGA IP library. Integrate
optimized and verified Intel FPGA IP cores into your design to shorten design cycles
and maximize performance. The Quartus Prime software also supports integration of
IP cores from other sources. Use the IP Catalog (Tools ➤ IP Catalog) to efficiently
parameterize and generate synthesis and simulation files for your custom IP variation.
The Intel FPGA IP library includes the following types of IP cores:

Basic functions Interface protocols

Bridges and adapters Low power functions

DSP functions Memory interfaces and controllers

Intel FPGA interconnect Processors and peripherals

This document provides basic information about parameterizing, generating,
upgrading, and simulating stand-alone IP cores in the Quartus Prime software.

Figure 17. Intel FPGA IP Catalog

Double-Click to Customize IP

Search for IP

Right-Click for IP Info

683463 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Navigating Content Through Tasks

Use the following navigation diagram to navigate this guide through user-tasks:

Plan FPGA Design for RTL
Flow
or

Work With Intel FPGA IP
Cores

Create a New Project
or

Migrate Your Existing Project
to Quartus Prime Pro Edition

Software

Manage Your Quartus Prime
Pro Edition Projects

Review Next Steps

4.1. IP Catalog and Parameter Editor

The IP Catalog displays the IP cores available for your project, including Intel FPGA IP
and other IP that you add to the IP Catalog search path. Use the following features of
the IP Catalog to locate and customize an IP core:

• Filter IP Catalog to Show IP for active device family or Show IP for all
device families. If you have no project open, select the Device Family in IP
Catalog.

• Type in the Search field to locate any full or partial IP core name in IP Catalog.

• Right-click an IP core name in IP Catalog to display details about supported
devices, to open the IP core's installation folder, and for links to IP documentation.

• Click Search for Partner IP to access partner IP information on the web.

The parameter editor prompts you to specify an IP variation name, optional ports, and
output file generation options. The parameter editor generates a top-level Quartus
Prime IP file (.ip) for an IP variation in Quartus Prime Pro Edition projects. This file
represents the IP variation in the project, and stores parameterization information.(3)

(3) The parameter editor generates a top-level Quartus IP file (.qip) for an IP variation in
Quartus Prime Standard Edition projects.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Example IP Parameter Editor

Specify IP Parameters Parameter Presets for
Specific Applications

Generate IP HDLGenerate IP Testbench,
Template, or Example Design

4.1.1. The Parameter Editor

The parameter editor helps you to configure IP core ports, parameters, and output file
generation options. The basic parameter editor controls include the following:

• Use the Presets window to apply preset parameter values for specific applications
(for select cores).

• Use the Details window to view port and parameter descriptions, and click links to
documentation.

• Click Generate ➤ Generate Testbench System to generate a testbench system
(for select cores).

• Click Generate ➤ Generate Example Design to generate an example design
(for select cores).

• Click Validate System Integrity to validate a system's generic components
against companion files. (Platform Designer systems only)

• Click Sync All System Info to validate a system's generic components against
companion files. (Platform Designer systems only)

The IP Catalog is also available in Platform Designer (View ➤ IP Catalog). The
Platform Designer IP Catalog includes exclusive system interconnect, video and image
processing, and other system-level IP that are not available in the Quartus Prime IP
Catalog. Refer to Creating a System with Platform Designer or Creating a System with
Platform Designer for information on use of IP in Platform Designer and Platform
Designer, respectively.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Creating a System with Platform Designer

4.2. Installing and Licensing Intel FPGA IP Cores

The Quartus Prime software installation includes the Intel FPGA IP library. This library
provides many useful IP cores for your production use without the need for an
additional license. Some Intel FPGA IP cores require purchase of a separate license for
production use. The Intel FPGA IP Evaluation Mode allows you to evaluate these
licensed Intel FPGA IP cores in simulation and hardware, before deciding to purchase a
full production IP core license. You only need to purchase a full production license for
licensed Intel IP cores after you complete hardware testing and are ready to use the
IP in production.

The Quartus Prime software installs IP cores in the following locations by default:

Figure 19. IP Core Installation Path

intelFPGA(_pro)

quartus - Contains the Intel Quartus Prime software
ip - Contains the Intel FPGA IP library and third-party IP cores

altera - Contains the Intel FPGA IP library source code
<IP name> - Contains the Intel FPGA IP source files

Table 23. IP Core Installation Locations

Location Software Platform

<drive>:\intelFPGA_pro\quartus\ip\altera Quartus Prime Pro Edition Windows

<drive>:\intelFPGA\quartus\ip\altera Quartus Prime Standard Edition Windows

<home directory>:/intelFPGA_pro/quartus/ip/altera Quartus Prime Pro Edition Linux*

<home directory>:/intelFPGA/quartus/ip/altera Quartus Prime Standard Edition Linux

Note: The Quartus Prime software does not support spaces in the installation path.

4.2.1. Intel FPGA IP Evaluation Mode

The free Intel FPGA IP Evaluation Mode allows you to evaluate licensed Intel FPGA IP
cores in simulation and hardware before purchase. Intel FPGA IP Evaluation Mode
supports the following evaluations without additional license:

• Simulate the behavior of a licensed Intel FPGA IP core in your system.

• Verify the functionality, size, and speed of the IP core quickly and easily.

• Generate time-limited device programming files for designs that include IP cores.

• Program a device with your IP core and verify your design in hardware.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

53

https://www.intel.com/content/www/us/en/docs/programmable/683609.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel FPGA IP Evaluation Mode supports the following operation modes:

• Tethered—Allows running the design containing the licensed Intel FPGA IP
indefinitely with a connection between your board and the host computer.
Tethered mode requires a serial joint test action group (JTAG) cable connected
between the JTAG port on your board and the host computer, which is running the
Quartus Prime Programmer for the duration of the hardware evaluation period.
The Programmer only requires a minimum installation of the Quartus Prime
software, and requires no Quartus Prime license. The host computer controls the
evaluation time by sending a periodic signal to the device via the JTAG port. If all
licensed IP cores in the design support tethered mode, the evaluation time runs
until any IP core evaluation expires. If all of the IP cores support unlimited
evaluation time, the device does not time-out.

• Untethered—Allows running the design containing the licensed IP for a limited
time. The IP core reverts to untethered mode if the device disconnects from the
host computer running the Quartus Prime software. The IP core also reverts to
untethered mode if any other licensed IP core in the design does not support
tethered mode.

When the evaluation time expires for any licensed Intel FPGA IP in the design, the
design stops functioning. All IP cores that use the Intel FPGA IP Evaluation Mode time
out simultaneously when any IP core in the design times out. When the evaluation
time expires, you must reprogram the FPGA device before continuing hardware
verification. To extend use of the IP core for production, purchase a full production
license for the IP core.

You must purchase the license and generate a full production license key before you
can generate an unrestricted device programming file. During Intel FPGA IP Evaluation
Mode, the Compiler only generates a time-limited device programming file (<project
name>_time_limited.sof) that expires at the time limit.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Intel FPGA IP Evaluation Mode Flow

Install the Intel Quartus Prime
Software with Intel FPGA IP Library

Parameterize and Instantiate a
Licensed Intel FPGA IP Core

Purchase a Full Production
 IP License

Verify the IP in a
Supported Simulator

Compile the Design in the
Intel Quartus Prime Software

Generate a Time-Limited Device
Programming File

Program the Intel FPGA Device
and Verify Operation on the Board

No

Yes

IP Ready for
Production Use?

Include Licensed IP
in Commercial Products

Note: Refer to each IP core's user guide for parameterization steps and implementation
details.

Intel licenses IP cores on a per-seat, perpetual basis. The license fee includes first-
year maintenance and support. You must renew the maintenance contract to receive
updates, bug fixes, and technical support beyond the first year. You must purchase a
full production license for Intel FPGA IP cores that require a production license, before
generating programming files that you may use for an unlimited time. During Intel
FPGA IP Evaluation Mode, the Compiler only generates a time-limited device
programming file (<project name>_time_limited.sof) that expires at the time
limit. To obtain your production license keys, visit the Intel FPGA Self-Service
Licensing Center.

The Intel FPGA Software License Agreements govern the installation and use of
licensed IP cores, the Quartus Prime design software, and all unlicensed IP cores.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

55

https://fpgasupport.intel.com/Licensing/license/index.html
https://fpgasupport.intel.com/Licensing/license/index.html
https://www.intel.com/content/www/us/en/developer/articles/license/end-user-license-agreement.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Intel FPGA Licensing Support Center

• Introduction to Intel FPGA Software Installation and Licensing

4.2.1.1. Intel FPGA IP Versioning

Intel FPGA IP versions match the Quartus Prime Design Suite software versions until
v19.1. Starting in Quartus Prime Design Suite software version 19.2, Intel FPGA IP
has a new versioning scheme.

The Intel FPGA IP version (X.Y.Z) number can change with each Quartus Prime
software version. A change in:

• X indicates a major revision of the IP. If you update the Quartus Prime software,
you must regenerate the IP.

• Y indicates the IP includes new features. Regenerate your IP to include these new
features.

• Z indicates the IP includes minor changes. Regenerate your IP to include these
changes.

4.2.1.2. Checking the IP License Status

You can check the license status of all IP in an Quartus Prime project by viewing the
Assembler report.

To generate and view the Assembler report in the GUI:

1. Click Assembler on the Compilation Dashboard.

2. When the Assembler (and any prerequisite stages of compilation) complete, click
the Report icon for the Assembler in the Compilation Dashboard.

Figure 21. Assembler Report Icon in Compilation Dashboard

Opens Assembler ReportRuns Assembler

3. Click the Encrypted IP Cores Summary report.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

56

https://fpgasupport.intel.com/Licensing/license/index.html
https://www.intel.com/content/www/us/en/docs/programmable/683472.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22. Encrypted IP Cores Summary Report

To generate and view the Assembler report at the command line:

1. Type the following command:

quartus_asm <project name> -c <project revision>

2. View the output report in /output_files/<project_name>.asm.rpt.

+--+
; Assembler Encrypted IP Cores Summary ;
+--------+--+--------------+
; Vendor ; IP Core Name ; License Type ;
+--------+--+--------------+
; Intel ; PCIe SRIOV with 4-PFs and 2K-VFs (6AF7 00FB) ; Unlicensed ;
; Intel ; Signal Tap (6AF7 BCE1) ; Licensed ;
; Intel ; Signal Tap (6AF7 BCEC) ; Licensed ;
+--------+--+--------------+

4.3. IP General Settings

The following settings control how the Quartus Prime software manages IP cores in a
project:

Table 24. Location of IP Core General Settings in the Quartus Prime Software

Setting Description Location

Maximum Platform Designer
memory usage size

Increase if you experience slow processing for large
systems, or for out of memory errors.

Tools ➤ Options ➤ IP
Settings
Or
Tasks pane ➤ Settings ➤ IP
Settings

IP generation HDL
preference

The parameter editor generates the HDL you specify
for IP variations.

IP Regeneration Policy Controls when synthesis files regenerate for each IP
variation. Typically, you Always regenerate
synthesis files for IP cores after making changes to
an IP variation.

Generate IP simulation
model when generating IP

Enables automatic generation of simulation models
every time you generate the IP.

Use available processors for
parallel generation of
Quartus project IPs

Directs Platform Designer to generate IPs in parallel,
using the number of processors that you specify in the
Compilation Process Settings pane of the Quartus
Prime project settings.

Additional project and global IP
search locations.

The Quartus Prime software searches for IP cores in
the project directory, in the Quartus Prime installation
directory, and in the IP search path.

Tools ➤ Options ➤ IP
Catalog Search Locations
Or
Tasks pane ➤ Settings ➤ IP
Catalog Search Locations

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4. Adding IP to IP Catalog

The IP Catalog automatically displays Intel FPGA IP and other IP components that
have a corresponding _hw.tcl or .ipx file located in the project directory, in the
default Quartus Prime installation directory, or in the IP search path. You can
optionally add your own custom or third-party IP component to IP Catalog by adding
the component's _hw.tcl or .ipx file to the IP search path.

Follow these steps to add custom or third-party IP to the IP Catalog:

Figure 23. Specifying IP Search Locations

Add a Global
IP Search Path

Add a Project-
Specific IP Search Path

1. In the Quartus Prime software, click Tools ➤ Options ➤ IP Search Path) to
open the IP Search Path Options dialog box.

2. Click Add or Remove to add/remove a location that contains IP.

3. To refresh the IP Catalog, click Refresh IP Catalog in the Quartus Prime Platform
Designer, or click File ➤ Refresh System in Platform Designer.

Figure 24. Refreshing IP Catalog

Click to Display Menu

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5. Best Practices for Intel FPGA IP

Use the following best practices when working with Intel FPGA IP:

• Do not manually edit or write your own .qsys, .ip, or .qip file. Use the Quartus
Prime software tools to create and edit these files.

Note: When generating IP cores, do not generate files into a directory that has a
space in the directory name or path. Spaces are not legal characters for IP
core paths or names.

• When you generate an IP core using the IP Catalog, the Quartus Prime software
generates a .qsys (for Platform Designer-generated IP cores) or a .ip file (for
Quartus Prime Pro Edition) or a .qip file. The Quartus Prime Pro Edition software
automatically adds the generated .ip to your project. In the Quartus Prime
Standard Edition software, add the .qip to your project. Do not add the
parameter editor generated file (.v or .vhd) to your design without the .qsys
or .qip file. Otherwise, you cannot use the IP upgrade or IP parameter editor
feature.

• Plan your directory structure ahead of time. Do not change the relative path
between a .qsys file and it's generation output directory. If you must move
the .qsys file, ensure that the generation output directory remains with
the .qsys file.

• Do not add IP core files directly from the /quartus/libraries/
megafunctions directory in your project. Otherwise, you must update the files
for each subsequent software release. Instead, use the IP Catalog and then add
the .qip to your project.

• Do not use IP files that the Quartus Prime software generates for RAM or FIFO
blocks targeting older device families (even though the Quartus Prime software
does not issue an error). The RAM blocks that Quartus Prime generates for older
device families are not optimized for the latest device families.

• When generating a ROM function, save the resulting .mif or .hex file in the same
folder as the corresponding IP core's .qsys or .qip file. For example, moving all
of your project's .mif or .hex files to the same directory causes relative path
problems after archiving the design.

• Always use the Quartus Prime ip-setup-simulation and ip-make-
simscript utilities to generate simulation scripts for each IP core or Platform
Designer system in your design. These utilities produce a single simulation script
that does not require manual update for upgrades to Quartus Prime software or IP
versions, as Simulating Intel FPGA IP Cores on page 75 describes.

4.6. Specifying the IP Core Parameters and Options (Quartus Prime
Pro Edition)

Quickly configure Intel FPGA IP cores in the Quartus Prime parameter editor. Double-
click any component in the IP Catalog to launch the parameter editor. The parameter
editor allows you to define a custom variation of the IP core. The parameter editor
generates the IP variation synthesis and optional simulation files, and adds the .ip
file representing the variation to your project automatically.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to locate, instantiate, and customize an IP core in the parameter
editor:

1. Create or open an Quartus Prime project (.qpf) to contain the instantiated IP
variation.

2. In the IP Catalog (Tools ➤ IP Catalog), locate and double-click the name of the
IP core to customize. To locate a specific component, type some or all of the
component’s name in the IP Catalog search box. The New IP Variation window
appears.

3. Specify a top-level name for your custom IP variation. Do not include spaces in IP
variation names or paths. The parameter editor saves the IP variation settings in a
file named <your_ip>.ip. Click OK. The parameter editor appears.

Figure 25. IP Parameter Editor (Quartus Prime Pro Edition)

4. Set the parameter values in the parameter editor and view the block diagram for
the component. The Parameterization Messages tab at the bottom displays any
errors in IP parameters:

• Optionally, select preset parameter values if provided for your IP core. Presets
specify initial parameter values for specific applications.

• Specify parameters defining the IP core functionality, port configurations, and
device-specific features.

• Specify options for processing the IP core files in other EDA tools.

Note: Refer to your IP core user guide for information about specific IP core
parameters.

5. Click Generate HDL. The Generation dialog box appears.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Specify output file generation options, and then click Generate. The synthesis and
simulation files generate according to your specifications.

7. To generate a simulation testbench, click Generate ➤ Generate Testbench
System. Specify testbench generation options, and then click Generate.

8. To generate an HDL instantiation template that you can copy and paste into your
text editor, click Generate ➤ Show Instantiation Template.

9. Click Finish. Click Yes if prompted to add files representing the IP variation to
your project.

10. After generating and instantiating your IP variation, make appropriate pin
assignments to connect ports.

Note: Some IP cores generate different HDL implementations according to the IP
core parameters. The underlying RTL of these IP cores contains a unique
hash code that prevents module name collisions between different variations
of the IP core. This unique code remains consistent, given the same IP
settings and software version during IP generation. This unique code can
change if you edit the IP core's parameters or upgrade the IP core version.
To avoid dependency on these unique codes in your simulation environment,
refer to Generating a Combined Simulator Setup Script.

4.6.1. Applying Preset Parameters for Specific Applications

The Preset tab displays the names of available preset settings for an IP component. A
preset is a specific collection of parameter settings that are appropriate for a specific
protocol, application, or board. Double-click the preset name (or click Apply) to
instantly apply the parameter values defined in the preset to the current IP instance.

Figure 26. Selecting Preset Parameters

Filtering List By Preset Name

4.6.1.1. Viewing, Applying, and Deleting IP Presets

You can view the properties of a preset, apply a preset, or delete any existing preset
in the Presets tab.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 27. View, Apply, and Delete Presets in Presets Tab

Note: Right-click a preset to access the same View, Apply, and Delete preset functions in
the context menu.

Viewing Presets

Click the View button to show the preset properties in the read-only Update Preset
dialog box.

Figure 28. View Button Opens View Preset Dialog Box

Right-click a preset and click Show Preset Settings to view a searchable report of
the preset settings.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. Show Preset Settings Searchable Report

Applying Presets to IP Instances

Click the Apply button (or double-click) to apply the IP preset to the currently
selected IP. Applied presets appear in bold text.

Figure 30. Applied Presets Appear in Bold Text

Deleting Presets from the System

Click the Delete button to delete the current preset from the Platform Designer
system.

4.6.2. Customizing IP Presets

You can optionally define and save a custom set of parameter settings as an IP preset,
and then apply the preset whenever you add an instance of the IP component to any
system.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to save a custom IP preset:

1. In IP Catalog, double-click any component to launch the parameter editor.

2. To search for a specific preset to base initial settings, type a partial preset name in
the search box.

3. In the Presets tab, click New to specify the Preset name and Preset
description.

4. In the Board dropdown, specify the target board. The Default setting specifies
the current board as the target board for this preset.

Note: You can specify multiple boards for a preset, provided that the preset
parameters and assignments are applicable to all boards in the preset.

5. Under Select parameters to include in the preset, enable or disable the
parameters you want to include in the preset.

6. Specify the path for the Preset file that preserves the collection of parameter
settings. The location of the new .qprs preset file is added to the IP search path
automatically.

Figure 31. Create New Preset

7. Click Save.

8. To apply the preset to an IP component, click Apply. Preset parameter values that
match the current parameter settings appear in bold.

4.6.2.1. Defining Preset Pin Assignments

You can define pin assignments that are included as part of an IP preset. When you
apply the IP preset to an IP instance, the pin assignments export during the IP or
system's HDL generation.

You define preset pin assignments in the Pin Assignments tab of the New Preset
dialog box, or in a Pin Assignments File (.tcl) that you create.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.6.2.1.1. Defining Preset Pin Assignments in Pin Assignments Tab

The Pin Assignments tab allows you to specify the Exported Name of the signals,
to select the appropriate Pin Location, and to select the appropriate IO Standard for
the target board.

By default, the Exported Name name takes the form of:

module_name + interface_name + pin_role

For example:

pio0_external_connection_export[0]

You can change the Exported Name by double-clicking on the Exported Name for
the interface and typing a new name. All of the signals of the interface then update
automatically to reflect the name you specify.

Figure 32. Pin Assignments Tab

For example, typing led for the external_connection interface updates the signals
of the interface to led_export[n]. The external_connection is the interface name,
and external_connection_export(0) is the signal name.

4.6.2.1.2. Defining Preset Pin Assignments in a Pin File

Alternatively, you can specify the pin assignments in a Pin Constraints File (.tcl),
which can be more efficient for projects with many ports. You specify this .tcl file as
the Pin Constraint File on the Pin Assignments tab, and then click Load Pin. The
Pin Location and IO Standard update per the loaded pin assignments.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 33. Loading Pin Assignments from Tcl File

Pin Assignments
Loaded from
led4_pins.tcl

The following shows the contents of an example Pin Constraints File (.tcl):

set_instance_assignment -to "led_export[0]" -name IO_STANDARD "1.2 V"
set_location_assignment -to "led_export[0]" "PIN_B31"
set_instance_assignment -to "led_export[1]" -name IO_STANDARD "1.2 V"
set_location_assignment -to "led_export[1]" "PIN_D31"
set_instance_assignment -to "led_export[2]" -name IO_STANDARD "1.2 V"
set_location_assignment -to "led_export[2]" "PIN_A30"
set_instance_assignment -to "led_export[3]" -name IO_STANDARD "1.2 V"
set_location_assignment -to "led_export[3]" "PIN_C30"

4.7. IP Core Generation Output (Quartus Prime Pro Edition)

The Quartus Prime software generates the following output file structure for individual
IP cores that are not part of a Platform Designer system.

Table 25. Output Files of Intel FPGA IP Generation

File Name Description

<your_ip>.ip Top-level IP variation file that contains the parameterization of an IP core in
your project. If the IP variation is part of a Platform Designer system, the
parameter editor also generates a .qsys file.

<your_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that contains local
generic and port definitions that you use in VHDL design files.

<your_ip>_generation.rpt IP or Platform Designer generation log file. Displays a summary of the
messages during IP generation.

<your_ip>.qgsimc (Platform Designer
systems only)

Simulation caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_ip>.qgsynth (Platform
Designer systems only)

Synthesis caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_ip>.csv Contains information about the upgrade status of the IP component.

<your_ip>.bsf A symbol representation of the IP variation for use in Block Diagram Files
(.bdf).

continued...

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Description

<your_ip>.spd Input file that ip-make-simscript requires to generate simulation scripts.
The .spd file contains a list of files you generate for simulation, along with
information about memories that you initialize.

<your_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for IP
components you create for use with the Pin Planner.

<your_ip>_bb.v Use the Verilog blackbox (_bb.v) file as an empty module declaration for use
as a blackbox.

<your_ip>_inst.v or _inst.vhd HDL example instantiation template. Copy and paste the contents of this file
into your HDL file to instantiate the IP variation.

<your_ip>.regmap If the IP contains register information, the Quartus Prime software generates
the .regmap file. The .regmap file describes the register map information of
host and agent interfaces. This file complements the .sopcinfo file by
providing more detailed register information about the system. This file enables
register display views and user customizable statistics in System Console.

<your_ip>.svd Allows HPS System Debug tools to view the register maps of peripherals that
connect to HPS within a Platform Designer system.
During synthesis, the Quartus Prime software stores the .svd files for agent
interface visible to the System Console hosts in the .sof file in the debug
session. System Console reads this section, which Platform Designer queries
for register map information. For system agents, Platform Designer accesses
the registers by name.

<your_ip>.v

<your_ip>.vhd

HDL files that instantiate each submodule or child IP core for synthesis or
simulation.

mentor/ Contains a msim_setup.tcl script to set up and run a simulation with a
supported Siemens EDA simulator, such as the QuestaSim simulator.

aldec/ Contains a Riviera-PRO* script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS* simulation.
Contains a shell script vcsmx_setup.sh and synopsys_sim.setup file to
set up and run a VCS MX simulation.

/xcelium Contains an Xcelium* Parallel simulator shell script xcelium_setup.sh and
other setup files to set up and run a simulation.

/submodules Contains HDL files for the IP core submodule.

<IP submodule>/ Platform Designer generates /synth and /sim sub-directories for each IP
submodule directory that Platform Designer generates.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 34. Individual IP Core Generation Output (Quartus Prime Pro Edition)

<Project Directory>

<your_ip>_inst.v or .vhd - Lists file for IP core synthesis

<your_ip>.qip - Lists files for IP core synthesis

synth - IP synthesis files

<IP Submodule>_<version> - IP Submodule Library

sim

<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.ip - Top-level IP variation file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Simulation startup scripts

*

<your_ip>.cmp - VHDL component declaration

<your_ip>.v or vhd - Top-level simulation file

synth

 - IP submodule 1 simulation files

 - IP submodule 1 synthesis files

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<HDL files>

<HDL files>

<your_ip>_tb - IP testbench system *

<your_testbench>_tb.qsys - testbench system file
<your_ip>_tb - IP testbench files

your_testbench> _tb.csv or .spd - testbench file

sim - IP testbench simulation files
 * If supported and enabled for your IP core variation.

<your_ip>.qgsimc - Simulation caching file (Platform Designer)

<your_ip>.qgsynthc - Synthesis caching file (Platform Designer)

4.8. Scripting IP Core Generation

Use the qsys-script and qsys-generate utilities to define and generate an IP
core variation outside of the Quartus Prime GUI.

To parameterize and generate an IP core at command-line, follow these steps:

1. Run qsys-script to start a Tcl script that instantiates the IP and sets
parameters:

qsys-script --script=<script_file>.tcl

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Run qsys-generate to generate the IP core variation:

qsys-generate <IP variation file>.qsys

4.9. Modifying an IP Variation

After generating an IP core variation, use any of the following methods to modify the
IP variation in the parameter editor.

Table 26. Modifying an IP Variation

Menu Command Action

File ➤ Open Select the top-level HDL (.v, or .vhd) IP variation file to launch the
parameter editor and modify the IP variation. Regenerate the IP
variation to implement your changes.

View ➤ Project Navigator ➤ IP Components Double-click the IP variation to launch the parameter editor and
modify the IP variation. Regenerate the IP variation to implement
your changes.

Project ➤ Upgrade IP Components Select the IP variation and click Upgrade in Editor to launch the
parameter editor and modify the IP variation. Regenerate the IP
variation to implement your changes.

4.10. Upgrading IP Cores

Any Intel FPGA IP variations that you generate from a previous version or different
edition of the Quartus Prime software, may require upgrade before compilation in the
current software edition or version. The Project Navigator displays a banner indicating
the IP upgrade status. Click Launch IP Upgrade Tool or Project ➤ Upgrade IP
Components to upgrade outdated IP cores.

Figure 35. IP Upgrade Alert in Project Navigator

Icons in the Upgrade IP Components dialog box indicate when IP upgrade is
required, optional, or unsupported for an IP variation in the project. Upgrade IP
variations that require upgrade before compilation in the current version of the
Quartus Prime software.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Upgrading IP cores may append a unique identifier to the original IP core entity
names, without similarly modifying the IP instance name. There is no requirement to
update these entity references in any supporting Quartus Prime file, such as the
Quartus Prime Settings File (.qsf), Synopsys* Design Constraints File (.sdc), or
Signal Tap File (.stp), if these files contain instance names. The Quartus Prime
software reads only the instance name and ignores the entity name in paths that
specify both names. Use only instance names in assignments.

Table 27. IP Core Upgrade Status

IP Core Status Description

IP Upgraded

Indicates that your IP variation uses the latest version of the Intel FPGA IP core.

IP Component Outdated

Indicates that your IP variation uses an outdated version of the IP core.

IP End of Life

Indicates that Intel designates the IP core as end-of-life status. You may or may not be
able to edit the IP core in the parameter editor. Support for this IP core discontinues in
future releases of the Quartus Prime software.

IP Upgrade Mismatch
Warning

Provides warning of non-critical IP core differences in migrating IP to another device family.

IP has incompatible subcores

Indicates that the current version of the Quartus Prime software does not support
compilation of your IP variation, because the IP has incompatible subcores.

Compilation of IP Not
Supported

Indicates that the current version of the Quartus Prime software does not support
compilation of your IP variation. This can occur if another edition of the Quartus Prime
software, such as the Quartus Prime Standard Edition, generated this IP. Replace this IP
component with a compatible component in the current edition.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Beginning with the Quartus Prime Pro Edition software version 19.1, IP upgrade
supports migration of IP released within one year of the Quartus Prime Pro Edition
software version, as the following chart defines:

Figure 36. Quartus Prime Pro Edition IP Version Upgrade Paths

18.0 18.1 19.1

19.2

19.3

19.4

20.1

20.2

20.3

18.0 18.1 19.1

18.1 19.1 19.2

18.1 19.1 19.2 19.3

19.1 19.2 19.3 19.4

19.2 19.3 19.4 20.1

19.3 19.4 20.1 20.2

Upgrade IP from Intel Quartus Prime Version Directly to Version

20.4

21.1

21.2

21.3

19.4 20.1 20.2 20.3

20.1 20.2 20.3 20.4

20.2 20.3 20.4 21.1

20.3 20.4 21.1 21.2

20.4 21.1 21.2 21.3

21.1 21.2 21.3 21.4

21.2 21.3 21.4 22.1

21.3 21.4 22.1 22.2

21.4 22.1 22.2 22.3

21.4

22.1

22.2

22.3

22.4

22.1 22.2 22.3 22.4 23.1

22.2 22.3 22.4 23.1 23.2

22.3 22.4 23.1 23.2 23.3

22.4 23.1 23.2 23.3 23.4

23.1 23.2 23.3 23.4 24.1

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to upgrade IP cores:

1. In the latest version of the Quartus Prime software, open the Quartus Prime
project containing an outdated IP core variation. The Upgrade IP Components
dialog box automatically displays the status of IP cores in your project, along with
instructions for upgrading each core. To access this dialog box manually, click
Project ➤ Upgrade IP Components.

2. To upgrade one or more IP cores that support automatic upgrade, ensure that you
turn on the Auto Upgrade option for the IP cores, and click Auto Upgrade. The
Status and Version columns update when upgrade is complete. Example designs
that any Intel FPGA IP core provides regenerate automatically whenever you
upgrade an IP core.

3. To manually upgrade an individual IP core, select the IP core and click Upgrade in
Editor (or simply double-click the IP core name). The parameter editor opens,
allowing you to adjust parameters and regenerate the latest version of the IP core.

Figure 37. Upgrading IP Cores (Quartus Prime Pro Edition Example)

Runs “Auto Upgrade” on all Outdated Cores

Opens Parameter Editor for Manual IP Upgrade

Generates/Updates Combined Simulation Setup Script for IP

Note: Intel FPGA IP cores older than Quartus Prime software version 12.0 do not
support upgrade. Intel verifies that the current version of the Quartus Prime
software compiles the previous two versions of each IP core. The Intel FPGA
IP Core Release Notes reports any verification exceptions for Intel FPGA IP
cores. Intel does not verify compilation for IP cores older than the previous
two releases.

Related Information

Intel FPGA IP Release Notes

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

72

https://www.intel.com/content/www/us/en/search.html?ws=related#q=Intel%20FPGA%20IP%20release%20notes&sort=relevancy&f:@tabfilter=[Developers]
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.10.1. Upgrading IP Cores at Command-Line

Optionally, upgrade an Intel FPGA IP core at the command-line, rather than using the
GUI. IP cores that do not support automatic upgrade do not support command-line
upgrade.

• To upgrade a single IP core at the command-line, type the following command:

quartus_sh –ip_upgrade –variation_files <my_ip>.<qsys,.v, .vhd> \
 <quartus_project>

Example:
quartus_sh -ip_upgrade -variation_files mega/pll25.qsys hps_testx

• To simultaneously upgrade multiple IP cores at the command-line, type the
following command:

quartus_sh –ip_upgrade –variation_files “<my_ip1>.<qsys,.v, .vhd>> \
 ; <my_ip_filepath/my_ip2>.<hdl>” <quartus_project>

Example:
quartus_sh -ip_upgrade -variation_files "mega/pll_tx2.qsys;mega/
pll3.qsys" hps_testx

4.10.2. Migrating IP Cores to a Different Device

Migrate an Intel FPGA IP variation when you want to target a different (often newer)
device. Most Intel FPGA IP cores support automatic migration. Some IP cores require
manual IP regeneration for migration. A few IP cores do not support device migration,
requiring you to replace them in the project. The Upgrade IP Components dialog
box identifies the migration support level for each IP core in the design.

1. To display the IP cores that require migration, click Project ➤ Upgrade IP
Components. The Description field provides migration instructions and version
differences.

2. To migrate one or more IP cores that support automatic upgrade, ensure that the
Auto Upgrade option is turned on for the IP cores, and click Perform Automatic
Upgrade. The Status and Version columns update when upgrade is complete.

3. To migrate an IP core that does not support automatic upgrade, double-click the
IP core name, and click OK. The parameter editor appears. If the parameter editor
specifies a Currently selected device family, turn off Match project/default,
and then select the new target device family.

4. Click Generate HDL, and confirm the Synthesis and Simulation file options.
Verilog HDL is the default output file format. If you specify VHDL as the output
format, select VHDL to retain the original output format.

5. Click Finish to complete migration of the IP core. Click OK if the software prompts
you to overwrite IP core files. The Device Family column displays the new target
device name when migration is complete.

6. To ensure correctness, review the latest parameters in the parameter editor or
generated HDL.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: IP migration may change ports, parameters, or functionality of the IP
variation. These changes may require you to modify your design or to re-
parameterize your IP variant. During migration, the IP variation's HDL
generates into a library that is different from the original output location of
the IP core. Update any assignments that reference outdated locations. If a
symbol in a supporting Block Design File schematic represents your
upgraded IP core, replace the symbol with the newly generated
<my_ip>.bsf. Migration of some IP cores requires installed support for the
original and migration device families.

Related Information

Intel FPGA IP Release Notes

4.10.3. Troubleshooting IP or Platform Designer System Upgrade

The Upgrade IP Components dialog box reports the version and status of each Intel
FPGA IP core and Platform Designer system following upgrade or migration.

If any upgrade or migration fails, the Upgrade IP Components dialog box provides
information to help you resolve any errors.

Note: Do not use spaces in IP variation names or paths.

During automatic or manual upgrade, the Messages window dynamically displays
upgrade information for each IP core or Platform Designer system. Use the following
information to resolve upgrade errors:

Table 28. IP Upgrade Error Information

Upgrade IP Components
Field

Description

Status Displays the "Success" or "Failed" status of each upgrade or migration. Click the status of
any upgrade that fails to open the IP Upgrade Report.

Version Dynamically updates the version number when upgrade is successful. The text is red when
the IP requires upgrade.

Device Family Dynamically updates to the new device family when migration is successful. The text is red
when the IP core requires upgrade.

Auto Upgrade Runs automatic upgrade on all IP cores that support auto upgrade. Also, automatically
generates a <Project Directory>/ip_upgrade_port_diff_reports report for IP
cores or Platform Designer systems that fail upgrade. Review these reports to determine
any port differences between the current and previous IP core version.

Use the following techniques to resolve errors if your IP core or Platform Designer
system "Failed" to upgrade versions or migrate to another device. Review and
implement the instructions in the Description field, including one or more of the
following:

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

74

https://www.intel.com/content/www/us/en/search.html?ws=related#q=Intel%20FPGA%20IP%20release%20notes&sort=relevancy&f:@tabfilter=[Developers]
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If the current version of the software does not support the IP variant, right-click
the component and click Remove IP Component from Project. Replace this IP
core or Platform Designer system with the one supported in the current version of
the software.

• If the current target device does not support the IP variant, select a supported
device family for the project, or replace the IP variant with a suitable replacement
that supports your target device.

• If an upgrade or migration fails, click Failed in the Status field to display and
review details of the IP Upgrade Report. Click the Release Notes link for the
latest known issues about the IP core. Use this information to determine the
nature of the upgrade or migration failure and make corrections before upgrade.

• Run Auto Upgrade to automatically generate an IP Ports Diff report for each IP
core or Platform Designer system that you upgrade. Review the reports to
determine any port differences between the current and previous IP core version.
Click Upgrade in Editor to make specific port changes and regenerate your IP
core or Platform Designer system.

• If your IP core or Platform Designer system does not support Auto Upgrade, click
Upgrade in Editor to resolve errors and regenerate the component in the
parameter editor.

Figure 38. IP Port Differences Report

Report Summary

IP Port Differences

4.11. Simulating Intel FPGA IP Cores

The Quartus Prime software supports IP core RTL simulation in specific EDA
simulators. IP generation optionally creates simulation files, including the functional
simulation model, any testbench (or example design), and vendor-specific simulator

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

setup scripts for each IP core. You can use the functional simulation model and any
testbench or example design for simulation. IP generation output may also include
scripts to compile and run any testbench. The scripts list all models or libraries you
require to simulate your IP core.

The Quartus Prime software provides integration with many simulators and supports
multiple simulation flows, including your own scripted and custom simulation flows.
Whichever flow you choose, IP core simulation involves the following steps:

1. Generate IP HDL, testbench (or example design), and simulator setup script files.

2. Set up your simulator environment and any simulation scripts.

3. Compile simulation model libraries.

4. Run your simulator.

4.11.1. Generating IP Simulation Files

The Quartus Prime software optionally generates the functional simulation model, any
testbench (or example design), and vendor-specific simulator setup scripts when you
generate an IP core. To specify options for the generation of IP simulation files, follow
these steps:

• To specify your supported simulator and options for design simulation file
generation, click Assignment ➤ Settings ➤ EDA Tool Settings ➤ Simulation.

Figure 39. Simulation Options in Generation Dialog Box

• To specify your supported simulator and options for IP simulation file generation,
click Assignments ➤ Settings ➤ Board and IP Settings ➤ IP Simulation and
specify the following:

— To enable automatic generation of simulation models for all IP in the project
when you generate IP during compilation, turn on the Generate IP
simulation model when generating IP option.

— To specify one or more supported simulators for which to generate setup
scripts, turn on one or more simulator option, or disable all simulator options
to generate scripts for all simulators automatically.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40. Project-Wide IP Generation Settings

• To generate the simulation files, click Processing ➤ Start Compilation to
compile the design. The simulation models and setup scripts for the Intel FPGA IP
generate in the <your_project>/<ip name>/sim/<vendor> directory.

You can optionally override these project-level IP Settings when you generate HDL
for individual IP cores with the IP Parameter Editor. Prior to generation, you can
specify a supported simulator, or specify no simulator to generate the setup scripts for
all simulators in the parameter editor.

4.11.2. Scripting IP Simulation

The Quartus Prime software supports the use of scripts to automate simulation
processing in your preferred simulation environment. Use the scripting methodology
that you prefer to control simulation.

Use a version-independent, top-level simulation script to control design, testbench,
and IP core simulation. Because Quartus Prime-generated simulation file names may
change after IP upgrade or regeneration, your top-level simulation script must
"source" the generated setup scripts, rather than using the generated setup scripts
directly. Follow these steps to generate or regenerate combined simulator setup
scripts:

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 41. Incorporating Generated Simulator Setup Scripts into a Top-Level Simulation
Script

Top-Level Simulation Script

Specify project-specific settings:
 TOP_LEVEL_NAME

Source the Combined IP Setup Simulator Script
(e.g., source msim_setup.tcl)

Elaborate
Simulate

Individual IP
Simulation Scripts

Combined IP
Simulator Script

(Includes Templates)

Click “Generate Simulator Script for IP”Additional compile and elaboration options

Compile design files:
Use generated scripts to compile device libraries
and IP files
Compile your design and testbench files

Add optional QSYS_SIMDIR variable

1. Click Tools ➤ Generate Simulator Script for IP (or run the ip-setup-
simulation utility) to generate or regenerate a combined simulator setup script
for all IP for each simulator.

2. Use the templates in the generated script to source the combined script in your
top-level simulation script. Each simulator's combined script file contains a
rudimentary template that you adapt for integration of the setup script into a top-
level simulation script.

This technique eliminates manual update of simulation scripts if you modify or
upgrade the IP variation.

4.11.2.1. Generating a Combined Simulator Setup Script

You can run the Generate Simulator Setup Script for IP command to generate a
combined simulator setup script.

You can then source this combined script from a top-level simulation script. Click
Tools ➤ Generate Simulator Setup Script for IP (or use of the ip-setup-
simulation utility at the command-line) to generate or update the combined scripts,
after any of the following occur:

• IP core initial generation or regeneration with new parameters

• Quartus Prime software version upgrade

• IP core version upgrade

Table 29. ip-setup-simulation Utility

Utility Syntax

ip-setup-simulation generates a combined, version-
independent simulation script for all Intel FPGA IP cores in
your project. The command also automates regeneration of
the script after upgrading software or IP versions. Use the
compile-to-work option to compile all simulation files
into a single work library if your simulation environment
requires. Use the --use-relative-paths option to use
relative paths whenever possible.

ip-setup-simulation
 --quartus-project=<my proj>
 --output-directory=<my_dir>
 --use-relative-paths
 --compile-to-work

--use-relative-paths and --compile-to-work are
optional. For command-line help listing all options for these
executables, type: <utility name> --help.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To generate a combined simulator setup script for all project IP cores for each
simulator:(4)

1. Click Tools ➤ Generate Simulator Setup Script for IP (or run the ip-setup-
simulation utility). Specify the Output Directory and library compilation
options. Click OK to generate the file. By default, the files generate into the /
<project directory>/<simulator>/ directory using relative paths.

Note: For designs with F-tile IP, do not turn on the Use top-level entity names
from Quartus project option.

Figure 42. Generate Simulator Setup Script for IP Dialog Box

2. To incorporate the generated simulator setup script into your top-level simulation
script, refer to the template section in the generated simulator setup script as a
guide to creating a top-level script:

a. Copy the specified template sections from the simulator-specific generated
scripts and paste them into a new top-level file.

b. Remove the comments at the beginning of each line from the copied template
sections.

c. Specify the customizations you require to match your design simulation
requirements, for example:

• Specify the TOP_LEVEL_NAME variable to the design’s simulation top-level
file. The top-level entity of your simulation is often a testbench that
instantiates your design. Then, your design instantiates IP cores or
Platform Designer systems. Set the value of TOP_LEVEL_NAME to the top-
level entity.

• If necessary, set the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files.

• Specify any other changes, such as using the grep command-line utility to
search a transcript file for error signatures, or e-mail a report.

3. Re-run Tools ➤ Generate Simulator Setup Script for IP (or ip-setup-
simulation) after regeneration of an IP variation.

Related Information

Quartus Prime Pro Edition User Guide: Third-party Simulation

(4) If your design contains one or more F-tile IPs, you must first perform Start Analysis &
Elaboration and then Support-Logic Generation before performing these steps.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

79

https://www.intel.com/content/www/us/en/docs/programmable/683870.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.12. Generating Simulation Files for Platform Designer Systems
and IP Variants

If your design contains Intel FPGA IP or a Platform Designer system, you must first
generate files for RTL simulation of the IP or system with the Quartus Prime Platform
Designer before running simulation.

When you generate the system (or IP variant), Platform Designer optionally creates
simulation files, including the functional simulation model, any testbench (or example
design), and vendor-specific simulator setup scripts for each IP core.

You can use the functional simulation model and any testbench or example design for
simulation of the IP or system. The IP generation output may also include scripts to
compile and run any testbench. The scripts list all models or libraries you require to
simulate your IP core.

To generate the simulation model and simulator setup scripts for your Platform
Designer system or component, follow these steps:

1. Click Tools ➤ Platform Designer. Platform Designer and open or create a
Platform Designer system or IP variant.

2. In Platform Designer, after specifying parameters, click Generate ➤ Generate
HDL. The Generation dialog box appears.

3. Under Simulation, specify Verilog or VHDL for the Create simulation model
option.

Figure 43. Simulation Options in Generation Dialog Box

4. If you want to specifically use ModelSim*, specify Traditional or Qrun for the
ModelSim flow option. Otherwise, Qrun flow is the default selection.

5. Turn on or off the ModelSim, VCS-MX, VCS, Riviera-Pro, or Xcelium option to
generate simulator setup scripts for the simulation tool. If you turn on no
simulator options, the scripts generate for all simulators.

6. Click the Generate button. Platform Designer generates the simulation models
and setup scripts for your system or IP component in the following directory:

<top-level system name>/<system name>/<sim>/<simulator>

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 44. Generated Simulation Files Location

 _files.tcl

sim - IP simulation files

<simulator vendor>

<simulator vendor>

 - Simulator setup scripts

<your_system> .v or vhd - Top-level simulation file

common - IP simulation script files

<IP_name>

<project_directory>

<simulator>

By default, Platform Designer generates the simulation scripts for the currently loaded
system and all subsystems. Alternatively, you can open a subsystem to generate a
simulation script only for that subsystem.

You can use scripts to compile the required device libraries and system design files in
the correct order and elaborate or load the top-level system for simulation.

Table 30. Simulation Script Variables
The simulation scripts provide variables that allow flexibility in your simulation environment.

Variable Description

TOP_LEVEL_NAME If the testbench Platform Designer system is not the top-level instance in your simulation
environment because you instantiate the Platform Designer testbench within your own top-
level simulation file, set the TOP_LEVEL_NAME variable to the top-level hierarchy name.

QSYS_SIMDIR If the simulation files generated by Platform Designer are not in the simulation working
directory, use the QSYS_SIMDIR variable to specify the directory location of the Platform
Designer simulation files.

QUARTUS_INSTALL_DIR Points to the Quartus installation directory that contains the device family library.

Example 6. Top-Level Simulation HDL File for a Testbench System

The example below shows the pattern_generator_tb generated for a Platform
Designer system called pattern_generator. The top.sv file defines the top-level
module that instantiates the pattern_generator_tb simulation model, as well as a
custom SystemVerilog test program with BFM transactions, called test_program.

module top();
 pattern_generator_tb tb();
 test_program pgm();
endmodule

4.13. Synthesizing IP Cores in Other EDA Tools

Optionally, use another supported EDA tool to synthesize a design that includes Intel
FPGA IP cores. When you generate the IP core synthesis files for use with third-party
EDA synthesis tools, you can create an area and timing estimation netlist. To enable
generation, turn on Create timing and resource estimates for third-party EDA
synthesis tools when customizing your IP variation.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The area and timing estimation netlist describes the IP core connectivity and
architecture, but does not include details about the true functionality. This information
enables certain third-party synthesis tools to better report area and timing estimates.
In addition, synthesis tools can use the timing information to achieve timing-driven
optimizations and improve the quality of results.

The Quartus Prime software generates the <variant name>_syn.v netlist file in
Verilog HDL format, regardless of the output file format you specify. If you use this
netlist for synthesis, you must include the IP core wrapper file <variant name>.v or
<variant name> .vhd in your Quartus Prime project.

4.14. Instantiating IP Cores in HDL

Instantiate an IP core directly in your HDL code by calling the IP core name and
declaring the IP core's parameters. This approach is similar to instantiating any other
module, component, or subdesign. When instantiating an IP core in VHDL, you must
include the associated libraries.

4.14.1. Example Top-Level Verilog HDL Module

Verilog HDL ALTFP_MULT in Top-Level Module with One Input Connected to Multiplexer.

module MF_top (a, b, sel, datab, clock, result);
 input [31:0] a, b, datab;
 input clock, sel;
 output [31:0] result;
 wire [31:0] wire_dataa;

 assign wire_dataa = (sel)? a : b;
 altfp_mult inst1
(.dataa(wire_dataa), .datab(datab), .clock(clock), .result(result));

 defparam
 inst1.pipeline = 11,
 inst1.width_exp = 8,
 inst1.width_man = 23,
 inst1.exception_handling = "no";
endmodule

4.14.2. Example Top-Level VHDL Module

VHDL ALTFP_MULT in Top-Level Module with One Input Connected to Multiplexer.

library ieee;
use ieee.std_logic_1164.all;
library altera_mf;
use altera_mf.altera_mf_components.all;

entity MF_top is
 port (clock, sel : in std_logic;
 a, b, datab : in std_logic_vector(31 downto 0);
 result : out std_logic_vector(31 downto 0));
end entity;

architecture arch_MF_top of MF_top is
signal wire_dataa : std_logic_vector(31 downto 0);
begin

wire_dataa <= a when (sel = '1') else b;

inst1 : altfp_mult

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 generic map (
 pipeline => 11,
 width_exp => 8,
 width_man => 23,
 exception_handling => "no")
 port map (
 dataa => wire_dataa,
 datab => datab,
 clock => clock,
 result => result);
end arch_MF_top;

4.15. Support for the IEEE 1735 Encryption Standard

The Quartus Prime Pro Edition software supports the IEEE 1735 v1 encryption
standard for IP core file decryption. You can encrypt the Verilog HDL or VHDL IP files
with the encrypt_1735 utility, or with a third-party encryption tool that supports the
IEEE 1735 standard. You can then use the encrypted files in the Quartus Prime Pro
Edition software and simulation tools that support the IEEE 1735 encryption standard.

The encryption key is the same for Verilog HDL and VHDL. You can pass parameters to
the instantiation of an encrypted module using the same method as a non-encrypted
module.

Type encrypt_1735 --help at the Quartus Prime command line to view syntax and
all supported options for the encrypt_1735 utility.

encrypt_1735 [-h | --help[=<option|topic>] | -v]
encrypt_1735 <other options>

Options:

 -?
 -f <argument file>
 -h
 --256_bit[=<value>]
 --help[=<option|topic>]
 --language=<verilog | systemverilog| vhdl>
 --lower_priority
 --of=<some_file>
 --quartus
 --simulation[=<aldec | cadence | mentor | synopsys (comma delimited)>]
 --tcl_jou_file=<[tcl_jou_filename=]on|off>
 --tcl_log_file=<[tcl_log_filename=]on|off>

Adding the following Verilog or VHDL pragma to your RTL, along with the public key,
enables the Quartus Prime software to use the key to decrypt IP core files.

Verilog/SystemVerilog Encryption Pragma (Third-Party Tools):

`pragma protect key_keyowner="Intel Corporation"
`pragma protect data_method="aes128-cbc"
`pragma protect key_method="rsa"
`pragma protect key_keyname="Intel-FPGA-Quartus-RSA-1"
`pragma protect key_public_key
<encrypted session key>

`pragma protect begin
`pragma protect end

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

VHDL Encryption Pragma (Third-Party Tools):

`protect key_keyowner = “Intel Corporation”
`protect data_method="aes128-cbc"
`protect key_method = “rsa”
`protect key_keyname = “Intel-FPGA-Quartus-RSA-1”
`protect key_block
<Encrypted session key>

Only file encryption with a third-party tool requires the public encryption key. File
encryption with the Quartus Prime Pro Edition software does not require the public
encryption key.

Use one of the following methods to obtain the public encryption key:

• If you are using the Quartus Prime Pro Edition software version 19.3 or later, the
public encryption key is in <install directory>\quartus\common\misc
\public_key.

• If you are using a version of the Quartus Prime Pro Edition software earlier than
version 19.3, to obtain the encryption key, login or register for a My-Intel account,
and then submit an Intel Premier Support case requesting the encryption key.

• If you are ineligible for Intel Premier Support, you can submit a question regarding
the "IEEE 1735 Encryption Public Key" to the Intel Community Forum for
assistance.

Note: The Quartus Prime Standard Edition software does not support IEEE 1735 encryption.

Related Information

• My-Intel.com

• Intel Community Forum

4.16. Related Trainings and Resources

You can take up the following training to help you understand how you can work with
Intel FPGA IP cores:

• Creating Reusable Design Blocks: Introduction to IP Reuse with the Quartus Prime
Software

• Creating Reusable Design Blocks: IP Integration with the Quartus Prime Software

• Creating Reusable Design Blocks: IP Design & Implementation with the Quartus
Prime Software

For other IP-related trainings, review the Intel FPGA Training Catalog and YouTube*'s
Intel FPGA channel.

Also, refer to the Embedded Peripherals IP User Guide for detailed description of the IP
cores that the Quartus Prime design software provides.

4. Working With Intel FPGA IP Cores

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

84

https://www.intel.com/content/www/us/en/secure/my-intel/dashboard.html
https://community.intel.com/
https://cdrdv2.intel.com/v1/dl/getContent/652980?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652980?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652948?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/653033?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/653033?explicitVersion=true
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/catalog.html?q=IP&s=Relevancy
https://www.youtube.com/@IntelFPGA/search?query=IP
https://www.youtube.com/@IntelFPGA/search?query=IP
https://www.intel.com/content/www/us/en/docs/programmable/683130.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Managing Quartus Prime Projects
The Quartus Prime software organizes and manages the elements of your design
within a project. The project encapsulates information about your design files,
hierarchy, libraries, constraints, and project settings. This chapter describes the basics
of working with Quartus Prime software projects, including viewing project
information, adding design files and constraints, and viewing and exporting the design
compilation results.

After you create or open a project, the GUI displays integrated information and
controls for the open project.

Navigating Content Through Tasks

Use the following navigation diagram to navigate this guide through user-tasks:

Plan FPGA Design for RTL
Flow
or

Work With Intel FPGA IP
Cores

Create a New Project
or

Migrate Your Existing Project
to Quartus Prime Pro Edition

Software

Manage Your Quartus Prime
Pro Edition Projects

Review Next Steps

5.1. Viewing Basic Project Information

View basic information about your project in the Project Navigator, the Tasks pane,
Compilation Dashboard, Report panel, and Messages window.

683463 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 45. Project Navigator Hierarchy, Files, Design Units, and IP Components Tabs

The Project Navigator

The Project Navigator (View ➤ Project Navigator) displays the elements of your
project, such as the design files, IP components, and your project hierarchy (after
elaboration). Right-click in the Project Navigator to locate the elements of your
project. Project information appears on the Files, Hierarchy, Design Units, and IP
Components tabs.

Table 31. Project Navigator Tabs

Project Navigator Tab Description

Files Lists all design files in the current project. Right-click design files in this tab to run these
commands:
• Open the file
• Remove the file from project
• View file Properties

Hierarchy Provides a visual representation of the project hierarchy, specific resource usage information,
and device and device family information. Right-click items in the hierarchy to Locate, Set
as Top-Level Entity, or define Logic Lock regions or design partitions.

Design Units Displays the design units in the project. Right-click a design unit to Locate in Design File.

IP Components Displays the design files that make up the IP instantiated in the project, including Intel FPGA
IP, Platform Designer components, and third-party IP. Click Launch IP Upgrade Tool from
this tab to upgrade outdated IP components.

Project Tasks Pane

The Tasks pane (View ➤ Tasks) launches common project tasks, such as creating
design files, adding IP, running compilation, and device programming.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 46. Tasks Pane

Create, open, or add
design files

Add IP or Systems

Assign device, global
settings, I/Os,
entity settings

Run Compiler and
View Reports

Debug and Timing
Closure

Device Programming
and Project Archive

5.1.1. Using the Compilation Dashboard

The Compilation Dashboard provides immediate access to settings, controls, and
reporting for each stage of the compilation flow.

The Compilation Dashboard appears by default when you open a project, or you can
click Compilation Dashboard in the Tasks window to re-open it.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 47. Compilation Dashboard

Full Compilation
Modules

Enables Optional
Module

Opens Settings

Runs Module(s)

Reports/Analysis
Stage

• Click the Pencil icon to edit settings for that stage of the compilation flow.

• Click any Compiler stage to run one or more Compiler stage.

You can click a Compiler stage to resume an interrupted compilation flow provided
no compilation settings have changed from the initial start of the compilation flow.

• Click the Report, RTL Viewer, Technology Map Viewer, Timing Analyzer, or
Snapshot Viewer icons for analysis of stage results.

As the Compiler progresses through the flow, the dashboard updates the status of
each module, and enables icons that you can click for reports and analysis. The
dashboard is also updated if you run your compilation flow from a command line with
the quartus_sh --flow command.

5.1.2. Exploring Quartus Prime Project Contents

The Quartus Prime software organizes your design work within a project. You can
create and compare multiple revisions of your project, to experiment with settings
that achieve your design goals. When you create a new project in the GUI, the
Quartus Prime software automatically creates an Quartus Prime Project File (.qpf) for
that project. The .qpf references the Quartus Prime Settings File (.qsf). The .qsf
lists the project's design, constraint, and IP files, and stores project-wide and entity-

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

specific settings that you specify in the GUI. You do not need to edit the text-
based .qpf or .qsf files directly. The Quartus Prime software creates and updates
these files automatically as you make changes in the GUI.

Table 32. Quartus Prime Project Files

File Type Contains To Edit Format

Project file Project and revision name File ➤ New Project
Wizard

Quartus Prime Project File (.qpf)

Settings file Lists design files, entity
settings, target device,
synthesis directives,
placement constraints

Assignments ➤ Settings Quartus Prime Settings File (.qsf)

Quartus
database

Project compilation results Project ➤ Export Design Quartus Database File (.qdb)

Partition
database

Partition compilation results Project ➤ Export Design
Partition

Partition Database File (.qdb)

Timing
constraints

Clock properties, exceptions,
setup/hold

Tools ➤ Timing Analyzer Synopsys Design Constraints File (.sdc)

Logic design
files

RTL and other design source
files

File ➤ New All supported HDL files

Programming
files

Device programming image
and information

Tools ➤ Programmer SRAM Object File (.sof)
Programmer Object File (.pof)

IP core files IP core variation
parameterization

Tools ➤ IP Catalog Quartus Prime IP File (.ip)

Platform
Designer system
files

System definition Tools ➤ Platform
Designer

Platform Designer System File (.qsys)

EDA tool files Scripts for third-party EDA
tools

Assignments ➤ Settings
➤ EDA Tool Settings

Verilog Output File (.vo)
VHDL Output File (.vho)
Verilog Quartus Mapping File (.vqm)

Archive files Complete project as single
compressed file

Project ➤ Archive Project Quartus Prime Archive File (.qar)

5.1.2.1. Project File Best Practices

The Quartus Prime software provides various options for specifying project settings
and constraints. The following best practices help ensure automated management and
portability of your project files.

• Avoid manually editing Quartus Prime data files, such as the Quartus Prime Project
File (.qpf), Quartus Prime Settings File (.qsf), Quartus IP File (.ip), or Platform
Designer System File (.qsys). Syntax errors in these files cause errors during
compilation. For example, the software may ignore improperly formatted settings
and assignments.

• Do not compile multiple projects into the same directory. Instead, use a separate
directory for each project.

• By default, the Quartus Prime software saves all project output files, such as Text-
Format Report Files (.rpt), in the project directory. If you want to change the
location of output files, instead of manually moving project output files, click
Assignments ➤ Settings ➤ Compilation Process Settings, and specify the
Save project output files in specified directory option.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.3. Viewing Design Hierarchy and Adding Missing Source Files

With the introduction of the fast hierarchy display feature, you can now view the
design hierarchy quickly and add the missing source files without having to wait until
the completion of the Analysis & Elaboration compilation process.

Perform these steps to view the design hierarchy and add the missing source files:

Prerequisite: After launching the Quartus Prime Pro Edition software GUI and creating your project,
ensure you have added all RTL source files to the project and top-level entity name of
the design, without which, you cannot proceed with Analysis & Elaboration.

1. Run either Analysis & Synthesis or Analysis & Elaboration on the compilation
dashboard.

2. Navigate to the left-hand Project Navigator ➤ Hierarchy tab.

The Hierarchy viewer allows you to quickly view your design hierarchy, and any
errors or warnings before the design is fully elaborated. You can also cross-probe
between the source files and information, warnings or error messages. All entities
with missing source files are highlighted enabling you to make quick design fixes.

Figure 48. Fast Display of Design Hierarchy

5.1.4. Viewing Project Reports

The Compilation Report panel updates dynamically to display detailed reports during
project processing. To access Compilation Reports, click (Processing ➤ Compilation
Report).

Review the detailed information in these the compilation reports to determine correct
implementation. Right-click report data to locate and edit the source in project files.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 49. Compilation Report

Synthesis
Reports

Selected
Report

5.1.5. Viewing Project Messages

The Messages window (View ➤ Messages) displays information, warning, and error
messages about Quartus Prime processes. Right-click messages to locate the source
or get message help.

• Processing tab—displays messages from the most recent process

• System tab—displays messages unrelated to design processing

• Find—locates specific messages

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 50. Messages Window

5.1.5.1. Viewing Synthesis Warning Messages

Warning messages may contain hierarchies. In Compilation Report ➤ Synthesis ➤
Messages window, you can view hierarchical warning messages up to any level
including the parent and child messages. For each message, you can view its source,
file location, line number, and message ID by selecting appropriate column under
Message Column (right-click on a message in the Message panel as shown in the
following image and click Message Column).

Figure 51. Synthesis Warning Messages (Two levels)

Figure 52. Example of Synthesis Warning Messages With Three Levels

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In Compilation Report ➤ Synthesis ➤ Warning Messages, you can view a
comprehensive list of synthesis warning messages for each source file included in your
design. You can view all child warning messages hidden within a parent warning
message by expanding the collapsible rows. To view the location of each warning,
perform these steps:

1. Right-click on the message.

2. Select the Locate Node option.

3. Select the desired tool to view the node.

Note: In the source file-specific warning messages window, messages are hierarchical in
nature and display up to three levels. If the warning messages go deeper than three
levels, use the Message (View ➤ Messages) window to view them.

In the source file-specific warning messages window, hierarchical messages are
displayed with message IDs and sample warning messages that are a combination of
the parent and child messages.

Figure 53. Synthesis Warning Messages for Each Source File

5.1.5.2. Suppressing Message Display

You can suppress display of unimportant messages from the Messages window, so that
you can focus on the messages that are important to you. To suppress one or more
messages from displaying in the Messages window, right-click the message, and then
click any of the following commands:

• Suppress Message—suppresses all messages that match the exact text you
specify.

• Suppress Messages with Matching ID—suppresses all messages that match
the message ID number you specify, ignoring variables.

• Suppress Messages with Matching Keyword—suppresses all messages that
match the keyword or hierarchy you specify.

• Message Suppression Manager—allows you to create and edit message
suppression rules. You can define message suppression rules by message text,
message ID number, or keyword.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: • You cannot suppress error or Intel legal agreement messages.

• Suppressing a message also suppresses any submessages.

• A root message does not display if you suppress all of the root message's
submessages.

• Message suppression is project revision-specific. Derivative project revisions
inherit any suppression.

• You cannot edit messages or suppression rules during compilation.

• Messages are written to stdout when you use command-line executables.

Figure 54. Message Suppression Manager

Suppressing Messages by Design Entity

You can optionally suppress messages by design entity without modifying HDL. Entity-
based message suppression can be helpful to eliminate insignificant warnings for
specific IP components or design entities that may be obscuring other more important
warnings.

To suppress messages by design entity, add the following line to the project .qsf, or
to the .qip file for stand-alone IP components:

set_global_assignment -name MESSAGE_DISABLE -entity <name>

5.1.5.3. Promoting Critical Warnings to Errors

 You can promote critical warnings to errors so that the compilation flow halts on
receiving the critical warnings as it does with an errors. All critical warnings are
supported.

You can only promote the message IDs on open projects.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the Message dialog box, right-click on the critical warning you want to promote
to an error.

2. Click Message Promotion ➤ Promote Critical Message ID to Error
The software now treats the critical warning as an error.

3. To clear all promotions, click Message Promotion ➤ Clear All Message
Promotions

4. Alternatively, manually promote or demote a critical warning in the .qsf. For
example:

set_global_assignment -name PROMOTE_WARNING_TO_ERROR 12677

5.2. Managing Project Settings

The New Project Wizard guides you to make initial project settings when you setup a
new project. You can modify these and other global project settings in the Settings
and Device dialog boxes, respectively. The .qsf stores the settings for each project
revision. The optimization of these project settings helps the Compiler to generate
programming files that meet or exceed your specifications.

Global Project Settings

To access global project settings, click Assignments ➤ Settings, or click Settings on
the Tasks pane.

Figure 55. Settings Dialog Box for Global Project Settings

The Settings dialog box provides access to settings that control project design files,
synthesis, Fitter, and timing constraints, operating conditions, EDA tool file generation,
programming file generation, and other project-level settings.

Additionally, the Assignment Editor (Assignments ➤ Assignment Editor) provides a
spreadsheet-like interface for specifying instance-specific settings and constraints.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 56. Assignment Editor

5.3. Viewing Parameter Settings From the Project Navigator

Starting from the Quartus Prime Pro Edition software version 23.3, you can view the
parameter settings for a module directly from the Project Navigator.

To access the settings, locate the module, right-click and select View Parameter
Settings in the context-sensitive menu. Compilation Report appears displaying the
parameter settings for the entity, as shown in the following image:

Figure 57. Viewing Parameter Settings

5.4. Managing Logic Design Files

The Quartus Prime software helps you create and manage the logic design files in your
project. Logic design files contain the logic that implements your design. When you
add a logic design file to the project, the Compiler automatically includes that file in
the next compilation. The Compiler synthesizes your logic design files to generate
programming files for your target device.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software includes full-featured schematic and text editors, as well
as HDL templates to accelerate your design work. The Quartus Prime software
supports VHDL Design Files (.vhd), Verilog HDL Design Files (.v), and SystemVerilog
(.sv). In addition, you can combine your logic design files with Intel and third-party
IP core design files, including combining components into a Platform Designer system
(.qsys).

Caution: Starting from the Quartus Prime Pro Edition software version 23.3, the compiler
cannot synthesize schematic Block Design File (.bdf). For more information, refer to
Converting Symbolic BDF Files to Acceptable File Formats on page 45.

The New Project Wizard prompts you to identify logic design files. Add or remove
project files by clicking Project > Add/Remove Files in Project. View the project’s
logic design files in the Project Navigator.

Figure 58. Design and IP Files in Project Navigator

Right-click files in the Project Navigator to:

• Open and edit the file

• Remove File from Project

• Set as Top-Level Entity for the project revision

• Create a Symbol File for Current File for display in schematic editors

• Edit file Properties

5.4.1. Including Design Libraries

Include design files libraries in your project. Specify libraries for a single project, or for
all Quartus Prime projects. The .qsf stores project library information.

The quartus2.ini file stores global library information.

1. Click Assignment > Settings.

2. Click Libraries and specify the Project Library name or Global Library name.
Alternatively, you can specify project libraries with SEARCH_PATH in the .qsf,
and global libraries in the quartus2.ini file.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Design Library Migration Guidelines on page 47

5.4.2. Creating a Project Copy

Click Project > Copy Project to create a separate copy of your project, rather than
just a revision within the same project.

The project copy includes separate copies of all design files, any .qsf files, and
project revisions. You can use this technique to optimize project copies for different
applications that require design file differences. For example, you can optimize one
project to interface with a 32-bit data bus, and optimize a project copy to interface
with a 64-bit data bus.

5.5. Managing Timing Constraints

Apply appropriate timing constraints to correctly optimize fitting and analyze timing
for your design. The Fitter optimizes the placement of logic in the device to meet your
specified timing and routing constraints.

Figure 59. Timing Analyzer

Specify timing constraints in the Timing Analyzer (Tools > Timing Analyzer), or in
an .sdc file. Specify constraints for clock characteristics, timing exceptions, and
external signal setup and hold times before running analysis. The Timing Analyzer
reports detailed information about the performance of your design compared with
constraints in the Compilation Report panel.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Save the constraints you specify in the GUI in an industry-standard Synopsys Design
Constraints File (.sdc). You can subsequently edit the text-based .sdc file directly. If
you refer to multiple .sdc files in a parent .sdc file, the Timing Analyzer reads
the .sdc files in the order you list.

5.6. Integrating Other EDA Tools

You can optionally integrate supported EDA synthesis, netlist partitioning, simulation,
and signal integrity verification tools into the Quartus Prime design flow.

The Quartus Prime software supports input netlist files from supported EDA synthesis
tools. The Compiler's EDA Netlist Writer module (quartus_eda) can automatically
generate output files for processing in other EDA tools. The EDA Netlist Writer runs
optionally as part of a full compilation, or you can run EDA Netlist Writer separately
from the GUI or at the command line. The following functions are available to simplify
EDA tool integration:

Table 33. EDA Tool Integration Functions

EDA Integration Task EDA Integration Function

Specify settings for generation of output files for
processing in other EDA tools.

Click Assignments ➤ Settings ➤ EDA Tool Settings to specify
options for supported tools.

Generate output files for processing in other EDA
tools.

Click Processing ➤ Start ➤ Start EDA Netlist Writer (or run
quartus_eda) to generate files.

Compile RTL and gate-level simulation model libraries
for your device, supported EDA simulators, and design
language.

Click Tools ➤ Launch Simulation Library Compiler to compile
simulation libraries easily.

Generate EDA tool-specific setup scripts to compile,
elaborate, and simulate Intel FPGA IP models and
simulation model library files.

Specify options for Simulation file output when generating Intel
FPGA IP with IP parameter editor.

Generate files that allow supported EDA tools to
perform netlist modifications, such as adding new
modules, partitioning the netlist, and changing
module connectivity.

Use the quartus_eda –resynthesis command to generate a
Verilog Quartus Mapping File (.vqm) that contains a node-level
(or atom) representation of the netlist in standard structural
Verilog RTL.

Include files generated by other EDA design entry or
synthesis tools in your project as synthesized design
files.

Click Project ➤ Add/Remove Files In Project to add supported
Design File files from other EDA tools.

5.7. Exporting Compilation Results

The Quartus Prime Compiler writes the results to a set of database files. You can run a
command to export the compilation results database as a single Quartus Database File
(.qdb).

After running design compilation, the exported .qdb file contains the data to
reproduce similar compilation results in another project, or in a later software version.
You can export your project's compilation results database for import to another
project or migration to a later Quartus Prime software version.

You can export the .qdb for your entire project or for a design partition that you
define in your project. When migrating the database for an entire project, you can
export the compilation database in a version-compatible format to ensure

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

compatibility for import to a later software version. Although you cannot directly read
the contents of the .qdb file after export, you can view attributes of the database file
in the Quartus Database File Viewer.

Table 34. Exporting Compilation Results

To Export
Compilation Results

For

Method Description

Complete Design Click Project ➤ Export Design Saves compilation results for the current project revision in
a version-compatible Quartus database file (.qdb) that
you can import to another project or migrate to a later
version of the Quartus Prime software. You can export the
results for the synthesized or final compilation snapshot.
Note: Not supported for Agilex 7 devices.

Design Partition Click Project ➤ Export Design
Partition

Saves compilation results for a design partition as a
Partition Database File (.qdb) that you can import to
another project using the same version of the Quartus
Prime software. You can export the results for the
synthesized or final compilation snapshot.

Related Information

Creating Database-Only Archives on page 112

5.7.1. Exporting a Version-Compatible Compilation Database

You can export a project compilation database to a format that ensures version-
compatibility with a later version of the Quartus Prime software. The Quartus Prime
Pro Edition software version supports export of version-compatible databases for the
following software versions and devices:

Table 35. Version-Compatible Compilation Database Support
The first table column indicates the first version to support version-compatible compilation database export for
the specified devices.

Note: • Database import supports two major versions back. For example, a database that you
export from version 19.3, you can then import using version 19.3, 20.1, and 20.3.
However, you cannot import version 19.3 to 21.1.

• You can export from any version that follows a supported version, if the version still
supports the devices.

First Version with 'Export
Design' Support

Stratix 10 and Devices Arria 10 and Cyclone 10 GX Devices

18.0 No Support. Supports all devices.

18.1 • 1SG250L
• 1SG280H_S2
• 1SG280L
• 1SG280L_S3
• 1SX250L
• 1SX280L
• 1SX280L_S3

Supports all devices.

19.1 • 1SM16BH
• 1SM21BH
• 1SM16CH

Supports all devices.

continued...

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

First Version with 'Export
Design' Support

Stratix 10 and Devices Arria 10 and Cyclone 10 GX Devices

• 1SM21CH
• 1SM21KH
• 1SM16KH
• 1SM21LH
• 1SM16LH

19.3 • 1SG10MH_U1
• 1SG10MH_U2
• 1ST250E
• 1ST280E
• 1SM16E
• 1SM21E
• 1ST165E
• 1ST210E
• 1SG166H
• 1SG211H

Supports all devices.

20.1 • 1SD280P
• 1ST040E
• 1ST085E
• 1ST110E

Supports all devices.

20.3 • 1SD21BP
• 1SG040H
• 1SX040H

Supports all devices.

20.4 • 1SN21BH
• 1SN21CE

Supports all devices.

1. In the Quartus Prime software, open the project that you want to export.

2. Generate synthesis or final compilation results by running one of the following
commands:

• Click Processing ➤ Start ➤ Start Analysis & Synthesis to generate
synthesized compilation results.

• Click Processing ➤ Start Compilation to generate final compilation results.

3. Click Project ➤ Export Design. Select the synthesized or final Snapshot.

Figure 60. Export Design Dialog Box

4. Specify a name for the Quartus Database File to contain the exported results,
and click OK.

5. To include the exported design's settings and constraint files, copy the .qsf
and .sdc files to the import project directory.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.7.2. Importing a Version-Compatible Compilation Database

Follow these steps to import a project compilation database into a newer version of
the Quartus Prime software:

Note: Designs exported from the Quartus Prime Pro Edition software versions 23.2 or earlier
cannot be imported into version 23.3 due to the new DNI database.

1. Export a version-compatible compilation database for a complete design, as
Exporting a Version-Compatible Compilation Database on page 100 describes.

2. In a newer version of the Quartus Prime software, open the original project. Click
Yes if prompted to open a project created with a different software version.

3. Click Project ➤ Import Design and specify the Quartus Database File. To
remove previous results, turn on Overwrite existing project's databases

Figure 61. Import Design Dialog Box

4. Click OK. When you compile the imported design, run only Compiler stages that
occur after the stage the .qdb preserves, rather than running a full compilation.
For example, if you import a version-compatible database that contains the
synthesized snapshot, start compilation with the Fitter (Processing ➤ Start ➤
Start Fitter). If you import a version-compatible database that contains the final
snapshot, start compilation with Timing Analysis (Signoff) (Processing ➤ Start ➤
Start Timing Analysis (Signoff)).

5.7.3. Creating a Design Partition

A design partition is a logical, named, hierarchical boundary that you can assign to an
instance in your design. Defining a design partition allows you to optimize and lock
down the compilation results for individual blocks. You can then optionally export the
compilation results of a design partition for reuse in another context, such as reuse in
another project.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 62. Design Partitions in Design Hierarchy

A

B C

D E F

Root Partition

Partition B Partition F
Follow these steps to create and modify design partitions:

1. In the Quartus Prime software, open the project that you want to partition.

2. Generate synthesis or final compilation results by running one of the following
commands:

• Click Processing ➤ Start ➤ Start Analysis & Synthesis to generate
synthesized compilation results.

• Click Processing ➤ Start Compilation to generate final compilation results.

3. In the Project Navigator, right-click an instance in the Hierarchy tab, click Design
Partition ➤ Set as Design Partition.

Figure 63. Creating a Design Partition from the Project Hierarchy

4. To view and edit all design partitions in the project, click Assignments ➤ Design
Partitions Window.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 64. Design Partitions Window

5. Specify the properties of the design partition in the Design Partitions Window. The
following settings are available:

Table 36. Design Partition Settings

Option Description

Partition Name Specifies the partition name. Each partition name must be unique and consist of only
alphanumeric characters. The Quartus Prime software automatically creates a top-level (|)
"root_partition" for each project revision.

Hierarchy Path Specifies the hierarchy path of the entity instance that you assign to the partition. You specify
this value in the Create New Partition dialog box. The root partition hierarchy path is |.

Type Double-click to specify one of the following partition types that control how the Compiler
processes and implements the partition:
• Default—Identifies a standard partition. The Compiler processes the partition using the

associated design source files.
• Reconfigurable—Identifies a reconfigurable partition in a partial reconfiguration flow.

Specify the Reconfigurable type to preserve synthesis results, while allowing refit of the
partition in the PR flow.

• Reserved Core—Identifies a partition in a block-based design flow that is reserved for
core development by a Consumer reusing the device periphery.

Empty Specifies an empty partition that the Compiler skips. This setting is incompatible with the
Reserved Core and Partition Database File settings for the same partition.

Partition Database File Specifies a Partition Database File (.qdb) that the Compiler uses during compilation of the
partition. You export the .qdb for the stage of compilation that you want to reuse
(synthesized or final). Assign the .qdb to a partition to reuse those results in another context.

Entity Re-binding • PR Flow—specifies the entity that replaces the default persona in each implementation
revision.

• Root Partition Reuse Flow —specifies the entity that replaces the reserved core logic in the
consumer project.

Color Specifies the color-coding of the partition in the Chip Planner and Design Partition Planner
displays.

Post Synthesis Export
File

Automatically exports post-synthesis compilation results for the partition to the specified .qdb
file each time Analysis & Synthesis runs. You can automatically export any design partition
that does not have a preserved parent partition, including the root_partition.

Post Final Export File Automatically exports post-final compilation results for the partition to the specified .qdb file
each time the final stage of the Fitter runs. You can automatically export any design partition
that does not have a preserved parent partition, including the root_partition.

5.7.4. Exporting a Design Partition

The following steps describe export of design partitions that you create in your
project.

Note: Design partitions exported from the Quartus Prime Pro Edition software versions 23.2
or earlier cannot be imported into version 23.3 or later due to the new DNI database.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you compile a design containing design partitions, the Compiler can preserve a
synthesis or final snapshot of results for each partition. You can export the
synthesized or final compilation results for individual design partitions with the Export
Design Partition dialog box.

If the partition includes any entity-bound .sdc files, you can include those constraints
in the .qdb. In addition, you can automate export of one or more partitions in the
Design Partitions Window.

Manual Design Partition Export

Follow these steps to manually export a design partition with the Export Design
Partition dialog box:

1. Open a project and create one or more design partitions. Creating a Design
Partition on page 102 describes this process.

2. Run synthesis (Processing ➤ Start ➤ Start Analysis & Synthesis) or full
compilation (Processing ➤ Start Compilation), depending on which compilation
results that you want to export.

3. Click Project ➤ Export Design Partition, and specify one or more options in the
Export Design Partition dialog box:

Figure 65. Export Design Partition Dialog Box

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Select the Partition name and the compilation Snapshot for export.

• To include any entity-bound .sdc files in the exported .qdb, turn on Include
entity-bound SDC files for the selected partition.

4. Click OK. The compilation results for the design partition exports to the file that
you specify.

Automated Design Partition Export

Follow these steps to automatically export one or more design partitions following
each compilation:

1. Open a project containing one or more design partitions. Creating a Design
Partition on page 102 describes this process.

2. To open the Design Partitions Window, click Assignments ➤ Design Partitions
Window.

3. To automatically export a partition with synthesis results after each time you run
synthesis, specify the a .qdb export path and file name for the Post Synthesis
Export File option for that partition. If you specify only a file name without a
path, the file exports to the output_files directory after compilation.

4. To automatically export a partition with final snapshot results each time you run
the Fitter, specify a .qdb file name for the Post Final Export File option for that
partition. If you specify only a file name without a path, the file exports to the
output_files directory after compilation.

Figure 66. Specifying Export File in Design Partitions Window

.qsf Equivalent Assignment:

set_instance_assignment -name EXPORT_PARTITION_SNAPSHOT_<FINAL|SYNTHESIZED> \
 <hpath> -to <file_name>.qdb

Related Information

• Intel Quartus Prime Pro Edition User Guide: Block Based Design

• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

106

https://www.intel.com/content/www/us/en/docs/programmable/683247.html
https://www.intel.com/content/www/us/en/docs/programmable/683834.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.7.5. Reusing a Design Partition

You can reuse the compilation results of a design partition exported from another
Quartus Prime project. Reuse of a design partition allows you to share a synthesized
or final design block with another designer. Refer to Intel Quartus Prime Pro Edition
User Guide: Block-Based Design for more information about reuse of design partitions.

To reuse an exported design partition in another project, you assign the exported
partition .qdb to an appropriately configured design partition in the target project via
the Design Partition Window:

1. Export a design partition with the appropriate snapshot, as Exporting a Design
Partition on page 104 describes.

2. Open the target Quartus Prime project that you want to reuse the exported
partition.

3. Click Processing ➤ Start ➤ Start Analysis & Elaboration.

4. Click Assignments ➤ Design Partitions Window, and then create a design
partition to contain the logic and compilation results of the exported .qdb.

5. Click the Partition Database File option for the new partition and select the
exported .qdb file.

Figure 67. Partition Database File Setting in Design Partitions Window

6. Specify any other properties of the design partition in the Design Partitions
Window. The Compiler uses the partition's assigned .qdb as the source.

5.7.6. Viewing Quartus Database File Information

Although you cannot directly read a .qdb file, you can view helpful attributes about
the file to quickly identify its contents and suitability for use.

The Quartus Prime software automatically stores metadata about the project of origin
when you export a Quartus Database File (.qdb). You can then use the Quartus
Database File Viewer to display the attributes of any of these .qdb files.
Follow these steps to view the attributes of a .qdb file:

1. In the Quartus Prime software, click File ➤ Open, select Design Files for Files
of Type, and select a .qdb file.

2. Click Open. The Quartus Database File Viewer displays project and resource
utilization attributes of the .qdb.

Alternatively, run the following command-line equivalent:

quartus_cdb --extract_metadata --file <archive_name.qdb> \
 --type quartus --dir <extraction_directory> \
 [--overwrite]

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 68. Quartus Database File Viewer

5.7.6.1. QDB File Attribute Types

The Quartus Database Viewer can display the following attributes of a .qdb file:

Table 37. QDB File Attributes

QDB Attribute Types Attribute Example

Project Information Contents Partition

Date Thu Jan 23 10:56:23 2018

Device 10AX016C3U19E2LG

Entity (if Partition) Counter

Family Arria 10

Partition Name root_partition

Revision Name Top

Revision Type PR_BASE

Snapshot synthesized

Version 18.1.0 Pro Edition

Version-Compatible Yes

Resource Utilization (exported
for partition QDB only)

For synthesized snapshot partition
lists data from the Synthesis
Resource Usage Summary
report.

Average fan-out.16

Dedicated logic registers:14

Estimate of Logic utilization:1

continued...

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I/O pins:35

Maximum fan-out:2

Maximum fan-out node:counter[23]

Total DSP Blocks:0

Total fan-out:6

...

For the final snapshot partition,
lists data from the Fitter Partition
Statistics report.

Average fan-out:.16

Combinational ALUTs: 16

I/O Registers

M20Ks

...

5.7.7. Clearing Compilation Results

You can clean the project database if you want to remove prior compilation results for
all project revisions or for specific revisions. For example, you must clear previous
compilation results before importing a version-compatible database to an existing
project.

1. Click Project > Clean Project.

2. Select All revisions to clear the databases for all revisions of the current project,
or specify a Revision name to clear only the revision’s database you specify.

3. Click OK. A message indicates when the database is clean.

Figure 69. Clean Project Dialog Box Cleans the Project Database

5.8. Archiving Projects

You can optionally save the elements of a project in a single, compressed Quartus
Prime Archive File (.qar) by clicking Project > Archive Project. The .qar
preserves RTL design, project, and settings files required to restore the project.

Use this technique to share projects between designers, or to transfer your project to
a new version of the Quartus Prime software, or to Intel support. Optionally add
compilation results, Platform Designer system files, and third-party EDA tool files to
the archive.

Related Information

Project Archive Commands on page 114

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.8.1. Manually Adding Files To Archives

Follow these steps to add files to a project archive manually:

Note: If preserving a custom component as part of an Quartus Prime Archive (.qar), you
must first explicitly add the component _hw.tcl file to the project to ensure that
the .qar includes the component. Click Project ➤ Add/Remove Files in Project to
add files to your project.

1. Click Project ➤ Archive Project and specify the archive file name.

2. Click Advanced.

3. Select the File set for archive or select Custom. Turn on File subsets for the
archive.

4. Click Add and select Platform Designer system or EDA tool files. Click OK.

5. Click Archive.

5.8.2. Archiving Projects for Service Requests

When archiving projects for a service request, include all needed file types for proper
debugging by customer support.

To identify and include appropriate archive files for an Intel service request:

1. Click Project > Archive Project and specify the archive file name.

2. Click Advanced.

3. In File set, select Service request to include files for Intel Support.

• Project source and setting files
(.v, .vhd, .vqm, .qsf, .sdc, .qip, .qpf, .cmp)

• Automatically detected source files (various)

• Programming output files (.jdi, .sof, .pof)

• Report files (.rpt, .pin, .summary, .smsg)

4. Click OK, and then click Archive.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 70. Archiving Project for Service Request

5.8.3. Archiving Projects for External Revision Control

Your project may involve different team members with distributed responsibilities,
such as sub-module design, device and system integration, simulation, and timing
closure. In such cases, it may be useful to track and protect file revisions in an
external revision control system.

While Quartus Prime project revisions preserve various project setting and constraint
combinations, external revision control systems can also track and merge RTL source
code, simulation testbenches, and build scripts. External revision control supports
design file version experimentation through branching and merging different versions
of source code from multiple designers. Refer to your external revision control
documentation for setup information.

5.8.3.1. Project Files to Include In External Revision Control

When archiving Quartus Prime projects for external source control, The Source
control setting in Advanced Archive Settings dialog box is preset to include all
appropriate file types for source control automatically.

Figure 71. Advanced Archive Settings Dialog Box

Source Control File Set Automatically
Selects Appropriate Files for Source Control

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 38. Project Files to Include In External Revision Control

File Type Description

Quartus Prime project setting and
assignment files

• Quartus Prime Project Files (.qpf)
• Quartus Prime Settings Files (.qsf)
• Quartus Prime Pin Planner File (.ppf)

Timing constraint files Synopsys Design Constraint Files (.sdc)

Design files • Verilog HDL Design Files (.v)
• SystemVerilog Design Files (.sv)
• VHDL Design Files (.vhd)
• Block Symbol Files (.bsf)
• Verilog Quartus Mapping Files (.vqm)
• Platform Designer System Files (.qsys)
• State Machine Editor Files (.smf)
• Tcl Script Design Files (.tcl)

System and IP files • IP variation file (.ip)
• Verilog IP design files (.v)
• SystemVerilog IP design files (.sv)
• VHDL IP design files (.sv)
• VHDL Component Declaration Files (.cmp)
• Quartus Prime IP file (.qip)
• Quartus Prime Simulation IP File (.sip)
• Platform Designer System Files (.qsys)
• Platform Designer connection and parameterization files (.sopcinfo)
• IP upgrade status files (.csv)
• IP synthesis parameters files (.qgsynthc)
• IP simulation parameters files (.qgsimc)
• Platform Designer system exported as (.tcl).

EDA tool integration files • Verilog HDL Output Files (.vo)
• VHDL Output Files (.vho)
• VHDL simulation model files (.vhd)
• Verilog HDL simulation model files (.v)
• Simulation library files (cds.lib, hdl.var)
• Simulation setup scripts (_setup.sh, .tcl, .spd, .txt)

5.8.4. Creating Database-Only Archives

If your project contains sensitive RTL that you do not want to share with Intel support,
you can create a database-only archive. A database-only archive contains only the
minimum files required to run timing analysis, fitter, assembler, and GUI design-
inspection tools like Chip Planner.

A database-only archive includes only the project Quartus databases and any
additional files required for compilation. It does not include RTL files.

You can review the complete list of files included in the archive in a report generated
when you create a database-only archive.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Security
Note:

A database-only archive does not guarantee protection for sharing your design without
sharing your RTL. The RTL Netlist Viewer, Technology Map Viewer, and other views,
along with the EDA Netlist Writer, are still available for projects exported using this
feature.

With some effort, the original content can be reverse engineered.

To disable these features, encrypt your design. For details, see Support for the IEEE
1735 Encryption Standard on page 83.

Before creating a database-only archive, your project must have completed one of the
following compilation stages:

• Synthesis

Archives that are created after running Synthesis can be used to run the fitter and
then complete timing analysis, run the assembler, and use GUI-based design-
inspection tools.

• Finalized

Archives that are created after completing a full compilation flow for your project
can be used to complete timing analysis, run the assembler, and use GUI design-
inspection tools.

To create a database-only archive, run the following command:

quartus_sh --archive_database -project <project_file> [-use_final_db]

Specify the -use_final_db option to create a database-only archive based on the
finalized snapshot of your project. Otherwise, a database-only archive based on the
synthesized snapshot is created.

The command generates two files: a .qar file that contains the database-only
archive, and a .contents.txt file that lists files that are included in the .qar file.

You can get command syntax details by running the following command:

quartus_sh --help=archive_database

Related Information

Support for the IEEE 1735 Encryption Standard on page 83

5.9. Command-Line Interface

You can optionally use command-line executables or scripts to run project commands,
rather than using the GUI. This technique can be helpful if you have many settings
and wish to track them in a single file or spreadsheet for iterative comparison.
The .qsf supports only a limited subset of Tcl commands. Therefore, pass settings
and constraints using a Tcl script:

1. Create a text file with the extension .tcl that contains your assignments in Tcl
format.

2. Source the Tcl script file by adding the following line to the .qsf:
set_global_assignment -name SOURCE_TCL_SCR IPT_FILE <file
name>.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.9.1. Project Revision Commands

create_revision Command

create_revision defines the properties of a new project revision.

create_revision <name> -based_on <revision_name> -set_current -new_rev_type \
 <rev_type> -root_partition_qdb_file <root qdb>

Table 39. create_revision Command Options

Option Description

based_on (optional) Specifies the revision name on which the new revision bases its settings.

set_current (optional) Sets the new revision as the current revision.

-new_rev_type Specifies a base or impl (implementation) type for a new revision.

root_partition_qdb_file Specifies the name of a static region .qdb if already known when creating a
revision.

get_project_revisions Command

get_project_revisions returns a list of all revisions in the project.

get_project_revisions <project_name>

delete_revision Command

delete_revision deletes the revision you specify from your project.

delete_revision <revision name>

set_current_revision Command

set_current_revision sets the revision you specify as the current revision.

set_current_revision -force <revision name>

Related Information

• Optimizing Settings with Project Revisions on page 121

• Optimize Settings with Design Space Explorer II

• Design Space Explorer II Tool

• Using Design Space Explorer II (DSE II) Video

5.9.2. Project Archive Commands

project_archive Command

project_archive archives your project into a single, compressed .qar file.

project_archive <name>.qar

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

114

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/optimize-settings-with-design-space.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/jcc1519432181110.htm
https://www.youtube.com/watch?v=1cc74E3zaeI&t=427s
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 40. project_archive Command Options

Options Description

-all_revisions Includes all revisions of the current project in the archive.

-common_directory /<name> Preserves original project directory structure in specified
subdirectory.

-include_libraries Includes libraries in archive.

-include_outputs Includes output files in archive.

-use_file_set <file_set> Includes specified fileset in archive.

-version_compatible_database Includes version-compatible database files in archive.

restore_archive Command

Restores an archived project to a destination directory with optional overwriting of
current contents.

project_restore <name>.qar -destination <directory name> -overwrite

Related Information

Archiving Projects on page 109

5.9.3. Project Database Commands

export_database Command

export_design exports the specified project database to the .qdb file you specify.

These commands require the quartus_cdb executable.

quartus_cdb <revision name> --export_design --file <file name>.qdb \
 --snapshot <synthesized/final>

import_database Command

import_design imports the specified project database to the .qdb file you specify.

quartus_cdb <revision name> --import_design --file <file name>.qdb

export_block Command

export_block exports the specified partition database to the .qdb file you specify.

quartus_cdb -r <project name> -c <revision name> --export_block \
 <partition name> --snapshot <name> --file <file name>.qdb

5.9.3.1. quartus_cdb Executables to Manage Version-Compatible Databases

The command-line arguments to the quartus_cdb executable in the Quartus Prime
Pro software are export_design and import_design. The exported version-
compatible design files are archived in a file (with a .qdb extension). This differs from
the Quartus Prime Standard Edition software, which writes all files to a directory.

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the Quartus Prime Standard Edition software, the flow exports both post-map and
post-fit databases. In the Quartus Prime Pro Edition software, the export command
requires the snapshot argument to indicate the target snapshot to export. If the
specified snapshot has not been compiled, the flow exits with an error. In ACDS 16.0,
export is limited to “synthesized” and “final” snapshots.

quartus_cdb <project_name> [-c <revision_name>] --export_design
--snapshot <snapshot_name> --file <filename>.qdb

The import command takes the exported *.qdb file and the project to which you want
to import the design.

quartus_cdb <project_name> [-c <revision_name>] --import_design
--file <archive>.qdb [--overwrite] [--timing_analysis_mode]

The --timing_analysis_mode option is only available for Arria 10 designs. The
option disables legality checks for certain configuration rules that may have changed
from prior versions of the Quartus Prime software. Use this option only if you cannot
successfully import your design without it. After you have imported a design in timing
analysis mode, you cannot use it to generate programming files.

5.10. Related Trainings

You can take up the following training to help you understand how to manage your
project:

• Instructor-Led Training: Using Quartus Prime Software

5. Managing Quartus Prime Projects

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

116

https://cdrdv2.intel.com/v1/dl/getContent/653090?explicitVersion=true
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Next Steps After Getting Started
Navigating Content Through Tasks

Use the following table to navigate this guide through user-tasks:

Plan FPGA Design for RTL
Flow
or

Work With Intel FPGA IP
Cores

Create a New Project
or

Migrate Your Existing Project
to Quartus Prime Pro Edition

Software

Manage Your Quartus Prime
Pro Edition Projects

Review Next Steps

Once you complete installing and licensing the required Intel FPGA development
software and setting up your Quartus Prime Pro Edition project, refer to the following
topics for additional resources and training to aid your design journey:

A.1. Additional Resources

Resource Description

Intel Community for FPGA Intellectual
Property

Allows you to post queries and get responses to Intel FPGA IP-related issues.

Intel Community for Quartus Prime
Software

Allows you to post queries and get responses to Quartus Prime software-
related issues.

Intel Community for Intel FPGA Software
Installation and Licensing

Allows you to post queries and get responses to Intel FPGA software
installation and licensing issues.

Intel FPGA Knowledge Base Provides links to applicable articles that span a variety of Quartus Prime
software-related issues.

Intel FPGA Self-Service Licensing Center Provides support for licensing Intel FPGA software.

Quartus Prime Pro Edition User Guide:
Design Recommendations

Describes best practices for designing FPGAs with the Quartus Prime Pro
Edition software.

Quartus Prime Pro Edition User Guide:
Design Compilation

Describes how to set up, run, and optimize for all stages of the Quartus Prime
Pro Edition software compiler. The compiler synthesizes, places, and routes
your design before generating a device programming file.

Quartus Prime Pro Edition User Guide:
Scripting

Describes use of Tcl and command line scripts to control the Quartus Prime
Pro Edition software and to perform a wide range of functions, such as
managing projects, specifying constraints, running compilation or timing
analysis, or generating reports.

continued...

683463 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://community.intel.com/t5/FPGA-Intellectual-Property/bd-p/fpga-intellectual-property
https://community.intel.com/t5/FPGA-Intellectual-Property/bd-p/fpga-intellectual-property
https://community.intel.com/t5/Intel-Quartus-Prime-Software/bd-p/quartus-prime-software
https://community.intel.com/t5/Intel-Quartus-Prime-Software/bd-p/quartus-prime-software
https://community.intel.com/t5/Intel-FPGA-Software-Installation/bd-p/fpga-software-installation-licensing
https://community.intel.com/t5/Intel-FPGA-Software-Installation/bd-p/fpga-software-installation-licensing
https://www.intel.com/content/www/us/en/support/programmable/kdb-filter.html#sort=%40articlepublisheddate%20descending&f:quartusedition=[Intel%C2%AE%20Quartus%C2%AE%20Prime%20Design%20Software]
https://licensing.intel.com/
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Resource Description

Scripting with Quartus Prime Software Demonstrates how to use the command-line executables for the Quartus
Prime design flow.

Quartus Prime Pro Edition User Guide:
Third-party Simulation

Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys* that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

Questa*-Intel FPGA Edition Quick-Start:
Quartus Prime Pro Edition User Guide

Demonstrates how to simulate a Quartus Prime Pro Edition design in the
Questa*-Intel FPGA Edition simulator.

How to Setup RTL Simulations in Quartus
Prime, Platform Designer, and Third-Party
Simulators

Describes how to setup an RTL-based simulation using the IP setup simulation
utility.

Quartus Prime Pro Edition Software User
Guides Collection

Each user guide in the collection covers a specific topic and is designed to help
you easily and efficiently find the information you need to see your design
through to completion.

A.2. Training

You can take up the following training to aid your FPGA design journey:

• University Self-Guided Lab: Become an FPGA Designer in 4 Hours

• Introduction to Tcl

• Quartus Prime Software Tcl Scripting

• Command Line Scripting Capabilities in the Quartus Prime Pro Edition Software

• Quartus Prime Software Tcl Scripting

• Intel FPGA Power and Thermal Calculator for Intel FPGA Devices

• DSP Builder Advanced Blockset: Getting Started

• Using FPGAs with the Intel oneAPI Toolkits

• Instructor-Led Training: Intel SoC FPGA Basics

• University Self-Guided Lab: Introduction to Simulation and Debug of FPGAs

For more Intel FPGA trainings, refer to the Intel FPGA Technical Training Catalog and
Intel FPGA channel on YouTube*.

A. Next Steps After Getting Started

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

118

https://www.youtube.com/watch?v=G_K5Hk610r4
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/691278.html
https://www.intel.com/content/www/us/en/docs/programmable/691278.html
https://www.youtube.com/watch?v=e0X5KMVt4F8
https://www.youtube.com/watch?v=e0X5KMVt4F8
https://www.youtube.com/watch?v=e0X5KMVt4F8
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/user-guides.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/user-guides.html
https://cdrdv2.intel.com/v1/dl/getContent/653012?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652934?explicitVersion=true
https://www.youtube.com/watch?v=nnC8tBt_gSs
https://cdrdv2.intel.com/v1/dl/getContent/652860?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652899?explicitVersion=true
https://www.youtube.com/watch?v=jV17C-VWz1o
https://cdrdv2.intel.com/v1/dl/getContent/652917?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/773682?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/652961?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/690726?explicitVersion=true
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/catalog.html
https://www.youtube.com/@IntelFPGA/videos
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

B. Using the Design Space Explorer II

The Design Space Explorer II tool (Tools ➤ Launch Design Space Explorer II)
allows you to find optimal project settings for resource, performance, or power
optimization goals.

Refer to the following links for information on how to use the tool and what each
option means in the GUI:

• Design Space Explorer II Tool

— Setup Page

— Project Page

— Exploration Page

— Status Page

— Report Page

• Using Design Space Explorer

B.1. Optimizing Project Settings

Optimize project settings to meet your design goals.

The Quartus Prime Design Space Explorer II iteratively compiles your project with
various setting combinations to find the optimal settings for your goals. Alternatively,
you can create a project revision or project copy to manually compare various project
settings and design combinations.

B.1.1. Optimizing Settings with Design Space Explorer II

Design Space Explorer II (DSE II) processes a design using combinations of settings
and constraints, and reports the best combination of settings and constraints for the
design. You can also take advantage of the DSE II parallelization abilities to compile
on multiple computers.

In DSE II, an exploration point is a collection of Analysis & Synthesis, Fitter, and
placement settings, and a group of exploration points is a design exploration. A design
exploration can also include different fitter seeds.

DSE II compiles the design using the settings corresponding to each exploration point.
When the compilation finishes, DSE II evaluates the performance data against an
optimization goal that you specify. You can direct the DSE II to optimize for timing,
area, or power. DSE II attempts multiple seeds to identify one meeting your
requirements. DSE II can run different compilations on multiple computers in parallel
to streamline timing closure.

683463 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/jcc1519432181110.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/mapIdTopics/nfo1520894967918.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/mapIdTopics/cjr1521146438399.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/mapIdTopics/gzx1519433954262.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/mapIdTopics/lij1521075717701.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/mapIdTopics/whh1518655760413.htm
https://www.youtube.com/watch?v=1cc74E3zaeI
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 72. Design Space Explorer II

You can run DSE II at any step in the design process. However, because large changes
in a design can neutralize gains achieved from optimizing settings, Intel recommends
that you run DSE II late in the design cycle.

Note: When comparing the results of different seed sweeps with DSE II, changing any of the
following variables can cause differences in the compilation results between seed
sweeps, resulting in a somewhat different fit in each case:

• The number or type of CPUs that DSE II uses to perform the seed sweeps

• Any change to the operating system

• Any change to source file content or location

• Any change to the Compiler settings or Timing Analyzer settings

For more information, refer to Fitter Seed.

B.1.1.1. DSE II Computing Resources

You can configure DSE II to take advantage of your computing resources to run the
design explorations. In the DSE II GUI, the Setup page contains the job launch
options, and the Status page allows you to monitor and control jobs.

DSE II supports running compilations on your local computer or a remote host through
LSF, SSH or Torque. For SSH, you can also define a comma-separated list of remote
hosts.

B. Using the Design Space Explorer II

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

120

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/fitter-seed.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you have a laptop or standard computer, you can use the single compilation feature
to compile your design on a workstation with higher computing performance and
memory capacity.

When running on a compute farm, you can direct the DSE II to safely exit after
submitting all the jobs while the compilations continue to run until completion.
Optionally, you can receive an e-mail when the compilations are complete.

If you launch jobs using SSH, the remote host must enable public and private key
authentication. For private keys encrypted with a pass phrase, the remote host must
run the ssh key agent to decrypt the private key, so the quartus_dse executable can
access the key.

Note: Windows remote hosts require Cygwin's sshd server and PuTTY.

B.1.1.2. DSE II Optimization Parameters

DSE II provides a collection of predefined exploration spaces that focus on what you
want to optimize. Additionally, you can define a set of compilation seeds. The number
of explorations points is the number of seeds multiplied by the number of exploration
modes.

Note: The availability of predefined spaces depends on the device family that the design
targets.

In the DSE GUI, you specify these settings in the Exploration page.

B.1.1.3. DSE II Result Management

DSE II compares the compilation results to determine the best Quartus Prime software
settings for the design. The Report page displays a summary of results.

In an exploration, DSE II selects the best worst-case slack value from among all
timing corners across all exploration points. If you want to optimize for worst-case
setup slack or hold slack, specify timing constraints in the Quartus Prime software.

Disk Space

By default, DSE II saves all the compilation data. You can save disk space by limiting
the type of files that you want to save after a compilation finishes. These settings are
in the Exploration page, Results section.

Reports

DSE II has reporting tools that help you quickly determine important design metrics,
such as worse-case slack, across all exploration points.

DSE II provides a performance data report for all points it explores and saves the
information in a project-name.dse.rpt file in the project directory. DSE II archives
the settings of the exploration points in Quartus Prime Archive Files (.qar).

B.1.2. Optimizing Settings with Project Revisions

You can save multiple, named project revisions within your Quartus Prime project
(Project > Revisions). Each project revision captures a unique set of project settings
and constraints, while using the same set of logic design files.

B. Using the Design Space Explorer II

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use revisions to experiment with different settings while preserving the original.
Optimize different revisions for separate applications:

• Create a unique revision to optimize a design for different criteria, such as by area
in one revision and by fMAX in another revision.

• When you create a new revision the default Quartus Prime settings initially apply.

• Create a revision of a revision to experiment with settings and constraints. The
child revision includes all the assignments and settings of the parent revision.

You create, delete, and edit revisions in the Revisions dialog box. Each time you
create a new project revision, the Quartus Prime software creates a new .qsf using
the revision name.

To compare each revision’s synthesis, fitting, and timing analysis results side-by-side,
click Project > Revisions and then click Compare. In addition to viewing the
compilation Results of each revision, you can also compare the Assignments for
each revision. This comparison reveals how different optimization options affect your
design.

Figure 73. Comparing Project Revisions

Related Information

• Project Revision Commands on page 114

• Optimize Settings with Design Space Explorer II

• Design Space Explorer II Tool

• Using Design Space Explorer II (DSE II) Video

B. Using the Design Space Explorer II

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

122

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/optimize-settings-with-design-space.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/jcc1519432181110.htm
https://www.youtube.com/watch?v=1cc74E3zaeI&t=427s
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

B.1.3. Back-Annotating Optimized Assignments

The Compiler maps the elements of your design to specific device resources during
fitting. After compilation, you can back-annotate (copy) the Compiler's resource
assignments to preserve that same implementation in subsequent compilations. Back-
annotation can simplify timing closure by allowing you to lock down placement of your
optimized results.

Locking down placement of large blocks related to Clocks, RAMs, and DSPs can
produce higher fMAX with less noise. Large blocks like RAMs and DSPs have heavier
connectivity than regular LABs, complicating movement during placement. When a
seed produces good results from suitable RAM and DSP placement, you can capture
that placement with back-annotation. Subsequent compiles can then benefit from the
high quality RAM and DSP placement from the good seed.

Figure 74. Back-Annotate Assignments Dialog Box

Assignment Type
 to Back-Annotate

Back-Annotate Only Nodes
Matching Name Filter

Assignment Storage Location

To back-annotate (copy) the device resource assignments from the last compilation to
the project .qsf (or to a Tcl file) for use in the next compilation:

1. Run a full compilation, or run the Fitter through at least the Place stage.

2. Click Assignments ➤ Back-Annotate Assignments.

3. Under Assignments to back-annotate, specify whether you want to preserve
Pin assignments, RAM assignments, DSP assignments, Clock assignments,
and Clock Spine assignments in the back-annotation.

4. In Filter, specify a text string (including wildcards) if you want to filter back-
annotated assignments by entity name.

5. Under Output, specify whether to save the back-annotated assignments to
the .qsf or to a Tcl file. A default Tcl file name displays.

B. Using the Design Space Explorer II

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Alternatively, you can run back-annotation with the following quartus_cdb
executable. The Shell command field displays the shell command constructed by the
options that you specify in the GUI.

quartus_cdb chiptrip_nf --back_annotate --pin --ram --dsp --clocks \
 --spines --file "<file>.tcl"

Note: Check available arguments by running quartus_cdb <project> --
back_annotate --help.

Related Information

Back Annotation in Quartus Prime Software

B.2. Running DSE II

Note: Before running DSE II, specify the timing constraints for the design.

This description covers the type of settings that you need to define when you want to
run a design exploration. For details about all the options available in the GUI, refer to
the Quartus Prime Help.

To perform a design exploration with the DSE II tool:

1. Start the DSE II tool.

If you have an open project in the Quartus Prime software and launch DSE II, a
dialog box appears asking if you want to close the Quartus Prime software. Click
Yes.

2. In the Project page, specify the project and revision that you want to explore.

3. In the Setup page, specify whether you want to perform a local or a remote
exploration, and set up the job launch.

4. In the Exploration page, specify optimization settings and goals.

5. When the configuration is complete, click Start.

B.3. Setting Up Remote Farm Using Design Space Explorer II

To launch Design Space Explorer II, in the Quartus Prime Pro Edition GUI, click Tools
➤ Launch Design Space Explorer II. Click Yes to the message that appears. This
closes the Quartus Prime software and launches the Design Space Explorer II.

Under the Project tab, click Open Project to add your project to the Design Space
Explorer II. Refer to Project Page (Design Space Explorer II) for information about all
options on this tab.

Use one of the following methods to set up your remote farm:

B. Using the Design Space Explorer II

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

124

https://www.youtube.com/watch?v=XO0Qi_zIpPs
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/cjr1521146438399.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

LSF Remote Farm

Follow these steps to set up your remote machine using the Design Space Explorer II
and LSF remote compilation type:

1. Ensure you have set up your LSF environment. If not, request your IT
administrator to set up the LSF environment.

2. Once the LSF environment is ready, launch the command line interface and
execute the bsub sleep 60 command.

3. Under the Setup tab, select Remote compilation type and choose the LSF option
from the drop-down list. Populate all mandatory settings under Specify custom
settings for LSF with the LSF environment-specific information.

Refer to Setup Page (Design Space Explorer II) for information about all options
on this tab.

4. Customize the settings as necessary.

5. Under the Exploration tab, expand the Exploration Points section.

6. Select Design exploration.

7. Under Exploration Options, select Seed Sweep Only.

8. Under Seeds, select Create. By default, it must be set to 2 seeds.

9. Click Start. Wait until the design exploration is complete.

10. Click the Results tab to review the status of the design exploration.

SSH Remote Farm

Follow these steps to set up your remote machine using the Design Space Explorer II
and SSH remote compilation type:

1. Install the open-source PuTTY Key Generator tool and launch it.

2. Click Generate to generate the public/private key pair.

3. Enter the key passphrase.

4. Click Save private key to save the private key with a .ppk extension.

5. Click Save public key to save the public key as putty_gen_public_key.pub.

6. On your machine, change to the SSH directory and copy the contents of the
putty_gen_public_key.pub file.

7. In the Design Space, under the Setup tab, select SSH compilation type and
specify the following:

• For Hostname, enter the server name.

• For private_key, enter the path to your private key (.ppk file).

• For SSH Client, enter the path to the plink.exe file. You can find this in the
same directory where you installed the PuTTy tool.

• For Farm Operating System, enter your system type (linux or windows).

The remaining settings are similar to LSF settings. Refer to Setup Page (Design
Space Explorer II) for information about all options on this tab.

8. Under the Exploration tab, expand the Exploration Points section.

9. Select Design exploration.

B. Using the Design Space Explorer II

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

125

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/nfo1520894967918.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/nfo1520894967918.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/nfo1520894967918.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

10. Under Exploration Options, select Seed Sweep Only.

11. Under Seeds, select Create. By default, it must be set to 2 seeds.

12. Click Start. Wait until the design exploration is complete.

13. Click the Results tab to review the status of the design exploration.

B. Using the Design Space Explorer II

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

C. Document Revision History for Quartus Prime Pro
Edition User Guide Getting Started

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Made the following updates in Introduction to Quartus Prime Pro
Edition:
— Included additional steps to the quick start table.
— Updated the Quartus Prime software main page image in the

table.
— Updated the support matrix image to include Agilex 5 device

support.
— Updated supported features table to include Agilex 5 device

support for hyper-aware design flow.
— Updated the Intel FPGA developmental tools table to include

Agilex 5 device support for PTC.
• Revised prerequisite training list in Prerequisite Knowledge and

Training.
• Consolidated the information of design planning into a table in

Planning FPGA Design for RTL Flow.
• Added Viewing Design Hierarchy and Adding Missing Source Files.
• Removed the Quartus Prime software main page image in

Creating a New FPGA Design Project.
• Revised the IP version upgrade path image in Upgrading IP Cores.
• Revised Generating IP Simulation Files topic entirely.
• Revised the note about .bdf files in Managing Logic Design Files.

2023.12.04 23.4 • Made major reorganization of chapters and topics.
• Added additional information to Introduction to Quartus Prime Pro

Edition.
• Renamed FPGA Basic Design Prerequisites as Prerequisite

Knowledge and Training and included a list of trainings.
• Revised the information for accessing online design examples in

Creating a New Project from a Design Example.
• Renamed the chapter title "Design Planning" to "Planning FPGA

Design for RTL Flow."
• Renamed the topic "Plan for Hierarchical and Team-Based

Designs" to "Selecting the Design Methodology."

continued...

683463 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Document Version Quartus Prime
Version

Changes

• Added the following:
— Before You Begin
— Acronyms
— Navigate Content Through Tasks
— Selecting the Design Methodology
— Flat Design Vs. Incremental Block-based Design
— Partial Reconfiguration Design
— Related Trainings
— Migrating Your AMD* Vivado* Project to Quartus Prime Pro

Edition
— Migrating Project From One Device to Another
— Converting Symbolic BDF Files to Acceptable File Formats
— Project Path Length Considerations

• Renamed the chapter name from Migrating to Quartus Prime Pro
Edition to Selecting a Starting Point for Your Quartus Prime Pro
Edition Project.

• Moved Creating a New FPGA Design Project, Migrating Projects
Across Operating Systems and their subtopics from Managing
Quartus Prime Projects chapter to this chapter.

• Chapter renamed as "Working With Intel FPGA IP Cores."
• Removed the following topics and added a reference to Quartus

Prime Pro Edition User Guide: Third-party Simulation where these
topics are explained in detail.
— Sourcing Aldec ActiveHDL* or Riviera Pro* Simulator Setup

Scripts
— Sourcing Cadence Incisive* Simulator Setup Scripts
— Sourcing Cadence Xcelium Simulator Setup Scripts
— Sourcing QuestaSim* Simulator Setup Scripts
— Sourcing Synopsys VCS Simulator Setup Scripts
— Sourcing Synopsys VCS MX Simulator Setup Scripts

• Moved Creating a New FPGA Design Project, Migrating Projects
Across Operating Systems and their subtopics to Selecting a
Starting Point for Your Quartus Prime Pro Edition Project chapter.

• In Managing Logic Design Files, added information about
converting .bdf to .v or .vhd file.

• Removed "Block Diagram/Schematic Design Files (.bdf)" in
Project Files to Include In External Revision Control.

• Added Viewing Parameter Settings From the Project Navigator.
• Added an appendix about Using Design Space Explorer II and

included related topics.
• Revised the Power and Thermal Calculator (PTC) image in

Planning for Device Power Consumption.

2023.10.02 23.3 • Updated the compilation dashboard image in Introduction to
Quartus Prime Pro Edition and Using the Compilation Dashboard.

• Removed OpenCL support from the "Intel Quartus Prime Feature
Support Matrix" image in Selecting an Quartus Prime Software
Edition.

• Made a minor correction in Logic Lock Region Assignment
Examples.

• Revised the "Quartus Prime Pro Edition IP Version Upgrade Paths"
image in Upgrading IP Cores.

• Updated the dashboard image in Using the Compilation
Dashboard.

2023.06.26 23.2 • Updated Power Analyzer Settings screenshot for new settings
name.

continued...

C. Document Revision History for Quartus Prime Pro Edition User Guide Getting Started

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2023.04.03 23.1 • Updated product family name to "Intel Agilex 7."
• Added note to Upgrade Project Assignments and Constraints

about new prompt to update operating temperatures in a
migrated project.

• Updated Support for the IEEE 1735 Encryption Standard topic for
new installed location of public encryption key.

• Updated Intel Quartus Prime Pro Edition IP Version Upgrade Paths
support chart.

2022.12.12 22.4 • Updated Plan for the Target Device or Board topic for board-aware
features.

• Revised Applying Preset Parameters for Specific Applications topic
for board-aware features.

• Added new Viewing, Applying, and Deleting IP Presets topic.
• Added new Example IP Preset File (.qprs) topic.
• Revised Customizing IP Presets topic for board-aware features.
• Added new Defining Preset Pin Assignments section.
• Revised Creating a New FPGA Design Project for board-aware

features.
• Added Using the Board-Aware Flow topic.
• Added Creating a New Project from a Design Example topic.
• Added Family, Device & Board Settings topic.
• Added Accessing Pre-Installed Design Examples topic.
• Added Accessing Online Design Examples topic.
• Added Accessing Downloaded Design Examples topic.
• Added Internet Connectivity Options topic.
• Added Design Examples Options topic.
• Added Specifying a Target Board for the Project topic.

2022.06.20 22.2 • Added new Top FAQs navigation to document cover.
• Revised Introduction to add FPGA definition and device selection

footnote.
• Added new FPGA Basic Design Prerequisites topic.
• Added new Experiment with a Design Example topic.
• Removed obsolete Simultaneous Switching Noise Analysis topic

from this basic discussion.

2022.03.28 22.1 • Added information about Power and Thermal Calculator in Plan for
Device Power Consumption.

• Removed references to obsolete Advisors from Optimizing Project
Settings topic.

• Added Viewing Synthesis Warning Messages topic.
• Removed the topic Automated Problem Reports.

2021.10.04 21.3 • Added support for Questa*-Intel FPGA Edition simulator.
• Removed support for ModelSim - Intel FPGA Edition simulator.
• Updated Quartus Prime Pro Edition IP Version Upgrade Paths

figure for latest versions.

2021.06.21 21.2 • Added Version-Compatible Compilation Database Support table.
• Added "Promoting Critical Warnings to Errors" topic.

2021.03.29 21.1 • Enhanced Simulating Intel FPGA Designs topic with screenshot,
links, and additional contextual details.

• Updated supported simulator versions and removed support for
Cadence Incisive Enterprise* in Simulator Support topic.

• Revised Generating IP Simulation Files topic for new simulation
file output options.

continued...

C. Document Revision History for Quartus Prime Pro Edition User Guide Getting Started

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Revised Using the EDA Netlist Writer wording for clarity.
• Added "Creating Database-Only Archives" topic.
• Added "Promoting Critical Warnings to Errors" topic

2020.11.09 20.3 • Revised "Introduction to Intel FPGA IP Cores" topic to include
Bridges and Adapters and Intel FPGA Interconnect categories in IP
Catalog. Updated IP Catalog image.

• Revised wording of "Intel FPGA IP Versioning" topic for clarity.
• Added screenshot to "Checking the IP License Status" topic.
• Added "IP Version Upgrade Paths" diagram to "Upgrading IP

Cores" topic.
• Updated IP Port Differences Report image in "Troubleshooting IP

or System Upgrade" topic.

2020.09.28 20.3 • Updated GUI screenshot in Introduction.
• Updated "Back-Annotate Optimized Assignments" for support of

pins, clocks, RAMs, and DSPs.

2020.05.01 20.1 • Added note about .qar file requirements to "Design Guidelines
for Component Instances" topic.

2019.09.30 19.3 • Added compilation support for Agilex 7 devices.
• Added "Checking the IP License Status" topic.
• Added details to "Support for the IEEE 1735 Encryption

Standard."
• Added Intel FPGA IP Versioning" topic.
• Added "Disabling Automated Problem Reports" topic.
• Added "Suppressing Messages" topic.

2019.05.13 18.1 • Added archives topic.
• Updated the keyname and added --help information to "Support

for the IEEE 1735 Encryption Standard."

2018.10.24 18.1 • Updated information about obtaining IEEE 1735 Encryption key.

2018.09.24 18.1 • Added screenshot of Quartus Prime Pro Edition GUI.
• Moved information about specifying the target board to

"Specifying the Target Device or Board" in Managing Projects
chapter.

• Retitled "Creating Design Specifications" to "Create a Design
Specification and Test Plan."

• Retitled "Selecting Intellectual Property Cores" to "Plan for
Intellectual Property Cores."

• Retitled "Using Standard Interfaces" to "Plan for Standard
Interfaces." Corrected references to Platform Designer.

• Retitled "Device Selection" to "Plan for the Target Device."
Updated this content to correct Platform Designer names.

• Moved "Setting Pin Assignments" to Managing Projects chapter as
"Generating Pin Assignments for a Target Board."

• Retitled "Estimating Power" to "Plan for Device Power
Consumption." Reorganized this topic into sections for EPE and
Power Analyzer.

• Added link to "Simulator Support, Third-Party Simulation User
Guide

• Retitled "Planning for Device Programming or Configuration" to
"Plan for Device Programming"

• Retitled "Selecting Third-Party EDA Tools" to "Plan for other EDA
Tools."

• Retitled "Planning for On-Chip Debugging Tools" to "Plan for On-
Chip Debugging Tools."

continued...

C. Document Revision History for Quartus Prime Pro Edition User Guide Getting Started

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Retitled Design Planning with the Intel Quartus Prime Software to
Design Planning

• Added information about removing assignments from the qsf file
that point to legacy output files.

• Added statement that the Quartus Prime software installer does
not support spaces in the installation path.

• Added "Intel FPGA IP Best Practices" topic.
• Divided "Introduction to Intel FPGA IP Cores" into separate

chapter of Getting Started User Guide.
• Subdivided "Exporting, Archiving, and Migrating Projects" into

separate sections.
• Described migration of full chip database in "Exporting a Version-

Compatible Compilation Database" topic.
• Described automated .qdb partition export in "Exporting a Design

Partition" topic.
• Added "Viewing Quartus Database File Information" topic.
• Added "Specifying the Target Device or Board" topic.
• Divided "Introduction to Intel FPGA IP Cores" into separate

chapter.
• Moved "IP Core Best Practices" topic to Introduction to Intel FPGA

IP Cores chapter.
• Moved "Factors Affecting Compilation Results" topic to Design

Compilation: Intel Quartus Prime Pro Edition User Guide.

2018.05.07 18.0 • Initial release as separate chapter of Getting Started User Guide.
Separated Migrating to Quartus Prime Pro Edition as independent
chapter in user guide.

• Initial release as separate chapter of Getting Started User Guide.
Separated Design Planning as independent chapter in user guide.

• Initial release as separate chapter of Getting Started User Guide.
Separated Introduction to Intel FPGA IP Cores as independent
chapter in user guide.

• Updated screenshots of IP Catalog and Parameter Editor for latest
IP names.

• Added note about Generate Combined Simulator Setup Scripts
command limitations.

• Added information about generation of simulation files for
Xcelium*

• Initial release as chapter of Getting Started User Guide.
• Revised "Exporting a Design Partition" topic to add Include entity-

bound SDC files for the selected partition option, to add
prerequisite steps, and to remove import step covered in separate
topic.

• Changed title of "Managing Team-Based Designs" to "Exporting,
Archiving, and Migrating Projects" and updated content.

• Changed title of "Migrating Compilation Results Across Software
Versions" to "Exporting the Compilation Database" and updated
content.

• Changed title of "Exporting the Results Database" to "Exporting a
Version-Compatible Design Compilation Database" and updated
content.

• Changed title of "Importing the Results Database" to "Importing a
Version-Compatible Design Compilation Database" and updated
content.

• Changed title of "Cleaning the Project Database" to "Cleaning the
Project Compilation Database."

• Updated screenshots of IP Catalog and Parameter Editor for latest
IP names.

continued...

C. Document Revision History for Quartus Prime Pro Edition User Guide Getting Started

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2017.11.06 17.1 • Described Quartus Prime tool name updates for Platform Designer
(Qsys), Interface Planner (BluePrint), Timing Analyzer
(TimeQuest), Eye Viewer (EyeQ), and Intel Advanced Link
Analyzer (Advanced Link Analyzer).

• Added Verilog HDL Macro example.
• Updated for latest Intel branding conventions.
• Added Verilog HDL Macro example.
• Updated for latest Intel branding conventions.
• Revised product branding for Intel standards.
• Revised topics on Intel FPGA IP Evaluation Mode (formerly

OpenCore).

2017.05.08 17.0 • Removed statement about limitations for safe state machines. The
Compiler supports safe state machines. State machine inference
is enabled by default.

• Added reference to Block-Based Design Flows.
• Removed procedure on manual dynamic synthesis report

generation. The Compiler automatically generates dynamic
synthesis reports when enabled.

• Removed statement about limitations for safe state machines. The
Compiler supports safe state machines. State machine inference
is enabled by default.

• Added note that IP core encryption is supported only in Quartus
Prime Pro Edition.

• Revised product branding for Intel standards.

2016.10.31 16.1 • Implemented Intel rebranding.
• Added reference to Partial Reconfiguration support.
• Added to list of Quartus Prime Standard Edition features

unsupported by Quartus Prime Pro Edition.
• Added topic on Safe State Machine encoding.
• Described unsupported Quartus Prime Standard Edition physical

synthesis options.
• Removed deprecated Per-Stage Compilation (Beta)

Compilation Flow.
• Changed title from "Remove Filling Vectors" to "Remove Unsized

Constant".
• Implemented Intel rebranding.
• Described unsupported Quartus Prime Standard Edition physical

synthesis options.
• Changed title from "Remove Filling Vectors" to "Remove Unsized

Constant".
• Removed references to .qsys file creation during Quartus Prime

Pro Edition stand-alone IP generation.
• Added references to .ip file creation during Quartus Prime Pro

Edition stand-alone IP generation.
• Updated IP Core Generation Output files list and diagram.
• Indicated distinctions between Quartus Prime Pro Edition and

Quartus Prime Standard Edition features.
• Added Support for IP Core Encryption topic.

2016.05.03 16.0 • Removed software beta status and revised feature set.
• Added topic on Safe State Machine encoding.
• Added Generating Dynamic Synthesis Reports.
• Corrected statement about Verilog Compilation Unit.
• Corrected typo in Modify Entity Name Assignments.
• Added description of Fitter Plan, Place and Route stages,

reporting, and optimization.
• Added Per-Stage Compilation (Beta) Compilation Flow.

continued...

C. Document Revision History for Quartus Prime Pro Edition User Guide Getting Started

683463 | 2024.04.01

Quartus Prime Pro Edition User Guide: Getting Started Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Added Platform Designer information.
• Added OpenCL and Signal Tap with routing preservation as unique

Pro Edition features.
• Clarified limitations for multiple Logic Lock instances in the same

region.
• Added topic on Safe State Machine encoding.
• Corrected statement about Verilog Compilation Unit.
• Corrected typo in Modify Entity Name Assignments.
• Clarified limitations for multiple Logic Lock instances in the same

region.

2015.11.02 15.1 • First version of document.

C. Document Revision History for Quartus Prime Pro Edition User Guide Getting Started

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

D. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel FPGA devices, and program CPLD and configuration
devices, via connection with an Intel FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683463 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

D. Quartus Prime Pro Edition User Guides

683463 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Getting Started

135

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Getting%20Started%20(683463%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Pro Edition User
Guide
Platform Designer

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q What is Platform Designer?
A Creating a System with Platform Designer on page 11

Q How do I correct system timing
A Correcting System Timing Issues on page 76

Q How do I debug an IP component interface?
A Preserving Elements for Debugging on page 87

Q How do I run my Tcl scripts in the tool?
A Running System Scripts on page 132

Q How do I create a custom IP component?
A Creating Platform Designer Components on page 633

Q How do I connect conduits together?
A Create a Composed Component on page 198

Q How do I use bridges in a system?
A Using Bridges on page 226

Q Do you have training on Platform Designer?
A Intel FPGA Technical Training: Platform Designer

Online Version

Send Feedback

683609

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://learning.intel.com/Developer/learn/course/external/view/classroom/850/platform-designer
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Creating a System with Platform Designer..11
1.1. Platform Designer Interface Support...12
1.2. Platform Designer System Design Flow... 13
1.3. Creating or Opening a Platform Designer System... 14

1.3.1. Specifying the Target FPGA Device or Board for a System..............................15
1.3.2. Specifying Additional Application Memory..16
1.3.3. Synchronizing IP File References.. 17
1.3.4. Converting Incompatible Components...17

1.4. Using the Board-Aware Flow in Platform Designer...18
1.4.1. Accessing FPGA Design Examples...19
1.4.2. Specifying the Target Board for a Platform Designer System.......................... 19
1.4.3. Generating Board and Preset Files for Existing Systems.................................25

1.5. Viewing a Platform Designer System...29
1.5.1. Viewing the System Hierarchy... 30
1.5.2. Filtering the System View..31
1.5.3. Viewing Clock and Reset Domains.. 33
1.5.4. Viewing System Connections... 36
1.5.5. Viewing Avalon Memory-Mapped Domains in a System..................................37
1.5.6. Viewing the System Schematic.. 38
1.5.7. Customizing the Platform Designer Layout...39
1.5.8. Changing the Platform Designer Font..40

1.6. Adding IP Components to a System..40
1.6.1. Modifying IP Parameters... 42
1.6.2. Applying Preset Parameters for Specific Applications..................................... 43
1.6.3. Creating IP Presets Targeting Specific Boards...45
1.6.4. Applying Presets After Migrating a Board...54
1.6.5. Adding Third-Party IP Components... 58
1.6.6. Specifying IP Component Instantiation Options.. 60
1.6.7. Creating or Opening an IP Core Variant...62

1.7. Connecting System Components..63
1.7.1. Platform Designer 64-Bit Addressing Support...64
1.7.2. Connecting Hosts and Agents.. 65
1.7.3. Connecting NoC IP in Platform Designer..66
1.7.4. Wire-Level Connectivity.. 66

1.8. Specifying Interconnect Parameters..71
1.8.1. Interconnect Parameters...73
1.8.2. Previewing the System Interconnect...74

1.9. Correcting Platform Designer System Timing Issues... 76
1.10. Specifying Signal and Interface Boundary Requirements..77

1.10.1. Interface Requirements Tab Fields.. 78
1.10.2. Editing Exported Interface Signal Names... 78

1.11. Configuring Platform Designer System Security.. 79
1.11.1. System Security Options... 80
1.11.2. Specifying a Default Avalon Agent or AXI Subordinate.................................80
1.11.3. Accessing Undefined Memory Regions... 82

1.12. Upgrading Outdated IP Components in Platform Designer.. 83
1.13. Synchronizing System Component Information.. 84

Contents

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.13.1. System Info Tab Fields..86
1.14. Validating System Integrity... 86

1.14.1. Validating the System Integrity of Individual Components............................87
1.15. Preserving System Elements for Debug... 87
1.16. Generating a Platform Designer System.. 89

1.16.1. Generation Dialog Box Options...90
1.16.2. Specifying the Generation ID... 91
1.16.3. Disabling or Enabling Parallel IP Generation... 92
1.16.4. Files Generated for Platform Designer Systems...93
1.16.5. Generating System Testbench Files...96
1.16.6. Generating Example Designs for IP Components...98
1.16.7. Incremental System Generation Example.. 99
1.16.8. Generating the HPS IP Component System View Description File................100
1.16.9. Generating Header Files for Host Components.. 100

1.17. Generating Simulation Files for Platform Designer Systems and IP Variants.............. 101
1.17.1. Using the Qrun Flow... 103
1.17.2. Adding Assertion Monitors for Simulation... 106

1.18. Adding a System to an Quartus Prime Project...107
1.19. Managing Hierarchical Platform Designer Systems...108

1.19.1. Adding a Subsystem to a Platform Designer System..................................108
1.19.2. Viewing and Traversing Subsystem Contents.. 109
1.19.3. Editing a Subsystem... 110
1.19.4. Saving a Subsystem... 111
1.19.5. Changing a Component's Hierarchy Level...111

1.20. Saving and Archiving Platform Designer Systems..112
1.20.1. Saving Platform Designer Systems..112
1.20.2. Archiving Platform Designer Systems.. 113
1.20.3. Including Platform Designer Systems in Project Archives............................115

1.21. Sharing Platform Designer Packaged Subsystems... 118
1.21.1. User Personas for Packaged Subsystems..119
1.21.2. Terminology for Packaged Subsystems.. 119
1.21.3. Creating a New Packaged Subsystem.. 120
1.21.4. Specifying Additional Packaged Subsystem Files....................................... 121
1.21.5. Modifying the Packaged Subsystem Script..122
1.21.6. Instantiating a Packaged Subsystem... 124
1.21.7. Revising a Packaged Subsystem... 126
1.21.8. New Packaged Subsystem Dialog Box Options and Controls........................128

1.22. Comparing Platform Designer Systems and IP components.................................... 129
1.22.1. Using the System Diff Tool...129

1.23. Running System Scripts.. 132
1.24. Creating a System with Platform Designer Revision History.................................... 134

2. Creating a Board Support Package with BSP Editor...139
2.1. Creating a BSP from Platform Designer... 140

2.1.1. Create New BSP Dialog Box... 143
2.2. Opening a BSP from Platform Designer... 144
2.3. Saving a BSP from Platform Designer..144
2.4. Exporting a BSP as Tcl from Platform Designer .. 144
2.5. BSP Editor GUI.. 145

2.5.1. Main Tab... 146
2.5.2. BSP Software Packages Tab... 147

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.3. BSP Drivers Tab... 147
2.5.4. BSP Linker Script Tab..148
2.5.5. BSP Enable File Generation Tab.. 150
2.5.6. BSP Target Directory Tab...151
2.5.7. Messages Tabs..151

2.6. Creating a Board Support Package with BSP Editor Revision History.......................... 152

3. Creating Platform Designer Components.. 153
3.1. Platform Designer Components.. 153

3.1.1. Platform Designer Interface Support... 153
3.1.2. Component Structure... 154
3.1.3. Component File Organization... 155
3.1.4. Component Versions...156

3.2. Design Phases of an IP Component...157
3.3. Creating IP Components in the Component Editor...158

3.3.1. Save an IP Component and Create the _hw.tcl File..................................... 160
3.3.2. Edit an IP Component with the Platform Designer Component Editor............. 160
3.3.3. Specify IP Component Type Information.. 160
3.3.4. Create an HDL File in the Platform Designer Component Editor.....................162
3.3.5. Defining HDL Parameters in _hw.tcl.. 163
3.3.6. Declaring SystemVerilog Interfaces in _hw.tcl.. 164
3.3.7. Create an HDL File Using a Template in the Platform Designer Component

Editor... 166
3.3.8. Specify Synthesis and Simulation Files in the Platform Designer

Component Editor.. 167
3.3.9. Add Signals and Interfaces in the Platform Designer Component Editor..........171
3.3.10. Specify Parameters in the Platform Designer Component Editor.................. 172

3.4. Creating Generic Components in a System.. 180
3.4.1. Adding Generic HDL Component Parameters ... 182
3.4.2. Adding Generic Blackbox Component Parameters..183
3.4.3. Adding Generic Component Interfaces and Signals......................................184
3.4.4. Creating a System Template for a Generic Component................................ 188
3.4.5. Exporting a Generic Component... 189

3.5. Exporting HDL Parameters to a System... 189
3.5.1. HDL Parameters Tab Settings and Controls.. 192

3.6. Scripting Wire-Level Expressions..193
3.7. Control Interfaces Dynamically with an Elaboration Callback.................................... 194
3.8. Control File Generation Dynamically with Parameters and a Fileset Callback............... 194
3.9. Create a Composed Component or Subsystem... 196
3.10. Add Component Instances to a Static or Generated Component..............................198

3.10.1. Static IP Components..198
3.10.2. Generated Components...199
3.10.3. Design Guidelines for Adding Component Instances.................................. 202

3.11. Add IP RTL Core Generated from the Intel oneAPI Base Toolkit............................... 202
3.12. Creating Platform Designer Components Revision History.......................................203

4. Optimizing Platform Designer System Performance..205
4.1. Designing with Avalon and AXI Interfaces..205

4.1.1. Designing Streaming Components.. 206
4.1.2. Designing Memory-Mapped Components... 206

4.2. Using Hierarchy in Systems... 207
4.3. Using Concurrency in Memory-Mapped Systems... 210

Contents

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.1. Implementing Concurrency With Multiple Hosts.. 211
4.3.2. Implementing Concurrency With Multiple Agents.. 212
4.3.3. Implementing Concurrency with DMA Engines..213

4.4. Inserting Pipeline Stages to Increase System Frequency..214
4.5. Using Bridges.. 215

4.5.1. Using Bridges to Increase System Frequency... 215
4.5.2. Using Bridges to Minimize Design Logic... 218
4.5.3. Using Bridges to Minimize Adapter Logic..219
4.5.4. Considering the Effects of Using Bridges..220

4.6. Increasing Transfer Throughput..226
4.6.1. Using Pipelined Transfers...227
4.6.2. Arbitration Shares and Bursts.. 228

4.7. Reducing Logic Utilization..232
4.7.1. Minimizing Interconnect Logic to Reduce Logic Unitization............................232
4.7.2. Minimizing Arbitration Logic by Consolidating Multiple Interfaces.................. 233
4.7.3. Reducing Logic Utilization With Multiple Clock Domains................................235
4.7.4. Duration of Transfers Crossing Clock Domains ... 237

4.8. Reducing Power Consumption.. 237
4.8.1. Reducing Power Consumption With Multiple Clock Domains..........................237
4.8.2. Reducing Power Consumption by Minimizing Toggle Rates............................240
4.8.3. Reducing Power Consumption by Disabling Logic.. 242

4.9. Reset Polarity and Synchronization in Platform Designer..243
4.10. Optimizing Platform Designer System Performance Design Examples.......................246

4.10.1. Avalon Pipelined Read Host Example... 246
4.10.2. Multiplexer Examples.. 248

4.11. Optimizing Platform Designer System Performance Revision History........................ 250

5. Platform Designer Interconnect..251
5.1. Memory-Mapped Interfaces... 252

5.1.1. Platform Designer Packet Format..253
5.1.2. Interconnect Domains...256
5.1.3. Avalon Host and AXI Manager Network Interfaces.......................................258
5.1.4. Avalon Agent and AXI Subordinate Network Interfaces................................ 261
5.1.5. Arbitration...264
5.1.6. Memory-Mapped Arbiter..269
5.1.7. Datapath Multiplexing Logic...270
5.1.8. Width Adaptation... 271
5.1.9. Burst Adapter.. 273
5.1.10. Waitrequest Allowance Adapter.. 275
5.1.11. Read and Write Responses...276
5.1.12. Platform Designer Address Decoding... 277

5.2. Avalon Streaming Interfaces..278
5.2.1. Avalon Streaming Adapters..280

5.3. Avalon Streaming Credit Interfaces...288
5.3.1. Terms and Concepts... 288
5.3.2. Avalon Streaming Credit Adapters.. 289
5.3.3. Avalon Streaming Credit Multiplexer... 300
5.3.4. Avalon Streaming Credit Demultiplexer... 302
5.3.5. Avalon Streaming Credit Pipeline Bridge.. 305

5.4. Interrupt Interfaces..307
5.4.1. Individual Requests IRQ Scheme.. 307

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.2. Assigning IRQs in Platform Designer... 308
5.5. Clock Interfaces...310

5.5.1. (High Speed Serial Interface) HSSI Clock Interfaces................................... 311
5.6. Reset Interfaces...316

5.6.1. Single Global Reset Signal Implemented by Platform Designer......................316
5.6.2. Reset Controller... 317
5.6.3. Reset Bridge..317
5.6.4. Reset Sequencer.. 318

5.7. Conduits... 328
5.8. Interconnect Pipelining... 328

5.8.1. Add Pipeline Stages to the Interconnect Schematic..................................... 330
5.9. Error Correction Coding (ECC) in Platform Designer Interconnect..............................331
5.10. AMBA 3 AXI Protocol Specification Support (version 1.0)....................................... 332

5.10.1. Channels...332
5.10.2. Cache Support... 333
5.10.3. Security Support.. 334
5.10.4. Atomic Accesses...334
5.10.5. Response Signaling...334
5.10.6. Ordering Model.. 334
5.10.7. Data Buses..335
5.10.8. Unaligned Address Commands... 335
5.10.9. Avalon and AXI Transaction Support..335

5.11. AMBA 3 APB Protocol Specification Support (version 1.0)....................................... 336
5.11.1. Bridges... 336
5.11.2. Burst Adaptation.. 337
5.11.3. Width Adaptation..337
5.11.4. Error Response.. 337

5.12. AMBA 4 AXI Memory-Mapped Interface Support (version 2.0).................................337
5.12.1. Burst Support.. 337
5.12.2. QoS..338
5.12.3. Regions...338
5.12.4. Write Response Dependency.. 338
5.12.5. AWCACHE and ARCACHE... 338
5.12.6. Width Adaptation and Data Packing in Platform Designer........................... 338
5.12.7. Ordering Model.. 339
5.12.8. Read and Write Allocate.. 339
5.12.9. Locked Transactions..339
5.12.10. Memory Types..339
5.12.11. Mismatched Attributes...339
5.12.12. Signals..339

5.13. AMBA 4 AXI Streaming Interface Support (version 1.0)... 340
5.13.1. Connection Points...340
5.13.2. Adaptation...341

5.14. AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)................................. 341
5.14.1. AMBA 4 AXI-Lite Signals..341
5.14.2. AMBA 4 AXI-Lite Optional Port Support and Interconnect........................... 342
5.14.3. AMBA 4 AXI-Lite Bus Width..342
5.14.4. AMBA 4 AXI-Lite Outstanding Transactions...342
5.14.5. AMBA 4 AXI-Lite IDs... 342
5.14.6. Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-Lite...........342
5.14.7. AMBA 4 AXI-Lite Response Merging...343

Contents

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.15. Port Roles (Interface Signal Types)... 343
5.15.1. AXI Manager Interface Signal Types.. 343
5.15.2. AXI Subordinate Interface Signal Types... 344
5.15.3. AMBA 4 AXI Manager Interface Signal Types.. 345
5.15.4. AMBA 4 AXI Subordinate Interface Signal Types....................................... 347
5.15.5. AMBA 4 AXI-Stream Manager and Subordinate Interface Signal Types......... 348
5.15.6. AMBA 4 AXI-Lite Signal Support and Limitations....................................... 348
5.15.7. APB Interface Signal Types.. 350
5.15.8. Avalon Memory Mapped Interface Signal Roles... 350
5.15.9. Avalon Streaming Interface Signal Roles..354
5.15.10. Avalon Streaming Credit Interface Signal Roles.......................................355
5.15.11. Avalon Streaming Credit User Signals..359
5.15.12. Avalon Clock Source Signal Roles..361
5.15.13. Avalon Clock Sink Signal Roles... 361
5.15.14. Avalon Conduit Signal Roles... 361
5.15.15. Avalon Tristate Conduit Signal Roles.. 361
5.15.16. Avalon Tri-State Agent Interface Signal Types...362
5.15.17. Avalon Interrupt Sender Signal Roles...364
5.15.18. Avalon Interrupt Receiver Signal Roles...364

5.16. Platform Designer Interconnect Revision History...364

6. Platform Designer System Design Components...367
6.1. Bridges...367

6.1.1. Clock Bridge Intel FPGA IP...368
6.1.2. Avalon Memory Mapped Clock Crossing Bridge Intel FPGA IP........................369
6.1.3. Avalon Memory Mapped Pipeline Bridge Intel FPGA IP................................. 371
6.1.4. Avalon Memory Mapped Unaligned Burst Expansion Bridge Intel FPGA IP....... 372
6.1.5. Bridges Between Avalon and AXI Interfaces... 375
6.1.6. AXI Bridge Intel FPGA IP... 376
6.1.7. AXI Timeout Bridge Intel FPGA IP...381
6.1.8. Address Span Extender Intel FPGA IP..384

6.2. Error Response Slave Intel FPGA IP.. 390
6.2.1. Error Response Slave Parameters... 392
6.2.2. Error Response Slave CSR Registers... 393
6.2.3. Designating a Default Agent.. 396

6.3. Tri-State Components... 396
6.3.1. Generic Tri-State Controller Intel FPGA IP.. 398
6.3.2. Tri-State Conduit Pin Sharer Intel FPGA IP... 399
6.3.3. Tri-State Conduit Bridge Intel FPGA IP...399

6.4. Avalon Data Pattern Generator and Checker Intel FPGA IP....................................... 400
6.4.1. Avalon Data Pattern Generator Intel FPGA IP... 400
6.4.2. Avalon Data Pattern Checker Intel FPGA IP.. 402
6.4.3. Avalon Data Pattern Generator and Checker IP Software Programming Model. 403
6.4.4. Avalon Data Pattern Generator IP API... 408
6.4.5. Avalon Data Pattern Checker IP API.. 413

6.5. Avalon Streaming Splitter Intel FPGA IP.. 419
6.5.1. Avalon Streaming Splitter Intel FPGA IP Backpressure.................................420
6.5.2. Avalon Streaming Splitter Intel FPGA IP Interfaces......................................420
6.5.3. Avalon Streaming Splitter Intel FPGA IP Parameters....................................421

6.6. Avalon Streaming Delay Intel FPGA IP...421
6.6.1. Avalon Streaming Delay Intel FPGA IP Reset Signal.....................................422

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.6.2. Avalon Streaming Delay Intel FPGA IP Interfaces..422
6.6.3. Avalon Streaming Delay Intel FPGA IP Parameters...................................... 423

6.7. Avalon Streaming Round Robin Scheduler Intel FPGA IP.. 423
6.7.1. Avalon Streaming Round Robin Scheduler IP Almost-Full Status Interface...... 424
6.7.2. Avalon Streaming Round Robin Scheduler IP Request Interface.................... 424
6.7.3. Avalon Streaming Round Robin Scheduler IP Operation............................... 424
6.7.4. Avalon Streaming Round Robin Scheduler IP Parameters............................. 425

6.8. Avalon Packets to Transactions Converter Intel FPGA IP...425
6.8.1. Avalon Packets to Transactions Converter IP Interfaces................................426
6.8.2. Avalon Packets to Transactions Converter IP Operation................................ 426

6.9. Avalon Streaming Pipeline Stage Intel FPGA IP...428
6.10. Avalon Streaming Multiplexer and Demultiplexer Intel FPGA IP............................... 429

6.10.1. Avalon Streaming Multiplexer and Demultiplexer Software Programming
Model... 430

6.10.2. Avalon Streaming Multiplexer Intel FPGA IP..430
6.10.3. Avalon Streaming Demultiplexer Intel FPGA IP... 432

6.11. Avalon Streaming Single-Clock and Dual-Clock FIFO Intel FPGA IP.......................... 433
6.11.1. Interfaces Implemented in FIFO Cores.. 434
6.11.2. Avalon Streaming FIFO IP Operating Modes... 435
6.11.3. Avalon Streaming FIFO IP Buffer Fill Level..436
6.11.4. Almost-Full and Almost-Empty Thresholds to Prevent Overflow and

Underflow... 436
6.11.5. Avalon Streaming Single Clock and Dual Clock FIFO IP Parameters..............436
6.11.6. Avalon Streaming Single-Clock FIFO IP Registers...................................... 438

6.12. Platform Designer System Design Components Revision History..............................439

7. Platform Designer Command-Line Utilities..441
7.1. Run the Platform Designer Editor with qsys-edit... 441
7.2. Scripting IP Core Generation..444

7.2.1. qsys-generate Command-Line Options.. 444
7.3. Board-Aware Flow Scripting Support... 447
7.4. Display Available IP Components with ip-catalog.. 448
7.5. Create an .ipx File with ip-make-ipx..449
7.6. Generate Simulation Scripts.. 450
7.7. Generate a Platform Designer System with qsys-script.. 451
7.8. Parameterizing an Instantiated IP Core after save_system Command........................ 453
7.9. Validate the Generic Components in a System with qsys-validate..............................455
7.10. Generate an IP Component or Platform Designer System with quartus_ipgenerate.... 455
7.11. Generate an IP Variation File with ip-deploy... 457
7.12. Archive and Extract Platform Designer Systems with qsys-archive...........................457
7.13. Apply Presets to a New Board.. 459
7.14. Platform Designer Scripting Command Reference..460

7.14.1. System... 461
7.14.2. Subsystems...475
7.14.3. Domains and Interfaces.. 483
7.14.4. Instances.. 488
7.14.5. Instantiations...521
7.14.6. Components.. 560
7.14.7. Connections...586
7.14.8. Top-level Exports..598
7.14.9. Validation..612

Contents

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10. Miscellaneous...623
7.14.11. Wire-Level Connection Commands.. 633

7.15. Platform Designer Scripting Property Reference.. 637
7.15.1. Connection Properties... 638
7.15.2. Design Environment Type Properties... 639
7.15.3. Direction Properties.. 640
7.15.4. Element Properties... 641
7.15.5. Instance Properties...642
7.15.6. Interface Properties.. 643
7.15.7. Message Levels Properties... 644
7.15.8. Module Properties...645
7.15.9. Parameter Properties.. 646
7.15.10. Parameter Status Properties...648
7.15.11. Parameter Type Properties... 649
7.15.12. Port Properties... 650
7.15.13. Project Properties... 651
7.15.14. System Info Type Properties...652
7.15.15. Units Properties..654
7.15.16. Validation Properties... 655
7.15.17. Interface Direction..656
7.15.18. File Set Kind.. 657
7.15.19. Access Type... 658
7.15.20. Instantiation HDL File Properties...659
7.15.21. Instantiation Interface Duplicate Type..660
7.15.22. Instantiation Interface Properties..661
7.15.23. Instantiation Properties... 662
7.15.25. VHDL Type...664

7.16. Platform Designer Command-Line Utilities Revision History.................................... 664

8. Component Interface Tcl Reference.. 666
8.1. Platform Designer _hw.tcl Command Reference..666

8.1.1. Interfaces and Ports... 667
8.1.2. Parameters..685
8.1.3. Interconnect Parameters... 694
8.1.4. Display Items.. 698
8.1.5. Module Definition... 705
8.1.6. Composition.. 717
8.1.7. Fileset Generation.. 737
8.1.8. Miscellaneous.. 748
8.1.9. SystemVerilog Interface Commands..753
8.1.10. Wire-Level Expression Commands.. 759

8.2. Platform Designer _hw.tcl Property Reference.. 763
8.2.1. Script Language Properties..764
8.2.2. Interface Properties..765
8.2.3. SystemVerilog Interface Properties... 765
8.2.4. Instance Properties.. 767
8.2.5. Parameter Properties.. 768
8.2.6. Parameter Type Properties...770
8.2.7. Parameter Status Properties.. 771
8.2.8. Port Properties...772
8.2.9. Direction Properties.. 774

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.10. Display Item Properties... 775
8.2.11. Display Item Kind Properties.. 776
8.2.12. Display Hint Properties..777
8.2.13. Module Properties...778
8.2.14. Fileset Properties..780
8.2.15. Fileset Kind Properties...781
8.2.16. Callback Properties... 782
8.2.17. File Attribute Properties...783
8.2.18. File Kind Properties...784
8.2.19. File Source Properties... 785
8.2.20. Simulator Properties... 786
8.2.21. Port VHDL Type Properties... 787
8.2.22. System Info Type Properties.. 788
8.2.23. Design Environment Type Properties... 790
8.2.24. Units Properties..791
8.2.25. Operating System Properties..792
8.2.26. Quartus.ini Type Properties.. 793

8.3. Component Interface Tcl Reference Revision History... 794

9. Quartus Prime Pro Edition User Guide: Platform Designer Document Archives........... 796

A. Quartus Prime Pro Edition User Guides...797

Contents

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Creating a System with Platform Designer
The Quartus® Prime software includes the Platform Designer system integration tool.
Platform Designer simplifies the task of defining and integrating custom IP
components (IP cores) into your FPGA design.

Platform Designer automatically creates interconnect logic from high-level connectivity
that you specify. The interconnect automation eliminates the time-consuming task of
specifying system-level HDL connections.

Figure 1. Platform Designer GUI

System View Tab - View Hierarchy and Make Connections

IP Catalog - Parameterize and Instantiate IP

Filter Tab - Filter Display in System View

System and Generation Messages

Platform Designer allows you to specify interface requirements and integrate IP
components within a graphical representation of the system. The Quartus Prime
software installation includes the Intel FPGA IP library available from the IP Catalog in
Platform Designer.

You can integrate optimized and verified Intel FPGA IP cores into a design to shorten
design cycles and maximize performance. Platform Designer also supports integration
of IP cores from third-parties, or custom components that you define.

683609 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Platform Designer supports a hierarchical framework that offers fast response times
for interconnecting large systems and blackbox entities. Platform Designer supports a
variety of design entry methods, such as register transfer level (RTL) and schematic
entry. Platform Designer supports the creation of your own custom components, as
well as generic components that define only the interface and signal connections to
the rest of the system.

Platform Designer provides support for the following:

• Create and reuse components—define and reuse custom parameterizable
components in a Hardware Component Definition File (_hw.tcl) that describes
and packages IP components.

• Define generic IP components—instantiate generic IP components without an HDL
implementation.

• Incremental generation—optimize and generate IP components incrementally.

• Avalon® to AXI interconnect—Platform Designer generates appropriate types of
interconnect logic to handle protocol differences.

• Hierarchical system support—generates a separate .ip file that isolates the
system from the IP component parameterization. Change parameters of a single
IP component without regeneration of other IP components.

• Command-line support—optionally use command-line utilities and scripts to
perform functions available in the Platform Designer GUI.

• Up to 64-bit addressing.

• Optimization of interconnect and pipelining within the system and auto-adaptation
of data widths and burst characteristics.

• Inter-operation between standard protocols.

1.1. Platform Designer Interface Support

Platform Designer is most effective when you use standard interfaces available in the
IP Catalog to design custom IP. Standard interfaces operate efficiently with Intel FPGA
IP components, and you can take advantage of the bus functional models (BFMs),
monitors, and other verification IP that the IP Catalog provides.

Platform Designer also supports connections between Avalon and AXI interfaces by
generating the interconnect logic. This logic enables you to handle the protocol
difference. Platform Designer creates the interconnect logic by converting all the
protocols to a proprietary packet format. Then, the tool routes the packet through
network switches to the appropriate agents. Here, the packet converts to the agent's
protocol.(1)

Platform Designer supports the following interface specifications:

• Intel FPGA Avalon Memory-Mapped and Streaming

• Arm* AMBA* 3 AXI (version 1.0)

• Arm AMBA 4 AXI (version 2.0)

(1) This document now refers to the Avalon "host" and "agent," and the AXI "manager" and
"subordinate," to replace formerly used terms. Refer to the current AMBA AXI and ACE Protocol
Specification for the latest AMBA AXI and ACE protocol terminology.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Arm AMBA 4 AXI-Lite (version 2.0)

• Arm AMBA 4 AXI-Stream (version 1.0)

• Arm AMBA 3 APB (version 1.0)

IP components (IP Cores) can have any number of interfaces in any combination. Each
interface represents a set of signals that you can connect within a Platform Designer
system, or export outside of a Platform Designer system.

Platform Designer IP components can include the following interface types:

Table 1. IP Component Interface Types

Interface Type Description

Memory-Mapped Connects memory-referencing host devices with agent memory devices. Host devices can be
processors and DMAs, while agent memory devices can be RAMs, ROMs, and control registers.
Data transfers between Avalon Memory Mapped host and agent may be uni-directional (read
only or write only), or bi-directional (read and write).

Streaming Connects Avalon Streaming sources and sinks that stream unidirectional data, as well as high-
bandwidth, low-latency IP components. Streaming creates datapaths for unidirectional traffic,
including multichannel streams, packets, and DSP data. The Avalon interconnect is flexible and
can implement on-chip interfaces for industry standard telecommunications and data
communications cores, such as Ethernet, Interlaken, and video. You can define bus widths,
packets, and error conditions.

Interrupts Connects interrupt senders to interrupt receivers. Platform Designer supports individual,
single-bit interrupt requests (IRQs). In the event that multiple senders assert their IRQs
simultaneously, the receiver logic (typically under software control) determines which IRQ has
highest priority, then responds appropriately.

Clocks Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source
connects internally to more than one source.

Resets Connects reset sources with reset input interfaces. If your system requires a particular
positive-edge or negative-edge synchronized reset, Platform Designer inserts a reset controller
to create the appropriate reset signal. If you design a system with multiple reset inputs, the
reset controller ORs all reset inputs and generates a single reset output.

Conduits Connects point-to-point conduit interfaces, or represent signals that you export from the
Platform Designer system. Platform Designer uses conduits for component I/O signals that are
not part of any supported standard interface. You can connect two conduits directly within a
Platform Designer system as a point-to-point connection. Alternatively, you can export conduit
interfaces and bring the interfaces to the top-level of the system as top-level system I/O. You
can use conduits to connect to external devices, for example external DDR SDRAM memory,
and to FPGA logic defined outside of the Platform Designer system.

Related Information

Exporting HDL Parameters to a System on page 189

1.2. Platform Designer System Design Flow

You can use the Platform Designer GUI to quickly create and customize a Platform
Designer system for integration with an Quartus Prime project. Alternatively, you can
perform many of the functions available in the Platform Designer GUI at the
command-line, as Platform Designer Command-Line Utilities on page 441 describes.

When you create a system in the GUI, Platform Designer creates a .qsys file that
represents the system in your Quartus Prime software project.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Platform Designer System Design Flow

No

Yes

Unit-Level
Simulation

Debug Design

Expected
Results?

Complete System
Connections and

Define Memory Map

1

2

3

4

 Connection or
Instantiation

Errors?

Update System
 Information

No

Debug Design

Run System-Level
Simulation

Generate
System

Yes No Modify Design or
Constraints

System
Implementation

Complete

Download .sof
to FPGA

7

8

9

 Validate SystemYes

No

5

System Info
Match?

No Yes
6

Yes

Yes

Create System and
Add Components

Expected
Results?

Constrain, Compile,
Generate .sof

Expected
Results?

Add System to
Project

Platform Designer Quartus® Prime Software

10

1.3. Creating or Opening a Platform Designer System

You can launch Platform Designer from the Quartus Prime software to create or open a
Platform Designer system.

When you create or open a system, Platform Designer requires that you specify the
Quartus Prime project to contain this system. If this project does not yet exist, you
can define a new project from within Platform Designer. Alternatively, you can specify
an existing project. When you launch Platform Designer with an Quartus Prime project
open, Platform Designer automatically specifies that project by default. The target
device or board for the system reflects the project settings by default. Refer to Using
the Board-Aware Flow in Platform Designer on page 18.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to create or open a Platform Designer system:

1. In the Quartus Prime software, click File ➤ Open Project to open the Quartus
Prime project that you want to include the Platform Designer system. You can
optionally skip this step and launch Platform Designer in view-only mode without
opening a project.

2. Click Tools ➤ Platform Designer. Platform Designer launches and displays the
Open Project dialog box automatically.

3. Specify the Quartus project. If you have a project open, this project name
appears automatically. Otherwise, browse for an existing project, or click the
Create New Quartus Project button and specify a new project name. Selecting
None for Quartus project opens Platform Designer in view-only mode.

Figure 3. System Tab of Open System Dialog Box

Create New Platform
Designer System Button

4. Select the Platform Designer system, or click the Create New Platform
Designer System button and specify the name of a new system. Optionally
select a specific revision of your project, or click the Create New Revision button
and define a new project revision.

5. Change the project associated with a Platform Designer system at any time by
clicking File ➤ Select Quartus Project in Platform Designer.

1.3.1. Specifying the Target FPGA Device or Board for a System

When you create a new Platform Designer system, the system settings automatically
reflect the target device or board that the current Quartus Prime project targets. The
Platform Designer system generation output is specific to the target Intel® FPGA
Device family or Board specified for the project and system. The available IP
components, parameters, and output options for your system vary according to the
target Device family or Board.

Note: The System Settings tab now replaces the Device Family tab in Platform Designer.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. System Settings Tab in Platform Designer

Specifies the Target Device for the
Platform Designer System

After creating a system, you can modify the target Device family or Board setting
for your system on the Platform Designer System Settings tab. If you specify a
target Device family or Board that is different from the current project settings,
Platform Designer updates the target device family or board for the project to match
the Device family or Board specification. Platform Designer prompts you to upgrade
any IP components that are incompatible with the Device family or Board that you
specify.

Note: To get started quickly with the board-aware flow, refer to Using the Board-Aware Flow
in Platform Designer on page 18.

1.3.2. Specifying Additional Application Memory

If Platform Designer requires more than the default memory to run efficiently, you can
increase the amount of application memory.

• From within the Quartus Prime software, increase memory for your Platform
Designer system, by clicking Tools ➤ Options ➤ IP Settings, and then
specifying the amount of memory with the Maximum Platform Designer
memory usage option.

• From the command-line, you can add an option to increase the memory. For
example, the following qsys-edit command allows you to open Platform
Designer with 2 gigabytes of memory.

Figure 5. Specifying Additional Application Memory for Platform Designer

qsys-edit --jvm-max-heap-size=2g

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.3. Synchronizing IP File References

When you open a system containing IP components, Platform Designer confirms that
the list of IP files in your Platform Designer system matches the list of IP files included
in the corresponding Quartus Prime project.

The IP Synchronization Result dialog box automatically displays any discrepancies
between these IP file references in the system.

To manually start a check for IP reference mismatches between the system and
corresponding Quartus Prime project:

1. In Platform Designer, click File ➤ Synchronize IP File References.

2. View the results of the synchronization. Platform Designer identifies the following
types of mismatches with the IP synchronization:

Table 2. IP Synchronization Results

Mismatch Type Description

Duplicate IP files The IP files references in the Platform Designer system and the associated Quartus
Prime project match. These IP files contain the same name, but are present in
different locations. In such cases, the IP files referenced in the Quartus Prime project
takes precedence. Platform Designer replaces the IP file reference in the system with
the one in the Quartus Prime project during compilation.
Note: If the Quartus Prime project contains more than one IP of the same file

name, Platform Designer retains the first instance and removes all other
occurrences of the IP file with the specific name.

Missing IP files Lists the IP file references missing from Platform Designer system and the
corresponding Quartus Prime project. In such cases, Platform Designer allows you to
specify the active IP file.

Missing Platform Designer IP
files

Lists the IP file references missing from your Platform Designer system that the
Quartus Prime project references. If Platform Designer locates a valid reference in
the Quartus Prime project, it replaces the missing reference in the Platform Designer
system with IP file reference from the Quartus Prime project.

Missing Quartus IP files Lists the IP file references missing from your Quartus Prime project that the Platform
Designer system references. Platform Designer adds the missing IP file reference to
the Quartus Prime project. If the project's .qsf file already contains reference to the
missing IP file, but the file cannot be located in the specified path, Platform Designer
removes the reference in the .qsf file, and adds the reference to the IP file in the
Platform Designer system.

1.3.4. Converting Incompatible Components

If you open a Platform Designer system with incompatible components, Platform
Designer prompts you to convert these components to the current Platform Designer
format. On conversion, the Platform Designer Conversion Results dialog box
appears, listing all the converted system and IP source files.

Platform Designer stores the converted .ip files inside an ip folder, relative to the
Platform Designer system file (.qsys) location. Platform Designer prefixes the system
name to the .ip file name. Platform Designer automatically adds these converted files
to the associated Quartus Prime project. Ensure that you maintain these .ip files,
along with your system files.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4. Using the Board-Aware Flow in Platform Designer

Platform Designer allows you to create a system that targets a specific development
board, rather than only targeting a specific FPGA device. When you target a specific
development board, Platform Designer is aware of the target board (board-aware)
which simplifies the IP parameterization, pin assignments, and exporting interfaces for
the system.

The board-aware flow accelerates the process of appropriately configuring, connecting,
and validating IP for the target board by using IP presets together with a board
definition file that specifies the details of a target board. You can use (and reuse) the
board definition file and IP presets to automatically include the appropriate IP pin
assignments, parameters, and exported interfaces for the target development board
during system generation.

To use the board definition file and IP presets together, you first specify the board
information in a board file (_board.xml), and then apply IP presets that are
appropriate for the specific development board. IP preset files specify the list of valid
parameters and pin assignments that are appropriate for your target board of choice.
You can also define your own custom IP presets and board files. When you generate
the IP or system using this board-aware flow, Platform Designer performs the
following. Refer to Creating IP Presets Targeting Specific Boards on page 45 for
details.

• Presets appropriate IP parameters for the target board.

• Exports pin assignment to a .qip file read during design compilation.

• Exports the appropriate interfaces for the board.

In the FPGA system design flow, different engineers often handle specific steps of
development. For example, a board engineer often creates the board definition file. An
IP designer may create the board presets for specific IP. A system designer can use
the board file and IP presets to perform design entry. At each stage, you can share the
board file and IP presets to reduce any chance of configuration errors from hand-off
between developers or projects.

Figure 6. Board-Aware Flow Typical Tasks and Roles

Instantiates IP
Into the

Platform Designer
System

Selects Target
Board to Create
New Platform

Designer System

Adds Board
File Paths to

Platform Designer
Search Paths

Creates Board
XML Files

System Designer System Designer System Designer Board Designer

Applies Board
Preset for Each
IP in the System

Auto-Exports
Interfaces with
Pin Constraints

Generates HDL
Exports Pin

Assignment Info
to QIP File

Compiles Project

and Compiler
Implements the
QIP Assignments

Platform Designer
(Tool)

System Designer

Creates Board
Preset for
Specific IP

IP Designer Platform Designer
(Tool)

Platform Designer
(Tool)

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The board-aware flow helps to ensure the proper hand-off, consistency, and reuse of
configuration options across multiple projects, developers, and boards.

Related Information

• AN 988: Using the Board-Aware Flow in the Intel Quartus Prime Pro Edition
Software

• Board-Aware Flow Scripting Support on page 447

1.4.1. Accessing FPGA Design Examples

You can optionally base your design project on a pre-verified FPGA design example
that targets a specific FPGA board or development kit, or you can start with an empty
project. Access available design examples using any of the following methods:

• Pre-installed design examples—you can immediately access the design
examples that install along with the Quartus Prime software installation at:
<quartus>\acds\quartus\common\board_designs.

• Online design examples—you can access design examples hosted online, which
include designs from the Intel FPGA Design Store.

• Downloaded design examples—you can access previously downloaded design
examples, or any design example that you store in a local drive, under
downloaded design examples.

1.4.2. Specifying the Target Board for a Platform Designer System

You can specify a target board when you setup any Quartus Prime project. By default,
Platform Designer automatically inherits the target board information from the
currently open Quartus Prime project.

Specifying the target board for the system, rather than just specifying a target FPGA
device, helps to ensure the appropriate IP parameterization, pin assignments, and
export of interfaces for the system.

Use any of these methods to specify a target board for the project:

• New Project Wizard (File ➤ New Project Wizard).

• Quartus Prime Home page, click Open Example Project icon.

• Click File ➤ Open Example Project.

• Board tab of the Device dialog Box (Assignments ➤ Device ➤ Board).

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

19

https://www.intel.com/content/www/us/en/docs/programmable/757339.html
https://www.intel.com/content/www/us/en/docs/programmable/757339.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/design-store.html?s=Newest
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Board Tab of Device Dialog Box

1.4.2.1. Changing the Target Board for a Platform Designer System

After creating or opening a system, you can use any of the following methods to
change the target board for your system:

Figure 8. Change the Target Board in Platform Designer System Settings

Click System ➤ System Settings in Platform Designer to change the target board at
any time.

Or
In Platform Designer's IP Catalog, click the Board tab, then select the target board in
the list and click Set. The board name appears in bold when set as the target board.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Changing the Target Board in IP Catalog

Alternatively, you can specify the target board by adding board arguments to qsys-
edit and qsys-generate at the command line. The board argument is optional:

$qsys-edit --board=[board name]
$qsys-edit --board=[board name] -family=[device family] --part=[device part]

qsys-edit opens the Open System dialog box and automatically sets the board that
the argument specifies.

Note: The --board option takes precedence over the device family and device part
options. If you specify a board, the device family and device part associated with
board automatically update to the board's default device family and part. If you
specify the board, device family, and device part , the board option with mapped
device family and part is selected.

1.4.2.2. Using Board Files

You can define a custom board file (_board.xml) that specifies target board
information for your system. You can then specify this board as the target for any
system. The board file specifies the following information about the target board:

• Board name, such as Agilex 7 F-Series FPGA Development Kit DK-DEV-
AGF014EA

• Device part, such as AGFB014R24B2E2V

• Device family, such as Agilex 7

• Board vendor, such as Intel

• Board file version, such as 1.0

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.2.2.1. Creating a New Board File

Platform Designer displays all existing board files that have the _board.xml
extension in the Board Catalog. The Board Catalog is a tab of Platform Designer IP
Catalog.

By default, the Board Catalog shows the IPs that you associate with the current
selected board file. Under each board file name appears a list of any hardware
components associated with the board, such as a button, LED, or JTAG UART. Under
each component name appears the IP preset name that applies. Under each preset
name appears the IP name to which the preset applies.

To define a new board file in Platform Designer, follow these steps:

1. Click Tools ➤ Platform Designer. Platform Designer launches and displays the
Open Project dialog box automatically.

2. Specify the Quartus project. If you have a project open, the project name
appears automatically. Otherwise, browse for an existing project, or click the
Create New Quartus Project button and specify a new project name. If Device
family or Device part are unsynchronized, click Retrieve Values.

3. Select the Platform Designer system, or click the Create New Platform
Designer System button and specify the name of a new system.

4. In the Platform Designer IP Catalog, click the Board tab. The Board tab displays
any existing board files (_board.xml) in <quartus>\ip\altera
\board_preset_files\.

5. On the Board tab, click the New button. The Create New Board dialog box
appears with options that Create New Board Dialog Box Options on page 23
describes.

Figure 10. Board Catalog Displays Existing Boards Defined

Hardware Component Category
IP Preset Name
IP Name

Board Name

6. To create a new board file, make sure that Enable Board Generation is on.

7. Specify the board Name, target Device family, Device part, board Vendor, and
board file Version. By default, Device part and Device family reflects the
current project settings.

8. For Product URL, optionally specify URL of a board product description online.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. Next to Board file, click the browse (…) button to specify a File name. Platform
Designer automatically adds the _board.xml extension. Click OK.

Figure 11. Create New Board Dialog Box

Note: Specifying an existing board file name for Board file overwrites the
selected board file with the new definition.

10. In the Create New Board dialog box, click the Save button. If the directory that
you specify is new, Platform Designer confirms adding this directory to the search
path.

11. To view the new board in the Board Catalog, click the Settings button on the right
side of the search field, and select Show All IPs.

Figure 12. Agilex™ 7 FPGA DevKit Board Visible in Board Catalog

Settings Button

1.4.2.2.2. Create New Board Dialog Box Options

The Create New Board dialog box allows you to specify the details about your target
development board in Platform Designer. Platform Designer saves the board data in a
board file (_board.xml). You define the details of the board and then reuse that
board file for other projects that target the same board.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Turning on Enable Board Generation in combination with either the Generate
Presets for All IPs or Generate Presets for IPs Associated with External Ports
causes the system presets to target the new board that you are creating. Turning on
only Generate Presets for All IPs or Generate Presets for IPs Associated with
External Ports with Enable Board Generation turned off causes the system presets
to target the current board in Platform Designer.

Table 3. Create New Board Dialog Box Settings

Setting Name Description

Enable Board
Generation

Turn on this option to generate a new board file (_board.xml) when you click the Save
button. Leave this option off to generate only a system presets file (.qprs) based on the
current system and target board. This option is on by default.

Name Specifies the name for the board file that appears in the Platform Designer Board Catalog.

Device family Select the target design family for the Platform Designer system. This setting reflects the
current project settings by default.

Device part Select the target FPGA device part for the Platform Designer system. This setting reflects the
current project settings by default.

Vendor Specifies the vendor of the target board, such as Intel. This setting is optional.

Version Specifies the version number of the board file, such as 2.0. This setting is optional.

Board file Specifies the name of the new board file that you are creating.

Preset Directory Specifies the file name and path of the new system preset file (.qprs) that generates when
you click the Save button. If you instead select an existing preset file for this setting, that
file is overwritten with the new preset parameter values.

Generate Presets for All
IPs

Turn on this option to enable presets generation for all IPs in a pre-existing Platform
Designer system.

Generate Presets for IPs
Associated with
External Ports

Turn on this option to enable presets generation for IPs with external ports only.

Save Creates (or overwrites) the board and preset files, according to your specifications in this
dialog box.

1.4.2.2.3. Viewing or Deleting Board Files

You can view or delete board files (_board.xml) in the Board Catalog. To view the
details of an existing board file in the Platform Designer Board Catalog, follow these
steps:

1. In Platform Designer, click the Board tab in IP Catalog. (View ➤ IP Catalog).
The Board Catalog displays any board files (_board.xml) in the Platform
Designer search path.

2. On the Board tab, select the board that you want to view.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Board File in Board Catalog

3. Click the View button. The View Board dialog box displays the board properties,
as Create New Board Dialog Box Options on page 23 describes.

Figure 14. View Board Dialog Box

Deleting a Board File

To delete a board file from the Board Catalog, follow these steps:

1. On the Board tab, select the board file that you want to delete.

2. Click the Delete button. Click Yes to confirm the deletion of the board file.

1.4.3. Generating Board and Preset Files for Existing Systems

You can generate and apply board and preset files to an existing system design that
did not originally include board or preset files. This technique allows you to quickly
specify appropriate configuration options when you are targeting the same board and
IP as the board and preset files. You can apply the board and preset files to the
existing system using either the command-line or in Platform Designer.

1.4.3.1. Generating Board and Preset Files for Existing Systems Using Platform
Designer

To apply board and preset files to an existing Platform Designer system using the
Platform Designer GUI, you first load the pin assignments from the Quartus Prime
Settings File (.qsf). You then define a new board file that overwrites any existing
board file and IP presets. You must ensure that either the Generate Presets for All
IPs or Generate Presets for IPs Associated with External Ports option is on
when defining the new board. For details on creating IP presets, refer to Creating IP
Presets Targeting Specific Boards.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Before using this flow, you must regenerate the Platform Designer system and run
Quartus Prime Analysis and Synthesis.

To apply board and preset files to an existing system using Platform Designer, follow
these steps:

1. In the Quartus Prime software, open and compile the project that contains the
target Platform Designer system for board and preset files. The Fitter selects the
pin assignments or uses the constraints that you specify in the Pin Planner.

2. In Platform Designer, open the target system for application of board and preset
files.

3. Click File ➤ Load Pin from Quartus Project. The pin assignments from the
current Quartus Prime project load into the Platform Designer system.

4. Confirm the loaded pin assignments in the Exported Interface tab, as Editing Pin
Assignments for Presets on page 53 describes.

5. Define a new board and presets by clicking New in the Platform Designer Board
Catalog. The Create New Board dialog box opens.

Figure 15. Create New Board Dialog Box

6. Specify options for the new board file, as Creating a New Board File on page 22
describes. When specifying options, turn on the Enable Board Generation and
either Generate Presets for All IPs or Generate Presets for IPs Associated
with External Ports to overwrite any existing board or preset files for the
system.

7. Click Save to generate the new board and preset files.

8. View the new system presets in the Board tab.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16. System Presets in Board Tab

1.4.3.2. Generating Presets for Existing Systems with Multiple Instances

Note: Before using this flow, you must regenerate the Platform Designer system and run
Quartus Prime Analysis and Synthesis.

When generating presets for existing Platform Designer systems with two or more
separate instances, Platform Designer displays a prompt allowing you to select the
relevant instance for the presets.

To generate presets for existing systems with multiple instances, follow these steps:

1. In Platform Designer, open the target system for application of system preset files.

2. Click File ➤ Load Pin from Quartus Project.

3. If the system contains more than one instance, select the appropriate instance
path and click OK to confirm the correct instance path in the dialog box that
appears.

Figure 17. Select the Instance Path

The pin assignments from the current Quartus Prime project load into the Platform
Designer system.

4. Confirm the loaded pin assignments in the Exported Interface tab, as Editing Pin
Assignments for Presets on page 53 describes.

5. Define a new board and presets by clicking New in the Platform Designer Board
Catalog. The Create New Board dialog box opens.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Specify options for the new board file, as Creating a New Board File on page 22
describes. When specifying options, turn on the Enable Board Generation and
Enable System Preset Generation to overwrite any existing board or preset
files for the system.

7. Click Save to generate the new board and preset files.

8. View the new system presets in the Board tab.

1.4.3.3. Generating Board and Presets for Existing Systems Using Command Line

The command line method of applying board and presets to existing systems
implements the same steps in a script that you can perform in the Platform Designer
GUI. To apply board and preset files to an existing Platform Designer system using the
command line, you must first create a Tcl script that performs the following:

1. Loads the correct Platform Designer package version number with package
require.

2. Imports the pin assignments from the corresponding Quartus Prime Setting file
(.qsf) with load_pin_from_quartus_project.

3. Saves the system to apply the pin assignment to the system with save_system.

4. Exports the system or IP presets and board file with export_system_preset.

The following shows an example script that implements these steps:

package require -exact qsys <version number>
load_pin_from_quartus_project
save_system
export_system_preset test_preset.qprs
export_board_file "<board name>" <filename_board.xml>

Note: The <version number> must be 22.4 or later.

The following command runs the example script:

$ qsys-script --script=export.tcl --quartus-project=[test_project] \
 --system-file=[test_system.qsys]

The following example shows the content of export.tcl if there is one instance in a
Platform Designer system in the project:

package require -exact qsys 22.4
load_pin_from_quartus_project
export_system_preset ip/presets
export_board_file "My Board" test_board.xml

The following example shows the content of export.tcl if there is more than one
instance in a Platform Designer system in the project:

package require -exact qsys 22.4
set instance_paths [get_quartus_instance_path_for_entity]

select the correct Quartus instance path for your \
 Platform Designer system (e.g using the 1st path)

set my_instance_path [lindex $instance_paths 0]
load_pin_from_quartus_project $my_instance_path
export_system_preset ip/presets
export_board_file "My Board" test_board.xml

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.3.4. Preset Files Saved

After you create system presets using System Preset Generation, each of the presets
for each of the IP in the Platform Designer system save into different .qprs files to
ensure easier modification (if needed) for preset .qprs files. For better organization,
you can create a specific folder for presets only, as the following example shows.

Figure 18. Example of Preset Files Saved

1.5. Viewing a Platform Designer System

Platform Designer allows you to visualize all aspects of your system. By default,
Platform Designer displays the contents of your system in the System View tab
whenever you open a system. You can also access other tabs that allow you to view
and modify various elements of the system.

When you select or edit an item in one Platform Designer tab, all other tabs update to
reflect your selection or edit. For example, if you select the cpu_0 in the Hierarchy
tab, the Parameters tab immediately updates to display cpu_0 parameters.

Click the View menu to interact with the elements of your system in various tabs.

• The System View, Address Map, Exported Interfaces, and Details tabs
display in the central pane.

• By default, the IP Catalog and Filter tabs appear to the left of the System View
tab.

• Parameters, System Info, and Component Instantiation tabs appear to the
right of the System View tab when you open them.

• The System Messages and Generation Messages tabs display in the lower
portion of Platform Designer.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19. Platform Designer GUI

System Warnings and Errors Synch & Validate SystemCreate & Add Components

Filter System View System Connections System Components

The Platform Designer GUI is fully customizable. You can arrange and display Platform
Designer GUI elements that you most commonly use, and then save and reuse useful
GUI layouts.

1.5.1. Viewing the System Hierarchy

The Hierarchy tab hierarchically displays the modules, connections, and exported
signals in the current system. You can expand and traverse though the system
hierarchy, zoom in for detail, and locate to elements in other Platform Designer panes.

The Hierarchy tab provides the following information and functionality:

• Lists connections between components.

• Lists names of signals in exported interfaces.

• Right-click to connect, edit, add, remove, or duplicate elements in the hierarchy.

• Displays internal connections of Platform Designer subsystems that you include as
IP components. By contrast, the System View tab displays only the exported
interfaces of Platform Designer subsystems.

Click the + icon to expand any interface in the Hierarchy tab to view sub-
components, associated elements, and signals for the interface. The Hierarchy tab
displays a unique icon for each element type in the system. In the example below, the
clock signal for the prbs_pattern_generator is selected in both the System
View and Hierarchy tabs.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Expanding System View in the Hierarchy Tab

Clock Selected in Hierarchy
Highlighted in System View

agent

1.5.2. Filtering the System View

You can use the filtering controls in System View and the Filter tab to change the
level of detail in the System View. You can filter for various component
characteristics, such as component, interface type, or instance name. Filtering the
System View allows you to simplify the display and focus only on the items you want.

Table 4. System View Tab Filtering Controls

Filter Control Description

Filter Button Defines the type of interfaces that the System View displays. The options are Clock
and Reset, Avalon Memory Mapped Interfaces, Avalon Streaming
Interfaces, Hide Resets, Hide Clocks, Hide Clocks and Resets, Hide
Interrupts, or a Custom Filter that you define.

Show Memory Mapped domains
in the system table button

Shows or hides all Avalon memory mapped domains present in the system in the
System View.

Show reset domains in the
system table

Shows or hides all reset domains in the system in the System View.

Show clock domains in the
system table

Shows or hides all clock domains in the system in the System View.

Show connected modules Shows or hides the modules that have connections in the System View.

Hide unconnectable interfaces Shows or hides the modules not available for connection in the System View.

Remove Dangling Exports Removes unconnected exported connections from the System View.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. Filter Controls in System View Tab

Shows Subsystem Modules Removes Dangling ExportsHides Unconnectable Interfaces

Shows/Hides Clock, Reset, or Memory Mapped Domains

Specify Current Filter or Define Custom

The Filter tab offers other filtering controls that change the display of components in
the System View. Select one or more components on the Filter tab (View ➤ Filter)
to display only the selected component in the System View tab.

Figure 22. Filter Tab

Filter Display in the System View

Show Systems, Modules, Interfaces, and Ports

Table 5. Filter Tab Filtering Controls

Filter Control Description

Search text field In the Filter tab, displays the system, module, interface, and port names that match the
text string you enter.

Show exports option In the Filter tab, shows or hides the interfaces that you export.

Tree display list In the Filter tab, specifies the level of detail to display. Show or hide all systems,
modules, interfaces, and ports.

continued...

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Filter Control Description

Show connected modules
option

In the System View, shows or hides the modules that have connections to the items
that you select in the Filter tab tree.

Show connected exports In the System View, shows or hides the exports that have connections to the items that
you select in the Filter tab tree.

Wire-level Connection
Editor

In the System View, shows or hides all wire-level connections in the Connections
column.

Figure 23. Wire-level Connection Editor

1.5.3. Viewing Clock and Reset Domains

The Platform Designer Clock Domains and Reset Domains tabs list the clock and
reset domains in the Platform Designer system, respectively.

Click View ➤ Clock Domains or click View ➤ Reset Domains to display these tabs.

Platform Designer determines clock and reset domains by the associated clocks and
resets. This information displays when you hover over interfaces in your system.

The Clock Domains and Reset Domains tabs also allow you to locate system
performance bottlenecks. The tabs indicate connection points where Platform Designer
automatically inserts clock-crossing adapters and reset synchronizers during system
generation. View the following information on these tabs to create optimal connections
between interfaces:

• The number of clock and reset domains in the system

• The interfaces and modules that each clock or reset domain contains

• The locations of clock or reset crossings

• The connection point of automatically inserted clock or reset adapters

• The proper location for manual insertion of a clock or reset adapter

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. Clock Domains, Reset Domains, and System View Tabs

1.5.3.1. Viewing Clock Domains in a System

You can filter the System View tab to display a single clock domain, or multiple clock
domains. When you select an element in the Clock Domains tab, the corresponding
selection appears highlighted in the System View tab.

Follow these steps to filter and highlight clock domains in the System View:

1. Click View ➤ Clock Domains.

2. Select any clock or reset domain in the list to view associated interfaces. The
corresponding selection appears in the System View tab.

3. To highlight clock domains in the System View tab, click Show clock domains
in the system table or at the bottom of the System View tab.

Figure 25. Shows Clock Domains in the System Table

Show Clock Domains

Filter By Interface Type

4. To view a single clock domain, or multiple clock domains and their modules and
connections, select the clock name or names in the Clock Domains tab. The
modules for the selected clock domain or domains and connections highlight in the
System View tab. Detailed information for the current selection appears in the
clock domain details pane.

Note: If a connection crosses a clock domain, the connection circle appears as a
red dot in the System View tab

5. To view interfaces that cross clock domains, expand the Clock Domain
Crossings icon in the Clock Domains tab, and select each element to view its
details in the System View tab.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 26. Selected Clock in Clock Domains and System View Tabs

Platform Designer lists the interfaces that cross clock domains under Clock
Domain Crossings. As you click through the elements, detailed information
appears in the clock domain details pane. Platform Designer also highlights the
selection in the System View tab.

1.5.3.2. Viewing Reset Domains in a System

On the Reset Domains tab, you can filter the System View tab to display a single
reset domain, or multiple reset domains. When you select an element in the Reset
Domains tab, the corresponding selection appears in the System View tab.

Follow these steps to filter and highlight reset domains in the System View:

1. To open the Reset Domains tab, click View ➤ Reset Domains.

2. To show reset domains in the System View tab, click the Show reset domains
in the system table icon in the System View tab.

Figure 27. Show Reset Domains in the System Table

3. To view a single reset domain, or multiple reset domains and their modules and
connections, click the reset names in the Reset Domain tab.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. Selected Reset Signal in Reset Domains and System View Tabs

Platform Designer displays your selection according to the following rules:

• When you select multiple reset domains, the System View tab shows
interfaces and modules in both reset domains.

• When you select a single reset domain, the other reset domains are grayed
out, unless the two domains have interfaces in common.

• Reset interfaces appear black when connected to multiple reset domains.

• Reset interfaces appear gray when they are not connected to all of the
selected reset domains.

• If an interface is contained in multiple reset domains, the interface is grayed
out.

Detailed information for your selection appears in the reset domain details pane.
Red dots in the Connections column between reset sinks and sources indicate
auto insertions by Platform Designer during system generation, for example, a
reset synchronizer. Platform Designer decides when to display a red dot with the
following protocol, and ends the decision process at first match.

• Multiple resets fan into a common sink.

• Reset inputs are associated with different clock domains.

• Reset inputs have different synchronicity.

1.5.4. Viewing System Connections

The Connections tab allows you to connect or un-connect every connection in the
Platform Designer system.

Click View ➤ Connections to display this tab.

If you connect or unconnect modules on the Connections tab, the connection
immediately updates in the System View tab. You can also make connections in the
System View tab directly.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. Connections tabs in Platform Designer

1.5.5. Viewing Avalon Memory-Mapped Domains in a System

The Domains tab displays a list of all the Avalon memory mapped domains in the
system, allowing you to specify interconnect parameters. When you select a domain in
the Domains tab, the corresponding selection highlights in the System View tab.

Click View ➤ Domains to display this tab.

• Filter the System View tab to display a single Avalon domain, or multiple
domains. Further filter your view with selections in the Filters dialog box.

• To rename an Avalon memory-mapped domain, double-click the domain name.
Detailed information for the current selection appears in the Avalon domain details
pane.

• On the Domain tab, specify interconnect parameters, as Specifying Interconnect
Parameters on page 71 describes.

• To enable and disable the highlighting of the Avalon domains in the System View
tab, click the domain control tool at the bottom of the System View tab.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. Domains Tab

1.5.6. Viewing the System Schematic

The Schematic tab displays a schematic representation of the current Platform
Designer system. You can zoom into a component or connection to view more details.
You can use the image handles in the right panel to resize the schematic image.

Click View ➤ Schematic to display this tab.

If your selection is a subsystem, You can use the Move to the top of the hierarchy
Move up one level of hierarchy, and Drill into a subsystem to explore its
contents buttons to traverse the schematic of a hierarchical system.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 31. Schematic Tab

Controls for Traversing

Zoom In or Out

Related Information

Editing a Subsystem on page 110

1.5.7. Customizing the Platform Designer Layout

You can arrange your workspace by dragging and dropping, and then grouping tabs in
an order appropriate to your design development, or close or dock tabs that you are
not using.

Dock tabs in the main frame as a group, or individually by clicking the tab control in
the upper-right corner of the main frame. Tool tips on the upper-right corner of the
tab describe possible workspace arrangements, for example, restoring or
disconnecting a tab to or from your workspace.

When you save your system, Platform Designer also saves the current workspace
configuration. When you re-open a saved system, Platform Designer restores the last
saved workspace.

The Reset to System Layout command on the View menu restores the workspace to
its default configuration for Platform Designer system design. The Reset to IP
Layout command restores the workspace to its default configuration for defining and
generating single IP cores.

Follow these steps to customize and save the Platform Designer layout:

1. Click items on the View menu to display and then optionally dock the tabs.
Rearrange the tabs to suit your preferences.

2. To save the current Platform Designer window configuration as a custom layout,
click View ➤ Custom Layouts ➤ Save. Platform Designer saves your custom
layout in your project directory, and adds the layout to the custom layouts list,
and the layouts.ini file. The layouts.ini file determines the order of layouts
in the list.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 32. Platform Designer View Menu and Layouts

3. Use any of the following methods to revert to another layout:

• To revert the layout to the default system design layout, click View ➤ Reset
to System Layout. This layout displays the System View, Address Map,
Interconnect Requirements, and Messages tabs in the main pane, and the
IP Catalog and Hierarchy tabs along the left pane.

• To revert the layout to the default system design layout, click View ➤ Reset
to IP Layout. This layout displays the Parameters and Messages tabs in
the main pane, and the Details, Block Symbol, and Presets tabs along the
right pane.

• To reset your Platform Designer window configuration to a previously saved
layout, click View ➤ Custom Layouts, and then select the custom layout.

• Press Ctrl+3 to quickly change the Platform Designer layout.

4. To manage your saved custom layouts, click View ➤ Custom Layouts. The
Manage Custom Layouts dialog box opens and allows you to apply a variety of
functions that facilitate custom layout management. For example, you can import
or export a layout from or to a different directory.

1.5.8. Changing the Platform Designer Font

Click Tools ➤ Options ➤ Fonts to change the font name, style, and size in Platform
Designer to suit your viewing preferences. A Sample pane displays a font example.
Click Finish to apply the setting.

Note: Some GUI elements may require refresh (reopening) before font changes are visible.
Platform Designer prompts you to restart Platform Designer after changing font
settings so that font changes appear throughout.

You can click the Reset Font button to reset the Platform Designer font to the default
value.

1.6. Adding IP Components to a System

You can add Intel FPGA IP components to a system from the IP Catalog in Platform
Designer. The IP Catalog launches a parameter editor for specifying options and
generating the component's HDL. Your Platform Designer system can contain a single
instance of an IP component, or multiple, individually parameterized variations of
multiple or the same IP components.

When you first add Intel FPGA IP components to a system, Platform Designer
automatically adds the IP as a generic component (except for HPS IP components).
Generic components allow you to define only the interface and signal connections to
the rest of the system, without immediately defining the HDL implementation.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To parameterize, and instantiate an IP component in a Platform Designer system:

1. Type some of the component’s name in the IP Catalog search box to find the IP by
name or category.

Figure 33. Platform Designer IP Catalog

2. Double-click any component to launch the parameter editor. The
Parameterization Messages tab displays any parameterization errors.

3. After specifying parameters, click Finish to instantiate the component in the
system. The IP component appears in the System View and Component
Instantiation tabs. Platform Designer creates a corresponding .ip file for the IP
component on instantiation, and stores the file in the <ip> folder in the project
directory.

Platform Designer instantiates a generic component in place of the actual IP core
with a reference to the HDL entity name, module and interface assignments,
compilation library, HDL ports, interfaces, and system-info parameters.

Figure 34. Parameter Editor

IP Component’s
Block Diagram

IP Component’s
Parameters

Preset Parameters
for Specific Applications

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.1. Modifying IP Parameters

The Parameters tab allows you to view and edit the current parameter settings for IP
components in your system.

To display a components parameters on the Parameters tab:

1. click View ➤ Parameters.

2. Select the component in the System View or Hierarchy tabs.

• Parameters field—adjust the parameters to align with your design requirements,
including changing the name of the top-level instance.

• Component Banner—displays the hierarchical path for the component and internal
names. Displays the HDL entity name and the IP file path for the selected IP
component. Right-click in the banner to display internal parameter names for use
with scripted flows.

• Details—displays links to detailed information about the component.

• Parameterization Messages—displays parameter warning and error messages
about the IP component.

Figure 35. Platform Designer Parameters Tab

Selected Component

Right-Click Banner to
Display Internal Names

Modify Parameters of Selected Component

Reports Parameter Errors

Changes that you make in the Parameters tab affect your entire system, and
dynamically update other open tabs in Platform Designer. Any change that you make
on the Parameters tab, automatically updates the corresponding .ip file that stores
the component's parameterization.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you create your own custom IP components, you can use the Hardware Component
Description File (_hw.tcl) to specify configurable parameters.

Note: If you use the ip-deploy or qsys-script commands rather than the Platform
Designer GUI, you must use internal parameter names with these parameters.

1.6.1.1. Viewing Component or Parameter Details

The Details tab provides information for a component or parameter that you select.
Platform Designer updates the information in the Details tab as you select different
components.

To view a component's details:

1. Click the parameters for a component in the parameter editor, Platform Designer
displays the description of the parameter in the Details tab.

2. To return to the complete description for the component, click the header in the
Parameters tab.

1.6.1.2. Viewing a Component's Block Symbol

The Block Symbol tab displays a symbolic representation of any component you
select in the Hierarchy or System View tabs. The block symbol shows the
component's port interfaces and signals. The Show signals option allows you to turn
on or off signal graphics.

The Block Symbol tab appears by default in the parameter editor when you add a
component to your system. When the Block Symbol tab is open in your workspace, it
reflects changes that you make in other tabs.

Figure 36. Block Symbol Tab

1.6.2. Applying Preset Parameters for Specific Applications

The Preset tab displays the names of available preset settings for an IP component. A
preset is a specific collection of parameter settings that are appropriate for a specific
protocol, application, or board. Double-click the preset name (or click Apply) to
instantly apply the parameter values defined in the preset to the current IP instance.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 37. Selecting Preset Parameters

Filtering List By Preset Name

1.6.2.1. Customizing IP Presets

You can optionally define and save a custom set of parameter settings as an IP preset,
and then apply the preset whenever you add an instance of the IP component to any
system.

Follow these steps to save a custom IP preset:

1. In IP Catalog, double-click any component to launch the parameter editor.

2. To search for a specific preset to base initial settings, type a partial preset name in
the search box.

3. In the Presets tab, click New to specify the Preset name and Preset
description.

4. In the Board dropdown, specify the target board. The Default setting specifies
the current board as the target board for this preset.

Note: You can specify multiple boards for a preset, provided that the preset
parameters and assignments are applicable to all boards in the preset.

5. Under Select parameters to include in the preset, enable or disable the
parameters you want to include in the preset.

6. Specify the path for the Preset file that preserves the collection of parameter
settings. The location of the new .qprs preset file is added to the IP search path
automatically.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 38. Create New Preset

7. Click Save.

8. To apply the preset to an IP component, click Apply. Preset parameter values that
match the current parameter settings appear in bold.

1.6.3. Creating IP Presets Targeting Specific Boards

Use the Presets tab in Platform Designer to define a custom group of preset
parameter settings and pin assignments appropriate for the target board.

Figure 39. Presets Tab Displays Available IP Presets

Applied Preset in Bold

Other Available Presets Create New Preset

You can apply the presets to IP, view and delete presets, and filter presets by board
name in the Presets tab. If you click on any IP in the System View, the Presets tab
displays the associated presets for each board. Turn off Show the Presets for

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Selected Board to display all available presets for the IP. Turn off this option to view
and apply preset files that do not contain board and pin information located under the
Library.

Note: You cannot edit a preset in the Preset tab. Rather than editing an existing preset,
create a new preset.

When you define an IP preset in the Presets tab, an underlying .qprs file stores the
following information about the preset:

• Preset name

• Preset description

• Preset category

• Supported board

• Parameter settings

• Pin assignments

1.6.3.1. Creating IP Presets

To create an IP preset with appropriate parameters and pin assignments for the target
board, follow these steps:

1. In the Platform Designer System View, select the IP that you want to create
presets for and view the Presets tab (View > Presets).

2. In the Presets tab click the New button to define a new IP preset file for the IP.
The New Preset dialog box appears.

Figure 40. Presets Tab

3. Enter a Preset name, Preset description, and Category.

Figure 41. New Preset Dialog Box

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. In the Board list, specify the target board. The Default setting specifies the
current board as the target board for this preset.

Note: You can specify multiple boards for a preset, provided that the preset
parameters and assignments are applicable to all boards in the preset.

Figure 42. Create New Preset

5. On the Parameter Settings tab, enable or disable the appropriate parameters for
your target board.

6. To specify pin location and I/O standard assignments for the preset, click the Pin
Assignments tab.

7. For the exported interfaces, turn on the external_connection checkbox and
enter the exported signal name in the Exported Name cell.

Note: You can change the interface and signal names by double-clicking cells
under Exported Name. Alternatively, you can type the pin locations and
I/O standard details in the cell without using the Board dropdown.

8. Select the appropriate Pin Location and IO Standard for each exported signal.
Refer to Defining Preset Pin Assignments.

9. By default, the Preset file setting suggests a .qprs file name based on the
Preset name.

10. Click Save. The new IP preset appears in the Presets tab. Manage presets in the
Presets tab, as Viewing, Applying, and Deleting IP Presets on page 50 describes.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 43. Pin Assignments in New Preset Dialog Box

Figure 44. New pio_led Preset Appears in Presets Tab

1.6.3.2. Defining Preset Pin Assignments

You can define pin assignments that are included as part of an IP preset. When you
apply the IP preset to an IP instance, the pin assignments export during the IP or
system's HDL generation.

You define preset pin assignments in the Pin Assignments tab of the New Preset
dialog box, or in a Pin Assignments File (.tcl) that you create.

1.6.3.2.1. Defining Preset Pin Assignments in Pin Assignments Tab

The Pin Assignments tab allows you to specify the Exported Name of the signals,
to select the appropriate Pin Location, and to select the appropriate IO Standard for
the target board.

By default, the Exported Name name takes the form of:

module_name + interface_name + pin_role

For example:

pio0_external_connection_export[0]

You can change the Exported Name by double-clicking on the Exported Name for
the interface and typing a new name. All of the signals of the interface then update
automatically to reflect the name you specify.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 45. Pin Assignments Tab

For example, typing led for the external_connection interface updates the signals
of the interface to led_export[n]. The external_connection is the interface name,
and external_connection_export(0) is the signal name.

1.6.3.2.2. Defining Preset Pin Assignments in a Pin File

Alternatively, you can specify the pin assignments in a Pin Constraints File (.tcl),
which can be more efficient for projects with many ports. You specify this .tcl file as
the Pin Constraint File on the Pin Assignments tab, and then click Load Pin. The
Pin Location and IO Standard update per the loaded pin assignments.

Figure 46. Loading Pin Assignments from Tcl File

Pin Assignments
Loaded from
led4_pins.tcl

The following shows the contents of an example Pin Constraints File (.tcl):

set_instance_assignment -to "led_export[0]" -name IO_STANDARD "1.2 V"
set_location_assignment -to "led_export[0]" "PIN_B31"
set_instance_assignment -to "led_export[1]" -name IO_STANDARD "1.2 V"
set_location_assignment -to "led_export[1]" "PIN_D31"
set_instance_assignment -to "led_export[2]" -name IO_STANDARD "1.2 V"

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_location_assignment -to "led_export[2]" "PIN_A30"
set_instance_assignment -to "led_export[3]" -name IO_STANDARD "1.2 V"
set_location_assignment -to "led_export[3]" "PIN_C30"

1.6.3.3. Viewing, Applying, and Deleting IP Presets

You can view the properties of a preset, apply a preset, or delete any existing preset
in the Presets tab.

Figure 47. View, Apply, and Delete Presets in Presets Tab

Note: Right-click a preset to access the same View, Apply, and Delete preset functions in
the context menu.

Viewing Presets

Click the View button to show the preset properties in the read-only Update Preset
dialog box.

Figure 48. View Button Opens View Preset Dialog Box

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Right-click a preset and click Show Preset Settings to view a searchable report of
the preset settings.

Figure 49. Show Preset Settings Searchable Report

Applying Presets to IP Instances

Click the Apply button (or double-click) to apply the IP preset to the currently
selected IP. Applied presets appear in bold text.

Figure 50. Applied Presets Appear in Bold Text

Deleting Presets from the System

Click the Delete button to delete the current preset from the Platform Designer
system.

1.6.3.4. Auto-Exporting IP Preset Interfaces and Pins

Once you apply a preset with pin assignments to an IP instance, Platform Designer
automatically exports the preset interfaces that have pin constraints to external
systems.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If an IP with presets is not within the top-level Platform Designer system, you must
export those interfaces as well.

Figure 51. Auto-Exported LED Interface IP Preset

Exported
Interface

After you click Generate HDL for the IP or system with pin assignment presets,
Platform Designer automatically exports the pin assignments to the system .qip file
for subsequent design compilation in the Quartus Prime software.

The following shows an example of the pin assignment Tcl commands exported to the
system .qip file:

set_instance_assignment -to "led_export[0]" -name IO_STANDARD "1.2 V"
set_location_assignment -to "led_export[0]" "PIN_B31"
set_instance_assignment -to "led_export[1]" -name IO_STANDARD "1.2 V"
set_location_assignment -to "led_export[1]" "PIN_D31"
set_instance_assignment -to "led_export[2]" -name IO_STANDARD "1.2 V"
set_location_assignment -to "led_export[2]" "PIN_A30"
set_instance_assignment -to "led_export[3]" -name IO_STANDARD "1.2 V"
set_location_assignment -to "led_export[3]" "PIN_C30"

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.3.5. Editing Pin Assignments for Presets

After you apply presets to IP, you can later view, edit, and remove those pin
assignments for selected signals in the Exported Interfaces tab in Platform
Designer. This action does not change the preset, but only changes the pin
assignments of the exported system signals. To edit pin assignments for an existing IP
preset, follow these steps:

Figure 52. Changing Preset Pin Location Assignments

1. In Platform Designer, click View ➤ Exported Interfaces. The Exported
Interfaces tab displays the exported interfaces in the system.

2. Under Exported Interfaces, select a specific exported signal. The Parameters
field displays the signal and editable Pin assignment information. The interface
Name and signal name match the exported_interface_name and
exported_signal_name values in the preset .qprs file.

3. To change the pin location or I/O standard for the signal, select a different Pin
Location or IO Standard in the Pin field.

4. To remove any pin constraint, right-click the signal interface name under
Exported Interfaces, and then click Remove Current Pin Constraints.

Figure 53. Remove Current Pin Constraints

To change only the exported port name, you can do so in the System View tab.
You must still make detail changes in the Exported Interfaces tab.

5. After design compilation, review the exported preset pin assignments in the
Quartus Prime software Pin Planner.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 54. Exported Interface Pins in Pin Planner After Design Compilation

1.6.3.6. Viewing IP Presets In Board Catalog

You can easily view all presets defined for a target board in the Board Catalog in
Platform Designer. The Board Catalog lists the name of each board defined, followed
by a hierarchical list of the associated components, presets, and IP of the board.

You can use the search field and the adjacent Settings button to filter the list of list of
IP to match your needs:

Figure 55. Viewing pio_led and pio_out Presets in Board Catalog

Settings Button

• Click the Settings button, and then select Show IPs that contain Board Preset.
The Board Catalog displays only the IPs that have presets for the target board.
Under the IP name, the available presets for that IP appear.

1.6.4. Applying Presets After Migrating a Board

You can save time by applying available presets when you migrate your design to a
different board. The Board Migration dialog box helps you to quickly apply
appropriate presets to each IP in the Platform Designer system to ensure consistency
and accuracy of the system on the migrated board, even for hierarchical systems.

The Board Migration dialog box allows you to readily view a comparison of the
parameters and pin assignments in the current system, versus the selected presets.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can access the Board Migration dialog box using any of the following methods:

Figure 56. Opening the Board Migration Dialog Box

Change Board In
Quartus Prime Software

Assignments > Device > Board

Change Board with
qsys-edit Command

Change Board with
qsys-generate Command

IP with
Presets?

yes

no

Non Matching
IP Presets?

yes

no

Board Migration Dialog
Box Does Not Open Automatically

Board Migration
Dialog Box Opens

Automatically

Reports All Changes

Change Board In Platform Designer
System > System Settings >

Device Settings > Board

1. The Board Migration dialog box opens automatically using any of the following
methods:

• Click Assignments ➤ Device ➤ Board tab in the Quartus Prime Pro Edition
software.

• Click System ➤ System Settings ➤ Device Settings ➤ Board in Platform
Designer.

• Use the --board option with the qsys-edit command.

2. Upon completing step 1, the Analyzing Board Migration window appears
showing the progress of system analysis and synchronization for the new target
board. Analysis messages eventually indicate either that Migration is needed or
No migration is needed to align with the target board. Click the Close button
when system migration analysis is compete.

Figure 57. Analyzing Board Migration Window

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If migration is needed, the Board Migration dialog box opens automatically
displaying the systems and subsystems in the design you are migrating.

Figure 58. Board Migration Dialog Box

Right-Click to Show All Instances
& Check or Uncheck All

3. By default, the Board Migration dialog box displays only IP that do not have
presets matching with the current configuration. To view all IP or systems, right-
click in the dialog box and then click Show All Instances.

Note: Using the --board option with qsys-generate command does not launch the Board
Migration dialog box. Rather, an information message appears suggesting that you to
launch Platform Designer and use the Board Migration dialog box to determine the
presets that apply to the new targeted board. The Board Migration dialog box does not
open for migration of designs containing IP subsystems.

1.6.4.1. Comparing and Applying IP Presets

Follow these steps to compare the parameter and pin assignment differences of your
current board configuration with your chosen board IP preset in the Board Migration
dialog box and apply the desired presets:

1. In the Preset column, type or select the preset name for the IP that you want to
compare against the current configuration. If you have multiple IP or systems,
type the IP or system name in the search bar to narrow the non-case-sensitive
search.

2. To begin comparison, click the Compare button. Following comparison, the
Parameter Settings and Pin Assignments tabs show the comparison results
(differences) for parameter settings and pin assignments, respectively.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 59. Setup Comparisons

IP with matching configurations and presets display Matched in green under
Comparison Status. IP with no presets available display N/A in the Preset
column.

Figure 60. Pin Assignment and Parameter Setting Comparison Results

3. When the presets match the board configuration as desired, click either the Apply
Presets to This System Only button or the Apply Presents for All Systems
button. The presets apply to your system according to your specifications.

Figure 61. IP with No Presets Available Display N/A

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.5. Adding Third-Party IP Components

You can add third-party IP components created by Intel partners to your Platform
Designer system. Third-party partner IP components have interfaces that Platform
Designer supports, such as Avalon memory mapped or AMBA AXI. Third-party partner
IP components can also include timing and placement constraints, software drivers,
simulation models, and reference designs.

To locate supported third-party IP components on the Intel web page, follow these
steps:

1. From the Intel website, navigate to the Find IP page, and then click Find IP on the
tool.

2. Use the Search box and the End Market, Technology, Devices or Provider
filters to locate the IP that you want to use.

3. Click Enter.

4. Sort the table of results for the Platform Designer Compliant column. You
cannot use non-compliant components in Platform Designer.

5. Click the IP name to view information, request evaluation, or request download.

6. After you download the IP files, add the IP location to the IP search path to add
the IP to IP Catalog, as IP Search Path Recursive Search on page 58 describes.

Related Information

Find Intel FPGA and Partner IP

1.6.5.1. IP Search Path Recursive Search

The Quartus Prime software automatically searches and identifies IP components in
the IP search path. The search is recursive for some directories, and only to a specific
depth for others. During a recursive descent search, whenever search finds a
_hw.tcl or .ipx file, search does not descend further.

In the following list of search locations, ** indicates a recursive descent.

Table 6. IP Search Locations

Location Description

PROJECT_DIR/* Finds IP components and index files in the Quartus Prime project directory.

PROJECT_DIR/ip/**/* Finds IP components and index files in any subdirectory of the /ip subdirectory of the
Quartus Prime project directory.

1.6.5.1.1. IP Search Path Precedence

If the Quartus Prime software recognizes two IP cores with the same name, the
following search path precedence rules determine the resolution of files:

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

58

https://www.intel.com/content/www/us/en/products/programmable/intellectual-property.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Project directory.

2. Project database directory.

3. Project IP search path specified in IP Search Locations, or with the
SEARCH_PATH assignment for the current project revision.

4. Global IP search path specified in IP Search Locations, or with the
SEARCH_PATH assignment in the quartus2.ini file.

5. Quartus software libraries directory, such as <Quartus Installation>
\libraries.

1.6.5.1.2. IP Component Description Files

The Quartus Prime software identifies parameterizable IP components in the IP search
path for the following files:

• Component Description File (_hw.tcl)—defines a single IP core.

• IP Index File (.ipx)—each .ipx file indexes a collection of available IP cores. This
file specifies the relative path of directories to search for IP cores. In
general, .ipx files facilitate faster searches.

1.6.5.2. Defining the IP Search Path with Index Files

You can create an IP Index File (.ipx) to specify a path that Platform Designer
searches for IP components.

You can optionally specify the search path in a user_components.ipx file, in
addition to Tools ➤ Options ➤ IP Catalog Search Locations. The
user_components.ipx file allows you to add locations independent of the default
search path.

A <path> element in a .ipx file specifies a directory where Platform Designer can
search for IP components. A <component> entry specifies the path to a single
component. <path> elements allow wildcards in definitions. An asterisk matches any
file name. If you use an asterisk as a directory name, it matches any number of
subdirectories.

Example 1. Path Element in an .ipx File

<library>
 <path path="…<user directory>" />
 <path path="…<user directory>" />
 …
 <component … file="…<user directory>" />
 …
</library>

A <component> element in an .ipx file contains several attributes to define a
component. If you provide the required details for each component in an .ipx file,
the startup time for Platform Designer is less than if Platform Designer must discover
the files in a directory.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 2. Component Element in an .ipx File

The example shows two <component> elements. Note that the paths for file names
are specified relative to the .ipx file.

<library>
 <component
 name="A Platform Designer Component"
 displayName="Platform Designer FIR Filter Component"
 version="2.1"
 file="./components/qsys_filters/fir_hw.tcl"
 />
 <component
 name="rgb2cmyk_component"
 displayName="RGB2CMYK Converter(Color Conversion Category!)"
 version="0.9"
 file="./components/qsys_converters/color/rgb2cmyk_hw.tcl"
 />
</library>

Note: You can verify that IP components are available with the ip-catalog command.

Related Information

Create an .ipx File with ip-make-ipx on page 449

1.6.6. Specifying IP Component Instantiation Options

When you instantiate an Intel FPGA IP component in a system, Platform Designer
instantiates the IP as a generic component that contains references to the HDL entity
name, module and interface assignments, compilation library, HDL ports, interfaces,
and system-info parameters. You can specify options that control the appearance of a
component in the system.

To specify options that control the appearance of IP details and symbol in the system,
follow these steps:

1. To open the Component Instantiation tab, click View ➤ Component
Instantiation.

2. For Implementation Type, select the IP (Default), HDL, or Blackbox type.
Component Implementation Type Options on page 61 defines these types.

3. Under Compilation Info, specify the HDL Entity name and HDL compilation
library name for the implementation. These values are fixed for the IP
Implementation Type.

4. In the Signals & Interfaces tab, define the port boundary of the component.
Click <<add interface>> or <<add signal>> to add the interfaces and signals.

5. Optionally, click the Block symbol tab to visualize the signals and interfaces
added in the Signals & Interfaces tab.

6. Optionally, in the Export tab you can export the signals and interfaces of an IP
component as an IP-XACT file or a _hw.tcl file.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 62. Component Instantiation Tab

Note: Platform Designer supports importing and exporting files in IP-XACT 2009
format and exporting IP-XACT files in 2014 format.

1.6.6.1. Component Implementation Type Options

Table 7. Component Implementation Type Options

Implementation Type Description

IP The default implementation type for any new component. Platform Designer reads the IP
Implementation Type to perform the following functions:
• Runs background checks against the port widths between the IP component and

the .ip file to ensure continuity.
• Scans the .ip file for the error flag to determine if any component has

parameterization errors.
• Checks for system-info mismatches between the IP file and the IP component in the

system, and prompts resolution with IP instantiation warnings in the Instantiation
Messages tab.

HDL Allows you to define a component in your system from existing RTL. You can populate the
signals and interfaces parameters of the generic component from an RTL file.

Blackbox Defines a component that represents only the signal and interface boundary of an entity,
without providing the component's implementation. You then provide the implementation of
the component for processing with the Quartus Prime software or an RTL simulator.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.7. Creating or Opening an IP Core Variant

In addition to creating a system, Platform Designer allows you to define a stand-alone
IP core variant that you can add to your Quartus Prime project or to a Platform
Designer system.

Follow these steps to define an IP core variant in Platform Designer:

1. In Platform Designer, click File ➤ New IP Variant.

2. On the IP Variant tab, specify the Quartus project to contain the IP variant.

3. Specify any of the following options:

• Revision—optionally select a specific revision of a project.

• Device family—when defining a new project or None, allows you to specify
the target FPGA device family. Otherwise this field is non-editable and displays
the Quartus project target device family. Click Retrieve Values to populate
the fields.

• Device part—when defining a new project or None, allows you to specify the
target FPGA device part number. Otherwise this field is non-editable and
displays the Quartus project target device part number.

4. Specify the IP variant name, or browse for an existing IP variant.

5. For Component type, click Select and select the IP component from the IP
Catalog.

6. Click Create. The IP parameter editor appears. Specify the parameter values that
you want for the IP variant.

7. To generate the IP variant synthesis and optional simulation files, click Generate
HDL, specify Generation Options, and click Generate. Refer to Generation
Dialog Box Options on page 90 for generation options.

Figure 63. Platform Designer IP Variant Tab

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7. Connecting System Components

You must appropriately connect the components in your Platform Designer system.
The System View and Connections tabs allow you to connect and configure IP
components quickly. Platform Designer supports connections between interfaces of
compatible types and opposite directions.

For example, you can connect a memory-mapped host interface to an agent interface,
and an interrupt sender interface to an interrupt receiver interface. You can connect
any interfaces exported from a Platform Designer system within a parent system.

Figure 64. Connections Column in the System Contents Tab

Component Connections

host
host_reset

Platform Designer uses the high-level connectivity you specify to instantiate a suitable
HDL fabric to perform the needed adaptation and arbitration between components.
Platform Designer generates and includes this interconnect fabric in the RTL system
output. Potential connections between interfaces appear as gray interconnect lines
with an open circle icon at the intersection of the potential connection.

Figure 65. Potential and Implemented Connections in System View

Potential
Connection
(empty circle)

Implemented
Connection
(filled circle)

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To implement a connection, follow these steps:

1. Click inside an open connection circle to implement the connection between the
interfaces. When you make a connection, Platform Designer changes the
connection line to black, and fills the connection circle. Clicking a filled-in circle
removes the connection.

2. To display the list of current and possible connections for interfaces in the
Hierarchy or System View tabs, click View ➤ Connections.

Figure 66. Connection Display for Exported Interfaces

3. Perform any of the following to modify connections:

• On the Connections tab, enable or disable the Connected column to enable
or disable any connection. The Clock Crossing, Data Width, and Burst
columns provide interconnect information about added adapters that can
result in slower fMAX or increased area utilization.

• On the System View tab, right-click in the Connection column and disable
or enable Allow Connection Editing.

• On the Connections tab view and make connections for exported interfaces.
Double-click an interface in the Export column to view all possible
connections in the Connections column as pins. To restore the representation
of the connections, and remove the interface from the Export column, click
the pin.

1.7.1. Platform Designer 64-Bit Addressing Support

Platform Designer interconnect supports up to 64-bit addressing for all Platform
Designer interfaces and IP components, with a range of: 0x0000 0000 0000 0000
to 0xFFFF FFFF FFFF FFFF, inclusive.

The address parameters appear in the Base and End columns in the System View
tab, on the Address Map tab, in the parameter editor, and in validation messages.
Platform Designer displays as many digits as needed in order to display the top-most
set bit, for example, 12 hex digits for a 48-bit address.

A Platform Designer system can have multiple 64-bit hosts, with each host having its
own address space. You can share agents between hosts, and hosts can map agents
to different addresses. For example, one host can interact with agent 0 at base
address 0000_0000_0000, and another host can see the same agent at base address
c000_000_000.

Quartus Prime debugging tools provide access to the state of an addressable system
via the Avalon memory mapped interconnect. These tools are also 64-bit compatible,
and process within a 64-bit address space, including a JTAG to Avalon host bridge.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer supports auto base address assignment for Avalon memory mapped
components. In the Address Map tab, click Auto Assign Base Address.

1.7.1.1. Support for Avalon Memory Mapped Non-Power of Two Data Widths

Platform Designer requires that you connect all multi point Avalon memory mapped
connections to interfaces with data widths that are equal to powers of two.

Platform Designer issues a validation error if an Avalon memory mapped host or agent
interface on a multi-point connection is parameterized with a non-power of two data
width.

Note: Avalon memory mapped point-to-point connections between an Avalon memory
mapped host and an Avalon memory mapped agent are an exception, you can set
their data widths to a non-power of two.

1.7.2. Connecting Hosts and Agents

Specify connections between host and agent components in the Address Map tab.
You specify the address range that each memory-mapped host uses to connect to an
agent in the Platform Designer system.

The Address Map tab shows the agents on the left, the hosts across the top, and the
address span of the connection in each cell. If there is no connection between a host
and an agent, the table cell is empty. In this case, use the Address Map tab to view
the individual memory addresses for each connected host.

Platform Designer enables you to design a system where two hosts access the same
agent at different addresses. If you use this feature, Platform Designer labels the
Base and End address columns in the System View tab as "mixed" rather than
providing the address range.

To create or edit a connection between host and agent IP components:

1. In Platform Designer, click the Address Map tab.

2. Locate the table cell that represents the connection between the host and agent.

3. Type in a base address, or update the current base address in the cell. The base
address of an agent component must be a multiple of the address span of the
component.

Figure 67. Address Map Tab for Connection Hosts and Agents

Agent to Host
Address Mapping

Assigns Base Address

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.3. Connecting NoC IP in Platform Designer

Agilex™ 7 M-Series FPGAs support an integrated Network-on-Chip (NoC) to facilitate
high-bandwidth data movement between the FPGA core logic and memory resources,
such as HBM2e and DDR5 memories.

In the regular NoC compilation flow, you specify connections between NoC IP in the
NoC Assignment Editor after running Analysis & Elaboration. You also specify address
mapping and performance requirements for these connections in the NoC Assignment
Editor. These assignments are required to perform RTL simulation of your design.

An optional early RTL simulation flow is available where you can specify NoC IP
connection and addressing in Platform Designer. In this early simulation flow, you can
perform RTL simulation after generating HDL for your Platform Designer system, but
before running Analysis & Elaboration and making assignments in NoC Assignment
Editor.

Note: If you use this early RTL simulation flow, you must still run Analysis & Elaboration and
make connection and addressing assignments in NoC Assignment Editor before
performing compilation.

If you want to enable early RTL simulation for your design, follow the steps below to
specify NoC IP connectivity and addressing in Platform Designer. If you run Analysis &
Elaboration and use the NoC Assignment Editor to make these assignments before
running simulation, these steps are unnecessary.

1. Connect the AXI4 NoC manager ports to appropriate AXI4 NoC subordinate ports
in the Platform Designer System View tab. The AXI4 NoC manager ports are on
the NoC Initiator Intel FPGA IP. The AXI4 NoC subordinate ports are on the High
Bandwidth Memory (HBM2E) Interface Agilex 7 FPGA IP and on the External
Memory Interfaces Agilex 7 Intel FPGA IP.

2. Click the Address Map tab in Platform Designer to assign starting addresses for
each NoC initiator to target connection. If an initiator connects to multiple targets,
ensure that each target has a unique starting address. The end address is auto
calculated based on the memory span.

3. Save you system and click Generate HDL. Platform Designer stores the NoC
connectivity and addressing as assignments in the project .qsf.

Note: This connectivity and addressing is not present in the HDL netlist that
Platform Designer generates.

When using the Platform Designer flow for specifying NoC connectivity and addressing,
the design is ready for RTL simulation after generating HDL for the Platform Designer
system. For details on simulation, refer to Agilex 7 M-Series FPGA Network-on-Chip
(NoC) User Guide.

Related Information

Agilex 7 M-Series FPGA Network-on-Chip (NoC) User Guide

1.7.4. Wire-Level Connectivity

Wire-level connectivity enables you to manipulate wire-level connections in the system
level view of Platform Designer. For example, you can enter a Verilog style syntax
expression to drive an input port of an IP component. You can implement wire-level
connectivity with the Platform Designer GUI or with the qsys-script utility.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

66

https://www.intel.com/content/www/us/en/docs/programmable/768844.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

After applying the expression, the port you specify moves from the current interface
into a Wire-Level Endpoint interface. The new interface name appends _wirelevel
to the existing interface name. If you remove the wire-level expression, the port
restores to the original interface. However, not all interfaces are restorable to legal
interfaces after certain ports change. Moving a port from its original interface might
result in validation errors on the original interface.

After you move a port to a Wire-Level Endpoint interface, wire-level expressions
must drive all bits in the vector. You cannot connect ports contained within this new
interface type to any other interfaces.

The following general rules apply to wire-level expressions:

• Wire-level connectivity is only available on optional input ports.

• Wire-level expressions can consist of input, output, and bi-directional ports,
constant values, and logic terms using standard Verilog syntax.

• Wire-level expressions can only consist of ports within the same level of hierarchy.
If you require elements from a higher or lower hierarchy, you must export the
appropriate elements to the same hierarchical context.

• You can apply multiple expressions to a single input port unless they collide or
cause bus contention.

• You must resolve validation errors occurring on the original interface for the
interface to function correctly.

Platform Designer validates the wire-level expressions and provides messages for
syntax, port existence, and other systematic errors. This validation includes the
following:

• Validation of Verilog syntax.

• Warning if any sub-operator elements don’t match bit size.

• Warning if resulting combined bit size does not match the driven input port.

• Validation that all module and port names exist.

• Validation that all ports in a wire-level interface are input ports.

• Validation that all wire-level expressions drive each input port within a wire-level
interface.

• Validation of no bus-contention, meaning that no one wire is driven by more than
one expression.

• In a composed _hw.tcl module, validation that all ports driven by wire-level
expressions are not in any connection.

• In a composed _hw.tcl module, validation that all ports driven by wire-level
expressions are not exported.

After you define wire-level expressions, generate the system to create the Verilog
files. When the Platform Designer GUI or qsys-script utility applies the expression,
the expression inserts into the Verilog wrapper file that generates for your system.
When you apply the wire-level connections with composed _hw.tcl commands, the
wire-level expression inserts in the IP component's Verilog wrapper file.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.4.1. Editing Wire-Level Expressions

After you add a wire-level expression to an optional input port, you can add, edit, or
remove wire-level expressions and connections in the Platform Designer GUI.

Follow these steps to edit wire-level expressions in the Platform Designer GUI:

1. To specify a new wire-level expression, right-click an input port in the Hierarchy
tab and click Add Wire-Level Expression. The Edit Wire-Level Expression
dialog box appears.

2. To construct the expression, drag operators or ports from the list of operators or
ports, and drop them into the expression field. Refer to Wire-Level Expression
Syntax on page 69 for a list of legal operators.

3. Click the text field at the top of the Edit Wire-Level Expression dialog box and
press the Down Arrow key to enable the expression assistant. The assistant
provides a context sensitive list of available operators at the cursor position.

Figure 68. Edit Wire-Level Expression Dialog Box

4. Modify the elements of the expression in the workspace:

• To add a value to an expression, right-click a node and select Insert Value.

• Double-click on a value to enter a numeric value or port name.

• Click an operator node to change the operator type.

• Reorder nodes or move nodes between operators by dragging them.

5. To manage all wire-level expressions, click View ➤ Wire-Level Expression
Editor. The Wire-Level Expression Editor allows you to add new wire-level
expressions, edit, or remove existing wire-level expressions.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 69. Wire-Level Expression Editor

1.7.4.2. Wire-Level Expression Syntax

The wire-level expression derives from Verilog syntax. The following is an example
and list of legal operators and elements that you can use for wire-level expressions.

Example Expressions:

foo1.port1[5:0] = foo2.port1[5:0]
foo3.port1[8:4] = foo5.port1[4:0] & 5’b10101
foo6.port1[0] = ‘b1
foo7.port1 = foo8.port1
foo9.port1[0] = ~foo10.port1[0]
foo10.port1[3:0] = foo11.port2[1:0] + 4’b1100
foo12:port1[3:0] = {4{0}}
foo13.port1[7:0] = {foo14.port1[3:0], 4’b0011}

Table 8. Ports

Port Description

<instance_name>.<port_name> Whole port

<instance_name>.<port_name>[x] Wire x of port

<instance_name>.<port_name>[y:x] Wires x to y of port. Port ranges must be in decreasing
order, for example a[1:0].

<constant base x values> For example: 1, ’b1, 4’hf, 4’o7, 32’d9

Table 9. Operators (Bitwise)

Operator Description

~ Negation

& AND

| OR

~& NAND

continued...

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operator Description

~| NOR

^ XOR

~^ XNOR

Table 10. Operators (Logical)

Operator Description

? Conditional

! Negation

&& AND

|| OR

Table 11. Operators (Relational, Equality, and Shift)

Operator Description

> Greater Than

< Less Than

>= Greater Than or Equal To

<= Less Than or Equal To

== Equal To

!= Not Equal To

<< Shift Left

>> Shift Right

Table 12. Operators (Mathematical)

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

Table 13. Operators (Other)

Operator Description

{integer {x}} Replication of x

{x, y, ...} Concatenation

1.7.4.3. Adding or Removing Ports from Wire-Level Endpoint Interfaces

You can quickly add or remove ports from wire-level interfaces.

Follow these steps to add or remove ports from wire-level endpoint interfaces:

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To move the port to a wire-level endpoint interface, in the Hierarchy tab, right-
click a port and then click Move Port to Wire-Level Interface. After you move a
port to a wire-level endpoint interface, you can view and edit it in the Component
Instantiation tab.

2. To remove the port from a wire-level endpoint interface, in the Hierarchy tab,
right-click a port and then click Remove Port from Wire-Level Interface.

1.7.4.4. Scripting Wire-Level Expressions

Platform Designer supports system scripting commands to apply wire-level
expressions to input ports in IP components.

The following commands function with the qsys-script utility or in a _hw.tcl file
to set, retrieve, or remove an expression on a port:

set_wirelevel_expression <instance_or_port_bit> <expression>
get_wirelevel_expressions <instance_or_port_bit>
remove_wirelevel_expressions <instance_or_port_bit

These commands require a string that you compose from the left-handed and right-
handed components of the expression. Platform Designer reports errors in syntax,
existence, or system hierarchy.

Related Information

• Wire-Level Connection Commands on page 633

• set_wirelevel_expression on page 633

• get_wirelevel_expressions on page 634

• remove_wirelevel_expressions on page 635

1.8. Specifying Interconnect Parameters

Specify system-wide or domain-specific interconnect parameters on the Domains tab.
Interconnect parameters allow you to customize the implementation of the system
interconnection.

The Domains tab displays the memory mapped interfaces in your system, and allows
you to specify legal values for available system-level or interface parameters. While
specifying parameters, you can click Show System with Interconnect to view a
schematic preview of the Platform Designer complete system interconnect.

Follow these steps to specify interconnect parameters:

1. Open or create a Platform Designer system.

2. Click View ➤ Domains.

3. Under Memory Mapped Domains, select one or more domains.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 70. Domains Tab

4. On the Domain tab, specify values for interconnect parameter settings, as
Interconnect Parameters on page 73 describes.

5. To view a preview of the Platform Designer complete system interconnect, click
Show System with Interconnect. Refer to Previewing the System Interconnect
on page 74 for detailed description of this preview.

6. To manually add pipeline stages to the interconnect schematic, refer to Add
Pipeline Stages to the Interconnect Schematic on page 330.

Related Information

• Avalon Interface Specifications

• Correcting Platform Designer System Timing Issues on page 76

• Interconnect Pipelining on page 328

• Burst Adapter on page 273

• Width Adaptation on page 271

• Platform Designer Interconnect on page 251

• Reset Interfaces on page 316

• Domains and Interfaces on page 483

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

72

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.1. Interconnect Parameters

The following parameters are available on the Domains tab:

Table 14. Interconnect Parameters

Option Description

Enable all pipeline
stages

• FALSE—default setting. The Limit interconnect pipeline stages to value and post-
adaptation assignments control pipeline insertion.

• TRUE—enables all pipeline stages within this domain. Ignores the Limit interconnect
pipeline stages to and any post-adaptation assignment. Also disables manual editing of
pipelines in the schematic. Although this setting ignores post-adaptation assignments, the
assignments still remain in the design.

Limit interconnect
pipeline stages to

Specifies the maximum number of pipeline stages that Platform Designer can insert in each
command and response path to increase the fMAX at the expense of additional latency.
You can specify between 0 and 4 as the maximum number of pipeline stages to insert. The
default value is 1. A value of 0 indicates no pipelines and a combinational datapath. When you
specify 1 or greater, Platform Designer inserts up to the number you specify, depending on
availability of pipeline locations.
Note: If certain adapters or IP components are not present in the interconnect, or if there are

not enough pipelineable locations in the interconnect, Platform Designer does not add all
of the pipeline stages specified. Click Show System with Interconnect to view the
number of stages added for a particular domain.

Clock crossing
adapter type

Specifies the default implementation for automatically inserted clock crossing adapters:
• Handshake—this adapter uses a simple handshaking protocol to propagate transfer control

signals and responses across the clock boundary. This methodology uses fewer hardware
resources because each transfer is safely propagated to the target domain before the next
transfer can begin. The Handshake adapter is appropriate for systems with low throughput
requirements.

• FIFO—this adapter uses dual-clock FIFOs for synchronization. The latency of the FIFO-
based adapter is a couple of clock cycles more than the handshaking clock crossing
component. However, the FIFO-based adapter can sustain higher throughput because it
supports multiple transactions at any given time. FIFO-based clock crossing adapters
require more resources. The FIFO adapter is appropriate for memory-mapped transfers
requiring high throughput across clock domains.

• Auto—if you select Auto, Platform Designer specifies the FIFO adapter for bursting links,
and the Handshake adapter for all other links.

Automate default
slave insertion

Directs Platform Designer to automatically insert a default Avalon agent or AXI subordinate for
undefined memory region accesses during system generation.(2)

Enable
instrumentation

When you set this option to TRUE, Platform Designer enables debug instrumentation in the
Platform Designer interconnect, which then monitors interconnect performance in the system
console.

Interconnect reset
source

Select Default or a specific reset signal in your design.

Burst adapter
implementation

Allows you to choose the converter type that Platform Designer applies to each burst.
• Generic converter (slower, lower area)—default setting. Controls all burst conversions

with a single converter that is able to adapt incoming burst types. This results in an adapter
that has lower fMAX, but smaller area.

• Per-burst-type converter (faster, higher area)—controls incoming bursts with a
particular converter, depending on the burst type. This results in an adapter that has higher
fMAX, but higher area. This setting is useful when you have AXI managers or subordinates
and you want a higher fMAX.

continued...

(2) This document now refers to the Avalon "host" and "agent," and the AXI "manager" and
"subordinate," to replace former terms. Refer to the current AMBA AXI and ACE Protocol
Specification for the latest AMBA AXI and ACE protocol terminology.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Width adapter
implementation

• Generic converter (slower, lower area)—default. Controls all width adaptations with a
single converter that is able to adapt incoming widths. This results in an adapter that has
lower fMAX, but smaller area.

• Optimized converter (faster, higher area)—controls width adaptations with a particular
converter, depending on the width. This results in an adapter that has higher fMAX, but
higher area. This setting is useful when you have AXI managers or subordinates and you
want a higher fMAX.

Enable ECC protection Specifies the default implementation for ECC protection for memory elements.
• FALSE—default. Disables ECC protection for memory elements in the Platform Designer

interconnect.
• TRUE—enables ECC protection for memory elements. Platform Designer interconnect sends

uncorrectable errors arising from memory as DECODEERROR (DECERR) on the Avalon
response bus.

For more information about Error Correction Coding (ECC), refer to Error Correction Coding
(ECC) in Platform Designer Interconnect on page 331.

Use synchronous
reset

When set to TRUE, all registers in the interconnect use synchronous reset. Assert the reset for
at least 16 cycles and start transactions 16 cycles after deassertion of the reset. This period
allows all the IP components to reset and come out of the reset state. To avoid deadlocks in the
interconnect, reset hosts and agents simultaneously. If hosts and agents have different resets,
agents must reset only after responding to all necessary transactions. The Use synchronous
reset option is enabled by default for Hyperflex® architecture devices, but is disabled by
default for all other devices. Enabling synchronous reset for the interconnect does not enable
synchronous reset for IP components in the system. You must separately enable the
synchronous reset parameter for any component.

Optimize size for
Avalon Response Data
Fifo

When enabled, Platform Designer does not increase the size of the Avalon interface agent read
FIFO to the next power of 2. You can enable this setting to decrease the size of the FIFO if
needed.

Response FIFO Type Specifies the implementation method for the Platform Designer response FIFO that stores
information for processing of response in the interconnect, such as width adaptation and
routing to the Avalon host or AXI manager. The following options are available:
• Register Based—default option that implements the response FIFO using registers. When

Register Based is selected, FIFO uses the LUT’s to hold responses. This consumes more
LUT’s, but the minimum response latency is 1.

• Embedded Memory Based—implements the response FIFO using M20K memory blocks,
rather than LUTs. When you specify Embedded Memory Based, the minimum response
latency is 3, and FIFO consumes far fewer LUT resources, but consumes M20K memory
resources.

1.8.2. Previewing the System Interconnect

You can review a graphical representation of the Platform Designer interconnect before
you generate the system. The System with Platform Designer Interconnect window
Platform Designer's conversion of connections between interfaces to interconnect logic
during system generation.

To open the System with Platform Designer Interconnect window, click System ➤
Show System With Platform Designer Interconnect, or click the Show System
With Interconnect button in the Domains tab.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 71. System with Platform Designer Interconnect window

The System with Platform Designer Interconnect window has the following tabs:

• System Contents—displays the original instances in your system, as well as the
inserted interconnect instances. Connections between interfaces are replaced by
connections to interconnect where applicable.

• Schematic—displays a schematic representation that shows the multiple
interconnects together as a complete system.

• Hierarchy—displays a system hierarchical navigator, expanding the system
contents to show modules, interfaces, signals, contents of subsystems, and
connections.

• Parameters—displays the parameters for the selected element in the Hierarchy
tab.

• Memory-Mapped Interconnect—allows you to select a memory-mapped
interconnect module and view its internal command and response networks. You
can also insert pipeline stages to achieve timing closure.

The System Contents, Hierarchy, and Parameters tabs are read-only. Edits that
you apply on the Memory-Mapped Interconnect tab are automatically reflected on
the Interconnect Requirements tab.

The Memory-Mapped Interconnect tab in the System with Platform Designer
Interconnect window displays a graphical representation of command and response
datapaths in your system. Datapaths allow you precise control over pipelining in the
interconnect, as Add Pipeline Stages to the Interconnect Schematic on page 330
describes. Platform Designer displays separate figures for the command and response
datapaths. You can access the datapaths by clicking their respective tabs in the
Memory-Mapped Interconnect tab.

Each node element in a figure represents either a host or agent that communicates
over the interconnect, or an interconnect sub-module. Each edge is an abstraction of
connectivity between elements, and its direction represents the flow of the commands
or responses.

Click Highlight Mode (Path, Successors, Predecessors) to identify edges and
datapaths between modules. Turn on Show Pipelinable Locations to add greyed-out
registers on edges where pipelining is allowed in the interconnect.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.9. Correcting Platform Designer System Timing Issues

You can help alleviate Platform Designer system timing issues by adjusting the
following interconnect parameters on the Domains tab:

• Limit interconnect pipeline stages to—increase the use of interconnect
pipeline stages in each command and response path by increasing the value of
this option up to 4. Platform Designer can insert up to four pipeline stages,
depending on availability of pipeline locations, at the possible expense of
additional latency and area. The default value is 1 pipeline stage.

• Burst adapter implementation—enable the HiConnect converter (Improved
timing and area) or Per-burst-type HiConnect converter (faster, higher
area) implementation to control incoming bursts with optimized burst adapters.
These settings produce an adapter that has improved timing, but may require
more device resources for implementation.

• Width adapter implementation—enable the Optimized converter (faster,
higher area) implementation to control width adaptation with a particular
converter. This setting produces an adapter that has higher fMAX, but requires
more device resources for implementation.

Figure 72. Correcting Platform Designer System Timing Issues with Domains Tab
Settings

Note: To manually add pipeline stages to the interconnect schematic, refer to Add Pipeline
Stages to the Interconnect Schematic on page 330.

Related Information

• Specifying Interconnect Parameters on page 71

• Interconnect Pipelining on page 328

• Burst Adapter on page 273

• Width Adaptation on page 271

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10. Specifying Signal and Interface Boundary Requirements

If you export an interface that does not match the interface requirements of the
system, Platform Designer generates component instantiation errors. You must match
all the exported interfaces with the interface requirements of the system.

The Interface Requirements tab allows you to assign a component's top-level HDL
module signals to an interface, specify the expected signal and interface boundary
requirements for the interface, and to resolve any interface requirement mismatches.
You can also modify the signal names in an exported interface.

1. Click View ➤ Interface Requirements.

2. To load the interface requirements from a Platform Designer system, click Import
Interface Requirements in the Interface Requirements table. Select
the .ipxact representation of the Platform Designer system.

3. To manually add new interface or signal requirements, click <<add interface>> or
<<add signal>> in the Interface Requirements table.

4. To correct the mismatches, select the missing or mismatched interface or signal in
the Current System table and click >>.

Note: Platform Designer highlights the mismatches between the system and
interface requirements in blue, and highlights the missing interfaces and
signals in green.

5. To rename an exported signal or interface, use any of the following methods:

• Double-click the signal or interface in Current System table.

• Select the signal or interface in the Current System table and press F2.

• Select the signal or interface in the Current System table and rename from
the Current Parameters pane at the bottom of the tab. The Current
Parameters pane displays all the parameters of the selected interface or
signal.

Figure 73. Interface Requirements Tab

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Editing Exported Interface Signal Names on page 78

1.10.1. Interface Requirements Tab Fields

The Platform Designer Interface Requirements tab contains the following fields.

Table 15. Interface Requirements Tab Fields

Name Description

Current System Displays all the exported interfaces in the current Platform Designer system. Add
or remove the interfaces in the Current System by adding or removing
components from the System View tab.

Interface Requirements This table shows all the interface requirements set for the current Platform
Designer system.

Parameter Differences This table lists the Parameter Name, Current System Value, and Interface
Requirement Value for the selected mismatched interface.
Note: The Interface Requirements tab highlights in blue the signals and

interfaces that are the same, but have different parameter values.
Selecting a blue item populates the Parameter Differences table.

Import Interface Requirements This button allows you to populate the Interface Requirements table from an
IP-XACT(3) file representing a generic component or an entire Platform Designer
system.

Parameters This table lists the signal and interface parameters for the selected interface.
You can view the table as Current Parameters when you select an interface or
signal from the Current System table, and as Required Parameters when you
select the signal or interface from Interface Requirements table.
You can modify the name of the exported signal or interface from this table. For
more information about how to edit the name of an exported signal or interface,
refer to Edit the Name of Exported Interfaces and Signals.

1.10.2. Editing Exported Interface Signal Names

To rename an exported signal or interface:

• Double-click the signal or interface in Current System table.

• Select the signal or interface in the Current System table. Edit the interface or
signal's parameters in the Current Parameters pane.

Figure 74. Editing the Name of Exported Interfaces and Signals

Note: All other parameters in the Current Parameters except Name are read-only for the
current system.

(3) Platform Designer supports importing and exporting files in IP-XACT 2009 format and
exporting IP-XACT files in 2014 format.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.11. Configuring Platform Designer System Security

Specify system or interconnect Security requirements on the Domains tab.

Platform Designer interconnect supports the Arm TrustZone® security extension. The
Platform Designer Arm TrustZone security extension includes secure and non-secure
transaction designations, and a protocol for processing between the designations.(4)

The AXI AxPROT protection signal specifies a secure or non-secure transaction. When
an AXI manager sends a command, the AxPROT signal specifies whether the
command is secure or non-secure. When an AXI subordinate receives a command, the
AxPROT signal determines whether the command is secure or non-secure.
Determining the security of a transaction while sending or receiving a transaction is a
run-time protocol.

AXI managers and subordinates can be TrustZone-aware. All other host and agent
interfaces, such as Avalon memory mapped interfaces, are non-TrustZone-aware.

The Avalon specification does not include a protection signal. Consequently, when an
Avalon host sends a command, there is no embedded security and Platform Designer
recognizes the command as non-secure. Similarly, when an Avalon agent receives a
command, the agent always accepts the command and responds.

To set compile-time security support for non-TrustZone-aware components:

1. To begin creating a secure system, add Avalon hosts and agents and AXI
managers and subordinates to your system, as Adding IP Components to a
System describes.

2. Make connections between the hosts and agents and between the managers and
subordinates in your system, as Connecting Hosts and Agents describes.

3. Click View ➤ Domains.

Figure 75. Security Settings in Domains Tab

4. To specify security requirements for an interconnect, click the Interface tab under
Interconnect Parameters,

(4) This document now refers to the Avalon "host" and "agent," and the AXI "manager" and
"subordinate," to replace formerly used terms with inclusive language. Refer to the current
AMBA AXI and ACE Protocol Specification for the latest AMBA AXI and ACE protocol
terminology.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Click the Add button.

6. In the Identifier column, select the interconnect in the new_target cell.

7. In the Setting column, select Security.

8. In the Value column, select the appropriate Secure, Non-Secure, Secure
Ranges, or TrustZone-aware security for the interface. Refer to System
Security Options for details of each option.

9. After setting compile-time security options for non-TrustZone-aware manager and
subordinate interfaces, you must identify those managers that require a default
subordinate before generation, as Specifying a Default Avalon Agent or AXI
Subordinate describes.

Related Information

• Platform Designer Interconnect on page 251

• Platform Designer System Design Components on page 367

1.11.1. System Security Options

Table 16. Security Options

Option Description

Secure The Avalon host or AXI manager sends only secure transactions, and the Avalon agent
or AXI subordinate receives only secure transactions. Platform Designer treats
transactions from a secure manager as secure. Platform Designer blocks non-secure
transactions to a secure agent or subordinate and routes to the default agent or
subordinate.

Non-Secure The host or manager sends only non-secure transactions, and the agent or subordinate
receives any transaction, secure or non-secure. Platform Designer treats transactions
from a non-secure host or manager as non-secure. Platform Designer allows all
transactions, regardless of security status, to reach a non-secure agent or subordinate.

Secure Ranges Applies to only the agent or subordinate interface. Allows you to specify secure memory
regions for an agent or subordinate. Platform Designer blocks non-secure transactions
to secure regions and routes to the default agent or subordinate. The specified address
ranges within the agent or subordinate's address span are secure, all other address
ranges are not. The format is a comma-separated list of inclusive-low and inclusive-
high addresses, for example, 0x0:0xfff,0x2000:0x20ff

TrustZone-aware TrustZone-aware managers have signals that control the security status of their
transactions. TrustZone-aware subordinates can accept these signals and handle
security independently.
The following applies to secure systems that mix secure and non-TrustZone-aware
components:
• All AXI, AMBA 3 AXI, and AMBA 3 AXI-Lite managers are TrustZone-aware.
• You can set AXI, AMBA 3 AXI, and AMBA 3 AXI-Lite subordinates as TrustZone-

aware, secure, non-secure, or secure range ranges.
• You can set non-AXI host interfaces as secure or non-secure.
• You can set non-AXI agent interfaces as secure, non-secure, or secure address

ranges.

1.11.2. Specifying a Default Avalon Agent or AXI Subordinate

If an AXI manager issues "per-access" or "not allowed" transactions, your design must
contain a default subordinate. Per-access refers to the ability of a TrustZone-aware
AXI manager to allow or disallow access or transactions.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can achieve an optimized secure system by partitioning your design and carefully
designating secure or non-secure address maps to maintain reliable data. Avoid a
design that includes a non-secure AXI manager or Avalon host that initiates
transactions to a secure subordinate or agent resulting in unsuccessful transfers,
within the same hierarchy.

A transaction that violates security is rerouted to the default subordinate or agent and
subsequently responds to the AXI manager or Avalon host with an error. The following
rules apply to specifying a default subordinate or agent:

• You can designate any AXI subordinate or Avalon agent as the default subordinate
or agent.

• You can share a default subordinate or agent between multiple AXI managers or
Avalon hosts, respectively.

• You should have one default subordinate or agent for each interconnect domain.

• An interconnect domain is a group of connected memory-mapped managers and
subordinates or hosts and agents that share the same interconnect. The
altera_error_response_slave component includes the required TrustZone
features.

• Note: If you do not specify a value for the Default Slave option, and the
Automate default slave insertion option is off, Platform Designer
automatically assigns the AXI subordinate or Avalon agent in the system.
Platform Designer automatically assigns the AXI subordinate or Avalon
agent that has largest address span within the memory map for the issuing
AXI manager or Avalon host. In the case of multiple, large AXI subordinates
or Avalon agents that have the same address span, Platform Designer
selects the AXI subordinate or Avalon agent at the lowest base offset.

To designate a subordinate or agent interface as the default subordinate or agent for
non-TrustZone-aware interfaces, follow these steps:

1. Specify interconnect security settings, as Configuring Platform Designer System
Security on page 79 describes.

2. In the System View, right-click any column and turn on the Security and
Default Slave columns.

3. In the System View tab, turn on the Default Slave option for the subordinate or
agent interface. A manager or host can have only one default subordinate or
agent.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 76. Security and Other Columns

Table 17. Secure and Non-Secure Access Between Manager or Host, Subordinate or
Agent, and Memory Components

Transaction Type TrustZone-aware
manager

Non-TrustZone-aware
manager/host

Secure

Non-TrustZone-aware
manager/host

Non-Secure

TrustZone-aware subordinate memory OK OK OK

Non-TrustZone-aware subordinate/
agent (secure)

Per-access OK Not allowed

Non-TrustZone-aware subordinate/
agent (non-secure)

OK OK OK

Non-TrustZone-aware memory (secure
region)

Per-access OK Not allowed

Non-TrustZone-aware memory (non-
secure region)

OK OK OK

Related Information

• Error Response Slave Intel FPGA IP on page 390

• Designating a Default Agent on page 396

1.11.3. Accessing Undefined Memory Regions

Access to an undefined memory region occurs when a transaction from an AXI
manager or Avalon host targets a memory region unspecified in the AXI subordinate
or Avalon agent memory map. To ensure predictable response behavior when this
condition occurs, you must specify a default subordinate or agent, as Specifying a
Default Avalon Agent or AXI Subordinate on page 80 describes.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can designate any memory-mapped subordinate or agent as a default subordinate
or agent. You may have only one default subordinate or agent for each interconnect
domain in your system. Platform Designer then routes undefined memory region
accesses to the default subordinate or agent, which terminates the transaction with an
error response.

Note: If you do not specify a value for the Default Slave option, and the Automate
default slave insertion option is off, Platform Designer automatically assigns the AXI
subordinate or Avalon agent in the system. Platform Designer automatically assigns
the AXI subordinate or Avalon agent that has largest address span within the memory
map for the issuing AXI manager or Avalon host. In the case of multiple, large AXI
subordinates or Avalon agents that have the same address span, Platform Designer
selects the AXI subordinate or Avalon agent at the lowest base offset.

Accessing undefined memory regions can occur in the following cases:

• When there are gaps within the accessible memory map region that are within the
addressable range of subordinate or hosts, but are not mapped.

• Accesses by a manager or host to a region mapped to that manager or host that
does not belong to any subordinates or agents.

• When a non-secured transaction is accessing a secured subordinate. This applies
to only subordinates that are secured at compilation time.

• When a read-only subordinate or agent is accessed with a write command, or a
write-only subordinate or agent is accessed with a read command.

1.12. Upgrading Outdated IP Components in Platform Designer

When you open a Platform Designer system containing outdated IP components, you
can retain and use the RTL of previously generated IP components within the Platform
Designer system. If Platform Designer is unable to locate the IP core’s original version,
you cannot re-parametrize the IP core without upgrading the IP core to the latest
version. However, Platform Designer allows you to view the parametrization of the
original IP component without upgrading.

To upgrade individual IP components in your Platform Designer system:

1. Click View ➤ Parameters.

2. Select the outdated IP component in the Hierarchy or the System View tab.

3. Click the Parameters tab. This tab displays information on the current version, as
well as the installed version of the selected IP component.

4. Click Upgrade. Platform Designer upgrades the IP component to the installed
version, and deletes all the RTL files associated with the IP component.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 77. Upgrade IP Component in your Platform Designer System

To upgrade an IP component from the command-line, type the following:

qsys-generate --upgrade-ip-cores <ip_file>

To upgrade all the IP components in your Platform Designer system, open the
associated project in the Quartus Prime software, and click Project ➤ Upgrade IP
Components.

1.13. Synchronizing System Component Information

When a component instantiation values do not match the component's
corresponding .ip file, Platform Designer reports these mismatches as Component
Instantiation Warnings in the System Messages tab.

You must synchronize any mismatches between the component instantiation, and the
component's corresponding .ip prior to system generation.

Follow these steps to synchronize one or more components in your system:

1. Select the mismatched signal or interface in the System View tab, and then click
View ➤ System Info. Alternatively, you can double-click the corresponding
Component Instantiation Warning in the System Messages tab.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 78. System Info Tab

Compares Component
Instantiation Values
with IP File Values

Synchs All Values
for Selected Component

Displays Specific
Value Comparison

Synchs All Values
for Entire System

Automatically Synchs
 Current Component

2. View any component mismatches in the System Info tab. Select individual
interfaces, signals, or parameters to view the specific value differences in the
Component and IP file columns. Value mismatches between the Component
Instantiation and the IP file appear in blue. Missing elements appear in green.

3. To synchronize the Component Instantiation and IP file .ip values in the
system, perform one or more of the following:

• Select a specific mismatched parameter, interface, or signal and click >> to
synchronize the items.

• Click Sync All to synchronize all values for the current component.

• Click Sync System Infos to synchronize all IP components (except "Missing
Items") in the current system at once.

Note: The following guidelines apply to synchronizing system elements that
Platform Designer identifies as "Different Items" and "Missing Items":

• You can synchronize "Different Items" but not "Missing Items."

• For "Missing Items," you must replace the IP component in the Platform
Designer system to ensure that the number and names of the
parameters match.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.13.1. System Info Tab Fields

Table 18. System Info Tab Fields

Name Description

Component Instantiation Lists the signals and interfaces for the selected component with respect to the
component instantiation. Value mismatches between the Component Instantiation
and the IP file appear in blue. Missing elements appear in green.

IP file Lists the signal and interface information with respect to the .ip file. Value
mismatches appear in blue. Missing elements appear in green.

Component Column Displays the selected interface parameter value with respect to the Component
Instantiation.

IP File Value Displays the selected interface parameter value with respect to the IP file.

>> Manually synchronizes the selected mismatch between signals and interfaces in the
Component Instantiation and the IP file.

Sync All Synchronizes Component Instantiation and IP file mismatches in the current
system.

1.14. Validating System Integrity

You can use any of the following methods to validate Platform Designer system
integrity.

• To perform system integrity check for the entire system, click the Validate
System Integrity button at the bottom of main Platform Designer window. If
validation finds errors, click Reload and Update All Components to reload
signal and interface values from the corresponding IP component file.

Figure 79. Validating System Integrity

• View any errors and warnings on the System Messages tab. Double-click the
warning or error messages to locate the issue in the System View or
Parameters tab to correct the issue. Platform Designer generates the following
types of system validation errors and warnings:

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 19. System Messages Types in Platform Designer

System Messages Types Description

Component Instantiation Warning Indicates the mismatches between system information parameters or IP core
parameterization errors. A system information parameters mismatch refers to the
mismatch between an IP component's system parameter expectations and the
component's saved system information parameters in the corresponding .ip file.
For example:
• Interface types do not match
• Interface is missing
• Port has been moved to another interface
• Port role has changed
• Interface assignment is mismatched
• Interface assignment is missing

Component Instantiation Error Indicates the mismatches between HDL entity name, compilation library, or ports
which results in downstream compilation errors. The component instantiation
errors always indicate the fundamental mismatches between generated system
and interconnect fabric RTL. For example:
• Port is missing from the ip file
• Port is missing from instantiation
• Port direction has changed
• Port HDL type has changed
• Port width has changed
• Interface Parameter is mismatched
• Interface Parameter is missing

System Connectivity Warning Platform Designer system connectivity warnings.

System Connectivity Error Platform Designer system connectivity errors.

1.14.1. Validating the System Integrity of Individual Components

To validate the system integrity for your IP components:

1. Select the IP component in the System View tab.

2. Right-click and select Validate Component Footprint to check for any
mismatches between the IP component and its .ip file representation.

3. If there are any errors, click Reload Component Footprint to reload the signals
and interfaces for the component from the .ip file.

1.15. Preserving System Elements for Debug

The Compiler optimizes the module, interface, and port names in your Platform
Designer system during synthesis and place-and-route. Unless preserved, the module,
interface, and port names in your system may not exist in the post-fit netlist after
optimizations. For example, synthesis can merge duplicate registers, or add tildes (~)
to net names that fan-out from a node.

You can use any of the following methods to prevent synthesis from performing
optimizations on specific modules, interfaces, or port names, allowing the names to
persist into the post-fit netlist for Signal Tap and other debug monitoring.

1. Enable preserve for debug using any of the following methods:

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• On the System View tab, right-click any module, interface or port, and click
Preserve for Debug in the context menu.

• On the Filter tab, right-click any module, interface, or port, and click
Preserve for Debug in the context menu. A green icon color in the Filter tab
indicates that preservation is applied.

Applying Preserve for Debug adds corresponding assignments to the .qip.
Once applied, you can verify the assignments are correct in the .qip.

2. Recompile the design to apply the Preserve for Debug and view the preserved
nodes following compilation.

Figure 80. Preserve for Debug from System View

Note: For more information about preserving signals, refer to Preserving Registers During
Synthesis, in Hyperflex Architecture High-Performance Design Handbook. Specifying
preservation synthesis attributes may increase device resource utilization or decrease
timing performance when the attribute is active.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.16. Generating a Platform Designer System

Platform Designer system generation creates the interconnect between IP
components, and generates files for Quartus Prime synthesis and simulation in
supported third-party tools.

If you make changes to your system, Platform Designer prompts you to generate your
system before closing. Generate your system to ensure that the Compiler includes any
changes you make to your system.

Follow these steps to generate a Platform Designer system:

1. Open a system in Platform Designer.

2. Consider whether to specify a unique generation ID, as Specifying the Generation
ID on page 91 describes.

Figure 81. Platform Designer Generation Dialog Box

3. Click the Generate HDL button. The Generation dialog box appears.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Specify options for generation of Synthesis, Simulation, and testbench files, as
Generation Dialog Box Options on page 90 describes.

5. Consider whether to specify options for Parallel IP Generation, as Disabling or
Enabling Parallel IP Generation on page 92 describes.

6. To start system generation, click Generate.

Note: Platform Designer may add unique suffixes (hashes) to ip component files
during generation to ensure uniqueness of the file. The uniqueness of the
files is necessary because the IP component is dynamic. The RTL generates
during runtime, according to the input parameters. This methodology
ensures no collisions between the multiple variants of the same IP. The hash
derives from the parameter values that you specify. A given set of
parameter values produces the same hash for each generation.

1.16.1. Generation Dialog Box Options

Platform Designer system generation creates files for Quartus Prime synthesis and
supported third-party simulators. The Generation dialog box appears when you click
Generate HDL, or when you attempt to close a system prior to generation.

By default, the synthesis and simulation files generate into the Platform Designer
project directory.

You can specify the following system generation options in the Generation dialog
box:

Table 20. Generation Dialog Box Options

Option Description

Create HDL design files for synthesis Allows you to specify Verilog or VHDL file type generation for the
system's top-level definition and child instances. Select None to skip
generation of synthesis files.

Create timing and resource estimates for
each IP in your system to be used with
third-party synthesis tools

Generates a non-functional Verilog Design File (.v) for use by supported
third-party EDA synthesis tools. Estimates timing and resource usage for
the IP component. The generated netlist file name is
<ip_component_name>_syn.v.

Create Block Symbol File (.bsf) Generates a Block Symbol File (.bsf) for use in a larger system
schematic Block Diagram File (.bdf).

IP-XACT Generates an IP-XACT file for the system, and adds the file to the IP
Catalog.
Note: Platform Designer supports importing and exporting files in IP-

XACT 2009 format and exporting IP-XACT files in 2014 format.

Generate IP Core Documentation Generates the IP user guide documentation for the components in your
system (when available).

Create simulation model Generates Verilog HDL or VHDL simulation models and simulator setup
scripts. Enable the checkbox for one or more simulators to generate
setup scripts for those tools in the following location:

<top-level system name>/<system name>/<sim>/<simulator>

If you do not specify a simulator, the setup scripts generate for all
supported tools.

Clear output directories for selected
generation targets

Clears previous synthesis and simulation file generation data for the
current system.

Use multiple processors for faster IP
generation (when available)

Disables or enables parallel IP generation for faster IP generation using
multiple processors when available in your system.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Questa* Intel FPGA Edition simulator supports native, mixed-language (VHDL,
Verilog HDL, SystemVerilog) simulation. Therefore, Intel simulation libraries may not
be compatible with single language simulators. If you have a VHDL-only license, some
versions of ModelSim* simulators may not support simulation for IPs written in
Verilog. As a workaround, you can use the Questa Intel FPGA Edition simulator, or
purchase a mixed-language simulation license from Siemens EDA.

Related Information

List of Supported Simulators

1.16.2. Specifying the Generation ID

You can specify the Generation ID to uniquely identify that specific system
generation number. This parameter allows system tools, such as Nios II processor,
Nios V processor, or HPS (Hard Processor System) tools, to verify software-build
compatibility with a specific Platform Designer system.

The Generation ID parameter is a unique integer value that derives from the
timestamp during Platform Designer system generation. You can optionally modify this
value to a value of your choosing to identify the system.

To specify the Generation ID parameter:

1. In the Hierarchy tab, select the top-level system.

2. Click View ➤ Parameters.

3. Under System Identifier, view or edit the value of Generation ID.

Figure 82. Generation ID in Parameters Tab

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

91

https://www.intel.com/content/www/us/en/docs/programmable/683525.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.16.3. Disabling or Enabling Parallel IP Generation

By default, the Quartus Prime software and Platform Designer use multiple processors
if available in your PC or workstation for faster IP generation. IP generation for large
systems can be time consuming. The use of parallel IP generation can potentially
reduce the total IP generation time for designs with large numbers of IP.

The qsys-generate command line utility similarly uses parallel IP generation by
default when multiple processors are available. You can disable or enable the use of
parallel IP generation for the current IP generation, for the current project, or for all
projects. You can also specify the maximum number of processors to use for parallel
IP generation.

Disabling or Enabling Parallel IP Generation for the Current IP Generation

1. Open a system or IP component in Platform Designer, and click Generate HDL.

2. In the Generation dialog box, turn on or off Use multiple processors for
faster IP generation (when available). Platform Designer retains this setting
for subsequent generations.

Figure 83. Disables or Enables Parallel IP Generation for the Current IP Generation

Disabling or Enabling Parallel IP Generation for a Single Project

1. In the Quartus Prime software, click Assignments ➤ Settings ➤ Compilation
Process Settings.

2. Under Parallel IP Generation, select Disable parallel generation of current
Quartus project IPs to disable parallel IP generation for the current project.
Select Enable parallel generation of current Quartus project IPs to enable
parallel IP generation for the current project.

Figure 84. Enables or Disables Parallel IP Generation for a Single Project

Alternatively, you can disable or enable parallel IP generation for a project with the
following line in the project .qsf file:

set_global_assignment -name PROJECT_IP_GEN_PARALLEL_ENABLED <off|on>

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Disabling or Enabling Parallel IP Generation for all Projects

1. In the Quartus Prime software, click Tools ➤ Options ➤ IP Settings.

2. Under Parallel IP Generation, enable or disable the Enable parallel
generation of Quartus IPs in all projects option. When enabled, the Quartus
Prime software uses multiple processors (if available in your system) for faster IP
generation.

Figure 85. Enables or Disables Parallel IP Generation for all Projects

Alternatively, you can disable or enable parallel IP generation for all projects by adding
the following line to the quartus2.ini file:

ENABLE_PARALLEL_IP_GEN=<off|on>

Specifying the Maximum Number of Processors

Parallel IP generation derives the maximum number of processors to use from the
Maximum processors allowed Compiler setting. If you specify no value for this
setting, the Quartus Prime software selects an appropriate number based on the
available processors, and the number of tasks the processors can execute in parallel.

1. In the Quartus Prime software, click Assignments ➤ Settings ➤ Compilation
Process Settings.

2. Under Parallel compilation, specify the Maximum processors allowed for
processing designs.

Alternatively, you can set the number of processors with the following line in the
project .qsf file:

set_global_assignment -name NUM_PARALLEL_PROCESSORS <number>

For the qsys-generate command line utility, you can use the --
parallel[=<number>] argument, where <number> indicates the target number of
processors.

Related Information

qsys-generate Command-Line Options on page 444

1.16.4. Files Generated for Platform Designer Systems

The Quartus Prime Pro Edition software generates the following output file structure
for Platform Designer systems. Platform Designer automatically adds the
generated .qsys system file to the open Quartus Prime project following generation.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 86. Files generated for Platform Designer Systems

<Project Directory>

<your_system>_inst.v or .vhd - Lists file for IP core synthesis

<your_system>.qip - Lists files for IP core synthesis

<your_system>.debuginfo - Post-generation debug data

<your_system>_generation.rpt - IP generation report

<your_system>.bsf - Block symbol schematic file

<your_system>.ppf - XML I/O pin information file
<your_system>.html - Memory map data

<your_system>.cmp - VHDL component declaration

<your_system>.sip - NativeLink simulation integration file

<your_system>.spd - Combines individual simulation startup scripts

<your_system>.qsys - System File
<your_subsystem> .qsys - Subsystem File
<your_system_directory>
<your_subsystem_directory>

<your_system>.ipxact - IP XACT File

 _files.tcl

sim - IP simulation files

<simulator vendor>

<simulator vendor>

 - Simulator setup scripts

<your_system> .v or vhd - Top-level simulation file

synth - IP synthesis files

<your_ip> .v or .vhd - Top-level IP synthesis file

ip - IP files

<your_system> - - Your system directory

 <your_system>_ .ip - IP component parameters

<your_subsystem> - Your Subsystem directory

 <your_subsystem>_ .ip - Subsystem IP component parameters

<your_system>_bb.v - Verilog HDL black box EDA synthesis file

<your_system>.qgsimc - Simulation caching file
<your_system>.qgsynthc - Synthesis caching file

common - IP simulation script files

<your_ip>

<your_ip>

Table 21. Files Generated for Platform Designer Systems

File Name Description

<your_system>.qsys The Platform Designer system.

<your_subsystem>.qsys The Platform Designer subsystem.

ip/ Contains the parameter files for the IP components in the system and
subsystems.

<your_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that contains local
generic and port definitions that you can use in VHDL design files.

continued...

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Description

<your_system>_generation.rpt IP or Platform Designer generation log file. A summary of the messages during
IP generation.

<your_system>.qgsimc Simulation caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_system>.qgsynth Synthesis caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_system>.qip Contains all the required information about the IP component to integrate and
compile the IP component in the Quartus Prime software.

<your_system>.csv Contains information about the upgrade status of the IP component.

your_system.bsf A Block Symbol File (.bsf) representation of the IP variation for use in Block
Diagram Files (.bdf).

<your_system<>.spd Required input file for ip-make-simscript to generate simulation scripts for
supported simulators. The .spd file contains a list of files generated for
simulation, along with information about memories that you can initialize.

<your_system>.ppf The Pin Planner File (.ppf) stores the port and node assignments for IP
components created for use with the Pin Planner.

<your_system>_bb.v Use the Verilog black box (_bb.v) file as an empty module declaration for use
as a black box.

<your_system>.sip Contains information required for NativeLink simulation of IP components. Add
the .sip file to your Quartus Prime Standard Edition project to enable
NativeLink for supported devices. The Quartus Prime Pro Edition software does
not support NativeLink simulation.

<your_system>_inst.v or
_inst.vhd

HDL example instantiation template. Copy and paste the contents of this file
into your HDL file to instantiate the IP variation.

<your_system>.regmap If the IP contains register information, the Quartus Prime software generates
the .regmap file. The .regmap file describes the register map information of
host and agent interfaces. This file complements the .sopcinfo file by
providing more detailed register information about the system. This file enables
register display views and user customizable statistics in System Console.

<your_system>.svd Allows HPS System Debug tools to view the register maps of peripherals
connected to HPS within a Platform Designer system.
During synthesis, the Quartus Prime software stores the .svd files for agent
interface visible to the System Console hosts in the .sof file in the debug
session. System Console reads this section, which Platform Designer can query
for register map information. For system agents, Platform Designer can access
the registers by name.

<your_system>.v <your_ip>.vhd HDL files that instantiate each submodule or child IP core for synthesis or
simulation.

mentor/ Contains a ModelSim script msim_setup.tcl to set up and run a simulation.

aldec/ Contains a Riviera-PRO* script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS* simulation.
Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file to
set up and run a VCS MX simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and
run an NCSIM simulation.

continued...

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Description

/xcelium Contains a shell script xcelium_setup.sh and other setup files to set up and
run a Xcelium* simulation.

/common Contains a set of Tcl files, <simulator>_files.tcl, which provide all design
related simulation information required by a corresponding simulation script.
The Tcl file contains designs from current system-level hierarchy, and
references to sub-systems and IP components.

/submodules Contains HDL files for the IP core submodule.

<IP submodule>/ For each generated IP submodule directory, Platform Designer generates /
synth and /sim sub-directories.

For generated IP components, Platform Designer appends unique suffixes (hashes) to
the IP component’s RTL file name to ensure uniqueness of the RTL file and IP
component file. The uniqueness of the files is necessary because a system can have
multiple instances of the same IP, each with different parameterizations, resulting in
multiple variances of the IP component. The hash derives from the parameterization
that you specify for the IP component. This methodology ensures no collisions
between the multiple variants of the same IP.

1.16.5. Generating System Testbench Files

Platform Designer can generate testbench files that instantiate the current Platform
Designer system and add Bus Functional Models (BFMs) to drive the top-level
interfaces. BFMs interact with the system in the simulator.

You can generate a standard or simple testbench system with BFM or Mentor
Verification IP (for AMBA 3 AXI or AMBA 4 AXI) components that drive the external
interfaces of the system. Platform Designer generates a Verilog HDL or VHDL
simulation model for the testbench system to use in the simulation tool.

First generate a testbench system, and then modify the testbench system in Platform
Designer before generating the simulation model. Typically, you select only one of the
simulation model options.

Follow these steps to generate system testbench files:

1. Open and configure a system in Platform Designer.

2. Click Generate ➤ Generate Testbench System. The Generation dialog box
appears.

3. Specify options for the test bench system, as Testbench Generation Options
describes.

4. Click Generate. The testbench files generate according to your specifications.

5. Open the testbench system in Platform Designer. Make changes to the BFMs, as
needed, such as changing the instance names and VHDL ID value. For example,
you can modify the VHDL ID value in the Avalon Interrupt Source Intel FPGA
IP component.

6. If you modify a BFM, regenerate the simulation model for the testbench system.

7. Compile the system and load the Platform Designer system and testbench into
your simulator, and then run the simulation.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 87. Platform Designer Simulation Testbench Directory Structure

<system>.qsys

<system>.sopcinfo

<system>_tb

 <system>.html

 <system>.ipx

 <system>.regmap

 <system>_generation.rpt

 <system>_tb.html

 <system>_tb.qsys

 <system>_tb

 <system>_tb.csv

 <system>_tb.spd

 sim

 <HDL files>

 aldec

 cadence

 synopsys

 xcelium

 <Child IP core>

 sim

 <HDL files>

Output Directory Structure

 mentor

 common

Table 22. Testbench Generation Options

Option Description

Create testbench Platform
Designer system

Specifies a simple or standard testbench system:
• Standard, BFMs for standard Platform Designer Interconnect—Creates a

testbench Platform Designer system with BFM IP components attached to
exported Avalon and AMBA 3 AXI or AMBA 3 AXI interfaces. Includes any
simulation partner modules specified by IP components in the system. The
testbench generator supports AXI interfaces and can connect AMBA 3 AXI or
AMBA 3 AXI interfaces to Mentor Graphics AMBA 3 AXI or AMBA 3 AXI manager
and subordinate BFMs. However, BFMs support address widths only up to 32-bits.

• Simple, BFMs for clocks and resets—Creates a testbench Platform Designer
system with BFM IP components driving only clock and reset interfaces. Includes
any simulation partner modules specified by IP components in the system.

Create testbench simulation
model

Specifies Verilog HDL or VHDL simulation model files and simulation scripts for the
testbench. Use this option if you do not need to modify the Platform Designer-
generated testbench before running the simulation.

Output directory Specifies the path for output of generated testbench files. Turn on Clear output to
remove any previously generated content from the location.

Parallel IP Generation Turn on Use multiple processors for faster IP generation (when available) to
generate IP using multiple CPUs when available in your system.

1.16.5.1. Platform Designer Testbench Files

Platform Designer generates the following testbench files.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 23. Platform Designer Testbench Files

File Name or Directory Name Description

<system>_tb.qsys The Platform Designer testbench system.

<system>_tb.v

or
<system>_tb.vhd

The top-level testbench file that connects BFMs to the top-level interfaces of
<system>_tb.qsys.

<system>_tb.spd Required input file for ip-make-simscript to generate simulation scripts for
supported simulators. The .spd file contains a list of files generated for
simulation and information about memory that you can initialize.

<system>.html

and
<system>_tb.html

A system report that contains connection information, a memory map showing
the address of each agent with respect to each host to which it is connected, and
parameter assignments.

<system>_generation.rpt Platform Designer generation log file. A summary of the messages that Platform
Designer issues during testbench system generation.

<system>.ipx The IP Index File (.ipx) lists the available IP components, or a reference to
other directories to search for IP components.

<system>.svd Allows HPS System Debug tools to view the register maps of peripherals
connected to HPS within a Platform Designer system.
Similarly, during synthesis the .svd files for agent interfaces visible to System
Console hosts are stored in the .sof file in the debug section. System Console
reads this section, which Platform Designer can query for register map
information. For system agents, Platform Designer can access the registers by
name.

mentor/ Contains a ModelSim script msim_setup.tcl to set up and run a simulation

aldec/ Contains a Riviera-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS simulation.
Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file to set
up and run a VCS MX simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and run
an NCSIM simulation.

/xcelium Contains a shell script xcelium_setup.sh and other setup files to set up and
run an Xcelium simulation.

/common Contains a set of Tcl files, <simulator>_files.tcl, which provide all design
related simulation information required by a corresponding simulation script. The
Tcl file contains designs from current system-level hierarchy, and references to
sub-systems and IP components.

/submodules Contains HDL files for the submodule of the Platform Designer testbench system.

<child IP cores>/ For each generated child IP core directory, Platform Designer testbench
generates /synth and /sim subdirectories.

1.16.6. Generating Example Designs for IP Components

Some Platform Designer IP components include example designs that you can use or
modify to replicate similar functionality in your own system. You must generate the
examples to view or use them.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use any of the following methods to generate example designs for IP components:

• Double-click the IP component in the Platform Designer IP Catalog or System
View tab. The parameter editor for the component appears. If available, click the
Example Design button in the parameter editor to generate the example design.
The Example Design button only appears in the parameter editor if an example
is available.

• For some IP components, click Generate ➤ Generate Example Design to
access an example design. This command only enables when a design example is
available.

The following Platform Designer system example designs demonstrate various design
features and flows that you can replicate in your Platform Designer system.

Related Information

Intel FPGA Design Example Web Page

1.16.7. Incremental System Generation Example

You can modify the parameters of an IP component and regenerate the RTL for just
that particular IP component.

The following example demonstrates incremental generation of a Platform Designer
System:

1. Create a new Platform Designer system, as Creating or Opening a Platform
Designer System on page 14 describes.

2. Use the IP Catalog to locate and add the On-Chip Memory (RAM or ROM)
Reset Bridge, and Clock Bridge components to the system, as Adding IP
Components to a System on page 40 describes.

3. Make the necessary system connections between the IP components added to the
system, as Connecting System Components on page 63 describes.

4. To save and close the system without generating, click File ➤ Save and close
Platform Designer.

5. In the Quartus Prime software, click File ➤ Open Project.

6. Select the Quartus Prime project associated with your saved Platform Designer
system. The Quartus Prime software opens the project and the associated
Platform Designer system.

7. To start the compilation of the Quartus Prime project, click Processing ➤ Start
Compilation.

8. After compilation completes, in Platform Designer, click File ➤ Open.

9. Select the .ip file for any one of the IP components in your saved system.

10. Modify some parameter in this .ip file.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

99

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/design-examples-overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Make sure your modifications do not affect the parent system, requiring a
system update by running Validate System Integrity from within the
Platform Designer system after loading the parent system, or by running
qsys-validate from the command-line.

11. To save the IP file, click File ➤ Save.

12. To restart the compilation of the same Quartus Prime project with modified
Platform Designer system, click Processing ➤ Start Compilation in the Quartus
Prime software. Platform Designer generates the RTL only for the modified IP
component, skipping the generation of the other components in the system.

1.16.8. Generating the HPS IP Component System View Description File

Platform Designer systems that contain an HPS IP component generate a System View
Description (.svd) file that lists peripherals connected to the ARM® processor.

The .svd (or CMSIS-SVD) file format is an XML schema specified as part of the Cortex
Microcontroller Software Interface Standard (CMSIS) that ARM provides. The .svd file
allows HPS system debug tools (such as the DS-5 Debugger) to view the register
maps of peripherals connected to HPS in a Platform Designer system.

Related Information

• Component Interface Tcl Reference on page 666

• CMSIS - Cortex Microcontroller Software

1.16.9. Generating Header Files for Host Components

You can use the sopc-create-header-files command from the Nios II command
shell to create header files for any host component in your Platform Designer system.
The Nios II tool chain uses this command to create the processor's system.h file. You
can also use this command to generate system level information for a hard processing
system (HPS) in Intel's SoC devices or other external processors. The header file
includes address map information for each agent, relative to each host that accesses
the agent. Different hosts may have different address maps to access a particular
agent component. By default, the header files are in C format and have a .h suffix.
You can select other formats with appropriate command-line options.

Table 24. sopc-create-header-files Command-Line Options

Option Description

<sopc> Path to Platform Designer .sopcinfo file, or the file directory. If you omit
this option, the path defaults to the current directory. If you specify a
directory path, you must make sure that there is a .sopcinfo file in the
directory.

--separate-hosts Does not combine a module's hosts that are in the same address space.

--output-dir[=<dirname>] Allows you to specify multiple header files in dirname. The default output
directory is '.'

--single[=<filename>] Allows you to create a single header file, filename.

--single-prefix[=<prefix>] Prefixes macros from a selected single host.

--module[=<moduleName>] Specifies the module name when creating a single header file.

continued...

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

100

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

--host[=<hostName>] Specifies the host name when creating a single header file.

--format[=<type>] Specifies the header file format. Default file format is .h.

--silent Does not display normal messages.

--help Displays help for sopc-create-header-files.

By default, the sopc-create-header-files command creates multiple header
files. There is one header file for the entire system, and one header file for each host
group in each module. A host group is a set of hosts in a module in the same address
space. In general, a module may have multiple host groups. Addresses and available
devices are a function of the host group.

Alternatively, you can use the --single option to create one header file for one host
group. If there is one CPU module in the Platform Designer system with one host
group, the command generates a header file for that CPU's host group. If there are no
CPU modules, but there is one module with one host group, the command generates
the header file for that module's host group.

You can use the --module and --host options to override these defaults. If your
module has multiple host groups, use the --host option to specify the name of a host
in the desired host group.

Table 25. Supported Header File Formats

Type Suffix Uses Example

h .h C/C++ header files #define FOO 12

m4 .m4 Macro files for m4 m4_define("FOO", 12)

sh .sh Shell scripts FOO=12

mk .mk Makefiles FOO := 12

pm .pm Perl scripts $macros{FOO} = 12;

Note: You can use the sopc-create-header-files command when you want to generate
C macro files for DMAs that have access to memory that the Nios II processor cannot
access.

1.17. Generating Simulation Files for Platform Designer Systems
and IP Variants

If your design contains Intel FPGA IP or a Platform Designer system, you must first
generate files for RTL simulation of the IP or system with the Quartus Prime Platform
Designer before running simulation.

When you generate the system (or IP variant), Platform Designer optionally creates
simulation files, including the functional simulation model, any testbench (or example
design), and vendor-specific simulator setup scripts for each IP core.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the functional simulation model and any testbench or example design for
simulation of the IP or system. The IP generation output may also include scripts to
compile and run any testbench. The scripts list all models or libraries you require to
simulate your IP core.

To generate the simulation model and simulator setup scripts for your Platform
Designer system or component, follow these steps:

1. Click Tools ➤ Platform Designer. Platform Designer and open or create a
Platform Designer system or IP variant.

2. In Platform Designer, after specifying parameters, click Generate ➤ Generate
HDL. The Generation dialog box appears.

3. Under Simulation, specify Verilog or VHDL for the Create simulation model
option.

Figure 88. Simulation Options in Generation Dialog Box

4. If you want to specifically use ModelSim, specify Traditional or Qrun for the
ModelSim flow option. Otherwise, Qrun flow is the default selection.

5. Turn on or off the ModelSim, VCS-MX, VCS, Riviera-Pro, or Xcelium option to
generate simulator setup scripts for the simulation tool. If you turn on no
simulator options, the scripts generate for all simulators.

6. Click the Generate button. Platform Designer generates the simulation models
and setup scripts for your system or IP component in the following directory:

<top-level system name>/<system name>/<sim>/<simulator>

Figure 89. Generated Simulation Files Location

 _files.tcl

sim - IP simulation files

<simulator vendor>

<simulator vendor>

 - Simulator setup scripts

<your_system> .v or vhd - Top-level simulation file

common - IP simulation script files

<IP_name>

<project_directory>

<simulator>

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, Platform Designer generates the simulation scripts for the currently loaded
system and all subsystems. Alternatively, you can open a subsystem to generate a
simulation script only for that subsystem.

You can use scripts to compile the required device libraries and system design files in
the correct order and elaborate or load the top-level system for simulation.

Table 26. Simulation Script Variables
The simulation scripts provide variables that allow flexibility in your simulation environment.

Variable Description

TOP_LEVEL_NAME If the testbench Platform Designer system is not the top-level instance in your simulation
environment because you instantiate the Platform Designer testbench within your own top-
level simulation file, set the TOP_LEVEL_NAME variable to the top-level hierarchy name.

QSYS_SIMDIR If the simulation files generated by Platform Designer are not in the simulation working
directory, use the QSYS_SIMDIR variable to specify the directory location of the Platform
Designer simulation files.

QUARTUS_INSTALL_DIR Points to the Quartus installation directory that contains the device family library.

Example 3. Top-Level Simulation HDL File for a Testbench System

The example below shows the pattern_generator_tb generated for a Platform
Designer system called pattern_generator. The top.sv file defines the top-level
module that instantiates the pattern_generator_tb simulation model, as well as a
custom SystemVerilog test program with BFM transactions, called test_program.

module top();
 pattern_generator_tb tb();
 test_program pgm();
endmodule

Related Information

qsys-generate Command-Line Options on page 444

1.17.1. Using the Qrun Flow

The Quartus Prime Pro Edition software now supports a new Qrun flow for IP
generation. The Qrun flow optionally creates simulation files, including the functional
simulation model, and any testbench (or example design).

The Qrun flow, for use with only the QuestaSim* and Questa Intel FPGA Edition
simulators, is an enhancement over the traditional flow that can automatically
combine the compile, optimize, and simulate functions into a single step.

This section describes how to specify the Qrun settings, generate the system or
component simulation model and simulator setup scripts, and generate the testbench
and example design.

1.17.1.1. Specifying Simulation File Generation Settings

Before generating simulation files using the Qrun flow, you specify your supported
simulator and other options for simulation file generation. These setting impact the
generation of simulation files when generating HDL for IP in your project.

To specify simulation file generation settings, follow these steps:

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the Quartus Prime Pro Edition software, click Assignments ➤ Settings ➤
Board and IP Settings. The Board and IP Settings dialog box appears.

2. Under IP Simulation, turn on Generate IP simulation model when
generating IP. Turning on this option enables the remaining settings.

3. For Select simulator specific simulation flow, make sure Qrun is selected to
enable the Qrun flow. The alternative setting runs the Traditional flow.

Figure 90. Board and IP Settings Page of Settings Dialog Box

4. To specify one or more specific simulators for which to generate simulation files,
enable the checkbox for those simulators. To enable generation for all supported
simulators, leave all checkboxes disabled (default setting).

To generate the simulation model and simulator setup scripts for your Platform
Designer system or IP component in batch mode, use this command:

ip-make-simscript [args] --modelsim_flow=QRUN

Type ip-make-simscript -help for all available arguments ([args]).

1.17.1.2. Generating the Simulation Model and Setup Scripts

You generate the simulation model and setup scripts for IP components and Platform
Designer systems when generating HDL for these IP in your project.

Platform Designer generates the simulation model and setup scripts according to your
specifications in Specifying Simulation File Generation Settings.

To generate the simulation model and simulator setup scripts for your Platform
Designer system or IP component, follow these steps:

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the Quartus Prime Pro Edition software, click Tools ➤ Platform Designer and
open or create an IP variant or Platform Designer system.

2. After specifying any IP component or system parameters in the parameter editor,
click the Generate HDL button. The Generation dialog box appears.

3. Under Simulation, select either Verilog or VHDL for Create Simulation Model.
Selecting one of these options makes the Modelsim flow selection setting
editable.

4. For Modelsim flow selection, make sure Qrun is selected to enable the Qrun
flow. The alternative setting runs the Traditional flow.

Figure 91. Generation Dialog Box Settings

5. To specify one or more specific simulators for which to generate simulation files,
enable the checkbox for those simulators. To enable generation for all supported
simulators, leave all checkboxes disabled (default setting).

6. Click Generate. Platform Designer generates the simulation models and setup
scripts for your system or IP component in the <project>/<IP name>/sim/
<vendor> directory.

To generate the simulation model and simulator setup scripts for your Platform
Designer system or IP component in batch mode, use this command:

qsys-generate <file> [args] --modelsim_flow=QRUN

1.17.1.3. Generating the Testbench System

You can optionally generate a testbench system that instantiates the original system,
adding bus functional models to drive the top-level interfaces. Once generated, the
bus functional models can interact with the system or IP in the simulator.

Platform Designer generates the simulation model and setup scripts according to your
specifications in Specifying Simulation File Generation Settings.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To generate the testbench system for a Platform Designer system or IP component,
follow these steps:

1. In the Quartus Prime Pro Edition software, click Tools ➤ Platform Designer and
open or create an IP variant or Platform Designer system.

2. After specifying any IP component or system parameters in the parameter editor,
click the Generate ➤ Generate Testbench System button. The Generation
dialog box appears.

3. Under Testbench System, select either Verilog or VHDL for Create testbench
simulation model. Selecting one of these options makes the Modelsim flow
selection setting editable.

4. For Modelsim flow selection, make sure Qrun is selected to enable the Qrun
flow. The alternative setting runs the Traditional flow.

Figure 92. Generation Dialog Box Settings

5. Click Generate. Platform Designer generates the simulation models and setup
scripts for your system or IP component under the specified Output Directory.

1.17.1.4. Generating Example Design Simulation Files

When you run Generate ➤ Generate Example Design, Platform Designer
automatically generates the simulator setup script msim_setup.tcl containing qrun
commands.

1.17.2. Adding Assertion Monitors for Simulation

You can add monitors to Avalon Memory-Mapped, AXI, and Avalon Streaming
interfaces in your system to verify protocol and test coverage with a simulator that
supports SystemVerilog assertions.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 93. Inserting an Avalon Memory-Mapped Monitor Between an Avalon Memory-
Mapped Host and Agent Interface
This example demonstrates the use of a monitor with an Avalon Memory-Mapped monitor between the
pcie_compiler bar1_0_Prefetchable Avalon Memory-Mapped host interface, and the
dma_0 control_port_agent Avalon Memory-Mapped agent interface.

Similarly, you can insert an Avalon Streaming monitor between Avalon Streaming
source and sink interfaces.

Note: Refer to the Nios V Processor Quick Start Guide for information on simulating Nios V
processor designs.

Related Information

Nios V Embedded Processor Design Handbook

1.18. Adding a System to an Quartus Prime Project

Platform Designer requires that you to specify an associated Quartus Prime project at
time of system creation. After you specify the associated project, Platform Designer
automatically adds any system or IP component that you generate to that project. You
can also manually add a Platform Designer system or component to a project.

To add a Platform Designer system or component to an Quartus Prime project,
perform one or more of the following steps:

1. In Platform Designer, specify the associated Quartus project when you create a
system, or click File ➤ Select Quartus Project to change this setting. Platform
Designer automatically adds any system or IP component that you generate to the
associated Quartus Prime project.

2. To manually add a Platform Designer system or component to your project,
generate the system or component, and then click Project ➤ Add/Remove Files
in Project in the Quartus Prime software.

3. Select and add the .qsys files to your project. The Quartus Prime Project
Navigator Files tab lists all system and component files that you or Platform
Designer add to your project.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

107

https://www.intel.com/content/www/us/en/docs/programmable/726952.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 94. Platform Designer System Files in Project

1.19. Managing Hierarchical Platform Designer Systems

Platform Designer supports hierarchical systems that include one or more Platform
Designer subsystems within another Platform Designer system. Platform Designer
allows you to create, explore, and edit systems and subsystems together in the same
Platform Designer window. Platform Designer generates the complete system
hierarchy during the top-level system’s generation.

All hierarchical Platform Designer systems appear in the IP Catalog under Project ➤
System. You select the system from the IP Catalog to reuse the system across
multiple designs. In a team-based hierarchical design flow, you can divide large
designs into subsystems and allow team members develop subsystems
simultaneously.

Related Information

Viewing the System Hierarchy on page 30

1.19.1. Adding a Subsystem to a Platform Designer System

You can add a Platform Designer system as a subsystem (child) of another Platform
Designer system (parent), at any level in the parent system hierarchy.

Follow these steps to add a subsystem to a Platform Designer system:

1. Create a Platform Designer system to use as the subsystem.

2. Open a Platform Designer system to contain the subsystem.

3. On the System View tab, use any of the following methods to add the
subsystem:

• Right-click anywhere in the System View and click Add a new subsystem
to the current system.

• Click the Add a new subsystem to the current system button on the
toolbar.

• Press Ctrl+Shift+N.

4. In the Confirm New System Name dialog box, confirm or specify the new
system file name and click OK. The system appears as a new subsystem in the
System View.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 95. Adding a Subsystem

1.19.2. Viewing and Traversing Subsystem Contents

You can view and traverse the elements and connections within subsystems in a
hierarchical Platform Designer system.

Follow these steps to view and traverse subsystem contents:

1. Open a Platform Designer system that contains a subsystem.

2. Use any of the following methods to view the subsystem contents:

• Use the filtering controls in the Filter tab to change the level of detail in the
System View.

• Right-click a system in the System View or Schematic tabs, and then select
Drill into Subsystem. The subsystem opens in the System View.

• Press Ctrl+Shift+D in the System View tab.

3. Use any of the following System View or Schematic tab toolbar buttons to
traverse the system and subsystems:

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 96. Traversing Subsystem Contents

Drill into

Up One Level

Top Level

Table 27. System View and Schematic Tab Navigation Buttons

Button Description

Move to the top of the hierarchy—navigates to the top-level (parent) .qsys file for
the system.

Move up one level of hierarchy—navigates up one hierarchy level from the current
selection.

Drill into a subsystem to explore its contents—opens the subsystem you select in
the System View.

Note: You can only view and traverse the contents of subsystems that you define in a .qsys
file, not parameterizable Platform Designer systems or _hw.tcl files.

1.19.3. Editing a Subsystem

You can double-click a Platform Designer subsystem in the Hierarchy tab to edit its
contents in any tab. When you make a change, open tabs refresh their content to
reflect your edit. You can change the level of a subsystem, or push the system into
another subsystem with commands in the System View tab.

Note: You can only edit subsystems that a writable .qsys file preserves. You cannot edit
systems that you create from composed _hw.tcl files, or systems that define
instance parameters.

Follow these steps to edit a Platform Designer subsystem:

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Open a Platform Designer system that contains a subsystem.

2. In the System View or Schematic tabs, use the Move Up, Move Down, Move
to Top, and Move to Bottom toolbar buttons to navigate the system level you
want to edit. Platform Designer updates to reflect your selection.

3. To edit a system, double-click the system in the Hierarchy tab. The system opens
and is available for edit in all Platform Designer views.

4. In the System View tab, you can rename any element, add, remove, or duplicate
connections, and export interfaces, as appropriate.

Note: Changes to a subsystem affect all instances. Platform Designer identifies
unsaved changes to a subsystem with an asterisk next to the subsystem in
the Hierarchy tab.

1.19.4. Saving a Subsystem

When you save a subsystem as part of a Platform Designer system, Platform Designer
confirms the new subsystem name in the Confirm New System Filenames dialog
box. By default, Platform Designer suggests the same name as the subsystem .qsys
file and saves in the project’s /ip directory.

Follow these steps to save a subsystem:

1. Open a Platform Designer system that contains a subsystem.

2. Click File ➤ Save to save your Platform Designer design.

3. In the Confirm New System Filenames dialog box, click OK to accept the
subsystem file names.

Note: If you have not yet saved your top-level system, or multiple subsystems,
you can type a new name, and then press Enter, to move to the next un-
named system.

4. In the Confirm New System Filenames dialog box, to edit the name of a
subsystem, click the subsystem, and then type the new name.

1.19.5. Changing a Component's Hierarchy Level

You can change the hierarchical level of components in your system.

You can lower the hierarchical level of a component, even into its own subsystem,
which can simplify the top-level system view. You can also raise the level of a
component or subsystem to share the component or subsystem between two unique
subsystems. Management of hierarchy levels facilitates system optimization and can
reduce complex connectivity in your subsystems.

Follow these steps to change a component's hierarchy level:

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Open a Platform Designer system that contains a subsystem.

2. In the System View tab, to group and change the hierarchy level of multiple
components that share a system-level component, multi-select the components,
right-click, and then click Push down into new subsystem. Platform Designer
pushes the components into their own subsystem and re-establishes the exported
signals and connectivity in the new location.

3. In the System View tab, to pull a component up out of a subsystem, select the
component, and then click Pull up. Platform Designer pulls the component up out
of the subsystem and re-establishes the exported signals and connectivity in the
new location.

1.20. Saving and Archiving Platform Designer Systems

You can save your system in Platform Designer for later modification and reuse.
Alternatively, Platform Designer can archive your entire system into a single
compressed .zip or Tcl script (.tcl) file for easy storage and restoration.

If saving a Platform Designer system for external revision control systems, saving as a
Tcl script may be preferred because that creates a single, clear text file that you can
diff with a previous version to indicate changes.

You can also archive an entire Quartus Prime project, including any Platform Designer
system or IP, within in a single, compressed Quartus Prime Archive File (.qar).
The .qar preserves the project and setting files, design files, IP and system files,
programming files, and all other files needed to restore the project (and system).

The qsys-archive utility provides command-line options for system archive,
including system extraction and system dependency reporting. The following describe
Platform Designer system saving and archiving in detail:

• Saving Platform Designer Systems on page 112

• Archiving Platform Designer Systems on page 113

• Including Platform Designer Systems in Project Archives on page 115

• Project Files to Include In External Revision Control on page 116

• Archive and Extract Platform Designer Systems with qsys-archive on page 457

1.20.1. Saving Platform Designer Systems

Platform Designer prompts you to save any changes to your system before generating
or closing. You can use any of the following methods to save your Platform Designer
system:

• To save a Platform Designer system, click File ➤ Save in Platform Designer.

• To save a Platform Designer system as a Tcl script, click File ➤ Export System as
Platform Designer script.

Note: The generated Tcl scripts also include any pin constraints that you set by applying
presets to a Platform Designer system.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 97. Saving A Platform Designer System

Restore this system by executing the .tcl file from the System Scripting tab, or
with the qsys-script command.

Note: Restoring with qsys-script generates default project (.qpf) and settings (.qsf)
files that contain only basic information. The .qsf includes no project-specific
assignments from the original project's .qsf. You can click File ➤ Select Quartus
Project in Platform Designer to associate a system with any Quartus Prime project.

Related Information

Generate a Platform Designer System with qsys-script on page 451

1.20.2. Archiving Platform Designer Systems

The Platform Designer GUI supports archiving an entire Platform Designer system to a
single, compressed .zip file, and then restoring the archive in another instance of
Platform Designer.

Alternatively, use the qsys-archive command to archive and restore Platform
Designer systems at the command line.

To archive a Platform Designer system to a single, compressed .zip file:

1. Open a Platform Designer system.

2. In Platform Designer, click File ➤ Archive System. The Archive System dialog
box appears.

Figure 98. Archive System Dialog Box

3. Specify a name for Archive file name.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Enable or disable Collect to common directory. When enabled, Platform
Designer collects the system's .qsys files in the root directory, and the .ip files
in a single ip directory, while updating all references. Disable this option to
maintain the current system's directory structure.

5. Click OK. Platform Designer generates the archive.

Figure 99. Archive System Complete

Note: Platform Designer automatically identifies the .qsys and .ip files needed
for system archiving when using Archive System. You do not manually
specify any files for archiving. Archive System does not include custom IP
and related files in the archive by default.

Figure 100. System Archive Directory (Collect to common directory)

<archive_zip>.zip

ip

<ip_name> .ip - IP variation file A

<your_system>.qsys - Platform Designer System File

.qsys_top_level - Platform Designer Top-level System Data

<ip_name> .ip - IP variation file B
<ip_name> .ip - IP variation file C

6. To restore the archived system, click File ➤ Restore Archived System. Select
the Archive file name, and Destination folder to extract the restored files.

Figure 101. Restore Archived System

After restoration is complete, Platform Designer automatically launches the Open
System dialog box, with the extracted project preloaded.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.20.3. Including Platform Designer Systems in Project Archives

You can optionally save the elements of an Quartus Prime project—including any
Platform Designer system or IP—in a single, compressed Quartus Prime Archive File
(.qar). The .qar can preserve the project and settings files, source design files, IP
and system files, programming output files, and all other files required to fully restore
the project in the Quartus Prime software.

The archive .qar allows you to easily share projects between designers, or to transfer
your project to a new version of the Quartus Prime software, or to Intel customer
support. You can optionally include compilation reports, Platform Designer system
files, and EDA tool integration files in the project archive.

You can fully customize the list of files that the archive includes, to ensure that your
archive captures all custom IP and other files that you want to preserve. The Archive
Project dialog box includes preset File sets that automatically include the
appropriate detected files for Source control, Service requests, and other archiving
scenarios.

By default, the Archive Project command includes detected Platform Designer
system and IP files that are part of your project. Follow these steps to confirm that
your project archive includes the Platform Designer system and IP files that you want:

1. Open an Quartus Prime project (.qpf) that includes your Platform Designer
system and IP.

2. Click Project ➤ Archive Project and specify an Archive file name.

Figure 102. Archive Project Dialog Box

3. Click the Advanced button. The Advanced Archive Settings dialog box
appears.

4. Select Source control, Service requests, or Compilation Database and
output for the File set. All of these File sets include detected Platform Designer
system and IP files in the archive automatically. Turn on or off the File subsets
you want in the archive.

5. To customize the Files to be archived list, click the Add or Remove buttons to
include or remove specific files.

6. To save the archive settings, click OK.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 103. Advanced Archive Settings Dialog Box

Include or Exclude
File Types in Archive

Files Included in Archive

Add/Remove Files from ArchiveFile Set Presets Include Files Automatically

7. To generate the project archive file, click the Archive button.

8. To restore the archived project (including the Platform Designer system and IP),
click Project ➤ Restore Archived Project. Select the Archive name, and
Destination folder to extract the restored files.

Figure 104.

1.20.3.1. Project Files to Include In External Revision Control

When archiving Quartus Prime projects for external source control, The Source
control setting in Advanced Archive Settings dialog box is preset to include all
appropriate file types for source control automatically.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 105. Advanced Archive Settings Dialog Box

Source Control File Set Automatically
Selects Appropriate Files for Source Control

Table 28. Project Files to Include In External Revision Control

File Type Description

Quartus Prime project setting and
assignment files

• Quartus Prime Project Files (.qpf)
• Quartus Prime Settings Files (.qsf)
• Quartus Prime Pin Planner File (.ppf)

Timing constraint files Synopsys Design Constraint Files (.sdc)

Design files • Verilog HDL Design Files (.v)
• SystemVerilog Design Files (.sv)
• VHDL Design Files (.vhd)
• Block Symbol Files (.bsf)
• Verilog Quartus Mapping Files (.vqm)
• Platform Designer System Files (.qsys)
• State Machine Editor Files (.smf)
• Tcl Script Design Files (.tcl)

System and IP files • IP variation file (.ip)
• Verilog IP design files (.v)
• SystemVerilog IP design files (.sv)
• VHDL IP design files (.sv)
• VHDL Component Declaration Files (.cmp)
• Quartus Prime IP file (.qip)
• Quartus Prime Simulation IP File (.sip)
• Platform Designer System Files (.qsys)
• Platform Designer connection and parameterization files (.sopcinfo)
• IP upgrade status files (.csv)
• IP synthesis parameters files (.qgsynthc)
• IP simulation parameters files (.qgsimc)
• Platform Designer system exported as (.tcl).

EDA tool integration files • Verilog HDL Output Files (.vo)
• VHDL Output Files (.vho)
• VHDL simulation model files (.vhd)
• Verilog HDL simulation model files (.v)
• Simulation library files (cds.lib, hdl.var)
• Simulation setup scripts (_setup.sh, .tcl, .spd, .txt)

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.21. Sharing Platform Designer Packaged Subsystems

You can readily share or reuse a Platform Designer system by creating a packaged
subsystem. The packaged subsystem combines everything about the pre-verified and
parameterized system into a single, compressed, and portable .qcp file for reuse in
other Platform Designer systems.

You or another packaged subsystem user can instantiate the packaged subsystem into
another Platform Designer system to comprise the complete or partial system. The
packaged subsystem author can disable viewing or modification by other users. This
packaged subsystem flow simplifies the reuse and sharing of subsystems across
multiple projects or designers.

The packaged subsystem author first defines all properties of the packaged subsystem
in Platform Designer, including system components, connections, parameters, and
supporting files. The packaged subsystem author next uses the New Packaged
Subsystem command in Platform Designer's IP Catalog to save the current open
system as a packaged subsystem. You can optionally include supporting RTL or other
files in the packaged subsystem.

Once created, the packaged subsystem appears under Project in IP Catalog and
the .qcp file appears in the location you specify. You can reuse and share the
packaged subsystem by simply sharing the .qcp file.

Figure 106. Packaged Subsystem Available in IP Catalog for Instantiation

Double-Click
To Instantiate
Packaged
Subsystem

Double-Click
To Define New
Packaged
Subsystem

The following procedures describe how to create, instantiate, and revise a packaged
subsystem. For detailed instructions using an example design, refer to AN 1002:
Sharing Platform Designer Packaged Subsystems.

Related Information

AN 1002: Sharing Platform Designer Packaged Subsystems

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

118

https://www.intel.com/content/www/us/en/docs/programmable/786899.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.21.1. User Personas for Packaged Subsystems

The packaged subsystem flow defines the following user personas and flows that this
document describes in detail:

• Packaged subsystem author—the packaged subsystem author creates and saves
the packaged subsystem .qcp file in Platform Designer. The packaged subsystem
author defines the components, connections, parameters, and the external
interfaces of the packaged subsystem. The packaged subsystem author can
specify desired component parameters, and whether the packaged subsystem can
be unlocked for modification, or just divable which allows the packaged subsystem
user to dive in and view the internals of the packaged subsystem.

• Packaged subsystem user—the packaged subsystem user reuses the packaged
subsystem by instantiating and connecting it to other components in another
Platform Designer system. The packaged subsystem user may be able to modify
the parameters or unlock the packaged subsystem for full editing control,
depending on the packaged subsystem author specifications. The packaged
subsystem author also determines whether the packaged subsystem is divable,
which allows users to view the internals of the packaged subsystem.

1.21.2. Terminology for Packaged Subsystems

Table 29. Packaged Subsystems Terminology

Term Description

Packaged Subsystem A packaged subsystem combines everything about a Platform Designer system into a single,
compressed .qcp file for sharing and reuse in other Platform Designer systems. The
packaged subsystem author can optionally lock the packaged subsystem for viewing or
modification by the packaged subsystem user.

Packaged Subsystem
Author

The creator of a Platform Designer packaged subsystem that saves a system or subsystem as
a packaged subsystem (.qcp) for sharing and reuse. The packaged subsystem author can set
the UNLOCKABLE property to prevent or permit packaged subsystem editing for packaged
subsystem users.

Packaged Subsystem
Sharing

A packaged subsystem author can share a package subsystem with a packaged subsystem
user by sharing the packaged subsystem .qcp file or by providing the IP search path for the
user to specify when launching Platform Designer.

Packaged Subsystem User Reuses a packaged subsystem by instantiating and connecting it to other components in
another Platform Designer system. The packaged subsystem user may be able to modify the
parameters or unlock the packaged subsystem for full editing control, depending on the
packaged subsystem author specifications.

Package-level parameters Parameters that appear in the parameter editor GUI when the packaged subsystem user
instantiates or selects the packaged subsystem.

run_system_script An important command for modifying the internal system inside a subsystem,
run_system_script runs Platform Designer scripting commands such that all commands
within curly braces run as separate scripts.

Subsystem A standard unpackaged subsystem that you create in Platform Designer of the file
type .qsys.

Subcomponent
parameters

Parameters of the components of a packaged subsystem.

continued...

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Term Description

System A standard top-level system that you create in Platform Designer of the file type .qsys.

Divable The packaged subsystem author can use the DIVABLE property to specify whether the
packaged subsystem user can dive in and view the internals of the packaged subsystem.

Unlockable The packaged subsystem author can use the UNLOCKABLE property to specify whether the
packaged subsystem user can unlock the packaged subsystem for full editing control.

1.21.3. Creating a New Packaged Subsystem

In the packaged subsystem author flow, the packaged subsystem author creates a
regular Platform Designer system, and then bundles the system into a packaged
subsystem represented as a .qcp file. You can then provide the .qcp file to one or
more packaged subsystem users.

Follow these steps to save an open Platform Designer system as a packaged
subsystem .qcp file for reuse or sharing in other Platform Designer systems.

1. Define all properties of the system in the Platform Designer System View tab,
including the system components, connections, parameters, and supporting files
that you want to include in the packaged subsystem.

2. In Platform Designer's IP Catalog, click New Packaged Subsystem. The New
Packaged Subsystem dialog box appears for specification of the packaged
subsystem properties.

Figure 107. New Packaged Subsystem Command in IP Catalog

3. In the Components tab, specify a name for the packaged subsystem in Display
Name. Refer to the image in New Packaged Subsystem Dialog Box

4. Optionally specify the Group, Version number, and Description to help you
identify the packaged subsystem.

5. Under Select the components (and connections) to include in this package
disable (uncheck) any connection, component, or node that you want to omit from
the packaged subsystem in the Use column.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. In the File box, specify the location to save the packaged subsystem file. The
default path is <project_directory>/ip/packages/
<subsystem_name>.qcp.

7. Optionally specify subsystem files and package script settings, as Specifying
Additional Packaged Subsystem Files on page 121 and Modifying the Packaged
Subsystem Script on page 122 describe.

8. When the packaged subsystem is complete, click Save in the New Package
dialog box. The .qcp file saves to the location that you specify, and the packaged
subsystem appears under Project in IP Catalog.

Figure 108. New Packaged Subsystem Dialog Box

Related Information

AN 1002: Sharing Platform Designer Packaged Subsystems

1.21.4. Specifying Additional Packaged Subsystem Files

Follow these steps if you want to specify additional files to include with a Platform
Designer packaged subsystem. You can include supporting files for your packaged
subsystem, such as RTL for custom IP components.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

121

https://www.intel.com/content/www/us/en/docs/programmable/786899.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 109. Specifying Additional Files for a Packaged Subsystem

1. In the Components tab of the New Packaged Subsystem dialog box, define
the basic properties of the new packaged subsystem, as Creating a New Platform
Designer Packaged Subsystem describes.

2. Click the Additional Files tab.

3. To add a new file to the packaged subsystem, click the Add File button and select
the supporting files you want to add.

4. To remove any additional files from the packaged subsystem, select the file and
click the Remove File button.

5. To reorder the list of additional files, click the arrow buttons to move the files up
or down in the list.

6. Optionally modify packaged subsystem script settings, as Modifying the Packaged
Subsystem Script describes.

7. When the packaged subsystem is complete, click Save in the New Package
dialog box. The .qcp file saves to the location that you specify, and the packaged
subsystem appears under Project in IP Catalog.

Related Information

AN 1002: Sharing Platform Designer Packaged Subsystems

1.21.5. Modifying the Packaged Subsystem Script

The packaged subsystem infrastructure uses a Tcl script file to specify the packaged
subsystem properties. You can modify the packaged subsystem script on the
Packaged Subsystem Script tab to control the following in the packaged
subsystem:

• Add parameters to enable or disable individual IP components in the packaged
subsystem.

• Lock or unlock packaged subsystem editing for packaged subsystem users.

• Add packaged subsystem-level parameters that set parameter values of internal
components.

• Modify the internal .qsys system file.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

122

https://www.intel.com/content/www/us/en/docs/programmable/786899.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, when you enable or disable components on the Components tab,
Platform Designer modifies the default script lines correspondingly in the packaged
subsystem script when you right-click in the Packaged Subsystem Script tab and
click Reset with Default Script. The packaged subsystem author can optionally
modify the packaged subsystem script directly on the Packaged Subsystem Script
tab.

For example, the following code creates two checkbox controls that are visible in the
parameter editor GUI of the packaged subsystem for packaged subsystem users.
These controls are linked to the RX and TX packaged subsystem level parameters. The
RX and TX parameters are of type boolean and are asserted false by default.

add_parameter TX BOOLEAN false "Enable transmitter"
add_parameter RX BOOLEAN false "Enable receiver"

Note: For details on these commands, refer to Parameters.

To modify the packaged subsystem script, follow these steps:

1. In the Components tab of the New Packaged Subsystem dialog box, define
the basic properties of a the packaged subsystem, as Creating a New Platform
Designer Packaged Subsystem describes.

2. Click the Packaged Subsystem Script tab.

3. Modify any of the script in the Packaged Subsystem Script tab to match your
deployment preferences. For example, the following modification allows the
packaged subsystem user to unlock the packaged subsystem for full control.

Figure 110. Packaged Subsystem Script Change (Subsystem Can Be Unlocked)

4. When the packaged subsystem is complete, click Save in the New Package
dialog box. The .qcp file saves to the location that you specify, and the packaged
subsystem appears under Project in IP Catalog.

Related Information

AN 1002: Sharing Platform Designer Packaged Subsystems

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

123

https://www.intel.com/content/www/us/en/docs/programmable/786899.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.21.6. Instantiating a Packaged Subsystem

As a packaged subsystem user, you can instantiate a packaged subsystem in another
Platform Designer system. For example, you can share a packaged subsystem .qcp
file with another designer who can then instantiate and connect the packaged
subsystem in their own Platform Designer system. The packaged subsystem author
determines which elements of the packaged subsystem are editable in the packaged
subsystem.

To instantiate a packaged subsystem within a Platform Designer system, follow these
steps:

1. The packaged subsystem author creates the packaged subsystem, as Creating a
New Platform Designer Packaged Subsystem describes.

2. The packaged subsystem user opens or creates the Platform Designer system that
will instantiate the packaged subsystem, as Creating or Opening a Platform
Designer System describes.

3. The packaged subsystem user places the subsystem .qcp file in the Quartus
Prime software's IP search path. The packaged subsystem now appears under
Projects in Platform Designer's IP Catalog.

Figure 111. Packaged Subsystem Available in IP Catalog for Instantiation

Instantiate
Packaged
Subsystem

4. To instantiate the packaged subsystem in the open Platform Designer system, the
packaged subsystem user double-clicks the packaged subsystem name in IP
Catalog. The packaged subsystem now appears as a single IP component in the
System View tab, according to the deployment options that the packaged
subsystem author specifies.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 112. Packaged Subsystem Instantiated in Platform Designer System

5. Connect the packaged subsystem to other system components, including clock
and reset signals.

Figure 113. Connecting System Components

Make System
Connections

6. Depending on options that the packaged subsystem author specifies, you may be
able to perform one or more of the following actions on the packaged subsystem:

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Right-Click ➤ Dive Into Package—when the DIVABLE property is set to
True (the default setting) in the packaged subsystem script, you can dive into
the packaged subsystem to view the details of the packaged subsystem
components, connections, and parameters in another instance of Platform
Designer.

Figure 114. Dive Into Package Shows Contents of the Packaged Subsystem

• Right-Click ➤ Unlock—when the UNLOCKABLE property is set to True in the
packaged subsystem script you can unlock the packaged subsystem and
interact with it like any other Platform Designer system.

Note: This action cannot be undone.

Related Information

AN 1002: Sharing Platform Designer Packaged Subsystems

1.21.7. Revising a Packaged Subsystem

As the packaged subsystem author, you can revise a packaged subsystem that you
have previously created. You can open the existing packaged subsystem in Platform
Designer, allow unlock of the packaged subsystem for other users, and specify other
system changes in the Packaged Subsystem Script tab. You can then save the
updated packaged subsystem (.qcp) with the same name.

To revise a packaged subsystem that you previously created in Platform Designer,
follow these steps:

1. Open the Platform Designer system that contains the packaged subsystem, as
Creating or Opening a Platform Designer System describes.

2. In Platform Designer's IP Catalog, right-click the packaged subsystem under
Project and click Edit. The Edit Packaged Subsystem dialog box appears.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

126

https://www.intel.com/content/www/us/en/docs/programmable/786899.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 115. Edit Packaged Subsystem Dialog Box

3. Make your desired revisions in the Components, Additional Files, and
Packaged Subsystem Scripts tabs, as Creating a New Packaged Subsystem on
page 120 describes.

4. When the packaged subsystem is complete, click Save in the Edit Packaged
Subsystem dialog box. The .qcp file saves to the location that you specify, and
the packaged subsystem appears under Project in IP Catalog.

Related Information

AN 1002: Sharing Platform Designer Packaged Subsystems

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

127

https://www.intel.com/content/www/us/en/docs/programmable/786899.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.21.8. New Packaged Subsystem Dialog Box Options and Controls

The following settings and controls are available in the New Packaged Subsystem
dialog box. These settings and options are also available in the Edit Packaged
Subsystem dialog box unless otherwise noted.

Table 30. Component Tab Options and Controls

Option Name Description

Display Name Specifies a name for the new packaged subsystem you are creating. When the packaged
subsystem is complete, this named packaged subsystem appears as a single IP in the
Platform Designer IP Catalog. This option requires a value.

Version Specifies the version number of the packaged subsystem. The default value is 1.0. This
setting is optional.

Group Specifies the IP group of the packaged subsystem. This setting is optional.

Description Specifies descriptive details about the packaged subsystem to help you identify it later.

Components Species the components in the packaged subsystem, their connections, and whether they
should be visible in the packaged subsystem for other users.

Use Specifies whether the component should appear in the packaged subsystem or not. Turn on
the checkbox to include the component in the packaged subsystem. Turn off the checkbox to
exclude the component from the packaged subsystem. By default, Use is on for all
components in the current system.

File Specifies the path for saving the packaged subsystem .qcp file. The default path is
<project_directory>/ip/packages/<subsystem_name>.qcp. Using the default path
ensures that IP Catalog finds the packaged subsystem without modifying the IP search path.
This option is read only in Edit Packaged Subsystem dialog box.

Save Saves the .qcp file to the default location or a location that you specify, and the packaged
subsystem appears under Project in IP Catalog.

Table 31. Additional Files Tab Options and Controls

Option Name Description

File Path Lists the path and filename of all files that you add to the packaged subsystem with Add
File.

File Contents Provides a description of the file types that you add to the packaged subsystem with Add
File.

Add File Allows you to browse for and add supplementary files to include in the packaged subsystem.

Remove File Removes one or more files from the files list so the file is not added to the packaged
subsystem.

Move to the top Moves the selected file to the top of the files list.

Move up Moves the selected file up one level in the files list.

Move down Moves the selected file down one level in the files list.

Move to the bottom Moves the selected file down to the bottom of the files list.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 32. Package Script Tab Options

Option Description

Package script Displays the editable packaged subsystem script that defines the packaged subsystem
properties, parameters, and callbacks. You can directly edit this script to match your
preferences.

Right-Click ➤ Reset
with default script

Resets the current packaged subsystem script with the default packaged subsystem script for
all subsystems.

Right-Click ➤ Preview
the GUI

Displays a preview of the parameterization GUI that appears when users double-click the
packaged subsystem in IP catalog.

1.22. Comparing Platform Designer Systems and IP components

Platform Designer includes an integrated System Diff Tool that highlights the
differences between two Platform Designer systems or IP components (.qsys or .ip
files). You can use the System Diff Tool to quickly identify the differences between two
versions of systems or IP components.

The Platform Designer System Diff Tool supports the following use cases:

• Compare two versions of the same Platform Designer system (.qsys) on disk.
View the modifications to the system.

• Compare the currently open Platform Designer system (.qsys) with a system on
disk. View the differences between the systems.

• Compare a Platform Designer system (.qsys) file before and after a version
upgrade. View the updated settings.

• Compare a Platform Designer system (.qsys) file with different device settings.
View the setting differences.

• Compare a .ip component file before and after parameter changes. View the
changes to any component interfaces.

The System Diff Tool uses color coding to highlight differences for any of following
items added or removed in the system:

• Exports

• Modules

• Interfaces

• Ports

• Connections

• Parameters

• Assignments

• Properties

1.22.1. Using the System Diff Tool

You can open the System Diff Tool GUI from Platform Designer (View ➤ System Diff
Tool) to compare Platform Designer systems (.qsys) or IP component files (.ip).

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The System Diff Tool GUI displays the file comparison hierarchically, using color coding
to display the differences in systems, modules, interfaces, ports, exports, and
connections side-by-side in the top two panes. The bottom pane also displays the
selected parameter differences, or you can right-click to Show All Values for the
selected item.

Figure 116. Platform Designer System Diff Tool

Yellow = Items with Differences

Green = Items Added

Red = Expand to See Differences

Selected Parameter Differences

Toolbar

To run the System Diff Tool from Platform Designer:

1. Click View ➤ System Diff Tool.

2. In the Current System list at the top of each pane, specify the items for
comparison. The System Diff Tool GUI then highlights the differences in each file.
Selections and scrolling synchronize between the two panes:

• Removed items appear in purple highlight.

• Added items appear in green highlight.

• Items with differences appear in yellow highlight.(5)

• Items with collapsed children with differences are highlighted in red.

3. Optionally perform any of the following to refine the comparison view:

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To filter the comparison view by system, module, instance, or port hierarchy,
select the filter icon that corresponds with the level of hierarchy that you want
to display.

Figure 117. Filter the Comparison by Hierarchy

1 = Systems
2 = System, Modules
3 = Systems, Modules, Interfaces
4 = Systems, Modules, Interfaces, Ports

• To filter the comparison view by parameter name, click the Filter button to
hide or show various parameters in the comparison. By default, this filter is
set to exclude internal parameters that do not affect system behavior.

Figure 118. Filter the Comparison by Parameter

Filtered
Parameters

Add/Remove
Parameters

• To reload the systems for comparison after making changes to a system, click
the Reload Systems button on the toolbar.

• To expand or collapse the comparison hierarchy, click the Expand All or
Collapse All button.

• To expand the hierarchy to show all differences, click the Show All Diffs
button.

• To show the comparison color coding, click the Show Colors button.

• To synchronize the scrolling or selections between the comparison panes, click
the Synchronize Scrolling or Synchronize Selections button. You can use
Synchronize Selections to compare the parameters of any two selected
modules. (normally, items are diffed if they have the same name.)

(5) Item comparison is strictly based on naming. If an item on the left and right have the same
name, they are compared. Otherwise, the item is marked as added or removed.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 119. System Diff Toolbar

Reload
Systems

Expand
All

Collapse
All

Show
All Diffs

Filter
Dialog

Show
Colors

Synchronize
Selections

Synchronize
Scrolling

Hierarchy
Display

1.23. Running System Scripts

The System Scripting tab allows you to enter, save, and execute Tcl scripts on your
Platform Designer system. The tab includes a selection of provided scripts, as well as
support for storage and retrieval of your own scripts.

Follow these steps to enter, save, and execute Tcl scripts on your Platform Designer
system:

1. To open the System Scripting tab, click View ➤ System Scripting.

Figure 120. System Scripting Tab

2. For User Scripts or Project Scripts, click <<add script>> to add a new script
file to this entry. You can drag items between the Project Scripts and User
Scripts fields.

3. To add additional commands to run before the script, right-click the column header
and enable Additional Commands. Selecting this option displays a third column,
in addition to File and Description. Double-click the entry in this field to add

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

commands to execute before running your script. Alternatively, you can add the
additional commands to your script, directly through the display pane in the
middle, in the specified section.

The System Scripting tab provides the following fields:

Table 33. System Scripting Tab Options

Name Description

Platform Designer Built-in Scripts Lists non-editable scripts that Platform Designer provides.

User Scripts You can add your own scripts to this entry. Platform Designer saves these scripts
to your user preference file, available in your home directory. The scripts that
you add to this entry are available every time you open Platform Designer.

Project Scripts You can add your own scripts to this entry. Platform Designer saves these scripts
to your current system. The scripts that you add to this entry are available only
when you open this specific Platform Designer system.

Edit File Selecting the script in the File field displays the script in the pane below. Click
Edit File to edit the script.

Revert File Discards all your changes to the edited file.

Save File Saves your changes to the edited file.

Run Script Executes the selected script.

System Scripting Messages Displays the warning and error messages when running the script.

Related Information

Platform Designer Command-Line Utilities on page 441

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.24. Creating a System with Platform Designer Revision History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.
• Updated Changing the Target Board for a System topic to describe

alternative methods.
• Updated Create New Board Dialog Box Options topic to describe

additional preset options.
• Updated Generating Board and Preset Files for Existing Systems section

to describe alternative methods.
• Updated Customizing IP Presets topic to describe board settings.
• Updated Creating IP Presets topic to describe board settings.
• Added new Applying Presets After Migrating a Board section.
• Added new Using the Qrun Flow in Platform Designer section.
• Updated Specifying IP Component Instantiation Options topic to

remove HLS options.
• Updated Saving Platform Designer Systems topic to describe generated

Tcl scripts also include any preset pin constraints.
• Added new Add IP RTL Core Generated from the Intel oneAPI Base

Toolkit topic.

2023.12.20 23.4 • Updated Synchronizing System Component Information topic to explain
synchronizing behavior for "Different Items" versus "Missing Items."

2023.10.02 23.3 • Updated What's New In This Version topic for packaged subsystems.
• Revised Viewing a Platform Designer System for the latest GUI layout

description.
• Added new Sharing Platform Designer Packaged Subsystems section to

describe new ability to package and share a subsystem.

2023.06.26 23.2 • Updated Generating Simulation Files for NoC Designs topic for latest
NoC design flows.

• Updated Generating a Simulation Registration Include File for RTL
Simulation of NoC Designs topic for latest NoC design flows.

2023.04.03 23.1 • Added Generating Presets for Existing Systems with Multiple Instances
topic.

• Added more examples to Generating Board and Presets for Existing
Systems Using Command Line topic.

• Added Preset Files Saved topic.
• Added Generating Simulation Files for NoC Designs topic.
• Added Generating a Simulation Registration Include File in the Platform

Designer Flow topic.
• Added Contents of Simulation Registration Include File topic.
• Added Connecting NoC IP topic.
• The product family name is updated to "Intel Agilex 7" to reflect the

different family members.

2022.12.12 22.4 • Updated What's New in This Version topic for board-aware flow
support.

• Revised Creating or Opening a Platform Designer System topic to
reference board-aware GUI.

• Updated Specifying the Target Intel FPGA Device or Board for a System
topic for board-aware GUI.

• Added new Using the Board-Aware Flow in Platform Designer section.
• Added new Creating IP Presets Targeting Specific Boards section.
• Removed limitation statement about no support for assertion monitors

in Questa Intel FPGA Edition simulator. This simulator does support
assertion monitors.

continued...

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2022.09.26 22.3 • Added clarifying note about the default agent selection to Specifying a
Default Avalon Agent or AXI Subordinate topic.

• Updated screenshot in Specifying Interconnect Parameters topic for
new Response FIFO Type option.

• Revised Interconnect Parameters topic for new Response FIFO Type
option.

2022.06.20 22.2 • Updated What's New In This Version topic for latest changes in Platform
Designer.

2022.04.02 22.1 • Added Top FAQs navigation and What's New In This Version topic.
• Added new Correcting Platform Designer System Timing Issues topic.
• Updated entire chapter for new AXI "manager" and AXI "subordinate"

replacement terms. Refer to the AMBA® AXI and ACE Protocol
Specification.

2021.10.04 21.3 • Added new Preserving a System Module, Interface, or Port for
Debugging topic.

• Added new Changing the Platform Designer Font topic.
• Added new Comparing Platform Designer Systems and IP Components

section.
• Updated Generation Dialog Box Options topic note for Questa Intel

FPGA Edition simulator.
• Added references to the Nios V processor and documentation

throughout.

2021.03.29 21.1 • Converted to "host" and "agent" inclusive terminology for Avalon
memory mapped interface descriptions and related GUI elements
throughout.

• Added new Saving and Archiving Platform Designer Systems overview.
• Revised Saving Platform Designer Systems for more detail, screenshot,

and links about Export System as Platform Designer script (.tcl).
• Revised Archiving Platform Designer Systems for more detail,

screenshots, and links about using qsys-archive command.
• Added new Including Platform Designer Systems in Project Archives

topic.
• Added new Project Files to Include in External Revision Control topic.
• Updated Generation Dialog Box Options topic for new simulation

options.
• Updated Simulating Platform Designer Systems for new simulation

options and images.

2020.12.14 20.4 • Updated "Specifying Interconnect Parameters" topic for latest GUI
options and methods.

• Updated "Interconnect Parameters" table for latest parameters and
names.

• Updated all System View tab screenshots for latest filter options.
• Referenced Linux limitation for HLS generic component types.
• Revised "Files generated for IP cores and Platform Designer Systems"

diagram variable names.

2020.09.28 20.3 • Removed reference to obsolete Read/Write Waveforms option from
"Modifying IP Parameters" topic.

• Removed reference to obsolete System Information tab and
Implementation Templates tab from "Specifying IP Component
Instantiation Options" topic.

• Removed reference to obsolete Direction option from "Changing a
Conduit to a Reset" topic.

• Added details about filter controls to "Filtering the System View" topic.

2020.01.31 19.1 • Removed obsolete "Implementing Performance Monitoring" topic.

continued...

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

135

https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2019.10.02 19.1 • Updated location of interconnect parameters security setting in
"Configuring Platform Designer System Security" topic.

2019.09.30 19.1 • Removed reference to obsolete Bus Analyzer Toolkit from
"Implementing Performance Monitoring" topic.

2019.06.24 19.1 • Removed obsolete Interconnect Type parameter from "Interconnect
Parameters" topic.

2019.04.30 19.1 • Corrected typographical error in "Interconnect Parameters" topic.

2019.04.01 19.1 • Described new Domains tab for specifying system-wide or domain-
specific interconnect parameters.

• Described new default use of synchronous reset option for Stratix® 10
designs in "Interconnect Parameters."

• Described new Schematic tab in "Previewing the System Interconnect."

2018.12.15 18.1 • Replaced references to System Contents tab with new System View
tab.

• Described new Filter tab in Filtering the "Filtering the System View."
• Updated "Disabling or Enabling Parallel IP Generation" to indicate

option is now on by default and describe optional settings.
• Moved command-line utility information into new "Platform Designer

Command-Line Interface" chapter.
• Removed "Creating a Combined Simulation Script" topic that does not

apply to Platform Designer.
• Revised headings and re-organized content into user task-based

sections.
• Updated screenshots for latest version.

2018.09.24 18.1 • Removed duplicated topic: Manually Control Pipelining in the Platform
Design Interconnect. The topic is now in the Platform Design
Interconnect chapter.

• Added statement about supported standards for IP-XACT.
• Divided topic: Specify Implementation Type for IP Components into

Configure the System Representation of an IP Core and
Implementation Type.

• Reorganized information about associating Intel Quartus Prime projects
to Platform Designer systems.

• Grouped information regarding definition and management of IP cores
in Platform Designer under topic: IP Cores in Platform Designer, and
updated contents.

• Expanded description of parallel IP generation.
• In topic 64-Bit Addressing Support, added link to information about the

auto base assignment feature.

2018.06.15 18.0 • Updated description of Enable ECC protection in table: System-Wide
Interconnect Requirements.

• Updated example in topic: Generate a Platform Design System with
qsys-script.

2018.05.07 18.0 • Added support for hierarchical simscripts, and the Xcelium Parallel
Simulator in .

• Added support for --debug command used with qsys-edit.
• Added support for wire-level expressions and connectivity.
• Added _hw.tcl commands to support wire-level expressions.

2017.11.06 17.1 • Changed instances of Qsys Pro to Platform Designer

2017.05.06 17.0 • Updated the topic - Create/Open Project in Qsys Pro
• Updated the topic - Modify the Target Device
• Updated the topic - Modify the IP Search Path

continued...

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Added new topic - Save your System
• Added new topic - Archive your System
• Added new topic - Synchronize IP File References
• Updated the topic - Upgrade Outdated IP Components in Qsys Pro.
• Added new topic - Run System Scripts
• Added new topic - View Avalon Memory Mapped Domains in Your Qsys

Pro System
• Updated the topic - Qsys Pro Scripting Command Reference for new Tcl

scripting commands
• Updated the topic - Qsys Pro Scripting Property Reference for new Tcl

scripting property

2016.10.31 16.1 • Implemented Intel rebranding.
• Implemented Qsys rebranding.
• Integrated Qsys Pro chapter with Qsys.
• Added command-line options for qsys-archive.
• Added command-line options for quartus_ipgenerate.
• Updated the Qsys Pro scripting commands.
• Added topic on Qsys Pro design conversion.

2016.05.03 16.0 • Qsys Command-Line Utilities updated with latest supported command-
line options.

• Added: Generate Header Files

2015.11.02 15.1 • Added: Troubleshooting IP or Qsys Pro System Upgrade.
• Added: Generating Version-Agnostic IP and Qsys Pro Simulation

Scripts.
• Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0 • New figure: Avalon Memory Mapped Write Host Timing Waveforms in
the Parameters Tab.

• Added Enable ECC protection option, Specify Qsys Interconnect
Requirements.

• Added External Memory Interface Debug Toolkit note, Generate a Qsys
System.

• Modelsim-Altera now supports native mixed-language (VHDL/Verilog/
SystemVerilog) simulation, Generating Files for Synthesis and
Simulation.

December 2014 14.1 • Create and Manage Hierarchical Qsys Systems.
• Schematic tab.
• View and Filter Clock and Reset Domains.
• File ➤ Recent Projects menu item.
• Updated example: Hierarchical System Using Instance Parameters

August 2014 14.0a10 • Added distinction between legacy and standard device generation.
• Updated: Upgrading Outdated IP Components.
• Updated: Generating a Qsys System.
• Updated: Integrating a Qsys System with the Quartus II Software.
• Added screen shot: Displaying Your Qsys System.

June 2014 14.0 • Added tab descriptions: Details, Connections.
• Added Managing IP Settings in the Quartus II Software.
• Added Upgrading Outdated IP Components.
• Added Support for Avalon Memory Mapped Non-Power of Two Data

Widths.

continued...

1. Creating a System with Platform Designer

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

November 2013 13.1 • Added Integrating with the .qsys File.
• Added Using the Hierarchy Tab.
• Added Managing Interconnect Requirements.
• Added Viewing Qsys Interconnect.

May 2013 13.0 • Added AMBA APB support.
• Added qsys-generate utility.
• Added VHDL BFM ID support.
• Added Creating Secure Systems (TrustZones) .
• Added CMSIS Support for Qsys Systems With An HPS Component.
• Added VHDL language support options.

November 2012 12.1 • Added AMBA AXI4 support.

June 2012 12.0 • Added AMBA AX3I support.
• Added Preset Editor updates.
• Added command-line utilities, and scripts.

November 2011 11.1 • Added Synopsys VCS and VCS MX Simulation Shell Script.
• Added Cadence Incisive Enterprise (NCSIM) Simulation Shell Script.
• Added Using Instance Parameters and Example Hierarchical System

Using Parameters.

May 2011 11.0 • Added simulation support in Verilog HDL and VHDL.
• Added testbench generation support.
• Updated simulation and file generation sections.

December 2010 10.1 Initial release.

1. Creating a System with Platform Designer

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Creating a Board Support Package with BSP Editor
Platform Designer includes the BSP Editor board support package editing tool. A board
support package (BSP) provides a software runtime environment for embedded
systems, such as Nios II processor and Nios V processor systems.

The BSP simplifies your interface with connected hardware by providing the Intel FPGA
hardware abstraction layer (HAL), an optional RTOS, and device drivers. BSP Editor is
also available from the Nios II Embedded Design Suite (EDS).

The BSP Editor is a GUI tool that you can launch from Platform Designer to configure
BSP contents. The BSP Editor allows you to specify the Harvard architecture CPU for
your BSP, based on your Platform Designer system's .qsys file, or based on
a .sopcinfo file that stores the target hardware definition. The .sopcinfo file
generates during Platform Designer system HDL generation.

Figure 121. BSP Editor

BSP Editor Tabs

BSP Settings

The BSP isolates your application from system-specific details such as the memory
map, available devices, and processor configuration. You decide the placement of the
application's program code and data, depending on the memory devices that you
connect to the CPU's instruction bus.

For each peripheral IP that you connect to the selected CPU's data bus, the BSP Editor
automatically includes the matching driver for each peripheral IP as part of the BSP.
The BSP Editor packages each driver using the sw.tcl API. The sw.tcl API defines

683609 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

the collection of driver source files for the matching IP component type accessible by
the CPU's data bus. Each driver may define software settings for configuring driver
implementation or behavior.

You can use BSP Editor in the following modes. The BSP System file that you specify
determines the mode.

Table 34. BSP Editor Modes in Platform Designer

BSP Editor Integrated Mode BSP Editor Stand-Alone Mode

Description Generate a BSP directly for a Platform
Designer system (.qsys). Any changes that
you make in the System View automatically
update in the BSP. Nios V processor designs
require Integrated Mode.

BSP Editor is not fully integrated with
Platform Designer, requiring manual update
of the BSP for any changes that you make to
the system using the .sopcinfo file. Nios
II processor designs require Stand-Alone
Mode.

Processor Support Nios V Processor(6) Nios II Processor

To Launch (BSP System
File)

Specifying a .qsys file as System file
launches BSP Editor in integrated mode.

Specifying a .sopcinfo as System file
launches BSP Editor in stand-alone mode.

Note: For complete information about how to develop a BSP for a Nios II processor system
or Nios V processor system, refer to the Nios II Software Developer Handbook or the
Nios V Processor Quick Start Guide, respectively.

Related Information

• Nios II Software Developer Handbook

• Nios V Embedded Processor Design Handbook

• Nios V Processor Reference Guide

2.1. Creating a BSP from Platform Designer

You can launch the BSP Editor from Platform Designer to define a new BSP for a
Platform Designer system or other hardware design. You can launch the BSP Editor in
either integrated or stand-alone mode, depending on the System file that you specify
for the BSP in Platform Designer.

When you create a BSP from Platform Designer, the BSP Editor stores your BSP
definition in a BSP Settings File (.bsp) for later retrieval. You can reopen an existing
BSP by opening the .bsp file in Platform Designer. The BSP generally includes a .a
file, header files (for example, system.h), and a linker script (linker.x). You use
these BSP files when creating an application.

Launching BSP Editor in Integrated Mode

In integrated mode, BSP Editor automatically updates for any changes that you make
to your system in Platform Designer. You launch BSP Editor in integrated mode by
specifying your Platform Designer system's .qsys file as the main input to the BSP
generation. Nios V processor designs require integrated mode. Nios II processor
designs require stand-alone mode.

(6) The Nios V processor does not support stand-alone mode. The Nios II processor does not
support integrated mode.

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

140

https://www.intel.com/content/www/us/en/programmable/documentation/lro1419794938488.html
https://www.intel.com/content/www/us/en/docs/programmable/726952.html
https://www.intel.com/content/www/us/en/programmable/documentation/lae1629183268014.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To launch BSP Editor in integrated mode:

1. Open a Platform Designer system, as Creating or Opening a Platform Designer
System on page 14 describes.

2. In Platform Designer, click File ➤ New BSP.

3. Specify the name and location for the new BSP settings file, and click the Create
button. The Create New BSP dialog box opens.

4. For System file, specify the .qsys file that defines the target hardware platform
for the current Platform Designer system. The CPU name and BSP target
directory reflect the values in the .qsys file.

Figure 122. Create New BSP Dialog Box (Integrated Mode)

Specify .qsys File for Integrated Mode

CPU Name Reflects .qsys File

5. Specify options for the Operating System and BSP target directory, as Create
New BSP Dialog Box on page 143 describes.

6. To create the BSP, click the Create button. The BSP Editor opens and displays the
BSP Editor's Main tab in Platform Designer.

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 123. BSP Editor Main Tab

7. To configure the BSP, specify settings and options on the BSP Editor tabs. Refer to
BSP Editor GUI on page 145 for details on these settings.

8. To generate the files for the BSP according to your specifications, click the
Generate BSP button in BSP Editor. BSP Editor files do not automatically generate
when you generate Platform Designer system files.

Launching BSP Editor in Stand-Alone Mode

Platform Designer generates a <system_name>/.sopcinfo file during HDL
generation of the system. You can specify a .sopcinfo file and other BSP file saving
options when defining a new BSP in stand-alone mode. Stand-alone mode is required
for Nios II processor designs, and is not supported for Nios V processor designs.

Note: If you make any changes to your Platform Designer system after creating a BSP in
stand-alone mode, you must regenerate the system's HDL and .sopcinfo files and
create a new BSP to reflect any changes. The BSP does not update automatically with
changes that you make to a Platform Designer system in stand-alone mode.

1. Open a Platform Designer system, as Creating or Opening a Platform Designer
System on page 14 describes.

2. If generating a BSP for a Platform Designer system, click Generate HDL to
generate the HDL and .sopcinfo files defining the target hardware for the
system.

3. In Platform Designer, click File ➤ New BSP.

4. Specify the name and location for the new BSP settings file, and click the Create
button. The New Platform Designer BSP dialog box opens.

5. For the SOPC Information File name option, specify the .sopcinfo file that
step 2 generates. The CPU name and BSP target directory reflect the values in
the .sopcinfo file.

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 124. Create New BSP Dialog Box (Stand-Alone Mode)

Specify .sopcinfo File for Stand-Alone Mode

CPU Name Reflects .sopcinfo File

6. You can specify options for the Operating System and BSP file output, as Create
New BSP Dialog Box on page 143 describes.

7. To create the BSP, click the Create button. The BSP Editor opens and displays the
BSP Editor's Main tab in Platform Designer.

8. To configure the BSP, specify settings and options on the BSP Editor tabs. Refer to
BSP Editor GUI on page 145.

9. To generate the files for the BSP according to your specifications, click the
Generate button in BSP Editor.

2.1.1. Create New BSP Dialog Box

The Create New BSP dialog box allows you to specify the following options to define
a new BSP:

Table 35. Create New BSP Dialog Box Settings

Name Description

BSP setting file Specifies the directory that contains the BSP settings file following BSP
generation. By default:
• <project>/software/hal_bsp/settings.bsp (HAL)
• <project>/software/ucOS_bsp/settings.bsp (Micrium MicroC/OS-II)

System file (qsys or sopcinfo) Specifies an existing .qsys or .sopcinfo file that defines the target hardware
platform for a Platform Designer system or other hardware design. Platform
Designer generates the .qsys file at system or component creation, and
the .sopcinfo file during HDL generation of the system.

CPU name Specifies the system CPU name if the System file defines a CPU, such as the
Nios II processor. If the System file does not define a CPU, this setting is read-
only. If the System file defines more than one CPU, you can select the CPU for
this BSP.

continued...

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

Operating System Specifies the operating system of the CPU name. The operating system can be
either Altera HAL or Micrium MicroC/OS-II. The BSP file output corresponds
to your selection. You cannot change the Operating system for an existing BSP.
Rather, you must create a new BSP that specifies a new Operating System.

Use default locations Specifies whether BSP Editor uses default or custom file locations for the BSP
target directory and BSP settings file storage. Disable this option to specify a
custom location.

BSP target directory Specifies the directory that contains the BSP files following BSP generation. By
default:
• <project>/software/hal_bsp/ (HAL)
• <project>/software/ucOS_bsp/ (Micrium MicroC/OS-II)

Enable additional Tcl script file Specifies an additional Tcl script (.tcl) that you can run to specify the BSP
settings.

2.2. Opening a BSP from Platform Designer

To open and modify an existing BSP from within Platform Designer:

1. In Platform Designer, click File ➤ Open, and then click the BSP Editor tab.

2. For BSP setting file, click the … button to select the .bsp file for the BSP you
want to open.

Figure 125. Open BSP Settings File

3. Click Open. The BSP loads in BSP Editor within Platform Designer.

2.3. Saving a BSP from Platform Designer

To save an existing BSP from within Platform Designer:

1. In Platform Designer, open an existing BSP (.bsp), as Opening a BSP from
Platform Designer on page 144 describes.

• Click File ➤ Save to save changes to the .bsp file to the current location.

• Click File ➤ Save BSP As to save the .bsp file to a different location.

2.4. Exporting a BSP as Tcl from Platform Designer

You can export a BSP as a Tcl file from within Platform Designer. You can then run the
Tcl script to load the BSP settings.

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To export a BSP from Platform Designer as Tcl:

1. In Platform Designer, open an existing BSP (.bsp), as Opening a BSP from
Platform Designer on page 144 describes.

2. Click File ➤ Export BSP as Tcl.

3. Specify the filename and location of the BSP Tcl file and click the Save button.

4. To reload the BSP, run the Tcl script file.

2.5. BSP Editor GUI

The BSP Editor GUI provides all the tools you need to create even the most complex
BSPs. The BSP Editor GUI is divided into two sections. The top section contains the
BSP Editor tabs for specifying the settings and other parameters that define the BSP.
The Messages displays Information, Problems, and Processing messages about your
actions in the BSP Editor.

Figure 126. BSP Editor GUI

BSP Editor Tabs

BSP Settings

Each tab of the BSP Editor GUI allows you to view and edit a particular aspect of the
BSP, along with relevant command-line parameters and Tcl scripts. The settings that
appear on the Main, BSP Software Packages, and BSP Drivers tabs correspond to
the related command-line settings.

• Main Tab on page 146

• BSP Software Packages Tab on page 147

• BSP Drivers Tab on page 147

• BSP Linker Script Tab on page 148

• BSP Enable File Generation Tab on page 150

• BSP Target Directory Tab on page 151

• Messages Tabs on page 151

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For complete information about how to develop a BSP for a Nios II processor system
or Nios V processor system, refer to the Nios II Software Developer Handbook or the
Nios V Processor Quick Start Guide, respectively.

Related Information

• Nios II Software Developer Handbook

• Nios V Embedded Processor Design Handbook

• Nios V Processor Reference Guide

2.5.1. Main Tab

The Main tab presents general settings and parameters, and operating system
settings, for the BSP. The BSP includes the following settings and parameters:

Figure 127. BSP Editor Main Tab

• The path to the .qsys or .sopcinfo file specifying the target hardware

• The CPU name

• The operating system and version

Note: You cannot change the operating system in an existing BSP. You must create a new
BSP if you want to change the operating system.

• The BSP target directory—the destination for files that the BSP Editor copies
and creates for your BSP

• BSP settings

The BSP settings appear in a tree structure. The settings are organized into Common
and Advanced categories. Settings are further organized into functional groups. The
available settings depend on the operating system.

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

146

https://www.intel.com/content/www/us/en/programmable/documentation/lro1419794938488.html
https://www.intel.com/content/www/us/en/docs/programmable/726952.html
https://www.intel.com/content/www/us/en/programmable/documentation/lae1629183268014.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.

2.5.2. BSP Software Packages Tab

The BSP Software Packages tab allows you to insert and remove software packages
in your BSP, and control software package settings.

At the top of the BSP Software Packages tab is the software package table, listing
each available software package. The table allows you to select the software package
version, and enable or disable the software package. The operating system determines
which software packages are available.

Figure 128. BSP Software Packages Tab

Many software packages define settings that you can control in your BSP. When you
enable a software package, the available settings appear in a tree structure, organized
into Common and Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.

Enabling and disabling software packages and editing software package settings can
have a profound impact on BSP behavior. Refer to the documentation for the specific
software package for details.

2.5.3. BSP Drivers Tab

The BSP Drivers tab allows you to select, enable, and disable drivers for devices in
your system, and control driver settings.

At the top of the BSP Drivers tab is the driver table, mapping components in the
hardware system to drivers. The driver table shows components with driver support.
Each component has a module name, module version, module class name, driver
name, and driver version, determined by the contents of the hardware system. The
table allows you to select the driver by name and version, as well as to enable or
disable each driver.

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 129. BSP Drivers Tab

When you select a driver version, all instances of that driver in the BSP are set to the
version you select. Only one version of a given driver can be used in an individual BSP.

Many drivers define settings that you can control in your BSP. Available driver settings
appear in a tree structure below the driver table, organized into Common and
Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.

Enabling and disabling device drivers, changing drivers and driver versions, and
editing driver settings, can have a profound impact on BSP behavior. Refer to the
relevant component documentation and driver information for details.

Related Information

Embedded Peripherals IP User Guide
For more information about Intel FPGA components.

2.5.4. BSP Linker Script Tab

The BSP Linker Script tab allows you to view available memory in your hardware
system, and examine and modify the arrangement and usage of linker regions in
memory.

When you make a change to the memory configuration, the software build tools (SBT)
validate your change.

Note: Rearranging linker regions and linker section mappings can have a significant impact
on BSP behavior.

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

148

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 130. BSP Linker Script Tab

2.5.4.1. Linker Section Mappings

At the top of the Linker Script tab, the Linker Section Mappings table shows the
mapping from linker sections to linker regions. You can edit the BSP linker section
mappings using the following buttons located next to the linker section table:

• Add—Adds a linker section mapping to an existing linker region. The Add button
opens the Add Section Mapping dialog box, where you specify a new section
name and an existing linker region.

• Remove—Removes a mapping from a linker section to a linker region.

• Restore Defaults—Restores the section mappings to the default configuration set
up at the time of BSP creation.

2.5.4.2. Linker Regions

At the bottom of the Linker Script tab, the Linker Memory Regions table shows all
defined linker regions. Each row of the table shows one linker region, with its address
range, memory device name, size, and offset into the selected memory device.

You reassign a defined linker region to a different memory device by selecting a
different device name in the Memory Device Name column. The Size and Offset
columns are editable. You can also edit the list of linker regions using the following
buttons located next to the linker region table.

Note: Ensure that you specify the correct base address and memory size. If the base
address or size of an external memory changes, you must edit the BSP manually to
match. The SBT does not automatically detect changes in external memory devices,
even if you update the BSP by creating a new settings file.

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 36. Linker Memory Regions Table Buttons

Name Description

Add Adds a linker region in unused space on any existing device. The Add button opens the Add
Memory Region dialog box, where you specify the memory device, the new memory region
name, the region size, and the region's offset from the device base address.

Remove Removes a linker region definition. Removing a region frees the region's memory space to be
used for other regions.

Add Memory Device Creates a linker region representing a memory device that is outside the hardware system.
The button opens the Add Memory Device dialog box, where you can specify the device
name, memory size, and base address. After you add the device, it appears in the linker
region table, the Memory Device Usage Table dialog box, and the Memory Map dialog
box. This functionality is equivalent to the add_memory_device Tcl command.

• Restore Defaults—restores the memory regions to the default configuration set
up at the time of BSP creation.

• Memory Usage—Opens the Memory Device Usage Table. The Memory
Device Usage Table allows you to view memory device usage by defined
memory region. As memory regions are added, removed, and adjusted, each
device's free memory, used memory, and percentage of available memory are
updated. The rightmost column is a graphical representation of the device’s usage,
according to the memory regions assigned to it.

• Memory Map—Opens the Memory Map dialog box. The memory map allows you
to view a map of system memory in the processor address space. The Device
table is a read-only reference showing memories in the hardware system that are
hosted by the selected processor. Devices are listed in memory address order.

To the right of the Device table is a graphical representation of the processor's
memory space, showing the locations of devices in the table. Gaps indicate
unmapped address space.

Note: This gap representation is not to scale.

2.5.5. BSP Enable File Generation Tab

The BSP Enable File Generation tab allows you to take ownership of specific BSP
files that are normally generated by the SBT.

Figure 131. BSP Enable File Generation Tab

File Generation Disabled

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you take ownership of a BSP file, you can modify it, and prevent the SBT from
overwriting your modifications. The BSP Enable File Generation tab shows a tree
view of all target files to be generated or copied when the BSP is generated. To disable
generation of a specific file, expand the software component containing the file,
expand any internal directory folders, select the file, and right-click. Each disabled file
appears in a list at the bottom of the tab. This functionality is equivalent to the
set_ignore_file Tcl command.

Note: If you take ownership of a BSP file, the SBT can no longer update it to reflect future
changes in the underlying hardware. If you change the hardware, be sure to update
the file manually.

2.5.6. BSP Target Directory Tab

The BSP Target Directory tab is a read-only reference showing you what output to
expect when the BSP is generated.

It does not depict the actual file system, but rather the files and directories to be
created or copied when the BSP is generated. Each software component, including the
operating system, drivers, and software packages, specifies source code to be copied
into the BSP target directory. The files are generated in the directory specified on the
Main tab.

When you generate the BSP, existing BSP files are overwritten, unless you disable
generation of the file in the BSP Enable File Generation tab.

Figure 132. BSP Target Directory Tab

2.5.7. Messages Tabs

The messages area shows messages about the settings and commands that you select
in the BSP Editor GUI. The messages area consists of the following tabs:

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 133. The Messages Area

• The Information tab—displays information messages about settings and
commands.

• The Problems tab—displays problems to correct before BSP generation.

• The Processing tab—displays BSP Editor processing status messages.

Note: For complete information about how to develop a BSP for a Nios II processor system
or Nios V processor system, refer to the Nios II Software Developer Handbook or the
Nios V Processor Quick Start Guide, respectively.

Related Information

• Nios II Software Developer Handbook

• Nios V Embedded Processor Design Handbook

• Nios V Processor Reference Guide

2.6. Creating a Board Support Package with BSP Editor Revision
History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.

2023.04.03 23.1 • The product family name is updated to "Intel Agilex 7" to reflect the
different family members.

2021.10.04 21.3 • Added Launching BSP Editor in Integrated Mode section to Creating a
BSP from Platform Designer topic.

• Updated Creating a Board Support Package with BSP Editor topic for
Integrated Mode.

• Updated Create New BSP Dialog Box topic for Integrated Mode.
• Updated Main Tab topic for Integrated Mode.
• Updated command name in Saving a BSP from Platform Designer topic.
• Updated screenshot in Opening a BSP from Platform Designer topic.
• Added references to the Nios V processor and documentation

throughout.

2021.03.29 21.1 First version of chapter.

2. Creating a Board Support Package with BSP Editor

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

152

https://www.intel.com/content/www/us/en/programmable/documentation/lro1419794938488.html
https://www.intel.com/content/www/us/en/docs/programmable/726952.html
https://www.intel.com/content/www/us/en/programmable/documentation/lae1629183268014.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Creating Platform Designer Components
You can create and package IP components for use in a Platform Designer system. You
can use a _hw.tcl file to describe IP components, interfaces and HDL files. Platform
Designer provides the Component Editor to help you create a simple _hw.tcl file.

Related Information

• Avalon Interface Specifications

• Protocol Specifications

• Demo AXI Memory Example

3.1. Platform Designer Components

A Platform Designer component includes the following elements:

• Information about the component type, such as name, version, and author.

• HDL description of the component’s hardware, including SystemVerilog, Verilog
HDL, or VHDL files, or a blackbox implementation.

• A Synopsys® Design Constraints File .sdc that defines the component for
synthesis and simulation.

• For _hw.tcl components, an .ip file that defines the component's parameters.

• A component’s interfaces, including I/O signals.

3.1.1. Platform Designer Interface Support

Platform Designer is most effective when you use standard interfaces available in the
IP Catalog to design custom IP. Standard interfaces operate efficiently with Intel FPGA
IP components, and you can take advantage of the bus functional models (BFMs),
monitors, and other verification IP that the IP Catalog provides.

Platform Designer also supports connections between Avalon and AXI interfaces by
generating the interconnect logic. This logic enables you to handle the protocol
difference. Platform Designer creates the interconnect logic by converting all the
protocols to a proprietary packet format. Then, the tool routes the packet through
network switches to the appropriate agents. Here, the packet converts to the agent's
protocol.(7)

(7) This document now refers to the Avalon "host" and "agent," and the AXI "manager" and
"subordinate," to replace formerly used terms. Refer to the current AMBA AXI and ACE Protocol
Specification for the latest AMBA AXI and ACE protocol terminology.

683609 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/qsys/exm-demo-axi3-memory.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Platform Designer supports the following interface specifications:

• Intel FPGA Avalon Memory-Mapped and Streaming

• Arm AMBA 3 AXI (version 1.0)

• Arm AMBA 4 AXI (version 2.0)

• Arm AMBA 4 AXI-Lite (version 2.0)

• Arm AMBA 4 AXI-Stream (version 1.0)

• Arm AMBA 3 APB (version 1.0)

IP components (IP Cores) can have any number of interfaces in any combination. Each
interface represents a set of signals that you can connect within a Platform Designer
system, or export outside of a Platform Designer system.

Platform Designer IP components can include the following interface types:

Table 37. IP Component Interface Types

Interface Type Description

Memory-Mapped Connects memory-referencing host devices with agent memory devices. Host devices can be
processors and DMAs, while agent memory devices can be RAMs, ROMs, and control registers.
Data transfers between Avalon Memory Mapped host and agent may be uni-directional (read
only or write only), or bi-directional (read and write).

Streaming Connects Avalon Streaming sources and sinks that stream unidirectional data, as well as high-
bandwidth, low-latency IP components. Streaming creates datapaths for unidirectional traffic,
including multichannel streams, packets, and DSP data. The Avalon interconnect is flexible and
can implement on-chip interfaces for industry standard telecommunications and data
communications cores, such as Ethernet, Interlaken, and video. You can define bus widths,
packets, and error conditions.

Interrupts Connects interrupt senders to interrupt receivers. Platform Designer supports individual,
single-bit interrupt requests (IRQs). In the event that multiple senders assert their IRQs
simultaneously, the receiver logic (typically under software control) determines which IRQ has
highest priority, then responds appropriately.

Clocks Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source
connects internally to more than one source.

Resets Connects reset sources with reset input interfaces. If your system requires a particular
positive-edge or negative-edge synchronized reset, Platform Designer inserts a reset controller
to create the appropriate reset signal. If you design a system with multiple reset inputs, the
reset controller ORs all reset inputs and generates a single reset output.

Conduits Connects point-to-point conduit interfaces, or represent signals that you export from the
Platform Designer system. Platform Designer uses conduits for component I/O signals that are
not part of any supported standard interface. You can connect two conduits directly within a
Platform Designer system as a point-to-point connection. Alternatively, you can export conduit
interfaces and bring the interfaces to the top-level of the system as top-level system I/O. You
can use conduits to connect to external devices, for example external DDR SDRAM memory,
and to FPGA logic defined outside of the Platform Designer system.

Related Information

Exporting HDL Parameters to a System on page 189

3.1.2. Component Structure

Intel provides components automatically installed with the Quartus Prime software. To
obtain a list of all Platform Designer-compliant components available from third-party
IP developers, follow these steps:

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Navigate to the Intel FPGA Find IP web page.

2. In the Find IP search results, click the Platform Designer (Qsys) Compliant
column filter to show all Platform Designer-compliant components.

3. Further refine the search results by selecting the End Market, Technology,
Devices, or Provider search filter. The Provider filter allows you to select
specific third-party IP partners.

Every Platform Designer-compliant component is defined with a
<component_name>_hw.tcl file. This file is a text file written in the Tcl scripting
language that describes the component to Platform Designer. When you design your
own custom component, you can create the _hw.tcl file manually, or by using the
Platform Designer Component Editor.

The Component Editor simplifies the process of creating _hw.tcl files by creating a
file that you can edit outside of the Component Editor to add advanced procedures.
When you edit a previously saved _hw.tcl file, Platform Designer automatically backs
up the earlier version as _hw.tcl~.

You can move component files into a new directory, such as a network location, so
that other users can use the component in their systems. The _hw.tcl file contains
relative paths to the other files, so if you move an _hw.tcl file, you should also move
all the HDL and other files associated with it.

There are four component types:

• Static— static components always generate the same output, regardless of their
parameterization. Components that instantiate static components must have only
static children.

• Generated—generated component's fileset callback allows an instance of the
component to create unique HDL design files based on the instance's parameter
values.

• Composed—composed components are subsystems constructed from instances of
other components. You can use a composition callback to manage the subsystem
in a composed component.

• Generic—generic components allow instantiation of IP components without an
HDL implementation. Generic components enable hierarchical isolation between
system interconnect and IP components.

Related Information

• Create a Composed Component or Subsystem on page 196

• Add Component Instances to a Static or Generated Component on page 198

3.1.3. Component File Organization

A typical component uses the following directory structure where the names of the
directories are not significant:

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

155

https://www.intel.com/content/www/us/en/products/programmable/intellectual-property.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<component_directory>/

• <hdl>/—Contains the component HDL design files, for example .v, .sv, or .vhd
files that contain the top-level module, along with any required constraint files.

• <component_name>_hw.tcl—The component description file.

• <component_name>_sw.tcl—The software driver configuration file. This file
specifies the paths for the .c and .h files associated with the component, when
required.

• <software>/—Contains software drivers or libraries related to the component.

Note: Refer to the Nios V Processor Quick Start for information about writing a device driver
or software package suitable for use with the Nios V processor.

Related Information

• Nios V Embedded Processor Design Handbook

• Nios II Software Developer’s Handbook
Refer to the "Nios II Software Build Tools" and "Overview of the Hardware
Abstraction Layer" chapters.

• Nios V Embedded Processor Design Handbook

3.1.4. Component Versions

Platform Designer systems support multiple versions of the same component within
the same system; you can create and maintain multiple versions of the same
component.

If you have multiple _hw.tcl files for components with the same NAME module
properties and different VERSION module properties, both versions of the component
are available.

If multiple versions of the component are available in the IP Catalog, you can add a
specific version of a component by right-clicking the component, and then selecting
Add version <version_number>.

3.1.4.1. Upgrade IP Components to the Latest Version

When you open a Platform Designer design, if Platform Designer detects IP
components that require regeneration, the Upgrade IP Cores dialog box appears and
allows you to upgrade outdated components.

Components that you must upgrade in order to successfully compile your design
appear in red. Status icons indicate whether a component is currently being
regenerated, the component is encrypted, or that there is not enough information to
determine the status of component. To upgrade a component, in the Upgrade IP
Cores dialog box, select the component that you want to upgrade, and then click
Upgrade. The Quartus Prime software maintains a list of all IP components associated
with your design on the Components tab in the Project Navigator.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

156

https://www.intel.com/content/www/us/en/docs/programmable/726952.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf
https://www.intel.com/content/www/us/en/docs/programmable/726952.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2. Design Phases of an IP Component

When you define a component with the Platform Designer Component Editor, or a
custom _hw.tcl file, you specify the information that Platform Designer requires to
instantiate the component in a Platform Designer system and to generate the
appropriate output files for synthesis and simulation.

The following phases describe the process when working with components in Platform
Designer:

• Discovery—During the discovery phase, Platform Designer reads the _hw.tcl
file to identify information that appears in the IP Catalog, such as the component's
name, version, and documentation URLs. Each time you open Platform Designer,
the tool searches for the following file types using the default search locations and
entries in the IP Search Path:

— _hw.tcl files—Each _hw.tcl file defines a single component.

— IP Index (.ipx) files—Each .ipx file indexes a collection of available
components, or a reference to other directories to search.

• Static Component Definition—During the static component definition phase,
Platform Designer reads the _hw.tcl file to identify static parameter declarations,
interface properties, interface signals, and HDL files that define the component. At
this stage of the life cycle, the component interfaces may be only partially defined.

• Parameterization—During the parameterization phase, after an instance of the
component is added to a Platform Designer system, the user of the component
specifies parameters with the component’s parameter editor.

• Validation—During the validation phase, Platform Designer validates the values
of each instance's parameters against the allowed ranges specified for each
parameter. You can use callback procedures that run during the validation phase
to provide validation messages. For example, if there are dependencies between
parameters where only certain combinations of values are supported, you can
report errors for the unsupported values.

• Elaboration—During the elaboration phase, Platform Designer queries the
component for its interface information. Elaboration is triggered when an instance
of a component is added to a system, when its parameters are changed, or when
a system property changes. You can use callback procedures that run during the
elaboration phase to dynamically control interfaces, signals, and HDL files based
on the values of parameters. For example, interfaces defined with static
declarations can be enabled or disabled during elaboration. When elaboration is
complete, the component's interfaces and design logic must be completely
defined.

• Composition—During the composition phase, a component can manipulate the
instances in the component's subsystem. The _hw.tcl file uses a callback
procedure to provide parameterization and connectivity of sub-components.

• Generation—During the generation phase, Platform Designer generates synthesis
or simulation files for each component in the system into the appropriate output
directories, as well as any additional files that support associated tools.

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3. Creating IP Components in the Component Editor

The Platform Designer Component Editor allows you to create and package an IP
component and parameterization GUI. When you use the Component Editor to define
a component, Platform Designer writes the information to an _hw.tcl file.

Figure 134. Component Editor

The Platform Designer Component Editor allows you to perform the following tasks:

• Specify component’s identifying information, such as name, version, author, etc.

• Specify the SystemVerilog, Verilog HDL, VHDL files, and constraint files that define
the component for synthesis and simulation.

• Create an HDL template to define a component's interfaces, signals, and
parameters.

• Set parameters on interfaces and signals that can alter the component's structure
or functionality.

If you do not have a top-level HDL component file, you can use the Platform Designer
Component Editor to add interfaces, signals, and parameters. In the Component
Editor, the order in which the tabs appear reflects the recommended design flow for
component development. You can use the Prev and Next buttons to guide you
through the tabs.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In a Platform Designer system, the interfaces of a component are connected in the
system, or exported as top-level signals from the system.

If the component is not based on an existing HDL file, enter the parameters, signals,
and interfaces first, and then return to the Files tab to create the top-level HDL file
template. When you click Finish, Platform Designer creates the component _hw.tcl
file with the details that you enter in the Component Editor.

When you save the component, it appears in the IP Catalog.

If you require custom features that the Platform Designer Component Editor does not
support, for example, an elaboration callback, use the Component Editor to create the
_hw.tcl file, and then manually edit the file to complete the component definition.

Note: If you add custom coding to a component, do not open the component file in the
Platform Designer Component Editor. The Platform Designer Component Editor
overwrites your custom edits.

Example 4. Platform Designer Creates an _hw.tcl File from Entries in the Component
Editor

connection point clock

add_interface clock clock end
set_interface_property clock clockRate 0
set_interface_property clock ENABLED true

add_interface_port clock clk clk Input 1

connection point reset

add_interface reset reset end
set_interface_property reset associatedClock clock
set_interface_property reset synchronousEdges DEASSERT
set_interface_property reset ENABLED true

add_interface_port reset reset_n reset_n Input 1

connection point streaming

add_interface streaming avalon_streaming start
set_interface_property streaming associatedClock clock
set_interface_property streaming associatedReset reset
set_interface_property streaming dataBitsPerSymbol 8
set_interface_property streaming errorDescriptor ""
set_interface_property streaming firstSymbolInHighOrderBits true
set_interface_property streaming maxChannel 0
set_interface_property streaming readyLatency 0
set_interface_property streaming ENABLED true

add_interface_port streaming aso_data data Output 8
add_interface_port streaming aso_valid valid Output 1
add_interface_port streaming aso_ready ready Input 1

Related Information

Component Interface Tcl Reference on page 666

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.1. Save an IP Component and Create the _hw.tcl File

You save a component by clicking Finish in the Platform Designer Component Editor.
The Component Editor saves the component as <component_name> _hw.tcl file.

You can use IP components with other applications, such as the C compiler and a
board support package (BSP) generator. Intel recommends that you move _hw.tcl
files and their associated files to an ip/ directory within your Quartus Prime project
directory.

When changing file locations, ensure that the file paths in the _hw.tcl file always
point to the HDL code correctly. The Component Editor places the _hw.tcl file in the
location of the .qsys file, rather than in the location of the HDL files. There can be a
disconnect if you move the files without updating references. Check the
ADD_FILESET_FILE property setting in the _hw.tcl.

Refer to Creating a System with Platform Designer for information on how to search
for and add components to the IP Catalog for use in your designs.

Related Information

Creating a System with Platform Designer on page 11

3.3.2. Edit an IP Component with the Platform Designer Component
Editor

In Platform Designer, you make changes to a component by right-clicking the
component in the System View tab, and then clicking Edit. After making changes,
click Finish to save the changes to the _hw.tcl file.

You can open an _hw.tcl file in a text editor to view the hardware Tcl for the
component. If you edit the _hw.tcl file to customize the component with advanced
features, you cannot use the Component Editor to make further changes without over-
writing your customized file.

You cannot use the Component Editor to edit components installed with the Quartus
Prime software, such as Intel-provided components. If you edit the HDL for a
component and change the interface to the top-level module, you must edit the
component to reflect the changes you make to the HDL.

3.3.3. Specify IP Component Type Information

The Component Type tab in the Platform Designer Component Editor allows you to
specify the following information about the component:

• Name—specifies the _hw.tcl filename, as well as in the top-level module name
when you create a synthesis wrapper file for a non HDL-based component.

• Display name—identifies the component in the parameter editor, which you use
to configure an instance of the component, and also appears in the IP Catalog
under Project and on the System View tab.

• Version—specifies the component version number.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Group—represents the category of the component in the list of available
components in the IP Catalog. You can select an existing group from the list, or
define a new group by typing a name in the Group box. Separating entries in the
Group box with a slash defines a subcategory. For example, if you type
Memories and Memory Controllers/On-Chip, the component appears in the IP
Catalog under the On-Chip group, which is a subcategory of the Memories and
Memory Controllers group. If you save the component in the project directory,
the component appears in the IP Catalog in the group you specified under
Project. Alternatively, if you save the component in the Quartus Prime installation
directory, the component appears in the specified group under IP Catalog.

• Description—allows you to describe the component. This description appears
when the user views the component details.

• Created By—specifies the component author name.

• Icon—specifies the relative path to an icon file (.gif, .jpg, or .png format) that
represents the component and appears as the header in the parameter editor for
the component. The default image is the Intel FPGA IP function icon.

• Documentation—specifies links to documentation for the component, and
appears when you right-click the component in the IP Catalog, and then select
Details.

— To specify an Internet file, begin your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html.

— To specify a file in the file system, begin your path with file:/// for Linux,
and file://// for Windows; for example (Windows): file:////
company_server/datasheets my_memory_controller.pdf.

Figure 135. Component Type Tab in the Component Editor
The Display name, Group, Description, Created by, Icon, and Documentation entries are optional.

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you use the Component Editor to create a component, it writes this basic
component information in the _hw.tcl file. The package require command
specifies the Quartus Prime software version that Platform Designer uses to create the
_hw.tcl file, and ensures compatibility with this version of the Platform Designer API
in future releases.

Example 5. _hw.tcl Created from Entries in the Component Type Tab

The component defines its basic information with various module properties using the
set_module_property command. For example, set_module_property NAME
specifies the name of the component, while set_module_property VERSION allows
you to specify the version of the component. When you apply a version to the
_hw.tcl file, it allows the file to behave exactly the same way in future releases of
the Quartus Prime software.

request TCL package from ACDS 14.0

package require -exact qsys 14.0

demo_axi_memory

set_module_property DESCRIPTION \
"Demo AXI-3 memory with optional Avalon streaming port"

set_module_property NAME demo_axi_memory
set_module_property VERSION 1.0
set_module_property GROUP "My Components"
set_module_property AUTHOR Altera
set_module_property DISPLAY_NAME "Demo AXI Memory"

Related Information

Component Interface Tcl Reference on page 666

3.3.4. Create an HDL File in the Platform Designer Component Editor

If you do not have an HDL file for your component, you can use the Platform Designer
Component Editor to define the component signals, interfaces, and parameters of your
component, and then create a simple top-level HDL file.

You can then edit the HDL file to add the logic that describes the component's
behavior.

1. In the Platform Designer Component Editor, specify the information about the
component in the Signals & Interfaces, and Interfaces, and Parameters tabs.

2. Click the Files tab.

3. Click Create Synthesis File from Signals.
The Component Editor creates an HDL file from the specified signals, interfaces,
and parameters, and the .v file appears in the Synthesis File table.

Related Information

Specify Synthesis and Simulation Files in the Platform Designer Component Editor on
page 167

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.5. Defining HDL Parameters in _hw.tcl

Platform Designer supports the ability to reconfigure features of parameterized
modules, such as data bus width or FIFO depth. Platform Designer creates an HDL
wrapper when you perform Generate HDL. By modifying your _hw.tcl files to
specify parameter attributes and port properties, you can use Platform Designer to
generate reusable RTL.

1. To define an alterable HDL parameter, you must declare the following two
attributes for the parameter:

• set_parameter_property <parameter_name> HDL_PARAMETER true

• set_parameter_property <parameter_name> AFFECTS_GENERATION
false

2. To have parameterized ports created in the instantiation wrapper, you can either
set the width expression when adding a port to an interface, or set the width
expression in the port property in _hw.tcl:

• To set the width expression when adding a port:

add_interface_port <interface> <port> <signal_type> <direction>
<width_expression>

• To set the width expression in the port property:

set_port_property <port> WIDTH_EXPR <width_expression>

3. To create and generate the IP component in Platform Designer editor, click the
Open System ➤ IP Variant tab, specify the new IP variant name in the IP
Variant field and choose the _hw.tcl file that defines user alterable HDL
parameters in the Component type field.

4. Click Generate HDL to generate the IP core. Platform Designer generates a
parameterized HDL module for you directly.

To instantiate the IP component in your HDL file, click Generate ➤ Show
Instantiation Template in the Platform Designer editor to display an instantiation
template in Verilog or VHDL. Now you can instantiate the IP core in your top-level
design HDL file with the template code.

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 136. Instantiation Template Dialog Box

The following sample contains _hw.tcl to set exportable width values:

Example 6. Sample _hw.tcl Component with User Alterable Expressions

package require -exact qsys 17.1

set_module_property NAME demo
set_module_property DISPLAY_NAME "Demo"
set_module_property ELABORATION_CALLBACK elaborate

add exportable hdl parameter RECONFIG_DATA_WIDTH
add_parameter RECONFIG_DATA_WIDTH INTEGER 48
set_parameter_property RECONFIG_DATA_WIDTH AFFECTS_GENERATION false
set_parameter_property RECONFIG_DATA_WIDTH HDL_PARAMETER true

add exportable hdl parameter RECONFIG_ADDR_WIDTH
add_parameter RECONFIG_ADDR_WIDTH INTEGER 32
set_parameter_property RECONFIG_ADDR_WIDTH AFFECTS_GENERATION false
set_parameter_property RECONFIG_ADDR_WIDTH HDL_PARAMETER true

add non-exportable hdl parameter
add_parameter l_addr INTEGER 32
set_parameter l_addr HDL_PARAMETER false

add interface
add_interface s0 conduit end

proc elaborate {} {
 add_interface_port s0 rdata readdata output "reconfig_data_width*2 + l_addr"
 add_interface_port s0 raddr readaddress output [get_parameter_value
RECONFIG_ADDR_WIDTH]
 set_port_property raddr WIDTH_EXPR "RECONFIG_ADDR_WIDTH"
}

Related Information

Exporting HDL Parameters to a System on page 189

3.3.6. Declaring SystemVerilog Interfaces in _hw.tcl

Platform Designer supports interfaces written in SystemVerilog.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example is _hw.tcl for a module with a SystemVerilog interface. The
sample code is divided into parts 1 and 2.

Part 1 defines the normal array of parameters, Platform Designer interface, and ports

Example 7. Example Part 1: Parameters, Platform Designer Interface, and Ports in
_hw.tcl

request TCL package from ACDS 23.1
#
package require -exact qsys 23.1
#
module ram_ip_sv_ifc_hw
#
set_module_property DESCRIPTION ""
set_module_property NAME ram_ip_sv_ifc_hw
set_module_property VERSION 1.0
set_module_property INTERNAL false
set_module_property OPAQUE_ADDRESS_MAP true
set_module_property AUTHOR ""
set_module_property DISPLAY_NAME ram_ip_hw_with_SV_d0
set_module_property INSTANTIATE_IN_SYSTEM_MODULE true
set_module_property EDITABLE true
set_module_property REPORT_TO_TALKBACK false
set_module_property ALLOW_GREYBOX_GENERATION false
set_module_property REPORT_HIERARCHY false

Part 1 – Add parameter, platform designer interface and ports
Adding parameter
add_parameter my_interface_parameter STRING "" "I am an interface parameter"

Adding platform designer interface clk
add_interface clk clock end
set_interface_property clk clockRate 0
Adding ports to clk interface
add_interface_port clk clk clk Input 1

Adding platform designer interface reset
add_interface reset reset end
set_interface_property reset associatedClock clk
#Adding ports to reset interface
add_interface_port reset reset reset Input 1

Adding platform designer interface avalon_slave
add_interface avalon_slave avalon end
set_interface_property avalon_slave addressUnits WORDS
set_interface_property avalon_slave associatedClock clk
set_interface_property avalon_slave associatedReset reset
Adding ports to avalon_slave interface
add_interface_port avalon_slave address address Input 8
add_interface_port avalon_slave write write Input 1
add_interface_port avalon_slave readdata readdata Output 32
add_interface_port avalon_slave writedata writedata Input 32

Part 2 defines the interface name, ports, and parameters of the SystemVerilog
interface.

Example 8. Example Part 2: SystemVerilog Interface Parameters in _hw.tcl

Part 2 – Adding SV interface and its properties.
Adding SV interface
add_sv_interface bus mem_ifc

set_sv_interface_property bus USE_ALL_PORTS True
Setting the parameter property to add SV interface parameters
set_parameter_property my_interface_parameter SV_INTERFACE_PARAMETER bus
Setting the port properties to add them to SV interface port
set_port_property clk SV_INTERFACE_PORT bus

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_port_property reset SV_INTERFACE_PORT bus

Setting the port properties to add them as signals inside SV interface
set_port_property address SV_INTERFACE_SIGNAL bus
set_port_property write SV_INTERFACE_SIGNAL bus
set_port_property writedata SV_INTERFACE_SIGNAL bus
set_port_property readdata SV_INTERFACE_SIGNAL bus

#Adding the SV Interface File
#Adding ram_ip files
add_fileset synthesis_fileset QUARTUS_SYNTH
set_fileset_property synthesis_fileset TOP_LEVEL ram_ip
add_fileset_file ram_ip.sv SYSTEM_VERILOG PATH ram_ip.sv
add_fileset_file mem_ifc.sv SYSTEM_VERILOG PATH \
 mem_ifc.sv SYSTEMVERILOG_INTERFACE

Related Information

SystemVerilog Interface Commands on page 753

3.3.7. Create an HDL File Using a Template in the Platform Designer
Component Editor

You can use a template to create interfaces and signals for your Platform Designer
component

1. In Platform Designer, click New Component in the IP Catalog.

2. On the Component Type tab, define your component information in the Name,
Display Name, Version, Group, Description, Created by, Icon, and
Documentation boxes.

3. Click Finish.
Your new component appears in the IP Catalog under the category that you define
for "Group".

4. In Platform Designer, right-click your new component in the IP Catalog, and then
click Edit.

5. In the Platform Designer Component Editor, click any interface from the Templates
drop-down menu.
The Component Editor fills the Signals and Interfaces tabs with the component
interface template details.

6. On the Files tab, click Create Synthesis File from Signals.

7. Do the following in the Create HDL Template dialog box as shown below:

a. Verify that the correct files appears in File path, or browse to the location
where you want to save your file.

b. Select the HDL language.

c. Click Save to save your new interface, or Cancel to discard the new interface
definition.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create HDL Template Dialog Box

8. Verify the <component_name>.v file appears in the Synthesis Files table on
the Files tab.

Related Information

Specify Synthesis and Simulation Files in the Platform Designer Component Editor on
page 167

3.3.8. Specify Synthesis and Simulation Files in the Platform Designer
Component Editor

The Files tab in the Platform Designer Component Editor allows you to specify
synthesis and simulation files for your custom component.

If you already have an HDL file that describes the behavior and structure of your
component, you can specify those files on the Files tab.

If you do not yet have an HDL file, you can specify the signals, interfaces, and
parameters of the component in the Component Editor, and then use the Create
Synthesis File from Signals option on the Files tab to create the top-level HDL file.
The Component Editor generates the _hw.tcl commands to specify the files.

Note: After you analyze the component's top-level HDL file (on the Files tab), you cannot
add or remove signals or change the signal names on the Signals & Interfaces tab.
If you need to edit signals, edit your HDL source, and then click Create Synthesis
File from Signals on the Files tab to integrate your changes.

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A component uses filesets to specify the different sets of files that you can generate
for an instance of the component. The supported fileset types are: QUARTUS_SYNTH,
for synthesis and compilation in the Quartus Prime software, SIM_VERILOG, for
Verilog HDL simulation, and SIM_VHDL, for VHDL simulation.

In an _hw.tcl file, you can add a fileset with the add_fileset command. You can
then list specific files with the add_fileset_file command. The
add_fileset_property command allows you to add properties such as
TOP_LEVEL.

You can populate a fileset with a fixed list of files, add different files based on a
parameter value, or even generate an HDL file with a custom HDL generator function
outside of the _hw.tcl file.

Related Information

• Create an HDL File in the Platform Designer Component Editor on page 162

• Create an HDL File Using a Template in the Platform Designer Component Editor
on page 166

3.3.8.1. Specify HDL Files for Synthesis in the Platform Designer Component
Editor

In the Platform Designer Component Editor, you can add HDL files and other support
files with options on the Files tab.

Figure 137. Using HDL Files to Define a Component

A component must specify an HDL file as the top-level file. The top-level HDL file
contains the top-level module. The Synthesis Files list may also include supporting
HDL files, such as timing constraints, or other files required to successfully synthesize
and compile in the Quartus Prime software. The synthesis files for a component are
copied to the generation output directory during Platform Designer system generation.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.8.2. Analyze Synthesis Files in the Platform Designer Component Editor

After you specify the top-level HDL file in the Platform Designer Component Editor,
click Analyze Synthesis Files to analyze the parameters and signals in the top-level,
and then select the top-level module from the Top Level Module list. If there is a
single module or entity in the HDL file, Platform Designer automatically populates the
Top-level Module list.

Once analysis is complete and the top-level module is selected, you can view the
parameters and signals on the Parameters and Signals & Interfaces tabs. The
Component Editor may report errors or warnings at this stage, because the signals
and interfaces are not yet fully defined.

Note: At this stage in the Component Editor flow, you cannot add or remove parameters or
signals created from a specified HDL file without editing the HDL file itself.

The synthesis files are added to a fileset with the name QUARTUS_SYNTH and type
QUARTUS_SYNTH in the _hw.tcl file created by the Component Editor. The top-level
module is used to specify the TOP_LEVEL fileset property. Each synthesis file is
individually added to the fileset. If the source files are saved in a different directory
from the working directory where the _hw.tcl is located, you can use standard fixed
or relative path notation to identify the file location for the PATH variable.

Example 9. _hw.tcl Created from Entries in the Files tab in the Synthesis Files Section

file sets

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH "" ""
set_fileset_property QUARTUS_SYNTH TOP_LEVEL demo_axi_memory

add_fileset_file demo_axi_memory.sv
SYSTEM_VERILOG PATH demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

Related Information

• Specify HDL Files for Synthesis in the Platform Designer Component Editor on
page 168

• Component Interface Tcl Reference on page 666

3.3.8.3. Specify Files for Simulation in the Component Editor

To support Platform Designer system generation for your custom component, you
must specify VHDL or Verilog simulation files.

You can choose to generate Verilog or VHDL simulation files. In most cases, these files
are the same as the synthesis files. If there are simulation-specific HDL files or
simulation models, you can use them in addition to, or in place of the synthesis files.
To use your synthesis files as your simulation files, click Copy From Synthesis Files
on the Files tab in the Platform Designer Component Editor.

Note: The order that you add files to the fileset determines the order of compilation. For
VHDL filesets with VHDL files, you must add the files bottom-up, adding the top-level
file last.

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 138. Specifying the Simulation Output Files on the Files Tab

You specify the simulation files in a similar way as the synthesis files with the fileset
commands in a _hw.tcl file. The code example below shows SIM_VERILOG and
SIM_VHDL filesets for Verilog and VHDL simulation output files. In this example, the
same Verilog files are used for both Verilog and VHDL outputs, and there is one
additional SystemVerilog file added. This method works for designers of Verilog IP to
support users who want to generate a VHDL top-level simulation file when they have a
mixed-language simulation tool and license that can read the Verilog output for the
component.

Example 10. _hw.tcl Created from Entries in the Files tab in the Simulation Files Section

add_fileset SIM_VERILOG SIM_VERILOG "" ""
set_fileset_property SIM_VERILOG TOP_LEVEL demo_axi_memory
add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset SIM_VHDL SIM_VHDL "" ""
set_fileset_property SIM_VHDL TOP_LEVEL demo_axi_memory
set_fileset_property SIM_VHDL ENABLE_RELATIVE_INCLUDE_PATHS false

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Related Information

Component Interface Tcl Reference on page 666

3.3.8.4. Include an Internal Register Map Description in the .svd for Agent
Interfaces Connected to an HPS Component

Platform Designer supports the ability for IP component designers to specify register
map information on their agent interfaces. This allows components with agent
interfaces that are connected to an HPS component to include their internal register
description in the generated .svd file.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify their internal register map, the IP component designer must write and
generate their own .svd file and attach it to the agent interface using the following
command:

set_interface_property <agent interface> CMSIS_SVD_FILE <file path>

The CMSIS_SVD_VARIABLES interface property allows for variable substitution inside
the .svd file. You can dynamically modify the character data of the .svd file by using
the CMSIS_SVD_VARIABLES property.

Example 11. Setting the CMSIS_SVD_VARIBLES Interface Property

For example, if you set the CMSIS_SVD_VARIABLES in the _hw tcl file, then in
the .svd file if there is a variable {width} that describes the element <size>$
{width}</size>, it is replaced by <size>23</size> during generation of
the .svd file. Note that substitution works only within character data (the data
enclosed by <element>...</element>) and not on element attributes.

set_interface_property <interface name> \
CMSIS_SVD_VARIABLES "{width} {23}"

Related Information

• Component Interface Tcl Reference on page 666

• CMSIS - Cortex Microcontroller Software

3.3.9. Add Signals and Interfaces in the Platform Designer Component
Editor

In the Platform Designer Component Editor, the Signals & Interfaces tab allows you
to add signals and interfaces for your custom IP component.

As you select interfaces and associated signals, you can customize the parameters.
Messages appear as you add interfaces and signals to guide you when customizing the
component. In the parameter editor, a block diagram displays for each interface.
Some interfaces display waveforms to show the timing of the interface. If you update
timing parameters, the waveforms update automatically.

1. In Platform Designer, click New Component in the IP Catalog.

2. In the Platform Designer Component Editor, click the Signals & Interfaces tab.

3. To add an interface, click <<add interface>> in the left pane.
A drop-down list appears where you select the interface type.

4. Select an interface from the drop-down list.
The selected interface appears in the parameter editor where you can specify its
parameters.

5. To add signals for the selected interface click <<add signal>> below the selected
interface.

6. To move signals between interfaces, select the signal, and then drag it to another
interface.

7. To rename a signal or interface, select the element, and then press F2.

8. To remove a signal or interface, right-click the element, and then click Remove.

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

171

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Alternatively, to remove an signal or interface, you can select the element, and
then press Delete. When you remove an interface, Platform Designer also
removes all of its associated signals.

Figure 139. Platform Designer Signals & Interfaces tab

3.3.10. Specify Parameters in the Platform Designer Component Editor

Components can include parameterized HDL, which allow users of the component
flexibility in meeting their system requirements. For example, a component with a
configurable memory size or data width, allows using one HDL implementation in
different systems, each with unique parameters values.

The Parameters tab allows you specify the parameters that are used to configure
instances of the component in a Platform Designer system. You can specify various
properties for each parameter that describe how to display and use the parameter. You
can also specify a range of allowed values that are checked during the validation
phase. The Parameters table displays the HDL parameters that are declared in the
top-level HDL module. If you have not yet created the top-level HDL file, the top-level
synthesis file template created from the Files tab include the parameters that you
create on the Parameters tab.

When the component includes HDL files, the parameters match those defined in the
top-level module, and you cannot add or remove them on the Parameters tab. To
add or remove the parameters, edit your HDL source, and then re-analyze the file.

If you create a top-level template HDL file for synthesis with the Component Editor,
you can remove the newly-created file from the Synthesis Files list on the Files tab,
make your parameter changes, and then re-analyze the top-level synthesis file.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the Parameters table to specify the following information about each
parameter:

• Name—specifies the parameter name.

• Default Value—sets the default value for new instances of the component.

• Editable—specifies if the user can edit the parameter value.

• Type—defines the parameter type as string, integer, boolean, std_logic, logic
vector, natural, or positive.

• Group—groups parameters in the parameter editor.

• Tooltip—adds a description of the parameter that appears when the user of the
component points to the parameter in the editor.

Figure 140. Parameters Tab in the Platform Designer Components Editor

On the Parameters tab, you can click Preview the GUI at any time to see how the
declared parameters appear in the parameter editor. Parameters with their default
values appear with checks in the Editable column. Editable parameters cannot
contain computed expressions. You can group parameters under a common heading or
section in the editor with the Group column, and a tooltip helps users of the
component understand the function of the parameter. Various parameter properties
allow you to customize the component’s parameter editor, such as specifying
parameter option controls, or displaying an image.

Example 12. _hw.tcl Created from Entries in the Parameters Tab

In this example, the first add_parameter command includes commonly-specified
properties. The set_parameter_property command specifies each property
individually. The Tooltip column on the Parameters tab maps to the DESCRIPTION
property, and there is an additional unused UNITS property created in the code. The
HDL_PARAMETER property specifies that the value of the parameter is specified in the
HDL instance wrapper when creating instances of the component. The Group column
in the Parameters tab maps to the display items section with the
add_display_item commands. If you want to expose the HDL parameter so that
you can overwrite the value when you instantiate the module, set
AFFECTS_GENERATION to false.

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If a parameter <n> defines the width of a signal, the signal width must follow the
format <n-1> : 0.

parameters

add_parameter AXI_ID_W INTEGER 4 "Width of ID fields"
set_parameter_property AXI_ID_W DEFAULT_VALUE 4
set_parameter_property AXI_ID_W DISPLAY_NAME AXI_ID_W
set_parameter_property AXI_ID_W TYPE INTEGER
set_parameter_property AXI_ID_W UNITS None
set_parameter_property AXI_ID_W DESCRIPTION "Width of ID fields"
set_parameter_property AXI_ID_W HDL_PARAMETER true
add_parameter AXI_ADDRESS_W INTEGER 12
set_parameter_property AXI_ADDRESS_W DEFAULT_VALUE 12

add_parameter AXI_DATA_W INTEGER 32
...

display items

add_display_item "AXI Port Widths" AXI_ID_W PARAMETER ""

Note: If an AXI subordinate's ID bit width is smaller than required for your system, the AXI
subordinate response may not reach all AXI managers. The formula of an AXI
subordinate ID bit width is calculated as follows:

maximum_manager_id_width_in_the_interconnect + log2 = <value>

For example, if an AXI subordinate connects to three AXI managers and the maximum
AXI manager ID length of the three managers is 5 bits, then the AXI subordinate ID is
7 bits, and is calculated as follows:

5 bits + 2 bits (log2(3 managers)) = 7

Platform Designer refers to AXI interface parameters to build AXI interconnect. If
these parameter settings are incompatible with the component's HDL behavior,
Platform Designer interconnect and transactions may not work correctly. To prevent
unexpected interconnect behavior, you must set the AXI component parameters.

Table 38. AXI Manager Parameters

AXI Manager Parameters Description

readIssuingCapability The maximum number of outstanding read transactions for a manager.

writeIssuingCapability The maximum number of outstanding write transactions for a manager.

combinedIssuingCapability The maximum number of outstanding transactions for a manager.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 39. AXI Subordinate Parameters

AXI Subordinate Parameters Description

readAcceptanceCapability The maximum number of outstanding read commands that a subordinate can
accept.

writeAcceptanceCapability The maximum number of outstanding write transactions that a subordinate can
accept.

combinedAcceptanceCapability The maximum number of outstanding transactions that a subordinate can accept.

readDataReorderingDepth The number of outstanding read transactions for which a subordinate interface can
transmit data. If readDataReorderingDepth = 1, the subordinate processes all
transactions in order.

Related Information

Component Interface Tcl Reference on page 666

3.3.10.1. Valid Ranges for Parameters in the _hw.tcl File

In the _hw.tcl file, you can specify valid ranges for parameters.

Platform Designer validation checks each parameter value against the
ALLOWED_RANGES property. If the values specified are outside of the allowed ranges,
Platform Designer displays an error message. Specifying choices for the allowed
values enables users of the component to choose the parameter value from controls in
the parameter editor GUI, instead of entering a value.

The ALLOWED_RANGES property is a list of valid ranges, where each range is a single
value, or a range of values defined by a start and end value.

Table 40. ALLOWED_RANGES Property

ALLOWED_RANGES Property Values

{a b c} a, b, or c

{"No Control" "Single Control" "Dual Controls"} Unique string values. Quotation marks are required if the
strings include spaces .

{1 2 4 8 16} 1, 2, 4, 8, or 16

{1:3} 1 through 3, inclusive.

{1 2 3 7:10} 1, 2, 3, or 7 through 10 inclusive.

Related Information

Declare Parameters with Custom _hw.tcl Commands on page 177

3.3.10.2. Types of Platform Designer Parameters

Platform Designer uses the following parameter types: user parameters, system
information parameters, and derived parameters.

Platform Designer User Parameters on page 176

Platform Designer System Information Parameters on page 176

Parameterized Parameter Widths on page 176

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer Derived Parameters on page 176

Related Information

Declare Parameters with Custom _hw.tcl Commands on page 177

3.3.10.2.1. Platform Designer User Parameters

User parameters are parameters that users of a component can control, and appear in
the parameter editor for instances of the component. User parameters map directly to
parameters in the component HDL. For user parameter code examples, such as
AXI_DATA_W and ENABLE_STREAM_OUTPUT, refer to Declaring Parameters with
Custom hw.tcl Commands.

3.3.10.2.2. Platform Designer System Information Parameters

A SYSTEM_INFO parameter is a parameter whose value is set automatically by the
Platform Designer system. When you define a SYSTEM_INFO parameter, you provide
an information type, and additional arguments.

For example, you can configure a parameter to store the clock frequency driving a
clock input for your component. To do this, define the parameter as SYSTEM_INFO of
type CLOCK_RATE:

set_parameter_property <param> SYSTEM_INFO CLOCK_RATE

You then set the name of the clock interface as the SYSTEM_INFO argument:

set_parameter_property <param> SYSTEM_INFO_ARG <clkname>

3.3.10.2.3. Parameterized Parameter Widths

Platform Designer allows a std_logic_vector parameter to have a width that is
defined by another parameter, similar to derived parameters. The width can be a
constant or the name of another parameter.

3.3.10.2.4. Platform Designer Derived Parameters

Derived parameter values are calculated from other parameters during the Elaboration
phase, and are specified in the _hw.tcl file with the DERIVED property. Derived
parameter values are calculated from other parameters during the Elaboration phase,
and are specified in the _hw.tcl file with the DERIVED property. For example, you
can derive a clock period parameter from a data rate parameter. Derived parameters
are sometimes used to perform operations that are difficult to perform in HDL, such as
using logarithmic functions to determine the number of address bits that a component
requires.

Related Information

Declare Parameters with Custom _hw.tcl Commands on page 177

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.10.3. Obtaining Device Trait Information Using PART_TRAIT System
Information Parameter

Within Platform Designer, an IP core can obtain information on the particular traits of
a device using the PART_TRAIT system info parameter. This system info parameter
takes an argument corresponding to the desired part trait. The requested trait must
match the trait name as specified in the device database.

Note: Using this API declares your IP core as dependent on the requested trait.

To get the part number setting of Platform Designer system, use the value DEVICE,
with the SYSTEM_INFO_ARG parameter property:

add_parameter part_trait_device string ""
set_parameter_property part_trait_device SYSTEM_INFO_TYPE PART_TRAIT
set_parameter_property part_trait_device SYSTEM_INFO_ARG DEVICE

To get the base device of the part number setting of Platform Designer system, use
the value BASE_DEVICE, with the SYSTEM_INFO_ARG parameter property:

add_parameter part_trait_bd string ""
set_parameter_property part_trait_bd SYSTEM_INFO_TYPE PART_TRAIT
set_parameter_property part_trait_bd SYSTEM_INFO_ARG BASE_DEVICE

To get the device speed-grade of the part number setting of Platform Designer
system, use the value DEVICE_SPEEDGRADE, with the SYSTEM_INFO_ARG parameter
property:

add_parameter part_trait_sg string ""
set_parameter_property part_trait_sg SYSTEM_INFO_TYPE PART_TRAIT
set_parameter_property part_trait_sg SYSTEM_INFO_ARG DEVICE_SPEEDGRADE

3.3.10.4. Declare Parameters with Custom _hw.tcl Commands

The example below illustrates a custom _hw.tcl file, with more advanced parameter
commands than those generated when you specify parameters in the Component
Editor. Commands include the ALLOWED_RANGES property to provide a range of values
for the AXI_ADDRESS_W (Address Width) parameter, and a list of parameter values
for the AXI_DATA_W (Data Width) parameter. This example also shows the
parameter AXI_NUMBYTES (Data width in bytes) parameter; that uses the DERIVED
property. In addition, these commands illustrate the use of the GROUP property, which
groups some parameters under a heading in the parameter editor GUI. You use the
ENABLE_STREAM_OUTPUT_GROUP (Include Avalon streaming source port)
parameter to enable or disable the optional Avalon Streaming interface in this design,
and is displayed as a check box in the parameter editor GUI because the parameter is
of type BOOLEAN. Refer to figure below to see the parameter editor GUI resulting
from these _hw.tcl commands.

Example 13. Parameter Declaration

In this example, the AXI_NUMBYTES parameter is derived during the Elaboration
phase based on another parameter, instead of being assigned to a specific value.
AXI_NUMBYTES describes the number of bytes in a word of data. Platform Designer
calculates the AXI_NUMBYTES parameter from the DATA_WIDTH parameter by
dividing by 8. The _hw.tcl code defines the AXI_NUMBYTES parameter as a derived

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

parameter, since its value is calculated in an elaboration callback procedure. The
AXI_NUMBYTES parameter value is not editable, because its value is based on another
parameter value.

add_parameter AXI_ADDRESS_W INTEGER 12

set_parameter_property AXI_ADDRESS_W DISPLAY_NAME \
"AXI Subordinate Address Width"

set_parameter_property AXI_ADDRESS_W DESCRIPTION \
"Address width."

set_parameter_property AXI_ADDRESS_W UNITS bits
set_parameter_property AXI_ADDRESS_W ALLOWED_RANGES 4:16
set_parameter_property AXI_ADDRESS_W HDL_PARAMETER true

set_parameter_property AXI_ADDRESS_W GROUP \
"AXI Port Widths"

add_parameter AXI_DATA_W INTEGER 32
set_parameter_property AXI_DATA_W DISPLAY_NAME "Data Width"

set_parameter_property AXI_DATA_W DESCRIPTION \
"Width of data buses."

set_parameter_property AXI_DATA_W UNITS bits

set_parameter_property AXI_DATA_W ALLOWED_RANGES \
{8 16 32 64 128 256 512 1024}

set_parameter_property AXI_DATA_W HDL_PARAMETER true
set_parameter_property AXI_DATA_W GROUP "AXI Port Widths"

add_parameter AXI_NUMBYTES INTEGER 4
set_parameter_property AXI_NUMBYTES DERIVED true

set_parameter_property AXI_NUMBYTES DISPLAY_NAME \
"Data Width in bytes; Data Width/8"

set_parameter_property AXI_NUMBYTES DESCRIPTION \
"Number of bytes in one word"

set_parameter_property AXI_NUMBYTES UNITS bytes
set_parameter_property AXI_NUMBYTES HDL_PARAMETER true
set_parameter_property AXI_NUMBYTES GROUP "AXI Port Widths"

add_parameter ENABLE_STREAM_OUTPUT BOOLEAN true

set_parameter_property ENABLE_STREAM_OUTPUT DISPLAY_NAME \
"Include Avalon Streaming Source Port"

set_parameter_property ENABLE_STREAM_OUTPUT DESCRIPTION \
"Include optional Avalon streaming source (default),\
or hide the interface"

set_parameter_property ENABLE_STREAM_OUTPUT GROUP \
"Streaming Port Control"

...

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

178

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 141. Resulting Parameter Editor GUI from Parameter Declarations

Related Information

• Control Interfaces Dynamically with an Elaboration Callback on page 194

• Component Interface Tcl Reference on page 666

3.3.10.5. Validate Parameter Values with a Validation Callback

You can use a validation callback procedure to validate parameter values with more
complex validation operations than the ALLOWED_RANGES property allows. You define
a validation callback by setting the VALIDATION_CALLBACK module property to the
name of the Tcl callback procedure that runs during the validation phase. In the
validation callback procedure, the current parameter values is queried, and warnings
or errors are reported about the component's configuration.

Example 14. Demo AXI Memory Example

If the optional Avalon streaming interface is enabled, then the control registers must
be wide enough to hold an AXI RAM address, so the designer can add an error
message to ensure that the user enters allowable parameter values.

set_module_property VALIDATION_CALLBACK validate
proc validate {} {
if {
 [get_parameter_value ENABLE_STREAM_OUTPUT] &&
 ([get_parameter_value AXI_ADDRESS_W] >
 [get_parameter_value AV_DATA_W])
}
send_message error "If the optional Avalon streaming port\
is enabled, the AXI Data Width must be equal to or greater\
than the Avalon control port Address Width"
}
}

Related Information

Component Interface Tcl Reference on page 666

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

179

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4. Creating Generic Components in a System

Platform Designer allows you to add generic components with the implementation
defined in _hw.tcl (IP type), in an HDL file (HDL type), or with only a partially
defined implementation (Blackbox type). The generic component enables hierarchical
isolation of the IP components by separating the component instantiation from the
component implementation. This generic component is available as Generic
Component in the Platform Designer IP Catalog.

When you generate a system containing a generic component, the system's RTL
instantiates the component, but does not provide the implementation for the
component. Rather, you must provide the implementation for the component in a
downstream compiler such as Quartus Prime software or in RTL code.

The following generic component Implementation Types are available in the
Component Instantiation editor, depending on your use case:

Table 41. Component Implementation Type Options

Implementation
Type

Description

IP The default implementation type that defines the component in _hw.tcl and preserves the
component as a .ip file. Platform Designer automatically manages components with the
Implementation Type of IP in the following ways:
• Runs background checks against the port widths between the IP component and the .ip file to

ensure continuity.
• Scans the .ip file for the error flag to determine if any component has parameterization errors.
• Checks for system-info mismatches between the IP file and the IP component in the system, and

prompts resolution with IP instantiation warnings in the Instantiation Messages tab.

HDL Defines a generic component from existing RTL. You can load the signals, interfaces, and parameters
of the generic component from the HDL file containing the RTL. The HDL parameters are represented
as constants local to a module, which you can redefine when instantiating the module. Generic HDL
components have no .ip file.

Blackbox Defines a generic component that represents only the signal and interface boundary of an entity,
without providing the component's implementation. You then provide the implementation of the
component for processing with the Quartus Prime software or an RTL simulator. Generic blackbox
components have no .ip file.

1. From the Platform Designer IP Catalog, double-click Generic Component. The
Component Instantiation editor appears.

2. For Implementation Type, click IP, HDL, Blackbox, or HLS for your generic
component. Refer to Component Implementation Type Options.

3. Add parameters to the generic component, as applicable:

• To add parameters to a generic HDL component, click the Add File button
under Implementation Files to specify the RTL that defines your generic
component, as Adding Generic HDL Component Parameters describes.

• To add parameters to a generic Blackbox component, click the Parameters
tab, and then Add Parameter button to define the parameters for your
generic component, as Adding Generic Blackbox Component Parameters
describes.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

180

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 142. Component Instantiation Editor

4. Add interfaces and signals to the generic component, as Adding Generic
Component Interfaces and Signals describes.

5. Click Finish, the generic component appears in the System View.

6. In the System View, select the generic component that you create in step 5.

Figure 143. New Generic Component in System View

New Generic Component in System View

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. In the System View tab, double-click the Export column to export the signal(s)
when you generate the system HDL.

8. In the Parameters tab for the component, modify the default parameter values
as needed.

9. In Platform Designer, click the Generate HDL button. Platform Designer
generates the HDL for the system and generic component according to your
specifications.

3.4.1. Adding Generic HDL Component Parameters

You can specify and modify HDL parameters for generic components that have an HDL
implementation. This technique allows you to reuse the HDL component in another
context with different parameter values. Platform Designer analyzes the HDL
implementation, identifies the HDL parameters present, and loads the HDL parameters
into the Component Instantiation editor where you can modify them. To add
parameters in HDL mode, follow these steps:

Figure 144. HDL Implementation Type in Component Instantiation Editor

Analyzes HDL FileAdds HDL File

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

182

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Add a generic HDL component, as Creating Generic Components in a System on
page 180 describes.

2. In the Component Instantiation editor Files tab, click the Add File button to
select the HDL file that contains the component definition.

3. Under Implementation Files, select the HDL file, and then click Analyze HDL
files. The signals and interfaces found in the HDL component appear in the
Signals & Interfaces tab. The parameters found in the HDL component appear
in the Parameters tab.

4. On the Parameters tab, modify the parameter Name, Value, Type, Bit Width,
and whether Editable.

Figure 145. Parameters Tab for HDL Instantiation

Parameters Found in HDL File

5. View the interfaces and signals, as Adding Generic Component Interfaces and
Signals on page 184 describes.

6. When you are done adding parameters and interfaces, click Finish in the
Component Instantiation editor. The component appears in the System View
tab.

Note: You must treat a generic component with an Implementation Type of HDL as
custom RTL, specific to your current system. When you set a generic component's
Implementation Type to HDL, the output of any RTL that you add to the component
is within the system's output directory.

Related Information

Exporting HDL Parameters to a System on page 189

3.4.2. Adding Generic Blackbox Component Parameters

You can specify and modify parameters for generic components that have a Blackbox
implementation. This technique allows you to instantiate a component that defines
only the signal and interface boundary of an entity, without providing the component's
implementation at this stage. You can then add parameters and define their default
properties in the Component Instantiation editor.

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

183

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Define a generic blackbox component, as Creating Generic Components in a
System on page 180 describes.

2. In the Component Instantiation editor, click the Parameters tab.

Figure 146. Parameters Tab in Component Instantiation Editor (Blackbox Mode)

3. Click the Add Parameter button to add and specify default values for the
parameter Name, Value, Type, Bit Width, and whether Editable.

4. Add signals and interfaces on the Signals and Interfaces tab, as Adding Generic
Component Interfaces and Signals on page 184 describes.

5. When you are done adding parameters and interfaces, click Finish in the
Component Instantiation editor. The component appears in the System View
tab.

Related Information

Exporting HDL Parameters to a System on page 189

3.4.3. Adding Generic Component Interfaces and Signals

The Signals & Interfaces tab of the Component Instantiation editor allows you to
customize signals and interfaces for your generic component:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab, as
Adding Generic Component Interfaces and Signals on page 184 describes.

3. To add an interface, click <<add interface>> in the left pane and select the
interface. The selected interface appears in the parameter editor to the right,
where you specify its parameters.

4. To add signals to the selected interface, click <<add signal>> below the selected
interface.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. To move signals between interfaces, select the signal and drag it to another
interface.

6. To rename a signal or interface, select the element, and then press F2.

7. To remove a signal or interface, right-click the element, and then click Remove.

Note: Alternatively, to remove a signal or interface, select the element and press
Delete. When you remove an interface, Platform Designer also removes all
of its associated signals.

Figure 147. Creating Custom Interfaces

Note: To add existing template interfaces to your generic component, select the interface
from the Templates menu in the Component Instantiation editor.

3.4.3.1. Mirroring Interfaces in a Generic Component

To mirror existing signals and interfaces from an IP component to your generic
component:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab.

3. Click the Mirror button. A list appears which lists all the available components in
the system and their associated interfaces.

4. Select the desired interface. Platform Designer mirrors the interface and its
associated signals and adds the mirrored interfaces and signals to the Signals &
Interfaces tab of the generic component.

Example 15. Mirroring Interfaces in a Generic Component Example

Selected Interface Mirrored Interface

Avalon Memory-Mapped Host (avalon_host) Avalon Memory-Mapped Agent
(avalon_agent)

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signals of the Selected Interface Signals of the Mirrored Interface

waitrequest(Input 1) waitrequest(Output 1)

readdata(Input 32) readdata(Output 32)

readdatavalid(Input 1) readdatavalid(Output 1)

burstcount(Output 32) burstcount(Input 32)

Figure 148. Mirroring Interfaces

3.4.3.2. Cloning Interfaces in a Generic Component

To clone existing signals and interfaces from an IP component to your generic
component:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab.

3. Click the Clone button. A list appears which lists all the available components in
the system and their associated interfaces.

4. Select the desired interface. Platform Designer clones the interface and adds an
exact replica of the interface and its associated signals to the Signals &
Interfaces tab of the generic component.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 149. Cloning Interfaces

3.4.3.3. Importing Interfaces to a Generic Component

To import interfaces from an existing IP or IP-XACT(8) file to a generic component:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab.

3. Click the Import button..
A dialog box appears from where you choose the IP/IP-XACT file to import to the
generic component

4. Select the interface.
Platform Designer populates the Signals & Interfaces tab with the signals and
interfaces defined in the selected file.

(8) Platform Designer supports importing and exporting files in IP-XACT 2009 format and
exporting IP-XACT files in 2014 format.

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 150. Importing Interfaces

3.4.4. Creating a System Template for a Generic Component

To create a Platform Designer system template:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, add the interfaces and signals for the
new component in the Signals & Interfaces tab, as .

3. Select the Implementation Templates tab.

4. Click Create Platform Designer System Template button. This option creates
an empty Platform Designer system and saves the template as a .qsys file to
implement this generic component.

Figure 151. Creating System templates

To implement this component:

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To open the template Platform Designer system, click File ➤ Open and choose the
specific .qsys file.

2. Add either or both IP components and generic components then export their
interfaces to satisfy the specified interface requirements.

3. To view the exported interfaces in the Interface Requirements tab, select View
➤ Interface Requirements.

Figure 152. Viewing the Interface Requirements from the System Template

Agent

3.4.5. Exporting a Generic Component

You can export a generic component as a .ipxact file as well as _hw.tcl file:

1. Double-click Generic Component in the IP Catalog.

2. Select the Export tab.

3. To export generic component as an IP-XACT file, click Export IP-XACT File and
select the location to save your IP-XACT file.

4. To export generic component as a _hw.tcl file, click Export _hw.tcl File and
select the location to save your _hw.tcl file.

3.5. Exporting HDL Parameters to a System

You can define and export Platform Designer component HDL parameters to make the
parameters accessible to a higher-level system. After adding system HDL parameters,
you can map the HDL parameters to components instantiated within the system.

This technique allows you to set a component's parameter values outside of the
immediate subsystem that contains the component, and propagate the HDL
parameters upward. When you generate the system HDL, the HDL includes the
parameters and mapping that you specify.

Note: Parameterization of ports is not supported.

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

189

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To export an instantiated component's HDL parameters to a system, follow these
steps:

1. Instantiate a component in a Platform Designer system, as any of the following
describe:

• Creating IP Components in the Component Editor on page 158

• Adding Generic HDL Component Parameters on page 182

• Adding Generic Blackbox Component Parameters on page 183

2. In Platform Designer, click View ➤ HDL Parameters. The HDL Parameters tab
allows you to define system HDL parameters, and overwrite instantiated
components' HDL parameter values in the current system.

3. To add a new HDL parameter to the current system, click the Add HDL
Parameter button and specify values for the parameter name, Type, Width,
Value, and Tooltip options that apply to the HDL parameter. Refer to HDL
Parameters Tab Settings and Controls on page 192.

4. To export the parameter during system HDL generation, thereby exposing the HDL
parameter to a higher-level system, enable the Export option.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 153. Specifying HDL Parameters

Add New System HDL Parameters Export Parameters

Specify Parameter Value In System

5. To change the parameter value for Modules with Exported HDL Parameters,
select the Value that you want to implement during HDL generation. You can
specify any of the added parameters as the value, as Figure 153 on page 191
shows with any of the TOP_PARAMx parameters.

6. To generate the HDL that includes exported parameters, click the Generate HDL
button in Platform Designer.

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 154. Generated HDL for Parameters Specified in Figure 81

When you generate the HDL, Platform Designer instantiates the IP or generic
components with the inline parameters set to the system HDL parameter values,
or set to constant values if applicable:

• For IP components with parameters defined in _hw.tcl and
subsystems—the generated system HDL only writes out inline parameters for
those HDL parameters that you overwrite for the system in the HDL
Parameters tab (or with the set_exposed_hdl_parameter_value
scripting command).

• For generic HDL or Blackbox components—the generated system HDL
writes out all HDL parameters in the instantiation. The generated system HDL
prioritizes setting HDL parameter values you specify in the HDL Parameters
tab (or with the set_exposed_hdl_parameter_value scripting command).
If the component's HDL parameter value is not overwritten in the HDL
Parameters tab or with set_exposed_hdl_parameter_value, the HDL
parameter's default value applies.

Note: If instantiating your component in _hw.tcl, rather than using the GUI, you
must set HDL_PARAMETER to true and AFFECTS_GENERATION to false.

Related Information

• Defining HDL Parameters in _hw.tcl on page 163

• Adding Generic HDL Component Parameters on page 182

• Adding Generic Blackbox Component Parameters on page 183

3.5.1. HDL Parameters Tab Settings and Controls

The Platform Designer HDL Parameters tab allows you to define system HDL
parameters, and overwrite instantiated components' HDL parameter values in the
current system.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

192

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following settings and controls are available in the HDL Parameters tab:

Table 42. Component Implementation Type Options

Setting/Control Description

System HDL Parameters

Add HDL Parameter Inserts a new HDL parameter with editable name and default settings. Specify the
parameter name and default value for applicable parameter properties.

Remove HDL Parameter Removes the selected system HDL parameter from the HDL Parameters tab.

Parameter Specifies the name of a system HDL parameter. By default, Platform Designer names
new HDL parameters sequentially with new_parameter_0, new_parameter_1,
and so on. Double-click any parameter name to rename.

Type Specifies the type of HDL parameter, which determines availability of other
properties. The following Types are available: boolean, integer, logic vector,
natural, positive, std logic, and string.

Width Specifies the width of signals for the logic vector HDL parameter Type. The value
of this property is N/A for other Types.

Value The default value of the HDL parameter.

Tooltip Alphanumeric text that provides brief guidance about the HDL parameter to the end
user in the form of a tooltip.

Export Specifies that the HDL parameter should be exported, allowing it to be overwritten in
a higher level system.

Modules with Exported HDL Parameters in System

Value Specifies the value of exported HDL parameters in the current Platform Designer
system. The value that you specify overwrites the current parameter value when you
Generate HDL for the system. Select an added HDL parameter with the Export
option enabled to allow an upper-level system to overwrite the value.

3.6. Scripting Wire-Level Expressions

Platform Designer supports system scripting commands to apply wire-level
expressions to input ports in IP components.

The following commands function with the qsys-script utility or in a _hw.tcl file
to set, retrieve, or remove an expression on a port:

set_wirelevel_expression <instance_or_port_bit> <expression>
get_wirelevel_expressions <instance_or_port_bit>
remove_wirelevel_expressions <instance_or_port_bit

These commands require a string that you compose from the left-handed and right-
handed components of the expression. Platform Designer reports errors in syntax,
existence, or system hierarchy.

Related Information

• Wire-Level Connection Commands on page 633

• set_wirelevel_expression on page 633

• get_wirelevel_expressions on page 634

• remove_wirelevel_expressions on page 635

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.7. Control Interfaces Dynamically with an Elaboration Callback

You can allow user parameters to dynamically control your component's behavior with
an elaboration callback procedure during the elaboration phase. Using an elaboration
callback allows you to change interface properties, remove interfaces, or add new
interfaces as a function of a parameter value. You define an elaboration callback by
setting the module property ELABORATION_CALLBACK to the name of the Tcl callback
procedure that runs during the elaboration phase. In the callback procedure, you can
query the parameter values of the component instance, and then change the
interfaces accordingly.

Example 16. Avalon Streaming Source Interface Optionally Included in a Component
Specified with an Elaboration Callback

set_module_property ELABORATION_CALLBACK elaborate

proc elaborate {} {

 # Optionally disable the Avalon streaming data output

 if{[get_parameter_value ENABLE_STREAM_OUTPUT] == "false" }{
 set_port_property aso_data termination true
 set_port_property aso_valid termination true
 set_port_property aso_ready termination true
 set_port_property aso_ready termination_value 0
 }
 # Calculate the Data Bus Width in bytes

 set bytewidth_var [expr [get_parameter_value AXI_DATA_W]/8]
 set_parameter_value AXI_NUMBYTES $bytewidth_var
}

Related Information

• Declare Parameters with Custom _hw.tcl Commands on page 177

• Validate Parameter Values with a Validation Callback on page 179

• Component Interface Tcl Reference on page 666

3.8. Control File Generation Dynamically with Parameters and a
Fileset Callback

You can use a fileset callback to control which files are created in the output
directories during the generation phase based on parameter values, instead of
providing a fixed list of files. In a callback procedure, you can query the values of the
parameters and use them to generate the appropriate files. To define a fileset
callback, you specify a callback procedure name as an argument in the add_fileset
command. You can use the same fileset callback procedure for all of the filesets, or
create separate procedures for synthesis and simulation, or Verilog and VHDL.

Example 17. Fileset Callback Using Parameters to Control Filesets in Two Different Ways

The RAM_VERSION parameter chooses between two different source files to control
the implementation of a RAM block. For the top-level source file, a custom Tcl routine
generates HDL that optionally includes control and status registers, depending on the
value of the CSR_ENABLED parameter.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

194

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

During the generation phase, Platform Designer creates a top-level Platform Designer
system HDL wrapper module to instantiate the component top-level module, and
applies the component's parameters, for any parameter whose parameter property
HDL_PARAMETER is set to true.

#Create synthesis fileset with fileset_callback and set top level

add_fileset my_synthesis_fileset QUARTUS_SYNTH fileset_callback

set_fileset_property my_synthesis_fileset TOP_LEVEL \
demo_axi_memory

Create Verilog simulation fileset with same fileset_callback
and set top level

add_fileset my_verilog_sim_fileset SIM_VERILOG fileset_callback

set_fileset_property my_verilog_sim_fileset TOP_LEVEL \
demo_axi_memory

Add extra file needed for simulation only

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Create VHDL simulation fileset (with Verilog files
for mixed-language VHDL simulation)

add_fileset my_vhdl_sim_fileset SIM_VHDL fileset_callback
set_fileset_property my_vhdl_sim_fileset TOP_LEVEL demo_axi_memory

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH
verification_lib/verbosity_pkg.sv

Define parameters required for fileset_callback

add_parameter RAM_VERSION INTEGER 1
set_parameter_property RAM_VERSION ALLOWED_RANGES {1 2}
set_parameter_property RAM_VERSION HDL_PARAMETER false
add_parameter CSR_ENABLED BOOLEAN enable
set_parameter_property CSR_ENABLED HDL_PARAMETER false

Create Tcl callback procedure to add appropriate files to
filesets based on parameters

proc fileset_callback { entityName } {
 send_message INFO "Generating top-level entity $entityName"
 set ram [get_parameter_value RAM_VERSION]
 set csr_enabled [get_parameter_value CSR_ENABLED]

 send_message INFO "Generating memory
 implementation based on RAM_VERSION $ram "

 if {$ram == 1} {
 add_fileset_file single_clk_ram1.v VERILOG PATH \
 single_clk_ram1.v
 } else {
 add_fileset_file single_clk_ram2.v VERILOG PATH \
 single_clk_ram2.v
 }

send_message INFO "Generating top-level file for \
CSR_ENABLED $csr_enabled"

generate_my_custom_hdl $csr_enabled demo_axi_memory_gen.sv

add_fileset_file demo_axi_memory_gen.sv VERILOG PATH \
demo_axi_memory_gen.sv
}

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

195

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Specify Synthesis and Simulation Files in the Platform Designer Component Editor
on page 167

• Component Interface Tcl Reference on page 666

3.9. Create a Composed Component or Subsystem

A composed component is a subsystem containing instances of other components.
Unlike an HDL-based component, a composed component's HDL is created by
generating HDL for the components in the subsystem, in addition to the Platform
Designer interconnect to connect the subsystem instances.

You can add child instances in a composition callback of the _hw.tcl file.

With a composition callback, you can also instantiate and parameterize sub-
components as a function of the composed component’s parameter values. You define
a composition callback by setting the COMPOSITION_CALLBACK module property to
the name of the composition callback procedures.

A composition callback replaces the validation and elaboration phases. HDL for the
subsystem is generated by generating all of the sub-components and the top-level
that combines them.

To connect instances of your component, you must define the component's interfaces.
Unlike an HDL-based component, a composed component does not directly specify the
signals that are exported. Instead, interfaces of submodules are chosen as the
external interface, and each internal interface's ports are connected through the
exported interface.

Exporting an interface means that you are making the interface visible from the
outside of your component, instead of connecting it internally. You can set the
EXPORT_OF property of the externally visible interface from the main program or the
composition callback, to indicate that it is an exported view of the submodule's
interface.

Exporting an interface is different than defining an interface. An exported interface is
an exact copy of the subcomponent’s interface, and you are not allowed to change
properties on the exported interface. For example, if the internal interface is a 32-bit
or 64-bit host without bursting, then the exported interface is the same. An interface
on a subcomponent cannot be exported and also connected within the subsystem.

When you create an exported interface, the properties of the exported interface are
copied from the subcomponent’s interface without modification. Ports are copied from
the subcomponent’s interface with only one modification; the names of the exported
ports on the composed component are chosen to ensure that they are unique.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 155. Top-Level of a Composed Component

Reset
Bridge

clk

rst

agent
my_regs_microcore my_phy_microcore

pins

my_component

Clock
Bridge

Example 18. Composed _hw.tcl File that Instantiates Two Sub-Components

Platform Designer connects the components, and also connects the clocks and resets.
Note that clock and reset bridge components are required to allow both sub-
components to see common clock and reset inputs.

package require -exact qsys 14.0
set_module_property name my_component
set_module_property COMPOSITION_CALLBACK composed_component

proc composed_component {} {
 add_instance clk altera_clock_bridge
 add_instance reset altera_reset_bridge
 add_instance regs my_regs_microcore
 add_instance phy my_phy_microcore

 add_interface clk clock end
 add_interface reset reset end
 add_interface agent avalon agent
 add_interface pins conduit end

 set_interface_property clk EXPORT_OF clk.in_clk
 set_instance_parameter_value reset synchronous_edges deassert
 set_interface_property reset EXPORT_OF reset.in_reset
 set_interface_property subordinate EXPORT_OF regs.subordinate
 set_interface_property pins EXPORT_OF phy.pins

 add_connection clk.out_clk reset.clk
 add_connection clk.out_clk regs.clk
 add_connection clk.out_clk phy.clk
 add_connection reset.out_reset regs.reset
 add_connection reset.out_reset phy.clk_reset
 add_connection regs.output phy.input
 add_connection phy.output regs.input
}

Related Information

Component Interface Tcl Reference on page 666

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.10. Add Component Instances to a Static or Generated
Component

You can create nested components by adding component instances to an existing
component. Both static and generated components can create instances of other
components. You can add child instances of a component in a _hw.tcl using
elaboration callback.

With an elaboration callback, you can also instantiate and parameterize sub-
components with the add_hdl_instance command as a function of the parent
component's parameter values.

When you instantiate multiple nested components, you must create a unique variation
name for each component with the add_hdl_instance command. Prefixing a
variation name with the parent component name prevents conflicts in a system. The
variation name can be the same across multiple parent components if the generated
parameterization of the nested component is exactly the same.

Note: If you do not adhere to the above naming variation guidelines, Platform Designer
validation-time errors occur, which are often difficult to debug.

Related Information

• Static IP Components on page 198

• Generated Components on page 199

3.10.1. Static IP Components

Static IP components always generate the same output, regardless of their
parameterization. Components that instantiate static components must have only
static children.

A design file that is static between all parameterizations of a component can only
instantiate other static design files. Since static IPs always render the same HDL
regardless of parameterization, Platform Designer generates static IPs only once
across multiple instantiations, meaning they have the same top-level name set.

Example 19. Typical Usage of the add_hdl_instance Command for Static Components

package require -exact qsys 14.0

set_module_property name add_hdl_instance_example
add_fileset synth_fileset QUARTUS_SYNTH synth_callback
set_fileset_property synth_fileset TOP_LEVEL basic_static
set_module_property elaboration_callback elab

proc elab {} {
 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}
 ...
 }
proc synth_callback { output_name } {
 add_fileset_file "basic_static.v" VERILOG PATH basic_static.v
}

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

198

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 20. Top-Level HDL Instance and Wrapper File Created by Platform Designer

In this example, Platform Designer generates a wrapper file for the instance name
specified in the _hw.tcl file.

//Top Level Component HDL
module basic_static (input_wire, output_wire, inout_wire);
input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added via
// the add_hdl_instance command can be used
// in the top-level file of the component.

emif_instance_name fixed_name_instantiation_in_top_level(
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n
.soft_reset_n (input_wire), // soft_reset.reset_n
...
...);
endmodule

//Wrapper for added HDL instance
// emif_instance_name.v
// Generated using ACDS version 14.0

`timescale 1 ps / 1 ps
module emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system
_add_hdl_instance_example_0_emif_instance
_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

3.10.2. Generated Components

A generated component's fileset callback allows an instance of the component to
create unique HDL design files based on the instance's parameter values. For example,
you can write a fileset callback to include a control and status interface based on the
value of a parameter. The callback overcomes a limitation of HDL languages, which do
not allow run-time parameters.

Generated components change their generation output (HDL) based on their
parameterization. If a component is generated, then any component that may
instantiate it with multiple parameter sets must also be considered generated, since
its HDL changes with its parameterization. This case has an effect that propagates up
to the top-level of a design.

Since generated components are generated for each unique parameterized
instantiation, when implementing the add_hdl_instance command, you cannot use
the same fixed name (specified using instance_name) for the different variants of

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

199

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the child HDL instances. To facilitate unique naming for the wrapper of each unique
parameterized instantiation of child HDL instances, you must use the following
command so that Platform Designer generates a unique name for each wrapper. You
can then access this unique wrapper name with a fileset callback so that the instances
are instantiated inside the component's top-level HDL.

• To declare auto-generated fixed names for wrappers, use the command:

set_instance_property instance_name HDLINSTANCE_USE_GENERATED_NAME \
true

Note: You can only use this command with a generated component in the global
context, or in an elaboration callback.

• To obtain auto-generated fixed name with a fileset callback, use the command:

get_instance_property instance_name HDLINSTANCE_GET_GENERATED_NAME

Note: You can only use this command with a fileset callback. This command
returns the value of the auto-generated fixed name, which you can then use
to instantiate inside the top-level HDL.

Example 21. Typical Usage of the add_hdl_instance Command for Generated Components

Platform Designer generates a wrapper file for the instance name specified in the
_hw.tcl file.

package require -exact qsys 14.0
set_module_property name generated_toplevel_component
set_module_property ELABORATION_CALLBACK elaborate
add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

proc elaborate {} {

 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}
 ...
 # instruct Platform Designer to use auto generated fixed name
 set_instance_property emif_instance_name \
 HDLINSTANCE_USE_GENERATED_NAME 1
}

proc generate { entity_name } {

 # get the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 set autogeneratedfixedname [get_instance_property \
 emif_instance_name HDLINSTANCE_GET_GENERATED_NAME]

 set fileID [open "generated_toplevel_component.v" r]
 set temp ""

 # read the contents of the file

 while {[eof $fileID] != 1} {
 gets $fileID lineInfo

 # replace the top level entity name with the name provided
 # during generation

 regsub -all "substitute_entity_name_here" $lineInfo \

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

200

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 "${entity_name}" lineInfo

 # replace the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 regsub -all "substitute_autogenerated_emifinstancename_here" \
 $lineInfo"${autogeneratedfixedname}" lineInfo \
 append temp "${lineInfo}\n"
}

adding a top level component file

add_fileset_file ${entity_name}.v VERILOG TEXT $temp
}

Example 22. Top-Level HDL Instance and Wrapper File Created By Platform Designer

// Top Level Component HDL

module substitute_entity_name_here (input_wire, output_wire,
inout_wire);

input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added
// via add_hdl_instance command can be used
// in the top-level file of the component.

substitute_autogenerated_emifinstancename_here
fixed_name_instantiation_in_top_level (
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n
.soft_reset_n (input_wire), // soft_reset.reset_n
...
...);
endmodule

// Wrapper for added HDL instance
// generated_toplevel_component_0_emif_instance_name.v is the
// auto generated //emif_instance_name
// Generated using ACDS version 13.

`timescale 1 ps / 1 ps
module generated_toplevel_component_0_emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system_add_hdl_instance_example_0_emif
_instance_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

Related Information

Control File Generation Dynamically with Parameters and a Fileset Callback on page
194

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

201

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.10.3. Design Guidelines for Adding Component Instances

In order to promote standard and predictable results when generating static and
generated components, follow these best-practices:

• For two different parameterizations of a component, a component must never
generate a file of the same name with different instantiations. The contents of a
file of the same name must be identical for every parameterization of the
component.

• If a component generates a nested component, it must never instantiate two
different parameterizations of the nested component using the same instance
name. If the parent component's parameterization affects the parameters of the
nested component, the parent component must use a unique instance name for
each unique parameterization of the nested component.

• Static components that generate differently based on parameterization have the
potential to cause problems in the following cases:

— Different file names with the same entity names, results in same entity
conflicts at compilation-time

— Different contents with the same file name results in overwriting other
instances of the component, and in either file, compile-time conflicts or
unexpected behavior.

• Generated components that generate files not based on the output name and that
have different content results in either compile-time conflicts, or unexpected
behavior.

• If preserving a custom component as part of an Quartus Prime Archive (.qar),
you must first explicitly add the component _hw.tcl file to the project to ensure
that the .qar includes the component. Click Project ➤ Add/Remove Files in
Project to add files to your project.

3.11. Add IP RTL Core Generated from the Intel oneAPI Base
Toolkit

The Intel oneAPI Base Toolkit is a core set of tools and libraries for developing high-
performance, data-centric applications across diverse architectures. The toolkit
features the Intel oneAPI DPC++/C++ Compiler that implements SYCL*, an evolution
of C++ for heterogeneous computing. The compiler uses SYCL* code to generate RTL
IP cores, depending on the compilation target that you specify.

For RTL IP cores, you set the compilation target to a supported Intel FPGA device
family or part number instead of a specific acceleration platform. Users of the Intel
HLS Compiler are encouraged to migrate existing designs to the Intel oneAPI Base
Toolkit, as Intel HLS Compiler is planned for deprecation after Quartus Prime Pro
Edition version 23.4.

To learn more about the Intel oneAPI FPGA flows in Platform Designer that use SYCL
HLS, refer to the Intel oneAPI FPGA Handbook and the Platform Designer Sample
Tutorial.

Related Information

• Intel oneAPI FPGA Handbook

• Platform Designer Sample Tutorial

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

202

https://www.intel.com/content/www/us/en/docs/programmable/785441.html
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL_FPGA/Tutorials/Tools/platform_designer
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.12. Creating Platform Designer Components Revision History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.
• Added new Add IP RTL Core Generated from the Intel oneAPI Base

Toolkit topic.
• Removed deprecated "Adding Generic HLS Components" section.

2023.06.26 23.2 • Corrected code sample typo in Create a Composed Component or
Subsystem topic.

2023.04.03 23.1 • Updated examples in Declaring SystemVerilog Interfaces in _hw.tcl
topic.

• Removed Name HDL Signals for Automatic Interface and Type
Recognition topic as this feature is not currently supported.

• The product family name is updated to "Intel Agilex 7" to reflect the
different family members.

2022.04.02 22.1 • Updated entire chapter for new AXI "manager" and AXI "subordinate"
replacement terms. Refer to the AMBA® AXI and ACE Protocol
Specification.

2021.03.29 21.1 • Converted to "host" and "agent" inclusive terminology for Avalon
memory mapped interface descriptions and related GUI elements
throughout.

2020.12.14 20.4 • Added new "Exporting HDL Parameters to a System" topic.
• Added new "HDL Parameters Tab Settings and Controls" topic.

2020.09.28 20.3 • Revised "Adding Generic Components to a System" to describes all
implementations and refer to substeps for HDL and Blackbox
parameters.

• Revised "Adding Generic HDL Component Parameters" for latest steps
and screenshot.

• Added new "Adding Generic Blackbox Component Parameters" topic.
• Added statement about AFFECTS_GENERATION to "Specify Parameters

in the Platform Designer Component Editor" topic.
• Reorganized the order of some topic to group similar items.

2020.05.01 20.1 • Added note about .qar file requirements to "Design Guidelines for
Component Instances" topic.

2020.04.06 18.1.0 • Updated links and web page names in "Component Structure" and
"Creating Platform Designer Components" topics.

2019.06.19 18.1.0 • Added descriptions of AXI parameters in "Specify Parameters in the
Platform Designer Component Editor."

2018.12.15 18.1.0 • Replaced references to System Contents tab with new System View
tab.

2018.05.07 18.0 • Added scripting support for wire-level expressions.

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer
• Replaced mentions of altera_axi_default_slave to

altera_error_response_slave
• Added support for SystemVerilog interfaces with _hw.tcl.
• Added support for user alterable HDL parameters with _hw.tcl.
• Added support for High Level Synthesis file compilation.

2017.05.08 17.0.0 • Updated Figure: Address Span Extender

continued...

3. Creating Platform Designer Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

203

https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.
• Added topics for Generic Component.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • Updated screen shots Files tab, Qsys Component Editor.
• Added topic: Specify Interfaces and Signals in the Qsys Component

Editor.
• Added topic: Create an HDL File in the Qsys Component Editor.
• Added topic: Create an HDL File Using a Template in the Qsys

Component Editor.

November 2013 13.1.0 • add_hdl_instance

• Added Creating a Component With Differing Structural Qsys View and
Generated Output Files.

May 2013 13.0.0 • Consolidated content from other Qsys chapters.
• Added Upgrading IP Components to the Latest Version.
• Updated for AMBA APB support.

November 2012 12.1.0 • Added AMBA AXI4 support.
• Added the demo_axi_memory example with screen shots and

example _hw.tcl code.

June 2012 12.0.0 • Added new tab structure for the Component Editor.
• Added AXI 3 support.

November 2011 11.1.0 Template update.

May 2011 11.0.0 • Removed beta status.
• Added Avalon Tri-state Conduit (Avalon-TC) interface type.
• Added many interface templates for Nios custom instructions and

Avalon-TC interfaces.

December 2010 10.1.0 Initial release.

3. Creating Platform Designer Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

204

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Optimizing Platform Designer System Performance
Platform Designer provides tools that allow you to optimize the performance of the
system interconnect for Intel FPGA designs. This chapter presents techniques that
leverage the available tools and the trade offs of each implementation.

The foundation of any system is the interconnect logic that connects hardware blocks
or components. Creating interconnect logic is time consuming and prone to errors,
and existing interconnect logic is difficult to modify when design requirements change.
The Platform Designer system integration tool addresses these issues and provides an
automatically generated and optimized interconnect designed to satisfy the system
requirements.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Note: Recommended Intel practices may improve clock frequency, throughput, logic
utilization, or power consumption of a Platform Designer design. When you design a
Platform Designer system, use your knowledge of the design intent and goals to
further optimize system performance beyond the automated optimization available in
Platform Designer.

Related Information

• Creating a System with Platform Designer on page 11

• Creating Platform Designer Components on page 153

• Platform Designer Interconnect on page 251

• Avalon Interface Specifications

• AMBA Protocol Specifications

4.1. Designing with Avalon and AXI Interfaces

The Avalon and AXI interconnects for memory-mapped interfaces are flexible, partial
crossbar logic. For AXI, the interconnect connects the AXI manager to the AXI
subordinate interfaces. Similarly, the interconnect connects the Avalon host to the
agent interfaces.(9)

Avalon Streaming links connect point-to-point, unidirectional interfaces and are
typically used in data stream applications. Each pair of components is connected
without any requirement to arbitrate between the data source and sink.

(9) This document now refers to the Avalon "host" and "agent," and the AXI "manager" and
"subordinate," to replace formerly used terms. Refer to the current AMBA AXI and ACE Protocol
Specification for the latest AMBA AXI and ACE protocol terminology.

683609 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
https://developer.arm.com/documentation/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Because Platform Designer supports multiplexed memory-mapped and streaming
connections, you can implement systems that use multiplexed logic for control and
streaming for data in a single design.

Related Information

Creating Platform Designer Components on page 153

4.1.1. Designing Streaming Components

When you design streaming component interfaces, you must consider integration and
communication for each component in the system. One common consideration is
buffering data internally to accommodate latency between components.

For example, if the component’s Avalon streaming output or source of streaming data
is back-pressured because the ready signal is deasserted, then the component must
back-pressure its input or sink interface to avoid overflow.

You can use a FIFO to back-pressure internally on the output side of the component so
that the input can accept more data even if the output is back-pressured. Then, you
can use the FIFO almost full flag to back-pressure the sink interface or input data
when the FIFO has only enough space to satisfy the internal latency. You can drive the
data valid signal of the output or source interface with the FIFO not empty flag when
that data is available.

4.1.2. Designing Memory-Mapped Components

When designing with memory-mapped components, you can implement any
component that contains multiple registers mapped to memory locations, for example,
a set of four output registers to support software read back from logic. Components
that implement read and write memory-mapped transactions require three main
building blocks: an address decoder, a register file, and a read multiplexer.

The decoder enables the appropriate 32-bit or 64-bit register for writes. For reads, the
address bits drive the multiplexer selection bits. The read signal registers the data
from the multiplexer, adding a pipeline stage so that the component can achieve a
higher clock frequency.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

206

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 156. Control and Status Registers (CSR) in an Agent Component

write

writedata[31:0]

address[1:0]
read

readdata[31:0]

Avalon Memory Mapped
Agent Port

EN

D Q

EN

D Q

EN

D Q

EN

D Q

EN

Q D

0

2

3

1

Read Multiplexer

A

Decoder
2-4

Register File

User
Logic

EN

address[1:0]

This agent component has four write wait states and one read wait state.
Alternatively, if you want high throughput, you may set both the read and write wait
states to zero, and then specify a read latency of one, because the component also
supports pipelined reads.

4.2. Using Hierarchy in Systems

You can use hierarchy to sub-divide a system into smaller subsystems that you can
then connect in a top-level Platform Designer system. Additionally, if a design contains
one or more identical functional units, the functional unit can be defined as a
subsystem and instantiated multiple times within a top-level system.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

207

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hierarchy can simplify verification control of agents connected to each host in a
memory-mapped system. Before you implement subsystems in your design, you
should plan the system hierarchical blocks at the top-level, using the following
guidelines:

• Plan shared resources—Determine the best location for shared resources in the
system hierarchy. For example, if two subsystems share resources, add the
components that use those resources to a higher-level system for easy access.

• Plan shared address space between subsystems—Planning the address space
ensures you can set appropriate sizes for bridges between subsystems.

• Plan how much latency you may need to add to your system—When you
add an Avalon Memory Mapped Pipeline Bridge between subsystems, you may add
latency to the overall system. You can reduce the added latency by parameterizing
the bridge with zero cycles of latency, and by turning off the pipeline command
and response signals.

Figure 157. Avalon Memory Mapped Pipeline Bridge

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

208

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 158. Passing Messages Between Subsystems

Nios II
Processor

H H

Nios II
Processor

H H

PIO

A

On-Chip
Memory

A

Mutex

A

UART

A

On-Chip
Memory

A

Shared
Memory

A

UART

A

PIO

A

Arbiter Arbiter ArbiterArbiter

Top-Level System

Subsystem Subsystem

Pipeline Bridges

Shared Resources for Message Passing

In this example, two Nios II processor subsystems share resources for message
passing. Bridges in each subsystem export the Nios II data host to the top-level
system that includes the mutex (mutual exclusion component) and shared memory
component (which could be another on-chip RAM, or a controller for an off-chip RAM
device).

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

209

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 159. Multi Channel System

Channel 1 SystemInput Data Stream Output Data Stream

Channel 2 SystemInput Data Stream Output Data Stream

Channel N SystemInput Data Stream Output Data Stream

Nios II
Processor

H H

Input Data
Stream

A

On-Chip
Memory

A

Input Data
Stream

A

Arbiter

You can also design systems that process multiple data channels by instantiating the
same subsystem for each channel. This approach is easier to maintain than a larger,
non-hierarchical system. Additionally, such systems are easier to scale because you
can calculate the required resources as a multiple of the subsystem requirements.

4.3. Using Concurrency in Memory-Mapped Systems

Platform Designer interconnect uses parallel hardware in FPGAs, which allows you to
design concurrency into your system and process transactions simultaneously.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

210

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.1. Implementing Concurrency With Multiple Hosts

Implementing concurrency requires multiple hosts in a Platform Designer system.
Systems that include a processor contain at least two host interfaces because the
processors include separate instruction and data hosts. You can categorize host
components as follows:

• General purpose processors, such as Nios II processors

• DMA (direct memory access) engines

• Communication interfaces, such as PCI Express

Because Platform Designer generates an interconnect with agent-side arbitration,
every host interface in a system can issue transfers concurrently, if they are not
posting transfers to the same agent. Concurrency is limited by the number of host
interfaces sharing any particular agent interface. If a design requires higher data
throughput, you can increase the number of host and agent interfaces to increase the
number of transfers that occur simultaneously. The example below shows a system
with three host interfaces.

Figure 160. Avalon Multiple Host Parallel Access
In this Avalon example, the DMA engine operates with Avalon memory mapped read and write hosts. The
yellow lines represent active simultaneous connections.

Host Port

Agent Port

 H

Dual-Port On-Chip
Memory

A

External Memory
Controller

External Memory
Controller

Concurrent Access Possible

Nios II
Processor

 DMA
Engine

H HHH

PCI Express
Interface

HA

Arbiter Arbiter

A A A A

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

211

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 161. AXI Multiple Manager Parallel Access
In this example, the DMA engine operates with a single manager, because in AXI, the write and read channels
on the manager are independent and can process transactions simultaneously. There is concurrency between
the read and write channels, with the yellow lines representing concurrent datapaths.

Manager PortM

Dual-Port On-Chip
Memory

Subordinate PortS

External Memory
Controller

External Memory
Controller

Nios II
Processor

AXI DMA
Engine

M MM

PCI Express
Interface

MS

Arbiter Arbiter

S S S S

Concurrent Access Possible

Read Write

4.3.2. Implementing Concurrency With Multiple Agents

You can create multiple agent interfaces for a particular function to increase
concurrency in your design.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

212

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 162. Single Interface Versus Multiple Interfaces

Host 2

Host 1

H

Host 3

Host 4

H

A

H

H

Arbiter

Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Single Channel Access

Multiple Channel Access

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

A Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

A

A

A

Host 2

Host 1

H

Host 3

Host 4

H

H

H

In this example, there are two channel processing systems. In the first, four hosts
must arbitrate for the single agent interface of the channel processor. In the second,
each host drives a dedicated agent interface, allowing all host interfaces to
simultaneously access the agent interfaces of the component. Arbitration is not
necessary when there is a single host and agent interface.

4.3.3. Implementing Concurrency with DMA Engines

In some systems, you can use DMA engines to increase throughput. You can use a
DMA engine to transfer blocks of data between interfaces, which then frees the CPU
from doing this task. A DMA engine transfers data between a programmed start and

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

213

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

end address without intervention, and the data throughput is dictated by the
components connected to the DMA. Factors that affect data throughput include data
width and clock frequency.

Figure 163. Single or Dual DMA Channels

Single DMA Channel

DMA
Engine

HH

Read
 Buffer 2

A

Read
 Buffer 1

A

Write
 Buffer 1

A

Write
 Buffer 2

A

Maximum of One Read & One Write Per Clock Cycle

DMA
Engine 1

HH

Write
 Buffer 1

A

Read
 Buffer 1

A

DMA
Engine 2

HH

Write
 Buffer 2

A

Read
 Buffer 2

A

Dual DMA Channels
Maximum of Two Reads & Two Writes Per Clock Cycle

In this example, the system can sustain more concurrent read and write operations by
including more DMA engines. Accesses to the read and write buffers in the top system
are split between two DMA engines, as shown in the Dual DMA Channels at the bottom
of the figure.

The DMA engine operates with Avalon memory mapped write and read hosts. An AXI
DMA typically has only one manager, because in AXI, the write and read channels on
the manager are independent and can process transactions simultaneously.

4.4. Inserting Pipeline Stages to Increase System Frequency

Adding pipeline stages may increase the fMAX of the design by reducing the
combinational logic depth, at the cost of additional latency and logic utilization.

Platform Designer provides the Limit interconnect pipeline stages to option on the
Interconnect Requirements tab to automatically add pipeline stages to the Platform
Designer interconnect when you generate a system.

The Limit interconnect pipeline stages to parameter in the Interconnect
Requirements tab allows you to define the maximum Avalon streaming pipeline
stages that Platform Designer can insert during generation. You can specify between 0
to 4 pipeline stages, where 0 means that the interconnect has a combinational
datapath. You can specify a unique interconnect pipeline stage value for each
subsystem.

For more information, refer to Interconnect Pipelining.

Related Information

Pipelined Avalon Memory Mapped Interfaces on page 229

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

214

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5. Using Bridges

You can use bridges to increase system frequency, minimize generated Platform
Designer logic, minimize adapter logic, and to structure system topology when you
want to control where Platform Designer adds pipelining. You can also use bridges with
arbiters when there is concurrency in the system.

An Avalon bridge has an Avalon memory mapped agent interface and an Avalon
memory mapped host interface. You can have many components connected to the
bridge agent interface, or many components connected to the bridge host interface.
You can also have a single component connected to a single bridge agent or host
interface.

You can configure the data width of the bridge, which can affect how Platform
Designer generates bus sizing logic in the interconnect. Both interfaces support Avalon
memory mapped pipelined transfers with variable latency, and can also support
configurable burst lengths.

Transfers to the bridge agent interface are propagated to the host interface, which
connects to components downstream from the bridge. Bridges can provide more
control over interconnect pipelining than the Limit interconnect pipeline stages to
option.

Note: You can use Avalon bridges between AXI interfaces, and between Avalon domains.
Platform Designer automatically creates interconnect logic between the AXI and
Avalon interfaces, so you do not have to explicitly instantiate bridges between these
domains. For more discussion about the benefits and disadvantages of shared and
separate domains, refer to the Platform Designer Interconnect.

Related Information

• Bridges on page 367

• AMBA 3 APB Protocol Specification Support (version 1.0) on page 336

4.5.1. Using Bridges to Increase System Frequency

In Platform Designer, you can introduce interconnect pipeline stages or pipeline
bridges to increase clock frequency in your system. Bridges control the system
interconnect topology and allow you to subdivide the interconnect, giving you more
control over pipelining and clock crossing functionality.

4.5.1.1. Inserting Pipeline Bridges

You can insert an Avalon memory mapped pipeline bridge to insert registers in the
path between the bridges and its host and agents. If a critical register-to-register
delay occurs in the interconnect, a pipeline bridge can help reduce this delay and
improve system fMAX.

The Avalon memory mapped pipeline bridge component integrates into any Platform
Designer system. The pipeline bridge options can increase logic utilization and read
latency. The change in topology may also reduce concurrency if multiple hosts
arbitrate for the bridge. You can use the Avalon memory mapped pipeline bridge to
control topology without adding a pipeline stage. A pipeline bridge that does not add a
pipeline stage is optimal in some latency-sensitive applications. For example, a CPU
may benefit from minimal latency when accessing memory.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

215

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 164. Avalon Memory Mapped Pipeline Bridge

D Q

Wait Request
 Logic

Avalon Memory Mapped
Pipeline Bridge

waitrequest waitrequest

ENA

waitrequest
Pipeline

Connects to an
Avalon Memory

Interface

D Q

D Q

clock

Connects to an
Avalon Memory

Host to Agent
Pipeline

Host to Agent
Signals

Agent to Host
Signals

Host
I/F

Agent to Host Pipeline

Agent
I/F

Host to Agent
Signals

Mapped Agent

Agent to Host
Signals

Mapped Host Interface

4.5.1.1.1. Implementing Command Pipelining (Host-to-Agent)

When multiple hosts share an agent device, you can use command pipelining to
improve performance.

The arbitration logic for the agent interface must multiplex the address, writedata,
and burstcount signals. The multiplexer width increases proportionally with the
number of hosts connecting to a single agent interface. The increased multiplexer
width may become a timing critical path in the system. If a single pipeline bridge does
not provide enough pipelining, you can instantiate multiple instances of the bridge in a
tree structure to increase the pipelining and further reduce the width of the
multiplexer at the agent interface.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

216

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 165. Tree of Bridges

Host 1

H

Host 2

H

H

A

Pipeline Bridge

Host 3

H

Host 4

H

H

A

Pipeline Bridge

arb

arb arb

Write Data &
Control Signals

Read Data

Shared
Agent

A

4.5.1.1.2. Implementing Response Pipelining (Agent-to-Host)

When hosts connect to multiple agents that support read transfers, you can use
agent-to-host pipelining to improve performance.

The interconnect inserts a multiplexer for every read datapath back to the host. As the
number of agents supporting read transfers connecting to the host increases, the
width of the read data multiplexer also increases. If the performance increase is
insufficient with one bridge, you can use multiple bridges in a tree structure to
improve fMAX.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

217

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5.1.2. Using Clock Crossing Bridges

The clock crossing bridge contains a pair of clock crossing FIFOs, which isolate the
host and agent interfaces in separate, asynchronous clock domains. Transfers to the
agent interface are propagated to the host interface.

When you use a FIFO clock crossing bridge for the clock domain crossing, you add
data buffering. Buffering allows pipelined read hosts to post multiple reads to the
bridge, even if the agents downstream from the bridge do not support pipelined
transfers.

You can also use a clock crossing bridge to place high and low frequency components
in separate clock domains. If you limit the fast clock domain to the portion of your
design that requires high performance, you may achieve a higher fMAX for this portion
of the design. For example, the majority of processor peripherals in embedded designs
do not need to operate at high frequencies, therefore, you do not need to use a high-
frequency clock for these components. When you compile a design with the Quartus
Prime software, compilation may take more time when the clock frequency
requirements are difficult to meet because the Fitter needs more time to place
registers to achieve the required fMAX. To reduce the amount of effort that the Fitter
uses on low priority and low performance components, you can place these behind a
clock crossing bridge operating at a lower frequency, allowing the Fitter to increase the
effort placed on the higher priority and higher frequency datapaths.

4.5.2. Using Bridges to Minimize Design Logic

Bridges can reduce interconnect logic by reducing the amount of arbitration and
multiplexer logic that Platform Designer generates. This reduction occurs because
bridges limit the number of concurrent transfers that can occur.

4.5.2.1. Avoiding Speed Optimizations That Increase Logic

You can add an additional pipeline stage with a pipeline bridge between hosts and
agents to reduce the amount of combinational logic between registers, which can
increase system performance. If you can increase the fMAX of your design logic, you
may be able to turn off the Quartus Prime software optimization settings, such as the
Perform register duplication setting. Register duplication creates duplicate
registers in two or more physical locations in the FPGA to reduce register-to-register
delays. You may also want to choose Speed for the optimization method, which
typically results in higher logic utilization due to logic duplication. By making use of
the registers or FIFOs available in the bridges, you can increase the design speed and
avoid needless logic duplication or speed optimizations, thereby reducing the logic
utilization of the design.

4.5.2.2. Limiting Concurrency

The amount of logic generated for the interconnect often increases as the system
becomes larger because Platform Designer creates arbitration logic for every agent
interface that is shared by multiple host interfaces. Platform Designer inserts
multiplexer logic between host interfaces that connect to multiple agent interfaces if
both support read datapaths.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

218

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Most embedded processor designs contain components that are either incapable of
supporting high data throughput, or do not need to be accessed frequently. These
components can contain host or agent interfaces. Because the interconnect supports
concurrent accesses, you may want to limit concurrency by inserting bridges into the
datapath to limit the amount of arbitration and multiplexer logic generated.

For example, if a system contains three host and three agent interfaces that are
interconnected, Platform Designer generates three arbiters and three multiplexers for
the read datapath. If these hosts do not require a significant amount of simultaneous
throughput, you can reduce the resources that your design consumes by connecting
the three hosts to a pipeline bridge. The bridge controls the three agent interfaces and
reduces the interconnect into a bus structure. Platform Designer creates one
arbitration block between the bridge and the three hosts, and a single read datapath
multiplexer between the bridge and three agents, and prevents concurrency. This
implementation is similar to a standard bus architecture.

You should not use this method for high throughput datapaths to ensure that you do
not limit overall system performance.

Figure 166. Differences Between Systems With and Without a Pipeline Bridge

A A A

Arbiter Arbiter Arbiter

AAA

H

Bridge

A

Arbiter

H H H H HH H

Write Data & Control Signals
Read Data

Concurrency No Concurrency

4.5.3. Using Bridges to Minimize Adapter Logic

Platform Designer generates adapter logic for clock crossing, width adaptation, and
burst support when there is a mismatch between the clock domains, widths, or
bursting capabilities of the host and agent interface pairs.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

219

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer creates burst adapters when the maximum burst length of the host
is greater than the host burst length of the agent. The adapter logic creates extra logic
resources, which can be substantial when your system contains host interfaces
connected to many components that do not share the same characteristics. By placing
bridges in your design, you can reduce the amount of adapter logic that Platform
Designer generates.

4.5.3.1. Determining Effective Placement of Bridges

To determine the effective placement of a bridge, you should initially analyze each
host in your system to determine if the connected agent devices support different
bursting capabilities or operate in a different clock domain. The maximum burstcount
of a component is visible as the burstcount signal in the HDL file of the component.
The maximum burst length is 2 (width(burstcount -1)), therefore, if the burstcount width
is four bits, the maximum burst length is eight. If no burstcount signal is present,
the component does not support bursting or has a burst length of 1.

To determine if the system requires a clock crossing adapter between the host and
agent interfaces, check the Clock column for the host and agent interfaces. If the
clock is different for the host and agent interfaces, Platform Designer inserts a clock
crossing adapter between them. To avoid creating multiple adapters, you can place
the components containing agent interfaces behind a bridge so that Platform Designer
creates a single adapter. By placing multiple components with the same burst or clock
characteristics behind a bridge, you limit concurrency and the number of adapters.

You can also use a bridge to separate AXI and Avalon domains to minimize burst
adaptation logic. For example, if there are multiple Avalon agents that are connected
to an AXI manager, you can consider inserting a bridge to access the adaptation logic
once before the bridge, instead of once per agent. This implementation results in
latency, and you would also lose concurrency between reads and writes.

4.5.3.2. Changing the Response Buffer Depth

When you use automatic clock-crossing adapters, Platform Designer determines the
required depth of FIFO buffering based on the agent properties. If an agent has a high
Maximum Pending Reads parameter, the resulting deep response buffer FIFO that
Platform Designer inserts between the host and agent can consume a lot of device
resources. To control the response FIFO depth, you can use a clock crossing bridge
and manually adjust its FIFO depth to trade off throughput with smaller memory
utilization.

For example, if you have hosts that cannot saturate the agent, you do not need
response buffering. Using a bridge reduces the FIFO memory depth and reduces the
Maximum Pending Reads available from the agent.

4.5.4. Considering the Effects of Using Bridges

Before you use pipeline or clock crossing bridges in a design, you should carefully
consider their effects. Bridges can have any combination of consequences on your
design, which could be positive or negative. Benchmarking your system before and
after inserting bridges can help you determine the impact to the design.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

220

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5.4.1. Increased Latency

Adding a bridge to a design has an effect on the read latency between the host and
the agent. Depending on the system requirements and the type of host and agent,
this latency increase may not be acceptable in your design.

4.5.4.1.1. Acceptable Latency Increase

For a pipeline bridge, Platform Designer adds a cycle of latency for each pipeline
option that is enabled. The buffering in the clock crossing bridge also adds latency. If
you use a pipelined or burst host that posts many read transfers, the increase in
latency does not impact performance significantly because the latency increase is very
small compared to the length of the data transfer.

For example, if you use a pipelined read host such as a DMA controller to read data
from a component with a fixed read latency of four clock cycles, but only perform a
single word transfer, the overhead is three clock cycles out of the total of four. This is
true when there is no additional pipeline latency in the interconnect. The read
throughput is only 25%.

Figure 167. Low-Efficiency Read Transfer

clk

address

read

waitrequest

readdata

A0 A1

D0 D1

Overhead

Read Latency

Overhead

Read Latency

However, if 100 words of data are transferred without interruptions, the overhead is
three cycles out of the total of 103 clock cycles. This corresponds to a read efficiency
of approximately 97% when there is no additional pipeline latency in the interconnect.
Adding a pipeline bridge to this read path adds two extra clock cycles of latency. The
transfer requires 105 cycles to complete, corresponding to an efficiency of
approximately 94%. Although the efficiency decreased by 3%, adding the bridge may
increase the fMAX by 5%. For example, if the clock frequency can be increased, the
overall throughput would improve. As the number of words transferred increases, the
efficiency increases to nearly 100%, whether or not a pipeline bridge is present.

Figure 168. High Efficiency Read Transfer

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

D0 D1 D2 D3 D4 D5 D6 D7 D8

Overhead

Read Latency

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

221

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5.4.1.2. Unacceptable Latency Increase

Processors are sensitive to high latency read times and typically retrieve data for use
in calculations that cannot proceed until the data arrives. Before adding a bridge to
the datapath of a processor instruction or data host, determine whether the clock
frequency increase justifies the added latency.

A Nios II processor instruction master has a cache memory with a read latency of four
cycles, which is eight sequential words of data return for each read. At 100 MHz, the
first read takes 40 ns to complete. Each successive word takes 10 ns so that eight
reads complete in 110 ns.

Figure 169. Performance of a Nios II Processor and Memory Operating at 100 MHz

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

40 ns

110 ns

Adding a clock crossing bridge allows the memory to operate at 125 MHz. However,
this increase in frequency is negated by the increase in latency because if the clock
crossing bridge adds six clock cycles of latency at 100 MHz, then the memory
continues to operate with a read latency of four clock cycles. Consequently, the first
read from memory takes 100 ns, and each successive word takes 10 ns because reads
arrive at the frequency of the processor, which is 100 MHz. In total, eight reads
complete after 170 ns. Although the memory operates at a higher clock frequency, the
frequency at which the host operates limits the throughput.

Figure 170. Performance of a Nios II Processor and Eight Reads with Ten Cycles Latency

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

100 ns

170 ns

4.5.4.2. Limited Concurrency

Placing a bridge between multiple host and agent interfaces limits the number of
concurrent transfers your system can initiate. This limitation is the same when
connecting multiple host interfaces to a single agent interface. The agent interface of

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

222

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the bridge is shared by all the hosts and, as a result, Platform Designer creates
arbitration logic. If the components placed behind a bridge are infrequently accessed,
this concurrency limitation may be acceptable.

Bridges can have a negative impact on system performance if you use them
inappropriately. For example, if multiple memories are used by several hosts, you
should not place the memory components behind a bridge. The bridge limits memory
performance by preventing concurrent memory accesses. Placing multiple memory
components behind a bridge can cause the separate agent interfaces to appear as one
large memory to the hosts accessing the bridge; all hosts must access the same agent
interface.

Figure 171. Inappropriate Use of a Bridge in a Hierarchical System

Nios II
Processor

H H

H

DMA

H H

DDR
SDRAM

A

DDR
SDRAM

A

DDR
SDRAM

A

Bridge

A

Bottleneck
Arbiter

DDR
SDRAM

A

Platform Designer
Subsystem

A memory subsystem with one bridge that acts as a single agent interface for the
Avalon memory mapped Nios II and DMA hosts, which results in a bottleneck
architecture. The bridge acts as a bottleneck between the two hosts and the
memories.

If the fMAX of your memory interfaces is low and you want to use a pipeline bridge
between subsystems, you can place each memory behind its own bridge, which
increases the fMAX of the system without sacrificing concurrency.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

223

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 172. Efficient Memory Pipelining Without a Bottleneck in a Hierarchical System

Nios II
Processor

H H

DMA

H H

DDR
SDRAM

A

H

Bridge

A

Arbiter

DDR
SDRAM

A

H

Bridge

A

Arbiter

DDR
SDRAM

A

H

Bridge

A

Arbiter

DDR
SDRAM

A

H

Bridge

A

Arbiter

Subsystem

Subsystem

4.5.4.3. Address Space Translation

The agent interface of a pipeline or clock crossing bridge has a base address and
address span. You can set the base address, or allow Platform Designer to set it
automatically. The address of the agent interface is the base offset address of all the
components connected to the bridge. The address of components connected to the
bridge is the sum of the base offset and the address of that component.

The host interface of the bridge drives only the address bits that represent the offset
from the base address of the bridge agent interface. Any time a host accesses an
agent through a bridge, both addresses must be added together, otherwise the
transfer fails. The Address Map tab displays the addresses of the agents connected
to each host and includes address translations caused by system bridges.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

224

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 173. Bridge Address Translation

H

Nios II Processor

H

Bridge

A

Base = 0x1000

0x2C 0x2C0x102C

Address Translation

Address
Decoder

A

Peripheral

Base = 0x20

0xC

Address Translation

In this example, the Nios II processor connects to a bridge located at base address
0x1000, an agent connects to the bridge host interface at an offset of 0x20, and the
processor performs a write transfer to the fourth 32-bit or 64-bit word within the
agent. Nios II drives the address 0x102C to interconnect, which is within the address
range of the bridge. The bridge host interface drives 0x2C, which is within the address
range of the agent, and the transfer completes.

4.5.4.4. Address Coherency

To simplify the system design, all hosts should access agents at the same location. In
many systems, a processor passes buffer locations to other hosting components, such
as a DMA controller. If the processor and DMA controller do not access the agent at
the same location, Platform Designer must compensate for the differences.

Figure 174. Agents at Different Addresses and Complicating the System

H

DMA

H

Nios II Processor

0x1020 HA

Bridge

Base = 0x1000

0x20 0x20

0x20

Address Translation

Address
Decoder

A

Peripheral

Base = 0x20

0x0Arbiter

Hosts Drive
Different Addresses

A Nios II processor and DMA controller access an agent interface located at address
0x20. The processor connects directly to the agent interface. The DMA controller
connects to a pipeline bridge located at address 0x1000, which then connects to the
agent interface. Because the DMA controller accesses the pipeline bridge first, it must
drive 0x1020 to access the first location of the agent interface. Because the processor
accesses the agent from a different location, you must maintain two base addresses
for the agent device.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

225

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To avoid the requirement for two addresses, you can add an additional bridge to the
system, set its base address to 0x1000, and then disable all the pipelining options in
the second bridge so that the bridge has minimal impact on system timing and
resource utilization. Because this second bridge has the same base address as the
original bridge, the processor and DMA controller access the agent interface with the
same address range.

Figure 175. Address Translation Corrected With Bridge

H

DMA

H

Nios II Processor

0x1020 HA

Bridge

Base = 0x1000

0x20

H

Bridge

A

Base = 0x1000

0x20

0x20

0x200x1020

Address Translation

Address Translation

Address
Decoder

A

Peripheral

Base = 0x20

0x0Arbiter

4.6. Increasing Transfer Throughput

Increasing the transfer efficiency of the host and agent interfaces in your system
increases the throughput of your design. Designs with strict cost or power
requirements benefit from increasing the transfer efficiency because you can then use
less expensive, lower frequency devices. Designs requiring high performance also
benefit from increased transfer efficiency because increased efficiency improves the
performance of frequency–limited hardware.

Throughput is the number of symbols (such as bytes) of data that Platform Designer
can transfer in a given clock cycle. Read latency is the number of clock cycles between
the address and data phase of a transaction. For example, a read latency of two
means that the data is valid two cycles after the address is posted. If the host must
wait for one request to finish before the next begins, such as with a processor, then
the read latency is very important to the overall throughput.

You can measure throughput and latency in simulation by observing the waveforms, or
using the verification IP monitors.

Related Information

• Avalon Interface Specifications

• Siemens EDA* AXI Verification IP Suite

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

226

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/basic-functions/mentor-graphics-axi-verification.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.6.1. Using Pipelined Transfers

Pipelined transfers increase the read efficiency by allowing a host to post multiple
reads before data from an earlier read returns. Hosts that support pipelined transfers
post transfers continuously, relying on the readdatavalid signal to indicate valid
data. Agents support pipelined transfers by including the readdatavalid signal or
operating with a fixed read latency.

AXI managers declare how many outstanding writes and reads it can issue with the
writeIssuingCapability and readIssuingCapability parameters. In the
same way, an agent can declare how many reads it can accept with the
readAcceptanceCapability parameter. AXI managers with a read issuing
capability greater than one are pipelined in the same way as Avalon hosts and the
readdatavalid signal.

4.6.1.1. Using the Maximum Pending Reads Parameter

If you create a custom component with an agent interface supporting variable-latency
reads, you must specify the Maximum Pending Reads parameter in the Component
Editor. Platform Designer uses this parameter to generate the appropriate interconnect
and represent the maximum number of read transfers that your pipelined agent
component can process. If the number of reads presented to the agent interface
exceeds the Maximum Pending Reads parameter, then the agent interface must
assert waitrequest.

Optimizing the value of the Maximum Pending Reads parameter requires an
understanding of the latencies of your custom components. This parameter should be
based on the component’s highest read latency for the various logic paths inside the
component. For example, if your pipelined component has two modes, one requiring
two clock cycles and the other five, set the Maximum Pending Reads parameter to
5 to allow your component to pipeline five transfers, and eliminating dead cycles after
the initial five-cycle latency.

You can also determine the correct value for the Maximum Pending Reads
parameter by monitoring the number of reads that are pending during system
simulation or while running the hardware. To use this method, set the parameter to a
high value and use a host that issues read requests on every clock. You can use a
DMA for this task if the data is written to a location that does not frequently assert
waitrequest. If you implement this method, you can observe your component with
a logic analyzer or built-in monitoring hardware.

Choosing the correct value for the Maximum Pending Reads parameter of your
custom pipelined read component is important. If you underestimate the parameter
value, you may cause a host interface to stall with a waitrequest until the agent
responds to an earlier read request and frees a FIFO position.

The Maximum Pending Reads parameter controls the depth of the response FIFO
inserted into the interconnect for each host connected to the agent. This FIFO does
not use significant hardware resources. Overestimating the Maximum Pending
Reads parameter results in a slight increase in hardware utilization. For these
reasons, if you are not sure of the optimal value, you should overestimate this value.

If your system includes a bridge, you must set the Maximum Pending Reads
parameter on the bridge as well. To allow maximum throughput, this value should be
equal to or greater than the Maximum Pending Reads value for the connected
agent that has the highest value. You can limit the maximum pending reads of an

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

227

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

agent and reduce the buffer depth by reducing the parameter value on the bridge if
the high throughput is not required. If you do not know the Maximum Pending
Reads value for all the agent components, you can monitor the number of reads that
are pending during system simulation while running the hardware. To use this method,
set the Maximum Pending Reads parameter to a high value and use a host that
issues read requests on every clock, such as a DMA. Then, reduce the number of
maximum pending reads of the bridge until the bridge reduces the performance of any
hosts accessing the bridge.

4.6.2. Arbitration Shares and Bursts

Arbitration shares provide control over the arbitration process. By default, the
arbitration algorithm allocates evenly, with all hosts receiving one share.

You can adjust the arbitration process by assigning a larger number of shares to hosts
that need greater throughput. The larger the arbitration share, the more transfers are
allocated to the host to access an agent. The hosts gets uninterrupted access to the
agent for its number of shares when the host is reading or writing.

If a host cannot post a transfer, and other hosts are waiting to gain access to a
particular agent, the arbiter grants access to another host. This mechanism prevents a
host from wasting arbitration cycles if it cannot post back-to-back transfers. A bursting
transaction contains multiple beats (or words) of data, starting from a single address.
Bursts allow a host to maintain access to an agent for more than a single word
transfer. If a bursting host posts a write transfer with a burst length of eight, it is
guaranteed arbitration for eight write cycles.

You can assign arbitration shares to an Avalon memory mapped bursting host and AXI
hosts (which are always considered a bursting host). Each share consists of one burst
transaction (such as multi cycle write), and allows a host to complete a number of
bursts before arbitration switches to the next host.

Related Information

Arbitration on page 264

4.6.2.1. Differences Between Arbitration Shares and Bursts

The following three key characteristics distinguish arbitration shares and bursts:

• Arbitration Lock

• Sequential Addressing

• Burst Adapters

Arbitration Lock

When a host posts a burst transfer, the arbitration is locked for that host;
consequently, the bursting host should be capable of sustaining transfers for the
duration of the locked period. If, after the fourth write, the host deasserts the write
signal (Avalon memory mapped write or AXI wvalid) for fifty cycles, all other hosts
continue to wait for access during this stalled period.

To avoid wasted bandwidth, your host designs should wait until a full burst transfer is
ready before requesting access to an agent device. Alternatively, you can avoid
wasted bandwidth by posting burstcounts equal to the amount of data that is ready.
For example, if you create a custom bursting write host with a maximum burstcount

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

228

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

of eight, but only three words of data are ready, you can present a burstcount of
three. This strategy does not result in optimal use of the system band width if the
agent is capable of handling a larger burst; however, this strategy prevents stalling
and allows access for other hosts in the system.

Sequential Addressing

An Avalon memory mapped burst transfer includes a base address and a
burstcount, which represents the number of words of data that are transferred,
starting from the base address and incrementing sequentially. Burst transfers are
common for processors, DMAs, and buffer processing accelerators; however,
sometimes a host must access non-sequential addresses. Consequently, a bursting
host must set the burstcount to the number of sequential addresses, and then reset
the burstcount for the next location.

The arbitration share algorithm has no restrictions on addresses; therefore, your
custom host can update the address it presents to the interconnect for every read or
write transaction.

Burst Adapters

Platform Designer allows you to create systems that mix bursting and non-bursting
host and agent interfaces. This design strategy allows you to connect bursting host
and agent interfaces that support different maximum burst lengths, with Platform
Designer generating burst adapters when appropriate.

Platform Designer inserts a burst adapter whenever a host interface burst length
exceeds the burst length of the agent interface, or if the host issues a burst type that
the agent cannot support. For example, if you connect an AXI manager to an Avalon
agent, a burst adapter is inserted. Platform Designer assigns non-bursting hosts and
agent interfaces a burst length of one. The burst adapter divides long bursts into
shorter bursts. As a result, the burst adapter adds logic to the address and
burstcount paths between the host and agent interfaces.

4.6.2.2. Choosing Avalon Memory Mapped Interface Types

To avoid inefficient Avalon memory mapped transfers, custom host or agent interfaces
must use the appropriate simple, pipelined, or burst interfaces.

4.6.2.2.1. Simple Avalon Memory Mapped Interfaces

Simple interface transfers do not support pipelining or bursting for reads or writes;
consequently, their performance is limited. Simple interfaces are appropriate for
transfers between hosts and infrequently used agent interfaces. In Platform Designer,
the PIO, UART, and Timer include agent interfaces that use simple transfers.

4.6.2.2.2. Pipelined Avalon Memory Mapped Interfaces

Pipelined read transfers allow a pipelined host interface to start multiple read transfers
in succession without waiting for prior transfers to complete. Pipelined transfers allow
host-agent pairs to achieve higher throughput, even though the agent port may
require one or more cycles of latency to return data for each transfer.

In many systems, read throughput becomes inadequate if simple reads are used and
pipelined transfers can increase throughput. If you define a component with a fixed
read latency, Platform Designer automatically provides the pipelining logic necessary

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

229

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

to support pipelined reads. You can use fixed latency pipelining as the default design
starting point for agent interfaces. If your agent interface has a variable latency
response time, use the readdatavalid signal to indicate when valid data is
available. The interconnect implements read response FIFO buffering to handle the
maximum number of pending read requests.

To use components that support pipelined read transfers, and to use a pipelined
system interconnect efficiently, your system must contain pipelined hosts. You can use
pipelined hosts as the default starting point for new host components. Use the
readdatavalid signal for these host interfaces.

Because host and agents sometimes have mismatched pipeline latency, the
interconnect contains logic to reconcile the differences.

Table 43. Pipeline Latency in a Host-Agent Pair

Host Agent Pipeline Management Logic Structure

No pipeline No pipeline Platform Designer interconnect does not instantiate logic to handle pipeline
latency.

No pipeline Pipelined with
fixed or variable
latency

Platform Designer interconnect forces the host to wait through any agent-side
latency cycles. This host-agent pair gains no benefits from pipelining, because
the host waits for each transfer to complete before beginning a new transfer.
However, while the host is waiting, the agent can accept transfers from a
different host.

Pipelined No pipeline Platform Designer interconnect carries out the transfer as if neither host nor
agent were pipelined, causing the host to wait until the agent returns data. An
example of a non-pipeline agent is an asynchronous off-chip interface.

Pipelined Pipelined with
fixed latency

Platform Designer interconnect allows the host to capture data at the exact clock
cycle when data from the agent is valid, to enable maximum throughput. An
example of a fixed latency agent is an on-chip memory.

Pipelined Pipelined with
variable latency

The agent asserts a signal when its readdata is valid, and the host captures the
data. The host-agent pair can achieve maximum throughput if the agent has
variable latency. Examples of variable latency agents include SDRAM and FIFO
memories.

4.6.2.2.3. Burst Avalon Memory Mapped Interfaces

Burst transfers are commonly used for latent memories such as SDRAM and off-chip
communication interfaces, such as PCI Express. To use a burst-capable agent interface
efficiently, you must connect to a bursting host. Components that require bursting to
operate efficiently typically have an overhead penalty associated with short bursts or
non-bursting transfers.

You can use a burst-capable agent interface if you know that your component requires
sequential transfers to operate efficiently. Because SDRAM memories incur a penalty
when switching banks or rows, performance improves when SDRAM memories are
accessed sequentially with bursts.

Architectures that use the same signals to transfer address and data also benefit from
bursting. Whenever an address is transferred over shared address and data signals,
the throughput of the data transfer is reduced. Because the address phase adds
overhead, using large bursts increases the throughput of the connection.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

230

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.6.2.3. Avalon Memory Mapped Burst Host Example

Figure 176. Avalon Bursting Write Host
This example shows the architecture of a bursting write host that receives data from a FIFO and writes the
contents to memory. You can use a bursting host as a starting point for your own bursting components, such
as custom DMAs, hardware accelerators, or off-chip communication interfaces.

d

d

q

read acknowledge

d

write

full

q

q

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_full

user_data_write

length[31:0]

fifo_used[]

used[]
writedata[31:0]

increment_address
Look-Ahead FIFO

burst_begin

burst_count[2:0]

write

increment_address

host_address[31:0]

VCC
byteenable[3:0]

Down
Counter

Up
Counter

burst_begin
EN

D Q
s

1
0

Tracking Logic/
State Machine

waitrequest

count enable

load

count enable

load

host_burstcount[2:0]

The host performs word accesses and writes to sequential memory locations. When go
is asserted, the start_address and transfer_length are registered. On the next
clock cycle, the control logic asserts burst_begin, which synchronizes the internal
control signals in addition to the host_address and host_burstcount presented to
the interconnect. The timing of these two signals is important because during bursting
write transfers byteenable and burstcount must be held constant for the entire
burst.

To avoid inefficient writes, the host posts a burst when enough data is buffered in the
FIFO. To maximize the burst efficiency, the host should stall only when an agent
asserts waitrequest. In this example, the FIFO’s used signal tracks the number of
words of data that are stored in the FIFO and determines when enough data has been
buffered.

The address register increments after every word transfer, and the length register
decrements after every word transfer. The address remains constant throughout the
burst. Because a transfer is not guaranteed to complete on burst boundaries,
additional logic is necessary to recognize the completion of short bursts and complete
the transfer.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

231

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.7. Reducing Logic Utilization

You can minimize logic size of Platform Designer systems. Typically, there is a trade-
off between logic utilization and performance. Reducing logic utilization applies to both
Avalon and AXI interfaces.

4.7.1. Minimizing Interconnect Logic to Reduce Logic Unitization

In Platform Designer, changes to the connections between host and agent reduce the
amount of interconnect logic required in the system.

Related Information

Limited Concurrency on page 222

4.7.1.1. Creating Dedicated Host and Agent Connections to Minimize
Interconnect Logic

You can create a system where a host interface connects to a single agent interface.
This configuration eliminates address decoding, arbitration, and return data
multiplexing, which simplifies the interconnect. Dedicated host-to-agent connections
attain the same clock frequencies as Avalon streaming connections.

Typically, these one-to-one connections include an Avalon memory-mapped bridge or
hardware accelerator. For example, if you insert a pipeline bridge between an agent
and all other host interfaces, the logic between the bridge host and agent interface is
reduced to wires. If a hardware accelerator connects only to a dedicated memory, no
system interconnect logic is generated between the host and agent pair.

4.7.1.2. Removing Unnecessary Connections to Minimize Interconnect Logic

The number of connections between host and agent interfaces affects the fMAX of your
system. Every host interface that you connect to an agent interface increases the
width of the multiplexer width. As a multiplexer width increases, so does the logic
depth and width that implements the multiplexer in the FPGA. To improve system
performance, connect hosts and agents only when necessary.

When you connect a host interface to many agent interfaces, the multiplexer for the
read data signal grows. Avalon typically uses a readdata signal. AXI read data
signals add a response status and last indicator to the read response channel using
rdata, rresp, and rlast. Additionally, bridges help control the depth of
multiplexers.

Related Information

Implementing Command Pipelining (Host-to-Agent) on page 216

4.7.1.3. Simplifying Address Decode Logic

If address code logic is in the critical path, you may be able to change the address
map to simplify the decode logic. Experiment with different address maps, including a
one-hot encoding, to see if results improve.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

232

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.7.2. Minimizing Arbitration Logic by Consolidating Multiple Interfaces

As the number of components in a design increases, the amount of logic required to
implement the interconnect also increases. The number of arbitration blocks increases
for every agent interface that is shared by multiple host interfaces. The width of the
read data multiplexer increases as the number of agent interfaces supporting read
transfers increases on a per host interface basis. For these reasons, consider
implementing multiple blocks of logic as a single interface to reduce interconnect logic
utilization.

4.7.2.1. Logic Consolidation Trade-Offs

You should consider the following trade-offs before making modifications to your
system or interfaces:

• Consider the impact on concurrency that results when you consolidate
components. When a system has four host components and four agent interfaces,
it can initiate four concurrent accesses. If you consolidate the four agent
interfaces into a single interface, then the four hosts must compete for access.
Consequently, you should only combine low priority interfaces such as low speed
parallel I/O devices if the combination does not impact the performance.

• Determine whether consolidation introduces new decode and multiplexing logic for
the agent interface that the interconnect previously included. If an interface
contains multiple read and write address locations, the interface already contains
the necessary decode and multiplexing logic. When you consolidate interfaces, you
typically reuse the decoder and multiplexer blocks already present in one of the
original interfaces; however, combining interfaces may simply move the decode
and multiplexer logic, rather than eliminate duplication.

• Consider whether consolidating interfaces makes the design complicated. If so,
you should not consolidate interfaces.

Related Information

Using Concurrency in Memory-Mapped Systems on page 210

4.7.2.2. Consolidating Interfaces

The following example shows a system with a mix of components, each having
different burst capabilities: a Nios II/e core, a Nios II/f core, and an external
processor, which off-loads some processing tasks to the Nios II/f core.

The Nios II/f core supports a maximum burst size of eight. The external processor
interface supports a maximum burst length of 64. The Nios II/e core does not support
bursting. The memory in the system is SDRAM with an Avalon maximum burst length
of two.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

233

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 177. Mixed Bursting System

Nios II/e Core

H H

Nios II/f Core

H

Host Processor
Interface

HH

PIO

A

System ID

A

Mutex

A

Timer

A

DDR
SDRAM

A

Arbiter Arbiter Arbiter ArbiterArbiter

B

1

8

B

B

1

8

8

B

1

8

B

1

8

B

1

64

B

2

8

B

2

8

B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count

Platform Designer automatically inserts burst adapters to compensate for burst length
mismatches. The adapters reduce bursts to a single transfer, or the length of two
transfers. For the external processor interface connecting to DDR SDRAM, a burst of
64 words is divided into 32 burst transfers, each with a burst length of two. When you
generate a system, Platform Designer inserts burst adapters based on maximum
burstcount values; consequently, the interconnect logic includes burst adapters
between hosts and agent pairs that do not require bursting, if the host is capable of
bursts.

In this example, Platform Designer inserts a burst adapter between the Nios II
processors and the timer, system ID, and PIO peripherals. These components do not
support bursting and the Nios II processor performs a single word read and write
accesses to these components.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

234

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 178. Mixed Bursting System with Bridges

To reduce the number of adapters, you can add pipeline bridges. The pipeline bridge, between the Nios II/f
core and the peripherals that do not support bursts, eliminates three burst adapters from the previous
example. A second pipeline bridge between the Nios II/f core and the DDR SDRAM, with its maximum burst
size set to eight, eliminates another burst adapter, as shown below.

Nios II/e Core

H H H

Nios II/f Core

H

Host Processor
Interface

H

PIO

A

System ID

A

Mutex

A

Timer

A

DDR
SDRAM

A

Arbiter Arbiter Arbiter ArbiterArbiter

B
8

B
1

64

8 8
B

2

2

64

8 8 64

Burst Adapter
Maximum Burst Count

B
1

8

B
2

8
H

Bridge
A

H
Bridge

A

4.7.3. Reducing Logic Utilization With Multiple Clock Domains

You specify clock domains in Platform Designer on the System View tab. Clock
sources can be driven by external input signals to Platform Designer, or by PLLs inside
Platform Designer. Clock domains are differentiated based on the name of the clock.
You can create multiple asynchronous clocks with the same frequency.

Platform Designer generates Clock Domain Crossing (CDC) logic that hides the details
of interfacing components operating in different clock domains. The interconnect
supports the memory-mapped protocol with each port independently, and therefore
hosts do not need to incorporate clock adapters in order to interface to agents on a
different domain. Platform Designer interconnect logic propagates transfers across
clock domain boundaries automatically.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

235

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Clock-domain adapters provide the following benefits:

• Allows component interfaces to operate at different clock frequencies.

• Eliminates the need to design CDC hardware.

• Allows each memory-mapped port to operate in only one clock domain, which
reduces design complexity of components.

• Enables hosts to access any agent without communication with the agent clock
domain.

• Allows you to focus performance optimization efforts on components that require
fast clock speed.

A clock domain adapter consists of two finite state machines (FSM), one in each clock
domain, that use a hand-shaking protocol to propagate transfer control signals
(read_request, write_request, and the host waitrequest signals) across the
clock boundary.

Figure 179. Clock Crossing Adapter

waitrequest

control

Receiver
Handshake

FSM

transfer
request

acknowledge

readdata

control

Sender
Handshake

FSM

waitrequest

Synchro-
nizer

Receiver
Port

Sender
Port

Receiver Clock Domain Sender Clock Domain

Synchro-
nizer

readdata

CDC Logic

writedata & byte enable

address

This example illustrates a clock domain adapter between one host and one agent. The
synchronizer blocks use multiple stages of flipflops to eliminate the propagation of
meta-stable events on the control signals that enter the handshake FSMs. The CDC
logic works with any clock ratio.

The typical sequence of events for a transfer across the CDC logic is as follows:

• The host asserts address, data, and control signals.

• The host handshake FSM captures the control signals and immediately forces the
host to wait. The FSM uses only the control signals, not address and data. For
example, the host simply holds the address signal constant until the agent side
has safely captured it.

• The host handshake FSM initiates a transfer request to the agent handshake FSM.

• The transfer request is synchronized to the agent clock domain.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

236

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The agent handshake FSM processes the request, performing the requested
transfer with the agent.

• When the agent transfer completes, the agent handshake FSM sends an
acknowledge back to the host handshake FSM. The acknowledge is synchronized
back to the host clock domain.

• The host handshake FSM completes the transaction by releasing the host from the
wait condition.

Transfers proceed as normal on the agent and the host side, without a special protocol
to handle crossing clock domains. From the perspective of an agent, there is nothing
different about a transfer initiated by a host in a different clock domain. From the
perspective of a host, a transfer across clock domains simply requires extra clock
cycles. Similar to other transfer delay cases (for example, arbitration delay or wait
states on the agent side), the Platform Designer forces the host to wait until the
transfer terminates. As a result, pipeline host ports do not benefit from pipelining
when performing transfers to a different clock domain.

Platform Designer automatically determines where to insert CDC logic based on the
system and the connections between components, and places CDC logic to maintain
the highest transfer rate for all components. Platform Designer evaluates the need for
CDC logic for each host and agent pair independently, and generates CDC logic
wherever necessary.

4.7.4. Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of host transfers across clock domain boundaries. In
the worst case, which is for reads, each transfer is extended by five host clock cycles
and five agent clock cycles. Assuming the default value of 2 for the host domain
synchronizer length and the agent domain synchronizer length, the components of this
delay are the following:

• Four additional host clock cycles, due to the host-side clock synchronizer.

• Four additional agent clock cycles, due to the agent-side clock synchronizer.

• One additional clock in each direction, due to potential metastable events as the
control signals cross clock domains.

Note: Systems that require a higher performance clock should use the Avalon memory
mapped clock crossing bridge instead of the automatically inserted CDC logic. The
clock crossing bridge includes a buffering mechanism so that multiple reads and writes
can be pipelined. After paying the initial penalty for the first read or write, there is no
additional latency penalty for pending reads and writes, increasing throughput by up
to four times, at the expense of added logic resources.

4.8. Reducing Power Consumption

Platform Designer provides various low power design changes that enable you to
reduce the power consumption of the interconnect and custom components.

4.8.1. Reducing Power Consumption With Multiple Clock Domains

When you use multiple clock domains, you should put non-critical logic in the slower
clock domain. Platform Designer automatically reconciles data crossing over
asynchronous clock domains by inserting clock crossing logic (handshake or FIFO).

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

237

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use clock crossing in Platform Designer to reduce the clock frequency of the
logic that does not require a high frequency clock, which allows you to reduce power
consumption. You can use either handshaking clock crossing bridges or handshaking
clock crossing adapters to separate clock domains.

You can use the clock crossing bridge to connect host interfaces operating at a higher
frequency to agent interfaces running at a lower frequency. Only connect low
throughput or low priority components to a clock crossing bridge that operates at a
reduced clock frequency. The following are examples of low throughput or low priority
components:

• PIOs

• UARTs (JTAG or RS-232)

• System identification (SysID)

• Timers

• PLL (instantiated within Platform Designer)

• Serial peripheral interface (SPI)

• EPCS controller

• Tristate bridge and the components connected to the bridge

By reducing the clock frequency of the components connected to the bridge, you
reduce the dynamic power consumption of the design. Dynamic power is a function of
toggle rates and decreasing the clock frequency decreases the toggle rate.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

238

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 180. Reducing Power Utilization Using a Bridge to Separate Clock Domains

Nios II
Processor

H H

Arbiter

DDR
SDRAM

A

On-Chip
Memory

A

Arbiter

PIO

A

UART

A

Timer

A

System ID

A

PLL

A

SPI

A

EPCS
Controller

A

H

Tristate
Conduit

A

H

Clock
Crossing
Bridge

A

Arbiter

200 MHz

5 MHz

Flash

A
Low-Frequency Components

Platform Designer automatically inserts clock crossing adapters between host and
agent interfaces that operate at different clock frequencies. You can choose the type of
clock crossing adapter in the Platform Designer Project Settings tab. Adapters do not
appear in the Connections column because you do not insert them. The following
clock crossing adapter types are available in Platform Designer:

• Handshake—Uses a simple handshaking protocol to propagate transfer control
signals and responses across the clock boundary. This adapter uses fewer
hardware resources because each transfer is safely propagated to the target
domain before the next transfer begins. The Handshake adapter is appropriate for
systems with low throughput requirements.

• FIFO—Uses dual-clock FIFOs for synchronization. The latency of the FIFO adapter
is approximately two clock cycles more than the handshake clock crossing
component, but the FIFO-based adapter can sustain higher throughput because it
supports multiple transactions simultaneously. The FIFO adapter requires more
resources, and is appropriate for memory-mapped transfers requiring high
throughput across clock domains.

• Auto—Platform Designer specifies the appropriate FIFO adapter for bursting links
and the Handshake adapter for all other links.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

239

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Because the clock crossing bridge uses FIFOs to implement the clock crossing logic, it
buffers transfers and data. Clock crossing adapters are not pipelined, so that each
transaction is blocking until the transaction completes. Blocking transactions may
lower the throughput substantially; consequently, if you want to reduce power
consumption without limiting the throughput significantly, you should use the clock
crossing bridge or the FIFO clock crossing adapter. However, if the design requires
single read transfers, a clock crossing adapter is preferable because the latency is
lower.

The clock crossing bridge requires few logic resources other than on-chip memory. The
number of on-chip memory blocks used is proportional to the address span, data
width, buffering depth, and bursting capabilities of the bridge. The clock crossing
adapter does not use on-chip memory and requires a moderate number of logic
resources. The address span, data width, and the bursting capabilities of the clock
crossing adapter determine the resource utilization of the device.

When you decide to use a clock crossing bridge or clock crossing adapter, you must
consider the effects of throughput and memory utilization in the design. If on-chip
memory resources are limited, you may be forced to choose the clock crossing
adapter. Using the clock crossing bridge to reduce the power of a single component
may not justify using more resources. However, if you can place all of the low priority
components behind a single clock crossing bridge, you may reduce power
consumption in the design.

4.8.2. Reducing Power Consumption by Minimizing Toggle Rates

A Platform Designer system consumes power whenever logic transitions between on
and off states. When the state is held constant between clock edges, no charging or
discharging occurs. You can use the following design methodologies to reduce the
toggle rates of your design:

• Registering component boundaries

• Using clock enable signals

• Inserting bridges

Platform Designer interconnect is uniquely combinational when no adapters or bridges
are present and there is no interconnect pipelining. When an agent interface is not
selected by a host, various signals may toggle and propagate into the component. By
registering the boundary of your component at the host or agent interface, you can
minimize the toggling of the interconnect and your component. In addition, registering
boundaries can improve operating frequency. When you register the signals at the
interface level, you must ensure that the component continues to operate within the
interface standard specification.

Avalon memory mapped waitrequest is a difficult signal to synchronize when you
add registers to your component. The waitrequest signal must be asserted during
the same clock cycle that a host asserts read or write to in order to prolong the
transfer. A host interface can read the waitrequest signal too early and post more
reads and writes prematurely.

Note: There is no direct AXI equivalent for waitrequest and burstcount, though the
AMBA Protocol Specification implies that the AXI ready signal cannot depend
combinationally on the AXI valid signal. Therefore, Platform Designer typically
buffers AXI component boundaries for the ready signal.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

240

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For agent interfaces, the interconnect manages the begintransfer signal, which is
asserted during the first clock cycle of any read or write transfer. If the waitrequest
is one clock cycle late, you can logically OR the waitrequest and the
begintransfer signals to form a new waitrequest signal that is properly
synchronized. Alternatively, the component can assert waitrequest before it is
selected, guaranteeing that the waitrequest is already asserted during the first
clock cycle of a transfer.

Figure 181. Variable Latency

waitrequest

begintransfer

readdata

read

write

writedata

Avalon Memory Mapped
Agent Port

Remaining
Component

Logic

ready
(synchronous)

Using Clock Enables

You can use clock enables to hold the logic in a steady state, and the write and read
signals as clock enables for agent components. Even if you add registers to your
component boundaries, the interface can potentially toggle without the use of clock
enables. You can also use the clock enable to disable combinational portions of the
component.

For example, you can use an active high clock enable to mask the inputs into the
combinational logic to prevent it from toggling when the component is inactive. Before
preventing inactive logic from toggling, you must determine if the masking causes the
circuit to function differently. If masking causes a functional failure, it may be possible
to use a register stage to hold the combinational logic constant between clock cycles.

Inserting Bridges

You can use bridges to reduce toggle rates, if you do not want to modify the
component by using boundary registers or clock enables. A bridge acts as a repeater
where transfers to the agent interface are repeated on the host interface. If the bridge
is not accessed, the components connected to its host interface are also not accessed.
The host interface of the bridge remains idle until a host accesses the bridge agent
interface.

Bridges can also reduce the toggle rates of signals that are inputs to other host
interfaces. These signals are typically readdata, readdatavalid, and
waitrequest. Subordinate interfaces that support read accesses drive the

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

241

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

readdata, readdatavalid, and waitrequest signals. A bridge inserts either a
register or clock crossing FIFO between the agent interface and the host to reduce the
toggle rate of the host input signals.

4.8.3. Reducing Power Consumption by Disabling Logic

There are typically two types of low power modes: volatile and non-volatile. A volatile
low power mode holds the component in a reset state. When the logic is reactivated,
the previous operational state is lost. A non-volatile low power mode restores the
previous operational state. You can use either software-controlled or hardware-
controlled sleep modes to disable a component in order to reduce power consumption.

Software-Controlled Sleep Mode

To design a component that supports software-controlled sleep mode, create a single
memory-mapped location that enables and disables logic by writing a zero or one. You
can use the register’s output as a clock enable or reset, depending on whether the
component has non-volatile requirements. The agent interface must remain active
during sleep mode so that the enable bit is set when the component needs to be
activated.

If multiple hosts can access a component that supports sleep mode, you can use the
Mutex Intel FPGA IP to provide mutually exclusive accesses to your component. You
can also build in the logic to re-enable the component on the very first access by any
host in your system. If the component requires multiple clock cycles to re-activate,
then it must assert a wait request to prolong the transfer as it exits sleep mode.

Hardware-Controlled Sleep Mode

Alternatively, you can implement a timer in your component that automatically causes
the component to enter a sleep mode based on a timeout value specified in clock
cycles between read or write accesses. Each access resets the timer to the timeout
value. Each cycle with no accesses decrements the timeout value by one. If the
counter reaches zero, the hardware enters sleep mode until the next access.

Figure 182. Hardware-Controlled Sleep Components

q

wakeread
write

d count

count enableload

Down
Counter

waitrequest sleep_n

= 0?Timeout Value reset

busy

This example provides a schematic for the hardware-controlled sleep mode. If
restoring the component to an active state takes a long time, use a long timeout value
so that the component is not continuously entering and exiting sleep mode. The agent
interface must remain functional while the rest of the component is in sleep mode.
When the component exits sleep mode, the component must assert the waitrequest
signal until it is ready for read or write accesses.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

242

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Mutex Core

4.9. Reset Polarity and Synchronization in Platform Designer

When you add a component interface with a reset signal, Platform Designer defines its
polarity as reset(active-high) or reset_n (active-low).

You can view the polarity status of a reset signal by selecting the signal in the
Hierarchy tab, and then view its expanded definition in the open Parameters and
Block Symbol tabs. When you generate your component, Platform Designer
interconnect automatically inverts polarities as needed.

Figure 183. Reset Signal (Active-High)

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

243

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 184. Reset Signal Active-Low

Each Platform Designer component has its own requirements for reset
synchronization. Some blocks have internal synchronization and have no
requirements, whereas other blocks require an externally synchronized reset. You can
define how resets are synchronized in your Platform Designer system with the
Synchronous edges parameter. In the clock source or reset bridge component, set
the value of the Synchronous edges parameter to one of the following, depending
on how the reset is externally synchronized:

• None—There is no synchronization on this reset.

• Both—The reset is synchronously asserted and deasserted with respect to the
input clock.

• Deassert—The reset is synchronously asserted with respect to the input clock,
and asynchronously deasserted.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

244

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 185. Synchronous Edges Parameter

You can combine multiple reset sources to reset a particular component.

Figure 186. Combine Multiple Reset Sources

When you generate your component, Platform Designer inserts adapters to
synchronize or invert resets if there are mismatches in polarity or synchronization
between the source and destination. You can view inserted adapters on the Memory-
Mapped Interconnect tab with the System ➤ Show System with Platform
Designer Interconnect command.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

245

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 187. Platform Designer Interconnect

4.10. Optimizing Platform Designer System Performance Design
Examples

Avalon Pipelined Read Host Example on page 246

Multiplexer Examples on page 248

4.10.1. Avalon Pipelined Read Host Example

For a high throughput system using the Avalon memory mapped standard, you can
design a pipelined read host that allows a system to issue multiple read requests
before data returns. Pipelined read hosts hide the latency of read operations by
posting reads as frequently as every clock cycle. You can use this type of host when
the address logic is not dependent on the data returning.

4.10.1.1. Avalon Pipelined Read Host Example Design Requirements

You must carefully design the logic for the control and datapaths of pipelined read
hosts. The control logic must extend a read cycle whenever the waitrequest signal
is asserted. This logic must also control the host address, byteenable, and read

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

246

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

signals. To achieve maximum throughput, pipelined read hosts should post reads
continuously while waitrequest is deasserted. While read is asserted, the address
presented to the interconnect is stored.

The datapath logic includes the readdata and readdatavalid signals. If your host
can accept data on every clock cycle, you can register the data with the
readdatavalid as an enable bit. If your host cannot process a continuous stream of
read data, it must buffer the data in a FIFO. The control logic must stop issuing reads
when the FIFO reaches a predetermined fill level to prevent FIFO overflow.

4.10.1.2. Expected Throughput Improvement

The throughput improvement that you can achieve with a pipelined read host is
typically directly proportional to the pipeline depth of the interconnect and the agent
interface. For example, if the total latency is two cycles, you can double the
throughput by inserting a pipelined read host, assuming the agent interface also
supports pipeline transfers. If either the host or agent does not support pipelined read
transfers, then the interconnect asserts waitrequest until the transfer completes.
You can also gain throughput when there are some cycles of overhead before a read
response.

Where reads are not pipelined, the throughput is reduced. When both the host and
agent interfaces support pipelined read transfers, data flows in a continuous stream
after the initial latency. You can use a pipelined read host that stores data in a FIFO to
implement a custom DMA, hardware accelerator, or off-chip communication interface.

Figure 188. Pipelined Read Host

d

load

d

load

d

write

q

read acknowledge

empty

q

q

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_empty

user_data_read

fifo_used[]

used[]
writedata[31:0]

readdatavalid
Look-Ahead FIFO

read

increment_address

host_address[31:0]

VCC
byteenable[3:0]

Down
Counter

Up
Counter

Tracking Logic/
State Machine

readdatavalid

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

247

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This example shows a pipelined read host that stores data in a FIFO. The host
performs word accesses that are word-aligned and reads from sequential memory
addresses. The transfer length is a multiple of the word size.

When the go bit is asserted, the host registers the start_address and
transfer_length signals. The host begins issuing reads continuously on the next
clock cycle until the length register reaches zero. In this example, the word size is four
bytes so that the address always increments by four, and the length decrements by
four. The read signal remains asserted unless the FIFO fills to a predetermined level.
The address register increments and the length register decrements if the length has
not reached 0 and a read is posted.

The host posts a read transfer every time the read signal is asserted and the
waitrequest is deasserted. The host issues reads until the entire buffer has been
read or waitrequest is asserted. An optional tracking block monitors the done bit.
When the length register reaches zero, some reads are outstanding. The tracking logic
prevents assertion of done until the last read completes, and monitors the number of
reads posted to the interconnect so that it does not exceed the space remaining in the
readdata FIFO. This example includes a counter that verifies that the following
conditions are met:

• If a read is posted and readdatavalid is deasserted, the counter increments.

• If a read is not posted and readdatavalid is asserted, the counter decrements.

When the length register and the tracking logic counter reach zero, all the reads
have completed and the done bit is asserted. The done bit is important if a second
host overwrites the memory locations that the pipelined read host accesses. This bit
guarantees that the reads have completed before the original data is overwritten.

4.10.2. Multiplexer Examples

You can combine adapters with streaming components to create datapaths whose
input and output streams have different properties. The following examples
demonstrate datapaths in which the output stream exhibits higher performance than
the input stream.

The diagram below illustrates a datapath that uses the dual clock version of the on-
chip FIFO memory to boost the frequency of input data from 100 MHz to 110 MHz by
sampling two input streams at differential rates. The on-chip FIFO memory has an
input clock frequency of 100 MHz, and an output clock frequency of 110 MHz. The
channel multiplexer runs at 110 MHz and samples one input stream 27.3 percent of
the time, and the second 72.7 percent of the time. You must know what the typical
and maximum input channel utilizations are before for this type of design. For
example, if the first channel hits 50% utilization, the output stream exceeds 100%
utilization.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

248

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 189. Datapath that Doubles the Clock Frequency

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src

30% Channel Utilization
8 Bits at 100 MHz

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src

80% Channel Utilization
8 Bits at 100 MHz

Input

Input

sink

sink

src

27.3% Sample Rate
110 MHz

72.7% Sample Rate
110 MHz

100% Channel Utilization
Output 110 MHz

The diagram below illustrates a datapath that uses a data format adapter and Avalon
streaming channel multiplexer to merge the 8-bit 100 MHz input from two streaming
data sources into a single 16-bit 100 MHz streaming output. This example shows an
output with double the throughput of each interface with a corresponding doubling of
the data width.

Figure 190. Datapath to Double Data Width and Maintain Original Frequency

sink src

Data Format
Adapter

Data Source

src
8 Bits at 100 MHz

sink src

Data Format
Adapter

Data Source

src
8 Bits at 100 MHz

Input

Input

sink

sink

src

16 Bits at 100 MHz

16 Bits at 100 MHz

16 Bits
at 100 MHz

The diagram below illustrates a datapath that uses the dual clock version of the on-
chip FIFO memory and Avalon streaming channel multiplexer to merge the 100 MHz
input from two streaming data sources into a single 200 MHz streaming output. This
example shows an output with double the throughput of each interface with a
corresponding doubling of the clock frequency.

Figure 191. Datapath to Boost the Clock Frequency

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src
100 MHz

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src
100 MHz

Input

Input

sink

sink

src

200 MHz

200 MHz

Output
200 MHz

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

249

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.11. Optimizing Platform Designer System Performance Revision
History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.

2022.04.02 22.1 • Updated entire chapter for new AXI "manager" and AXI "subordinate"
replacement terms. Refer to the AMBA® AXI and ACE Protocol
Specification.

2021.03.29 21.1 • Converted to "host" and "agent" inclusive terminology for Avalon
memory mapped interface descriptions and related GUI elements
throughout.

2018.12.15 18.1.0 • Replaced references to System Contents tab with new System View
tab.

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.

2015.11.02 15.1.0 • Added:Reset Polarity and Synchronization in Qsys.
• Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Multiplexer Examples, rearranged description text for the figures.

May 2013 13.0.0 AMBA APB support.

November 2012 12.1.0 AMBA AXI4 support.

June 2012 12.0.0 AMBA AXI3 support.

November 2011 11.1.0 New document release.

4. Optimizing Platform Designer System Performance

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

250

https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Platform Designer Interconnect
Platform Designer interconnect is a high-bandwidth structure that allows you to
connect IP components to other IP components with various interfaces.

Platform Designer allows you to establish connections between Avalon and AXI
interfaces by generating an interconnect logic. This logic enables you to handle the
protocol differences. Platform Designer creates the interconnect logic by converting all
the protocols to a proprietary packet format. Then, the tool routes the packet through
network switches to the appropriate AXI subordinates or Avalon agents. Here, the
packet converts to the subordinate's protocol.(10)

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

The video AMBA AXI and Intel Avalon Interoperation Using Platform Designer
describes seamless integration of IP components using the AMBA AXI and the Intel
Avalon interfaces.

Synchronous Reset Support

Platform Designer interconnect supports synchronous reset of registers in the
interconnect. Use of synchronous reset can result in higher performance for Stratix 10
designs because Stratix 10 Hyper-Registers lack a reset signal. If a register in your
Stratix 10 design uses asynchronous reset, the Compiler cannot implement the
register as a Hyper-Register, potentially reducing performance.

When Use synchronous reset is set to True in the Domains tab, all registers in the
interconnect use synchronous reset. The Use synchronous reset option is enabled
by default for Stratix 10 devices, but is disabled by default for all other devices.

Note: In Platform Designer systems with no clock domain crossing, the initial reset requires
asserting for at least 16 cycles. This action prevents the propagation of incorrect
values that the reset tree skew may generate during the initial reset release, ensuring
the resetting of all the Platform Designer components and interconnect. If system has
multiple clocks, reset must be held high for at least 16 slowest clock cycles.

Related Information

• Avalon Interface Specifications

• Creating a System with Platform Designer on page 11

• Creating Platform Designer Components on page 153

(10) This document now refers to the Avalon "host" and "agent," and the AXI "manager" and
"subordinate," to replace formerly used terms. Refer to the current AMBA® AXI and ACE
Protocol Specification for this latest AMBA AXI and ACE protocol terminology.

683609 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Platform Designer System Design Components on page 367

• AMBA AXI and Intel Avalon Interoperation Using Platform Designer

• Specifying Interconnect Parameters on page 71

5.1. Memory-Mapped Interfaces

Platform Designer supports the implementation of memory-mapped interfaces for
Avalon, AXI, and APB protocols.

Platform Designer interconnect transmits memory-mapped transactions between hosts
and agents in packets. The command network transports read and write packets from
host interfaces to agent interfaces. The response network transports response packets
from agent interfaces to host interfaces.

For each component interface, Platform Designer interconnect manages memory-
mapped transfers and interacts with signals on the connected interface. Host and
agent interfaces can implement different signals based on interface parameterizations,
and Platform Designer interconnect provides any necessary adaptation between them.
In the path between host and agents, Platform Designer interconnect may introduce
registers for timing synchronization, finite state machines for event sequencing, or
nothing at all, depending on the services required by the interfaces.

Platform Designer interconnect supports the following implementation scenarios:

• Any number of components with host and agent interfaces. The host-to-agent
relationship can be one-to-one, one-to-many, many-to-one, or many-to-many.

• Hosts and agents of different data widths.

• Hosts and agents operating in different clock domains.

• IP Components with different interface properties and signals. Platform Designer
adapts the component interfaces so that interfaces with the following differences
can be connected:

— Avalon and AXI interfaces that use active-high and active-low signaling. AXI
signals are active high, except for the reset signal.

— Interfaces with different burst characteristics.

— Interfaces with different latencies.

— Interfaces with different data widths.

— Interfaces with different optional interface signals.

Note: Since interface connections between AMBA 3 AXI and AMBA 4 AXI
declare a fixed set of signals with variable latency, there is no need for
adapting between active-low and active-high signaling, burst
characteristics, different latencies, or port signatures. Adaptation might
be necessary between Avalon interfaces.

In this example, there are two components hosting the system, a processor and a
DMA controller, each with two host interfaces. The hosts connect through the Platform
Designer interconnect to agents in the Platform Designer system.

The dark blue blocks represent interconnect components. The dark gray boxes indicate
items outside of the Platform Designer system and the Quartus Prime software design,
and show how to export component interfaces and how to connect these interfaces to
external devices.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

252

http://www.youtube.com/watch?v=LdD2B1x-5vo
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 192. Platform Designer interconnect for an Avalon Memory Mapped System with
Multiple Hosts

Processor

H

DMA Controller

DDR3
Controller

DDR3 Chip

Data
Memory

A

Instruction
H

Data
HH

Control

Read Write

Instruction
Memory

AAA

Interconnect

PCB

Command Switch
(Avalon-Streaming)

Response Switch
(Avalon-Streaming)

Network
Interface

Network
Interface

Network
Interface

Network
Interface

Network
Interface

Network
Interface

Network
Interface

Flash
Memory

Chip

A
Ethernet
MAC/PHY

Chip

A

Tri-State Conduit
 Pin Sharer & Bridge

TCA TCA

Tri-State
Controller

A

TCH

Tri-State
Conduit

A

TCH

Network
Interface

Design using
Platform Designer

in Intel FPGA

AgentAgentAgentAgent

Host HostHostHost

Interface to Off-Chip Device
H Avalon Memory Mapped Host

A Avalon Memory Mapped Agent

TCH Avalon Tri-State Conduit Host

TCA Avalon Tri-State Conduit Agent

Host Command Connectivity
Agent Response Connectivity

5.1.1. Platform Designer Packet Format

The Platform Designer packet format supports Avalon, AXI, and APB transactions.
Memory-mapped transactions between hosts and agents are encapsulated in Platform
Designer packets. For Avalon systems without AXI or APB interfaces, some fields are
ignored or removed.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

253

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.1.1. Fields in the Platform Designer Packet Format

The fields of the Platform Designer packet format are of variable length to minimize
resource usage. However, if most components in a design have a single data width, for
example 32-bits, and a single component has a data width of 64-bits, Platform
Designer inserts a width adapter to accommodate 64-bit transfers.

Table 44. Platform Designer Packet Format for Memory-Mapped Host and Agent
Interfaces

Command Description

Address Specifies the byte address for the lowest byte in the current cycle. There are no restrictions
on address alignment.

Size Encodes the run-time size of the transaction.
In conjunction with address, this field describes the segment of the payload that contains
valid data for a beat within the packet.

Address Sideband Carries “address” sideband signals. The interconnect passes this field from host to agent.
This field is valid for each beat in a packet, even though it is only produced and consumed
by an address cycle.
Up to 8-bit sideband signals are supported for both read and write address channels.

Cache Carries the AXI cache signals.

Transaction
(Exclusive)

Indicates whether the transaction has exclusive access.

Transaction (Posted) Used to indicate non-posted writes (writes that require responses).

Data For command packets, carries the data to be written. For read response packets, carries
the data that has been read.

Byteenable Specifies which symbols are valid. AXI can issue or accept any byteenable pattern. For
compatibility with Avalon, Intel recommends that you use the following legal values for 32-
bit data transactions between Avalon hosts and agents:
• 1111—Writes full 32 bits
• 0011—Writes lower 2 bytes
• 1100—Writes upper 2 bytes
• 0001—Writes byte 0 only
• 0010—Writes byte 1 only
• 0100—Writes byte 2 only
• 1000—Writes byte 3 only

Source_ID The ID of the host or agent that initiated the command or response.

Destination_ID The ID of the host or agent to which the command or response is directed.

Response Carries the AXI response signals.

Thread ID Carries the AXI transaction ID values.

Byte count The number of bytes remaining in the transaction, including this beat. Number of bytes
requested by the packet.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

254

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Description

Burstwrap The burstwrap value specifies the wrapping behavior of the current burst. The burstwrap
value is of the form 2<n> -1. The following types are defined:
• Variable wrap–Variable wrap bursts can wrap at any integer power of 2 value. When the

burst reaches the wrap boundary, it wraps back to the previous burst boundary so that
only the low order bits are used for addressing. For example, a burst starting at address
0x1C, with a burst wrap boundary of 32 bytes and a burst size of 20 bytes, would write
to addresses 0x1C, 0x0, 0x4, 0x8, and 0xC.

• For a burst wrap boundary of size <m>, Burstwrap = <m> - 1, or for this case
Burstwrap = (32 - 1) = 31 which is 25 -1.

• For AXI managers, the burstwrap boundary value (m) is based on the different
AXBURST:
— Burstwrap set to all 1’s. For example, for a 6-bit burstwrap, burstwrap is

6'b111111.
— For WRAP bursts, burstwrap = AXLEN * size – 1.
— For FIXED bursts, burstwrap = size – 1.
— Sequential bursts increment the address for each transfer in the burst. For

sequential bursts, the Burstwrap field is set to all 1s. For example, with a 6-bit
Burstwrap field, the value for a sequential burst is 6'b111111 or 63, which is 26 -
1.

For Avalon hosts, Platform Designer adaptation logic sets a hardwired value for the
burstwrap field, according to the declared host burst properties. For example, for a host
that declares sequential bursting, the burstwrap field is set to ones. Similarly, hosts that
declare burst have their burstwrap field set to the appropriate constant value.
AXI managers choose their burst type at run-time, depending on the value of the AW or
ARBURST signal. The interconnect calculates the burstwrap value at run-time for AXI
managers.(11)

Protection Access level protection. When the lowest bit is 0, the packet has normal access. When the
lowest bit is 1, the packet has privileged access. For Avalon memory mapped interfaces,
this field maps directly to the privileged access signal, which allows a memory-mapped host
to write to an on-chip memory ROM instance. The other bits in this field support AXI secure
accesses and uses the same encoding, as described in the AXI specification.

QoS QoS (Quality of Service Signaling) is a 4-bit field that is part of the AMBA 4 AXI interface
that carries QoS information for the packet from the AXI manager to the AXI subordinate.
Transactions from AMBA 3 AXI and Avalon hosts have the default value 4'b0000, that
indicates that they are not participating in the QoS scheme. QoS values are dropped for
agents that do not support QoS.

Data sideband Carries data sideband signals for the packet. On a write command, the data sideband
directly maps to WUSER. On a read response, the data sideband directly maps to RUSER. On
a write response, the data sideband directly maps to BUSER.

5.1.1.2. Transaction Types for Memory-Mapped Interfaces

Table 45. Transaction Types for Memory-Mapped Interfaces
The table below describes the information that each bit transports in the packet format's transaction field.

Bit Name Definition

0 PKT_TRANS_READ When asserted, indicates a read transaction.

1 PKT_TRANS_COMPRESSED_READ For read transactions, specifies whether the read command can be
expressed in a single cycle (all byteenables asserted on every
cycle).

continued...

(11) This document refers to the new AXI "manager" and AXI "subordinate" inclusive terms to
replace outmoded terms, as the latest version of the AMBA® AXI and ACE Protocol
Specification describes.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

255

https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Name Definition

2 PKT_TRANS_WRITE When asserted, indicates a write transaction.

3 PKT_TRANS_POSTED When asserted, no response is required.

4 PKT_TRANS_LOCK When asserted, indicates arbitration is locked. Applies to write
packets.

5.1.1.3. Platform Designer Transformations

The memory-mapped host and agent components connect to network interface
modules that encapsulate the transaction in Avalon streaming packets. The memory-
mapped interfaces have no information about the encapsulation or the function of the
layer transporting the packets. The interfaces operate in accordance with memory-
mapped protocol and use the read and write signals and transfers.

Figure 193. Transformation when Generating a System with Memory-Mapped
Components
Platform Designer components that implement the blocks appear shaded.

Avalon StreamingAvalon Memory Mapped

Avalon
Streaming
Network

(Command)

Avalon
Streaming
Network

(Response)

AXI

Host
Interface

Host
Interface

Host
Network
Interface

Host
Network
Interface

Host Command Connectivity
Agent Response Connectivity

Agent
Network
Interface

Agent
Network
Interface

Subordinate
Interface

Subordinate
Interface

Related Information

• Avalon Host and AXI Manager Network Interfaces on page 258

• Avalon Agent and AXI Subordinate Network Interfaces on page 261

5.1.2. Interconnect Domains

An interconnect domain is a group of connected memory-mapped hosts and agents
that share the same interconnect. The components in a single interconnect domain
share the same packet format.

5.1.2.1. Using One Domain with Width Adaptation

When one of the hosts in a system connects to all the agents, Platform Designer
creates a single domain with two packet formats: one with 64-bit data, and one with
16-bit data. A width adapter manages accesses between the 16-bit host and 64-bit

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

256

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

agents. In the following example, two 64-bit hosts access two 64-bit agents. One 16-
bit host, accesses two 16-bit agents and two 64-bit agents. The 16-bit Avalon host
connects through a 1:4 adapter, then a 4:1 adapter to reach its 16-bit agents.

Figure 194. One Domain with 1:4 and 4:1 Width Adapters

16-Bit
Avalon-MM

Agent

A

16-Bit
Avalon-MM

Agent

A

16-Bit
Avalon-MM

Host
H

Single Domain with 1:4 & 4:1 Width Adapters

64-Bit
Avalon-MM

Agent

A

64-Bit
Avalon-MM

Host
H

64-Bit
Avalon-MM

Host
H

4:1 1:4

64-Bit
Avalon-MM

Agent

A

5.1.2.2. Using Two Separate Domains

In the following example, Platform Designer uses two separate domains. The first
domain includes two 64-bit hosts connected to two 64-bit agents. A second domain
includes one 16-bit host connected to two 16-bit agents. Because the interfaces in
Domain 1 and Domain 2 do not share any connections, Platform Designer can optimize
the packet format for the two separate domains. In this example, the first domain
uses a 64-bit data width and the second domain uses 16-bit data.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

257

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 195. Two Separate Domains

16-bit
Avalon-MM

Agent

A

16-bit
Avalon-MM

Agent

A

Domain 1

Command Network Response Network

Domain 2

64-bit
Avalon-MM

Host

H

64-bit
Avalon-MM

Host

H

64-bit
Avalon-MM

Agent

A

64-bit
Avalon-MM

Agent

A

16-bit
Avalon-MM

Host

H

Component 1 Component 2

5.1.3. Avalon Host and AXI Manager Network Interfaces

Figure 196. Avalon Memory Mapped Host Network Interface
Avalon network interfaces drive default values for the QoS and BUSER, WUSER, and RUSER packet fields in the
host agent, and drop the packet fields in the agent.

Note: The response signal from the Limiter to the Agent is optional.

Interface Translator Agent Limiter

Router
Avalon-Streaming

Network
(Command)

Avalon-Streaming
Network

(Response)

response [1:0]

Host Network Interface

Host

An AMBA 4 AXI manager supports INCR bursts up to 256 beats, QoS signals, and data
sideband signals.(12)

(12) This document refers to the new AXI "manager" and AXI "subordinate" inclusive terms to
replace outmoded terms, as the latest version of the AMBA® AXI and ACE Protocol
Specification describes.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

258

https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 197. AXI Manager Network Interface

AXI
Translator

Router

Limiter
Avalon Streaming

Network
(Command)

Avalon Streaming
Network

(Response)

Router

Read Command

Write Command

Limiter

Write Response

Read Response

AXI
Manager
Interface

AXI
Manager

Agent

Manager Network Interface

Note: For a complete definition of the optional read response signal, refer to Avalon
Memory-Mapped Interface Signal Types in the Avalon Interface Specifications.

Related Information

• Avalon Interface Specifications

• Creating a System with Platform Designer on page 11

5.1.3.1. Avalon Memory Mapped Host Agent

The Avalon Memory Mapped Host Agent translates Avalon memory mapped host
transactions into Platform Designer command packets and translates the Platform
Designer Avalon memory mapped agent response packets into Avalon memory
mapped responses.

5.1.3.2. Avalon Memory Mapped Host Translator

The Avalon Memory Mapped Host Translator interfaces with an Avalon memory
mapped host component and converts the Avalon memory mapped host interface to a
simpler representation for use in Platform Designer.

The Avalon Memory Mapped Host translator performs the following functions:

• Translates active-low signaling to active-high signaling

• Inserts wait states to prevent an Avalon memory mapped host from reading
invalid data

• Translates word and symbol addresses

• Translates word and symbol burst counts

• Manages re-timing and re-sequencing bursts

• Removes unnecessary address bits

5.1.3.3. AXI Manager Agent

An AXI Manager Agent accepts AXI commands and produces Platform Designer
command packets. It also accepts Platform Designer response packets and converts
those into AXI responses. This component has separate packet channels for read

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

259

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

commands, write commands, read responses, and write responses. The Avalon host
agent drives the QoS and BUSER, WUSER, and RUSER packet fields with default values
AXQO and b0000, respectively.

Note: For signal descriptions, refer to Platform Designer Packet Format.

Related Information

Fields in the Platform Designer Packet Format on page 254

5.1.3.4. AXI Translator

AMBA 4 AXI allows omitting signals from interfaces. The translator bridges between
these “incomplete” AMBA 4 AXI interfaces and the “complete” AMBA 4 AXI interface on
the network interfaces.

Attention: If you connect an Avalon agent or to a host, or connect an AXI subordinate to a
manager, without response ports, the interconnect could ignore transaction responses,
such as SLAVEERROR or DECODEERROR. This situation could lead to returning invalid
data to the manager or host.

The AXI translator is inserted for both AXI managers and subordinates and performs
the following functions:

• Matches ID widths between the manager and subordinates in 1x1 systems.

• Drives default values as defined in the AMBA Protocol Specifications for missing
signals.

• Performs lock transaction bit conversion when an AMBA 3 AXI manager connects
to an AMBA 4 AXI subordinate in 1x1 systems.

Related Information

Arm AMBA Protocol Specifications

5.1.3.5. APB Manager Agent

An APB manager agent accepts APB commands and produces or generates Platform
Designer command packets. It also converts Platform Designer response packets to
APB responses.

5.1.3.6. APB Subordinate Agent

An APB subordinate agent issues resulting transaction to the APB interface. It also
accepts creates Platform Designer response packets.

5.1.3.7. APB Translator

An APB peripheral does not require pslverr signals to support additional signals for
the APB debug interface.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

260

https://developer.arm.com/documentation/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The APB translator is inserted for both the manager and subordinate and performs the
following functions:

• Sets the response value default to OKAY if the APB subordinate does not have a
pslverr signal.

• Turns on or off additional signals between the APB debug interface, which is used
with HPS (Intel SoC’s Hard Processor System).

5.1.3.8. AHB Subordinate Agent

The Platform Designer interconnect supports non-bursting Advanced High-
performance Bus (AHB) subordinate interfaces.

5.1.3.9. Memory-Mapped Router

The Memory-Mapped Router routes command packets from the host to the agent, and
response packets from the agent to the host. For host command packets, the router
uses the address to set the Destination_ID and Avalon streaming channel. For the
agent response packet, the router uses the Destination_ID to set the Avalon
streaming channel. The demultiplexers use the Avalon streaming channel to route the
packet to the correct destination.

5.1.3.10. Memory-Mapped Traffic Limiter

The Memory-Mapped Traffic Limiter ensures the responses arrive in order. It prevents
any command from being sent if the response could conflict with the response for a
command that has already been issued. By guaranteeing in-order responses, the
Traffic Limiter simplifies the response network.

5.1.4. Avalon Agent and AXI Subordinate Network Interfaces

5.1.4.1. Avalon Memory Mapped Agent Translator

The Avalon Memory Mapped Agent Translator converts the Avalon memory mapped
agent interface to a simplified representation that the Platform Designer network can
use.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

261

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 198. Avalon Memory Mapped Agent Network Interface

Agent Translator
Waitrequest

Overflow Error

Command

Response

Avalon Streaming
Network

(Command)

Avalon Streaming
Network

(Response)

Agent
Interface

Agent Network Interface

An Avalon Memory Mapped Agent Translator performs the following functions:

• Drives the beginbursttransfer and byteenable signals.

• Supports Avalon memory mapped agents that operate using fixed timing and or
agents that use the readdatavalid signal to identify valid data.

• Translates the read, write, and chipselect signals into the representation that
the Avalon streaming agent response network uses.

• Converts active low signals to active high signals.

• Translates word and symbol addresses and burstcounts.

• Handles burstcount timing and sequencing.

• Removes unnecessary address bits.

Related Information

Avalon Agent and AXI Subordinate Network Interfaces on page 261

5.1.4.2. AXI Translator

AMBA 4 AXI allows omitting signals from interfaces. The translator bridges between
these “incomplete” AMBA 4 AXI interfaces and the “complete” AMBA 4 AXI interface on
the network interfaces.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

262

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 199. AXI Subordinate Network Interface
An AMBA 4 AXI subordinate supports up to 256 beat INCR bursts, QoS signals, and data sideband signals.

AXI
Translator

AXI
Manager

Agent
Write Response

Read Command

Read Response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Write Command

Network Interface

AXI
Subordinate

Interface

The AXI translator is inserted for both AMBA 4 AXI manager and subordinate, and
performs the following functions:

• Matches ID widths between manager and subordinate in 1x1 systems.

• Drives default values as defined in the AMBA Protocol Specifications for missing
signals.

• Performs lock transaction bit conversion when an AMBA 3 AXI manager connects
to an AMBA 4 AXI subordinate in 1x1 systems.

5.1.4.3. Wait State Insertion

Wait states extend the duration of a transfer by one or more cycles. Wait state
insertion logic accommodates the timing needs of each agent, and causes the host to
wait until the agent can proceed. Platform Designer interconnect inserts wait states
into a transfer when the target agent cannot respond in a single clock cycle, as well as
in cases when agent read and write signals have setup or hold time requirements.

Wait state insertion logic is a small finite-state machine that translates control signal
sequencing between the agent side and the host side. Platform Designer interconnect
can force a host to wait for the wait state needs of an agent; for example, arbitration
logic in a multi-host system. Platform Designer generates wait state insertion logic
based on the properties of all agents in the system.

Figure 200. Wait State Insertion Logic for One Host and One Agent

Host
Port

Agent
Port

Wait-State
Insertion

Logic
read/writeread/write

wait request

address

data

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

263

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.4.4. Avalon Memory Mapped Agent Component

The Avalon Memory Mapped Agent component accepts command packets and issues
the resulting transactions to the Avalon interface. For pipelined agents, an Avalon
streaming FIFO stores information about pending transactions. The size of this FIFO is
the maximum number of pending responses that you specify when creating the agent
component. The Avalon Memory Mapped Agent component also backpressures the
Avalon memory mapped host command interface when the FIFO is full if the agent
component includes the waitrequest signal.

5.1.4.5. AXI Subordinate Agent

An AXI subordinate Agent works like a reverse AXI manager agent. The AXI
subordinate Agent accepts Platform Designer command packets to create AXI
commands, and accepts AXI responses to create Platform Designer response packets.
This component has separate packet channels for read commands, write commands,
read responses, and write responses.

5.1.5. Arbitration

When multiple hosts contend for access to an agent, Platform Designer automatically
inserts arbitration logic, which grants access in fairness-based, round-robin order. You
can alternatively choose to designate an agent as a fixed priority arbitration agent,
and then manually assign priorities in the Platform Designer GUI.

5.1.5.1. Round-Robin Arbitration

When multiple hosts contend for access to an agent, Platform Designer automatically
inserts arbitration logic which grants access in fairness-based, round-robin order.

In a fairness-based arbitration protocol, each host has an integer value of transfer
shares with respect to an agent. One share represents permission to perform one
transfer. The default arbitration scheme is equal share round-robin that grants equal,
sequential access to all requesting hosts. You can change the arbitration scheme to
weighted round-robin by specifying a relative number of arbitration shares to the
hosts that access a given agent. AXI subordinates have separate arbitration for their
independent read and write channels, and the Arbitration Shares setting affects
both the read and write arbitration. To display arbitration settings, right-click an
instance on the System View tab, and then click Show Arbitration Shares.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

264

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 201. Arbitration Shares in the Connections Column

5.1.5.1.1. Fairness-Based Shares

In a fairness-based arbitration scheme, each host-to-agent connection provides a
transfer share count. This count is a request for the arbiter to grant a specific number
of transfers to this host before giving control to a different host. One share represents
permission to perform one transfer.

Figure 202. Arbitration of Continuous Transfer Requests from Two Hosts
Consider a system with two hosts connected to a single agent. Host 1 has its arbitration shares set to three,
and Host 2 has its arbitration shares set to four. Host 1 and Host 2 continuously attempt to perform back-to-
back transfers to the agent. The arbiter grants Host 1 access to the agent for three transfers, and then grants
Host 2 access to the agent for four transfers. This cycle repeats indefinitely. The figure below describes the
waveform for this scenario.

clk
M1_transfer_request

M1_waitrequest
M2_transfer_request

M2_waitrequest
Current_Host Host 1 Host 2 Host 1 Host 2 Host 1

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

265

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 203. Arbitration of Two Hosts with a Gap in Transfer Requests
If a host stops requesting transfers before it exhausts its shares, it forfeits all its remaining shares, and the
arbiter grants access to another requesting host. After completing one transfer, Host 2 stops requesting for one
clock cycle. As a result, the arbiter grants access back to Host 1, which gets a replenished supply of shares.

Host 1 Host 1 Host 2 Host 1 Host 2Host 2

clk
M1_transfer_request

M1_waitrequest
M2_transfer_request

M2_waitrequest
Current_Host

5.1.5.1.2. Round-Robin Scheduling

When multiple hosts contend for access to an agent, the arbiter grants shares in
round-robin order. Platform Designer includes only requesting hosts in the arbitration
for each agent transaction.

5.1.5.2. Fixed Priority Arbitration

Fixed priority arbitration is an alternative arbitration scheme to the default round-robin
scheme.

You can selectively apply fixed priority arbitration to any agent in a Platform Designer
system. You can design Platform Designer systems where a subset of agents use the
default round-robin arbitration, and other agents use fixed priority arbitration. Fixed
priority arbitration uses a fixed priority algorithm to grant access to an agent amongst
its connected hosts.

Set a fixed priority agent arbitration under Interconnect Parameters in the
Domains tab. You can then assign an arbitration priority number for each host
connected to a fixed priority agent in the System View tab, where the highest
numeric value receives the highest priority. When multiple hosts request access to a
fixed priority arbitrated agent, the arbiter gives the host with the highest priority first
access to the agent.

For example, when a fixed priority agent receives requests from three hosts on the
same cycle, the arbiter grants the host with highest assigned priority first access to
the agent, and backpressures the other two hosts.

Note: When you connect an AXI manager to an Avalon memory mapped agent designated to
use a fixed priority arbitrator, the interconnect instantiates a command-path
intermediary round-robin multiplexer in front of the designated agent.

5.1.5.2.1. Designate a Platform Designer Agent to Use Fixed Priority Arbitration

You can designate any agent in your Platform Designer system to use fixed priority
arbitration. You must assign each host connected to a fixed priority agent a numeric
priority. The host with the highest higher priority receives first access to the agent. No
two hosts can have the same priority.

1. In Platform Designer, click View ➤ Domains.

2. Under Interconnect Parameters, click Add on the Interface tab to add a new
requirement.

3. In the Identifier column, select the agent for fixed priority arbitration.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

266

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 204. Interface Tab of Domains Tab

4. In the Setting column, select Slave arbitration scheme.

5. In the Value column, select fixed-priority.

6. Navigate to the System View tab.

7. In the System View tab, right-click the designated fixed priority agent, and then
select Show Arbitration Shares.

8. For each host connected to the fixed priory arbitration agent, type a numerical
arbitration priority in the box that appears in place of the connection circle.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

267

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 205. Arbitration Priority Box

host

9. Right click the designated fixed priority agent and uncheck Show Arbitration
Shares to return to the connection circles.

5.1.5.2.2. Fixed Priority Arbitration with AXI Managers and Avalon Memory Mapped
Agents

When an AXI manager is connected to a designated fixed priority arbitration Avalon
memory mapped agent, Platform Designer interconnect automatically instantiates an
intermediary multiplexer in front of the Avalon memory mapped agent.

Since AXI managers have separate read and write channels, each channel appears as
two separate managers to the Avalon memory mapped agent. To support fairness
between the AXI manager’s read and write channels, the instantiated round-robin
intermediary multiplexer arbitrates between simultaneous read and write commands
from the AXI manager to the fixed-priority Avalon memory mapped agent.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

268

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 206. Intermediary Multiplexer Between AXI Manager and Avalon Memory Mapped
Agent

When an AXI manager is connected to a fixed priority AXI subordinate, the manager’s
read and write channels are directly connected to the AXI subordinate’s fixed-priority
multiplexers. In this case, there is one multiplexer for the read command, and one
multiplexer for the write command and therefore an intermediary multiplexer is not
required.

The red rectangles indicate placement of the intermediary multiplexer between the
AXI manager and Avalon memory mapped agent due to the separate read and write
channels of the AXI manager.

5.1.6. Memory-Mapped Arbiter

The input to the Memory-Mapped Arbiter is the command packet for all hosts
requesting access to a specific agent. The arbiter outputs the channel number for the
selected host. This channel number controls the output of a multiplexer that selects
the agent device.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

269

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 207. Arbitration Logic
In this example, four Avalon memory-mapped hosts connect to four Avalon memory-mapped agents. In each
cycle, an arbiter positioned in front of each Avalon memory-mapped agent selects among the requesting
Avalon memory-mapped hosts.

Mux3

Mux2

Logic in Avalon Streaming Command Network

Arbiter
agent 0

Host 0

= Pipeline Before Demultiplexer Input

Arbiter
agent 2

Arbiter
agent 3

Host 1

Host 2

Host 3

Arbiter
agent 1

host 0
Command

packet

host 1
Command

packet

host 2
Command

packet

host 3
Command

packet

= Pipeline at Demultiplexer Output

= Pipeline Between Arbiter and Multiplexer

= Pipeline at Multiplexer Output

Mux0

Mux1

Note: If you specify a Limit interconnect pipeline stages to parameter greater than zero,
the output of the Arbiter is registered. Registering this output reduces the amount of
combinational logic between the host and the interconnect, increasing the fMAX of the
system.

Note: You can use the Memory-Mapped Arbiter for both round-robin and fixed priority
arbitration.

5.1.7. Datapath Multiplexing Logic

Datapath multiplexing logic drives the writedata signal from the granted host to the
selected agent, and the readdata signal from the selected agent back to the
requesting host. Platform Designer generates separate datapath multiplexing logic for
every host in the system (readdata), and for every agent in the system
(writedata). Platform Designer does not generate multiplexing logic if it is not
needed.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

270

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 208. Datapath Multiplexing Logic for One Host and Two Agents

Host
Port

readdata

address

writedata

control

readdata2

readdata1

Datapath
Multiplexer

Agent
Port 2

Agent
Port 1

5.1.8. Width Adaptation

Platform Designer width adaptation converts between Avalon memory-mapped host
and agents with different data and byte enable widths, and manages the run-time size
requirements of AXI. Width adaptation for AXI to Avalon interfaces is also supported.

5.1.8.1. Memory-Mapped Width Adapter

The Memory-Mapped Width Adapter is used in the Avalon streaming domain and
operates with information contained in the packet format.

The memory-mapped width adapter accepts packets on its sink interface with one
data width and produces output packets on its source interface with a different data
width. The ratio of the narrow data width must be a power of two, such as 1:4, 1:8,
and 1:16. The ratio of the wider data width to the narrower width must also be a
power of two, such as 4:1, 8:1, and 16:1 These output packets may have a different
size if the input size exceeds the output data bus width, or if data packing is enabled.

When the width adapter converts from narrow data to wide data, each input beat's
data and byte enables are copied to the appropriate segment of the wider output data
and byte enables signals.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

271

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 209. Width Adapter Timing for a 4:1 Adapter
This adapter assumes that the field ordering of the input and output packets is the same, with the only
difference being the width of the data and accompanying byte enable fields. When the width adapter converts
from wide data to narrow data, the narrower data is transmitted over several beats. The first output beat
contains the lowest addressed segment of the input data and byte enables.

Adapter
Input

Adapter
Output

addr_out[7:0]

clock

addr_in[7:0]

wide_data[31:0]

byteenable_in[3:0]

byteenable_out[3:0]

write

narrow_data[7:0]

08

AABBCCDD

C

08 09 0A 0B

0 0 1 1

DD CC BB AA

5.1.8.1.1. AXI Wide-to-Narrow Adaptation

For all cases of AXI wide-to-narrow adaptation, read data is re-packed to match the
original size. Responses are merged, with the following error precedence: DECERR,
SLVERR, OKAY, and EXOKAY.

Table 46. AXI Wide-to-Narrow Adaptation (Downsizing)

Burst Type Behavior

Incrementing If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted to an incrementing burst with a larger length and size equal to the
output width.
If the resulting burst is unsuitable for the subordinate, the burst is converted to multiple
sequential bursts of the largest allowable lengths. For example, for a 2:1 downsizing ratio, an
INCR9 burst is converted into INCR16 + INCR2 bursts. This is true if the maximum burstcount a
subordinate can accept is 16, which is the case for AMBA 3 AXI subordinates. Avalon subordinates
have a maximum burstcount of 64.

Wrapping If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted to a wrapping burst with a larger length, with a size equal to the output
width.
If the resulting burst is unsuitable for the subordinate, the burst is converted to multiple
sequential bursts of the largest allowable lengths; respecting wrap boundaries. For example, for a
2:1 downsizing ratio, a WRAP16 burst is converted into two or three INCR bursts, depending on
the address.

Fixed If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted into repeated sequential bursts over the same addresses. For example,
for a 2:1 downsizing ratio, a FIXED single burst is converted into an INCR2 burst.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

272

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.8.1.2. AXI Narrow-to-Wide Adaptation

Table 47. AXI Narrow-to-Wide Adaptation (Upsizing)

Burst Type Behavior

Incrementing The burst (and its response) passes through unmodified. Data and write strobes are placed in the
correct output segment.

Wrapping The burst (and its response) passes through unmodified.

Fixed The burst (and its response) passes through unmodified.

5.1.9. Burst Adapter

Platform Designer interconnect uses the memory-mapped burst adapter to
accommodate the burst capabilities of each interface in the system, including
interfaces that do not support burst transfers.

The maximum burst length for each interface is a property of the interface and is
independent of other interfaces in the system. Therefore, a specific host may be
capable of initiating a burst longer than an agent’s maximum supported burst length.
In this case, the burst adapter translates the large host burst into smaller bursts, or
into individual agent transfers if the agent does not support bursting. Until the host
completes the burst, arbiter logic prevents other hosts from accessing the target
agent. For example, if a host initiates a burst of 16 transfers to an agent with
maximum burst length of 8, the burst adapter initiates 2 bursts of length 8 to the
agent.

Avalon memory mapped burst transactions allow a host uninterrupted access to an
agent for a specified number of transfers. The host specifies the number of transfers
when it initiates the burst. Once a burst begins between a host and agent, arbiter
logic is locked until the burst completes. For burst hosts, the length of the burst is the
number of cycles that the host has access to the agent, and the selected arbitration
shares have no effect.

Note: AXI managers can issue burst types that Avalon cannot accept, for example, fixed
bursts. In this case, the burst adapter converts the fixed burst into a sequence of
transactions to the same address.

Note: For AMBA 4 AXI subordinates, Platform Designer allows 256-beat INCR bursts. You
must ensure that 256-beat narrow-sized INCR bursts are shortened to 16-beat
narrow-sized INCR bursts for AMBA 3 AXI subordinates.

Avalon memory mapped hosts always issue addresses that are aligned to the size of
the transfer. However, when Platform Designer uses a narrow-to-wide width
adaptation, the resulting address may be unaligned. For unaligned addresses, the
burst adapter issues the maximum sized bursts with appropriate byte enables. This
brings the burst-in-progress up to an aligned agent address. Then, it completes the
burst on aligned addresses.

The burst adapter supports variable wrap or sequential burst types to accommodate
different properties of memory-mapped hosts. Some bursting hosts can issue more
than one burst type.

Burst adaptation is available for Avalon to Avalon, Avalon to AXI, and AXI to Avalon,
and AXI to AXI connections. For information about AXI-to-AXI adaptation, refer to AXI
Wide-to-Narrow Adaptation

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

273

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For AMBA 4 AXI to AMBA 3 AXI connections, Platform Designer follows an AMBA 4 AXI
256 burst length to AMBA 3 AXI 16 burst length.

5.1.9.1. Burst Adapter Implementation Options

Platform Designer automatically inserts burst adapters into your system depending on
your host and agent connections, and properties. You can select burst adapter
implementation options on the Interconnect Requirements tab.

To access the implementation options, you must select the Burst adapter
implementation setting for the $system identifier.

• Generic converter (slower, lower area)—Default. Controls all burst
conversions with a single converter that can adapt incoming burst types. This
results in an adapter that has lower fMAX, but smaller area.

• Per-burst-type converter (faster, higher area)—Controls incoming bursts
with a specific converter, depending on the burst type. This results in an adapter
that has higher fMAX, but higher area. This setting is useful when you have AXI
managers or subordinates and you want a higher fMAX.

Note: For more information about the Interconnect Requirements tab, refer to Creating a
System with Platform Designer.

Related Information

Creating a System with Platform Designer on page 11

5.1.9.2. Burst Adaptation: AXI to Avalon

The following entries specify the behavior when converting between AXI and Avalon
burst types.

Table 48. Burst Adaptation: AXI to Avalon

Burst Type Behavior

Incrementing Sequential Subordinate
Bursts that exceed slave_max_burst_length are converted to multiple sequential bursts
of a length less than or equal to the slave_max_burst_length. Otherwise, the burst is
unconverted. For example, for an Avalon agent with a maximum burst length of 4, an
INCR7 burst is converted to INCR4 + INCR3.
Wrapping Subordinate
Bursts that exceed the slave_max_burst_length are converted to multiple sequential
bursts of length less than or equal to the slave_max_burst_length. Bursts that exceed
the wrapping boundary are converted to multiple sequential bursts that respect the Avalon
agent's wrapping boundary.

Wrapping Sequential Subordinate
A WRAP burst is converted to multiple sequential bursts. The sequential bursts are less
than or equal to the max_burst_length and respect the transaction's wrapping boundary
Wrapping Subordinate
If the WRAP transaction's boundary matches the Avalon agent's boundary, then the burst
passes through. Otherwise, the burst is converted to sequential bursts that respect both
the transaction and Avalon agent wrap boundaries.

Fixed Fixed bursts are converted to sequential bursts of length 1 that repeatedly access the same
address.

Narrow All narrow-sized bursts are broken into multiple bursts of length 1.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

274

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.9.3. Burst Adaptation: Avalon to AXI

The following entries specify the behavior when converting between Avalon and AXI
burst types.

Note: The Platform Designer-generated interconnect that adapts between an Avalon
memory-mapped interface host and a connected AXI subordinate does not account for
the AXI3 or AXI4 4KB boundary restriction for burst transactions. When connecting an
Avalon memory-mapped interface FPGA host to an AXI subordinate in Platform
Designer, you must ensure that the bursts do not exceed the AXI3 or AXI4 4KB
boundary restriction for burst transactions.

Table 49. Burst Adaptation: Avalon to AXI

Burst Type Definition

Sequential Bursts of length greater than 16 are converted to multiple INCR bursts of a length less than
or equal to 16. Bursts of length less than or equal to 16 are not converted.

Wrapping Only Avalon hosts with alwaysBurstMaxBurst = true are supported. The WRAP burst
is passed through if the length is less than or equal to 16. Otherwise, it is converted to two
or more INCR bursts that respect the transaction's wrap boundary.

GENERIC_CONVERTER Controls all burst conversions with a single converter that adapts all incoming burst types,
resulting in an adapter that has smaller area, but lower fMAX.

5.1.10. Waitrequest Allowance Adapter

The Waitrequest Allowance Adapter allows a connection between a host and an agent
interface with different waitrequestAllowance properties.

The Waitrequest Allowance adapter provides the following features:

• The adapter is used in the memory-mapped domain and operates with signals on
the memory-mapped interface.

• Signal widths and all properties other than waitrequestAllowance are identical
on host and agent interfaces.

• The adapter does not modify any command properties such as data width, burst
type, or burst count.

• The adapter is inserted by the Platform Designer interconnect software when a
host and agent with different waitrequestAllowance property are connected.

When the agent has a waitrequestAllowance = n the host must deassert read or
write signals after <n> transfers when waitrequest is asserted.

Table 50. Interconnect Scenarios Requiring waitrequestAllowance

Host (m) / Agent (n)
waitrequestAllowance

Adaptation
Required

Description Adapter Function

m = n No The host waitrequestAllowance is
equal to the agent's
waitrequestAllowance.

All signals are passed through.

m = 0; n > 0 Yes The host cannot send when
waitrequest=1, but holds the value
on the bus. This would result in the
agent receiving multiple copies.

The adapter deasserts valid when
input waitrequest is asserted.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

275

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Host (m) / Agent (n)
waitrequestAllowance

Adaptation
Required

Description Adapter Function

Requires adaptation to prevent.

m < n; m != 0 No The host can send <m> transfers after
waitrequest is asserted. The agent
receives fewer than <n> transfers,
which is acceptable.

All signals are passed through.

m > n; n = 0 Yes The agent cannot accept transfers
when waitrequest is asserted.
Transfers sent when waitrequest=1
can be lost.
Prevention requires adaptation in the
form of transfer buffering.

If the input waitrequest is asserted,
the adapter buffers the input data.

m > n; n > 0 Yes The agent cannot accept more than
<n> transfers after waitrequest is
asserted, however the host can send
up to <m> transfers.
Transfers (<m> – <n>) can be lost.
Prevention requires adaptation in the
form of transfer buffering.

The adapter buffers the input data.

5.1.11. Read and Write Responses

Platform Designer merges write responses if a write is converted (burst adapted) into
multiple bursts. Platform Designer requires read response merging for a downsized
(wide-to-narrow width adapted) read.

Platform Designer merges responses based on the following precedence rule:

DECERR > SLVERR > OKAY > EXOKAY

Adaptation between a host with write responses and an agent without write responses
can be costly, especially if there are multiple agents, or if the agent supports bursts.
To minimize the cost of logic between agents, consider placing the agents that do not
have write responses behind a bridge so that the write response adaptation logic cost
is only incurred once, at the bridge’s agent interface.

The following table describes what happens when there is a mismatch in response
support between the host and agent.

Table 51. Response Support for Mismatched Host and Agent

Agent with Response Agent Without Response

Host with Response Interconnect delivers response from
the agent to the host.
Response merging or duplication may
be necessary for bus sizing.

Interconnect delivers an OKAY
response to the host

Host without Response Host ignores responses from the agent No need for responses. Host, agent
and interconnect operate without
response support.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

276

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If there is a bridge between the host and the endpoint agent, and the responses must
come from the endpoint agent, ensure that the bridge passes the appropriate
response signals through from the endpoint agent to the host.

If the bridge does not support responses, then the responses are generated by the
interconnect at the agent interface of the bridge, and responses from the endpoint
agent are ignored.

For the response case where the transaction violates security settings or uses an
illegal address, the interconnect routes the transactions to the default agent. For
information about Platform Designer system security, refer to Manage System
Security. For information about specifying a default agent, refer to Error Response
Agent in Platform Designer System Design Components.

Note: Avalon memory mapped agents without a response signal are not able to notify a
connected host that a transaction has not completed successfully. As a result, Platform
Designer interconnect generates an OKAY response on behalf of the Avalon memory
mapped agent.

Related Information

• Avalon Host and AXI Manager Network Interfaces on page 258

• Error Response Slave Intel FPGA IP on page 390

• Error Correction Coding (ECC) in Platform Designer Interconnect on page 331

5.1.12. Platform Designer Address Decoding

Address decoding logic forwards appropriate addresses to each agent.

Address decoding logic simplifies component design in the following ways:

• The interconnect selects an agent whenever it is being addressed by a host. Agent
components do not need to decode the address to determine when they are
selected.

• Agent addresses are properly aligned to the agent interface.

• Changing the system memory map does not involve manually editing HDL.

Figure 210. Address Decoding for One Host and Two Agents
In this example, Platform Designer generates separate address decoding logic for each host in a system. The
address decoding logic processes the difference between the host address width (<M>) and the individual
agent address widths (<S>) and (<T>). The address decoding logic also maps only the necessary host address
bits to access words in each agent’s address space.

Agent
Port 1
(8-bit)

Agent
Port 2

(32-bit)

address [S..0]

read/write

read/write

address [T..2]

address [M..0]
Address

Decoding
Logic

Host
Port

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

277

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer controls the base addresses with the Base setting of active
components on the System View tab. The base address of an agent component must
be a multiple of the address span of the component. This restriction is part of the
Platform Designer interconnect to allow the address decoding logic to be efficient, and
to achieve the best possible fMAX.

Figure 211. Address Decoding Base Settings

5.2. Avalon Streaming Interfaces

High bandwidth components with streaming data typically use Avalon streaming
interfaces for the high throughput datapath. Streaming interfaces can also use
memory-mapped connection interfaces to provide an access point for control. In
contrast to the memory-mapped interconnect, the Avalon streaming interconnect
always creates a point-to-point connection between a single data source and data
sink.

Figure 212 on page 279 contains the following connection pairs:

• Data source in the Rx Interface transfers data to the data sink in the FIFO.

• Data source in the FIFO transfers data to the Tx Interface data sink.

The memory-mapped interface allows a processor to access the data source, FIFO, or
data sink to provide system control. If your source and sink interfaces have different
formats, for example, a 32-bit source and an 8-bit sink, Platform Designer
automatically inserts the necessary adapters. You can view the adapters on the
System View tab by clicking System ➤ Show System with Platform Designer
Interconnect.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

278

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 212. Avalon Memory-Mapped and Avalon Streaming Interfaces

 FIFO

 Data
Source channel

Data Source
(Rx Interface)

Data Sink
(Tx Interface)

ready
valid

data

ready
valid

data
channel

Control
Agent

Control
Agent

Control
Agent

Data Plane Avalon Streaming Interface

Control Plane Memory Mapped Interfaces

Processor RAM UART Timer

Data
Sink

Data
Sink

Data
 Source

Data
 Source

The following diagram shows a source-sink pair that includes only the data signal.
The sink must be able to receive data as soon as the source interface comes out of
reset.

Figure 213. Avalon Streaming Connection Between the Source and Sink

Data Source Data Sinkdata

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

279

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 214. Signals Indicating the Start and End of Packets, Channel Numbers, Error
Conditions, and Backpressure
All data transfers using Avalon streaming interconnect occur synchronously on the rising edge of the associated
clock interface. Throughput and frequency of a system depends on the components and how they are
connected.

ready

Data Source Data Sink

valid
channel

startof packet
endofpacket

empty
error
data

The IP Catalog includes Avalon streaming components that you can use to create
datapaths, including datapaths whose input and output streams have different
properties. Generated systems that include memory-mapped host and agent
components may also use these Avalon streaming components because Platform
Designer generation creates interconnect with a structure similar to a network
topology, as described in Platform Designer Transformations. The following sections
introduce the Avalon streaming components.

Related Information

Platform Designer Transformations on page 256

5.2.1. Avalon Streaming Adapters

Platform Designer automatically adds Avalon streaming adapters between two
components during system generation when it detects mismatched interfaces. If you
connect mismatched Avalon streaming sources and sinks, for example, a 32-bit source
and an 8-bit sink, Platform Designer inserts the appropriate adapter type to connect
the mismatched interfaces.

After generation, you can view the inserted adapters selecting System ➤ Show
System With Platform Designer Interconnect. For each mismatched source-sink
pair, Platform Designer inserts an Avalon streaming adapter. The adapter instantiates
the necessary adaptation logic as sub-components. You can review the logic for each
adapter instantiation in the Hierarchy view by expanding each adapter's source and
sink interface and comparing the relevant ports. For example, to determine why a
channel adapter is inserted, expand the channel adapter's sink and source interfaces
and review the channel port properties for each interface.

You can turn off the auto-inserted adapters feature by adding the
qsys_enable_avalon_streaming_transform=off command to the
quartus.ini file. When you turn off the auto-inserted adapters feature, if
mismatched interfaces are detected during system generation, Platform Designer does
not insert adapters and reports the mismatched interface with validation error
message.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

280

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The auto-inserted adapters feature does not work for video IP connections.

5.2.1.1. Avalon Streaming Adapter

The Avalon streaming adapter combines the logic of the channel, error, data format,
and timing adapters. The Avalon streaming adapter provides adaptations between
interfaces that have mismatched Avalon streaming endpoints. Based on the source
and sink interface parameterizations for the Avalon streaming adapter, Platform
Designer instantiates the necessary adapter logic (channel, error, data format, or
timing) as hierarchal sub-components.

5.2.1.1.1. Avalon Streaming Adapter Parameters Common to Source and Sink Interfaces

Table 52. Avalon Streaming Adapter Parameters Common to Source and Sink
Interfaces

Parameter Name Description

Symbol Width Width of a single symbol in bits.

Use Packet Indicates whether the source and sink interfaces connected to the adapter's
source and sink interfaces include the startofpacket and endofpacket
signals, and the optional empty signal.

5.2.1.1.2. Avalon Streaming Adapter Upstream Source Interface Parameters

Table 53. Avalon Streaming Adapter Upstream Source Interface Parameters

Parameter Name Description

Source Data Width Controls the data width of the source interface data port.

Source Top Channel Maximum number of output channels allowed.

Source Channel Port Width Sets the bit width of the source interface channel port. If set to 0, there is no
channel port on the sink interface.

Source Error Port Width Sets the bit width of the source interface error port. If set to 0, there is no
error port on the sink interface.

Source Error Descriptors A list of strings that describe the error conditions for each bit of the source
interface error signal.

Source Uses Empty Port Indicates whether the source interface includes the empty port, and whether the
sink interface should also include the empty port.

Source Empty Port Width Indicates the bit width of the source interface empty port, and sets the bit width
of the sink interface empty port.

Source Uses Valid Port Indicates whether the source interface connected to the sink interface uses the
valid port, and if set, configures the sink interface to use the valid port.

Source Uses Ready Port Indicates whether the sink interface uses the ready port, and if set, configures
the source interface to use the ready port.

Source Ready Latency Specifies what ready latency to expect from the source interface connected to
the adapter's sink interface.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

281

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2.1.1.3. Avalon Streaming Adapter Downstream Sink Interface Parameters

Table 54. Avalon Streaming Adapter Downstream Sink Interface Parameters

Parameter Name Description

Sink Data Width Indicates the bit width of the data port on the sink interface connected to the
source interface.

Sink Top Channel Maximum number of output channels allowed.

Sink Channel Port Width Indicates the bit width of the channel port on the sink interface connected the
source interface.

Sink Error Port Width Indicates the bit width of the error port on the sink interface connected to the
adapter's source interface. If set to zero, there is no error port on the source
interface.

Sink Error Descriptors A list of strings that describe the error conditions for each bit of the error port
on the sink interface connected to the source interface.

Sink Uses Empty Port Indicates whether the sink interface connected to the source interface uses the
empty port, and whether the source interface should also use the empty port.

Sink Empty Port Width Indicates the bit width of the empty port on the sink interface connected to the
source interface, and configures a corresponding empty port on the source
interface.

Sink Uses Valid Port Indicates whether the sink interface connected to the source interface uses the
valid port, and if set, configures the source interface to use the valid port.

Sink Uses Ready Port Indicates whether the ready port on the sink interface is connected to the
source interface , and if set, configures the sink interface to use the ready port.

Sink Ready Latency Specifies what ready latency to expect from the source interface connected to
the sink interface.

5.2.1.2. Channel Adapter

The channel adapter provides adaptations between interfaces that have different
channel signal widths.

Table 55. Channel Adapter Adaptations

Condition Description of Adapter Logic

The source uses channels, but the
sink does not.

Platform Designer gives a warning at generation time. The adapter provides a
simulation error and signals an error for data for any channel from the source other
than 0.

The sink has channel, but the
source does not.

Platform Designer gives a warning at generation time, and the channel inputs to the
sink are all tied to a logical 0.

The source and sink both support
channels, and the source's
maximum channel number is less
than the sink's maximum channel
number.

The source's channel is connected to the sink's channel unchanged. If the sink's
channel signal has more bits, the higher bits are tied to a logical 0.

The source and sink both support
channels, but the source's
maximum channel number is
greater than the sink's maximum
channel number.

The source’s channel is connected to the sink’s channel unchanged. If the source’s
channel signal has more bits, the higher bits are left unconnected. Platform Designer
gives a warning that channel information may be lost.
An adapter provides a simulation error message and an error indication if the value
of channel from the source is greater than the sink's maximum number of channels.
In addition, the valid signal to the sink is deasserted so that the sink never sees
data for channels that are out of range.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

282

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2.1.2.1. Avalon Streaming Channel Adapter Input Interface Parameters

Table 56. Avalon Streaming Channel Adapter Input Interface Parameters

Parameter Name Description

Channel Signal Width (bits) Width of the input channel signal in bits

Max Channel Maximum number of input channels allowed.

5.2.1.2.2. Avalon Streaming Channel Adapter Output Interface Parameters

Table 57. Avalon Streaming Channel Adapter Output Interface Parameters

Parameter Name Description

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of output channels allowed.

5.2.1.2.3. Avalon Streaming Channel Adapter Common to Input and Output Interface
Parameters

Table 58. Avalon Streaming Channel Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support When the Avalon Streaming Channel adapter supports
packets, the startofpacket, endofpacket, and optional
empty signals are included on its sink and source interfaces.

Include Empty Signal Indicates whether an empty signal is required.

Data Symbols Per Beat Number of symbols per transfer.

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Ready Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Error Signal Width (bits) Bit width of the error signal.

Error Signal Description A list of strings that describes what each bit of the error
signal represents.

5.2.1.3. Data Format Adapter

The data format adapter allows you to connect interfaces that have different values for
the parameters defining the data signal, or interfaces where the source does not use
the empty signal, but the sink does use the empty signal. One of the most common
uses of this adapter is to convert data streams of different widths.

Table 59. Data Format Adapter Adaptations

Condition Description of Adapter Logic

The source and sink’s bits per symbol
parameters are different.

The connection cannot be made.

The source and sink have a different
number of symbols per beat.

The adapter converts the source's width to the sink’s width.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

283

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Condition Description of Adapter Logic

If the adaptation is from a wider to a narrower interface, a beat of data at the
input corresponds to multiple beats of data at the output. If the input error
signal is asserted for a single beat, it is asserted on output for multiple beats.
If the adaptation is from a narrow to a wider interface, multiple input beats are
required to fill a single output beat, and the output error is the logical OR of the
input error signal.

The source uses the empty signal, but
the sink does not use the empty
signal.

Platform Designer cannot make the connection.

Figure 215. Avalon Streaming Interconnect with Data Format Adapter
In this example, the data format adapter allows a connection between a 128-bit output data stream and three
32-bit input data streams.

128-Bit RX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

128 Bits

128 Bits

128 Bits

Data
Format
Adapter

Data
Format
Adapter

Data
Format
Adapter

32 Bits

32 Bits

32 Bits

128 Bits

5.2.1.3.1. Avalon Streaming Data Format Adapter Input Interface Parameters

Table 60. Avalon Streaming Data Format Adapter Input Interface Parameters

Parameter Name Description

Data Symbols Per Beat Number of symbols per transfer.

Include Empty Signal Indicates whether an empty signal is required.

5.2.1.3.2. Avalon Streaming Data Format Adapter Output Interface Parameters

Table 61. Avalon Streaming Data Format Adapter Output Interface Parameters

Parameter Name Description

Data Symbols Per Beat Number of symbols per transfer.

Include Empty Signals Indicates whether an empty signal is required.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

284

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2.1.3.3. Avalon Streaming Data Format Adapter Common to Input and Output Interface
Parameters

Table 62. Avalon Streaming Data Format Adapter Common to Input and Output
Interface Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support When the Avalon Streaming Data Format adapter supports packets, Platform
Designer uses startofpacket, endofpacket, and empty signals.

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of channels allowed.

Read Latency Specifies the ready latency to expect from the sink connected to the module's
source interface.

Error Signal Width (bits) Width of the error signal output in bits.

Error Signal Description A list of strings that describes what each bit of the error signal represents.

5.2.1.4. Error Adapter

The error adapter ensures that per-bit-error information provided by the source
interface is correctly connected to the sink interface’s input error signal. Error
conditions that both source and sink can process are connected. If the source has an
error signal representing an error condition that is not supported by the sink, the
signal is left unconnected; the adapter provides a simulation error message and an
error indication if the error is asserted. If the sink has an error condition that is not
supported by the source, the sink's input error bit corresponding to that condition is
set to 0.

Note: The output interface error signal descriptor accepts an error set with an other
descriptor. Platform Designer assigns the bit-wise ORing of all input error bits that are
unmatched, to the output interface error bits set with the other descriptor.

5.2.1.4.1. Avalon Streaming Error Adapter Input Interface Parameters

Table 63. Avalon Streaming Error Adapter Input Interface Parameters

Parameter Name Description

Error Signal Width (bits) The width of the error signal. Valid values are 0–256 bits. Type 0 if the error
signal is not used.

Error Signal Description The description for each of the error bits. If scripting, separate the description
fields by commas. For a successful connection, the description strings of the
error bits in the source and sink must match and are case sensitive.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

285

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2.1.4.2. Avalon Streaming Error Adapter Output Interface Parameters

Table 64. Avalon Streaming Error Adapter Output Interface Parameters

Parameter Name Description

Error Signal Width (bits) The width of the error signal. Valid values are 0–256 bits. Type 0 if you do not
need to send error values.

Error Signal Description The description for each of the error bits. Separate the description fields by
commas. For successful connection, the description of the error bits in the source
and sink must match, and are case sensitive.

5.2.1.4.3. Avalon Streaming Error Adapter Common to Input and Output Interface
Parameters

Table 65. Avalon Streaming Error Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Support Backpressure with the ready signal Turn on this option to add the backpressure functionality to
the interface.

Ready Latency When the ready signal is used, the value for
ready_latency indicates the number of cycles between
when the ready signal is asserted and when valid data is
driven.

Channel Signal Width (bits) The width of the channel signal. A channel width of 4 allows
up to 16 channels. The maximum width of the channel
signal is eight bits. Set to 0 if channels are not used.

Max Channel The maximum number of channels that the interface
supports. Valid values are 0–255.

Data Bits Per Symbol Number of bits per symbol.

Data Symbols Per Beat Number of symbols per active transfer.

Include Packet Support Turn on this option if the connected interfaces support a
packet protocol, including the startofpacket,
endofpacket and empty signals.

Include Empty Signal Turn this option on if the cycle that includes the
endofpacket signal can include empty symbols. This signal
is not necessary if the number of symbols per beat is 1.

5.2.1.5. Timing Adapter

The timing adapter allows you to connect component interfaces that require a different
number of cycles before driving or receiving data. This adapter inserts a FIFO buffer
between the source and sink to buffer data or pipeline stages to delay the back-
pressure signals. You can also use the timing adapter to connect interfaces that
support the ready signal, and those that do not. The timing adapter treats all signals
other than the ready and valid signals as payload, and simply drives them from the
source to the sink.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

286

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 66. Timing Adapter Adaptations

Condition Adaptation

The source has ready, but the
sink does not.

In this case, the source can respond to backpressure, but the sink never needs to
apply it. The ready input to the source interface is connected directly to logical 1.

The source does not have ready,
but the sink does.

The sink may apply backpressure, but the source is unable to respond to it. There
is no logic that the adapter can insert that prevents data loss when the source asserts
valid but the sink is not ready. The adapter provides simulation time error messages
if data is lost. The user is presented with a warning, and the connection is allowed.

The source and sink both support
backpressure, but the sink’s ready
latency is greater than the
source's.

The source responds to ready assertion or deassertion faster than the sink requires
it. The number of pipeline stages equal to the difference in ready latency are inserted
in the ready path from the sink back to the source, causing the source and the sink
to see the same cycles as ready cycles.

The source and sink both support
backpressure, but the sink’s ready
latency is less than the source's.

The source cannot respond to ready assertion or deassertion in time to satisfy the
sink. A FIFO whose depth is equal to the difference in ready latency is inserted to
compensate for the source’s inability to respond in time.

5.2.1.5.1. Avalon Streaming Timing Adapter Input Interface Parameters

Table 67. Avalon Streaming Timing Adapter Input Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Read Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Include Valid Signal Indicates whether the sink interface requires a valid signal.

5.2.1.5.2. Avalon Streaming Timing Adapter Output Interface Parameters

Table 68. Avalon Streaming Timing Adapter Output Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Read Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Include Valid Signal Indicates whether the sink interface requires a valid signal.

5.2.1.5.3. Avalon Streaming Timing Adapter Common to Input and Output Interface
Parameters

Table 69. Avalon Streaming Timing Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support Turn this option on if the connected interfaces support a
packet protocol, including the startofpacket,
endofpacket and empty signals.

Include Empty Signal Turn this option on if the cycle that includes the
endofpacket signal can include empty symbols. This signal
is not necessary if the number of symbols per beat is 1.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

287

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Name Description

Data Symbols Per Beat Number of symbols per active transfer.

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of output channels allowed.

Error Signal Width (bits) Width of the output error signal in bits.

Error Signal Description A list of strings that describes errors.

5.3. Avalon Streaming Credit Interfaces

Avalon Streaming Credit interfaces are for use with components that drive high-
bandwidth, low-latency, unidirectional data. Typical applications include multiplexed
streams, packets, and DSP data. The Avalon Streaming Credit interface signals can
describe traditional streaming interfaces supporting a single stream of data, without
knowledge of channels or packet boundaries. The interface can also support more
complex protocols capable of burst and packet transfers with packets interleaved
across multiple channels.

All Avalon Streaming Credit source and sink interfaces are not necessarily
interoperable. However, if two interfaces provide compatible functions for the same
application space, adapters are available to allow them to interoperate.

You can also connect an Avalon Streaming Credit source to an Avalon Streaming sink
via an adapter. Similarly, you can connect an Avalon Streaming source to an Avalon
Streaming Credit sink via an adapter.

Avalon Streaming Credit interfaces support datapaths requiring the following features:

• Low-latency, high-throughput point-to-point data transfer

• Multiple channel support with flexible packet interleaving

• Sideband signaling of channel, error, and start and end of packet delineation

• Support for data bursting

• Sideband signals for user-defined functionality

Related Information

• Avalon Streaming Credit Adapters on page 289

• Avalon Streaming Credit Multiplexer on page 300

• Avalon Streaming Credit Demultiplexer on page 302

• Avalon Streaming Credit Pipeline Bridge on page 305

5.3.1. Terms and Concepts

The Avalon Streaming Credit interface protocol defines the following terms and
concepts:

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

288

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Avalon Streaming Credit System—an Avalon Streaming Credit system contains
one or more Avalon Streaming Credit connections that transfer data from a source
interface to a sink interface.

• Avalon Streaming Credit Components—a typical system using Avalon
Streaming credit interfaces combines multiple functional modules, called
components. The system designer configures the components and connects them
together to implement a system.

• Source and Sink Interfaces and Connections—when two components are
connected, credits flow from the sink to the source; and the data flows from the
source interface to the sink interface. The combination of a source interface
connected to a sink interface is referred to as a connection.

• Transfers—a transfer results in data and control propagation from a source
interface to a sink interface. For data interfaces, sources can start data transfers
only if they have credits available. Similarly, sinks can accept data only if they
have outstanding credits.

• Symbol—a symbol is the smallest unit of data as defined for the interface. One or
more symbols make up the single unit of data transferred in a clock cycle. The
default symbol size is 8 bits.

• Beat—a beat is a single cycle transfer between a source and sink interface made
up of one or more symbols.

• Packet—a packet is an aggregation of data and control signals that is transmitted
together. A packet may contain a header to help routers and other network
devices direct the packet to the correct destination. The packet format is defined
by the application, not this specification. Avalon Streaming packets can be variable
in length and can be interleaved across a connection. With an Avalon Streaming
Credit interface, the use of packets is optional.

5.3.2. Avalon Streaming Credit Adapters

Avalon Streaming Credit adapters perform data width conversion when the Avalon
Streaming Credit source and Avalon Streaming Credit sink have different data widths.
For example, if an Avalon Streaming Credit source and Avalon Streaming Credit sink
have different data widths, you can insert the Avalon Streaming Credit Wide to Narrow
Adapter, or the Avalon Streaming Credit Narrow to Wide Adapter, for data width
conversion.

Platform Designer interconnect supports the following data format adapters for Avalon
Streaming Credit interfaces:

Related Information

• Avalon Interface Specifications

• Avalon Streaming Credit Wide to Narrow Adapter on page 290

• Avalon Streaming Credit Narrow to Wide Adapter on page 292

• Avalon Streaming Credit Max Credit Adapter on page 294

• Avalon Streaming Ready to Credit Adapter on page 296

• Avalon Streaming Credit to Ready Adapter on page 298

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

289

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.2.1. Avalon Streaming Credit Wide to Narrow Adapter

The Avalon Streaming Credit Wide to Narrow Adapter has the following blocks for
performing primary functions.

Table 70. Avalon Streaming Credit Wide to Narrow Adapter Blocks

Adapter Block Function

Data Management Accepts incoming wide data and converts the wide data to narrow data for the
sink.

Credit Management Accepts incoming credits from the sink and sends credits to the source. However,
credits received from the sink do not directly transfer to the source. Internally,
this adapter implements credit management logic. The adapter sends data out if
there are credits and data available. If all the credits from the sink are serviced,
then the adapter holds the incoming data from the source side until the adapter
receives more credits from the sink.

Packet Management Accepts the startofpacket, endofpacket, and empty packet management
signals and drives them appropriately, while maintaining packet and data
integrity, on the output.

User Signal Management Accepts user-defined signals (such as channel, error,
user_signal_per_packet, user_signal_per_symbol) and sends the
signals to the source side, in accordance with the wide-to-narrow conversion.

The adapter is available for parameterization as the Avalon Streaming Credit Wide
to Narrow Adapter Intel FPGA IP in the Platform Designer IP Catalog.

Figure 216. Avalon Streaming Credit Wide to Narrow Adapter

5.3.2.1.1. Avalon Streaming Credit Wide to Narrow Adapter Interface Parameters

You can specify the following parameters for the Avalon Streaming Credit Wide to
Narrow Adapter by double-clicking Avalon Streaming Credit Wide to Narrow
Adapter Intel FPGA IP in the Platform Designer IP Catalog:

Note: The source data width must be an integer multiple of the sink data width.

Table 71. Avalon Streaming Credit Wide to Narrow Adapter Interface Parameters

Parameter Name Description Legal Values

fifo depth Specifies the number of words the adapter can save for
transformation. Also dictates the maximum number of credits
the sink can request from the upstream source side.

8

Maximum Credit Allowed
(Sink Interface)

Specifies the maximum number of credits allowed by the sink
interface. The default value is 8.

8

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

290

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Name Description Legal Values

Number of symbols Specifies the maximum number of symbols that can transfer. 1-8192

Symbol width Specifies the number of data bits per symbol. 1-8192

Width of Channel Port The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is disabled.

1-128

Width of Error Port The width of the error signal on the output interfaces. A
value of 0 indicates that the error signal is not in use. This
parameter is disabled when Use Error is disabled.

1-1024

Width of Empty Port The width of the empty signal on the output interfaces. A
value of 0 indicates that the empty signal is not in use. This
parameter is disabled when Use Empty is disabled.

1-1024

Maximum Credit Allowed
(Source Interface)

Specifies the maximum number of credits allowed by the
source interface. Legal values are from 1 to 256.

1,2,4,8,16,32,64,128,
256

Use Packets Indicates whether data packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and
empty signals.

On|Off

Use Empty Enables or disables the empty signal. On|Off

Use Channel Enables or disables the channel signal. On|Off

Use Error Enables or disables the error signal. On|Off

Enable User Signals Allows you to specify the name, width, and type of user
signals.

On|Off

5.3.2.1.2. Avalon Streaming Credit Wide to Narrow Adapter Interface Signals

Figure 217. Avalon Streaming Credit Wide to Narrow Adapter Interface Signals

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

291

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Avalon Streaming Credit Interface Signal Roles on page 355

5.3.2.2. Avalon Streaming Credit Narrow to Wide Adapter

The Avalon Streaming Credit Narrow to Wide Adapter has the following blocks for
performing primary functions:

Table 72. Avalon Streaming Credit Narrow to Wide Adapter Blocks

Adapter Block Function

Data Management Accepts incoming narrow data and converts the narrow data to wide data for the
sink.

Credit Management Accepts incoming credits from the sink and sends credits to the source. However,
credits received from the sink do not directly transfer to the source. Internally,
this adapter implements credit management logic. The adapter sends data out if
there are credits and data available. If all the credits from the sink are serviced,
then the adapter holds the incoming data from the source side until the adapter
receives more credits from the sink.

Packet Management Accepts the startofpacket, endofpacket, and empty package management
signals and drives them appropriately, while maintaining packet and data
integrity, on the output.

User Signal Management Accepts user-defined signals (such as channel, error,
user_signal_per_packet, user_signal_per_symbol) and sends the
signal to the source side, in accordance with the narrow-to-wide conversion.

The adaptor is available for parameterization as the Avalon Streaming Credit
Narrow to Wide Adapter Intel FPGA IP in the Platform Designer IP Catalog.

Figure 218. Avalon Streaming Credit Narrow to Wide Adapter

5.3.2.2.1. Avalon Streaming Credit Narrow to Wide Adapter Interface Parameters

You can specify the following parameters for the Avalon Streaming Credit Narrow to
Wide Adapter by double-clicking Avalon Streaming credit narrow to wide adapter
Intel FPGA IP in the Platform Designer IP Catalog.

Note: The sink data width must be an integer multiple of the source data width.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

292

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 73. Avalon Streaming Credit Narrow to Wide Adapter Interface Parameters

Parameter Name Description Legal Values

Maximum Credit Allowed
(Sink Interface)

Specifies the maximum number of credits allowed by the sink
interface. The legal value is 32.

32

Number of symbols Specifies the maximum number of symbols that can transfer. 1-8192

Symbol width Specifies the number of data bits per symbol. 1-8192

Width of Channel Port The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is disabled.

1-128

Width of Error Port The width of the error signal on the output interfaces. A
value of 0 indicates that the error signal is not in use. This
parameter is disabled when Use Error is disabled.

1-1024

Width of Empty Port The width of the empty signal on the output interfaces. A
value of 0 indicates that the empty signal is not in use. This
parameter is disabled when Use Empty is disabled.

1-1024

Maximum Credit Allowed
(Source Interface)

Specifies the maximum number of credits allowed by the
source interface. Legal values are from 1 to 256.

1,2,4,8,16,32,64,128,
256

Use Packets Indicates whether data packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and
empty signals.

On|Off

Use Empty Enables or disables the empty signal. On|Off

Use Channel Enables or disables the channel signal. On|Off

Use Error Enables or disables the error signal. On|Off

Enable User Signals Allows you to specify the name, width, and type of user
signals.

On|Off

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

293

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.2.2.2. Avalon Streaming Credit Narrow to Wide Adapter Interface Signals

Figure 219. Avalon Streaming Credit Narrow to Wide Adapter Interface Signals

Related Information

Avalon Streaming Credit Interface Signal Roles on page 355

5.3.2.3. Avalon Streaming Credit Max Credit Adapter

The Avalon Streaming Max Credit Adapter facilitates credit flow integrity when the
source's Maximum Credit Allowed (maxCredit) parameter value is less than the
sink's Maximum Credit Allowed (maxCredit) value. The adaptor is available for
parameterization as the Avalon Streaming Credit Max Credit Adapter Intel FPGA
IP from the Platform Designer IP Catalog.

Figure 220. Avalon Streaming Credit Max Credit Adapter

This adapter can accept up to the maxCredit of sink credits from the sink, and then
supply credits to the source according to the source's maxCredit property.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

294

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, if the source’s maxCredit is 4 and the sink’s maxCredit is 8, and the
sink provides a value of 8 on the credit bus, the adapter sends 4 credits to the source.
When the adapter receives 4 valid beats from the source, the adapter releases the
remaining 4 credits to the source. This adapter does not modify data from the source.

5.3.2.3.1. Avalon Streaming Credit Max Credit Adapter Interface Parameters

You can specify the following parameters for the Avalon Streaming Credit Max Credit
Adapter by double-clicking Avalon Streaming Credit Max Credit Adapter Intel
FPGA IP in the Platform Designer IP Catalog:

Table 74. Avalon Streaming Credit Max Credit Adapter Interface Parameters

Parameter Name Description Legal Values

Maximum Credit Allowed
(Sink Interface)

Specifies the maximum number of credits allowed by the sink
interface. Legal values are from 1 to 256.

1,2,4,8,16,32,64,128,
256

Number of symbols Specifies the maximum number of symbols that can transfer. 1-8192

Symbol width Specifies the number of data bits per symbol. 1-8192

Width of Channel Port The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is disabled.

1-128

Width of Error Port The width of the error signal on the output interfaces. A
value of 0 indicates that the error signal is not in use. This
parameter is disabled when Use Error is disabled.

1-1024

Width of Empty Port The width of the empty signal on the output interfaces. A
value of 0 indicates that the empty signal is not in use. This
parameter is disabled when Use Empty is disabled.

1-1024

Maximum Credit Allowed
(Source Interface)

Specifies the maximum number of credits allowed by the
source interface. Legal values are from 1 to 256.

1,2,4,8,16,32,64,128,
256

Use Packets Indicates whether data packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and
empty signals.

On|Off

Use Empty Enables or disables the empty signal. On|Off

Use Channel Enables or disables the channel signal. On|Off

Use Error Enables or disables the error signal. On|Off

Enable User Signals Allows you to specify the name, width, and type of user
signals.

On|Off

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

295

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.2.3.2. Avalon Streaming Credit Max Credit Adapter Interface Signals

Figure 221. Avalon Streaming Credit Max Credit Adapter Interface Signals

Related Information

Avalon Streaming Credit Interface Signal Roles on page 355

5.3.2.4. Avalon Streaming Ready to Credit Adapter

The Avalon Streaming Ready to Credit Adapter facilitates connectivity between an
Avalon Streaming sink and an Avalon Streaming Credit source.

The Avalon Streaming Ready to Credit adapter:

• Outputs credits on the Avalon Streaming Credit sink interface.

• Outputs data on the Avalon Streaming source interface

• Accepts ready and asserts valid on the Avalon Streaming source interface.

• Supports the readyLatency property on the Avalon Streaming sink interface.

• Is available as the Avalon Streaming Ready to Credit Intel FPGA IP from the
Platform Designer IP Catalog.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

296

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 222. Avalon Streaming Ready to Credit Adapter

5.3.2.4.1. Avalon Streaming Ready to Credit Adapter Interface Parameters

You can specify the following parameters for the Avalon Streaming Ready to Credit
Adapter by double-clicking Avalon Streaming Ready to Credit Intel FPGA IP in
the Platform Designer IP Catalog:

Table 75. Avalon Streaming Ready to Credit Adapter Interface Parameters

Parameter Name Description Legal Values

Maximum Credit Allowed
(Sink Interface)

Specifies the maximum number of credits allowed by the sink
interface. Legal values are from 1 to 256.

1,2,4,8,16,32,64,128,
256

Number of symbols Specifies the maximum number of symbols that can transfer. 1-8192

Symbol width Specifies the number of data bits per symbol. 1-8192

Width of Channel Port The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is disabled.

1-128

Width of Error Port The width of the error signal on the output interfaces. A
value of 0 indicates that the error signal is not in use. This
parameter is disabled when Use Error is disabled.

1-1024

Width of Empty Port The width of the empty signal on the output interfaces. A
value of 0 indicates that the empty signal is not in use. This
parameter is disabled when Use Empty is disabled.

1-1024

Ready Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

0-32

synchronous reset Specifies that the adapter should have a synchronous reset. On|Off

Use Packets Indicates whether data packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and
empty signals.

On|Off

Use Empty Enables or disables the empty signal. On|Off

Use Channel Enables or disables the channel signal. On|Off

Use Error Enables or disables the error signal. On|Off

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

297

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.2.4.2. Avalon Streaming Ready to Credit Adapter Interface Signals

Figure 223. Avalon Streaming Ready to Credit Adapter Interface Signals

Related Information

Avalon Streaming Credit Interface Signal Roles on page 355

5.3.2.5. Avalon Streaming Credit to Ready Adapter

The Avalon Streaming Credit to Ready Adapter facilitates connectivity between an
Avalon Streaming Credit sink and an Avalon Streaming source.

The Avalon Streaming Credit to Ready adapter:

• Receives credits on the Avalon Streaming Credit source interface.

• Asserts ready and accepts valid on the Avalon Streaming sink interface.

• Supports the Ready Latency (readyLatency) parameter on the Avalon
Streaming sink interface.

• Is available as the Avalon Streaming Credit to Ready Intel FPGA IP from the
Platform Designer IP Catalog.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

298

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 224. Avalon Streaming Credit to Ready Adapter

5.3.2.5.1. Avalon Streaming Credit to Ready Adapter Interface Parameters

You can specify the following parameters for the Avalon Streaming Credit to Ready
adapter by double-clicking Avalon Streaming Credit to Ready Intel FPGA IP in the
Platform Designer IP Catalog:

Table 76. Avalon Streaming Credit to Ready Adapter Interface Parameters

Parameter Name Description Legal Values

Maximum Credit Allowed
(Source Interface)

Specifies the maximum number of credits allowed by the
source interface. The legal value is 16.

16

Number of symbols Specifies the maximum number of symbols that can transfer. 1-8192

Symbol width Specifies the number of data bits per symbol. 1-8192

Width of Channel Port The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is disabled.

1-128

Width of Error Port The width of the error signal on the output interfaces. A
value of 0 indicates that the error signal is not in use. This
parameter is disabled when Use Error is disabled.

1-1024

Width of Empty Port The width of the empty signal on the output interfaces. A
value of 0 indicates that the empty signal is not in use. This
parameter is disabled when Use Empty is disabled.

1-1024

Ready Latency Specifies the readyLatency of the source connected to the
adapter sink interface.

0-32

synchronous reset Specifies that the adapter should have a synchronous reset. On|Off

Use Packets Indicates whether data packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and
empty signals.

On|Off

Use Empty Enables or disables the empty signal. On|Off

Use Channel Enables or disables the channel signal. On|Off

Use Error Enables or disables the error signal. On|Off

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

299

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.2.5.2. Avalon Streaming Credit to Ready Adapter Interface Signals

Figure 225. Avalon Streaming Credit to Ready Adapter Interface Signals

Related Information

Avalon Streaming Credit Interface Signal Roles on page 355

5.3.3. Avalon Streaming Credit Multiplexer

The Avalon Streaming Credit Multiplexer allows multiple sources to access a single
sink.

The Avalon Streaming Credit Multiplexer:

• Supports round-robin arbitration.

• Receives credits from the sink, and ensures credits supplied to sources are
independent.

• Implements separate credit management logic on both source and sink interfaces.

• Maintains packet integrity from a source.

• Is available as the Avalon Streaming Credit Multiplexer Intel FPGA IP from
the Platform Designer IP Catalog.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

300

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 226. Avalon Streaming Credit Multiplexer

5.3.3.1. Avalon Streaming Credit Multiplexer Parameters

You can specify the following parameters for the Avalon Streaming Credit Multiplexer
by double-clicking Avalon Streaming Credit Multiplexer Intel FPGA IP in the
Platform Designer IP Catalog:

Table 77. Avalon Streaming Credit Multiplexer Parameters

Parameter Name Description Legal Values

Number of mux inputs Specifies the number of inputs to the multiplexer. N/A

Use Packets Indicates whether data packet transfers are supported.
Packet support includes the startofpacket,
endofpacket, and empty signals.

On|Off

Use Empty Enables or disables the empty signal. On|Off

Use Channel Enables or disables the channel signal. On|Off

Use Error Enables or disables the error signal. On|Off

Maximum Credit Allowed
(Source Interface)

Specifies the maximum number of credits allowed by the
source interface. Legal values are from 1 to 256.

1,2,4,8,16,32,64,128,256

Number of symbols Specifies the maximum number of symbols that can
transfer.

1-8192

Symbol width Specifies the number of data bits per symbol. 1-8192

Width of Channel Port The width of the channel signal on the data interfaces.
This parameter is disabled when Use Channel is disabled.

1-128

Width of Error Port The width of the error signal on the output interfaces. A
value of 0 indicates that the error signal is not in use. This
parameter is disabled when Use Error is disabled.

1-1024

Width of Empty Port The width of the empty signal on the output interfaces. A
value of 0 indicates that the empty signal is not in use. This
parameter is disabled when Use Empty is disabled.

1-1024

Use channel on Sink
interface

Enables or disables the channel signal on the sink
interlace.

On|Off

Sink channel width Specifies the width of the sink channel when Use channel
on Sink interface is On.

1-128

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

301

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.3.2. Avalon Streaming Credit Multiplexer Interface Signals

Figure 227. Avalon Streaming Credit Multiplexer Interface Signals

Related Information

Avalon Streaming Credit Interface Signal Roles on page 355

5.3.4. Avalon Streaming Credit Demultiplexer

The Avalon Streaming Credit Demultiplexer allows one source to access multiple sinks.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

302

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Avalon Streaming Credit Demultiplexer:

• Must have a channel signal from the source as an input.

• The channel input from the source must be at least ceil(log2 (NUM_SINKS))
wide, where NUM_SINKS is the number of sinks.

For example, if the source connects to 6 sinks, the channel signal from the source
must be at least 3 bits. The least significant ceil(log2(NUM_SINKS)) bits route
data from the source to the appropriate sink. For example, if the demultiplexer
connects to 5 sinks (sink0, sink1, sink2, sink3, sink4), and the channel
signal is 8 bits wide, with a value on the channel bus of 00010010, data routes to
sink2.

• The source is responsible for maintaining packet integrity to any sink.

• During a packet transmission, the source must not change the lower order channel
bits. Otherwise, the sinks may receive incomplete or invalid packets.

• Is available as the Avalon Streaming Credit Demultiplexer Intel FPGA IP
from the Platform Designer IP Catalog.

Figure 228. Avalon Streaming Credit Demultiplexer

5.3.4.1. Avalon Streaming Credit Demultiplexer Parameters

You can specify the following parameters for the Avalon Streaming Credit
Demultiplexer by double-clicking Avalon Streaming Credit Demultiplexer Intel
FPGA IP in the Platform Designer IP Catalog:

Table 78. Avalon Streaming Credit Demultiplexer Parameters

Parameter Name Description Legal Values

Number of demux
outputs

Specifies the number of outputs from the demultiplexer. N/A

Maximum Credit Allowed
(Sink Interface)

Specifies the maximum number of credits allowed by the
sink interface. Legal values are from 1 to 256.

1,2,4,8,16,32,64,128,256

Number of symbols Specifies the maximum number of symbols that can
transfer.

1-8192

Symbol width Specifies the number of data bits per symbol. 1-8192

Width of Error Port The width of the error signal on the output interfaces. A
value of 0 indicates that the error signal is not in use. This
parameter is disabled when Use Error is disabled.

1-1024

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

303

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Name Description Legal Values

Width of Empty Port The width of the empty signal on the output interfaces. A
value of 0 indicates that the empty signal is not in use. This
parameter is disabled when Use Empty is disabled.

1-1024

Use Channel Enables the channel signal. (always on) On

Width of Channel Port The width of the channel signal on the sink interface based
on the number of demux outputs.

1-128

Use Packets Indicates whether data packet transfers are supported.
Packet support includes the startofpacket,
endofpacket, and empty signals.

On|Off

Use Empty Enables or disables the empty signal. On|Off

Use Error Enables or disables the error signal. On|Off

Enable User Signals Allows you to specify the name, width, and type of user
signals.

On|Off

Use channel on Source
interface

Enables or disables the channel signal on the source
interface.

On|Off

Source channel width Specifies the width of the source channel when Use
channel on Source interface is On.

1-128

5.3.4.2. Avalon Streaming Credit Demultiplexer Interface Signals

Figure 229. Avalon Streaming Credit Demultiplexer Interface Signals

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

304

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Avalon Streaming Credit Interface Signal Roles on page 355

5.3.5. Avalon Streaming Credit Pipeline Bridge

The Avalon Streaming Credit Pipeline Bridge allows you to insert an arbitrary number
of pipeline stages on both the credit and data paths. The number of pipeline stages on
the credit path, from sink to source, need not be equal to the number of pipeline
stages on the data path, from source to sink.

This bridge is available as the Avalon Streaming Credit Pipeline Bridge Intel
FPGA IP from the Platform Designer IP Catalog.

Figure 230. Avalon Streaming Credit Pipeline Bridge

5.3.5.1. Avalon Streaming Credit Pipeline Bridge Parameters

You can specify the following parameters for the Avalon Streaming Credit Pipeline
Bridge by double-clicking Avalon Streaming Credit Pipeline Bridge Intel FPGA IP
in the Platform Designer IP Catalog:

Table 79. Avalon Streaming Credit Pipeline Bridge Parameters

Parameter Name Description Legal Values

Data Pipeline Depth Specifies the depth (size) of the data pipeline. 1-16

Credit Pipeline Depth Specifies the depth (size) of the credit pipeline. 1-16

Maximum Credit Allowed
(Source Interface)

Specifies the maximum number of credits allowed by the
source interface. Legal values are from 1 to 256.

1,2,4,8,16,32,64,128,
256

Number of symbols Specifies the maximum number of symbols that can transfer. 1-8192

Symbol width Specifies the number of data bits per symbol. 1-8192

Width of Channel Port The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is disabled.

1-128

Width of Error Port The width of the error signal on the output interfaces. A
value of 0 indicates that the error signal is not in use. This
parameter is disabled when Use Error is disabled.

1-1024

Width of Empty Port The width of the empty signal on the output interfaces. A
value of 0 indicates that the empty signal is not in use. This
parameter is disabled when Use Empty is disabled.

1-1024

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

305

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Name Description Legal Values

Use Packets Indicates whether data packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and
empty signals.

On|Off

Use Empty Enables or disables the empty signal. On|Off

Use Channel Enables or disables the channel signal. On|Off

Use Error Enables or disables the error signal. On|Off

Enable User Signals Allows you to specify the name, width, and type of user
signals.

On|Off

5.3.5.2. Avalon Streaming Credit Pipeline Bridge Interface Signals

Figure 231. Avalon Streaming Credit Pipeline Bridge Interface Signals

Related Information

Avalon Streaming Credit Interface Signal Roles on page 355

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

306

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4. Interrupt Interfaces

Using individual requests, the interrupt logic can process up to 2048 IRQ inputs
connected to each interrupt receiver. With this logic, the interrupt sender connected to
interrupt receiver0 is the highest priority with sequential receivers being
successively lower priority. You can redefine the priority of interrupt senders by
instantiating the IRQ mapper component. For more information, refer to IRQ Mapper
on page 309.

You can define the interrupt sender interface as asynchronous with no associated clock
or reset interfaces. You can also define the interrupt receiver interface as
asynchronous with no associated clock or reset interfaces. As a result, the receiver
does its own synchronization internally. Platform Designer does not insert interrupt
synchronizers for such receivers.

For clock crossing adaptation on interrupts, Platform Designer inserts a synchronizer.
This synchronizer is clocked with the interrupt end point interface clock when the
corresponding starting point interrupt interface has no clock or a different clock (than
the end point). Platform Designer inserts the adapter if there is any kind of mismatch
between the start and end points. Platform Designer does not insert the adapter if the
interrupt receiver does not have an associated clock.

5.4.1. Individual Requests IRQ Scheme

In the individual requests IRQ scheme, Platform Designer interconnect passes IRQs
directly from the sender to the receiver, without making assumptions about IRQ
priority. If multiple senders assert their IRQs simultaneously, the receiver logic
determines which IRQ has highest priority, and then responds appropriately.

Figure 232. Interrupt Controller Mapping IRQs

irq0
irq1
irq2

irq4
irq5
irq6

irq3

irq2047

Sender
1

Sender
2

Sender
3

Sender
4

Interrupt
Controller

irq

irq

irq

irq

Receiver

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

307

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using individual requests, the interrupt controller can process up to 2048 IRQ inputs.
The interrupt controller generates a 2048-bit signal irq[2047:0] to the receiver, and
maps agent IRQ signals to the bits of irq[2047:0]. Any unassigned bits of
irq[2047:0] are disabled.

5.4.2. Assigning IRQs in Platform Designer

You assign IRQ connections on the System View tab of Platform Designer. After
adding all components to the system, you connect interrupt senders and receivers.

You can use the IRQ column to specify an IRQ number with respect to each receiver,
or to specify a receiver's IRQ as unconnected. Platform Designer uses the following
components to implement interrupt handling: IRQ Bridge, IRQ Mapper, IRQ Clock
Crosser, and IRQ Fanout.

5.4.2.1. IRQ Bridge

The IRQ Bridge Intel FPGA IP allows you to route interrupt wires between Platform
Designer subsystems.

Figure 233. Platform Designer IRQ Bridge Application
The peripheral subsystem example below has three interrupt senders that are exported to the top-level of the
subsystem. The interrupts are then routed to the CPU subsystem using the IRQ bridge.

3-bit bus

4-bit bus

 IRQ Bridge
IR

IS

 Interrupt
 Sender 1

IS

 Interrupt
 Sender 2

IS

 Interrupt
 Sender 3

IS
 Interrupt
 Sender 4 IS

export export export

export

IR

 Nios II
ProcessorCPU Subsystem

Peripheral Subsystem

Top-Level Platform Designer System

IS Interrupt Sender IR Interrupt Receiver

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

308

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Nios II BSP tools support the IRQ Bridge. Interrupts connected via an IRQ Bridge
appear in the generated system.h file. You can use the following properties with the
IRQ Bridge, which do not effect Platform Designer interconnect generation. Platform
Designer uses these properties to generate the correct IRQ information for
downstream tools:

• set_interface_property <sender port> bridgesToReceiver
<receiver port>— The <sender port> of the IP generates a signal that is
received on the IP's <receiver port>. Sender ports are single bits. Receive ports
can be multiple bits. Platform Designer requires the bridgedReceiverOffset
property to identify the <receiver port> bit that the <sender port> sends.

• set_interface_property <sender port> bridgedReceiverOffset
<port number>— Indicates the <port number> of the receiver port that the
<sender port> sends.

5.4.2.2. IRQ Mapper

Platform Designer inserts the IRQ Mapper Intel FPGA IP automatically during
generation. The IRQ Mapper converts individual interrupt wires to a bus, and then
maps the appropriate IRQ priority number onto the bus.

You can specify the following parameter values:

Table 80. IRQ Mapper Parameters

Parameter Values Description

Number of receivers 1-2048 Specifies the number of Avalon receiver signals on the bus.

Sender interrupt
width

1-2048 Specifies the width of the Avalon sender signal bus.

Use synchronous
resets

On|Off Resets signal synchronously. This option is Off by default.

Remove Clock and
Reset Ports

On|Off Removes the clock and reset ports from the component. If both Use
synchronous resets and Remove Clock and Reset Ports are on,
Platform Designer displays an error.

By default, the interrupt sender connected to the receiver0 interface of the IRQ
mapper is the highest priority, and sequential receivers are successively lower priority.
You can modify the interrupt priority of each IRQ wire by modifying the IRQ priority
number in Platform Designer under the IRQ column. The modified priority is reflected
in the IRQ_MAP parameter for the auto-inserted IRQ Mapper.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

309

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 234. IRQ Column in Platform Designer
Circled in the IRQ column are the default interrupt priorities allocated for the CPU subsystem.

5.4.2.3. IRQ Clock Crosser

The IRQ Clock Crosser Intel FPGA IP synchronizes interrupt senders and receivers that
are in different clock domains. To use this component, connect the clocks for both the
interrupt sender and receiver, and for both the interrupt sender and receiver
interfaces. Platform Designer automatically inserts this component when it is required.

5.4.2.4. IRQ Fanout

The IRQ Fanout Intel FPGA IP allows you to specify a value for the Number of
senders parameter that controls the number of interrupt senders exported to the top
level of the system. Platform Designer automatically inserts this component when the
system requires.

5.5. Clock Interfaces

Clock interfaces define the clocks used by a component. Components can have clock
inputs, clock outputs, or both. To update the clock frequency of the component, use
the Parameters tab for the clock source.

The Clock Source parameters allows you to set the following options:

• Clock frequency—the frequency of the output clock from this clock source.

• Clock frequency is known— when turned on, the clock frequency is known.
When turned off, the frequency is set from outside the system. Turning off this
option is useful for cases when a subsystem receives a clock from a higher level
system.

Note: If turned off, system generation may fail because the components do not
receive the necessary clock information. For best results, turn this option on
before system generation.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

310

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about synchronous design practices, refer to Quartus Prime Pro
Edition User Guide: Design Recommendations.

5.5.1. (High Speed Serial Interface) HSSI Clock Interfaces

You can use HSSI Serial Clock and HSSI Bonded Clock interfaces in Platform Designer
to enable high speed serial connectivity between clocks that are used by certain IP
protocols.

5.5.1.1. HSSI Serial Clock Interface

You can connect the HSSI Serial Clock interface with only similar type of interfaces, for
example, you can connect a HSSI Serial Clock Source interface to a HSSI Serial Clock
Sink interface.

5.5.1.1.1. HSSI Serial Clock Source

The HSSI Serial Clock interface includes a source in the Start direction.

You can instantiate the HSSI Serial Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock start

You can connect the HSSI Serial Clock Source to multiple HSSI Serial Clock Sinks
because the HSSI Serial Clock Source supports multiple fan-outs. This Interface has a
single clk port role limited to a 1 bit width, and a clockRate parameter, which is the
frequency of the clock driven by the HSSI Serial Clock Source interface.

An unconnected and unexported HSSI Serial Source is valid and does not generate
error messages.

Table 81. HSSI Serial Clock Source Port Roles

Name Direction Width Description

clk Output 1 bit A single bit wide port role, which provides synchronization for internal logic.

Table 82. HSSI Serial Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

5.5.1.1.2. HSSI Serial Clock Sink

The HSSI Serial Clock interface includes a sink in the End direction.

You can instantiate the HSSI Serial Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock end

You can connect the HSSI Serial Clock Sink interface to a single HSSI Serial Clock
Source interface; you cannot connect it to multiple sources. This Interface has a single
clk port role limited to a 1 bit width, and a clockRate parameter, which is the
frequency of the clock driven by the HSSI Serial Clock Source interface.

An unconnected and unexported HSSI Serial Sink is invalid and generates error
messages.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

311

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 83. HSSI Serial Clock Sink Port Roles

Name Direction Width Description

clk Output 1 A single bit wide port role, which provides synchronization for internal logic

Table 84. HSSI Serial Clock Sink Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven by the HSSI Serial Clock Source
interface. When you specify a clockRate greater than 0, then this
interface can be driven only at that rate.

5.5.1.1.3. HSSI Serial Clock Connection

The HSSI Serial Clock Connection defines a connection between a HSSI Serial Clock
Source connection point, and a HSSI Serial Clock Sink connection point.

A valid HSSI Serial Clock Connection exists when all the following criteria are satisfied.
If the following criteria are not satisfied, Platform Designer generates error messages
and the connection is prohibited.

• The starting connection point is an HSSI Serial Clock Source with a single port role
clk and maximum 1 bit in width. The direction of the starting port is Output.

• The ending connection point is an HSSI Serial Clock Sink with a single port role
clk, and maximum 1 bit in width. The direction of the ending port is Input.

• If the parameter, clockRate of the HSSI Serial Clock Sink is greater than 0, the
connection is only valid if the clockRate of the HSSI Serial Clock Source is the
same as the clockRate of the HSSI Serial Clock Sink.

5.5.1.1.4. HSSI Serial Clock Example

Example 23. HSSI Serial Clock Interface Example

You can make connections to declare the HSSI Serial Clock interfaces in the _hw.tcl.

package require -exact qsys 14.0

set_module_property name hssi_serial_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

set_fileset_property QUARTUS_SYNTH TOP_LEVEL \
"hssi_serial_component"

set_fileset_property SIM_VERILOG TOP_LEVEL "hssi_serial_component"
set_fileset_property SIM_VHDL TOP_LEVEL "hssi_serial_component"

proc elaborate {} {
 # declaring HSSI Serial Clock Source
 add_interface my_clock_start hssi_serial_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_serial_clock_port_out \
 clk Output 1

 # declaring HSSI Serial Clock Sink
 add_interface my_clock_end hssi_serial_clock end
 set_interface_property my_clock_end ENABLED true

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

312

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 add_interface_port my_clock_end hssi_serial_clock_port_in clk \
 Input 1
}

proc generate { output_name } {

 add_fileset_file hssi_serial_component.v VERILOG PATH \
 "hssi_serial_component.v"
}

Example 24. HSSI Serial Clock Instantiated in a Composed Component

If you use the components in a hierarchy, for example, instantiated in a composed
component, you can declare the connections as illustrated in this example.

add_instance myinst1 hssi_serial_component
add_instance myinst2 hssi_serial_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

5.5.1.2. HSSI Bonded Clock Interface

You can connect the HSSI Bonded Clock interface only with similar type of interfaces,
for example, you can connect a HSSI Bonded Clock Source interface to a HSSI Bonded
Clock Sink interface.

5.5.1.2.1. HSSI Bonded Clock Source

The HSSI Bonded Clock interface includes a source in the Start direction.

You can instantiate the HSSI Bonded Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock start

You can connect the HSSI Bonded Clock Source to multiple HSSI Bonded Clock Sinks
because the HSSI Serial Clock Source supports multiple fanouts. This Interface has a
single clk port role limited to a width range of 1 to 1024 bits. The HSSI Bonded Clock
Source interface has two parameters: clockRate and serializationFactor.
clockRate is the frequency of the clock driven by the HSSI Bonded Clock Source
interface, and the serializationFactor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the required frequency and
phases of the individual clocks within the HSSI Bonded Clock interface

An unconnected and unexported HSSI Bonded Source is valid, and does not generate
error messages.

Table 85. HSSI Bonded Clock Source Port Roles

Name Direction Width Description

clk Output 1 to 24 bits A multiple bit wide port role which provides synchronization for internal
logic.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

313

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 86. HSSI Bonded Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

serializatio
n

long 0 No The serialization factor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the
necessary frequency and phases of the individual clocks within the
HSSI Bonded Clock interface.

5.5.1.2.2. HSSI Bonded Clock Sink

The HSSI Bonded Clock interface includes a sink in the End direction.

You can instantiate the HSSI Bonded Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock end

You can connect the HSSI Bonded Clock Sink interface to a single HSSI Bonded Clock
Source interface; you cannot connect it to multiple sources. This Interface has a single
clk port role limited to a width range of 1 to 1024 bits. The HSSI Bonded Clock Source
interface has two parameters: clockRate and serializationFactor. clockRate is the
frequency of the clock driven by the HSSI Bonded Clock Source interface, and the
serialization factor is the parallel data width that operates the HSSI TX serializer. The
serialization factor determines the required frequency and phases of the individual
clocks within the HSSI Bonded Clock interface

An unconnected and unexported HSSI Bonded Sink is invalid and generates error
messages.

Table 87. HSSI Bonded Clock Source Port Roles

Name Direction Width Description

clk Output 1 to 24 bits A multiple bit wide port role which provides synchronization for internal
logic.

Table 88. HSSI Bonded Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

serializatio
n

long 0 No The serialization factor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the
necessary frequency and phases of the individual clocks within the
HSSI Bonded Clock interface.

5.5.1.2.3. HSSI Bonded Clock Connection

The HSSI Bonded Clock Connection defines a connection between a HSSI Bonded
Clock Source connection point, and a HSSI Bonded Clock Sink connection point.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

314

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A valid HSSI Bonded Clock Connection exists when all the following criteria are
satisfied. If the following criteria are not satisfied, Platform Designer generates error
messages and the connection is prohibited.

• The starting connection point is an HSSI Bonded Clock Source with a single port
role clk with a width range of 1 to 24 bits. The direction of the starting port is
Output.

• The ending connection point is an HSSI Bonded Clock Sink with a single port role
clk with a width range of 1 to 24 bits. The direction of the ending port is Input.

• The width of the starting connection point clk must be the same as the width of
the ending connection point.

• If the parameter, clockRate of the HSSI Bonded Clock Sink greater than 0, then
the connection is only valid if the clockRate of the HSSI Bonded Clock Source is
same as the clockRate of the HSSI Bonded Clock Sink.

• If the parameter, serializationFactor of the HSSI Bonded Clock Sink is greater
than 0, Platform Designer generates a warning if the serializationFactor of HSSI
Bonded Clock Source is not same as the serializationFactor of the HSSI Bonded
Clock Sink.

5.5.1.2.4. HSSI Bonded Clock Example

Example 25. HSSI Bonded Clock Interface Example

You can make connections to declare the HSSI Bonded Clock interfaces in the _hw.tcl
file.

package require -exact qsys 14.0

set_module_property name hssi_bonded_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset synthesis QUARTUS_SYNTH generate
add_fileset verilog_simulation SIM_VERILOG generate

set_fileset_property synthesis TOP_LEVEL "hssi_bonded_component"

set_fileset_property verilog_simulation TOP_LEVEL \
"hssi_bonded_component"

proc elaborate {} {
 add_interface my_clock_start hssi_bonded_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_bonded_clock_port_out \
 clk Output 1024

 add_interface my_clock_end hssi_bonded_clock end
 set_interface_property my_clock_end ENABLED true

 add_interface_port my_clock_end hssi_bonded_clock_port_in \
 clk Input 1024
}

proc generate { output_name } {
 add_fileset_file hssi_bonded_component.v VERILOG PATH \
 "hssi_bonded_component.v"}

If you use the components in a hierarchy, for example, instantiated in a composed
component, you can declare the connections as illustrated in this example.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

315

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 26. HSII Bonded Clock Instantiated in a Composed Component

add_instance myinst1 hssi_bonded_component
add_instance myinst2 hssi_bonded_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

5.6. Reset Interfaces

Reset interfaces provide both soft and hard reset functionality. Soft reset logic
typically re-initializes registers and memories without powering down the device. Hard
reset logic initializes the device after power-on.

You can define separate reset sources for each clock domain, a single reset source for
all clocks, or any combination in between. You can choose to create a single global
reset domain by clicking System ➤ Create Global Reset Network. If your design
requires more than one reset domain, you can implement your own reset logic and
connectivity. The IP Catalog includes a reset controller, reset sequencer, and a reset
bridge to implement the reset functionality. You can also design your own reset logic.

Platform Designer interconnect now supports synchronous reset of registers in the
interconnect. Use of synchronous reset can result in higher performance for Stratix 10
designs because although Stratix 10 Hyper-Registers lack a reset signal, they can
make use of the synchronous reset from an adjacent LAB. If a register in your Stratix
10 design uses asynchronous reset, the Compiler cannot implement the register as a
Hyper-Register, potentially reducing performance.

When Use synchronous reset is set to True in the Domains tab, all registers in the
interconnect use synchronous reset. The Use synchronous reset option is enabled
by default for Stratix 10 designs, but is disabled by default for all other designs.

Note: If you design your own reset circuitry, you must carefully consider situations which
may result in system lockup. For example, if an Avalon memory mapped agent is reset
in the middle of a transaction, the Avalon memory mapped host may lockup.

Related Information

Specifying Interconnect Parameters on page 71

5.6.1. Single Global Reset Signal Implemented by Platform Designer

When you select System ➤ Create Global Reset Network, the Platform Designer
interconnect creates a global reset bus. All the reset requests are ORed together,
synchronized to each clock domain, and fed to the reset inputs. The duration of the
reset signal is at least one clock period.

The Platform Designer interconnect inserts the system-wide reset under the following
conditions:

• The global reset input to the Platform Designer system is asserted.

• Any component asserts its resetrequest signal.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

316

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.6.2. Reset Controller

Platform Designer automatically inserts a reset controller block if the input reset
source does not have a reset request, but the connected reset sink requires a reset
request.

The Reset Controller has the following parameters that you can specify to customize
its behavior:

• Number of inputs— Indicates the number of individual reset interfaces the
controller ORs to create a signal reset output.

• Output reset synchronous edges—Specifies the level of synchronization. You
can select one the following options:

— None—The reset is asserted and deasserted asynchronously. You can use this
setting if you have designed internal synchronization circuitry that matches
the reset style required for the IP in the system.

— Both—The reset is asserted and deasserted synchronously.

— Deassert—The reset is deasserted synchronously and asserted
asynchronously.

• Synchronization depth—Specifies the number of register stages the
synchronizer uses to eliminate the propagation of metastable events.

• Reset request—Enables reset request generation, which is an early signal that is
asserted before reset assertion. The reset request is used by blocks that require
protection from asynchronous inputs, for example, M20K blocks.

Platform Designer automatically inserts reset synchronizers under the following
conditions:

• More than one reset source is connected to a reset sink

• There is a mismatch between the reset source’s synchronous edges and the reset
sinks’ synchronous edges

5.6.3. Reset Bridge

The Reset Bridge allows you to use a reset signal in two or more subsystems of your
Platform Designer system. You can connect one reset source to local components, and
export one or more to other subsystems, as required.

The Reset Bridge parameters are used to describe the incoming reset and include the
following options:

• Active low reset—When turned on, reset is asserted low.

• Synchronous edges—Specifies the level of synchronization and includes the
following options:

— None—The reset is asserted and deasserted asynchronously. Use this setting
if you have internal synchronization circuitry.

— Both—The reset is asserted and deasserted synchronously.

— Deassert—The reset is deasserted synchronously, and asserted
asynchronously.

• Number of reset outputs—The number of reset interfaces that are exported.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

317

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Platform Designer supports multiple reset sink connections to a single reset source
interface. However, there are situations in composed systems where an internally
generated reset must be exported from the composed system in addition to being
used to connect internal components. In this situation, you must declare one reset
output interface as an export, and use another reset output to connect internal
components.

5.6.4. Reset Sequencer

The Reset Sequencer allows you to control the assertion and deassertion sequence for
Platform Designer system resets.

The Parameter Editor displays the expected assertion and deassertion sequences
based on the current settings. You can connect multiple reset sources to the reset
sequencer, and then connect the outputs of the Reset Sequencer to components in the
system.

Figure 235. Elements and Flow of a Reset Sequencer

CSR

Sync
Sync
Sync
Sync

Reset
Controller

Main
FSM

ASRT SEQ

DSRT SEQ
RESET_OUT

Deglitch
Deglitch
Deglitch
Deglitch

Avalon
Interface

reset_in0
reset_in1
reset_in2
reset_in M

reset_dsrt_qual0
reset_dsrt_qual1
reset_dsrt_qual2
reset_dsrt_qual N

reset_in_sync

assrt_en

reset_logging
CSR_CONTROL(csr_*)
CSR_MASK/PVR

enable
done
enable
done

set_reset[N :0]

dr_reset[N :0]

reset_out0
reset_out1
reset_out2
reset_out N

Reset Sequencer

Parameter:
DSRT_QUALCNT_(0:N)

Parameter:
MIN_ASRT_TIME

Parameter:
ASRT_DELAY(0:N)

Parameter:
DSRT_DELAY(0:N)
ENABLE_DEASSERTION_INPUT_QUAL(0:N)

Reset Controller—Reused reset controller block. It synchronizes the reset inputs into one and feeds into the main FSM of the sequencer block.
Sync—Synchronization block (double flipflop).
Deglitch—Deglitch block. This block waits for a signal to be at a level for X clocks before propagating the input to the output.
CSR—This block contains the CSR Avalon interface and related CSR register and control block in the sequencer.
Main FSM—Main sequencer. This block determines when assertion/deassertion and assertion hold timing occurs.
[A/D]SRT SEQ—Generic sequencer block that sequences out assertion/deassertion of reset from 0:N. The block has multiple counters that saturate
upon reaching count.
RESET_OUT—Controls the end output via:
– Set/clear from the ASRT_SEQ/DSRT_SEQ.
– Masking/forcing from CSR controls.
– Remap of numbering (parameterization).

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

318

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.6.4.1. Reset Sequencer Parameters

Table 89. Reset Sequencer Parameters

Parameter Description

Number of reset outputs Sets the number of output resets to be sequenced, which is the number of output reset
signals defined in the component with a range of 2 to 10.

Number of reset inputs Sets the number of input reset signals to be sequenced, which is the number of input
reset signals defined in the component with a range of 1 to 10.

Minimum reset assertion time Specifies the minimum assertion cycles between the assertion of the last sequenced
reset, and the deassertion of the first sequenced reset. The range is 0 to 1023.

Enable Reset Sequencer CSR Enables CSR functionality of the Reset Sequencer through an Avalon interface.

reset_out# Lists the reset output signals. Set the parameters in the other columns for each reset
signal in the table.

ASRT Seq# Determines the order of reset assertion. Enter the values 1, 2, 3, etc. to specify the
required non-overlapping assertion order. This value determines the ASRT_REMAP
value in the component HDL.

ASRT Cycle# Number of cycles to wait before assertion of the reset. The value set here corresponds
to the ASRT_DELAY value in the component HDL. The range is 0 to 1023.

DSRT Seq# Determines the reset order of reset deassertion. Enter the values 1, 2, 3, etc. to
specify the required non-overlapping deassertion order. This value determines the
DSRT_REMAP value in the component HDL.

DSRT Cycle#/Deglitch# Number of cycles to wait before deasserting or deglitching the reset. If the
USE_DRST_QUAL parameter is set to 0, specifies the number of cycles to wait before
deasserting the reset. If USE_DSRT_QUAL is set to1, specifies the number of cycles
to deglitch the input reset_dsrt_qual signal. This value determines either the
DSRT_DELAY, or the DSRT_QUALCNT value in the component HDL, depending on the
USE_DSRT_QUAL parameter setting. The range is 0 to 1023.

USE_DSRT_QUAL If you set USE_DSRT_QUAL to 1, the deassertion sequence waits for an external
input signal for sequence qualification instead of waiting for a fixed delay count. To use
a fixed delay count for deassertion, set this parameter to 0.

5.6.4.2. Reset Sequencer Timing Diagrams

Figure 236. Basic Sequencing

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

319

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 237. Sequencing with USE_DSRT_QUAL Set

5.6.4.3. Reset Sequencer CSR Registers

The Reset Sequencer's CSR registers provide the following functionality:

• Support reset logging

— Ability to identify which reset is asserted.

— Ability to determine whether any reset is currently active.

• Support software triggered resets

— Ability to generate reset by writing to the register.

— Ability to disable assertion or deassertion sequence.

• Support software sequenced reset

— Ability for the software to fully control the assertion/deassertion sequence by
writing to registers and stepping through the sequence.

• Support reset override

— Ability to assert a specific component reset through software.

Table 90. Reset Sequencer CSR Register Map

Register Offset Width Reset Value Description

Status Register 0x00 32 0x0 The Status register indicates which
sources are allowed to cause a reset.

Interrupt Enable Register 0x04 32 0x0 The Interrupt Enable register bits
enable events triggering the IRQ of the
reset sequencer.

Control Register 0x08 32 0x0 The Control register allows you to
control the Reset Sequencer.

Software Sequenced Reset
Assert Control Register

0x0C 32 0x3FF You can program the Software
Sequenced Reset Assert control
register to control the reset assertion
sequence.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

320

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register Offset Width Reset Value Description

Software Sequenced Reset
Deassert Control Register

0x10 32 0x3FF You can program the Software
Sequenced Reset Deassert register to
control the reset deassertion sequence.

Software Direct
Controlled Resets

0x14 32 0X0 You can write a bit to 1 to assert the
reset_outN signal, and to 0 to deassert
the reset_outN signal.

Software Reset Masking 0x18 32 0x0 Masking off (writing 1) to a reset_outN
"Reset Mask Enable" signal prevents
the corresponding reset from being
asserted. Writing a bit to 0 to a reset mask
enable signal allows assertion of
reset_outN.

5.6.4.3.1. Reset Sequencer Status Register

The Status register indicates which sources are allowed to cause a reset.

You can clear bits by writing 1 to the bit location. The Reset Sequencer ignores
attempts to write bits with a value of 0. If the sequencer is reset (power-on-reset), all
bits are cleared, except the power-on-reset bit.

Table 91. Values for the Status Register at Offset 0x00

Bit Attribute Default Description

31 RO 0 Reset Active—Indicates that the sequencer is currently active in reset
sequence (assertion or deassertion).

30 RW1C 0 Reset Asserted and waiting for SW to proceed—Set when
there is an active reset assertion, and the next sequence is waiting for the
software to proceed.
Only valid when the Enable SW sequenced reset assert option is
turned on.

29 RW1C 0 Reset Deasserted and waiting for SW to proceed—Set when
there is an active reset deassertion, and the next sequence is waiting for
the software to proceed.
Only valid when the Enable SW sequenced reset deassert option is
turned on.

28:26 Reserved.

25:16 RW1C 0 Reset deassertion input qualification signal
reset_dsrt_qual [9:0] status—Indicates that the reset
deassertion's input signal qualification signal is set. This bit is set on the
detection of assertion of the signal.

15:12 Reserved.

11 RW1C 0 reset_in9 was triggered—Indicates that reset_in9 triggered the
reset. Software clears this bits by writing 1 to this location.

10 RW1C 0 reset_in8 was triggered—Indicates that reset_in8 triggered the
reset. Software clears this bit by writing 1 to this location.

9 RW1C 0 reset_in7 was triggered—Indicates that reset_in7 triggered the
reset. Software clears this bit by writing 1 to this location.

8 RW1C 0 reset_in6 was triggered—Indicates that reset_in6 triggered the
reset. Software clears this bit by writing 1 to this location.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

321

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Attribute Default Description

7 RW1C 0 reset_in5 was triggered—Indicates that reset_in5 triggered the
reset. Software clears this bit by writing 1 to this location.

6 RW1C 0 reset_in4 was triggered—Indicates that reset_in4 triggered the
reset. Software clears this bit by writing 1 to this location.

5 RW1C 0 reset_in3 was triggered—Indicates that reset_in3 triggered the
reset. Software clears this bit by writing 1 to this location.

4 RW1C 0 reset_in2 was triggered—Indicates that reset_in2 triggered the
reset. Software clears this bit by writing 1 to this location.

3 RW1C 0 reset_in1 was triggered—Indicates that reset_in1 triggered the
reset. Software clears this bit by writing 1 to this location.

2 RW1C 0 reset_in0 was triggered—Indicates that reset_in0 triggered.
Software clears this bit by writing 1 to this location.

1 RW1C 0 Software-triggered reset—Indicates that the software-triggered
reset is set by the software, and triggering a reset.

0 RW1C 0 Power-on-reset was triggered—Asserted whenever the reset to the
sequencer is triggered. This bit is NOT reset when sequencer is reset.
Software clears this bit by writing 1 to this location.

5.6.4.3.2. Reset Sequencer Interrupt Enable Register

The Interrupt Enable register bits enable events triggering the IRQ of the reset
sequencer.

Table 92. Values for the Interrupt Enable Register at Offset 0x04

Bit Attribute Default Description

31 Reserved.

30 RW 0 Interrupt on Reset Asserted and waiting for SW to
proceed enable. When set, the IRQ is set when the sequencer is waiting
for the software to proceed in an assertion sequence.

29 RW 0 Interrupt on Reset Deasserted and waiting for SW to
proceed enable. When set, the IRQ is set when the sequencer is waiting
for the software to proceed in a deassertion sequence.

28:26 Reserved.

25:16 RW 0 Interrupt on Reset deassertion input qualification
signal reset_dsrt_qual_[9:0] status— When set, the IRQ is set
when the reset_dsrt_qual[9:0] status bit (per bit enable) is set.

15:12 Reserved.

11 RW 0 Interrupt on reset_in9 Enable—When set, the IRQ is set when the
reset_in9 trigger status bit is set.

10 RW 0 Interrupt on reset_in8 Enable—When set, the IRQ is set when the
reset_in8 trigger status bit is set.

9 RW 0 Interrupt on reset_in7 Enable—When set, the IRQ is set when the
reset_in7 trigger status bit is set.

8 RW 0 Interrupt on reset_in6 Enable—When set, the IRQ is set when the
reset_in6 trigger status bit is set.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

322

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Attribute Default Description

7 RW 0 Interrupt on reset_in5 Enable—When set, the IRQ is set when the
reset_in5 trigger status bit is set.

6 RW 0 Interrupt on reset_in4 Enable—When set, the IRQ is set when the
reset_in4 trigger status bit is set.

5 RW 0 Interrupt on reset_in3 Enable—When set, the IRQ is set when the
reset_in3 trigger status bit is set.

4 RW 0 Interrupt on reset_in2 Enable—When set, the IRQ is set when the
reset_in2 trigger status bit is set.

3 RW 0 Interrupt on reset_in1 Enable—When set, the IRQ is set when the
reset_in1 trigger status bit is set.

2 RW 0 Interrupt on reset_in0 Enable—When set, the IRQ is set when the
reset_in0 trigger status bit is set.

1 RW 0 Interrupt on Software triggered reset Enable—When set, the
IRQ is set when the software triggered reset status bit is set.

0 RW 0 Interrupt on Power-On-Reset Enable—When set, the IRQ is set
when the power-on-reset status bit is set.

5.6.4.3.3. Reset Sequencer Control Register

The Control register allows you to control the Reset Sequencer.

Table 93. Values for the Control Register at Offset 0x08

Bit Attribute Default Description

31:3 Reserved.

2 RW 0 Enable SW sequenced reset assert—Enable a software sequenced
reset assert sequence. Timer delays and input qualification are ignored,
and only the software can sequence the assert.

1 RW 0 Enable SW sequenced reset deassert—Enable a software
sequenced reset deassert sequence. Timer delays and input qualification
are ignored, and only the software can sequence the deassert.

0 WO 0 Initiate Reset Sequence—To trigger the hardware sequenced warm
reset, the Reset Sequencer writes this bit to 1 a single time. The Reset
Sequencer verifies that Reset Active is 0 before setting this bit, and
always reads the value 0. To monitor this sequence, verify that Reset
Active is asserted, and then subsequently deasserted.

5.6.4.3.4. Reset Sequencer Software Sequenced Reset Assert Control Register

You can program the Software Sequenced Reset Assert control register to
control the reset assertion sequence.

When the corresponding enable bit is set, the sequencer stops when the desired reset
asserts, and then sets the Reset Asserted and waiting for SW to proceed
bit. The Reset Sequencer proceeds only after the Reset Asserted and waiting
for SW to proceed bit is cleared.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

323

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 94. Values for the Reset Sequencer Software Sequenced Reset Assert Control
Register at Offset 0x0C

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0x3FF Per-reset SW sequenced reset assert enable—This is a per-bit
enable for SW sequenced reset assert.
If the register's bitN is set, the sequencer sets the bit30 of the status
register when a resetN is asserted. It then waits for the bit30 of the
status register to clear before proceeding with the sequence. By default,
all bits are enabled (fully SW sequenced).

5.6.4.3.5. Reset Sequencer Software Sequenced Reset Deassert Control Register

You can program the Software Sequenced Reset Deassert register to control
the reset deassertion sequence.

When the corresponding enable bit is set, the sequencer stops when the desired reset
asserts, and then sets the Reset Deasserted and waiting for SW to
proceed bit. The Reset Sequencer proceeds only after the Reset Deasserted and
waiting for SW to proceed bit is cleared.

Table 95. Values for the Reset Sequencer Software Sequenced Reset Deassert Control
Register at Offset 0x10

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0x3FF Per-reset SW sequenced reset deassert enable—This is a per-
bit enable for SW-sequenced reset deassert. If bitN of this register is set,
the sequencer sets bit29 of the Status Register when a resetN is
asserted. It then waits for the bit29 of the status register to clear before
proceeding with the sequence. By default, all bits are enabled (fully SW
sequenced).

5.6.4.3.6. Reset Sequencer Software Direct Controlled Resets

You can write a bit to 1 to assert the reset_outN signal, and to 0 to deassert the
reset_outN signal.

Table 96. Values for the Software Direct Controlled Resets at Offset 0x14

Bit Attribute Default Description

31:26 Reserved.

25:16 WO 0 Reset Overwrite Trigger Enable—This is a per-bit control trigger
bit for the overwrite value to take effect.

15:10 Reserved.

9:0 WO 0 reset_outN Reset Overwrite Value—This is a per-bit control of the
reset_out bit. The Reset Sequencer can use this to forcefully drive the
reset to a specific value. A value of 1 sets the reset_out. A value of 0
clears the reset_out. A write to this register only takes effect if the
corresponding trigger bit in this register is set.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

324

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.6.4.3.7. Reset Sequencer Software Reset Masking

Masking off (writing 1) to a reset_outN "Reset Mask Enable" signal prevents
the corresponding reset from being asserted. Writing a bit to 0 to a reset mask enable
signal allows assertion of reset_outN.

Table 97. Values for the Reset Sequencer Software Reset Masking at Offset 0x18

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0 reset_outN "Reset Mask Enable"—This is a per-bit control to mask
off the reset_outN bit. Software Reset Masking prevents the reset bit
from being asserted during a reset assertion sequence. If reset_out is
already asserted, it does not deassert the reset.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

325

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.6.4.4. Reset Sequencer Software Flows

5.6.4.4.1. Reset Sequencer (Software-Triggered) Flow

Figure 238. Reset Sequencer (Software-Triggered) Flow Diagram

No

1

Software clears all pending statuses by
writing all 1s to the Status Register.

Software initiates reset by writing a 1
 to the Control Register’s initiate reset sequence bit.

IRQ Asserted?

Reset Sequencer completed
initiating a reset through the sequencer.

SW reads
Status Register’s

reset active

Start

SW reads
Status Register’s

SW-triggered reset

End

SW reads
Status Register’s

reset active
keep polling

keep polling

keep polling

keep polling

Software writes 1 to Status Register’s
SW-Triggered reset to clear it

Yes

1

0

1

0

0

Related Information

• Reset Sequencer Status Register on page 321

• Reset Sequencer Control Register on page 323

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

326

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.6.4.4.2. Reset Assert Flow

The following flow sequence occurs for a Reset Assert Flow:

• A reset is triggered either by the software, or when input resets to the Reset
Sequencer are asserted.

• The IRQ is asserted, if the IRQ is enabled.

• Software reads the Status register to determine which reset was triggered.

5.6.4.4.3. Reset Deassert Flow

The following flow sequence occurs for a Reset Deassert Flow:

• When a reset source is deasserted, or when the reset assert sequence has
completed without pending resets asserted, the deassertion flow is initiated.

• The IRQ is asserted, if the IRQ is enabled.

• Software reads the Status Register to determine which reset was triggered.

5.6.4.4.4. Reset Assert (Software Sequenced) Flow

Figure 239. Reset Assert (Software Sequenced) Flow

SETUP RUNTIME

Reset Sequencer asserts an IRQ

Hardware sequences a reset until the point where
 Reset Sequencer must wait for software

Software waits until reset assert by checking Status Register’s
 Reset asserted and waiting for SW to proceed bit is set

Software clears Status Register’s
Reset asserted and waiting for SW to proceed bit

Reset Sequencer sets IRQ
on the next Reset Sequencer trigger point (if any)

SW writes to SW sequenced Reset Assert control register’s
Per-reset SW sequenced reset assert enable

Software sets Control Register’s
Enable SW sequenced reset assert bit

Software defines which reset sequence controls
via Control register’s

Per-reset SW sequenced reset assert enable

Software sets Interrupt Enable register’s
Interrupt on Reset Asserted and waiting

for SW to proceed bit

Related Information

• Reset Sequencer Control Register on page 323

• Reset Sequencer Software Sequenced Reset Assert Control Register on page 323

• Reset Sequencer Interrupt Enable Register on page 322

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

327

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Reset Sequencer Status Register on page 321

5.6.4.4.5. Reset Deassert (Software Sequenced) Flow

The sequence and flow is similar to the Reset Assert (SW Sequenced) flow,
though, this flow uses the reset deassert registers/bits instead of the reset
assert registers/bits.

Related Information

Reset Assert (Software Sequenced) Flow on page 327

5.7. Conduits

You can use the conduit interface type for interfaces that do not fit any of the other
interface types, and to group any arbitrary collection of signals. Like other interface
types, you can export or connect conduit interfaces.

The PCI Express-to-Ethernet example in Creating a System with Platform Designer is
an example of using a conduit interface for export. You can declare an associated
clock interface for conduit interfaces in the same way as memory-mapped interfaces
with the associatedClock.

To connect two conduit interfaces inside Platform Designer, the following conditions
must be met:

• The interfaces must match exactly with the same signal roles and widths.

• The interfaces must be the opposite directions.

• Clocked conduit connections must have matching associatedClocks on each of
their endpoint interfaces.

Note: To connect a conduit output to more than one input conduit interface, you can create a
custom component. The custom component could have one input that connects to two
outputs, and you can use this component between other conduits that you want to
connect. For information about the Avalon Conduit interface, refer to the Avalon
Interface Specifications

Related Information

• Avalon Interface Specifications

• Creating a System with Platform Designer on page 11

5.8. Interconnect Pipelining

You can use pipeline stages within the interconnect to increase a design's fMAX.
Insertion of pipeline stages reduces the combinational logic depth, while incurring
additional latency and logic use.(13)

(13) Each pipeline stage requires two registers and some control logic to store write data, address,
and control signals on the command path, as well as response, data, and control signals on the
response path.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

328

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Limit interconnect pipeline stages to option on the Domains tab allows you
to specify the maximum number of fixed location Avalon pipeline stages that Platform
Designer can automatically insert in the command and response path, as Figure 240
on page 329 illustrates. You can specify between 0 to 4 pipeline stages, where 0
means that the interconnect has a combinational datapath. Choosing 3 or 4 pipeline
stages can significantly increase the logic utilization of the system. Limit
interconnect pipeline stages to is specific to each Platform Designer system or
subsystem.

Note: Enabling Limit interconnect pipeline stages to only allows insertion up to the limit
you specify. However, the actual insertion of pipelines depends upon the existence of
certain interconnect components. For example, single-agent systems do not have
multiplexers; therefore, multiplexer pipelining does not occur. In an extreme case of a
single-host to single-agent system, no pipelining occurs, regardless of the value of the
Limit interconnect pipeline stages to option.

Figure 240. Pipeline Placement in Arbitration Logic for Command Path
The following example shows the location of up to four potential pipeline stages in the interconnect command
path. Platform Designer can potentially place pipeline stages before the input to the demultiplexer, at the
output of the demultiplexer, between the arbiter and the multiplexer, and at the output of the multiplexer. The
response path has one less potential pipeline location than the command path.

Mux3

Mux2

Logic in Avalon Streaming Command Network

Arbiter
agent 0

Host 0

= Pipeline Before Demultiplexer Input

Arbiter
agent 2

Arbiter
agent 3

Host 1

Host 2

Host 3

Arbiter
agent 1

host 0
Command

packet

host 1
Command

packet

host 2
Command

packet

host 3
Command

packet

= Pipeline at Demultiplexer Output

= Pipeline Between Arbiter and Multiplexer

= Pipeline at Multiplexer Output

Mux0

Mux1

If the Limit interconnect pipeline stages to setting does not provide enough fine
control over the placement of pipelines, you can explicitly adjust the number of
pipeline stages by clicking Show System with Interconnect on the Domains tab,
as Add Pipeline Stages to the Interconnect Schematic on page 330 describes.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

329

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Previewing the System Interconnect on page 74

• Inserting Pipeline Stages to Increase System Frequency on page 214

5.8.1. Add Pipeline Stages to the Interconnect Schematic

You can view and enable pipelinable locations in a graphical schematic of the Platform
Designer interconnect. The Memory-Mapped Interconnect tab allows you to adjust
pipeline connections in the Platform Designer command and response interconnect.

Note: You can specify the Limit interconnect pipeline stages to option to automatically
insert from zero to a maximum of four pipeline stages, rather than adding pipeline
stages explicitly in the schematic. Use the schematic if you require finer control than
the option provides. Add pipelines to the interconnect schematic only for complete
systems. When Enable all pipeline stages is set to TRUE, the Limit interconnect
pipeline stages to option is disabled, and you cannot edit pipelines in the schematic.

Figure 241. Available Pipeline Locations in Memory Mapped Interconnect Schematic

Adds Pipeline To All Available Locations Removes All Added Pipelines Removes All Stale Pipelines

Available Pipeline Locations

1. In the Platform Designer software, open a system that includes two Avalon
memory mapped pipeline bridge instances, with one instance functioning as the
host, and the other instance functioning as the agent.

2. Click View ➤ Domains. The Domains tab displays the memory mapped domains
in the system.

3. Under Interconnect Parameters, ensure that Enable all pipeline stages is set
to False. When set to True, this option disables manual pipeline insertion.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

330

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 242. Domains Tab

4. In the Domains tab, click Show System With Interconnect. The System with
Platform Designer Interconnect window displays the available pipeline locations on
the Command and Response tabs.

5. Specify the placement of pipeline stages in the interconnect schematic:

• To view all locations that can accept a pipeline stage, enable Show
Pipelinable Locations.

• To add a pipeline to an available location, right-click the location and enable
Pipelined.

• To add pipelines at all available locations, click Add All Pipelines.

• To remove all pipelines you add, click Remove All Pipelines.

• To remove pipelines that have become stale due to changes since enabling a
pipeline, click Remove Stale Pipelines. If you make changes to the original
system's connectivity after manually pipelining an interconnect, the inserted
pipelines may become invalid. Platform Designer displays warning messages
when you generate the system if invalid pipeline stages are detected. You can
remove invalid pipeline stages with the Remove Stale Pipelines option in the
Memory-Mapped Interconnect tab. Do not make changes to the system's
connectivity after manual pipeline insertion.

Note: Review manually-inserted pipelines when upgrading to newer versions of Platform
Designer. Manually-inserted pipelines in one version of Platform Designer may not be
valid in a future version.

5.9. Error Correction Coding (ECC) in Platform Designer
Interconnect

Error Correction Coding (ECC) logic allows the Platform Designer interconnect to
detect and correct errors. Enabling ECC improves data integrity in memory blocks.
Platform Designer supports ECC protection for Read Data FIFO (rdata_FIFO)
instances only.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

331

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

As transistors become smaller, computer hardware is more susceptible to data
corruption. Data corruption causes Single Event Upsets (SEUs), and increases the
probability of Failures in Time (FIT) rates in computer systems. SEU events without
error notification can cause the system to be stuck in an unknown response status,
and increase the FIT rate.

Before writing data to the memory device, the ECC logic encodes the data bus with a
Hamming code. Then, the ECC logic decodes and performs error checking on the data
output.

Platform Designer interconnect sends uncorrectable errors arising from memory as
DECODEERROR (DECERR) on the Avalon response bus.

Figure 243. High-Level Implementation of rdata_FIFO with ECC Enabled

ECC Encode ECC Decode
Memory
ElementData Input Data and ECC

Encoded Bits
Data and ECC
Encoded Bits

Data Output

Note: Enabling ECC logic may increase logic utilization and cause lower fMAX.

Related Information

Read and Write Responses on page 276

5.10. AMBA 3 AXI Protocol Specification Support (version 1.0)

Platform Designer allows memory-mapped connections between AMBA 3 AXI
components, AMBA 3 AXI and AMBA 4 AXI components, and AMBA 3 AXI and Avalon
interfaces with unique or exceptional support.

Refer to the AMBA 3 Protocol Specifications on the ARM website for more information.
(14)

Related Information

• Arm AMBA Protocol Specifications

• Avalon Agent and AXI Subordinate Network Interfaces on page 261

5.10.1. Channels

Platform Designer has the following support and restrictions for AMBA 3 AXI channels.

(14) This document now refers to the AXI "manager" and "subordinate" to replace the former
terms, as the latest AMBA® AXI and ACE Protocol Specification describes.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

332

https://developer.arm.com/documentation/
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.10.1.1. Read and Write Address Channels

Most signals are allowed. However, the following limitations are present in Platform
Designer 14.0:

• Supports 64-bit addressing.

• ID width limited to 18-bits.

• HPS-FPGA host interface has a 12-bit ID.

5.10.1.2. Write Data, Write Response, and Read Data Channels

Most signals are allowed. However, the following limitations are present in Platform
Designer 14.0:

• Data widths limited to a maximum of 1024-bits

• Limited to a fixed byte width of 8-bits

5.10.1.3. Low Power Channel

Low power extensions are not supported in Platform Designer, version 14.0.

5.10.2. Cache Support

AWCACHE and ARCACHE are passed to an AXI subordinate unmodified. (15)

5.10.2.1. Bufferable

Platform Designer interconnect treats AXI transactions as non-bufferable. All
responses must come from the terminal subordinate.

When connecting to Avalon memory mapped agents, since they do not have write
responses, the following exceptions apply:

• For Avalon memory mapped agents, the write response is generated by the AXI
subordinate agent once the write transaction is accepted by the subordinate. The
following limitation exists for an Avalon bridge:

• For an Avalon bridge, the response is generated before the write reaches the
endpoint. Be aware of this limitation and avoid multiple paths past the bridge to
any endpoint subordinate, or only perform bufferable transactions to an Avalon
bridge.

5.10.2.2. Cacheable (Modifiable)

Platform Designer interconnect acknowledges the cacheable (modifiable) attribute of
AXI transactions.

(15) This document now refers to the AXI "manager" and "subordinate" to replace the former
outmoded terms. Refer to the AMBA AXI and ACE Protocol Specification.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

333

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

It does not change the address, burst length, or burst size of non-modifiable
transactions, with the following exceptions:

• Platform Designer considers a wide transaction to a narrow agent as modifiable
because the size requires reduction.

• Platform Designer may consider AXI read and write transactions as modifiable
when the destination is an Avalon agent. The AXI transaction may be split into
multiple Avalon transactions if the agent is unable to accept the transaction. This
may occur because of burst lengths, narrow sizes, or burst types.

Platform Designer ignores all other bits, for example, read allocate or write allocate
because the interconnect does not perform caching. By default, Platform Designer
considers Avalon host transactions as non-bufferable and non-cacheable, with the
allocate bits tied low.

5.10.3. Security Support

TrustZone refers to the security extension of the ARM architecture, which includes the
concept of "secure" and "non-secure" transactions, and a protocol for processing
between the designations.

The interconnect passes the AWPROT and ARPROT signals to the endpoint subordinate
without modification. It does not use or modify the PROT bits.

Refer to Manage System Security in Creating a System with Platform Designer for
more information about secure systems and the TrustZone feature.

Related Information

Configuring Platform Designer System Security on page 79

5.10.4. Atomic Accesses

Exclusive accesses are supported for AXI subordinates by passing the lock, transaction
ID, and response signals from manager to subordinate, with the limitation that
subordinates that do not reorder responses. Avalon agents do not support exclusive
accesses, and always return OKAY as a response. Locked accesses are also not
supported.

5.10.5. Response Signaling

Full response signaling is supported. Avalon agents always return OKAY as a response.

5.10.6. Ordering Model

Platform Designer interconnect provides responses in the same order as the
commands are issued.

To prevent reordering, for subordinates that accept reordering depths greater than 1,
Platform Designer does not transfer the transaction ID from the manager, but provides
a constant transaction ID of 0. For subordinates that do not reorder, Platform Designer
allows the transaction ID to be transferred to the subordinate. To avoid cyclic
dependencies, Platform Designer supports a single outstanding subordinate scheme
for both reads and writes. Changing the targeted subordinate before all responses
have returned stalls the manager, regardless of transaction ID.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

334

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.10.6.1. AXI and Avalon Ordering

There is a potential read-after-write risk when Avalon hosts transact to AXI
subordinates.

According to the AMBA Protocol Specifications, there is no ordering requirement
between reads and writes. However, Avalon has an implicit ordering model that
requires transactions from a host to the same AXI subordinate to be in order. The
Avalon interconnect always processes the transactions in order. The interconnect
blocks transactions if required. The interconnect prevents writing to the AXI
subordinate when read is pending.

5.10.7. Data Buses

Narrow bus transfers are supported. AXI write strobes can have any pattern that is
compatible with the address and size information. Intel recommends that transactions
to Avalon agents follow Avalon byteenable limitations for maximum compatibility.

Note: Byte 0 is always bits [7:0] in the interconnect, following AXI's and Avalon's byte
(address) invariance scheme.

5.10.8. Unaligned Address Commands

Unaligned address commands are commands with addresses that do not conform to
the data width of a subordinate. Since Avalon memory mapped subordinates accept
only aligned addresses, Platform Designer modifies unaligned commands from AXI
managers to the correct data width. Platform Designer must preserve commands
issued by AXI managers when passing the commands to AXI subordinates.

Note: Unaligned transfers are aligned if downsizing occurs. For example, when downsizing to
a bus width narrower than that required by the transaction size, AWSIZE or ARSIZE,
the transaction must be modified.

5.10.9. Avalon and AXI Transaction Support

Platform Designer supports transactions between Avalon and AXI interfaces with the
following limitations in this section.

Related Information

Avalon Interface Specifications

5.10.9.1. Transaction Cannot Cross 4KB Boundaries

When an Avalon host issues a transaction to an AXI subordinate, the transaction
cannot cross 4KB boundaries. Non-bursting Avalon hosts already follow this boundary
restriction.

When connecting an Avalon memory-mapped interface FPGA host to an AXI
subordinate in Platform Designer, you must ensure that the bursts do not exceed the
AXI3 or AXI4 4KB boundary restriction for burst transactions.

5.10.9.2. Adjacent Bytelanes with Partial Width Transactions

The following limitations apply to Avalon to AXI partial width transactions with use of
adjacent bytelanes:

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

335

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Avalon interfaces only support adjacent bytelanes if the interface requires more
than one byte enable. For example: 1100, 0011.

• AXI fully supports use of bytelanes that are not adjacent. For example: 1010,
0101.

Related Information

Avalon Interface Specifications

5.10.9.3. Handling Read Side Effects

Read side effects can occur when more bytes than necessary are read from the
subordinate, and the unwanted data that are read are later inaccessible on
subsequent reads. For write commands, the correct byteenable paths are asserted
based on the size of the transactions. For read commands, narrow-sized bursts are
broken up into multiple non-bursting commands, and each command with the correct
byteenable paths asserted.

Platform Designer always assumes that the byteenable is asserted based on the size
of the command, not the address of the command. The following scenarios are
examples:

• For a 32-bit AXI manager that issues a read command with an unaligned address
starting at address 0x01, and a burstcount of 2 to a 32-bit Avalon agent, the
starting address is: 0x00.

• For a 32-bit AXI manager that issues a read command with an unaligned address
starting at address 0x01, with 4-bytes to an 8-bit AXI subordinate, the starting
address is: 0x00.

5.11. AMBA 3 APB Protocol Specification Support (version 1.0)

APB (Advanced Peripheral Bus) interface is optimized for minimal power consumption
and reduced interface complexity. You can use APB to interface to peripherals which
are low-bandwidth and do not require the high performance of a pipelined bus
interface. Signal transitions are sampled at the rising edge of the clock to enable the
integration of APB peripherals easily into any design flow.

Platform Designer allows connections between APB components, and AMBA 3 AXI,
AMBA 4 AXI, and Avalon memory-mapped interfaces. The following sections describe
unique or exceptional APB support in the Platform Designer software. (16)

Related Information

Arm AMBA Protocol Specifications

5.11.1. Bridges

With APB, you cannot use bridge components that use multiple PSELx in Platform
Designer. As a workaround, you can group PSELx, and then send the packet to the
subordinate directly.

(16) This document now refers to the AXI "manager" and "subordinate" to replace the former
terms, as the latest AMBA® AXI and ACE Protocol Specification describes.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

336

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
https://developer.arm.com/documentation/
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel recommends as an alternative that you instantiate the APB bridge and all the
APB subordinates in Platform Designer. You should then connect the subordinate side
of the bridge to any high speed interface and connect the manager side of the bridge
to the APB subordinates. Platform Designer creates the interconnect on either side of
the APB bridge and creates only one PSEL signal.

Alternatively, you can connect a bridge to the APB bus outside of Platform Designer.
Use an AXI bridge to export the AXI manager to the top-level, and then connect this
AXI interface to the subordinate side of the APB bridge. Alternatively, instantiate the
APB bridge in Platform Designer and export APB manager to the top- level, and from
there connect to APB bus outside of Platform Designer.

5.11.2. Burst Adaptation

APB is a non-bursting interface. Therefore, for any AXI manager or Avalon host with
bursting support, a burst adapter is inserted before the agent or subordinate interface,
and the burst transaction is translated into a series of non-bursting transactions before
reaching the APB subordinate or agent.

5.11.3. Width Adaptation

Platform Designer allows different data width connections with APB. When connecting
a wider manager to a narrower APB subordinate, the width adapter converts the wider
transactions to a narrower transaction to fit the APB subordinate data width. APB does
not support Write Strobe. Therefore, when you connect a narrower transaction to a
wider APB subordinate, the subordinate cannot determine which byte lane to write. In
this case, the subordinate data may be overwritten or corrupted.

5.11.4. Error Response

Error responses are returned to the manager. Platform Designer performs error
mapping if the manager is an AMBA 3 AXI or AMBA 4 AXI manager, for example,
RRESP/BRESP= SLVERR. For the case when the subordinate does not use SLVERR
signal, an OKAY response is sent back to manager by default.

5.12. AMBA 4 AXI Memory-Mapped Interface Support (version 2.0)

Platform Designer allows memory-mapped connections between AMBA 4 AXI
components, AMBA 4 AXI and AMBA 3 AXI components, and AMBA 4 AXI and Avalon
interfaces with unique or exceptional support. (17)

5.12.1. Burst Support

Platform Designer supports INCR bursts up to 256 beats. Platform Designer converts
long bursts to multiple bursts in a packet with each burst having a length less than or
equal to MAX_BURST when going to AMBA 3 AXI or Avalon agents.

For narrow-sized transfers, bursts with Avalon agents as destinations are shortened to
multiple non-bursting transactions in order to transmit the correct address to the
agents, since Avalon agents always perform full-sized datawidth transactions.

(17) This document now refers to the AXI "manager" and "subordinate" to replace the former
terms, as the latest AMBA® AXI and ACE Protocol Specification describes.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

337

https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bursts with AMBA 3 AXI subordinates as destinations are shortened to multiple bursts,
with each burst length less than or equal to 16. Bursts with AMBA 4 AXI subordinates
as destinations are not shortened.

5.12.2. QoS

Platform Designer routes 4-bit QoS signals (Quality of Service Signaling) on the read
and write address channels directly from the AXI manager or Avalon host to the AXI
subordinate or Avalon agent, respectively.

Transactions from AXI managers and Avalon hosts have a default value of 4'b0000,
which indicates that the transactions are not part of the QoS flow. QoS values are not
used for subordinates or agents that do not support QoS.

There are no programmable QoS registers or compile-time QoS options for a manager
or host that overrides its real or default value.

5.12.3. Regions

AMBA 4 AXI subordinates with AXREGION signals are allowed. AXREGION signals are
driven with the default value of 0x0, and are limited to one entry in a manager's
address map.

5.12.4. Write Response Dependency

Write response dependency as specified in the Arm AMBA Protocol Specifications for
AMBA 4 AXI is not supported.

Related Information

Arm AMBA Protocol Specifications

5.12.5. AWCACHE and ARCACHE

For AMBA 4 AXI, Platform Designer meets the requirement for modifiable and non-
modifiable transactions. The modifiable bit refers to ARCACHE[1]and AWCACHE[1].

5.12.6. Width Adaptation and Data Packing in Platform Designer

Data packing applies only to systems where the data width of Avalon hosts or AXI
managers is less than the data width of Avalon agents or AXI subordinates,
respectively.

The following rules apply:

• Data packing is supported when hosts and agents are Avalon memory mapped.

• Data packing is not supported when any manager or subordinate is an AMBA 3
AXI, AMBA 4 AXI, or APB component.

For example, for a read/write command with a 32-bit host connected to a 64-bit
agent, and a transaction of 2 burstcounts, Platform Designer sends 2 separate read/
write commands to access the 64-bit data width of the agent.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

338

https://developer.arm.com/documentation/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.12.7. Ordering Model

Platform Designer does not support out of order command response. Platform
Designer processes AXI subordinates as device non-bufferable memory types.

The following describes the required behavior for the device non-bufferable memory
type:

• Write response must be obtained from the final destination.

• Read data must be obtained from the final destination

• Transaction characteristics must not be modified.

• Reads must not be pre-fetched. Writes must not be merged.

• Non-modifiable read and write transactions.

(AWCACHE[1] = 0 or ARCACHE[1] = 0) from the same ID to the same
subordinate must remain ordered. The interconnect always provides responses in the
same order as the commands issued. subordinates that support reordering provide a
constant transaction ID to prevent reordering. AXI subordinates that do not reorder
are provided with transaction IDs, which allows exclusive accesses for such
subordinates.

5.12.8. Read and Write Allocate

Read and write allocate does not apply to Platform Designer interconnect, which does
not have caching features, and always receives responses from an endpoint.

5.12.9. Locked Transactions

Locked transactions are not supported for Platform Designer, version 14.0.

5.12.10. Memory Types

For AMBA 4 AXI, Platform Designer processes transactions as though the endpoint is a
device memory type. For device memory types, using non-bufferable transactions to
force previous bufferable transactions to finish is irrelevant, because Platform Designer
interconnect always identifies transactions as being non-bufferable.

5.12.11. Mismatched Attributes

There are rules for how multiple managers issue cache values to a shared memory
region. The interconnect meets requirements if signals are not modified.

5.12.12. Signals

Platform Designer supports up to 64-bits for the BUSER, WUSER and RUSER sideband
signals. AMBA 4 AXI allows some signals to be omitted from interfaces by aligning
them with the default values as defined in the AMBA Protocol Specifications on the
ARM website.

Related Information

Arm AMBA Protocol Specifications

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

339

https://developer.arm.com/documentation/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.13. AMBA 4 AXI Streaming Interface Support (version 1.0)

5.13.1. Connection Points

Platform Designer allows you to connect an AMBA 4 AXI-Stream interface to another
AMBA 4 AXI-Stream interface.

The connection is point-to-point without adaptation and must be between an
axi4stream_manager and axi4stream_subordinate. Connected interfaces must
have the same port roles and widths.

Non matching manager to subordinate connections, and multiple managers to multiple
subordinates connections are not supported. (18)

5.13.1.1. AMBA 4 AXI Streaming Connection Point Parameters

Table 98. AMBA 4 AXI Streaming Connection Point Parameters

Name Type Description

associatedClock string Name of associated clock interface.

associatedReset string Name of associated reset interface

5.13.1.2. AMBA 4 AXI Streaming Connection Point Signals

Table 99. AMBA 4 AXI-Stream Connection Point Signals

Port Role Width Manager
Direction

Subordinate
Direction

Required

tvalid 1 Output Input Yes

tready 1 Input Output No

tdata(19) 8:4096 Output Input No

tstrb 1:512 Output Input No

tkeep 1:512 Output Input No

tid(20) 1:8 Output Input No

continued...

(18) This document refers to the new AXI "manager" and AXI "subordinate" inclusive terms to
replace outmoded terms, as the latest version of the AMBA® AXI and ACE Protocol
Specification describes.

(19) integer in multiple of bytes

(20) maximum 8-bits

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

340

https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Role Width Manager
Direction

Subordinate
Direction

Required

tdest(21) 1:4 Output Input No

tuser(22) 1:4096 Output Input No

tlast 1 Output Input No

5.13.2. Adaptation

AMBA 4 AXI-Stream adaptation support is not available. AMBA 4 AXI-Stream manager
and subordinate interface signals and widths must match.

5.14. AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)

AMBA 4 AXI-Lite is a sub-set of AMBA 4 AXI. It is suitable for simpler control register-
style interfaces that do not require the full functionality of AMBA 4 AXI. (23)

Platform Designer supports the following AMBA 4 AXI-Lite features:

• Transactions with a burst length of 1.

• Data accesses use the full width of a data bus (32- bit or 64-bit) for data
accesses, and no narrow-size transactions.

• Non-modifiable and non-bufferable accesses.

• No exclusive accesses.

5.14.1. AMBA 4 AXI-Lite Signals

Platform Designer supports all AMBA 4 AXI-Lite interface signals. Signals that are
optional in AMBA 4 are also optional in AMBA 4 AXI-Lite.

Table 100. AMBA 4 AXI-Lite Signals

Global Write Address
Channel

Write Data
Channel

Write Response
Channel

Read Address
Channel

Read Data
Channel

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

- AWADDR WDATA BRESP ARADDR RDATA

- AWPROT WSTRB - ARPROT RRESP

(21) maximum 4-bits

(22) number of bits in multiple of the number of bytes of tdata

(23) This document refers to the new AXI "manager" and AXI "subordinate" inclusive terms to
replace outmoded terms, as the latest version of the AMBA® AXI and ACE Protocol
Specification describes.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

341

https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.14.2. AMBA 4 AXI-Lite Optional Port Support and Interconnect

Platform Designer permits you to omit optional ports on the AMBA 4 AXI-Lite
interface. However, the Platform Designer interconnect does not support the optional
AMBA 4 AXI-Lite signals. The interconnect-facing AMBA 4 AXI-Lite interface must
include all signals in AMBA 4 AXI-Lite Signals.

5.14.3. AMBA 4 AXI-Lite Bus Width

AMBA 4 AXI-Lite managers or subordinates must have either 32-bit or 64-bit bus
widths. Platform Designer interconnect inserts a width adapter if a manager and
subordinate pair have different widths.

5.14.4. AMBA 4 AXI-Lite Outstanding Transactions

AXI-Lite supports outstanding transactions. The options to control outstanding
transactions is set in the parameter editor for the selected component.

5.14.5. AMBA 4 AXI-Lite IDs

AMBA 4 AXI-Lite does not support IDs. Platform Designer performs ID reflection inside
the AXI subordinate agent.

5.14.6. Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-
Lite

5.14.6.1. AMBA 4 AXI-Lite Subordinate Requirements

For an AMBA 4 AXI-Lite subordinate side, the host or manager can be any interface
type, such as an Avalon (with bursting), AMBA 3 AXI, or AMBA 4 AXI. Platform
Designer allows the following connections and inserts adapters, if needed.

• Burst adapter—Avalon and AMBA 3 AXI and AMBA 4 AXI bursting host or
manager require a burst adapter to shorten the burst length to 1 before sending a
transaction to an AMBA 4 AXI-Lite subordinate.

• Platform Designer interconnect uses a width adapter for mismatched data widths.

• Platform Designer interconnect performs ID reflection inside the subordinate
agent.

• An AMBA 4 AXI-Lite subordinate must have an address width of at least 12-bits.

• AMBA 4 AXI-Lite does not have the AXSIZE parameter. Narrow manager to a wide
AMBA 4 AXI-Lite subordinate is not supported. For managers that support narrow-
sized bursts, for example, AMBA 3 AXI and AMBA 4 AXI, a burst to an AMBA 4
AXI-Lite subordinate must have a burst size equal to or greater than the
subordinate's burst size.

5.14.6.2. AMBA 4 AXI-Lite Data Packing

Platform Designer interconnect does not support AMBA 4 AXI-Lite data packing.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

342

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.14.7. AMBA 4 AXI-Lite Response Merging

When Platform Designer interconnect merges SLVERR and DECERR, the error
responses are not sticky. The response is based on priority and the manager always
sees a DECERR. When SLVERR and DECERR are merged, it is based on their priorities,
not stickiness. DECERR receives priority in this case, even if SLVERR returns first.

5.15. Port Roles (Interface Signal Types)

Each interface defines signal roles and their behavior. Many signal roles are optional,
allowing IP component designers the flexibility to select only the signal roles necessary
to implement the required functionality.

5.15.1. AXI Manager Interface Signal Types

Table 101. AXI Manager Interface Signal Types

Name Direction Width

araddr output 1 - 64

arburst output 2

arcache output 4

arid output 1 - 18

arlen output 4

arlock output 2

arprot output 3

arready input 1

arsize output 3

aruser output 1 - 64

arvalid output 1

awaddr output 1 - 64

awburst output 2

awcache output 4

awid output 1 - 18

awlen output 4

awlock output 2

awprot output 3

awready input 1

awsize output 3

awuser output 1 - 64

awvalid output 1

bid input 1 - 18

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

343

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

bready output 1

bresp input 2

bvalid input 1

rdata input 8, 16, 32, 64, 128, 256, 512, 1024

rid input 1 - 18

rlast input 1

rready output 1

rresp input 2

rvalid input 1

wdata output 8, 16, 32, 64, 128, 256, 512, 1024

wid output 1 - 18

wlast output 1

wready input 1

wstrb output 1, 2, 4, 8, 16, 32, 64, 128

wvalid output 1

5.15.2. AXI Subordinate Interface Signal Types

Table 102. AXI Subordinate Interface Signal Types

Name Direction Width

araddr input 1 - 64

arburst input 2

arcache input 4

arid input 1 - 18

arlen input 4

arlock input 2

arprot input 3

arready output 1

arsize input 3

aruser input 1 - 64

arvalid input 1

awaddr input 1 - 64

awburst input 2

awcache input 4

awid input 1 - 18

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

344

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

awlen input 4

awlock input 2

awprot input 3

awready output 1

awsize input 3

awuser input 1 - 64

awvalid input 1

bid output 1 - 18

bready input 1

bresp output 2

bvalid output 1

rdata output 8, 16, 32, 64, 128, 256, 512, 1024

rid output 1 - 18

rlast output 1

rready input 1

rresp output 2

rvalid output 1

wdata input 8, 16, 32, 64, 128, 256, 512, 1024

wid input 1 - 18

wlast input 1

wready output 1

wstrb input 1, 2, 4, 8, 16, 32, 64, 128

wvalid input 1

5.15.3. AMBA 4 AXI Manager Interface Signal Types

Table 103. AMBA 4 AXI manager Interface Signal Types

Name Direction Width

araddr output 1 - 64

arburst output 2

arcache output 4

arid output 1 - 18

arlen output 8

arlock output 1

arprot output 3

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

345

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

arready input 1

arregion output 1 - 4

arsize output 3

aruser output 1 - 64

arvalid output 1

awaddr output 1 - 64

awburst output 2

awcache output 4

awid output 1 - 18

awlen output 8

awlock output 1

awprot output 3

awqos output 1 - 4

awready input 1

awregion output 1 - 4

awsize output 3

awuser output 1 - 64

awvalid output 1

bid input 1 - 18

bready output 1

bresp input 2

buser input 1 - 64

bvalid input 1

rdata input 8, 16, 32, 64, 128, 256, 512, 1024

rid input 1 - 18

rlast input 1

rready output 1

rresp input 2

ruser input 1 - 64

rvalid input 1

wdata output 8, 16, 32, 64, 128, 256, 512, 1024

wid output 1 - 18

wlast output 1

wready input 1

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

346

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

wstrb output 1, 2, 4, 8, 16, 32, 64, 128

wuser output 1 - 64

wvalid output 1

5.15.4. AMBA 4 AXI Subordinate Interface Signal Types

Table 104. AMBA 4 AXI Subordinate Interface Signal Types

Name Direction Width

araddr input 1 - 64

arburst input 2

arcache input 4

arid input 1 - 18

arlen input 8

arlock input 1

arprot input 3

arqos input 1 - 4

arready output 1

arregion input 1 - 4

arsize input 3

aruser input 1 - 64

arvalid input 1

awaddr input 1 - 64

awburst input 2

awcache input 4

awid input 1 - 18

awlen input 8

awlock input 1

awprot input 3

awqos input 1 - 4

awready output 1

awregion input 1 - 4

awsize input 3

awuser input 1 - 64

awvalid input 1

bid output 1 - 18

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

347

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

bready input 1

bresp output 2

bvalid output 1

rdata output 8, 16, 32, 64, 128, 256, 512, 1024

rid output 1 - 18

rlast output 1

rready input 1

rresp output 2

ruser output 1 - 64

rvalid output 1

wdata input 8, 16, 32, 64, 128, 256, 512, 1024

wlast input 1

wready output 1

wstrb input 1, 2, 4, 8, 16, 32, 64, 128

wuser input 1 - 64

wvalid input 1

5.15.5. AMBA 4 AXI-Stream Manager and Subordinate Interface Signal
Types

Table 105. AMBA 4 AXI-Stream Manager and Subordinate Interface Signal Types

Name Width Manager Direction Subordinate
Direction

Required

tvalid 1 Output Input Yes

tready 1 Input Output No

tdata 8:4096 Output Input No

tstrb 1:512 Output Input No

tkeep 1:512 Output Input No

tid 1:8 Output Input No

tdest 1:4 Output Input No

tuser 1 Output Input No

tlast 1:4096 Output Input No

5.15.6. AMBA 4 AXI-Lite Signal Support and Limitations

ACE-Lite is a sub-set of AMBA 4 AXI that consists of an AMBA 4 AXI interface with
additional signals on the read address and write address channels. ACE-Lite signals
indicate transactions meant for cache coherence, cache maintenance, and other
functions.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

348

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 106. ACE-Lite Interface Signal Roles

Name Width Manager Direction Subordinate
Direction

Required

arsnoop 4 bits Output Input Yes

ardomain 2 bits Output Input Yes

arbar 2 bits Output Input Yes

awsnoop 3 bits Output Input Yes

awdomain 2 bits Output Input Yes

awbar 2 bits Output Input Yes

awunique 1 bit Output Input Yes

Note: Platform Designer's ACE-Lite interface does comprise of all the signals specified in the
AMBA 4 AXI specification. The following sections describe the Platform Designer
support and limitations for ACE-Lite transactions.

5.15.6.1. ACE-Lite Transaction Support and Limitations

Platform Designer's ACE-Lite interface does currently comprise of all the signals
specified in the AMBA 4 AXI specification. Therefore, there are limitations on the
extent of transactional support that Platform Designer interconnect provides for ACE-
Lite transactions. The signals are present for point-to-point (1-manager, 1-
subordinate) and non-point-to-point Interconnects, when the manager and
subordinate ACE-Lite interfaces are not identical and require adaptation.

Table 107. Supported ACE-Lite Transactions

Transaction Type Supported Transactions

Non-snoop transactions WriteNoSnoop, ReadNoSnoop

Coherent transactions WriteUnique, ReadOnce

Table 108. Unsupported ACE-Lite Transactions

Transaction Type Unsupported Transactions

Barrier transactions ReadBarrier, WriteBarrier

Cache Maintenance transactions CleanShared, CleanInvalid, MakeInvalid

Coherent transactions WriteLineUnique

Note: Unsupported ACE-Lite transaction interconnect behavior is non-deterministic. Use of
unsupported transactions can cause a system failure or data corruption.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

349

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following describes the ACE-Lite signal connectivity in various manager-
subordinate combinations for the Platform Designer interconnect:

Table 109. ACE-Lite Signal Connectivity in Various Manager-Subordinate Combinations

Manager/Subordinate Combination ACE-Lite Signal Connectivity

ACE-Lite manager to Avalon memory
mapped agent.

ACE-Lite interface signals drop from the interconnect.

AXI manager to ACE-Lite subordinate The ACE-Lite subordinate receives default values for ACE-Lite interface signals
from the manager agent, by virtue of ACE-Lite interface being unsupported on
the manager. The values are as follows:
• ARDOMAIN/AWDOMAIN = 2’b11

• ARSNOOP/AWSNOOP = 0

• ARBAR/AWBAR = 0

The above transactions indicate non-snooping ReadNoSnoop/WriteNoSnoop
transactions.
AWUNIQUE = 0 indicates that AWUNIQUE is unsupported.

ACE-Lite manager to AXI subordinate The subordinate agent sends out default values for ACE-Lite interface signals
because the subordinate does not support the interface. The values are as
follows:
• ARDOMAIN/AWDOMAIN = 2’b11

• ARSNOOP/AWSNOOP = 0

• ARBAR/AWBAR = 0

The above transactions indicate non-snooping ReadNoSnoop/WriteNoSnoop
transactions.
AWUNIQUE = 0 indicates that AWUNIQUE is unsupported.

ACE-Lite manager to ACE-Lite
subordinate

The ACE-Lite interface signals are sent through the interconnect as pass
through.

5.15.7. APB Interface Signal Types

Table 110. APB Interface Signal Types

Name Width Direction
APB Manager

Direction
APB Subordinate

Required

paddr [1:32] output input yes

psel [1:16] output input yes

penable 1 output input yes

pwrite 1 output input yes

pwdata [1:32] output input yes

prdata [1:32] input output yes

pslverr 1 input output no

pready 1 input output yes

paddr31 1 output input no

5.15.8. Avalon Memory Mapped Interface Signal Roles

Signal roles define the signal types that Avalon memory mapped host and agent ports
allow.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

350

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This specification does not require all signals to exist in an Avalon memory mapped
interface. There is no one signal that is always required. The minimum requirements
for an Avalon memory mapped interface are readdata for a read-only interface, or
writedata and write for a write-only interface.

The following table lists signal roles for the Avalon memory mapped interface:

Table 111. Avalon Memory Mapped Signal Roles
Some Avalon memory mapped signals can be active high or active low. When active low, the signal name ends
with _n.

Signal Role Width Direction Required Description

Fundamental Signals

address 1 - 64 Host → Agent No Hosts: By default, the address signal represents a byte
address. The value of the address must align to the data width.
To write to specific bytes within a data word, the host must use
the byteenable signal. Refer to the addressUnits interface
property for word addressing.
Agents: By default, the interconnect translates the byte address
into a word address in the agent’s address space. From the
perspective of the agent, each agent access is for a word of
data.
For example, address = 0 selects the first word of the agent.
address = 1 selects the second word of the agent. Refer to the
addressUnits interface property for byte addressing.

byteenable

byteenable_n

2, 4,
8, 16,
32,
64,
128

Host → Agent No Enables one or more specific byte lanes during transfers on
interfaces of width greater than 8 bits. Each bit in byteenable
corresponds to a byte in writedata and readdata. The host
bit <n> of byteenable indicates whether byte <n> is being
written to. During writes, byteenables specify which bytes are
being written to. Other bytes should be ignored by the agent.
During reads, byteenables indicate which bytes the host is
reading. Agents that simply return readdata with no side
effects are free to ignore byteenables during reads. If an
interface does not have a byteenable signal, the transfer
proceeds as if all byteenables are asserted.
When more than one bit of the byteenable signal is asserted,
all asserted lanes are adjacent.

debugaccess 1 Host → Agent No When asserted, allows the Nios II processor to write on-chip
memories configured as ROMs.

read

read_n

1 Host → Agent No Asserted to indicate a read transfer. If present, readdata is
required.

readdata 8, 16,
32,
64,
128,
256,
512,
1024

Agent → Host No The readdata driven from the agent to the host in response to
a read transfer. Required for interfaces that support reads.

response
[1:0]

2 Agent → Host No The response signal is an optional signal that carries the
response status.
Note: Because the signal is shared, an interface cannot issue or

accept a write response and a read response in the same
clock cycle.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

351

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

• 00: OKAY—Successful response for a transaction.
• 01: RESERVED—Encoding is reserved.
• 10: SLVERR—Error from an endpoint agent. Indicates an

unsuccessful transaction.
• 11: DECODEERROR—Indicates attempted access to an

undefined location.
For read responses:
• One response is sent with each readdata. A read burst

length of N results in N responses. Fewer responses are not
valid, even in the event of an error. The response signal value
may be different for each readdata in the burst.

• The interface must have read control signals. Pipeline support
is possible with the readdatavalid signal.

• On read errors, the corresponding readdata is "don't care".
For write responses:
• One write response must be sent for each write command. A

write burst results in only one response, which must be sent
after the final write transfer in the burst is accepted.

• If writeresponsevalid is present, all write commands
must be completed with write responses.

write

write_n

1 Host → Agent No Asserted to indicate a write transfer. If present, writedata is
required.

writedata 8, 16,
32,
64,
128,
256,
512,
1024

Host → Agent No Data for write transfers. The width must be the same as the
width of readdata if both are present. Required for interfaces
that support writes.

Wait-State Signals

lock 1 Host → Agent No lock ensures that once a host wins arbitration, the winning host
maintains access to the agent for multiple transactions. Lock
asserts coincident with the first read or write of a locked
sequence of transactions. Lock deasserts on the final
transaction of a locked sequence of transactions. lock assertion
does not guarantee that arbitration is won. After the lock-
asserting host has been granted, that host retains grant until
lock is deasserted.
A host equipped with lock cannot be a burst host. Arbitration
priority values for lock-equipped hosts are ignored.
lock is particularly useful for read-modify-write (RMW)
operations. The typical read-modify-write operation includes the
following steps:
1. Host A asserts lock and reads 32-bit data that has multiple

bit fields.
2. Host A deasserts lock, changes one bit field, and writes the

32-bit data back.
lock prevents host B from performing a write between Host A’s
read and write.

waitrequest

waitrequest_
n

1 Agent → Host No An agent asserts waitrequest when unable to respond to a
read or write request. Forces the host to wait until the
interconnect is ready to proceed with the transfer. At the start of
all transfers, a host initiates the transfer and waits until
waitrequest is deasserted. A host must make no assumption
about the assertion state of waitrequest when the host is idle:
waitrequest may be high or low, depending on system
properties.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

352

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

When waitrequest is asserted, host control signals to the
agent must remain constant except for beginbursttransfer.
For a timing diagram illustrating the beginbursttransfer
signal, refer to the figure in Read Bursts.
An Avalon memory mapped agent may assert waitrequest
during idle cycles. An Avalon memory mapped host may initiate
a transaction when waitrequest is asserted and wait for that
signal to be deasserted. To avoid system lockup, an agent device
should assert waitrequest when in reset.

Pipeline Signals

readdatavali
d

readdatavali
d_n

1 Agent → Host No Used for variable-latency, pipelined read transfers. When
asserted, indicates that the readdata signal contains valid data.
For a read burst with burstcount value <n>, the
readdatavalid signal must be asserted <n> times, once for
each readdata item. There must be at least one cycle of latency
between acceptance of the read and assertion of
readdatavalid. For a timing diagram illustrating the
readdatavalid signal, refer to Pipelined Read Transfer with
Variable Latency.
An agent may assert readdatavalid to transfer data to the
host independently of whether the agent is stalling a new
command with waitrequest.
Required if the host supports pipelined reads. Bursting hosts
with read functionality must include the readdatavalid signal.

writerespons
evalid

1 Agent → Host No An optional signal. If present, the interface issues write
responses for write commands.
When asserted, the value on the response signal is a valid write
response.
Writeresponsevalid is only asserted one clock cycle or more
after the write command is accepted. There is at least a one
clock cycle latency from command acceptance to assertion of
writeresponsevalid.
A write command is considered accepted when the last beat of
the burst is issued to the agent and waitrequest is low.
writeresponsevalid can be asserted one or more clock
cycles after the last beat of the burst has been issued.

Burst Signals
continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

353

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

burstcount 1 – 11 Host → Agent No Used by bursting hosts to indicate the number of transfers in
each burst. The value of the maximum burstcount parameter
must be a power of 2. A burstcount interface of width <n> can
encode a max burst of size 2(<n>-1). For example, a 4-bit
burstcount signal can support a maximum burst count of 8.
The minimum burstcount is 1. The
constantBurstBehavior property controls the timing of the
burstcount signal. Bursting hosts with read functionality must
include the readdatavalid signal.
For bursting hosts and agents using byte addresses, the
following restriction applies to the width of the address:

<address_w> >=
 <burstcount_w> +
log2(<symbols_per_word_of_interface>)

For bursting hosts and agents using word addresses, the log2
term above is omitted.

beginbursttr
ansfer

1 Interconnect
→ Agent

No Asserted for the first cycle of a burst to indicate when a burst
transfer is starting. This signal is deasserted after one cycle
regardless of the value of waitrequest. For a timing diagram
illustrating beginbursttransfer, refer to the figure in Read
Bursts.
beginbursttransfer is optional. An agent can always
internally calculate the start of the next write burst transaction
by counting data transfers.
Warning: do not use this signal. This signal exists to support

legacy memory controllers.

5.15.9. Avalon Streaming Interface Signal Roles

Each signal in an Avalon streaming source or sink interface corresponds to one Avalon
streaming signal role. An Avalon streaming interface may contain only one instance of
each signal role. All Avalon streaming signal roles apply to both sources and sinks and
have the same meaning for both.

Table 112. Avalon Streaming Interface Signals
In the following table, all signal roles are active high.

Signal Role Width Direction Required Description

Fundamental Signals

channel 1 – 128 Source → Sink No The channel number for data being transferred
on the current cycle.
If an interface supports the channel signal, the
interface must also define the maxChannel
parameter.

data 1 – 8,192 Source → Sink No The data signal from the source to the sink,
typically carries the bulk of the information being
transferred.
Parameters further define the contents and
format of the data signal.

error 1 – 256 Source → Sink No A bit mask to mark errors affecting the data
being transferred in the current cycle. A single bit
of the error signal masks each of the errors the
component recognizes. The errorDescriptor
defines the error signal properties.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

354

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

ready 1 Sink → Source No Asserts high to indicate that the sink can accept
data. ready is asserted by the sink on cycle <n>
to mark cycle <n + readyLatency> as a ready
cycle. The source may only assert valid and
transfer data during ready cycles.
Sources without a ready input do not support
backpressure. Sinks without a ready output
never need to backpressure.

valid 1 Source → Sink No The source asserts this signal to qualify all other
source to sink signals. The sink samples data and
other source-to-sink signals on ready cycles
where valid is asserted. All other cycles are
ignored.
Sources without a valid output implicitly
provide valid data on every cycle that a sink is
not asserting backpressure. Sinks without a
valid input expect valid data on every cycle
that they are not backpressuring.

Packet Transfer Signals

empty 1 – 10 Source → Sink No Indicates the number of symbols that are empty,
that is, do not represent valid data. The empty
signal is not necessary on interfaces where there
is one symbol per beat.

endofpacket 1 Source → Sink No Asserted by the source to mark the end of a
packet.

startofpacket 1 Source → Sink No Asserted by the source to mark the beginning of
a packet.

5.15.10. Avalon Streaming Credit Interface Signal Roles

Each signal in an Avalon Streaming Credit source or sink interface corresponds to one
Avalon Streaming Credit signal role. An Avalon Streaming Credit interface may contain
only one instance of each signal role. All Avalon Streaming Credit signal roles apply to
both sources and sinks and have the same meaning for both.

Table 113. Avalon Streaming Credit Interface Signals

Signal Name Direction Width Optional /
Required

Description

update Sink to
source

1 Required Sink sends update and source updates
the available credit counter. Sink sends
update to source when a transaction is
popped from its buffer.
Credit counter in source is increased by
the value on the credit bus from sink to
source.

credit Sink to
source

1-9 Required Indicates additional credit available at sink
when update is asserted.
This bus carries a value as specified by the
sink. Width of the credit bus is
ceilog2(MAX_CREDIT + 1). Sink sends
available credit value on this bus which
indicates the number of transactions it can
accept. Source captures credit value
only if update signal is asserted.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

355

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Name Direction Width Optional /
Required

Description

return_credit Source to
sink

1 Required Asserted by source to return 1 credit back
to sink.
Note: For more details, refer to Section

6.2.3 Returning the Credits.

data Source to
sink

1-8192 Required Data is divided into symbols as per
existing Avalon Streaming definition.

valid Source to
sink

1 Required Asserted by the source to qualify all other
source to sink signals. Source can assert
valid only when the credit available to it
is greater than 0.

error Source to
sink

1-256 Optional A bit mask used to mark errors affecting
the data being transferred in the current
cycle. A single bit in error is used for each
of the errors recognized by the
component, as defined by the
errorDescriptor property.

channel Source to
sink

1-128 Optional The channel number for data being
transferred on the current cycle.
If an interface supports the channel
signal, it must also define the
maxChannel parameter.

Packet Transfer Signals

startofpacket Source to
sink

1 Optional Asserted by the source to mark the start
of a packet.

endofpacket Source to
sink

1 Optional Asserted by the source to mark the end of
a packet.

empty Source to
sink

ceil(log2(NUM_SYMBOLS)) Optional Indicates the number of symbols that are
empty, that is, do not represent valid data.
The empty signal is not used on interfaces
where there is one symbol per beat.

User Signals

<Per-Packet
User Signals>

Source to
sink

1-8192 Optional Any number of per-packet user signals can
be present on source and sink interfaces.
Source sets value of this signal when
startofpacket is asserted. Source
should not change the value of this signal
until start of new packet. More details are
in the User Signal section.

<Per-Symbol
User Signals>

Source to
sink

1-8192 Optional Any number of per-symbol user signals
can be present on source and sink. More
details are in the User Signal section.

5.15.10.1. Synchronous Interface

All transfers of an Avalon Streaming connection occur synchronous to the rising edge
of the associated clock signal. All outputs from a source interface to a sink interface,
including the data, channel, and error signals, must be registered on the rising
edge of clock. Inputs to a sink interface do not have to be registered. Registering
signals at the source facilitates high-frequency operation.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

356

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 114. Avalon Streaming Credit Interface Properties

Property Name Default
Value

Legal Value Description

associatedClock 1 Clock
interface

The name of the Avalon Clock interface to which this
Avalon Streaming interface is synchronous.

associatedReset 1 Reset
interface

The name of the Avalon Reset interface to which this
Avalon Streaming interface is synchronous.

dataBitsPerSymbol 8 1 – 8192 Defines the number of bits per symbol. For example,
byte-oriented interfaces have 8-bit symbols. This value is
not restricted to be a power of 2.

symbolsPerBeat 1 1 – 8192 The number of symbols that are transferred on every
valid cycle.

maxCredit 256 1-256 The maximum number of credits that a data interface
can support.

errorDescriptor 0 List of strings A list of words that describe the error associated with
each bit of the error signal. The length of the list must be
the same as the number of bits in the error signal. The
first word in the list applies to the highest order bit. For
example, “crc, overflow" means that bit[1] of error
indicates a CRC error. Bit[0] indicates an overflow error.

firstSymbolInHighOrderBits true true, false When true, the first-order symbol is driven to the most
significant bits of the data interface. The highest-order
symbol is labeled D0 in this specification. When this
property is set to false, the first symbol appears on the
low bits. D0 appears at data[7:0]. For a 32-bit bus, if
true, D0 appears on bits[31:24].

maxChannel 0 0 The maximum number of channels that a data interface
can support.

5.15.10.2. Typical Data Transfers

This section defines the transfer of data from a source interface to a sink interface. In
all cases, the data source and the data sink must comply with the specification. It is
not the responsibility of the data sink to detect source protocol errors.

The below figure shows the signals that are typically used in an Avalon Streaming
Credit interface.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

357

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 244. Typical Avalon Streaming Credit Signals

As this figure indicates, a typical Avalon Streaming Credit source interface drives the
valid, data, error, and channel signals to the sink. The sink drives update and
credit signals.

Figure 245. Typical Credit and Data Transfer

The above figure shows a typical credit and data transfer between source and sink.
There can be an arbitrary delay between the sink asserting update and source
receiving the update. Similarly, there can be an arbitrary delay between source
asserting valid for data and sink receiving that data. Delay on credit path from sink
to source and data path from source to sink need not be equal. These delays can be 0
cycle as well, i.e. when the sink asserts update, it is seen by the source in the same
cycle. Conversely, when the source asserts valid, it is seen by the sink in the same
cycle. If source has zero credits, it cannot assert valid. Transferred credits are
cumulative. If sink has transferred credits equal to its maxCredit property, and has not
received any data, it cannot assert update until it receives at least 1 data or has
received a return_credit pulse from the source.

Sink cannot backpressure data from source if sink has provided credits to the source,
i.e. sink must accept data from source if there are outstanding credits. Source cannot
assert valid if it has not received any credit or exhausted the credits received, i.e.
already sent the data in lieu of credits received.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

358

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If source has zero credits, source cannot start the data transfer in the same cycle it
receives credits. Similarly, if sink has transferred credits equal to its maxCredit
property and it receives data, sink cannot send an update in the same cycle as it
received data. These restrictions have been put in place to avoid combinational loops
in the implementation.

5.15.10.3. Returning the Credits

Avalon Streaming Credit protocol supports a return_credit signal. This is used by
source to return the credits back to sink. Every cycle this signal is asserted, it
indicates source is giving back 1 credit. If source wants to return multiple credits, this
signal needs to be asserted for multiple cycles. For example, if source wants to return
10 outstanding credits, it asserts return_credit signal for 10 cycles. Sink should
account for returned credits in its internal credit maintenance counters. Credits can be
returned by source at any point in time as long as it has credits greater than 0.

The below figure exemplifies source returning credits. As shown in the figure,
outstanding_credit is an internal counter for the source. When source returns credits,
this counter is decremented.

Figure 246. Source Returning Credits

Note: Although the diagram above shows the returning of credits when valid is deasserted,
return_credit can also be asserted while valid is asserted. In this case, source
effectively spends 2 credits: one for valid, and one for return_credit.

5.15.11. Avalon Streaming Credit User Signals

User signals are optional sideband signals which flow along with data. They are
considered valid only when data is valid. Given that user signals do not have any
defined meaning or purpose, caution must be used while using these signals. It is the
responsibility of the system designer to make sure that two IPs connected to each
other agree on the roles of the user signals.

Two types of user signals are being proposed: per-symbol user signals and per-packet
user signals.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

359

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.15.11.1. Per-Symbol User Signal

As the name suggests, the data defines a per-symbol user signal (symbol_user) per
symbol. Each symbol in the data can have a user signal. For example, if the number of
symbols in the data is 8, and symbol_user width is 2 bits, the total width of the
symbol_user signal is 16 bits.

Symbol_user is valid only when data is valid. Source can change this signal every
cycle when data is valid. Sink can disregard the value of symbol_user bits for empty
symbols.

If a source which has this signal is connected to a sink which does not have this signal
on its interface, the signal from source remains dangling in the generated
interconnect.

If a source which does not have this signal is connected to a sink which has this signal
on its interface, the sink’s input user signal ties to 0.

If both source and sink have equal number of symbols in the data, then the user
signals for both must have equal widths. Otherwise, they cannot be connected.

If a wide source is connected to a narrow sink, and both have per-symbol user signals,
then both must have equal bits of user signal associated with each symbol. For
example, if a 16-symbol source has 2 bits of user signal associated with each symbol
(for a total of 32 bits of user signal), then a 4-symbol sink must have an 8-bit wide
user signal (2 bits associated with each symbol). A data format adapter can convert
the 16-symbol source data to 4-symbol sink data, and 32-bit user signal to 8-bit user
signal. The data format adapter maintains the association of symbols with
corresponding user signal bits.

Similarly, if a narrow source is connected to a wide sink, and both have per-symbol
user signals, then both must have equal bits of user signal associated with each
symbol. For example, if a 4-symbol source has 2 bits of user signal associated with
each symbol (for a total of 8 bits of user signal), then a 16-symbol sink must have a
32-bit wide user signal (2 bits associated with each symbol). A data format adapter
can convert the 4-symbol source data to 16-symbol sink data, and 8-bit user signal to
32-bit user signal. The data format adapter maintains the association of symbols with
corresponding user signal bits. If the packet is smaller than the ratio of data widths,
the data format adapter sets the value of empty accordingly. Sink should disregard the
value of user bits associated with empty symbols.

5.15.11.2. Per-Packet User Signal

In addition to symbol_user, per-packet user signals (packet_user) can also be
declared on the interface. Packet_user can be of arbitrary width. Unlike
symbol_user, packet_user must remain constant throughout the packet, i.e. its
value should be set at the start of the packet and must remain the same until the end
of the packet. This restriction makes the implementation of the data format adapter
simpler as it eliminates the option to replicate or chop (wide source, narrow sink) or
concatenate (narrow source, wide sink) packet_user.

If a source has packet_user and sink does not, the packet_user from source
remains dangling. In such a case, the system designer must be careful and not
transmit any critical control information on this signal as it is completely or partially
ignored.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

360

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If a source does not have packet_user and the sink does, the packet_user to sink
is tied to 0.

5.15.12. Avalon Clock Source Signal Roles

An Avalon Clock source interface drives a clock signal out of a component.

Table 115. Clock Source Signal Roles

Signal Role Width Direction Required Description

clk 1 Output Yes An output clock signal.

5.15.13. Avalon Clock Sink Signal Roles

A clock sink provides a timing reference for other interfaces and internal logic.

Table 116. Clock Sink Signal Roles

Signal Role Width Direction Required Description

clk 1 Input Yes A clock signal. Provides synchronization for internal
logic and for other interfaces.

5.15.14. Avalon Conduit Signal Roles

Table 117. Conduit Signal Roles

Signal Role Width Direction Description

<any> <n> In, out, or
bidirectional

A conduit interface consists of one or more input, output,
or bidirectional signals of arbitrary width. Conduits can
have any user-specified role. You can connect compatible
Conduit interfaces inside a Platform Designer system
provided the roles and widths match and the directions
are opposite.

5.15.15. Avalon Tristate Conduit Signal Roles

The following table lists the signal defined for the Avalon Tristate Conduit interface. All
Avalon-TC signals apply to both hosts and agents and have the same meaning for
both.

Table 118. Tristate Conduit Interface Signal Roles

Signal Role Width Direction Required Description

request 1 Host → Agent Yes The meaning of request depends on the state of the
grant signal, as the following rules dictate.
When request is asserted and grant is deasserted,
request is requesting access for the current cycle.
When request is asserted and grant is asserted,
request is requesting access for the next cycle.
Consequently, request should be deasserted on the
final cycle of an access.
The request signal deasserts in the last cycle of a
bus access. The request signal can reassert
immediately following the final cycle of a transfer.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

361

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

This protocol makes both rearbitration and
continuous bus access possible if no other hosts are
requesting access.
Once asserted, request must remain asserted until
granted. Consequently, the shortest bus access is 2
cycles. Refer to Tristate Conduit Arbitration Timing
for an example of arbitration timing.

grant 1 Agent → Host Yes When asserted, indicates that a tristate conduit host
has access to perform transactions. The grant signal
asserts in response to the request signal. The
grant signal remains asserted until 1 cycle following
the deassertion of request.

<name>_in 1 – 1024 Agent → Host No The input signal of a logical tristate signal.

<name>_out 1 – 1024 Host → Agent No The output signal of a logical tristate signal.

<name>_outen 1 Host → Agent No The output enable for a logical tristate signal.

5.15.16. Avalon Tri-State Agent Interface Signal Types

Table 119. Tri-state Agent Interface Signal Types

Name Width Direction Required Description

address 1 - 32 input No Address lines to the agent port.
Specifies a byte offset into the agent’s
address space.

read

read_n

1 input No Read-request signal. Not required if
the agent port never outputs data.
If present, data must also be used.

write

write_n

1 input No Write-request signal. Not required if
the agent port never receives data
from a host.
If present, data must also be present,
and writebyteenable cannot be
present.

chipselect

chipselect_n

1 input No When present, the agent port ignores
all Avalon memory mapped signals
unless chipselect is asserted.
chipselect is always present in
combination with read or write

outputenable

outputenable_n

1 input Yes Output-enable signal. When
deasserted, a tri-state agent port must
not drive its data lines otherwise data
contention may occur.

data 8,16, 32, 64, 128,
256, 512, 1024

bidir No Bidirectional data. During write
transfers, the FPGA drives the data
lines. During read transfers the agent
device drives the data lines, and the
FPGA captures the data signals and
provides them to the host.

byteenable

byteenable_n

2, 4, 8,16, 32, 64,
128

input No Enables specific byte lanes during
transfers.
Each bit in byteenable corresponds to a
byte lane in data. During writes,
byteenables specify which bytes the
host is writing to the agent. During

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

362

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Width Direction Required Description

reads, byteenables indicates which
bytes the host is reading. Agents that
simply return data with no side effects
are free to ignore byteenables
during reads.
When more than one byte lane is
asserted, all asserted lanes are
guaranteed to be adjacent. The
number of adjacent lines must be a
power of 2, and the specified bytes
must be aligned on an address
boundary for the size of the data. The
following are legal values for a 32-bit
agent:

1111 writes full 32 bits
0011 writes lower 2 bytes
1100 writes upper 2 bytes
0001 writes byte 0 only
0010 writes byte 1 only
0100 writes byte 2 only
1000 writes byte 3 only

writebyteenabl
e

writebyteenabl
e_n

2,4,8,16, 32,
64,128

input No Equivalent to the logical AND of the
byteenable and write signals. When
used, the write signal is not used.

begintransfer1 1 input No Asserted for the first cycle of each
transfer.

Note: All Avalon signals are active high. Avalon signals that can also be asserted low list both versions in the Signal Role
column.

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

363

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.15.17. Avalon Interrupt Sender Signal Roles

Table 120. Interrupt Sender Signal Roles

Signal Role Width Direction Required Description

irq

irq_n

1-2048 Output Yes Interrupt Request. An interrupt sender drives an
interrupt signal to an interrupt receiver.

5.15.18. Avalon Interrupt Receiver Signal Roles

Table 121. Interrupt Receiver Signal Roles

Signal Role Width Direction Required Description

irq 1–2048 Input Yes irq is an <n>-bit vector, where each bit corresponds
directly to one IRQ sender with no inherent assumption
of priority.

5.16. Platform Designer Interconnect Revision History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.

2023.10.02 23.3 • Removed misplaced Reset Synchronous Edges description from Clock
Interfaces topic.

• Removed obsolete upper limit from IRQ Fan-Out topic.

2023.04.03 23.1 • The product family name is updated to "Intel Agilex 7" to reflect the
different family members.

2022.06.20 22.2 • Added new IRQ Fanout topic.
• Updated IRQ Mapper topic to describe Remove Clock and Reset Ports

parameters.
• Updated legal IRQ width from 32 to 2048 in the following topics:

— Interrupt Interfaces
— Individual Requests IRQ Scheme
— Avalon Interrupt Sender Signal Roles
— Avalon Interrupt Receiver Signal Roles

2022.04.02 22.1 • Updated entire chapter for new AXI "manager" and AXI "subordinate"
replacement terms. Refer to the AMBA® AXI and ACE Protocol
Specification.

• Updated parameter values for all Avalon Streaming Credit IPs.
• Revised wording in Terms and Concepts topic for greater clarity.
• Revised AMBA 4 AXI-Lite Signals topic for optional signals information.
• Added new AMBA 4 AXI-Lite Optional Port Support and Interconnect

topic describing optional port support details.

2021.03.29 21.1 • Converted to "host" and "agent" inclusive terminology for Avalon
memory mapped interface descriptions and related GUI elements
throughout.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

364

https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2020.12.14 20.4 • Revised "Interconnect Pipelining" for clarity and latest GUI.
• Revised "Fixed Priority Arbitration" for latest GUI.
• Revised "Add Pipeline Stages in the Interconnect Schematic" for Add All

Pipelines and Remove All Pipelines controls.
• Revised statement in "Ordering Model" topic to clarify applies to all

versions.
• Revised "Pipeline Placement in Arbitration Logic" diagram color coding.

2020.06.26 20.1 Removed incorrect statement about compile time option to enforce strict
ordering from the "AXI and Avalon Ordering" topic.

2020.05.08 20.1 Added some clarification for the timing behavior of the signal
writeresponsevalid to the Avalon Memory-Mapped Interface Signal
Roles section.
Updated the bus widths for the data and empty signals in the Avalon
Streaming Interface Signal Roles section.

2020.05.01 20.1 • Updated "Avalon Streaming Credit Interface Signal Roles" to indicate
that return_credit is required.

• Added "Avalon Streaming Credit Interfaces" section.
• Added "Avalon Streaming Credit Interface Signal Roles" topic.
• Added "Avalon Streaming Credit User Signals" topic.

2019.11.11 19.1.0 • Added note to "Burst Adaptation: AXI to Avalon" about AXI3 and AXI4
4KB boundary restriction for burst transactions.

• Added "Adjacent Bytelanes with Partial Width Transactions" topic.

2019.06.19 19.1.0 • Corrected statement about preventing reordering in "Ordering Model."

2019.04.01 19.1.0 • Described new default use of synchronous reset option for Stratix 10
designs in "Reset Interfaces."

2018.12.10 18.1.0 • Replaced references to System Contents tab with new System View
tab.

2018.09.24 18.1.0 • Updated location of Limit interconnect pipeline stages to option in
Platform Designer GUI

• In Avalon Memory-Mapped Interface Signal Roles, added consecutive
byte-enable support.

• Specified minimum duration of reset that the Platform Design
Interconnect requires to work correctly.

2018.06.15 18.0.0 Clarified behavior of Error Correction Coding (ECC) in Interconnect.

2018.05.07 18.0.0 • Added support for waitrequestAllowance adapter.
• Added support for ACE-Lite connections.

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer
• Updated information about the Reset Sequencer.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • Fixed Priority Arbitration.
• Added topic: Read and Write Responses.
• Added topic: Error Correction Coding (ECC) in Qsys Interconnect.
• Added: response [1:0], Avalon Memory-Mapped Interface Signal

Roles.
• Added writeresponsevalid, Avalon Memory-Mapped Interface

Signal Roles.

continued...

5. Platform Designer Interconnect

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

365

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

December 2014 14.1.0 • Read error responses, Avalon Memory-Mapped Interface Signal,
response.

• Burst Adapter Implementation Options: Generic converter (slower,
lower area), Per-burst-type converter (faster, higher area).

August 2014 14.0a10.0 • Updated Qsys Packet Format for Memory-Mapped Host and Agent
Interfaces table, Protection.

• Streaming Interface renamed to Avalon Streaming Interfaces.
• Added Response Merging under Memory-Mapped Interfaces.

June 2014 14.0.0 • AXI4-Lite support.
• AXI4-Stream support.
• Avalon streaming adapter parameters.
• IRQ Bridge.
• Handling Read Side Effects note added.

November 2013 13.1.0 • HSSI clock support.
• Reset Sequencer.
• Interconnect pipelining.

May 2013 13.0.0 • AMBA APB support.
• Auto-inserted Avalon streaming adapters feature.
• Moved Address Span Extender to the Qsys System Design Components

chapter.

November 2012 12.1.0 • AMBA AXI4 support.

June 2012 12.0.0 • AMBA AXI3 support.
• Avalon streaming adapters.
• Address Span Extender.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Removed beta status.

December 2010 10.1.0 Initial release.

5. Platform Designer Interconnect

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

366

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Platform Designer System Design Components
You can use Platform Designer IP components to create Platform Designer systems.
Platform Designer interfaces include components appropriate for streaming high-speed
data, reading and writing registers and memory, controlling off-chip devices, and
transporting data between components.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Related Information

• Creating a System with Platform Designer on page 11

• Platform Designer Interconnect on page 251

• Embedded Peripherals IP User Guide

• Avalon Interface Specifications

6.1. Bridges

Bridges affect the way Platform Designer transports data between components. You
can insert bridges between host(24) and agent interfaces to control the topology of a
Platform Designer system, which affects the interconnect that Platform Designer
generates. You can also use bridges to separate components into different clock
domains to isolate clock domain crossing logic.

A bridge has one agent interface and one host interface. In Platform Designer, one or
more host interfaces from other components connect to the bridge agent. The bridge
host connects to one or more agent interfaces on other components. In the following
example, three hosts have logical connections to three agents, although physically
each host connects only to the bridge. Transfers initiated to the agent propagate to
the host in the same order in which the transfers are initiated on the agent.

(24) Platform Designer now replaces non-inclusive terms with "host" and "agent" inclusive terms for
Avalon memory mapped interface descriptions and related GUI elements.

683609 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683130.html
https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 247. Using a Bridge in a Platform Designer System

 Bridge

H

A

H1

H

H2

H H

H3

A2

A

A1

A

A

H Host

 Agent

A3

A

Arbiter & Write Data Control
Signal Multiplexing

ChipSelect & Read Data
Multiplexing

6.1.1. Clock Bridge Intel FPGA IP

The Clock Bridge Intel FPGA IP connects a clock source to multiple clock input
interfaces. You can use the clock bridge to connect a clock source that is outside the
Platform Designer system. Create the connection through an exported interface, and
then connect to multiple clock input interfaces.

Clock outputs match fan-out performance without the use of a bridge. You require a
bridge only when you want a clock from an exported source to connect internally to
more than one source.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

368

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 248. Clock Bridge Intel FPGA IP

 PIO

A

 DMA

H HA

Platform Designer System

Clock Bridge

External Clock from PCB

CIn

Export

COut

CIn CIn

6.1.2. Avalon Memory Mapped Clock Crossing Bridge Intel FPGA IP

The Avalon Memory Mapped Clock Crossing Bridge Intel FPGA IP transfers Avalon
memory mapped commands and responses between different clock domains. You can
also use the Avalon Memory Mapped Clock Crossing Bridge between AXI hosts and
agents of different clock domains.

The Avalon Memory Mapped Clock Crossing Bridge uses asynchronous FIFOs to
implement clock crossing logic. The bridge parameters control the depth of the
command and response FIFOs in both the host and agent clock domains. If the
number of active reads exceeds the depth of the response FIFO, the Clock Crossing
Bridge stops sending reads.

To maintain throughput for high-performance applications, increase the response FIFO
depth from the default minimum depth, which is twice the maximum burst size.

Note: When you use the FIFO-based clock crossing a Platform Designer system, the DC FIFO
is automatically inserted in the Platform Designer system. The reset inputs for the DC
FIFO connect to the reset sources for the connected host and agent components on
either side of the DC FIFO. For this configuration, you must assert both the resets on
the host and the agent sides at the same time to ensure the DC FIFO resets properly.
Alternatively, you can drive both resets from the same reset source to guarantee that
the DC FIFO resets properly.

Note: The clock crossing bridge includes appropriate SDC constraints for its internal
asynchronous FIFOs. For these SDC constraints to work correctly, do not set false
paths on the pointer crossings in the FIFOs. Do not split the bridge’s clocks into
separate clock groups when you declare SDC constraints; the split has the same effect
as setting false paths.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

369

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.1.2.1. Avalon Memory Mapped Clock Crossing Bridge Example

In the example shown below, the Avalon Memory Mapped Clock Crossing bridges
separate agent components into two groups. The Avalon Memory Mapped Clock
Crossing Bridge places the low performance agent components behind a single bridge
and clocks the components at a lower speed. The bridge places the high-performance
components behind a second bridge and clocks it at a higher speed.

By inserting clock-crossing bridges, you simplify the Platform Designer interconnect
and allow the Quartus Prime Fitter to optimize paths that require minimal propagation
delay.

Figure 249. Avalon Memory Mapped Clock Crossing Bridge

A

H Avalon Memory Mapped Host Port

Avalon Memory Mapped Agent Port

Avalon-MM
Clock-Crossing

Bridge

A

H

A

H

A

DDR
SDRAM

A

Flash
Memory

A

External
SRAM

JTAG Debug
Module

A

UART

A A

System ID

A

Seven Segment
PIO

A

LCD
Display

CPU

H

Avalon Memory Mapped
Clock-Crossing Bridge

A

H

Avalon Tristate
Bridge

A

H

Avalon Tristate
Bridge

A

H

Avalon Memory Mapped
Clock-Crossing Bridge

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

370

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.1.2.2. Avalon Memory Mapped Clock Crossing Bridge Parameters

Table 122. Avalon Memory Mapped Clock Crossing Bridge Parameters

Parameters Values Description

Data width 8, 16, 32, 64, 128,
256, 512, 1024 bits

Determines the data width of the interfaces on the
bridge, and affects the size of both FIFOs. For the
highest bandwidth, set Data width to be as wide as
the widest host that connects to the bridge.

Symbol width 1, 2, 4, 8, 16, 32,
64 (bits)

Number of bits per symbol. For example, byte-
oriented interfaces have 8-bit symbols.

Address width 1-32 bits The address bits needed to address the downstream
agents.

Use automatically-determined address
width

- The minimum bridge address width that is required
to address the downstream agents.

Maximum burst size 1, 2, 4, 8, 16, 32,
64, 128, 256, 512,
1024 bits

Determines the maximum length of bursts that the
bridge supports.

Command FIFO depth 2, 4, 8, 16, 32, 64,
128, 256, 512,
1024, 2048, 4096,
8192, 16384 bits

Command (host-to-agent) FIFO depth.

Respond FIFO depth 2, 4, 8,16, 32, 64,
128, 256, 512,
1024, 2048, 4096,
8192, 16384 bits

agent-to-host FIFO depth.

Master clock domain synchronizer depth 2, 3, 4, 5 bits The number of pipeline stages in the clock crossing
logic in the issuing host to target agent direction.
Increasing this value leads to a larger mean time
between failures (MTBF). You can determine the
MTBF for a design by running a timing analysis.

Slave clock domain synchronizer depth 2, 3, 4, 5 bits The number of pipeline stages in the clock crossing
logic in the target agent to host direction. Increasing
this value leads to a larger meantime between
failures (MTBF). You can determine the MTBF for a
design by running a timing analysis.

6.1.3. Avalon Memory Mapped Pipeline Bridge Intel FPGA IP

The Avalon Memory Mapped Pipeline Bridge Intel FPGA IP inserts a register stage in
the Avalon memory mapped command and response paths. The bridge accepts
commands on its agent port and propagates the commands to its host port. The
pipeline bridge provides separate parameters to turn on pipelining for command and
response signals.

Note: The Avalon Memory Mapped Pipeline Bridge Intel FPGA IP has a readLatency of 0
and readdatavalid of 1. Therefore, the bridge does not support fixed-latency
pipelined read transfers.

The Maximum pending read transactions parameter is the maximum number of
pending reads that the Avalon Memory Mapped bridge can queue up. To determine the
best value for this parameter, review this same option for the bridge's connected
agents and identify the highest value of the parameter, and then add the internal
buffering requirements of the Avalon Memory Mapped bridge. In general, the value is
between 4 and 32. The limit for maximum queued transactions is 64.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

371

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the Avalon Memory Mapped bridge to export a single Avalon memory
mapped agent interface to control multiple Avalon memory mapped agent devices.
The pipelining feature is optional.

Figure 250. Avalon Memory Mapped Pipeline Bridge IP and XAUI PHY Transceiver IP
In this example, the bridge transfers commands received on its agent interface to its host port.

Interconnect

Exported to Embedded
Processor on PCB

 Interleave

 PCSA

Alt_PMA

AA

Low Latency
Controller

A

Transceiver
Reconfiguration

Controller

Xcvr
XAUI PHY

H

Avalon Memory Mapped
Pipeline Bridge

(Platform Designer)

A

PMA
Ch

Cntl

Because the agent interface is exported to the pins of the device, having a single
agent port, rather than separate ports for each agent device, reduces the pin count of
the FPGA. Refer to Interconnect Pipelining on page 328 for more information.

6.1.4. Avalon Memory Mapped Unaligned Burst Expansion Bridge Intel
FPGA IP

The Avalon Memory Mapped Unaligned Burst Expansion Bridge Intel FPGA IP aligns
read burst transactions from hosts connected to its agent interface, to the address
space of agents connected to its host interface. This alignment ensures that all read
burst transactions are delivered to the agent as a single transaction.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

372

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 251. Avalon Memory Mapped Unaligned Burst Expansion Bridge Intel FPGA IP

32-bit Avalon Memory Mapped Unaligned Burst
 Expansion Bridge

64-bit Avalon Memory Mapped

64-bit Avalon Memory Mapped

Host Agent Host

Host

Agent

Agent

Agent

Agent

You can use the Avalon Unaligned Burst Expansion Bridge to align read burst
transactions from hosts that have narrower data widths than the target agents. Using
the bridge for this purpose improves bandwidth utilization for the host-agent pair, and
ensures that unaligned bursts are processed as single transactions rather than
multiple transactions.

Note: Do not use the Avalon Memory Mapped Unaligned Burst Expansion Bridge if any
connected agent has read side effects from reading addresses that are exposed to any
connected host's address map. This bridge can cause read side effects due to
alignment modification to read burst transaction addresses.

Note: The Avalon Memory Mapped Unaligned Burst Expansion Bridge does not support VHDL
simulation.

6.1.4.1. Using the Avalon Memory Mapped Unaligned Burst Expansion Bridge

When a host sends a read burst transaction to an agent, the Avalon Memory Mapped
Unaligned Burst Expansion Bridge initially determines whether the start address of the
read burst transaction is aligned to the agent's memory address space. If the base
address is aligned, the bridge does not change the base address. If the base address
is not aligned, the bridge aligns the base address to the nearest aligned address that
is less than the requested base address.

The Avalon Memory Mapped Unaligned Burst Expansion Bridge then determines
whether the final word requested by the host is the last word at the agent read burst
address. If a single agent address contains multiple words, all those words must be
requested for a single read burst transaction to occur.

• If the final word requested by the host is the last word at the agent read burst
address, the bridge does not modify the burst length of the read burst command
to the agent.

• If the final word requested by the host is not the last word at the agent read burst
address, the bridge increases the burst length of the read burst command to the
agent. The final word requested by the modified read burst command is then the
last word at the agent read burst address.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

373

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The bridge stores information about each aligned read burst command that it sends to
agents connected to a host interface. When a read response is received on the host
interface, the bridge determines if the base address or burst length of the issued read
burst command was altered.

If the bridge alters either the base address or the burst length of the issued read burst
command, it receives response words that the host did not request. The bridge
suppresses words that it receives from the aligned burst response that are not part of
the original read burst command from the host.

6.1.4.2. Avalon Memory Mapped Unaligned Burst Expansion Bridge Parameters

Figure 252. Avalon Memory Mapped Unaligned Burst Expansion Bridge Parameter Editor

Table 123. Avalon Memory Mapped Unaligned Burst Expansion Bridge Parameters

Parameter Description

Data width Data width of the host connected to the bridge.

Address width (in WORDS) The address width of the host connected to the bridge.

Burstcount width The burstcount signal width of the host connected to the bridge.

Maximum pending read
transactions

The Maximum pending read transactions parameter is the maximum number
of pending reads that the Avalon Memory Mapped bridge can queue up. To
determine the best value for this parameter, review this same option for the
bridge's connected agents and identify the highest value of the parameter, and
then add the internal buffering requirements of the Avalon Memory Mapped
bridge. In general, the value is between 4 and 32. The limit for maximum
queued transactions is 64.

Width of agent to optimize for The data width of the connected agent. Supported values are: 16, 32, 64, 128,
256, 512, 1024, 2048, and 4096 bits.
Note: If you connect multiple agents, all agents must have the same data

width.

Pipeline command signals When turned on, the command path is pipelined, minimizing the bridge's critical
path at the expense of increased logic usage and latency.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

374

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.1.4.3. Avalon Memory Mapped Unaligned Burst Expansion Bridge Example

The following example shows an unaligned read burst command from a host that the
Avalon Memory Mapped Unaligned Burst Expansion Bridge converts to an aligned
request for a connected agent. The figure also shows the suppression of words due to
the aligned read burst command. In this example, a 32-bit host requests an 8-beat
burst of 32-bit words from a 64-bit agent with a start address that is not 64-bit
aligned.

Figure 253. Unaligned Burst Expansion Bridge

X
X
X
X
X
X
X
X

1
2
3
4
5
6
7
8
9
A
B
C

0
X
X
X
X

2, 3
4, 5
6, 7
8, 9
A, B
C, D
E, F

0, 1 X
X
X
X

Transaction 1
Transaction 2
Transaction 3
Transaction 4
Transaction 5

Transaction 1

X
X
X
X
X
X
X
X

1
2
3
4
5
6
7
8
9
A
B
C

0
X
X
X
X

2, 3
4, 5
6, 7
8, 9
A, B
C, D
E, F

0, 1 X
X
X
X

Transaction 1

With Avalon-MM Unaligned Burst Expansion Bridge

Bridge
Alignment

X*

X*

Note: the bridge suppresses
X* response words

Transaction 1

Without Avalon-MM Unaligned Burst Expansion Bridge

Because the target agent has a 64-bit data width, address 1 is unaligned in the
agent's address space. As a result, several smaller burst transactions are needed to
request the data associated with the host's read burst command.

With an Avalon memory mapped Unaligned Burst Expansion Bridge in place, the
bridge issues a new read burst command to the target agent beginning at address 0
with burst length 10, which requests data up to the word stored at address 9.

When the bridge receives the word corresponding to address 0, it suppresses it from
the host, and then delivers the words corresponding to addresses 1 through 8 to the
host. When the bridge receives the word corresponding to address 9, it suppresses
that word from the host.

6.1.5. Bridges Between Avalon and AXI Interfaces

When designing a Platform Designer system, you can make connections between AXI
and Avalon interfaces without the use of explicitly-instantiated bridges; the
interconnect provides all necessary bridging logic. However, this does not prevent the
use of explicit bridges to separate the AXI and Avalon domains. Using an explicit

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

375

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon memory mapped bridge to separate the AXI and Avalon domains reduces the
amount of bridging logic in the interconnect at the expense of concurrency, as the
following example shows:

Figure 254. Avalon Memory Mapped Pipeline Bridge Between Avalon Memory-Mapped and
AXI Domains

Network
Avalon Memory Mapped

Avalon Memory Mapped
AXI

AXI

AXI
Avalon Memory Mapped

Shared Avalon & AXI Domain

Network

Avalon Memory Mapped
Pipeline Bridge

Avalon Memory Mapped

AXI

AXI
AXI

Network
Avalon Memory Mapped

Avalon Memory Mapped
Avalon Memory MappedAXI

Separated Avalon & AXI Domains

6.1.6. AXI Bridge Intel FPGA IP

With an AXI bridge, you can influence the placement of resource-intensive
components, such as the width and burst adapters. Depending on its use, an AXI
bridge may reduce throughput and concurrency, in return for higher fMAX and less
logic.

You can use an AXI Bridge Intel FPGA IP to group different parts of your Platform
Designer system. Other parts of the system can then connect to the bridge interface
instead of to multiple separate manager or subordinate interfaces. You can also use an
AXI bridge to export AXI interfaces from Platform Designer systems.

The AXI bridge also supports ACE-Lite interface signals when enabled on the manager
or subordinate side. Platform Designer treats these ACE-Lite interface signals as pass
through signals.

The following figure shows a system with a single AXI manager and three AXI
subordinates. It also has various interconnect components, such as routers,
demultiplexers, and multiplexers. Two of the subordinates have a narrower data width
than the manager; 16-bit subordinates versus a 32-bit manager.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

376

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 255. AXI System Without a Bridge

AXI
Manager

AXI Manager
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_2

Command
Mux_0

Command
Mux_4

Command
Mux_5

Command
Mux_1

Command
Mux_3

Width
Adapter_1

Width
Adapter_0

Width
Adapter_2

Burst
Adapter_1

Burst
Adapter_0

Burst
Adapter_2

AXI Subordinate
Agent_0

AXI
Subordinate_0

Width
Adapter_3

Burst
Adapter_3

AXI Subordinate
Agent_2

AXI
Subordinate_2

AXI Subordinate
Agent_1

AXI
Subordinate_1

Four width adapters (0 - 3) and four burst
adapters (0 - 3) are inserted between the
manager and subordinates for transaction
adaptation for the example system.

In this system, Platform Designer interconnect creates four width adapters and four
burst adapters to access the two subordinates. You can improve resource usage by
adding an AXI bridge. Then, Platform Designer needs to add only two width adapters
and two burst adapters; one pair for the read channels, and another pair for the write
channel.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

377

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 256. Width and Burst Adapters Added to System With a Bridge

AXI Manager AXI Manager
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

Width
Adapter_0

AXI Subordinate
Agent_1

Burst
Adapter_0

AXI
Subordinate_2

Width
Adapter_3

Burst
Adapter_3

AXI Subordinate
Agent_0

AXI
Bridge

By inserting an AXI bridge, the
interconnect Is divided into two
domains (interconnect_0 and
interconnect_1). Notice the
reduction in the number of width
adapters from 4 to 2 after the
bridge insertion. The same
process applies for burst adapters.

Interconnect_0

AXI
Bridge

AXI Manager
Agent

Router_0 Limiter_0

Router_1 Limiter_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

AXI
Subordinate_0

Width and burst adapters
are not required in
Interconnect_1 because
the adaptations are
performed in Intercon-

Interconnect_1

Command
Demux_0

Command
Demux_1

AXI Subordinate
Agent_1

AXI
Subordinate_1

AXI Subordinate
Agent_0

The figure shows the same system with an AXI bridge component, and the decrease in
the number of width and burst adapters. Platform Designer creates only two width
adapters and two burst adapters, as compared to the four width adapters and four
burst adapters in the previous figure. Even though this system includes more
components, the overall system performance improves because there are fewer
resource-intensive width and burst adapters.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

378

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.1.6.1. AXI Bridge Signal Types

Based on parameter selections that you make for the AXI Bridge component, Platform
Designer instantiates either the AMBA 3 AXI or AMBA 4 AXI manager and subordinate
interfaces into the component.

Note: In AMBA 3 AXI, aw/aruser accommodates sideband signal usage by hard processor
systems (HPS).

Table 124. Sets of Signals for the AXI Bridge Based on the Protocol

Signal Name AMBA 3 AXI AMBA 4 AXI

awid / arid yes yes

awaddr / araddr yes yes

awlen / arlen yes (4-bit) yes (8-bit)

awsize / arsize yes yes

awburst / arburst yes yes

awlock / arlock yes yes (1-bit optional)

awcache / arcache yes (2-bit) yes (optional)

awprot / arprot yes yes

awuser / aruser yes yes

awvalid / arvalid yes yes

awready / arready yes yes

awqos / arqos no yes

awregion / arregion no yes

wid yes no (optional)

wdata / rdata yes yes

wstrb yes yes

wlast / rvalid yes yes

wvalid / rlast yes yes

wready / rready yes yes

wuser / ruser no yes

bid / rid yes yes

bresp / rresp yes yes (optional)

bvalid yes yes

bready yes yes

6.1.6.2. AXI Bridge Parameters

In the parameter editor, you can customize the parameters for the AXI bridge
according to the requirements of your design.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

379

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 257. AXI Bridge Parameter Editor

Table 125. AXI Bridge Parameters

Parameter Type Range Description

AXI Version string AMBA 3
AXI or

AMBA 4
AXI

Specifies the AXI version and signals that
Platform Designer generates for the
subordinate and manager interfaces of the
bridge.

Data Width integer 8:1024 Controls the width of the data for the manager
and subordinate interfaces.

Address Width integer 1-64 bits Controls the width of the address for the
manager and subordinate interfaces.

AWUSER Width integer 1-64 bits Controls the width of the write address channel
sideband signals of the manager and
subordinate interfaces.

ARUSER Width integer 1-64 bits Controls the width of the read address channel
sideband signals of the manager and
subordinate interfaces.

WUSER Width integer 1-64 bits Controls the width of the write data channel
sideband signals of the manager and
subordinate interfaces.

RUSER Width integer 1-16 bits Controls the width of the read data channel
sideband signals of the manager and
subordinate interfaces.

BUSER Width integer 1-16 bits Controls the width of the write response
channel sideband signals of the manager and
subordinate interfaces.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

380

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.1.6.3. AXI Bridge Subordinate and Manager Interface Parameters

Table 126. AXI Bridge Subordinate and Manager Interface Parameters

Parameter Description

ID Width Controls the width of the thread ID of the manager and
subordinate interfaces.

Write/Read/Combined Acceptance Capability Controls the depth of the FIFO that Platform Designer needs
in the interconnect agents based on the maximum pending
commands that the subordinate interface accepts.

Write/Read/Combined Issuing Capability Controls the depth of the FIFO that Platform Designer needs
in the interconnect agents based on the maximum pending
commands that the manager interface issues. Issuing
capability must follow acceptance capability to avoid
unnecessary creation of FIFOs in the bridge.

Note: Maximum acceptance/issuing capability is a model-only parameter and does not
influence the bridge HDL. The bridge does not backpressure when this limit is reached.
Downstream components or the interconnect must apply backpressure.

6.1.7. AXI Timeout Bridge Intel FPGA IP

The AXI Timeout Bridge Intel FPGA IP allows your system to recover when it freezes,
and facilitates debugging. You can place an AXI Timeout Bridge between a single
manager and a single subordinate if you know that the subordinate may time out and
cause your system to freeze. If a subordinate does not accept a command or respond
to a command it accepted, its manager can wait indefinitely.

For a domain with multiple managers and subordinates, placement of an AXI Timeout
Bridge in your design may be beneficial in the following scenarios:

• To recover from a freeze, place the bridge near the subordinate. If the manager
attempts to communicate with a subordinate that freezes, the AXI Timeout Bridge
frees the manager by generating error responses. The manager is then able to
communicate with another subordinate.

• When debugging your system, place the AXI Timeout Bridge near the manager.
This placement enables you to identify the origin of the burst, and to obtain the
full address from the manager. Additionally, placing an AXI Timeout Bridge near
the manager enables you to identify the target subordinate for the burst.

Note: If you place the bridge at the subordinate's side and you have multiple
subordinates connected to the same manager, you do not get the full
address.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

381

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 258. AXI Timeout Bridge Placement

Interconnect

M 0

M 1

S 0

S 1

Possible bridge placement when used with Interconnect

Near Manager
or at Manager’s Side

Near Subordinate
or at Subordinate’s Side

Manager Subordinate

Simplest Form

Bridge

6.1.7.1. AXI Timeout Bridge Stages

A timeout occurs when the internal timer in the bridge exceeds the specified number
of cycles within which a burst must complete from start to end.

Figure 259. AXI Timeout Bridge Stages

A

BC

A read/write
times out

No more
outstanding
commands

The AXI Timeout Bridge is notified

 A is functional - The bridge passes through all bursts.
 The bridge accepts commands and
 responds (with errors) to commands for the
 Commands are not passed through to the subordinate yet.

 C Subordinate is reset - The bridge does not accept new commands,
and responds only to outstanding commands.

that the subordinate is reset

Subordinate

Subordinate is unresponsive -
unresponsive subordinate.

B

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

382

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• When a timeout occurs, the AXI Timeout Bridge asserts an interrupt and reports
the burst that caused the timeout to the Configuration and Status Register (CSR).

• The bridge then generates error responses back to the manager on behalf of the
unresponsive subordinate. This stage frees the manager and certifies the
unresponsive subordinate as dysfunctional.

• The AXI Timeout Bridge accepts subsequent write addresses, write data, and read
addresses to the dysfunctional subordinate. The bridge does not accept
outstanding write responses, and read data from the dysfunctional subordinate is
not passed through to the manager.

• The awvalid, wvalid, bready, arvalid, and rready ports are held low at the
manager interface of the bridge.

Note: After a timeout, awvalid, wvalid, and arvalid may be dropped before they are
accepted by awready at the manager interface. While the behavior violates the AXI
specification, it occurs only on an interface connected to the subordinate which has
been certified dysfunctional by the AXI Timeout Bridge.

Write channel refers to the AXI write address, data and response channels. Similarly,
read channel refers to the AXI read address and data channels. AXI write and read
channels are independent of each other. However, when a timeout occurs on either
channel, the bridge generates error responses on both channels.

Table 127. Burst Start and End Definitions for the AXI Timeout Bridge

Channel Start End

Write When an address is issued. First cycle of awvalid,
even if data of the same burst is issued before the
address (first cycle of wvalid).

When the response is issued. First cycle of
bvalid.

Read When an address is issued. First cycle of arvalid. When the last data is issued. First cycle of rvalid
and rlast.

The AXI Timeout Bridge has four required interfaces: manager, subordinate,
Configuration and Status Register (CSR) (AMBA 3 AXI-Lite), and Interrupt. Platform
Designer allows the AXI Timeout Bridge to connect to any AMBA 3 AXI, AMBA 4 AXI,
or Avalon host or agent interface. Avalon hosts must utilize the bridge’s interrupt
output to detect a timeout.

The bridge subordinate interface accepts write addresses, write data, and read
addresses, and then generates the SLVERR response at the write response and read
data channels. Do not use buser, rdata, and ruser at this stage of processing.

To resume normal operation, the dysfunctional subordinate must be reset and the
bridge notified of the change in status via the CSR. Once the CSR notifies the bridge
that the subordinate is ready, the bridge does not accept new commands until all
outstanding bursts are responded to with an error response.

The CSR has a 4-bit address width and a 32-bit data width. The CSR reports status
and address information when the bridge asserts an interrupt.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

383

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 128. CSR Interrupt Status Information for the AXI Timeout Bridge

Address Attribute Name Description

0x0 write-only Subordinate
is reset

Write a 1 to this address to notify the AXI timeout bridge
that the subordinate is reset and is ready. This also clears
the interrupt.

0x4 read-only Timed out
operation

Legacy
behavior=1

The operation of the burst that causes
the timeout:
• 01: write operation
• 00: read operation

Legacy
behavior=0

CSR Values:
• 00: No timeout occurs
• 10: Read operation causes timeout
• 11: Write operation causes timeout

0x8 through 0xF read-only Timed out
address

The address of the burst that causes the timeout.
Note: If you use an ADDRESS_WIDTH of more than 32
bits, two CSR reads (from addresses 0x8 and 0xc) are
required to get the complete address, given that the data
width of the CSR interface is only 32 bits wide.

6.1.7.2. AXI Timeout Bridge Parameters

Table 129. AXI Timeout Bridge Parameters

Parameter Description

ID width The width of awid, bid, arid, or rid.

Address width The width of awaddr or araddr.

Data width The width of wdata or rdata.

User width The width of awuser, wuser, buser, aruser, or ruser.

Maximum number of
outstanding writes

The expected maximum number of outstanding writes.

Maximum number of
outstanding reads

The expected maximum number of outstanding reads.

Maximum number of
cycles

The number of cycles within which a burst must complete.

Use synchronous resets When this option is off (default), the IP allows asynchronous resets. When this option is on,
the IP uses internal reset synchronization and allows no asynchronous resets.

Use Legacy Behavior When this option is off, the IP uses the new behavior of the CSR and allows asynchronous
resets. When this option is on, the IP uses the legacy (previous) behavior of the CSR, and
you cannot access the CSR except during a timeout. For a new instance of the IP, the
default Use Legacy Behavior is OFF. If you update the old version of the IP, the default
Legacy Behavior is ON as previous behavior.

6.1.8. Address Span Extender Intel FPGA IP

The Address Span Extender Intel FPGA IP allows memory-mapped host interfaces to
access a larger or smaller address map than the width of their address signals allows.
The Address Span Extender IP splits the addressable space into multiple separate
windows, so that the host can access the appropriate part of the memory through the
window.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

384

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Address Span Extender does not limit host and agent widths to a 32-bit and 64-
bit configuration. You can use the Address Span Extender with 1-64 bit address
windows.

Figure 260. Address Span Extender Intel FPGA IP

A

A

Control Port

Address Span Extender

Mapping Table

Control Register Z-1

Control Register 0

Agent Word Address

Expanded Host Address

. .
.

H

If a processor can address only 2 GB of an address span, and your system contains 4
GB of memory, the Address Span Extender can provide two, 2 GB windows in the 4 GB
memory address space. This issue sometimes occurs with Intel SoC devices.

For example, an HPS subsystem in an SoC device can address only 1 GB of an address
span within the FPGA, using the HPS-to-FPGA bridge. The Address Span Extender
enables the SoC device to address all the address space in the FPGA using multiple 1
GB windows.

6.1.8.1. CTRL Register Layout

The control registers consist of one 64-bit register for each window, where you specify
the window's base address. For example, if CTRL_BASE is the base address of the
control register, and address span extender contains two windows (0 and 1), then
window 0’s control register starts at CTRL_BASE, and window 1’s control register
starts at CTRL_BASE + 8 (using byte addresses).

6.1.8.2. Address Span Extender Parameters

Table 130. Address Span Extender Parameters

Parameter Description

Datapath Width Width of write data and read data signals.

Expanded Master Byte Address
Width

Width of the host byte address port. That is, the address span size of all the
downstream agents that attach to the address span extender.

Slave Word Address Width Width of the agent word address port. That is, the address span size of the
downstream agents that the upstream host accesses.

Burstcount Width Burst count port width of the downstream agent and the upstream host that
attach to the address span extender.

continued...

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

385

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Number of sub-windows The agent port can represent one or more windows in the host address span. You
can subdivide the agent address span into N equal spans in N sub-windows. A
remapping register in the CSR agent represents each sub-window, and
configures the base address that each sub-window remaps to. The address span
extender replaces the upper bits of the address with the stored index value in
the remapping register before the host initiates a transaction.

Enable Slave Control Port Dictates run-time control over the sub-window indexes. If you can define static
re-mappings that do not need any change, you do not need to enable this CSR
agent.

Maximum Pending Reads Sets the bridge agent's maximumPendingReadTransactions property. In
certain system configurations, you must increase this value to improve
performance. This value usually aligns with the properties of the downstream
agents that you attach to this bridge.

6.1.8.3. Calculating the Address Span Extender Agent Address

The diagram describes how Platform Designer calculates the agent address. In this
example, the address span extender is configured with a 28-bit address space for
agents. The upper 2 bits [27:26] are used to select the control registers.

The lower 26 bits ([25:0]) originate from the address span extender's data port, and
are the offset into a particular window.

Figure 261. Address Span Extender

Control Registers[63:0]

Mapping Table (Sub-Windows)

[27:26] [25:0]

28-bit Agent Word Address

38-bit Host Word Address

Control
Port

0x00000000_04000000
0x00000000_08000000
0x00000000_0C000000

0x00000000_00000000 0

1

2

3

{ ”Control Register”[37:26] , “Agent_ addr”[25:0] }

6.1.8.4. Using the Address Span Extender

This example shows when and how to use address span extender component in your
Platform Designer design.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

386

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 262. Block Diagram with Address Span Extender

 External Streaming
Source (Example: SDI)

Modular
SGDMA

4GB SDRAM

Address Span
 Extender

 Peripherals
(LED and UART)

32-bit Address
 Host

Avalon MM/AXI
Avalon ST

In the above design, a 32-bit host shares 4 GB SDRAM with an external streaming
interface. The host has the path to access streaming data from the SDRAM DDR
memory. However, if you connect the whole 32-bit address bus of the host to the
SDRAM DDR memory, you cannot connect the host to peripherals such as LED or
UART. To avoid this situation, you can implement the address span extender between
the host and DDR memory. The address span extender allows the host to access the
SDRAM DDR memory and the peripherals at the same time.

To implement address span extender for the above example, you can divide the
address window of the address span extender into two sub-windows of 512 MB each.
The sub-window 0 is for the host program area. You can dynamically map the sub-
window 1 to any area other than the program area.

You can change the offset of the address window by setting the base address of sub-
window 1 to the control register of the address span extender. However, you must
make sure that the sub-window address span masks the base address. You can
choose any arbitrary base address. If you set the value 0xa000_0000 to the control
register, Platform Designer maps the sub-window 1 to 0xa000_0000.

Table 131. CSR Mapping Table

Address Data

0x8000_0000 0x0000_0000

0x8000_0008 0xa000_0000

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

387

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 263. Memory mapping for Address Span Extender

 Peripherals

 CSR Area

 Address Span Extender

 Extended Host Area

0xFFFF_FFFF

0x8000_0000

0x3FFF_FFFF

0x0000_0000

Host

 Sub-window 1

 Sub-window 0
0x2000_0000

0xa000_0000

4GB SDRAM

 Streaming Data

Address: 0x8000_0008

0xa0000_0000

The table below indicates the Platform Designer parameter settings for this address
span extender example.

Table 132. Parameter Settings for the Address Span Extender Example

Parameter Value Description

Datapath Width 32 bits The CPU has 32-bits data width and the SDRAM DDR
memory has 512-bits data width. Since the transaction
between the host and SDRAM DDR memory is minimal, set
the datapath width to align with the upstream host.

Expanded Master Byte Address 32 bits The address span extender has a 4 GB address span.

Slave Word Address Width 18 bits There are two 512 MB sub-windows in reserve for the host.
The number of bytes over the data word width in the
Datapath Properties (4 bytes for this example) accounts
for the agent address.

Burstcount Width 4 bits The address span extender must handle up to 8 words burst
in this example.

Number of sub-windows 2 Address window of the address span extender has two sub-
windows of 512 MB each.

Enable Slave Control Port true The address span extender component must have control to
change the base address of the sub-window.

Maximum Pending Reads 4 This number is the same as SDRAM DDR memory burst
count.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

388

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 264. Address Span Extender Parameter Editor

Note: You can view the address span extender connections in the System View tab. The
windowed agent port and control port connect to the host. The expanded host port
connects to the SDRAM DDR memory.

6.1.8.5. Alternate Options for the Address Span Extender

You can set parameters for the address span extender with an initial fixed address
value. Enter an address for the Reset Default for Master Window option, and
select True for the Disable Slave Control Port option. This allows the address span
extender to function as a fixed, non-programmable component.

Each sub-window is equal in size and stacks sequentially in the windowed agent
interface's address space. To control the fixed address bits of a particular sub-window,
you can write to the sub-window’s register in the register control agent interface.
Platform Designer structures the logic so that Platform Designer can optimize and
remove bits that are not needed.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

389

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If Burstcount Width is greater than 1, Platform Designer processes the read burst in
a single cycle, and assumes all byteenable signals are asserted on every cycle.

6.1.8.6. Nios II Support

If the address span extender window is fixed, for example, the Disable Slave
Control Port option is turned on, then the address span extender performs as a
bridge. Components on the agent side of the address span extender that are within
the window are visible to the Nios II processor. Components partially within a window
appear to the Nios II processor as if they have a reduced span. For example, a
memory partially within a window appears as having a smaller size.

You can also use the address span extender to provide a window for the Nios II
processor, so that the HPS memory map is visible to the Nios II processor. This
technique allows the Nios II processor to communicate with HPS peripherals.

In the example, a Nios II processor has an address span extender from address
0x40000 to 0x80000. There is a window within the address span extender starting at
0x100000. Within the address span extender's address space there is an agent at
base address 0x1100000. The agent appears to the Nios II processor as being at
address:

0x110000 - 0x100000 + 0x40000 = 0x050000

Figure 265. Nios II Support and the Address Span Extender

0x80000

0x40000

Nios II

Address Span
Extender

Avalon-MM
Agent

0x140000

0x120000

0x110000

0x100000

Effective Agent Base Address =
0x110000 - 0x100000 + 0x040000

= 0x050000

The address span extender window is dynamic. For example, when the Disable Slave
Control Port option is turned off, the Nios II processor is unable to see components
on the agent side of the address span extender.

6.2. Error Response Slave Intel FPGA IP

The Error Response Slave IP provides a predictable error response service for host
interfaces that attempt to access an undefined memory region.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

390

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Error Response Slave is an AMBA 3 AXI component, and appears in the Platform
Designer IP Catalog under Platform Designer Interconnect.

To comply with the AXI protocol, the interconnect logic must return the DECERR error
response in cases where the interconnect cannot decode subordinate access.
Therefore, an AXI system with address space not fully decoded to subordinate
interfaces requires the Error Response Slave.(25)

The Error Response Slave behaves like any other component in the system, and
connects to other components via translation and adaptation interconnect logic.
Connecting an Error Response Slave to managers or hosts of different data widths,
including Avalon hosts or AXI-Lite managers, can increase resource usage.

An Error Response Slave can connect to clock, reset, and IRQ signals as well as AMBA
3 AXI and AMBA 4 AXI manager interfaces without instantiating a bridge. When you
connect an Error Response Slave to a manager or host, the Error Response Slave
accepts cycles sent from the manager or host, and returns the DECERR error
response. On the AXI interface, the Error Response Slave supports only a read and
write acceptance of capability 1, and does not support write data interleaving. The
Error Response Slave can return responses when simultaneously targeted by a read
and write cycle, because its read and write channels are independent.

An optional Avalon interface on the Error Response Slave provides information in a set
of CSR registers. CSR registers log the required information when returning an error
response.

• To set the Error Response Slave as the default subordinate or agent for a manager
or host interface in your system, connect the subordinate to the manager or
connect the agent to the host in your Platform Designer system.

• A system can contain more than one Error Response Slave.

• As a best practice, instantiate separate Error Response Slave components for each
AXI manager in your system.

Related Information

• AMBA 3 AXI Protocol Specification Support (version 1.0) on page 332

• Designating a Default Agent on page 396

(25) This document now refers to the AXI "manager" and "subordinate" to replace the former
terms. Refer to the latest AMBA AXI and ACE Protocol Specification.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

391

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.2.1. Error Response Slave Parameters

Figure 266. Error Response Slave Parameter Editor

If you turn on Enable CSR Support (for error logging) more parameters become
available.

Figure 267. Error Response Slave Parameter Editor with Enabled CSR Support

Table 133. Error Response Slave Parameters

Parameter Value Description

AXI master ID width 1-8 bits Specifies the manager ID width for error logging.

AXI address width 8-64 bits Specifies the address width for error logging.
This value also affects the overall address width of the
system, and should not exceed the maximum address
width required in the system.

continued...

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

392

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Value Description

AXI data width 32, 64, or
128 bits

Specifies the data width for error logging.

Enable CSR Support (for error logging) On / Off When turned on, instantiates an Avalon CSR interface
for error logging.

CSR Error Log Depth 1-16 bits Depth of the transaction log, for example, the number of
transactions the CSR logs for cycles with errors.

Register Avalon CSR inputs On / Off When turned on, controls debug access to the CSR
interface.

6.2.2. Error Response Slave CSR Registers

The Error Response Slave with enabled CSR support provides a service to handle
access violations. This service uses CSR registers for status and logging purposes.

The sequence of actions in the access violation service is equivalent for read and write
access violations, but the CSR status bits and log registers are different.

6.2.2.1. Error Response Slave Access Violation Service

When an access violation occurs, and the CSR port is enabled:

1. The Error Response Slave generates an interrupt:

— For a read access violation, the Error Response Slave sets the Read Access
Violation Interrupt register bit in the Interrupt Status register.

— For a write access violation, the Error Response Slave sets the Write Access
Violation Interrupt register bit in the Interrupt Status register.

2. The Error Response Slave transfers transaction information to the access violation
log FIFO. The amount of information that the FIFO can handle is given by the
Error Log Depth parameter.

You define the Error Log Depth in the Parameter Editor, when you enable CSR
Support.

3. Software reads entries of the access violation log FIFO until the corresponding
cycle log valid bit is cleared, and then exits the service routine.

— The Read cycle log valid bit is in the Read Access Violation Log
CSR Registers.

— The Write cycle log valid bit is in the Write Access Violation
Log CSR Registers.

4. The Error Response Slave clears the interrupt bit when there are no access
violations to report.

Some special cases are:

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

393

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If any error occurs when the FIFO is full, the Error Response Slave sets the
corresponding Access Violation Interrupt Overflow register bit (bits
2 and 3 of the Status Register for write and read access violations, respectively).
Setting this bit means that not all error entries were written to the access violation
log.

• After Software reads an entry in the Access Violation log, the Error Response Slave
can write a new entry to the log.

• Software can specify the number of entries to read before determining that the
access violation service is taking too long to complete, and exit the routine.

6.2.2.2. CSR Interrupt Status Registers

Table 134. CSR Interrupt Status Registers
For CSR register maps: Address = Memory Address Base + Offset.

Offset Bits Attribute Default Description

0x00 31:4 Reserved.

3 RW1C 0 Read Access Violation Interrupt Overflow register

Asserted when a read access causes the Interconnect to return a
DECERR response, and the buffer log depth is full. Indicates that
there is a logging error lost due to an exceeded buffer log depth.
Cleared by setting the bit to 1.

2 RW1C 0 Write Access Violation Interrupt Overflow register

Asserted when a write access causes the Interconnect to return a
DECERR response, and the buffer log depth is full. Indicates that
there is a logging error lost due to an exceeded buffer log depth.
Cleared by setting the bit to 1.

1 RW1C 0 Read Access Violation Interrupt register

Asserted when a read access causes the Interconnect to return a
DECERR response. Cleared by setting the bit to 1.
Note: Access violation are logged until the bit is cleared.

0 RW1C 0 Write Access Violation Interrupt register

Asserted when a write access causes the Interconnect to return a
DECERR response. Cleared by setting the bit to 1.
Note: Access violation are logged until the bit is cleared.

6.2.2.3. CSR Read Access Violation Log Registers

The CSR read access violation log settings are valid only when an associated read
interrupt register is set. Read this set of registers until the validity bit is cleared.

Table 135. CSR Read Access Violation Log Registers

Offset Bits Attribute Default Description

0x100 31:13 Reserved.

12:11 R0 0 Offending Read cycle burst type: Specifies the burst type
of the initiating cycle that causes the access violation.

10:7 R0 0 Offending Read cycle burst length: Specifies the burst
length of the initiating cycle that causes the access violation.

6:4 R0 0 Offending Read cycle burst size: Specifies the burst size
of the initiating cycle that causes the access violation.

continued...

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

394

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Offset Bits Attribute Default Description

3:1 R0 0 Offending Read cycle PROT: Specifies the PROT of the
initiating cycle that causes the access violation.

0 R0 0 Read cycle log valid: Specifies the validity of the read access
violation log. This bit is cleared when the interrupt register is
cleared.

0x104 31:0 R0 0 Offending read cycle ID: Manager ID for the cycle that
causes the access violation.

0x108 31:0 R0 0 Offending read cycle target address: Target address for
the cycle that causes the access violation (lower 32-bit).

0x10C 31:0 R0 0 Offending read cycle target address: Target address for
the cycle that causes the access violation (upper 32-bit). Valid only
if widest address in system is larger than 32 bits.
Note: When this register is read, the current read access violation

log is recovered from FIFO.

6.2.2.4. CSR Write Access Violation Log Registers

The CSR write access violation log settings are valid only when an associated write
interrupt register is set. Read this set of registers until the validity bit is cleared.

Table 136. CSR Write Access Violation Log

Offset Bits Attribute Default Description

0x190 31:13 Reserved.

12:11 R0 0 Offending write cycle burst type: Specifies the burst type
of the initiating cycle that causes the access violation.

10:7 R0 0 Offending write cycle burst length: Specifies the burst
length of the initiating cycle that causes the access violation.

6:4 R0 0 Offending write cycle burst size: Specifies the burst size
of the initiating cycle that causes the access violation.

3:1 R0 0 Offending write cycle PROT: Specifies the PROT of the
initiating cycle that causes the access violation.

0 R0 0 Write cycle log valid: Specifies whether the log for the
transaction is valid. This bit is cleared when the interrupt register is
cleared.

0x194 31:0 R0 0 Offending write cycle ID: Manager ID for the cycle that
causes the access violation.

0x198 31:0 R0 0 Offending write cycle target address: Write target
address for the cycle that causes the access violation (lower 32-
bit).

0x19C 31:0 R0 0 Offending write cycle target address: Write target
address for the cycle that causes the access violation (upper 32-
bit). Valid only if widest address in system is larger than 32 bits.

0x1A0 31:0 R0 0 Offending write cycle first write data: First 32 bits of
the write data for the write cycle that causes the access violation.
Note: When this register is read, the current write access

violation log is recovered from FIFO, when the data width is
32 bits.

continued...

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

395

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Offset Bits Attribute Default Description

0x1A4 31:0 R0 0 Offending write cycle first write data: Bits [63:32] of
the write data for the write cycle that causes the access violation.
Valid only if the data width is greater than 32 bits.

0x1A8 31:0 R0 0 Offending write cycle first write data: Bits [95:64] of
the write data for the write cycle that causes the access violation.
Valid only if the data width is greater than 64 bits.

0x1AC 31:0 R0 0 Offending write cycle first write data: The first bits
[127:96] of the write data for the write cycle that causes the
access violation. Valid only if the data width is greater than 64 bits.
Note: When this register is read, the current write access

violation log is recovered from FIFO.

6.2.3. Designating a Default Agent

You can designate any agent in your Platform Designer system as the error response
default agent. The default agent you designate provides an error response service for
hosts that attempt access to an undefined memory region.

1. In your Platform Designer system, in the System View tab, right-click the header
and turn on Show Default Slave Column.

2. Select the agent that you want to designate as the default agent, and then click
the checkbox for the agent in the Default Slave column.

3. In the System View tab, in the Connections column, connect the designated
default agent to one or more hosts.

Note: If you do not specify a value for the Default Slave option, and the
Automate default slave insertion option is off, Platform Designer
automatically assigns the AXI subordinate or Avalon agent in the system.
Platform Designer automatically assigns the AXI subordinate or Avalon
agent that has largest address span within the memory map for the issuing
AXI manager or Avalon host. In the case of multiple, large AXI subordinates
or Avalon agents that have the same address span, Platform Designer
selects the AXI subordinate or Avalon agent at the lowest base offset.

Related Information

Specifying a Default Avalon Agent or AXI Subordinate on page 80

6.3. Tri-State Components

The tri-state interface type allows you to design Platform Designer subsystems that
connect to tri-state devices on your PCB. You can use tri-state components to
implement pin sharing, convert between unidirectional and bidirectional signals, and
create tri-state controllers for devices whose interfaces can be described using the tri-
state signal types.

Example 27. Tri-State Conduit System to Control Off-Chip SRAM and Flash Devices

In this example, there are two generic Tri-State Conduit Controllers. The first is
customized to control a flash memory. The second is customized to control an off-chip
SSRAM. The Tri-State Conduit Pin Sharer multiplexes between these two controllers,
and the Tri-State Conduit Bridge converts between an on-chip encoding of tri-state

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

396

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

signals and true bidirectional signals. By default, the Tri-State Conduit Pin Sharer and
Tri-State Conduit Bridge present byte addresses. Typically, each address location
contains more than one byte of data.

Figure 268. Tri-State Conduit System to Control Off-Chip SRAM and Flash Devices

Intel FPGA

Printed Circuit Board

H

H

H

Nios II
Processor

Cn SSRAM

Cn FlashTCH

A TCH

Generic Tri-state
Controller

TCH
TCA

Tri-state
Conduit

Pin
Sharer

Avalon Memory Mapped Host
Avalon Memory Mapped Agent

CnTCA

Tri-state
Conduit
Bridge

Generic Tri-state
Controller

Parameterized
for 8 MByte
x16 FlashA

A

TCA

TCH

Conduit Cn
TCA

Avalon Tri-State Conduit Host
Avalon Tri-State Conduit Agent

Address Connections from Platform Designer System to PCB

The flash device operates on 16-bit words and must ignore the least-significant bit of
the Avalon memory mapped address. The figure shows addr[0]as not connected.
The SSRAM memory operates on 32-bit words and must ignore the two low-order
memory bits. Because neither device requires a byte address, addr[0] is not routed
on the PCB.

The flash device responds to address range 0 MB to 8 MB-1. The SSRAM responds to
address range 8 MB to 10 MB-1. The PCB schematic for the PCB connects
addr[21:0] to addr[18:0] of the SSRAM device because the SSRAM responds to
32-bit word address. The 8 MB flash device accesses 16-bit words; consequently, the
schematic does not connect addr[0]. The chipselect signals select between the
two devices.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

397

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 269. Address Connections from Platform Designer System to PCB

PCB_Addr [21:0]

2 MByte SSRAM
(32-bit word)

0

8 MB

16 MB

10 MB

PCB_Addr [19:1]

Addr [21:0]

8 MByte Flash
 (16-bit word) 8 MByte Flash

 (16-bit word)

Unused

2 MByte SSRAM
(32-bit word)

Addr [18:0]

PCB

Platform Designer

Address Map

Addr [22:1] PCB_Addr [21:0]

 Addr [0]

Addr [23] x

x

Tristate Conduit
Bridge

Note: If you create a custom tri-state conduit host with word aligned addresses, the Tri-state
Conduit Pin Sharer does not change or align the address signals.

Figure 270. Tri-State Conduit System in Platform Designer

Related Information

Avalon Interface Specifications

6.3.1. Generic Tri-State Controller Intel FPGA IP

The Generic Tri-State Controller Intel FPGA IP provides a template for a controller. You
can customize the Generic Tri-State Controller with various parameters to reflect the
behavior of an off-chip device. The following types of parameters are available for the
Generic Tri-State Controller:

• Width of the address and data signals

• Read and write wait times

• Bus turnaround time

• Data hold time

Note: In calculating delays, the Generic Tri-State Controller chooses the larger of the bus
turnaround time and read latency. Turnaround time is measured from the time that a
command is accepted, not from the time that the previous read returned data.

The Generic Tri-State Controller includes the following interfaces:

• Memory-mapped agent interface—This interface connects to a memory-
mapped host, such as a processor.

• Tristate Conduit Host interface—The tri-state host interface usually connects to
the tri-state conduit agent interface of the tri-state conduit pin sharer.

• Clock sink—The component’s clock reference. You must connect this interface to
a clock source.

• Reset sink—This interface connects to a reset source interface.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

398

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.3.2. Tri-State Conduit Pin Sharer Intel FPGA IP

The Tri-State Conduit Pin Sharer Intel FPGA IP multiplexes between the signals of the
connected tri-state controllers. You connect all signals from the tri-state controllers to
the Tri-State Conduit Pin Sharer IP, and then use the parameter editor to specify the
signals that are shared.

The parameter editor includes a Shared Signal Name column. If the widths of
shared signals differ, the signals are aligned on their 0th bit and the higher-order pins
are driven to 0 whenever the smaller signal has control of the bus. Unshared signals
always propagate through the pin sharer. The tri-state conduit pin sharer uses the
round-robin arbiter to select between tri-state conduit controllers.

Figure 271. Tri-State Conduit Pin Sharer Parameter Editor

Note: All tri-state conduit components connected to a pin sharer must be in the same clock
domain.

Related Information

Avalon Streaming Round Robin Scheduler Intel FPGA IP on page 423

6.3.3. Tri-State Conduit Bridge Intel FPGA IP

The Tri-State Conduit Bridge Intel FPGA IP instantiates bidirectional signals for each
tri-state signal while passing all other signals straight through the component. The Tri-
State Conduit Bridge registers all outgoing and incoming signals, which adds two
cycles of latency for a read request. You must account for this additional pipelining
when designing a custom controller. During reset, all outputs are placed in a high-
impedance state. Outputs are enabled in the first clock cycle after reset is deasserted,
and the output signals are then bidirectional.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

399

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4. Avalon Data Pattern Generator and Checker Intel FPGA IP

You can use the Avalon Data Pattern Generator IP to insert different error conditions,
and then use the Avalon Data Pattern Checker IP to report these error conditions to
the control interface, via an Avalon Memory-Mapped agent.

Similarly, for Avalon streaming interfaces, Avalon Data Pattern Generator IP generates
data, and sends the data out on an Avalon streaming data interface. The Avalon Data
Pattern Checker IP verifies the data. Optionally, you can format the data as packets,
with accompanying start_of_packet and end_of_packet signals.

The Throttle Seed is the starting value for the throttle control random number
generator. Intel recommends a unique value for each instance of the data pattern
generator and checker IP cores in a system.

6.4.1. Avalon Data Pattern Generator Intel FPGA IP

The Avalon Data Pattern Generator IP accepts commands to generate data via an
Avalon memory mapped command interface, and drives the generated data to an
Avalon streaming data interface. You can parameterize most aspects of the Avalon
streaming data interface, such as the number of error bits and data signal width, thus
allowing you to test components with different interfaces.

Figure 272. Avalon Data Pattern Generator Intel FPGA IP

Avalon Memory

AVALON DATA PATTERN
GENERATOR IP

command data_out

control & status

Mapped Agent Port

Avalon Memory
Mapped Agent

Port

Avalon Streaming
Source

Port

The data pattern is calculated as: Symbol Value = Symbol Position in Packet XOR Data
Error Mask. Data that is not organized in packets is a single stream with no beginning
or end. The Avalon Data Pattern Generator IP has a throttle register that is set via the
Avalon memory mapped control interface. The Avalon Data Pattern Generator IP uses
the value of the throttle register in conjunction with a pseudo-random number
generator to throttle the data generation rate.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

400

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.1.1. Avalon Data Pattern Generator IP Command Interface

The command interface for the Avalon Data Pattern Generator is a 32-bit Avalon
memory mapped write agent that accepts data generation commands. It is connected
to a 16-element deep FIFO, thus allowing a host peripheral to drive commands into
the Avalon Data Pattern Generator IP.

The command interface maps to the following registers: cmd_lo and cmd_hi. The
command is pushed into the FIFO when the register cmd_lo (address 0) is addressed.
When the FIFO is full, the command interface asserts the waitrequest signal. You
can create errors by writing to the register cmd_hi (address 1). The errors are cleared
when 0 is written to this register, or its respective fields.

6.4.1.2. Avalon Data Pattern Generator IP Control and Status Interface

The control and status interface of the Avalon Data Pattern Generator IP is a 32-bit
Avalon memory mapped agent that allows you to enable or disable the data
generation, as well as set the throttle. This interface also provides generation-time
information, such as the number of channels and whether data packets are supported.

6.4.1.3. Avalon Data Pattern Generator IP Output Interface

The output interface of the Avalon Data Pattern Generator IP is an Avalon streaming
interface that optionally supports data packets. You can configure the output interface
to align with your system requirements. Depending on the incoming stream of
commands, the output data may contain interleaved packet fragments for different
channels. To keep track of the current symbol’s position within each packet, the
Avalon Data Pattern Generator IP maintains an internal state for each channel.

You can configure the output interface of the Avalon Data Pattern Generator IP with
the following parameters:

• Number of Channels—Number of channels that the Avalon Data Pattern
Generator IP supports. Valid values are 1 to 256.

• Data Bits Per Symbol—Bits per symbol is related to the width of readdata and
writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per
beat. Valid values are 1 to 256.

• Include Packet Support—Indicates whether packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

• Error Signal Width (bits)—Width of the error signal on the output interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal is not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

6.4.1.4. Avalon Data Pattern Generator IP Functional Parameter

The Avalon Data Pattern Generator IP functional parameter allows you to configure the
Avalon Data Pattern Generator as an entire system.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

401

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.2. Avalon Data Pattern Checker Intel FPGA IP

The Avalon Data Pattern Checker Intel FPGA IP accepts data via an Avalon streaming
interface and verifies it against a predetermined pattern that the Avalon Data Pattern
Generator Intel FPGA IP produces. The Avalon Data Pattern Checker IP reports any
exceptions to the control interface. You can parameterize most aspects of the Avalon
Data Pattern Checker's Avalon streaming interface, such as the number of error bits,
and the data signal width. This IP allows you to test components with different
interfaces. The Avalon Data Pattern Checker IP has a throttle register that is set via
the Avalon memory mapped control interface. The value of the throttle register
controls the rate at which data is accepted.

Figure 273. Avalon Data Pattern Checker Intel FPGA IP

AVALON DATA PATTERN
CHECKER IP

data_in

control & status

Avalon Memory
Mapped Agent

Port

Avalon Streaming
Sink

The Avalon Data Pattern Checker IP detects exceptions and reports them to the
control interface via a 32-element deep internal FIFO. Possible exceptions are data
error, missing start-of-packet (SOP), missing end-of-packet (EOP), and signaled error.

As each exception occurs, an exception descriptor is pushed into the FIFO. If the same
exception occurs more than once consecutively, only one exception descriptor is
pushed into the FIFO. All exceptions are ignored when the FIFO is full. Exception
descriptors are deleted from the FIFO after they are read by the control and status
interface.

6.4.2.1. Avalon Data Pattern Checker IP Input Interface

The Avalon Data Pattern Checker IP input interface is an Avalon streaming interface
that optionally supports data packets. You can configure the input interface to align
with your system requirements. Incoming data may contain interleaved packet
fragments. To keep track of the current symbol’s position, the test pattern checker
maintains an internal state for each channel.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

402

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.2.2. Avalon Data Pattern Checker IP Control and Status Interface

The Avalon Data Pattern Checker IP control and status interface is a 32-bit Avalon
memory mapped agent that allows you to enable or disable data acceptance, as well
as set the throttle. This interface provides generation-time information, such as the
number of channels and whether the Avalon Data Pattern Checker supports data
packets. The control and status interface also provides information on the exceptions
detected by the Avalon Data Pattern Checker IP. The interface obtains this information
by reading from the exception FIFO.

6.4.2.3. Avalon Data Pattern Checker IP Functional Parameter

The Avalon Data Pattern Checker IP functional parameter allows you to configure the
Avalon Data Pattern Checker IP as a whole system.

6.4.2.4. Avalon Data Pattern Checker Input Parameters

You can configure the input interface of the Avalon Data Pattern Checker IP using the
following parameters:

• Data Bits Per Symbol—Bits per symbol is related to the width of readdata and
writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per
beat. Valid values are 1 to 32.

• Include Packet Support—Indicates whether data packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Number of Channels—Number of channels that the test pattern checker
supports. Valid values are 1 to 256.

• Error Signal Width (bits)—Width of the error signal on the input interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal in not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

6.4.3. Avalon Data Pattern Generator and Checker IP Software
Programming Model

The HAL system library support, software files, and register maps describe the
software programming model for the test pattern generator and checker cores.

6.4.3.1. HAL System Library Support

For Nios II processor users, Intel provides HAL system library drivers that allow you to
initialize and access the Avalon Data Pattern Generator and Checker IPs. Intel
recommends you use the provided drivers to access the IPs instead of accessing the
registers directly.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

403

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For Nios II IDE users, copy the provided drivers from the following installation folders
to your software application directory:

• <IP installation directory>/ip/sopc_builder_ip/
altera_Avalon_data_source/HAL

• <IP installation directory>/ip/sopc_builder_ip/
altera_Avalon_data_sink/HAL

Note: This instruction does not apply if you use the Nios II command-line tools.

6.4.3.2. Avalon Data Pattern Generator and Checker IP Files

The following files define the low-level access to the hardware, and provide the
routines for the HAL device drivers.

• Avalon Data Pattern Generator IP files in <installation directory>/ip/
sopc_builder_ip/altera_Avalon_data_source/HAL:

— data_source_regs.h—header file that defines the test pattern generator's
register maps.

— data_source_util.h, data_source_util.c—header and source code for
the functions and variables required to integrate the driver into the HAL
system library.

• Avalon Data Pattern Checker IP files in <installation directory>/ip/
sopc_builder_ip/altera_Avalon_data_sink/HAL

— data_sink_regs.h—header file that defines the IP register maps.

— data_sink_util.h, data_sink_util.c—header and source code for the
functions and variables required to integrate the driver into the HAL system
library.

Note: Do not modify the Avalon Data Pattern Generator or Avalon Data Pattern Checker IP
files.

6.4.3.3. Avalon Data Pattern Generator and Checker IP Register Maps

6.4.3.3.1. Avalon Data Pattern Generator IP Control and Status Registers

Table 137. Avalon Data Pattern Generator IP Control and Status Register Map
Each register is 32-bits wide.

Offset Register Name

base + 0 status

base + 1 control

base + 2 fill

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

404

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 138. Avalon Data Pattern Generator IP Status Register Bits

Bits Name Access Description

[15:0] ID RO A constant value of 0x64.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates data packet support.

Table 139. Avalon Data Pattern Generator IP Control Register Bits

Bits Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the data pattern generator IP.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively. The
Data Pattern Generator IP uses this value in conjunction with a pseudo-
random number generator to throttle the data generation rate.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved

Table 140. Avalon Data Pattern Generator IP Fill Register Bits

Bits Name Access Description

[0] BUSY RO A value of 1 indicates that data transmission is in progress, or that there is
at least one command in the command queue.

[6:1] Reserved

[15:7] FILL RO The number of commands currently in the command FIFO.

[31:16] Reserved

6.4.3.3.2. Avalon Data Pattern Generator IP Command Registers

Table 141. Avalon Data Pattern Generator IP Command Register Map
Shows the offset for the command registers. Each register is 32-bits wide.

Offset Register Name

base + 0 cmd_lo

base + 1 cmd_hi

The cmd_lo is pushed into the FIFO only when the cmd_lo register is addressed.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

405

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 142. cmd_lo Register Bits

Bits Name Access Description

[15:0] SIZE RW The segment size in symbols. Except for the last segment in a packet, the
size of all segments must be a multiple of the configured number of
symbols per beat. If this condition is not met, the Data Pattern Generator IP
inserts additional symbols to the segment to ensure the condition is
fulfilled.

[29:16] CHANNEL RW The channel to send the segment on. If the channel signal is less than
14 bits wide, the Data Pattern Generator IP uses the low order bits of this
register to drive the signal.

[30] SOP RW Set this bit to 1 when sending the first segment in a packet. This bit is
ignored when data packets are not supported.

[31] EOP RW Set this bit to 1 when sending the last segment in a packet. This bit is
ignored when data packets are not supported.

Table 143. cmd_hi Register Bits

Bits Name Access Description

[15:0] SIGNALED
ERROR

RW Specifies the value to drive the error signal. A non-zero value creates a
signaled error.

[23:16] DATA ERROR RW The output data is XORed with the contents of this register to create data
errors. To stop creating data errors, set this register to 0.

[24] SUPPRESS
SOP

RW Set this bit to 1 to suppress the assertion of the startofpacket signal
when the first segment in a packet is sent.

[25] SUPRESS
EOP

RW Set this bit to 1 to suppress the assertion of the endofpacket signal when
the last segment in a packet is sent.

6.4.3.3.3. Avalon Data Pattern Checker IP Control and Status Registers

Table 144. Avalon Data Pattern Generator and Checker IP Control and Status Register
Map
Shows the offset for the control and status registers. Each register is 32 bits wide.

Offset Register Name

base + 0 status

base + 1 control

base + 2 Reserved

base + 3

base + 4

base + 5 exception_descriptor

base + 6 indirect_select

base + 7 indirect_count

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

406

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 145. Avalon Data Pattern Checker IP Status Register Bits

Bits Name Access Description

[15:0] ID RO Contains a constant value of 0x65.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 146. Avalon Data Pattern Checker IP Control Register Bits

Bits Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the Data Pattern Checker IP.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively.
Platform Designer uses this value in conjunction with a pseudo-random
number generator to throttle the data generation rate.
Setting THROTTLE to 0 stops the Avalon Data Pattern Checker IP. Setting it
to 256 causes the Avalon Data Pattern Checker IP to run at full throttle.
Values between 0–256 result in a data rate proportional to the throttle
value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved

If there is no exception, reading the exception_descriptor register bit register
returns 0.

Table 147. exception_descriptor Register Bits

Bits Name Access Description

[0] DATA ERROR RO A value of 1 indicates that an error is detected in the incoming data.

[1] MISSINGSOP RO A value of 1 indicates missing start-of-packet.

[2] MISSINGEOP RO A value of 1 indicates missing end-of-packet.

[7:3] Reserved

[15:8] SIGNALLED
ERROR

RO The value of the error signal.

[23:16] Reserved

[31:24] CHANNEL RO The channel on which the exception was detected.

Table 148. indirect_select Register Bits

Bit Bits Name Access Description

[7:0] INDIRECT
CHANNEL

RW Specifies the channel number that applies to the INDIRECT PACKET
COUNT, INDIRECT SYMBOL COUNT, and INDIRECT ERROR COUNT
registers.

[15:8] Reserved

[31:16] INDIRECT
ERROR

RO The number of data errors that occurred on the channel specified by
INDIRECT CHANNEL.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

407

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 149. indirect_count Register Bits

Bit Bits Name Access Description

[15:0] INDIRECT
PACKET
COUNT

RO The number of data packets received on the channel specified by INDIRECT
CHANNEL.

[31:16] INDIRECT
SYMBOL
COUNT

RO The number of symbols received on the channel specified by INDIRECT
CHANNEL.

6.4.4. Avalon Data Pattern Generator IP API

The following subsections describe application programming interface (API) for the
Avalon Data Pattern Generator IP.

Note: API functions are currently not available from the interrupt service routine (ISR).

data_source_reset() on page 408

data_source_init() on page 409

data_source_get_id() on page 409

data_source_get_supports_packets() on page 409

data_source_get_num_channels() on page 410

data_source_get_symbols_per_cycle() on page 410

data_source_get_enable() on page 410

data_source_set_enable() on page 410

data_source_get_throttle() on page 411

data_source_set_throttle() on page 411

data_source_is_busy() on page 411

data_source_fill_level() on page 412

data_source_send_data() on page 412

6.4.4.1. data_source_reset()

Table 150. data_source_reset()

Information Type Description

Prototype void data_source_reset(alt_u32 base);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status agent.

Returns void

Description Resets the Avalon Data Pattern Generator IP, including all internal counters and
FIFOs. The control and status registers are not reset by this function.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

408

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.4.2. data_source_init()

Table 151. data_source_init()

Information Type Description

Prototype int data_source_init(alt_u32 base, alt_u32 command_base);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status agent.
command_base—Base address of the command agent.

Returns 1—Initialization is successful.
0—Initialization is unsuccessful.

Description Performs the following operations to initialize the Avalon Data Pattern Generator
IP:
• Resets and disables the Avalon Data Pattern Generator IP.
• Sets the maximum throttle.
• Clears all inserted errors.

6.4.4.3. data_source_get_id()

Table 152. data_source_get_id()

Information Type Description

Prototype int data_source_get_id(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status agent.

Returns Avalon Data Pattern Generator IP identifier.

Description Retrieves the Avalon Data Pattern Generator IP identifier.

6.4.4.4. data_source_get_supports_packets()

Table 153. data_source_get_supports_packets()

Information Type Description

Prototype int data_source_init(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status agent.

Returns 1—Data packets are supported.
0—Data packets are not supported.

Description Checks if the Avalon Data Pattern Generator IP supports data packets.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

409

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.4.5. data_source_get_num_channels()

Table 154. data_source_get_num_channels()

Description Description

Prototype int data_source_get_num_channels(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status agent.

Returns Number of channels supported.

Description Retrieves the number of channels supported by the Avalon Data Pattern
Generator IP.

6.4.4.6. data_source_get_symbols_per_cycle()

Table 155. data_source_get_symbols_per_cycle()

Description Description

Prototype int data_source_get_symbols(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status agent.

Returns Number of symbols transferred in a beat.

Description Retrieves the number of symbols transferred by the Avalon Data Pattern
Generator IP in each beat.

6.4.4.7. data_source_get_enable()

Table 156. data_source_get_enable()

Information Type Description

Prototype int data_source_get_enable(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status agent.

Returns Value of the ENABLE bit.

Description Retrieves the value of the ENABLE bit.

6.4.4.8. data_source_set_enable()

Table 157. data_source_set_enable()

Information Type Description

Prototype void data_source_set_enable(alt_u32 base, alt_u32 value);

Thread-safe No

continued...

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

410

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Include <data_source_util.h >

Parameters base—Base address of the control and status agent.
value— ENABLE bit set to the value of this parameter.

Returns void

Description Enables or disables the Avalon Data Pattern Generator IP. When disabled, the
Avalon Data Pattern Generator IP stops data transmission but continues to
accept commands and stores them in the FIFO

6.4.4.9. data_source_get_throttle()

Table 158. data_source_get_throttle()

Information Type Description

Prototype int data_source_get_throttle(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status agent.

Returns Throttle value.

Description Retrieves the current throttle value.

6.4.4.10. data_source_set_throttle()

Table 159. data_source_set_throttle()

Information Type Description

Prototype void data_source_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status agent.
value—Throttle value.

Returns void

Description Sets the throttle value, which can be between 0–256 inclusively. The throttle
value, when divided by 256 yields the rate at which the Avalon Data Pattern
Generator IP sends data.

6.4.4.11. data_source_is_busy()

Table 160. data_source_is_busy()

Information Type Description

Prototype int data_source_is_busy(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

continued...

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

411

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Parameters base—Base address of the control and status agent.

Returns 1—Avalon Data Pattern Generator IP is busy.
0—Avalon Data Pattern Generator IP is not busy.

Description Checks if the Avalon Data Pattern Generator IP is busy. The Avalon Data Pattern
Generator IP is busy when it is sending data or has data in the command FIFO to
be sent.

6.4.4.12. data_source_fill_level()

Table 161. data_source_fill_level()

Information Type Description

Prototype int data_source_fill_level(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status agent.

Returns Number of commands in the command FIFO.

Description Retrieves the number of commands currently in the command FIFO.

6.4.4.13. data_source_send_data()

Table 162. data_source_send_data()

Information Type Description

Prototype int data_source_send_data(alt_u32 cmd_base, alt_u16 channel,
alt_u16 size, alt_u32 flags, alt_u16 error, alt_u8
data_error_mask);

Thread-safe No

Include <data_source_util.h >

Parameters cmd_base—Base address of the command agent.
channel—Channel to send the data.
size—Data size.
flags —Specifies whether to send or suppress SOP and EOP signals. Valid
values are DATA_SOURCE_SEND_SOP, DATA_SOURCE_SEND_EOP,
DATA_SOURCE_SEND_SUPRESS_SOP and DATA_SOURCE_SEND_SUPRESS_EOP.
error—Value asserted on the error signal on the output interface.
data_error_mask—Parameter and the data are XORed together to produce
erroneous data.

Returns Returns 1.

Description Sends a data fragment to the specified channel. If data packets are supported,
applications must ensure consistent usage of SOP and EOP in each channel.
Except for the last segment in a packet, the length of each segment is a multiple
of the data width.
If data packets are not supported, applications must ensure that there are no
SOP and EOP indicators in the data. The length of each segment in a packet is a
multiple of the data width.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

412

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.5. Avalon Data Pattern Checker IP API

The following subsections describe API for the Avalon Data Pattern Checker IP. The API
functions are currently not available from the ISR.

data_sink_reset() on page 413

data_sink_init() on page 414

data_sink_get_id() on page 414

data_sink_get_supports_packets() on page 414

data_sink_get_num_channels() on page 415

data_sink_get_symbols_per_cycle() on page 415

data_sink_get_enable() on page 415

data_sink_set enable() on page 415

data_sink_get_throttle() on page 416

data_sink_set_throttle() on page 416

data_sink_get_packet_count() on page 416

data_sink_get_error_count() on page 417

data_sink_get_symbol_count() on page 417

data_sink_get_exception() on page 417

data_sink_exception_is_exception() on page 418

data_sink_exception_has_data_error() on page 418

data_sink_exception_has_missing_sop() on page 418

data_sink_exception_has_missing_eop() on page 419

data_sink_exception_signalled_error() on page 419

data_sink_exception_channel() on page 419

6.4.5.1. data_sink_reset()

Table 163. data_sink_reset()

Information Type Description

Prototype void data_sink_reset(alt_u32 base);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.

Returns void

Description Resets the Avalon Data Pattern Checker IP, including all internal counters.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

413

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.5.2. data_sink_init()

Table 164. data_sink_init()

Information Type Description

Prototype int data_source_init(alt_u32 base);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.

Returns 1—Initialization is successful.
0—Initialization is unsuccessful.

Description Performs the following operations to initialize the Avalon Data Pattern Checker
IP:
• Resets and disables the Avalon Data Pattern Checker IP.
• Sets the throttle to the maximum value.

6.4.5.3. data_sink_get_id()

Table 165. data_sink_get_id()

Information Type Description

Prototype int data_sink_get_id(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.

Returns Avalon Data Pattern Checker IP identifier.

Description Retrieves the Avalon Data Pattern Checker IP identifier.

6.4.5.4. data_sink_get_supports_packets()

Table 166. data_sink_get_supports_packets()

Information Type Description

Prototype int data_sink_init(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.

Returns 1—Data packets are supported.
0—Data packets are not supported.

Description Checks if the Avalon Data Pattern Checker IP supports data packets.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

414

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.5.5. data_sink_get_num_channels()

Table 167. data_sink_get_num_channels()

Information Type Description

Prototype int data_sink_get_num_channels(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.

Returns Number of channels supported.

Description Retrieves the number of channels supported by the Avalon Data Pattern Checker
IP.

6.4.5.6. data_sink_get_symbols_per_cycle()

Table 168. data_sink_get_symbols_per_cycle()

Information Type Description

Prototype int data_sink_get_symbols(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.

Returns Number of symbols received in a beat.

Description Retrieves the number of symbols received by the Avalon Data Pattern Checker IP
in each beat.

6.4.5.7. data_sink_get_enable()

Table 169. data_sink_get_enable()

Information Type Description

Prototype int data_sink_get_enable(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.

Returns Value of the ENABLE bit.

Description Retrieves the value of the ENABLE bit.

6.4.5.8. data_sink_set enable()

Table 170. data_sink_set enable()

Information Type Description

Prototype void data_sink_set_enable(alt_u32 base, alt_u32 value);

Thread-safe No

continued...

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

415

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.
value—ENABLE bit is set to the value of the parameter.

Returns void

Description Enables the Avalon Data Pattern Checker IP.

6.4.5.9. data_sink_get_throttle()

Table 171. data_sink_get_throttle()

Information Type Description

Prototype int data_sink_get_throttle(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.

Returns Throttle value.

Description Retrieves the throttle value.

6.4.5.10. data_sink_set_throttle()

Table 172. data_sink_set_throttle()

Information Type Description

Prototype void data_sink_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe No

Include: <data_sink_util.h >

Parameters base—Base address of the control and status agent.
value—Throttle value.

Returns void

Description Sets the throttle value, which can be between 0–256 inclusively. The throttle
value, when divided by 256 yields the rate at which the Avalon Data Pattern
Checker IP receives data.

6.4.5.11. data_sink_get_packet_count()

Table 173. data_sink_get_packet_count()

Information Type Description

Prototype int data_sink_get_packet_count(alt_u32 base, alt_u32
channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.

continued...

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

416

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

channel—Channel number.

Returns Number of data packets received on the channel.

Description Retrieves the number of data packets received on a channel.

6.4.5.12. data_sink_get_error_count()

Table 174. data_sink_get_error_count()

Information Type Description

Prototype int data_sink_get_error_count(alt_u32 base, alt_u32 channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.
channel—Channel number.

Returns Number of errors received on the channel.

Description Retrieves the number of errors received on a channel.

6.4.5.13. data_sink_get_symbol_count()

Table 175. data_sink_get_symbol_count()

Information Type Description

Prototype int data_sink_get_symbol_count(alt_u32 base, alt_u32
channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.
channel—Channel number.

Returns Number of symbols received on the channel.

Description Retrieves the number of symbols received on a channel.

6.4.5.14. data_sink_get_exception()

Table 176. data_sink_get_exception()

Information Type Description

Prototype int data_sink_get_exception(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status agent.

Returns First exception descriptor in the exception FIFO.
0—No exception descriptor found in the exception FIFO.

Description Retrieves the first exception descriptor in the exception FIFO and pops it off the
FIFO.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

417

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.5.15. data_sink_exception_is_exception()

Table 177. data_sink_exception_is_exception()

Information Type Description

Prototype int data_sink_exception_is_exception(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor

Returns 1—Indicates an exception.
0—No exception.

Description Checks if an exception descriptor describes a valid exception.

6.4.5.16. data_sink_exception_has_data_error()

Table 178. data_sink_exception_has_data_error()

Information Type Description

Prototype int data_sink_exception_has_data_error(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Data has errors.
0—No errors.

Description Checks if an exception indicates erroneous data.

6.4.5.17. data_sink_exception_has_missing_sop()

Table 179. data_sink_exception_has_missing_sop()

Information Type Description

Prototype int data_sink_exception_has_missing_sop(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Missing SOP.
0—Other exception types.

Description Checks if an exception descriptor indicates missing SOP.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

418

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.5.18. data_sink_exception_has_missing_eop()

Table 180. data_sink_exception_has_missing_eop()

Information Type Description

Prototype int data_sink_exception_has_missing_eop(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Missing EOP.
0—Other exception types.

Description Checks if an exception descriptor indicates missing EOP.

6.4.5.19. data_sink_exception_signalled_error()

Table 181. data_sink_exception_signalled_error()

Information Type Description

Prototype int data_sink_exception_signalled_error(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns Signal error value.

Description Retrieves the value of the signaled error from the exception.

6.4.5.20. data_sink_exception_channel()

Table 182. data_sink_exception_channel()

Information Type Description

Prototype int data_sink_exception_channel(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns Channel number on which an exception occurred.

Description Retrieves the channel number on which an exception occurred.

6.5. Avalon Streaming Splitter Intel FPGA IP

The Avalon Streaming Splitter Intel FPGA IP allows you to replicate transactions from
an Avalon streaming sink interface to multiple Avalon streaming source interfaces.
This IP supports from 1 to 16 outputs.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

419

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 274. Avalon Streaming Splitter Intel FPGA IP

Output 0

In_Data

Out_DataAv
alo

n S
tre

am
ing

Sin
k

Avalon Streaming Splitter
Intel FPGA IP

Output N

Avalon Stream
ing

Source 0

Clock

Avalon Stream
ing

Source N

The Avalon Streaming Splitter IP copies input signals from the input interface to the
corresponding output signals of each output interface without altering the size or
functionality. This includes all signals except for the ready signal. The IP includes a
clock signal to determine the Avalon streaming interface and clock domain where the
IP resides. Because the Avalon Streaming Splitter IP does not use the clock signal
internally, latency is not introduced when using this IP.

6.5.1. Avalon Streaming Splitter Intel FPGA IP Backpressure

The Avalon Streaming Splitter Intel FPGA IP integrates with backpressure by AND-ing
the ready signals from the output interfaces and sending the result to the input
interface. As a result, if an output interface deasserts the ready signal, the input
interface receives the deasserted ready signal, as well. This functionality ensures that
backpressure on the output interfaces is propagated to the input interface.

When the Qualify Valid Out option is enabled, the out_valid signals on all other
output interfaces are gated when backpressure is applied from one output interface.
In this case, when any output interface deasserts its ready signal, the out_valid
signals on the other output interfaces are also deasserted.

When the Qualify Valid Out option is disabled, the output interfaces have a non-
gated out_valid signal when backpressure is applied. In this case, when an output
interface deasserts its ready signal, the out_valid signals on the other output
interfaces are not affected.

Because the logic is combinational, the Intel FPGA IP introduces no latency.

6.5.2. Avalon Streaming Splitter Intel FPGA IP Interfaces

The Avalon Streaming Splitter Intel FPGA IP supports streaming data, with optional
packet, channel, and error signals. The Intel FPGA IP propagates backpressure from
any output interface to the input interface.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

420

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 183. Avalon Streaming Splitter Intel FPGA IP Support

Feature Support

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

6.5.3. Avalon Streaming Splitter Intel FPGA IP Parameters

Table 184. Avalon Streaming Splitter Intel FPGA IP Parameters

Parameter Legal Values Default Value Description

Number Of Outputs 1 to 16 2 The number of output interfaces. Platform Designer
supports 1 for some systems where no duplicated
output is required.

Qualify Valid Out Enabled,
Disabled

Enabled If enabled, the out_valid signal of all output
interfaces is gated when back pressure is applied.

Data Width 1–512 8 The width of the data on the Avalon streaming data
interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and
output interfaces. For example, byte-oriented
interfaces have 8-bit symbols.

Use Packets Enabled,
Disabled

Disabled Enable support of data packet transfers. Packet
support includes the startofpacket,
endofpacket, and empty signals.

Use Channel Enabled,
Disabled

Disabled Enable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data
interfaces. This parameter is disabled when Use
Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a data
interface can support. This parameter is disabled
when Use Channel is set to 0.

Use Error Enabled,
Disabled

Disabled Enable the error signal.

Error Width 0–31 1 The width of the error signal on the output
interfaces. A value of 0 indicates that the IP is not
using the error signal. This parameter is disabled
when Use Error is set to 0.

6.6. Avalon Streaming Delay Intel FPGA IP

The Avalon Streaming Delay Intel FPGA IP provides a solution to delay Avalon
streaming transactions by a constant number of clock cycles. This IP supports up to 16
clock cycle delays.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

421

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 275. Avalon Streaming Delay Intel FPGA IP

Out_Data
In_Data

Clock
Av

alo
n S

tre
am

in
g

Sin
k

Avalon Stream
ing

 Source
Avalon Streaming Delay

Intel FPGA IP

The Avalon Streaming Delay Intel FPGA IP adds a delay between the input and output
interfaces. The IP accepts transactions presented on the input interface and
reproduces them on the output interface N cycles later without changing the
transaction.

The input interface delays the input signals by a constant N number of clock cycles to
the corresponding output signals of the output interface. The Number Of Delay
Clocks parameter defines the constant N, which must be from 0 to 16. The change of
the in_valid signal is reflected on the out_valid signal exactly N cycles later.

6.6.1. Avalon Streaming Delay Intel FPGA IP Reset Signal

The Avalon Streaming Delay Intel FPGA IP has a reset signal that is synchronous to
the clk signal. When the IP asserts the reset signal, the output signals are held at
0. After the reset signal is deasserted, the output signals are held at 0 for N clock
cycles. The delayed values of the input signals are then reflected at the output signals
after N clock cycles.

6.6.2. Avalon Streaming Delay Intel FPGA IP Interfaces

The Avalon Streaming Delay Intel FPGA IP supports streaming data, with optional
packet, channel, and error signals. The Avalon Streaming Delay Intel FPGA IP does not
support backpressure.

Table 185. Avalon Streaming Delay Intel FPGA IP Support

Feature Support

Backpressure Not supported.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

422

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.6.3. Avalon Streaming Delay Intel FPGA IP Parameters

Table 186. Avalon Streaming Delay Intel FPGA IP Parameters

Parameter Legal Values Default Value Description

Number Of Delay Clocks 0 to 16 1 Specifies the delay the IP introduces, in clock
cycles. Platform Designer supports 0 for some
systems where no delay is required.

Data Width 1–512 8 The width of the data on the Avalon streaming data
interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and
output interfaces. For example, byte-oriented
interfaces have 8-bit symbols.

Use Packets 0 or 1 0 Indicates whether data packet transfers are
supported. Packet support includes the
startofpacket, endofpacket, and empty
signals.

Use Channel 0 or 1 0 The option to enable or disable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data
interfaces. This parameter is disabled when Use
Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a data
interface can support. This parameter is disabled
when Use Channel is set to 0.

Use Error 0 or 1 0 The option to enable or disable the error signal.

Error Width 0–31 1 The width of the error signal on the output
interfaces. A value of 0 indicates that the error
signal is not in use. This parameter is disabled
when Use Error is set to 0.

6.7. Avalon Streaming Round Robin Scheduler Intel FPGA IP

The Avalon Streaming Round Robin Scheduler Intel FPGA IP controls the read
operations from a multi-channel Avalon streaming component that buffers data by
channels. The IP reads the almost-full threshold values from the multiple channels in
the multi-channel component, and then issues the read request to the Avalon
streaming source according to a round-robin scheduling algorithm.

Figure 276. Avalon Streaming Round Robin Scheduler Intel FPGA IP

Request
(Channel_select) Almost Full Status

Avalon Streaming Round-Robin
Scheduler Intel FPGA IP

Av
alo

n M
em

or
y M

ap
pe

d
W

rit
e H

os
t

Avalon Stream
ing Sink

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

423

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In a multi-channel component, the IP can store data either in the sequence that it
comes in (FIFO), or in segments according to the channel. When data is stored in
segments according to channels, a scheduler is needed to schedule the read
operations.

6.7.1. Avalon Streaming Round Robin Scheduler IP Almost-Full Status
Interface

The Almost-Full Status interface is an Avalon streaming sink interface that collects the
almost-full status from the sink components for the channels in the sequence
provided.

Table 187. Avalon Streaming Interface Feature Support

Feature Property

Backpressure Not supported

Data Width Data width = 1; Bits per symbol = 1

Channel Maximum channel = 32; Channel width = 5

Error Not supported

Packet Not supported

6.7.2. Avalon Streaming Round Robin Scheduler IP Request Interface

The Request Interface is an Avalon memory mapped write host interface that requests
data from a specific channel. The Avalon Streaming Round Robin Scheduler cycles
through the channels it supports and schedules data to be read.

6.7.3. Avalon Streaming Round Robin Scheduler IP Operation

If a particular channel is almost full, the Avalon Streaming Round Robin Scheduler
does not schedule data to be read from that channel in the source component.

The scheduler only requests 1 bit of data from a channel at each transaction. To
request 1 bit of data from channel n, the scheduler writes the value 1 to address (4
×n). For example, if the scheduler is requesting data from channel 3, the scheduler
writes 1 to address 0xC. At every clock cycle, the scheduler requests data from the
next channel. Therefore, if the scheduler starts requesting from channel 1, at the next
clock cycle, it requests from channel 2. The scheduler does not request data from a
particular channel if the almost-full status for the channel is asserted. In this case, the
scheduler uses one clock cycle without a request transaction.

The Avalon Streaming Round Robin Scheduler cannot determine if the requested
component is able to service the request transaction. The component asserts
waitrequest when it cannot accept new requests.

Table 188. Avalon Streaming Round Robin Scheduler Ports

Signal Direction Description

Clock and Reset

clk In Clock reference.

continued...

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

424

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Direction Description

reset_n In Asynchronous active low reset.

Avalon Memory Mapped Request Interface

request_address (log2
Max_Channels–1:0)

Out The write address that indicates which channel has the
request.

request_write Out Write enable signal.

request_writedata Out The amount of data requested from the particular channel.
This value is always fixed at 1.

request_waitrequest In Wait request signal that pauses the scheduler when the
agent cannot accept a new request.

Avalon Streaming Almost-Full Status Interface

almost_full_valid In Indicates that almost_full_channel and
almost_full_data are valid.

almost_full_channel
(Channel_Width–1:0)

In Indicates the channel for the current status indication.

almost_full_data (log2
Max_Channels–1:0)

In A 1-bit signal that is asserted high to indicate that the
channel indicated by almost_full_channel is almost full.

6.7.4. Avalon Streaming Round Robin Scheduler IP Parameters

Table 189. Avalon Streaming Round Robin Scheduler IP Parameters

Parameters Legal Values Default Value Description

Number of channels 2–32 2 Specifies the number of channels the Avalon
Streaming Round Robin Scheduler supports.

Use almost-full status Enabled,
Disabled

Disabled If enabled, the scheduler uses the almost-full
interface. If not, the IP requests data from the
next channel at the next clock cycle.

6.8. Avalon Packets to Transactions Converter Intel FPGA IP

The Avalon Packets to Transactions Converter Intel FPGA IP receives streaming data
from upstream components and initiates Avalon memory mapped transactions. The IP
then returns Avalon memory mapped transaction responses to the requesting
components.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

425

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 277. Avalon Packets to Transactions Converter Intel FPGA IP

Av
alo

n S
tre

am
ing

Sin

k

Avalon Packets to
Transactions Converter

Intel FPGA IP

data_out Av
alo

n M
em

or
y M

ap
pe

d

data_in

Av
alo

n S
tre

am
ing

So

ur
ce

Avalon Memory Mapped

Component
Host

Ho
st

Note: The SPI Agent to Avalon Host Bridge, and the JTAG to Avalon Host Bridge, are
examples of the Packets to Transactions Converter IP. For more information, refer to
the Avalon Interface Specifications.

Related Information

Avalon Interface Specifications

6.8.1. Avalon Packets to Transactions Converter IP Interfaces

Table 190. Properties of Avalon Streaming Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

Error Not used.

Packet Supported.

The Avalon memory mapped host interface supports read and write transactions. The
data width is set to 32 bits, and burst transactions are not supported.

6.8.2. Avalon Packets to Transactions Converter IP Operation

The Avalon Packets to Transactions Converter IP receives streams of packets on its
Avalon streaming sink interface and initiates Avalon memory mapped transactions.
Upon receiving transaction responses from Avalon memory mapped agents, the IP
transforms the responses to packets and returns them to the requesting components
via its Avalon streaming source interface. The IP does not report Avalon streaming
errors.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

426

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.2.1. Avalon Packets to Transactions Converter IP Data Packet Formats

A response packet is returned for every write transaction. The IP also returns a
response packet if a no transaction (0x7f) is received. An invalid transaction code is
regarded as a no transaction. For read transactions, the IP returns the data read.

The Avalon Packets to Transactions Converter IP expects incoming data streams to be
in the formats shown in the table below.

Table 191. Data Packet Formats

Byte Field Description

Transaction Packet Format

0 Transaction code Type of transaction.

1 Reserved Reserved for future use.

[3:2] Size Transaction size in bytes. For write transactions, the size indicates
the size of the data field. For read transactions, the size indicates
the total number of bytes to read.

[7:4] Address 32-bit address for the transaction.

[n:8] Data Transaction data; data to be written for write transactions.

Response Packet Format

0 Transaction code The transaction code with the most significant bit inversed.

1 Reserved Reserved for future use.

[4:2] Size Total number of bytes read/written successfully.

Related Information

Avalon Packets to Transactions Converter IP Interfaces on page 426

6.8.2.2. Avalon Packets to Transactions Converter IP Supported Transactions

The Avalon Packets to Transactions Converter IP supports the following Avalon
memory mapped transactions:

Table 192. Avalon Packets to Transactions Converter IP Supported Transactions

Transactio
n Code

AvalonMemory Mapped Transaction Description

0x00 Write, non-incrementing address. Writes data to the address until the total number of bytes written
to the same word address equals to the value specified in the size
field.

0x04 Write, incrementing address. Writes transaction data starting at the current address.

0x10 Read, non-incrementing address. Reads 32 bits of data from the address until the total number of
bytes read from the same address equals to the value specified in
the size field.

0x14 Read, incrementing address. Reads the number of bytes specified in the size parameter
starting from the current address.

0x7f No transaction. No transaction is initiated. You can use this transaction type for
testing purposes. Although no transaction is initiated on the Avalon
memory mapped interface, the IP still returns a response packet
for this transaction code.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

427

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Avalon Packets to Transactions Converter IP can process only a single transaction
at a time. The ready signal on the IP Avalon streaming sink interface is asserted only
when the current transaction is completely processed.

No internal buffer is implemented on the datapaths. Data received on the Avalon
streaming interface is forwarded directly to the Avalon memory mapped interface and
vice-versa. Asserting the waitrequest signal on the Avalon memory mapped
interface backpressures the Avalon streaming sink interface. In the opposite direction,
if the Avalon streaming source interface is backpressured, the read signal on the
Avalon memory mapped interface is not asserted until the backpressure is alleviated.
Backpressuring the Avalon streaming source in the middle of a read can result in data
loss. In this cases, the IP returns the data that is successfully received.

A transaction is considered complete when the IP receives an EOP. For write
transactions, the actual data size is expected to be the same as the value of the size
property. Whether or not both values agree, the IP always uses the end of packet
(EOP) to determine the end of data.

6.8.2.3. Avalon Packets to Transactions IP Converter Malformed Packets

The following are examples of malformed packets:

• Consecutive start of packet (SOP)—An SOP marks the beginning of a
transaction. If an SOP is received in the middle of a transaction, the IP drops the
current transaction without returning a response packet for the transaction, and
initiates a new transaction. This effectively processes packets without an end of
packet (EOP).

• Unsupported transaction codes—The IP processes unsupported transactions as
a no transaction.

6.9. Avalon Streaming Pipeline Stage Intel FPGA IP

The Avalon Streaming Pipeline Stage Intel FPGA IP receives data from an Avalon
streaming source interface, and outputs the data to an Avalon streaming sink
interface. In the absence of back pressure, the Avalon Streaming Pipeline Stage Intel
FPGA IP source interface outputs data one cycle after receiving the data on its sink
interface.

If the pipeline stage receives back pressure on its source interface, the pipeline stage
continues to assert its source interface's current data output. While the pipeline stage
is receiving back pressure on its source interface, and then receives new data on its
sink interface, the pipeline stage internally buffers the new data. It then asserts back
pressure on its sink interface.

After the backpressure is deasserted, the pipeline stage's source interface is
deasserted and the pipeline stage asserts internally buffered data (if present).
Additionally, the pipeline stage deasserts back pressure on its sink interface.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

428

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 278. Pipeline Stage Simple Register
If the ready signal is not pipelined, the pipeline stage becomes a simple register.

Sink Sourcedata_in data_outRegister 0

Figure 279. Pipeline Stage Holding Register
If the ready signal is pipelined, the pipeline stage must also include a second "holding" register.

Sink Sourcedata_in data_out
Register 1

Register 0

Full?

Full?

6.10. Avalon Streaming Multiplexer and Demultiplexer Intel FPGA
IP

The Avalon Streaming Multiplexer Intel FPGA IP receives data from various input
interfaces and multiplexes the data into a single output interface, using the optional
channel signal to indicate the origin of the data. The Avalon Streaming Multiplexer
Intel FPGA IP receives data from a channelized input interface and drives that data to
multiple output interfaces, where the output interface is selected by the input
channel signal.

The Multiplexer and Demultiplexer IPs can transfer data between interfaces on that
supports a unidirectional flow of data. The Multiplexer and Demultiplexer IP allow you
to create multiplexed or demultiplexed datapaths without having to write custom HDL
code. The Multiplexer IP includes an Avalon Streaming Round Robin Scheduler.

Related Information

Avalon Streaming Round Robin Scheduler Intel FPGA IP on page 423

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

429

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.10.1. Avalon Streaming Multiplexer and Demultiplexer Software
Programming Model

The Multiplexer and Demultiplexer IP components do not have any user-visible control
or status registers. Therefore, Platform Designer cannot control or configure any
aspect of the Multiplexer or Demultiplexer at run-time. These IP components cannot
generate interrupts.

6.10.2. Avalon Streaming Multiplexer Intel FPGA IP

The Avalon Streaming Multiplexer Intel FPGA IP takes data from a variety of input data
interfaces, and multiplexes the data onto a single output interface. The multiplexer
includes a round-robin scheduler that selects from the next input interface that has
data. Each input interface has the same width as the output interface, so that the
other input interfaces are backpressured when the multiplexer is carrying data from a
different input interface.

Figure 280. Avalon Streaming Multiplexer Intel FPGA IP

src
sink

data_in_ n

sink

data_in _0

data_out

. .
 .

Round Robin, Burst
Aware Scheduler

(optional)

sink

sink

. .
 .

channel

The multiplexer includes an optional channel signal that enables each input interface
to carry channelized data. The output interface channel width is equal to:

(log2 (n-1)) + 1 + w

where n is the number of input interfaces, and w is the channel width of each input
interface. All input interfaces must have the same channel width. These bits are
appended to either the most or least significant bits of the output channel signal.

The scheduler processes one input interface at a time, selecting it for transfer. Once
an input interface has been selected, data from that input interface is sent until one of
the following scenarios occurs:

• The specified number of cycles have elapsed.

• The input interface has no more data to send and the valid signal is deasserted
on a ready cycle.

• When packets are supported, endofpacket is asserted.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

430

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.10.2.1. Avalon Streaming Multiplexer IP Input Interfaces

Each input interface is an Avalon streaming data interface that optionally supports
packets. The input interfaces are identical; they have the same symbol and data
widths, error widths, and channel widths.

6.10.2.2. Avalon Multiplexer IP Output Interface

The output interface carries the multiplexed data stream with data from the inputs.
The symbol, data, and error widths are the same as the input interfaces.

The width of the channel signal is the same as the input interfaces, with the addition
of the bits needed to indicate the origin of the data.

You can configure the following parameters for the output interface:

• Data Bits Per Symbol—the bits per symbol is related to the width of readdata
and writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—the number of symbols (words) that are transferred
per beat (transfer). Valid values are 1 to 32.

• Include Packet Support—indicates whether packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

• Channel Signal Width (bits)— the number of bits Platform Designer uses for
the channel signal for output interfaces. For example, set this parameter to 1 if
you have two input interfaces with no channel, or set this parameter to 2 if you
have two input interfaces with a channel width of 1 bit. The input channel can
have a width between 0-31 bits.

• Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

6.10.2.3. Avalon Multiplexer IP Parameters

You can configure the following parameters for the multiplexer:

• Number of Input Ports—the number of input interfaces that the multiplexer
supports. Valid values are 2 to 16.

• Scheduling Size (Cycles)—the number of cycles that are sent from a single
channel before changing to the next channel.

• Use Packet Scheduling—when this parameter is turned on, the multiplexer only
switches the selected input interface on packet boundaries. Therefore, packets on
the output interface are not interleaved.

• Use high bits to indicate source port—when this parameter is turned on, the
multiplexer uses the high bits of the output channel signal to indicate the origin
of the input interface of the data. For example, if the input interfaces have 4-bit
channel signals, and the multiplexer has 4 input interfaces, the output interface
has a 6-bit channel signal. If this parameter is turned on, bits [5:4] of the output
channel signal indicate origin of the input interface of the data, and bits [3:0] are
the channel bits that were presented at the input interface.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

431

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.10.3. Avalon Streaming Demultiplexer Intel FPGA IP

The Avalon Streaming Demultiplexer Intel FPGA IP takes data from a channelized
input data interface and provides that data to multiple output interfaces, where the
output interface selected for a particular transfer is specified by the input channel
signal.

Figure 281. Avalon Streaming Demultiplexer

sink
data_out_n

data_out_0

sink
sinkdata_in

src

src

. .
 . . .
 .

channel

The data is delivered to the output interfaces in the same order it is received at the
input interface, regardless of the value of channel, packet, frame, or any other
signal. Each of the output interfaces has the same width as the input interface; each
output interface is idle when the demultiplexer is driving data to a different output
interface. The demultiplexer uses log2 (num_output_interfaces) bits of the
channel signal to select the output for the data; the remainder of the channel bits
are forwarded to the appropriate output interface unchanged.

6.10.3.1. Avalon Streaming Demultiplexer IP Input Interface

Each input interface is an Avalon streaming data interface that optionally supports
packets. You can configure the following parameters for the input interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata
and writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred
per beat (transfer). Valid values are 1 to 32.

• Include Packet Support—Indicates whether data packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Channel Signal Width (bits)—The number of bits for the channel signal for
output interfaces. A value of 0 means that output interfaces do not use the
optional channel signal.

• Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

432

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.10.3.2. Avalon Streaming Demultiplexer IP Output Interface

Each output interface carries data from a subset of channels from the input interface.
Each output interface is identical; all have the same symbol and data widths, error
widths, and channel widths. The symbol, data, and error widths are the same as the
input interface. The width of the channel signal is the same as the input interface,
without the bits that the demultiplexer uses to select the output interface.

6.10.3.3. Avalon Streaming Demultiplexer IP Parameters

You can configure the following parameters for the demultiplexer:

• Number of Output Ports—The number of output interfaces that the multiplexer
supports Valid values are 2 to 16.

• High channel bits select output—When this option is turned on, the
demultiplexing function uses the high bits of the input channel signal, and the
low order bits are passed to the output. When this option is turned off, the
demultiplexing function uses the low order bits, and the high order bits are passed
to the output.

Where you place the signals in your design affects the functionality; for example,
there is one input interface and two output interfaces. If the low-order bits of the
channel signal select the output interfaces, the even channels go to channel 0, and the
odd channels go to channel 1. If the high-order bits of the channel signal select the
output interface, channels 0 to 7 go to channel 0 and channels 8 to 15 go to channel
1.

Figure 282. Select Bits for the Demultiplexer

sink

data_out_n

data_ out_0

sink
sink

data_ in
src

src

channel <4 .. 0 >

channel <3 .. 0 >

channel <3 .. 0 >

6.11. Avalon Streaming Single-Clock and Dual-Clock FIFO Intel
FPGA IP

The Avalon Streaming Single-Clock and Avalon Streaming Dual-Clock FIFO Intel FPGA
IP are FIFO buffers which operate with a common clock and independent clocks for
input and output ports respectively.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

433

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 283. Avalon Streaming Single Clock FIFO Intel FPGA IP

Avalon Streaming
Single-Clock

FIFO Intel FPGA IP

Avalon Memory Mapped
Agent

almost_full almost_empty

csr

Avalon Streaming
Status
Source

Avalon Streaming
Status
Source

outin
Avalon Streaming

Data
Sink

Avalon Streaming
Data

Source

Figure 284. Avalon Streaming Dual Clock FIFO Intel FPGA IP

Avalon Memory
Mapped Agent

in_csr out_csr

outin

Clock A Clock B

Avalon Streaming
Dual-Clock

FIFO Intel FPGA IP

Avalon Streaming
Data

Source

Avalon Streaming
Data
Sink

Avalon Memory
Mapped Agent

6.11.1. Interfaces Implemented in FIFO Cores

The following interfaces are implemented in FIFO Intel FPGA IP:

Avalon Streaming Data Interface on page 435

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

434

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon Memory Mapped Control and Status Register Interface on page 435

Avalon Streaming Status Interface on page 435

6.11.1.1. Avalon Streaming Data Interface

Each FIFO IP has an Avalon Streaming data sink and source interface. The data sink
and source interfaces in the dual-clock FIFO IP are driven by different clocks.

Table 193. Avalon Streaming Interfaces Properties

Feature Property

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported, up to 255 channels.

Error Configurable.

Packet Configurable.

6.11.1.2. Avalon Memory Mapped Control and Status Register Interface

You can configure the single-clock FIFO IP to include an optional Avalon memory
mapped interface, and the dual-clock FIFO IP to include an Avalon memory mapped
interface in each clock domain. The Avalon memory mapped interface provides access
to 32-bit registers, which allows you to retrieve the FIFO buffer fill level and configure
the almost-empty and almost-full thresholds. In the single-clock FIFO IP, you can also
configure the packet and error handling modes.

6.11.1.3. Avalon Streaming Status Interface

The single-clock FIFO IP has two optional Avalon streaming status source interfaces
from which you can obtain the FIFO buffer almost-full and almost empty statuses.

6.11.2. Avalon Streaming FIFO IP Operating Modes

• Default mode—the IP accepts incoming data on the in interface (Avalon
streaming data sink) and forwards it to the out interface (Avalon streaming data
source). The IP asserts the valid signal on the Avalon streaming source interface
to indicate that data is available at the interface.

• Store and forward mode—this mode applies only to the single-clock FIFO IP.
The IP asserts the valid signal on the out interface only when a full packet of
data is available at the interface. In this mode, you can also enable the drop-on-
error feature by setting the drop_on_error register to 1. When this feature is
enabled, the IP drops all packets received with the in_error signal asserted.

• Cut-through mode—this mode applies only to the single-clock FIFO IP. The IP
asserts the valid signal on the out interface to indicate that data is available for
consumption when the number of entries specified in the
cut_through_threshold register are available in the FIFO buffer.

Note: To turn on Cut-through mode, the Use store and forward parameter must be set
to 0. Turning on Use store and forward mode prompts the user to turn on Use fill
level, and then the CSR appears.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

435

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.11.3. Avalon Streaming FIFO IP Buffer Fill Level

You can obtain the fill level of the Avalon Streaming FIFO IP buffer via the optional
Avalon memory mapped control and status interface. Turn on the Use fill level
parameter (Use sink fill level and Use source fill level in the Avalon Streaming
Dual-Clock FIFO IP) and read the fill_level register.

The Avalon Streaming Dual-Clock FIFO IP has two fill levels, one in each clock domain.
Due to the latency of the clock crossing logic, the fill levels reported in the input and
output clock domains may be different for any instance. In both cases, the fill level
may report badly for the clock domain; that is, the fill level is reported high in the
input clock domain, and low in the output clock domain.

The Avalon Streaming Dual-Clock FIFO IP has an output pipeline stage to improve
fMAX. This output stage is accounted for when calculating the output fill level, but not
when calculating the input fill level. Therefore, the best measure of the amount of
data in the FIFO is by the fill level in the output clock domain. The fill level in the input
clock domain represents the amount of space available in the FIFO (available
space = FIFO depth – input fill level).

6.11.4. Almost-Full and Almost-Empty Thresholds to Prevent Overflow
and Underflow

You can use almost-full and almost-empty thresholds as a mechanism to prevent FIFO
IP overflow and underflow. This feature is available only in the Avalon Streaming
Single-Clock FIFO IP. To use the thresholds, turn on the Use fill level, Use almost-
full status, and Use almost-empty status parameters. You can access the
almost_full_threshold and almost_empty_threshold registers via the csr
interface and set the registers to an optimal value for your application.

You can obtain the almost-full and almost-empty statuses from almost_full and
almost_empty interfaces (Avalon streaming status source). The IP asserts the
almost_full signal when the fill level is equal to or higher than the almost-full
threshold. Likewise, the IP asserts the almost_empty signal when the fill level is
equal to or lower than the almost-empty threshold.

6.11.5. Avalon Streaming Single Clock and Dual Clock FIFO IP Parameters

Table 194. Avalon Streaming Single Clock FIFO IP Parameters

Parameter Legal
Values

Description

Symbols per beat 1–32 These parameters determine the width of the FIFO.
FIFO width = Bits per symbol * Symbols per beat, where: Bits
per symbol is the number of bits in a symbol, and Symbols per
beat is the number of symbols transferred in a beat.

Bits per symbol 1–32

FIFO depth 2 n The FIFO depth. An output pipeline stage is added to the FIFO to
increase performance, which increases the FIFO depth by one.
<n> = n=1,2,3,4 and so on.

Channel width 1–32 The width of the channel signal.

Error width 0–32 The width of the error signal.

continued...

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

436

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Legal
Values

Description

Use packets On|Off Turn on this parameter to enable data packet support on the
Avalon streaming data interfaces.

Use fill level On|Off Turn on this parameter to include the Avalon memory mapped
control and status register interface (CSR). The CSR is enabled
when Use fill level is set to 1.

Use store and forward On|Off To turn on Cut-through mode, Use store and forward must be
set to 0. Turning on Use store and forward prompts the user to
turn on Use fill level, and then the CSR appears.

Use almost full status On|Off Enables a single-bit almost-full status streaming interface

Use almost empty status On|Off Enables a single-bit almost-empty status streaming interface.

Enable explicit maxChannel On|Off Turn on this parameter to specify the maximum channel number.

Explicit maxChannel value Maximum channel number.

Use synchronous resets On|Off Turing off allows asynchronous resets. Turning on uses internal
reset synchronization.

Table 195. Avalon Streaming Dual Clock FIFO IP Parameters

Parameter Legal
Values

Description

Symbols per beat 1–32 These parameters determine the width of the FIFO.
FIFO width = Bits per symbol * Symbols per beat, where: Bits
per symbol is the number of bits in a symbol, and Symbols per
beat is the number of symbols transferred in a beat.

Bits per symbol 1–32

FIFO depth 2 n The FIFO depth. An output pipeline stage is added to the FIFO to
increase performance, which increases the FIFO depth by one.
<n> = n=1,2,3,4 and so on.

Channel width 1–32 The width of the channel signal.

Error width 0–32 The width of the error signal.

Use packets On|Off Turn on this parameter to enable data packet support on the
Avalon streaming data interfaces.

Use sink fill level On|Off Turn on this parameter to include the Avalon memory mapped
control and status register interface in the input clock domain.

Use source fill level On|Off Turn on this parameter to include the Avalon memory mapped
control and status register interface in the output clock domain.

Write pointer synchronizer length 2–8 The length of the write pointer synchronizer chain. Setting this
parameter to a higher value leads to better metastability while
increasing the latency of the IP.

Read pointer synchronizer length 2–8 The length of the read pointer synchronizer chain. Setting this
parameter to a higher value leads to better metastability.

Enable explicit maxChannel On|Off Turn on this parameter to specify the maximum channel number.

Explicit maxChannel value Maximum channel number.

Pipeline pointers On|Off This option enables the pipeline pointer after clock domain
crossing. Enable this option for better timing closure by adding one
clock cycle of latency.

Use synchronous resets On|Off Turing off allows asynchronous resets. Turning on uses internal
reset synchronization.

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

437

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For more information about metastability in Intel devices, refer to Understanding
Metastability in FPGAs. For more information about metastability analysis and
synchronization register chains, refer to the Managing Metastability in the Quartus
Prime Pro Edition User Guide: Design Recommendations.

6.11.6. Avalon Streaming Single-Clock FIFO IP Registers

Table 196. Avalon Streaming Single-Clock FIFO IP Registers
The CSR interface in the Avalon Streaming Single Clock FIFO IP provides access to registers.

32-Bit
Word
Offset

Name Access Reset Description

0 fill_lev
el

R 0 24-bit FIFO fill level. Bits 24 to 31 are not used.

1 Reserved — — Reserved for future use.

2 almost_f
ull_thre
shold

RW FIFO
depth–1

Set this register to a value that indicates the FIFO buffer is getting
full.

3 almost_e
mpty_thr
eshold

RW 0 Set this register to a value that indicates the FIFO buffer is getting
empty.

4 cut_thro
ugh_thre
shold

RW 0 0—Enables store and forward mode.
Greater than 0—Enables cut-through mode and specifies the
minimum of entries in the FIFO buffer before the valid signal on
the Avalon streaming source interface is asserted. Once the FIFO
IP starts sending the data to the downstream component, it
continues to do so until the end of the packet.
Note: To turn on Cut-through mode, Use store and forward

must be set to 0. Turning on Use store and forward
mode prompts the user to turn on Use fill level, and then
the CSR appears.

5 drop_on_
error

RW 0 0—Disables drop-on error.
1—Enables drop-on error.
This register applies only when the Use packet and Use store
and forward parameters are turned on.

Table 197. Register Description for Avalon Streaming Dual-Clock FIFO
The in_csr and out_csr interfaces in the Avalon Streaming Dual Clock FIFO IP reports the FIFO fill level.

32-Bit Word Offset Name Access Reset Value Description

0 fill_level R 0 24-bit FIFO fill level. Bits 24 to 31 are not used.

Related Information

Avalon Interface Specifications

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

438

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12. Platform Designer System Design Components Revision
History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.

2023.04.03 23.1 • Added note about no support for fixed-latency pipelined read transfers
to Avalon Memory Mapped Pipeline Bridge Intel FPGA IP topic.

• The product family name is updated to "Intel Agilex 7" to reflect the
different family members.

2022.09.26 22.3 • Revised note about the default agent selection to Designating a Default
Agent topic.

• Revised note about the default agent selection to Specifying a Default
Avalon Agent or AXI Subordinate topic.

• Revised note about the default agent selection to Accessing Undefined
Memory Regions topic.

2022.04.02 22.1 • Updated entire chapter for new AXI "manager" and AXI "subordinate"
replacement terms. Refer to the AMBA® AXI and ACE Protocol
Specification.

• Updated AXI Timeout Bridge Stages and AXI Timeout Bridge
Parameters topics for new CSR behavior and parameters.

• Updated the Avalon Streaming Single-Clock and Dual-Clock FIFO IP
Parameters topic for Pipeline pointers parameter.

2021.03.29 21.1 • Converted to "host" and "agent" inclusive terminology for Avalon
memory mapped interface descriptions and related GUI elements
throughout.

2021.01.14 20.4 • Added descriptions to CSR Interrupt Status Information for the AXI
Timeout Bridge table.

2019.11.11 19.1 • Updated the names of Intel FPGA IP components throughout.
• Updated name of Test Pattern Checker IP to Avalon Data Pattern

Checker IP throughout.
• Updated Address Span Extender figure bit order.
• Provided directory path in Test Pattern Generator

2018.12.15 18.1 • Replaced references to System Contents tab with new System View
tab.

2017.11.06 17.1 • Changed instances of Qsys Pro to Platform Designer.
• Changed instances of AXI Default Slave to Error Response Slave.
• Updated topics: Error Response Slave.
• Updated Figure: Error Response Slave Parameter Editor.
• Added Figure: Error Response Slave Parameter Editor with Enabled CSR

Support.
• Updated topics: CSR Registers and renamed to Error Response Slave

CSR Registers.
• Added topic: Error Response Slave Access Violation Service.

2016.10.31 16.1 • Implemented Intel rebranding.
• Implemented Qsys rebranding.

2016.05.03 16.0 Updated Address Span Extender
• Address Span Extender register mapping better explained
• Address Span Extender Parameters table added
• Address Span Extender example added

2015.11.02 15.1 Changed instances of Quartus II to Quartus Prime.

continued...

6. Platform Designer System Design Components

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

439

https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2015.05.04 15.0 Avalon Memory Mapped Unaligned Burst Expansion Bridge and Avalon
Memory Mapped Pipeline Bridge, Maximum pending read transactions
parameter. Extended description.

December 2014 14.1 • AXI Timeout Bridge.
• Added notes to Avalon Memory Mapped Clock Crossing Bridge

pertaining to:
— SDC constraints for its internal asynchronous FIFOs.
— FIFO-based clock crossing.

June 2014 14.0 • AXI Bridge support.
• Address Span Extender updates.
• Avalon Memory Mapped Unaligned Burst Expansion Bridge support.

November 2013 13.1 • Address Span Extender

May 2013 13.0 • Added Streaming Pipeline Stage support.
• Added AMBA APB support.

November 2012 12.1 • Moved relevant content from the Embedded Peripherals IP User Guide.

6. Platform Designer System Design Components

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

440

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Platform Designer Command-Line Utilities
You can perform many of the functions available in the Platform Designer GUI at the
command-line, with Platform Designer command-line utilities.

You run Platform Designer command-line executables from the Quartus Prime
installation directory:

<Quartus Prime installation directory>\quartus\sopc_builder\bin

For command-line help listing of all the options for any executable, type the following
command:

<Quartus Prime installation directory>\quartus\sopc_builder\bin
\<executable name> --help

Note: You must add $QUARTUS_ROOTDIR/sopc_builder/bin/ to the PATH variable to
access command-line utilities. Once you add this PATH variable, you can launch the
utility from any directory location.

7.1. Run the Platform Designer Editor with qsys-edit

The qsys-edit utility allows you to run the Platform Designer editor from command-
line.

You can use the following options with the qsys-edit utility:

Table 198. qsys-edit Command-Line Options

Option Usage Description

1st arg file Optional Specifies the name of the .qsys system or .qvar
variation file to edit.

--search-path[=<value>] Optional If you omit this command, Platform Designer uses a
standard default path. If you provide a search path,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", for example:

/extra/dir,$

.

--quartus-project[=<value>] Required This option is mandatory if you are associating your
Platform Designer system with an existing Quartus Prime
project. Specifies the name of the Quartus Prime project
file. If you do not provide the revision via --rev,
Platform Designer uses the default revision as the
Quartus Prime project name.

continued...

683609 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Option Usage Description

--new-quartus-project[=<value>] Required This option is mandatory if you are associating your
Platform Designer system with a new Quartus Prime
project. Specifies the name and path of the new Quartus
Prime project. Creates a new Quartus Prime project at
the specified path. You can also provide the revision
name.

--rev[=<value>] Optional Specifies the name of the Quartus Prime project revision.

--family[=<value>] Optional Sets the device family.

--part[=<value>] Optional Sets the device part number. If set, this option overrides
the --family option.

--new-component-type[=<value>] Optional Specifies the instance type for parameterization in a
variation.

--require-generation Optional Marks the loading system as requiring generation.

--debug Optional Enables debugging features and output.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses
when running qsys-edit. You specify this value as
<size><unit>, where unit is m (or M) for multiples of
megabytes, or g (or G) for multiples of gigabytes. The
default value is 512m.

--metrics-log-file=[path_to_log_file] Optional This switch creates a new file containing a set of metrics,
at the path you specify. This switch must be used
alongside the --record-metrics switch, or the switch
does not function. The path to the log file must exist, or
the FileDoesNotExists error appears. Platform
Designer does not create any new directories listed in the
path.

--record-metrics[=<foobar>] Optional Enables metric logging. This feature logs the time
Platform Designer takes to perform various operations.
The other information includes:
• The operation performed.
• The IP instance name and its .ip file location.
• The IP component type and its _hw.tcl file location.
The switch does not require a value, but it does accept a
string value that has no effect on the metric logging. In
the absence of the --metrics-log-file switch,
Platform Designer creates the log file in the project
directory with the name of metrics_<top-level
name>.txt by default.

--help Optional Displays help for qsys-edit.

Important: The options --quartus-project and --new-quartus-project are mutually
exclusive. If you use --quartus-project you cannot use --new-quartus-
project and vice versa.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

442

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Extended Features with the --debug Options

The --debug option provides powerful tools for debugging. When you launch Platform
Designer with the --debug option enabled, you can:

• View debug messages when opening a system or generating HDL for that system.

• Add the --verbose argument when generating IP or a system using command-
line utilities.

• Access internal library components in the IP Catalog, for example, modules used
to create interconnect fabric.

• Access to debug tools and files from the Internal menu.

Figure 285. Internal Menu Options

Table 199. Debug Options on the Internal Menu

Menu Item Description

Show hw.tcl Debugger Displays a Tcl debugger.

Show System File Displays the current system XML in a text dialog box.

Show SOPCINFO File Shows the SOPCINFO report XML in a text dialog box.

Show UI Properties Displays the UI properties in a text dialog box.

Show Command Line Arguments Displays all command-line arguments and environment variables in a text
dialog box.

Show System Changes Displays dynamic system changes in a text dialog box.

Make Model Read-only Makes the system you are working in read-only.

Take Screenshots Creates a .png file in the <project_directory> by default. You can navigate
and save to a directory of your choice.

Show Plug-In Catalog Displays library details such as type, version, tags, etc. for all IPs in the IP
Catalog.

Show Adapter Reports Displays adapter reports for any adapters added when transforming the
system.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

443

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• You can view detailed debugging messages in the Component Editor while
building a custom IP component.

• You can view the generated Tcl script while editing in the Component Editor with
the Advanced ➤ Show Tcl for Component command.

• You can launch the System Console with debug logging.

7.2. Scripting IP Core Generation

Use the qsys-script and qsys-generate utilities to define and generate an IP
core variation outside of the Quartus Prime GUI.

To parameterize and generate an IP core at command-line, follow these steps:

1. Run qsys-script to start a Tcl script that instantiates the IP and sets
parameters:

qsys-script --script=<script_file>.tcl

2. Run qsys-generate to generate the IP core variation:

qsys-generate <IP variation file>.qsys

Related Information

Generate a Platform Designer System with qsys-script on page 451

7.2.1. qsys-generate Command-Line Options

Table 200. Command-Line Options for qsys-generate
Options in alphabetical order.

Option Usage Description

<1st arg file> Required Specifies the name of the .qsys system file to generate.

--block-symbol-file Optional Creates a Block Symbol File (.bsf) for the Platform
Designer system.

--bypass-quartus-project Optional Override the project settings with values from the Platform
Designer system, if possible. For example, if the Platform
Designer system defines its own IP search path, use that
path instead of the project settings IP search path. This
option mainly affects the generation process.

--clear-output-directory Optional Clears the output directory corresponding to the selected
target, that is, simulation or synthesis.

--example-design=<value> Optional Creates example design files.
For example, --example-design or --example-
design=all. The default is All, which generates example
designs for all instances. Alternatively, choose specific
filesets based on instance name and fileset name. For
example --example-
design=instance0.example_design1,instance1.ex
ample_design 2. Specify an output directory for the
example design files creation.

--family=<value> Optional Sets the device family name.

--help Optional Displays help for --qsys-generate.

continued...

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

444

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--greybox Optional If you are synthesizing your design with a third-party EDA
synthesis tool, generate a netlist for the synthesis tool to
estimate timing and resource usage for this design.
Note: Generation of a timing and area estimation (gray

box) netlist is available only for individual Intel FPGA
IP, and not for Platform Designer systems.

--ipxact Optional If you specify this option, Platform Designer generates the
post-generation system as an IPXACT-compatible
component description.
Note: Platform Designer supports importing and exporting

files in IP-XACT 2009 format and exporting IP-XACT
files in 2014 format.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses
when running qsys-generate. You specify the value as
<size><unit>, where unit is m (or M) for multiples of
megabytes or g (or G) for multiples of gigabytes. The
default value is 512m.

--metrics-log-
file=[path_to_log_file]

Optional This switch creates a new file containing a set of metrics, at
the path you specify. This switch must be used alongside
the --record-metrics switch, or the switch does not
function. The path to the log file must exist, or the
FileDoesNotExists error appears. Platform Designer
does not create any new directories listed in the path.

--parallel[=<level>] Optional Directs Platform Designer to generate in parallel mode, with
the level of parallelism that you specify. If you omit the
level, Platform Designer determines a number based on
processor availability and number of files to be generated.

--part=<value> Optional Sets the device part number. If set, this option overrides the
--family option.

--record-metrics[=<foobar>] Optional Enables metric logging. This feature logs the time Platform
Designer takes to perform various operations. The other
information includes:
• The operation performed.
• The IP instance name and its .ip file location.
• The IP component type and its _hw.tcl file location.
The switch does not require a value, but it does accept a
string value that has no effect on the metric logging. In the
absence of the --metrics-log-file switch, Platform
Designer creates the log file in the project directory with the
name of metrics_<top-level name>.txt by default.

--search-path=<value> Optional If you omit this command, Platform Designer uses a
standard default path. If you provide this command,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", for example, "/extra/dir,$".

--simulation=<VERILOG|VHDL> Optional Creates a simulation model for the Platform Designer
system. The simulation model contains generated HDL files
for the simulator, and may include simulation-only features.
Specify the preferred simulation language. The default value
is VERILOG.

--synthesis=<VERILOG|VHDL> Optional Creates synthesis HDL files that Platform Designer uses to
compile the system in an Quartus Prime project. Specify the
generation language for the top-level RTL file for the
Platform Designer system. The default value is VERILOG.

continued...

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

445

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--testbench=<SIMPLE|STANDARD> Optional Creates a testbench system that instantiates the original
system, adding bus functional models (BFMs) to drive the
top-level interfaces. When you generate the system, the
BFMs interact with the system in the simulator. The default
value is STANDARD.

--testbench-
simulation=<VERILOG|VHDL>

Optional After you create the testbench system, create a simulation
model for the testbench system. The default value is
VERILOG.

--top-level-generation Optional Only generate the top-level of the given Platform Designer
system. Do not descend into hierarchy. Do not generate
generic components.

--upgrade-ip-cores Optional Enables upgrading all the IP cores that support upgrade in
the Platform Designer system you specify. This command
has no impact on IP cores in any subsystem.

--upgrade-variation-file Optional If you set this option to true, the file argument for this
command accepts a .v file, which contains a IP variant.
This file parameterizes a corresponding instance in a
Platform Designer system of the same name.

Related Information

Generating Simulation Files for Platform Designer Systems and IP Variants on page
101

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

446

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3. Board-Aware Flow Scripting Support

The following Tcl commands support the board-aware flow, including preset and board
file management, and board and preset file export. For examples use of these
commands, refer to Example 1 and Example 2.

Table 201. General Commands

Return Command Argument

No return value set_project_property BOARD <board_name>

String get_project_property BOARD

Table 202. Preset Commands

Return Command Argument

no
return
value

save_component_preset [<preset_file> <preset_name> <preset_description>
<preset_version> <board_name> <category>
<pin_file.tcl>]

no
return
value

apply_component_preset <preset_name>

Table 203. Board Commands

Return Command Argument

no return
value

add_board <board_file> <board_name> <vendor> <device_family>
<device_part> <version>

String get_board_info <board_name> <info_type>

<info_type> can be vendor, device_family, device_part, version

String get_boards [<device_family> <device_part>]

Returns all board names.

no return
value

delete_board <board_name>

Table 204. Export Board and Presets from Current System Commands

Return Command Argument

no return
value

export_board_file <board_name> <board_file> [<vendor> <version>]

String[
]
Instanc
e_paths

get_quartus_instance_path_f
or_entity

[<entity_name>]
Returns a list of instance paths in hierarchical format. For example:
• quartus_top.qsys_instance_name

• quartus_top.something.qsys_instance_name

no return
value

load_pin_from_quartus_proje
ct

<instance_path>

No
return
value

export_system_preset [preset_directory_path]

Note: By default the preset_file_name is system_name.qprs.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

447

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 1: Create System, Add Component, Apply Built-In Preset

create the system
create_system test_system
set_project_property BOARD {Arria 10 SoC Development Kit}
set_project_property HIDE_FROM_IP_CATALOG {false}
set_use_testbench_naming_pattern 0 {}
add component pio0
add_component pio_0 ip/test_system/test_system_pio_0.ip altera_avalon_pio pio_0
19.2.0
load_component pio_0

#assume this led4 preset file path is in the search path
apply_component_preset led4
save_component

Example 2: Create New Preset, Apply Preset with Pin Constraints File

Example of led4_pins.tcl file:

set_instance_assignment -to "led_export[0]" -name IO_STANDARD "1.8 V"
set_location_assignment -to "led_export[0]" "PIN_AR23"
set_instance_assignment -to "led_export[1]" -name IO_STANDARD "1.8 V"
set_location_assignment -to "led_export[1]" "PIN_AR22"
set_instance_assignment -to "led_export[2]" -name IO_STANDARD "1.8 V"
set_location_assignment -to "led_export[2]" "PIN_AM21"
set_instance_assignment -to "led_export[3]" -name IO_STANDARD "1.8 V"
set_location_assignment -to "led_export[3]" "PIN_AL20"

Script:

add_component pio_0 ip/sys/sys_pio_0.ip altera_avalon_pio pio_0 19.2.0
load_component pio_0
set_component_parameter_value bitClearingEdgeCapReg {0}
set_component_parameter_value bitModifyingOutReg {0}
set_component_parameter_value captureEdge {0}
set_component_parameter_value direction {Output}
set_component_parameter_value edgeType {RISING}
set_component_parameter_value generateIRQ {0}
set_component_parameter_value irqType {LEVEL}
set_component_parameter_value resetValue {0.0}
set_component_parameter_value simDoTestBenchWiring {0}
set_component_parameter_value simDrivenValue {0.0}
set_component_parameter_value width {4}
set_component_project_property HIDE_FROM_IP_CATALOG {false}
export interface first, then only import the pin constraint tcl file
set_interface_property led EXPORT_OF pio_0.external_connection
save_component_preset led4_demo.qprs led4_demo "" ALL "Arria 10 SoC Development
Kit" "IO" led4_pins.tcl
apply_component_preset led4_demo
save_component

7.4. Display Available IP Components with ip-catalog

The ip-catalog command displays a list of available IP components relative to the
current Quartus Prime project directory, as either text or XML.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

448

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the following options with the ip-catalog utility:

Table 205. ip-catalog Command-Line Options

Option Usage Description

--project-dir= <directory> Optional Finds IP components relative to the Quartus Prime project
directory. By default, Platform Designer uses ‘.’ as the current
directory. To exclude a project directory, leave the value empty.

--type Optional Provides a pattern to filter the type of available plug-ins. By
default, Platform Designer shows only IP components. To look
for a partial type string, surround with *, for instance,
connection.

--name=<value> Optional Provides a pattern to filter the names of the IP components
found. To show all IP components, use a * or ‘ ‘. By default,
Platform Designer shows all IP components. The argument is
not case sensitive. To look for a partial name, surround with *,
for instance, *uart*

--verbose Optional Reports the progress of the command.

--xml Optional Generates the output in XML format, in place of colon-
delimited format.

--search-path=<value> Optional If you omit this command, Platform Designer uses a standard
default path. If you provide this command, Platform Designer
searches a comma-separated list of paths. To include the
standard path in your replacement, use "$", for example, "/
extra/dir,$".

<1st arg value> Optional Specifies the directory or name fragment.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses for
when running ip-catalog. You specify the value as <size
><unit>, where unit is m (or M) for multiples of megabytes
or g (or G) for multiples of gigabytes. The default value is
512m.

--help Optional Displays help for the ip-catalog command.

7.5. Create an .ipx File with ip-make-ipx

The ip-make-ipx command creates an .ipx index file. This file provides a
convenient way to include a collection of IP components from an arbitrary directory.
You can edit the .ipx file to disable visibility of one or more IP components in the IP
Catalog.

You can use the following options with the ip-make-ipx utility:

Table 206. ip-make-ipx Command-Line Options

Option Usage Description

--source-directory=<directory> Optional Specifies the directory containing your IP components. The
default directory is ‘.’. You can provide a comma-separated
list of directories.

--output=<file> Optional Specifies the name of the index file to generate. The default
name is /component.ipx. Set as --output=<""> to print
the output to the console.

continued...

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

449

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--relative-vars=<value> Optional Causes the output file to include references relative to the
specified variable or variables wherever possible. You can
specify multiple variables as a comma-separated list.

--thorough-descent Optional If you set this option, Platform Designer searches all the
component files, without skipping the sub-directories.

--message-before=<value> Optional Prints a log message at the start of reading an index file.

--message-after=<value> Optional Prints a log message at the end of reading an index file.

--jvm-max-heap-size=<value> Optional The maximum memory size Platform Designer uses when
running ipr-make-ipx. You specify this value as
<size><unit>, where unit is m (or M) for multiples of
megabytes, or g (or G) for multiples of gigabytes. The
default value is 512m.

--help Optional Displays help for the ip-make-ipx command.

7.6. Generate Simulation Scripts

You can use the ip-make-simscript utility to generate simulation scripts for one or
more simulators, given one or more Simulation Package Descriptor (.spd)
files, .qsys files, and .ip files.

In Platform Designer, ip-make-simscript generates simulation scripts in a
hierarchical structure instead of a flat view of the entire system. The ip-make-
simscript utility uses .spd and system files according to the options you select:

• When targeting only .spd files (ip-make-simscript --spd=<file>.spd) the
utility combines the contents of all input .spd files, and generates a common
directory which contains a set of <simulator>_files.tcl files under the
specified output directory.

• When targeting only system files (ip-make-simscript --system-
file=<file>) such as .qsys and .ip files, the utility searches for instances of
<simulator>_files.tcl files for each input system, and generates a combined
simulation script which contains a list of references of <simulator>_files.tcl.

• When the utility uses both --spd and --system-file options, ip-make-
simscript combines all input .spd files and generates a common/
<simulator>_files.tcl in the specified output directory. The generated
simulation script refers to the generated common/<simulator>_files.tcl
first, followed by a list of Tcl files from each input system.

Table 207. ip-make-simscript Command-Line Options

Option Usage Description

--spd[=<file>] Optional/Repeatable The .spd files describe the list of HDL files for
simulation, and memory models hierarchy. This
argument can either be a single path to an .spd file or
a comma-separated list of paths of .spd files.
For instance, --spd=ipcore_1.spd,ipcore_2.spd
The generated list is processed in the order of the
input .spd files.

continued...

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

450

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

Note: When this argument is used in combination with
--system-file, the .spd files are parsed
before the system files.

--system-file[=<file>] Optional/Repeatable Specifies the system files (.qsys or .ip files) used to
generate the simulation scripts. This argument can
contain either a single path to a Platform Designer
system file or a comma-separated list of paths to
Platform Designer system files.
The simulation script is generated in the order the
system files are listed.
Note: When this argument is used in combination with

--spd, the .spd files are parsed before the
system files.

--output-
directory[=<directory>]

Optional Specifies the directory path for the location of output
files. If you do not specify a directory, the output
directory defaults to the directory from which --ip-
make-simscript runs.

--compile-to-work Optional Compiles all design files to the default library - work.

--use-relative-paths Optional Uses relative paths whenever possible.

--cache-file[=<file>] Optional Generates cache file for managed flow.

--quiet Optional Quiet reporting mode. Does not report generated files.

--jvm-max-heap-size=<value> Optional The maximum memory size Platform Designer uses
when running ip-make-simscript.
You specify this value as

<size><unit>

where unit is m (or M) for multiples of megabytes, or g
(or G) for multiples of gigabytes. The default value is
512m.

--search-path=<value> Optional Comma-separated list of search paths.
If omitted, a default path including the current working
directory is used.
To include the standard path in your replacement,
append the $ symbol, for example:"/extra/dir,$"

--device-family=<value> Optional Overrides the existing device family when used.

--top-name=<value> Optional Specify a top-level entity name used in generated
simulation scripts.

--help Optional Displays help for --ip-make-simscript.

7.7. Generate a Platform Designer System with qsys-script

You can use the qsys-script utility to create and manipulate a Platform Designer
system with Tcl scripting commands. If you specify a system, Platform Designer loads
that system before executing any of the scripting commands.

Note: You must provide a package version for the qsys-script. If you do not specify the
--package-version=<value> command, you must then provide a Tcl script and
request the system scripting API directly with the package require -exact
qsys<version> command.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

451

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 28. Platform Designer Command-Line Scripting

qsys-script --script=my_script.tcl \
--system-file=fancy.qsys

my_script.tcl contains:

package require -exact qsys 16.0
get all instance names in the system and print one by one
set instances [get_instances]
foreach instance $instances {
 send_message Info "$instance"
}

You can use the following options with the qsys-script utility:

Table 208. qsys-script Command-Line Options

Option Usage Description

--system-file=<file> Optional Specifies the path to a .qsys file. Platform Designer loads the
system before running scripting commands.

--script=<file> Optional A file that contains Tcl scripting commands that you can use to
create or manipulate a Platform Designer system. If you specify
both --cmd and --script, Platform Designer runs the --cmd
commands before the script specified by --script.

--cmd=<value> Optional A string that contains Tcl scripting commands that you can use
to create or manipulate a Platform Designer system. If you
specify both --cmd and --script, Platform Designer runs the
--cmd commands before the script specified by --script.

--package-version=<value> Optional Specifies which Tcl API scripting version to use and determines
the functionality and behavior of the Tcl commands. The
Quartus Prime software supports Tcl API scripting commands.
The minimum supported version is 12.0. If you do not specify
the version on the command-line, your script must request the
scripting API directly with the package require -exact
qsys <version > command.

--search-path=<value> Optional If you omit this command, a Platform Designer uses a standard
default path. If you provide this command, Platform Designer
searches a comma-separated list of paths. To include the
standard path in your replacement, use "$", for example, /
<directory path>/dir,$. Separate multiple directory
references with a comma.

--quartus-project=<value> Optional Specifies the path to a .qpf Quartus Prime project file. Utilizes
the specified Quartus Prime project to add the file saved using
save_system command. If you omit this command, Platform
Designer uses the default revision as the project name.

--new-quartus-project=<value> Optional Specifies the name of the new Quartus Prime project. Creates a
new Quartus Prime project at the specified path and adds the
file saved using save_system command to the project. If you
omit this command, Platform Designer uses the Quartus Prime
project revision as the new Quartus Prime project name.

--rev=<value> Optional Allows you to specify the name of the Quartus Prime project
revision.

--jvm-max-heap-size=<value> Optional The maximum memory size that the qsys-script tool uses.
You specify this value as <size><unit>, where unit is m (or M)
for multiples of megabytes, or g (or G) for multiples of
gigabytes.

continued...

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

452

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--metrics-log-
file=[path_to_log_file]

Optional This switch creates a new file containing a set of metrics, at the
path you specify. This switch must be used alongside the --
record-metrics switch, or the switch does not function. The
path to the log file must exist, or the FileDoesNotExists
error appears. Platform Designer does not create any new
directories listed in the path.

--record-metrics[=<foobar>] Optional Enables metric logging. This feature logs the time Platform
Designer takes to perform various operations. The other
information includes:
• The operation performed.
• The IP instance name and its .ip file location.
• The IP component type and its _hw.tcl file location.
The switch does not require a value, but it does accept a string
value that has no effect on the metric logging. In the absence of
the --metrics-log-file switch, Platform Designer creates
the log file in the project directory with the name of
metrics_<top-level name>.txt by default.

--help Optional Displays help for the qsys-script utility.

Related Information

Saving Platform Designer Systems on page 112

7.8. Parameterizing an Instantiated IP Core after save_system
Command

When you call the save_system command in your Tcl script, Platform Designer
converts all the instantiated IP cores in your system to generic components.

To modify these IP cores after saving your system, you must first load the actual
component within the instantiated generic component. Re-parameterize an
instantiated IP core using one of the following methods:

1. Load the component in the Platform Designer system, modify the component's
parameter value, and save the component:

…
save_system kernel_system.qsys
…
load_component cra_root
set_component_parameter_value DATA_W 64
save_component
…

2. Load the .ip file specific to the component, modify the instance's parameter
value, and save the .ip file:

…
save_system kernel_system.qsys
…
load_system cra_root.ip
set_instance_parameter_value cra_root DATA_W 64
save_system
…

Note: To directly modify an instance parameter value after the save_system
command, you must load the .ip file corresponding to the IP component.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

453

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• set_component_parameter_value on page 584

• load_component on page 581

• save_component on page 583

• save_system on page 471

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

454

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.9. Validate the Generic Components in a System with qsys-
validate

Use the qsys-validate utility to run IP component footprint validation on the .qsys
file for the system.

Table 209. qsys-validate Command-Line Options

Option Usage Description

1st arg file Optional The name of the .qsys system file to validate.

--search-path[=<value>] Optional If omitted, Platform Designer uses a standard default
path. If provided, Platform Designer searches a comma-
separated list of paths. To include the standard path in
your replacement, use "$", for
example: /extra/dir.$.

--strict Optional Enables strict validation. All warnings are reported as
errors

--jvm-max-heap-size=<value> Optional The maximum memory size Platform Designer uses for
allocations when running qsys-edit. You specify this
value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of
gigabytes. The default value is 512m.

--help Optional Display help for qsys-validate.

7.10. Generate an IP Component or Platform Designer System with
quartus_ipgenerate

The quartus_ipgenerate command allows you to generate IP components or a
Platform Designer system in your Quartus Prime project. Ensure that you include the
IP component or the Platform Designer system you wish to generate in your Quartus
Prime project.

To run the quartus_ipgenerate command from the Quartus Prime shell, type:

quartus_ipgenerate <project name> [<options>]

Use any of the following options with the quartus_ipgenerate utility:

Table 210. quartus_ipgenerate Command-Line Options

Option Usage Description

<1st arg file> Required Specifies the name of the Quartus Prime project file (.qpf). This
option generates all the .qsys and .ip files in the specified Quartus
Prime project (<project name>).

-f [<argument file>] Optional Specifies a file containing additional command-line arguments.
Arguments that you specify after this option can conflict or override
the options you specify in the argument file.

--rev[=<revision name>] or
-c[=<revision name>]

Optional Specifies the Quartus Prime project revision and the associated .qsf
file to use. If you omit this option, Platform Designer uses the same
revision name as your Quartus Prime project.

continued...

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

455

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--clear_ip_generation_dirs or
--clean

Optional Clears the generation directories of all the .qsys or the .ip files in
the specified Quartus Prime project. For example, to clear the
generation directories in the project test, run the following
command:

quartus_ipgenerate --clear_ip_generation_dirs test

or

quartus_ipgenerate --clean test

--generate_ip_file --
ip_file[=<ip file name>]

Optional Generates the files for <file name>.ip file in the specified Quartus
Prime project.
Use the following optional flags with --generate_ip_file:
• -synthesis[=<value>]—optional argument that specifies the

synthesis target type. Specify the value as either verilog or vhdl.
The default value is verilog.

• -simulation[=<value>]—optional argument that specifies the
simulation target type. Specify the value as either verilog or vhdl.
If you omit this flag, Platform Designer does not generate any
simulation files.

• --clear_ip_generation_dirs—clears the preexisting
generation directories before generation. If you omit this
command, Platform Designer does not clear the generation
directories.

For example, to generate the files for a test.qsys file within the
project, test:

 quartus_ipgenerate --generate_ip_file --synthesis=vhdl --
simulation=verilog --clear_ip_generation_dirs --
ip_file=test.qsys test

--generate_project_ip_files
[<project name>]

Optional Generates the files for all the .qsys and .ip files in the specified
Quartus Prime project.
Use any of the following optional flags with
--generate_project_ip_files:
• -synthesis[=<value>]—optional argument that specifies the

synthesis target type. Specify the value as either verilog or vhdl.
The default value is verilog.

• -simulation[=<value>]—optional argument that specifies the
simulation target type. Specify the value as either verilog or vhdl.
If you omit this flag, Platform Designer does not generate any
simulation files.

• --clear_ip_generation_dirs—clears the preexisting
generation directories before generation. If you omit this
command, Platform Designer does not clear the generation
directories.

For example, to generate all the .qsys and .ip files within the
project, test:

quartus_ipgenerate --generate_project_ip_files --synthesis=vhdl
--simulation=verilog --clear_ip_generation_dirs test

--get_project_ip_files Optional Returns a list of the .qsys or .ip files in the specified Quartus
Prime project. This option displays each file in a separate Quartus
Prime message line. For example, to get a list of .qsys files in the
project test, and revision rev:

quartus_ipgenerate --get_project_ip_files test -c rev

--lower_priority Optional Allows you to lower the priority of the current process. This option is
useful if you use a single-processor computer, allowing you to use
other applications more easily while the Quartus Prime software runs
the command in the background.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

456

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.11. Generate an IP Variation File with ip-deploy

Use the ip-deploy utility to generate an IP variation file (.ip file) in the specified
location.

Table 211. ip-deploy Command-Line Options

Option Usage Description

--component-name[=<value>] Required The name of a component you instantiate.

--output-name[=<value>] Optional Name for the resulting component; defaults to the
component's type name.

--component-parameter[=<value>] Optional Repeatable. A single value assignment, like
--component-param=WIDTH=11. To assign multiple
parameters, use this option several times.

--preset[=<value>] Optional Repeatable. The name of a saved preset to use in
creating a variation of the IP component. Presets are
additive and repeatable.

--family[=<value>] Optional Sets the device family

--part[=<value>] Optional Sets the device part number. You can also use this
command to set the base device, device speed-grade,
device family, and device feature's system information.

--output-directory[=<value>] Optional This directory contains the output IP variation file.
Platform Designer automatically creates the directory if
the directory does not exist. If you do not specify an
output directory, the output directory is the current
working directory.

--search-path[=<value>] Optional If you do not specify the search path, the command uses
a standard default path. If you provide a search path,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", like /extra/dir,$.

--jvm-max-heap-size[=<value>] Optional The maximum memory size Platform Designer uses for
allocations when running qsys-edit. You specify this
value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of
gigabytes. The default value is 512m.

--help Optional Displays help for ip-deploy

7.12. Archive and Extract Platform Designer Systems with qsys-
archive

The qsys-archive command allows you to archive a system, extract an archived
system, and retrieve information about the system's dependencies.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

457

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 212. qsys-archive Command-Line Options

Option Usage Description

<1st arg file> Required The filename of the root Platform Designer system,
Platform Designer file archive, or the Quartus Prime
project file.

--search-path[=<value>] Optional If you omit this option, Platform Designer uses a
standard default path. If you specify this option, Platform
Designer searches a comma-separated list of paths. To
include the standard path in your replacement, use "$",
for example: /extra/dir,$.

--archive Optional Creates a zip archive of the specified Platform Designer
system or the Quartus Prime project.

--report-file[=<value>] Optional Lists the files that the Platform Designer system or the
Quartus Prime project references, and writes the files list
to the specified name in .txt format.

--output-directory[=<file>] Optional Specifies the output directory to save the archive.

--extract Optional Extracts all the files in the given archive.

--output-name[=<value>] Optional Specifies the output name to save the archive or report.

collect-to-common-
directory[=<true|false>]

Optional When archiving, collects all the .qsys files in the root
directory of the archive and all .ip files in a single ip
directory, and updates all the matching references. The
default option is true.

new-quartus-project[=<value>] Optional Creates a new Quartus Prime project which contains all
the .ip and system files referenced by the Platform
Designer system or the Quartus Prime project.

quartus-project[=<value>] Optional When you use this command in combination with:
• --report-file—adds all the referenced files to the

Quartus Prime project.
• --extract—adds all extracted files to the specified

project.
• --archive—archives all the system and .ip files

referenced in the Quartus Prime project.

--rev Optional Specifies the name of the Quartus Prime project revision.

--include-generated-files Optional Includes all the generated files of the Platform Designer
system.

--force Optional Forcefully creates the specified archive or report,
overwriting any existing archives or reports.

--jvm-max-heap-size=<value> Optional Specifies the maximum memory size Platform Designer
uses for allocations when running qsys-edit. Specify
this value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of
gigabytes. The default value is 512m.

--help Optional Displays help for qsys-archive.

Alternatively, you can archive and restore your system using the Platform Designer
GUI. For more information, refer to Saving and Archiving Platform Designer Systems
section.

Related Information

Saving and Archiving Platform Designer Systems on page 112

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

458

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.13. Apply Presets to a New Board

The get_presets command allows you to determine if an instance has a preset that
matches the current configuration. apply_presets allows you to apply presets to
your board.

Table 213. Scripting Command to Apply Presets to New Board

Return Command Argument

No
return
value

apply_prese
ts

Applies the presets that you specify to the Platform Designer system that your specify.

<systemName_ipName_presetName>

systemName_ipName_presetName consists of systems name, instance name, and preset
name.

String[] get_presets Determines if the instance has a preset that matches the current configuration

<instance_name> <enable_board_filter> <enable_matched_preset>

enable_matched_preset indicates whether to perform filtering based on the module
instance's parameters and/or pin assignments values.

Example 1: Change Board and Apply Built-in Preset to Components

$ qsys-script --script=board_migration.tcl --quartus-project=project \
--system-file=top_system.qsys

board_migration.tcl content for a single hierarchy system example:

package require -exact qsys 24.1

set_project_property BOARD {new board}
set_project_property DEVICE {new part}
set_project_property DEVICE_FAMILY {new family}

apply_presets {{top_system,top_ipinst0, top_ipinst0_preset0}}

board_migration.tcl content for a multiple hierarchy system example:

package require -exact qsys 24.1

set_project_property BOARD {new board}
set_project_property DEVICE {new part}
set_project_property DEVICE_FAMILY {new family}

apply_presets {{top_system,top_ipinst0, top_ipinst0_preset0} \
{top_system,top_ipinst1, top_ipinst1_preset1} {sub_system_name,subipinst0,
subip_preset0}}

Initially, you must change the board for the project in the Quartus Prime software
(Assignments ➤ Device ➤ Board) before you can run the script.

Example 2: Determine If System Instances are Already Configured in the New
Board

$ qsys-script --script=board_migration.tcl --quartus-project=project \
--system-file=top_system.qsys

board_migration.tcl content for a single hierarchy system example:

package require -exact qsys 24.1

set_project_property BOARD {new board}

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

459

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_project_property DEVICE {new part}
set_project_property DEVICE_FAMILY {new family}

set module_list [get_instances]

foreach module $module_list {
 set num_matched_preset [llength [get_presets $module true true]]
 if ($num_matched_preset > 0) {
 # do something when the instance configured
 }
}

get_presets supports the optional enable_matched_preset argument that allows
you to determine if the instance has a preset that matches the current configuration.

7.14. Platform Designer Scripting Command Reference

Platform Designer system scripting provides Tcl commands to manipulate your
system. The qsys-script provides a command-line alternative to the Platform
Designer tool. Use the qsys-script commands to create and modify your system,
as well as to create reports about the system.

To use the current version of the Tcl commands, include the following line at the top of
your script:

package require -exact qsys <version>

For example, for the current release of the Quartus Prime software, include:

package require -exact qsys 18.0

The Platform Designer scripting commands fall under the following categories:

System on page 461

Subsystems on page 475

Domains and Interfaces on page 483

Instances on page 488

Instantiations on page 521

Components on page 560

Connections on page 586

Top-level Exports on page 598

Validation on page 612

Miscellaneous on page 623

Wire-Level Connection Commands on page 633

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

460

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1. System

This section lists the commands that allow you to manipulate a Platform Designer
system.

create_system on page 462

export_hw_tcl on page 463

get_device_families on page 464

get_devices on page 465

get_module_properties on page 466

get_module_property on page 467

get_project_properties on page 468

get_project_property on page 469

load_system on page 470

save_system on page 471

set_design_id on page 471

set_module_property on page 473

set_project_property on page 474

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

461

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.1. create_system

Description
Replaces the current system with a new system of the specified name.

Usage
create_system [<name>]

Returns
No return value.

Arguments

name (optional) The new system name.

Example

create_system my_new_system_name

Related Information

• load_system on page 470

• save_system on page 471

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

462

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.2. export_hw_tcl

Description
Allows you to save the currently open system as an _hw.tcl file in the project
directory. The saved systems appears under the System category in the IP Catalog.

Usage
export_hw_tcl

Returns
No return value.

Arguments
No arguments

Example

export_hw_tcl

Related Information

• load_system on page 470

• save_system on page 471

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

463

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.3. get_device_families

Description
Returns the list of installed device families.

Usage
get_device_families

Returns

String[] The list of device families.

Arguments
No arguments

Example

get_device_families

Related Information

get_devices on page 465

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

464

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.4. get_devices

Description
Returns the list of installed devices for the specified family.

Usage
get_devices <family>

Returns

String[] The list of devices.

Arguments

family Specifies the family name to get the devices for.

Example

get_devices exampleFamily

Related Information

get_device_families on page 464

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

465

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.5. get_module_properties

Description
Returns the properties that you can manage for a top-level module of the Platform
Designer system.

Usage
get_module_properties

Returns
The list of property names.

Arguments
No arguments.

Example

get_module_properties

Related Information

• get_module_property on page 467

• set_module_property on page 473

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

466

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.6. get_module_property

Description
Returns the value of a top-level system property.

Usage
get_module_property <property>

Returns
The property value.

Arguments

property The property name to query. Refer to Module Properties.

Example

get_module_property NAME

Related Information

• get_module_properties on page 466

• set_module_property on page 473

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

467

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.7. get_project_properties

Description
Returns the list of properties that you can query for properties pertaining to the
Quartus Prime project.

Usage
get_project_properties

Returns
The list of project properties.

Arguments
No arguments

Example

get_project_properties

Related Information

• get_project_property on page 469

• set_project_property on page 474

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

468

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.8. get_project_property

Description
Returns the value of an Quartus Prime project property.

Usage
get_project_property <property>

Returns
The property value.

Arguments

property The project property name. Refer to Project properties.

Example

get_project_property DEVICE_FAMILY

Related Information

• get_module_properties on page 466

• get_module_property on page 467

• set_module_property on page 473

• Project Properties on page 651

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

469

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.9. load_system

Description
Loads the Platform Designer system from a file, and uses the system as the current
system for scripting commands.

Usage
load_system <file>

Returns
No return value.

Arguments

file The path to the .qsys file.

Example

load_system example.qsys

Related Information

• create_system on page 462

• save_system on page 471

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

470

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.10. save_system

Description

Saves the current system to the specified file. If you do not specify the file, Platform
Designer saves the system to the same file opened with the load_system command.

Usage
save_system <file>

Returns
No return value.

Arguments

file If available, the path of the .qsys file to save.

Example

save_system

save_system file.qsys

Related Information

• load_system on page 470

• create_system on page 462

7.14.1.11. set_design_id

Description
Specifies an alphanumeric string that identifies the system.

If you specify set_design_id when creating a system, the generated system
includes a SOPCINFO file with a new design_id attribute in the EnsembleReport
element:

<EnsembleReport

name="my_system"

kind="my_system"

design_id="my_design_id"

version="1.0"

fabric="QSYS">

Usage
set_design_id <design-id>

Returns
No return value.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

471

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments

design-id (optional) An alphanumeric string that identifies the system.

Example

set_design_id foo121

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

472

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.12. set_module_property

Description
Specifies the Tcl procedure to evaluate changes in Platform Designer system instance
parameters.

Usage
set_module_property <property> <value>

Returns
No return value.

Arguments

property The property name. Refer to Module Properties.

value The new value of the property.

Example

set_module_property COMPOSITION_CALLBACK "my_composition_callback"

Related Information

• get_module_properties on page 466

• get_module_property on page 467

• Module Properties on page 645

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

473

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.1.13. set_project_property

Description
Sets the project property value, such as the device family.

Usage
set_project_property <property> <value>

Returns
No return value.

Arguments

property The property name. Refer to Project Properties.

value The new property value.

Example

set_project_property DEVICE_FAMILY "Cyclone IV GX"

Related Information

• get_project_properties on page 468

• get_project_property on page 469

• Project Properties on page 651

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

474

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.2. Subsystems

This section lists the commands that allow you to obtain the connection and parameter
information of instances in your Platform Designer subsystem.

get_composed_connections on page 476

get_composed_connection_parameter_value on page 477

get_composed_connection_parameters on page 478

get_composed_instance_assignment on page 479

get_composed_instance_assignments on page 480

get_composed_instance_parameter_value on page 481

get_composed_instance_parameters on page 482

get_composed_instances on page 483

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

475

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.2.1. get_composed_connections

Description
Returns the list of all connections in the subsystem for an instance that contains the
subsystem of the Platform Designer system.

Usage
get_composed_connections <instance>

Returns
The list of connection names in the subsystem.

Arguments

instance The child instance containing the subsystem.

Example

get_composed_connections subsystem_0

Related Information

• get_composed_connection_parameter_value on page 477

• get_composed_connection_parameters on page 478

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

476

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.2.2. get_composed_connection_parameter_value

Description
Returns the parameter value of a connection in a child instance containing the
subsystem.

Usage
get_composed_connection_parameter_value <instance> <child_connection>
<parameter>

Returns
The parameter value.

Arguments

instance The child instance that contains the subsystem.

child_connection The connection name in the subsystem.

parameter The parameter name to query for the connection.

Example

get_composed_connection_parameter_value subsystem_0 cpu.data_host/memory.s0
baseAddress

Related Information

• get_composed_connection_parameters on page 478

• get_composed_connections on page 476

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

477

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.2.3. get_composed_connection_parameters

Description
Returns the list of parameters of a connection in the subsystem, for an instance that
contains the subsystem.

Usage
get_composed_connection_parameters <instance> <child_connection>

Returns
The list of parameter names.

Arguments

instance The child instance containing the subsystem.

child_connection The name of the connection in the subsystem.

Example

get_composed_connection_parameters subsystem_0 cpu.data_host/memory.s0

Related Information

• get_composed_connection_parameter_value on page 477

• get_composed_connections on page 476

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

478

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.2.4. get_composed_instance_assignment

Description
Returns the assignment value of the child instance in the subsystem.

Usage
get_composed_instance_assignment <instance> <child_instance>
<assignment>

Returns
The assignment value.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

assignment The assignment key.

Example

get_composed_instance_assignment subsystem_0 video_0
"embeddedsw.CMacro.colorSpace"

Related Information

• get_composed_instance_assignments on page 480

• get_composed_instances on page 483

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

479

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.2.5. get_composed_instance_assignments

Description
Returns the list of assignments of the child instance in the subsystem.

Usage
get_composed_instance_assignments <instance> <child_instance>

Returns
The list of assignment names.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

Example

get_composed_instance_assignments subsystem_0 cpu

Related Information

• get_composed_instance_assignment on page 479

• get_composed_instances on page 483

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

480

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.2.6. get_composed_instance_parameter_value

Description
Returns the parameter value of the child instance in the subsystem.

Usage
get_composed_instance_parameter_value <instance> <child_instance>
<parameter>

Returns
The parameter value of the instance in the subsystem.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

parameter The parameter name to query on the child instance in the
subsystem.

Example

get_composed_instance_parameter_value subsystem_0 cpu DATA_WIDTH

Related Information

• get_composed_instance_parameters on page 482

• get_composed_instances on page 483

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

481

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.2.7. get_composed_instance_parameters

Description
Returns the list of parameters of the child instance in the subsystem.

Usage
get_composed_instance_parameters <instance> <child_instance>

Returns
The list of parameter names.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

Example

get_composed_instance_parameters subsystem_0 cpu

Related Information

• get_composed_instance_parameter_value on page 481

• get_composed_instances on page 483

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

482

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.2.8. get_composed_instances

Description
Returns the list of child instances in the subsystem.

Usage
get_composed_instances <instance>

Returns
The list of instance names in the subsystem.

Arguments

instance The subsystem containing the child instance.

Example

get_composed_instances subsystem_0

Related Information

• get_composed_instance_assignment on page 479

• get_composed_instance_assignments on page 480

• get_composed_instance_parameter_value on page 481

• get_composed_instance_parameters on page 482

7.14.3. Domains and Interfaces

This section lists the commands that allow you to specify parameters for domains and
interfaces in your system.

Related Information

Specifying Interconnect Parameters on page 71

7.14.3.1. set_domain_assignment

Description
Sets the assignment value to all connections on the given domain.

Usage

set_domain_assignment <element> <assignment> <value>

Arguments

element Connection or interface in the domain to set with assignment. If
element name is $system, assigns to all the domains in the system.

assignment The name of the assignment.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

483

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

value The value of the assignment.

7.14.3.2. get_domain_assignment

Description
Obtains the value for specified assignment in the given domain.

Usage

get_domain_assignment <element> <assignment>

Arguments

element Connection or interface in the domain for which you want the
assignment value.

assignment The name of the assignment.

7.14.3.3. get_domain_assignments

Description
Obtains all domain assignments for the given domain as a list of strings. Each "group"
of three elements in the list contains the element name, assignment name, and value
(in that order). Element name in the output is the input element name. If the input
element is $system, then the output element name is the connection point in the
domain. For example, typical list contents appear like this:

[element0 name0 value0 element1 name1 value1 ...]

In TCL, you'd loop over the list by writing a foreach loop:

foreach {element name value } $requirement_list \
 { puts " $element $name $value" }

Usage

get_domain_assignments <element>

Arguments

element Connection or interface in the domain for which you want to get
assignments. If element is specified as $system, gives values of all the
domains in the system.

7.14.3.4. set_interface_assignment

Description
Adds interconnect assignment to the interface.

Usage

set_interface_assignment <interface> <assignment> <value>

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

484

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments

interface Interface name.

assignment The name of the assignment.

value The value of the assignment.

7.14.3.5. get_interface_assignment

Description
Obtains the value of the named interface interconnect assignment on the specified
interface.

Usage

get_interface_assignment <interface> <assignment>

Arguments

interface Interface name.

assignment The name of the assignment.

7.14.3.6. get_interface_assignments

Description
Obtains all interface interconnect assignments for the given domain as a list of strings.
Each "group" of three elements in the list contains the interface name, assignment
name, and value (in that order). For example, typical list contents might look like this:

[interface0 name0 value0 interface1 name1 value1 ...]

In TCL, you'd loop over the list by writing a foreach loop:

foreach {interface name value } $requirement_list \
 { puts " $interface $name $value" }

Usage

get_interface_assignments <interface>

Arguments

interface Interface name that you want to get assignments for. If interface is
specified as $system , it gives assignments of all the interfaces in the
system.

assignment The name of the assignment.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

485

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.3.7. set_postadaptation_assignment

Description
Adds a post adaptation interconnect assignment.

Usage

set_postadaptation_assignment <element> <assignment> <value>

Arguments

element Element name.

assignment The name of the assignment.

value The value of the assignment.

7.14.3.8. get_postadaptation_assignment

Description
Obtains the value of the named post adaptation interconnect assignment on the
specified element.

Usage

get_postadaptation_assignment <element> <assignment>

Arguments

element Element name.

assignment The name of the assignment.

7.14.3.9. get_postadaptation_assignments

Description
Obtains all post adaptation interconnect assignments for the given domain as a list of
strings. Each "group" of three elements in the list contains the element name,
assignment name, and value (in that order). For example, typical list contents might
look like this:

[element0 name0 value0 element1 name1 value1 ...]

In TCL, you'd loop over the list by writing a foreach loop:

foreach {element name value } $requirement_list \
 { puts " $element $name $value" }

Usage

get_postadaptation_assignments <interface>

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

486

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments

interface Interface name that you want to get assignments for. If interface is
specified as $system , it gives assignments of all the interfaces in the
system.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

487

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4. Instances

This section lists the commands that allow you to manipulate the instances of IP
components in your Platform Designer system.

add_instance on page 489

apply_instance_preset on page 490

create_ip on page 491

add_component on page 492

duplicate_instance on page 493

enable_instance_parameter_update_callback on page 494

get_instance_assignment on page 495

get_instance_assignments on page 496

get_instance_documentation_links on page 497

get_instance_interface_assignment on page 498

get_instance_interface_assignments on page 499

get_instance_interface_parameter_property on page 500

get_instance_interface_parameter_value on page 501

get_instance_interface_parameters on page 502

get_instance_interface_port_property on page 503

get_instance_interface_ports on page 504

get_instance_interface_properties on page 505

get_instance_interface_property on page 506

get_instance_interfaces on page 507

get_instance_parameter_property on page 508

get_instance_parameter_value on page 509

get_instance_parameter_values on page 510

get_instance_parameters on page 511

get_instance_port_property on page 512

get_instance_properties on page 513

get_instance_property on page 514

get_instances on page 515

is_instance_parameter_update_callback_enabled on page 516

remove_instance on page 517

set_instance_parameter_value on page 518

set_instance_parameter_values on page 519

set_instance_property on page 520

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

488

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.1. add_instance

Description
Adds an instance of a component, referred to as a child or child instance, to the
system.

Usage
add_instance <name> <type> [<version>]

Returns
No return value.

Arguments

name Specifies a unique local name that you can use to manipulate the
instance. Platform Designer uses this name in the generated HDL to
identify the instance.

type Refers to a kind of instance available in the IP Catalog, for example
altera_avalon_uart.

version The required version of the specified instance type. This argument is
required in Package version 19.1 and later. Before package version
19.1, when not specified the latest IP version is used.

Example

add_instance uart_0 altera_avalon_uart 22.2

Related Information

• get_instance_property on page 514

• get_instances on page 515

• remove_instance on page 517

• set_instance_parameter_value on page 518

• get_instance_parameter_value on page 509

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

489

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.2. apply_instance_preset

Description
Applies the settings in a preset to the specified instance.

Usage
apply_instance_preset <preset_name>

Returns
No return value.

Arguments

preset_name The preset name.

Example

apply_preset "Custom Debug Settings"

Related Information

set_instance_parameter_value on page 518

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

490

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.3. create_ip

Description
Creates a new IP Variation system with the given instance.

Usage
create_ip <type> [<instance_name> <version>]

Returns
No return value.

Arguments

type Kind of instance available in the IP catalog, for example,
altera_avalon_uart.

instance_name
(optional)

A unique local name that you can use to manipulate the
instance. If not specified, Platform Designer uses a
default name.

version (optional) The required version of the specified instance type. If not
specified, Platform Designer uses the latest version.

Example

create_ip altera_avalon_uart altera_avalon_uart_inst 17.0

Related Information

• add_component on page 492

• load_system on page 470

• save_system on page 471

• set_instance_parameter_value on page 518

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

491

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.4. add_component

Description
Adds a new IP Variation component to the system.

Usage
add_component <instance_name> <file_name> [<component_type>
<component_instance_name> <component_version>]

Returns
No return value.

Arguments

instance_name A unique local name that you can use to manipulate the
instance.

file_name The IP variation file name. If a path is not specified, Platform
Designer saves the file in the ./ip/system/ sub-folder of your
system.

component_type
(optional)

The kind of instance available in the IP catalog, for
example altera_avalon_uart.

component_instance_name
(optional)

The instance name of the component in the
IP variation file. If not specified, Platform
Designer uses a default name.

component_version
(optional)

The required version of the specified instance
type. If not specified, Platform Designer uses the
latest version.

Example

add_component myuart_0 myuart.ip altera_avalon_uart altera_avalon_uart_inst 17.0

Related Information

save_system on page 471

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

492

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.5. duplicate_instance

Description
Creates a duplicate instance of the specified instance.

Usage
duplicate_instance <instance> [<name>]

Returns

String The new instance name.

Arguments

instance Specifies the instance name to duplicate.

name (optional) Specifies the name of the duplicate instance.

Example

duplicate_instance cpu cpu_0

Related Information

• add_instance on page 489

• remove_instance on page 517

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

493

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.6. enable_instance_parameter_update_callback

Description
Enables the update callback for instance parameters.

Usage
enable_instance_parameter_update_callback [<value>]

Returns
No return value.

Arguments

value (optional) Specifies whether to enable/disable the instance parameters
callback. Default option is "1".

Example

enabled_instance_parameter_update_callback

Related Information

• is_instance_parameter_update_callback_enabled on page 516

• set_instance_parameter_value on page 518

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

494

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.7. get_instance_assignment

Description
Returns the assignment value of a child instance. Platform Designer uses assignments
to transfer information about hardware to embedded software tools and applications.

Usage
get_instance_assignment <instance> <assignment>

Returns

String The value of the specified assignment.

Arguments

instance The instance name.

assignment The assignment key to query.

Example

get_instance_assignment video_0 embeddedsw.CMacro.colorSpace

Related Information

get_instance_assignments on page 496

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

495

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.8. get_instance_assignments

Description
Returns the list of assignment keys for any defined assignments for the instance.

Usage
get_instance_assignments <instance>

Returns

String[] The list of assignment keys.

Arguments

instance The instance name.

Example

get_instance_assignments sdram

Related Information

get_instance_assignment on page 495

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

496

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.9. get_instance_documentation_links

Description
Returns the list of all documentation links provided by an instance.

Usage
get_instance_documentation_links <instance>

Returns

String[] The list of documentation links.

Arguments

instance The instance name.

Example

get_instance_documentation_links cpu_0

Notes
The list of documentation links includes titles and URLs for the links. For instance, a
component with a single data sheet link may return:

{Data Sheet} {http://url/to/data/sheet}

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

497

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.10. get_instance_interface_assignment

Description
Returns the assignment value for an interface of a child instance. Platform Designer
uses assignments to transfer information about hardware to embedded software tools
and applications.

Usage
get_instance_interface_assignment <instance> <interface> <assignment>

Returns

String The value of the specified assignment.

Arguments

instance The child instance name.

interface The interface name.

assignment The assignment key to query.

Example

get_instance_interface_assignment sdram s1 embeddedsw.configuration.isFlash

Related Information

get_instance_interface_assignments on page 499

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

498

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.11. get_instance_interface_assignments

Description
Returns the list of assignment keys for any assignments defined for an interface of a
child instance.

Usage
get_instance_interface_assignments <instance> <interface>

Returns

String[] The list of assignment keys.

Arguments

instance The child instance name.

interface The interface name.

Example

get_instance_interface_assignments sdram s1

Related Information

get_instance_interface_assignment on page 498

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

499

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.12. get_instance_interface_parameter_property

Description
Returns the property value for a parameter in an interface of an instance. Parameter
properties are metadata about how Platform Designer uses the parameter.

Usage
get_instance_interface_parameter_property <instance> <interface>
<parameter> <property>

Returns

various The parameter property value.

Arguments

instance The child instance name.

interface The interface name.

parameter The parameter name for the interface.

property The property name for the parameter. Refer to Parameter Properties.

Example

get_instance_interface_parameter_property uart_0 s0 setupTime ENABLED

Related Information

• get_instance_interface_parameters on page 502

• get_instance_interfaces on page 507

• get_parameter_properties on page 627

• Parameter Properties on page 646

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

500

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.13. get_instance_interface_parameter_value

Description
Returns the parameter value of an interface in an instance.

Usage
get_instance_interface_parameter_value <instance> <interface>
<parameter>

Returns

various The parameter value.

Arguments

instance The child instance name.

interface The interface name.

parameter The parameter name for the interface.

Example

get_instance_interface_parameter_value uart_0 s0 setupTime

Related Information

• get_instance_interface_parameters on page 502

• get_instance_interfaces on page 507

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

501

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.14. get_instance_interface_parameters

Description
Returns the list of parameters for an interface in an instance.

Usage
get_instance_interface_parameters <instance> <interface>

Returns

String[] The list of parameter names for parameters in the interface.

Arguments

instance The child instance name.

interface The interface name.

Example

get_instance_interface_parameters uart_0 s0

Related Information

• get_instance_interface_parameter_value on page 501

• get_instance_interfaces on page 507

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

502

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.15. get_instance_interface_port_property

Description
Returns the property value of a port in the interface of a child instance.

Usage
get_instance_interface_port_property <instance> <interface> <port>
<property>

Returns

various The port property value.

Arguments

instance The child instance name.

interface The interface name.

port The port name.

property The property name of the port. Refer to Port Properties.

Example

get_instance_interface_port_property uart_0 exports tx WIDTH

Related Information

• get_instance_interface_ports on page 504

• get_port_properties on page 607

• Port Properties on page 650

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

503

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.16. get_instance_interface_ports

Description
Returns the list of ports in an interface of an instance.

Usage
get_instance_interface_ports <instance> <interface>

Returns

String[] The list of port names in the interface.

Arguments

instance The instance name.

interface The interface name.

Example

get_instance_interface_ports uart_0 s0

Related Information

• get_instance_interface_port_property on page 503

• get_instance_interfaces on page 507

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

504

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.17. get_instance_interface_properties

Description
Returns the list of properties that you can query for an interface in an instance.

Usage
get_instance_interface_properties

Returns

String[] The list of property names.

Arguments
No arguments.

Example

get_instance_interface_properties

Related Information

• get_instance_interface_property on page 506

• get_instance_interfaces on page 507

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

505

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.18. get_instance_interface_property

Description
Returns the property value for an interface in a child instance.

Usage
get_instance_interface_property <instance> <interface> <property>

Returns

String The property value.

Arguments

instance The child instance name.

interface The interface name.

property The property name. Refer to Element Properties.

Example

get_instance_interface_property uart_0 s0 DESCRIPTION

Related Information

• get_instance_interface_properties on page 505

• get_instance_interfaces on page 507

• Element Properties on page 641

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

506

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.19. get_instance_interfaces

Description
Returns the list of interfaces in an instance.

Usage
get_instance_interfaces <instance>

Returns

String[] The list of interface names.

Arguments

instance The instance name.

Example

get_instance_interfaces uart_0

Related Information

• get_instance_interface_ports on page 504

• get_instance_interface_properties on page 505

• get_instance_interface_property on page 506

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

507

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.20. get_instance_parameter_property

Description
Returns the property value of a parameter in an instance. Parameter properties are
metadata about how Platform Designer uses the parameter.

Usage
get_instance_parameter_property <instance> <parameter> <property>

Returns

various The parameter property value.

Arguments

instance The instance name.

parameter The parameter name.

property The property name of the parameter. Refer to Parameter Properties.

Example

get_instance_parameter_property uart_0 baudRate ENABLED

Related Information

• get_instance_parameters on page 511

• get_parameter_properties on page 627

• Parameter Properties on page 646

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

508

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.21. get_instance_parameter_value

Description
Returns the parameter value in a child instance.

Usage
get_instance_parameter_value <instance> <parameter>

Returns

various The parameter value.

Arguments

instance The instance name.

parameter The parameter name.

Example

get_instance_parameter_value pixel_converter input_DPI

Related Information

• get_instance_parameters on page 511

• set_instance_parameter_value on page 518

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

509

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.22. get_instance_parameter_values

Description
Returns a list of the parameters' values in a child instance.

Usage
get_instance_parameter_values <instance> <parameters>

Returns

String[] A list of the parameters' value.

Arguments

instance The child instance name.

parameter A list of parameter names in the instance.

Example

get_instance_parameter_value uart_0 [list param1 param2]

Related Information

• get_instance_parameters on page 511

• set_instance_parameter_value on page 518

• set_instance_parameter_values on page 519

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

510

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.23. get_instance_parameters

Description
Returns the names of all parameters for a child instance that the parent can
manipulate. This command omits derived parameters and parameters that have the
SYSTEM_INFO parameter property set.

Usage
get_instance_parameters <instance>

Returns

instance The list of parameters in the instance.

Arguments

instance The instance name.

Example

get_instance_parameters uart_0

Related Information

• get_instance_parameter_property on page 508

• get_instance_parameter_value on page 509

• set_instance_parameter_value on page 518

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

511

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.24. get_instance_port_property

Description
Returns the property value of a port contained by an interface in a child instance.

Usage
get_instance_port_property <instance> <port> <property>

Returns

various The property value for the port.

Arguments

instance The child instance name.

port The port name.

property The property name. Refer to Port Properties.

Example

get_instance_port_property uart_0 tx WIDTH

Related Information

• get_instance_interface_ports on page 504

• get_port_properties on page 607

• Port Properties on page 650

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

512

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.25. get_instance_properties

Description
Returns the list of properties for a child instance.

Usage
get_instance_properties

Returns

String[] The list of property names for the child instance.

Arguments
No arguments.

Example

get_instance_properties

Related Information

get_instance_property on page 514

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

513

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.26. get_instance_property

Description
Returns the property value for a child instance.

Usage
get_instance_property <instance> <property>

Returns

String The property value.

Arguments

instance The child instance name.

property The property name. Refer to Element Properties.

Example

get_instance_property uart_0 ENABLED

Related Information

• get_instance_properties on page 513

• Element Properties on page 641

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

514

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.27. get_instances

Description
Returns the list of the instance names for all the instances in the system.

Usage
get_instances

Returns

String[] The list of child instance names.

Arguments
No arguments.

Example

get_instances

Related Information

• add_instance on page 489

• remove_instance on page 517

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

515

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.28. is_instance_parameter_update_callback_enabled

Description
Returns true if you enable the update callback for instance parameters.

Usage
is_instance_parameter_update_callback_enabled

Returns

boolean 1 if you enable the callback; 0 if you disable the callback.

Arguments
No arguments

Example

is_instance_parameter_update_callback_enabled

Related Information

enable_instance_parameter_update_callback on page 494

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

516

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.29. remove_instance

Description
Removes an instance from the system.

Usage
remove_instance <instance>

Returns
No return value.

Arguments

instance The child instance name to remove.

Example

remove_instance cpu

Related Information

• add_instance on page 489

• get_instances on page 515

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

517

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.30. set_instance_parameter_value

Description
Sets the parameter value for a child instance. You cannot set derived parameters and
SYSTEM_INFO parameters for the child instance with this command.

Usage
set_instance_parameter_value <instance> <parameter> <value>

Returns
No return value.

Arguments

instance The child instance name.

parameter The parameter name.

value The parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

Related Information

• get_instance_parameter_value on page 509

• get_instance_parameter_property on page 508

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

518

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.31. set_instance_parameter_values

Description
Sets a list of parameter values for a child instance. You cannot set derived parameters
and SYSTEM_INFO parameters for the child instance with this command.

Usage
set_instance_parameter_value <instance> <parameter_value_pairs>

Returns
No return value.

Arguments

instance The child instance name.

parameter_value_pairs The pairs of parameter name and value to set.

Example

set_instance_parameter_value uart_0 [list baudRate 9600 parity odd]

Related Information

• get_instance_parameter_value on page 509

• get_instance_parameter_values on page 510

• get_instance_parameters on page 511

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

519

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.4.32. set_instance_property

Description
Sets the property value of a child instance. Most instance properties are read-only and
can only be set by the instance itself. The primary use for this command is to update
the ENABLED parameter, which includes or excludes a child instance when generating
Platform Designer interconnect.

Usage
set_instance_property <instance> <property> <value>

Returns
No return value.

Arguments

instance The child instance name.

property The property name. Refer to Instance Properties.

value The property value.

Example

set_instance_property cpu ENABLED false

Related Information

• get_instance_parameters on page 511

• get_instance_property on page 514

• Instance Properties on page 642

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

520

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5. Instantiations

This section lists the commands that allow you to manipulate the loaded instantiations
in a Platform Designer system.

add_instantiation_hdl_file on page 523

add_instantiation_interface on page 524

add_instantiation_interface_port on page 525

copy_instance_interface_to_instantiation on page 526

get_instantiation_assignment_value on page 527

get_instantiation_assignments on page 528

get_instantiation_hdl_file_properties on page 529

get_instantiation_hdl_file_property on page 530

get_instantiation_hdl_files on page 531

get_instantiation_interface_assignment_value on page 532

get_instantiation_interface_assignments on page 533

get_instantiation_interface_parameter_value on page 534

get_instantiation_interface_parameters on page 535

get_instantiation_interface_port_properties on page 536

get_instantiation_interface_port_property on page 537

get_instantiation_interface_ports on page 538

get_instantiation_interface_property on page 539

get_instantiation_interface_properties on page 540

get_instantiation_interface_sysinfo_parameter_value on page 541

get_instantiation_interface_sysinfo_parameters on page 542

get_instantiation_interfaces on page 543

get_instantiation_properties on page 544

get_instantiation_property on page 545

get_loaded_instantiation on page 546

import_instantiation_interfaces on page 547

load_instantiation on page 548

remove_instantiation_hdl_file on page 549

remove_instantiation_interface on page 550

remove_instantiation_interface_port on page 551

save_instantiation on page 552

set_instantiation_assignment_value on page 553

set_instantiation_hdl_file_property on page 554

set_instantiation_interface_assignment_value on page 555

set_instantiation_interface_parameter_value on page 556

set_instantiation_interface_port_property on page 557

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

521

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instantiation_interface_sysinfo_parameter_value on page 558

set_instantiation_property on page 559

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

522

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.1. add_instantiation_hdl_file

Description
Adds an HDL file to the loaded instantiation.

Usage
add_instantiation_hdl_file <file> [<kind>]

Returns
No return value.

Arguments

file Specifies the HDL file name.

kind(optional) Indicates the file set kind to add the file to. If you do not specify
this option, the command adds the file to all the file sets. Refer
to File Set Kind.

Example

add_instantiation_hdl_file my_nios2_gen2.vhdl quartus_synth

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• File Set Kind on page 657

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

523

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.2. add_instantiation_interface

Description
Adds an interface to the loaded instantiation.

Usage
add_instantiation_interface <interface> <type> <direction>

Returns
No return value.

Arguments

interface Specifies the interface name.

type Specifies the interface type.

direction Specifies the interface direction. Refer to Interface Direction.

Example

add_instantiation_interface clk_0 clock OUTPUT

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• Interface Direction on page 656

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

524

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.3. add_instantiation_interface_port

Description
Adds a port to a loaded instantiation's interface.

Usage
add_instantiation_interface_port <interface> <port> <role> <width>
<vhdl_type><direction>

Returns
No return value.

Arguments

interface Specifies the interface name.

port Specifies the port name.

role Specifies the port role.

width Specifies the port width.

vhdl_type Specifies the VHDL type of the port. Refer to VHDL Type.

direction Specifies the port direction. Refer to Direction Properties.

Example

add_instantiation_interface_port avs_s0 avs_s0_address address 8 {standard logic
vector} input

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• VHDL Type on page 664

• Direction Properties on page 640

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

525

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.4. copy_instance_interface_to_instantiation

Description
Adds an interface to a loaded instantiation by copying the specified interface of
another instance.

Usage
copy_instance_interface_to_instantiation <instance> <interface> <type>

Returns

String The name of the newly added interface.

Arguments

instance Specifies the name of the instance to copy the interface from.

interface Specifies the name of the interface to copy.

type Specifies the type of copy to make. Refer to Instantiation Interface
Duplicate Type.

Example

copy_instance_interface_to_instantiation cpu_0 data_host CLONE

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• Instantiation Interface Duplicate Type on page 660

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

526

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.5. get_instantiation_assignment_value

Description
Gets the assignment value on the loaded instantiation.

Usage
get_instantiation_assignment_value <name>

Returns

String The assignment value.

Arguments

name Specifies the name of the assignment to get the value of.

Example

get_instantiation_assignment_value embeddedsw.configuration.exceptionOffset

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

527

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.6. get_instantiation_assignments

Description
Gets the assignment names in the loaded instantiation.

Usage
get_instantiation_assignments

Returns

String[] The list of assignment names.

Arguments
No arguments

Example

get_instantiation_assignments

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

528

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.7. get_instantiation_hdl_file_properties

Description
Returns the list of properties in an HDL file associated with an instantiation.

Usage
get_instantiation_hdl_file_properties

Returns

String[] The list of property names.

Arguments
No arguments

Example

get_instantiation_hdl_file_properties

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

529

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.8. get_instantiation_hdl_file_property

Description
Returns the property value of an HDL file associated with the loaded instantiation.

Usage
get_instantiation_hdl_file_property <file> <property>

Returns

various The property value.

Arguments

file Specifies the HDL file name.

property Specifies the property name. Refer to Instantiation Hdl File Properties.

Example

get_instantiation_hdl_file_property my_nios2_gen2.vhdl OUTPUT_PATH

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• Instantiation HDL File Properties on page 659

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

530

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.9. get_instantiation_hdl_files

Description
Returns the list of HDL files of the loaded instantiation.

Usage
get_instantiation_hdl_files [<kind>]

Returns

String[] The list of HDL file names.

Arguments

kind (optional) Specifies the file set kind to get the files of. If you do not specify
this option, the command gets the QUARTUS_SYNTH files. Refer
to File Set Kind.

Example

get_instantiation_hdl_files quartus_synth

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• File Set Kind on page 657

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

531

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.10. get_instantiation_interface_assignment_value

Description
Gets the assignment value of the loaded instantiation's interface.

Usage
get_instantiation_interface_assignment_value <interface> <name>

Returns

String The assignment value

Arguments

interface Specifies the interface name.

name Specifies the assignment name to get the value of.

Example

get_instantiation_interface_assignment_value avs_s0
embeddedsw.configuration.exceptionOffset

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

532

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.11. get_instantiation_interface_assignments

Description
Gets the assignment names of the loaded instantiation's interface.

Usage
get_instantiation_interface_assignments <interface>

Returns

String[] The list of assignment names.

Arguments

interface Specifies the interface name.

Example

get_instantiation_interface_assignments avs_s0

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

533

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.12. get_instantiation_interface_parameter_value

Description
Returns the parameter value of a loaded instantiation's interface.

Usage
get_instantiation_interface_parameter_value <interface> <parameter>

Returns

String The parameter value.

Arguments

interface Specifies the interface name.

parameter Specifies the parameter name.

Example

get_instantiation_interface_parameter_value avs_s0 associatedClock

Related Information

• get_instantiation_interface_parameters on page 535

• set_instantiation_interface_parameter_value on page 556

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

534

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.13. get_instantiation_interface_parameters

Description
Returns the list of parameters of an instantiation's interface.

Usage
get_instantiation_interface_parameters <interface>

Returns

String[] The list of parameter names.

Arguments

interface Specifies the interface name.

Example

get_instantiation_interface_parameters avs_s0

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• get_instantiation_interface_parameter_value on page 534

• set_instantiation_interface_parameter_value on page 556

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

535

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.14. get_instantiation_interface_port_properties

Description
Returns the list of port properties of an instantiation's interface.

Usage
get_instantiation_interface_port_properties

Returns

String[] The list of port properties.

Arguments
No arguments

Example

get_instantiation_interface_port_properties

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

536

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.15. get_instantiation_interface_port_property

Description
Returns the port property value of a loaded instantiation's interface.

Usage
get_instantiation_interface_port_property <interface> <port>
<property>

Returns

various The property value.

Arguments

interface Specifies the interface name.

port Specifies the port name.

property Specifies the property name. Refer to Port Properties.

Example

get_instantiation_interface_port_property avs_s0 avs_s0_address WIDTH

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• Port Properties on page 663

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

537

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.16. get_instantiation_interface_ports

Description
Returns the list of ports of the loaded instantiation's interface.

Usage
get_instantiation_interface_ports <interface>

Returns

String[] The list of port names.

Arguments

interface Specifies the interface name.

Example

get_instantiation_interface_ports avs_s0

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

538

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.17. get_instantiation_interface_property

Description
Returns the value of a single interface property from the specified instantiation
interface.

Usage
get_instantiation_interface_property <interface> <property>

Returns

various The property value.

Arguments

interface The interface name on the currently loaded interface.

property The property name. Refer to Instantiation Interface Properties.

Example

get_instantiation_interface_property in_clk TYPE

Related Information

• get_instantiation_interface_properties on page 540

• load_instantiation on page 548

• Instantiation Interface Properties on page 661

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

539

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.18. get_instantiation_interface_properties

Description
Returns the names of all the available instantiation interface properties, common to all
interface types.

Usage
get_instantiation_interface_properties

Returns

String[] A list of instantiation interface properties.

Arguments
No arguments.

Example

get_instantiation_interface_properties

Related Information

get_instantiation_interface_property on page 539

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

540

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.19. get_instantiation_interface_sysinfo_parameter_value

Description
Gets the system info parameter value for a loaded instantiation's interface.

Usage
get_instantiation_interface_sysinfo_parameter_value <interface>
<parameter>

Returns

various The system info property value.

Arguments

interface Specifies the interface name.

parameter Specifies the system info parameter name. Refer to System Info
Type.

Example

get_instantiation_interface_sysinfo_parameter_value debug_mem_agent
max_agent_data_width

Related Information

• get_instantiation_interface_sysinfo_parameters on page 542

• set_instantiation_interface_sysinfo_parameter_value on page 558

• System Info Type Properties on page 652

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

541

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.20. get_instantiation_interface_sysinfo_parameters

Description
Returns the list of system info parameters for the loaded instantiation's interface.

Usage
get_instantiation_interface_sysinfo_parameters <interface> [<type>]

Returns

String[] The list of system info parameter names.

Arguments

interface Specifies the interface name.

type (optional) Specifies the parameters type to return. If you do not specify
this option, the command returns all the parameters. Refer to
Access Type.

Example

get_instantiation_interface_sysinfo_parameters debug_mem_agent

Related Information

• get_instantiation_interface_sysinfo_parameter_value on page 541

• set_instantiation_interface_sysinfo_parameter_value on page 558

• Access Type on page 658

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

542

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.21. get_instantiation_interfaces

Description
Returns the list of interfaces for the loaded instantiation.

Usage
get_instantiation_interfaces

Returns

String[] The list of interface names.

Arguments
No arguments.

Example

get_instantiation_interfaces

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

543

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.22. get_instantiation_properties

Description
Returns the list of properties for the loaded instantiation.

Usage
get_instantiation_properties

Returns

String[] The list of property names.

Arguments
No arguments.

Example

get_instantiation_properties

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

544

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.23. get_instantiation_property

Description
Returns the value of the specified property for the loaded instantiation.

Usage
get_instantiation_property <property>

Returns

various The value of an instantiation property.

Arguments

property Specifies the property name to get the value of. Refer to Instantiation
Properties.

Example

get_instantiation_property HDL_ENTITY_NAME

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• Instantiation Properties on page 662

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

545

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.24. get_loaded_instantiation

Description
Returns the instance name of the loaded instantiation.

Usage
get_loaded_instantiation

Returns

String The instance name.

Arguments
No arguments

Example

get_loaded_instantiation

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

546

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.25. import_instantiation_interfaces

Description
Sets the interfaces of a loaded instantiation by importing the interfaces from the
specified file.

Usage
import_instantiation_interfaces <file>

Returns
No return value

Arguments

file Specifies the IP or IP-XACT file to import the interfaces from.

Example

import_instantiation_interfaces ip/my_system/my_system_nios2_gen2_0.ip

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

547

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.26. load_instantiation

Description
Loads the instantiation of an instance, so that you can modify the instantiation if
necessary.

Usage
load_instantiation <instance>

Returns

boolean 1 if successful; 0 if unsuccessful.

Arguments

instance Specifies the instance name.

Example

load_instantiation cpu

Related Information

save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

548

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.27. remove_instantiation_hdl_file

Description
Removes an HDL file from the loaded instantiation.

Usage
remove_instantiation_hdl_file <file> [<kind>]

Returns
No return value.

Arguments

file Specifies the HDL file name.

kind (optional) Specifies the kind of file set to remove the file from. If you do
not specify this option, the command removes the file from all
the file sets. Refer to File Set Kind.

Example

remove_instantiation_hdl_file my_counter.vhdl quartus_synth

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• File Set Kind on page 657

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

549

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.28. remove_instantiation_interface

Description
Removes an interface from a loaded instantiation.

Usage
remove_instantiation_interface <interface>

Returns
No return value

Arguments

interface Specifies the interface name.

Example

remove_instantiation_interface avs_s0

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

550

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.29. remove_instantiation_interface_port

Description
Removes a port from a loaded instantiation's interface.

Usage
remove_instantiation_interface_port <interface> <port>

Returns
No return value

Arguments

interface Specifies the interface name.

port Specifies the port name.

Example

remove_instantiation_interface_port avs_s0 avs_s0_address

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

551

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.30. save_instantiation

Description
Saves the loaded instantiation.

Usage
save_instantiation

Returns
No return value

Arguments
No arguments

Example

save_instantiation

Related Information

load_instantiation on page 548

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

552

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.31. set_instantiation_assignment_value

Description
Sets the assignment value for the loaded instantiation.

Usage
set_instantiation_assignment_value <name> [<value>]

Returns
No return value

Arguments

instance Specifies the assignment name to set value for.

value (optional) Specifies the assignment value. If you do not specify this
option, the command removes the assignment.

Example

set_instantiation_assignment_value embeddedsw.configuration.exceptionOffset 32

Related Information

get_instantiation_assignment_value on page 527

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

553

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.32. set_instantiation_hdl_file_property

Description
Sets the property value for an HDL file associated with a loaded instantiation.

Usage
set_instantiation_hdl_file_property<file> <property> <value>

Returns
No return value

Arguments

file Specifies the HDL file name.

property Specifies the property name. Refer to Instantiation Hdl File Properties.

value Specifies the property value.

Example

set_instantiation_hdl_file_property my_nios2_gen2.vhdl OUTPUT_PATH
my_nios2_gen2.vhdl

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• Instantiation HDL File Properties on page 659

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

554

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.33. set_instantiation_interface_assignment_value

Description
Sets the assignment value for the loaded instantiation's interface.

Usage
set_instantiation_interface_assignment_value <interface> <name>
[<value>]

Returns
No return value

Arguments

interface Specifies the interface name.

name Specifies the assignment name to set the value of.

value (optional) Specifies the new assignment value. If you do not specify this
value, the command removes the assignment.

Example

set_instantiation_interface_assignment_value
embeddedsw.configuration.exceptionOffset 32

Related Information

get_instantiation_assignment_value on page 527

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

555

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.34. set_instantiation_interface_parameter_value

Description
Sets the parameter value for the loaded instantiation's interface.

Usage
set_instantiation_interface_parameter_value <interface> <parameter>
<value>

Returns
No return value

Arguments

instance Specifies the interface name.

parameter Specifies the parameter name.

value Specifies the parameter value.

Example

set_instantiation_interface_parameter avs_s0 associatedClock clk

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• get_instantiation_interface_parameter_value on page 534

• get_instantiation_interface_parameters on page 535

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

556

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.35. set_instantiation_interface_port_property

Description
Sets the port property value on a loaded instantiation's interface.

Usage
set_instantiation_interface_port_property <interface> <port>
<property> <value>

Returns
No return value

Arguments

interface Specifies the interface name.

port Specifies the port name.

property Specifies the property name. Refer to Port Properties.

value Specifies the property value.

Example

set_instantiation_interface_port_property avs_s0 avs_s0_address WIDTH 1

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• Port Properties on page 663

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

557

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.36. set_instantiation_interface_sysinfo_parameter_value

Description
Sets the system info parameter value for the loaded instantiation's interface.

Usage
set_instantiation_interface_sysinfo_parameter_value <interface>
<parameter> <value>

Returns
No return value

Arguments

interface Specifies the interface name.

parameter Specifies the system info parameter name. Refer to System Info
Type.

value Specifies the system info parameter value.

Example

set_instantiation_interface_sysinfo_parameter_value debug_mem_agent
max_agent_data_width 64

Related Information

• get_instantiation_interface_sysinfo_parameter_value on page 541

• get_instantiation_interface_sysinfo_parameters on page 542

• System Info Type Properties on page 652

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

558

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.5.37. set_instantiation_property

Description
Sets the property value for the loaded instantiation.

Usage
set_instantiation_property <property> <value>

Returns
No return value

Arguments

property Specifies the property name. Refer to Instantiation Properties.

value Specifies the value to set.

Example

set_instantiation_property HDL_ENTITY_NAME my_system_nios2_gen2_0

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• Instantiation Properties on page 662

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

559

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6. Components

This section lists the commands that allow you to manipulate the IP components
loaded in a Platform Designer system.

apply_component_preset on page 561

get_component_assignment on page 562

get_component_assignments on page 563

get_component_documentation_links on page 564

get_component_interface_assignment on page 565

get_component_interface_assignments on page 566

get_component_interface_parameter_property on page 567

get_component_interface_parameter_value on page 568

get_component_interface_parameters on page 569

get_component_interface_port_property on page 570

get_component_interface_ports on page 571

get_component_interface_property on page 572

get_component_interfaces on page 573

get_component_parameter_property on page 574

get_component_parameter_value on page 575

get_component_parameters on page 576

get_component_project_properties on page 577

get_component_project_property on page 578

get_component_property on page 579

get_loaded_component on page 580

load_component on page 581

reload_component_footprint on page 582

save_component on page 583

set_component_parameter_value on page 584

set_component_project_property on page 585

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

560

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.1. apply_component_preset

Description
Applies the settings in a preset to the loaded component.

Usage
apply_component_preset<preset_name>

Returns
No return value

Arguments

preset_name Specifies the preset name.

Example

apply_component_preset "Custom Debug Settings"

Related Information

• load_component on page 581

• set_component_parameter_value on page 584

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

561

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.2. get_component_assignment

Description
Returns the assignment value for the loaded component.

Usage
get_component_assignment <assignment>

Returns

String The specified assignment value.

Arguments

assignment Specifies the assignment key value to query.

Example

get_component_assignment embeddedsw.CMacro.colorSpace

Related Information

• load_component on page 581

• get_component_assignments on page 563

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

562

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.3. get_component_assignments

Description
Returns the list of assignment keys for the loaded component.

Usage
get_component_assignments

Returns

String[] The list of assignment keys.

Arguments
No arguments

Example

get_component_assignments

Related Information

• get_instance_assignment on page 495

• load_component on page 581

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

563

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.4. get_component_documentation_links

Description
Returns the list of all documentation links that the loaded component provides.

Usage
get_component_documentation_links

Returns

String[] The list of documentation links.

Arguments
No arguments

Example

get_component_documentation_links

Related Information

load_component on page 581

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

564

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.5. get_component_interface_assignment

Description
Returns the assignment value of an interface of the loaded component.

Usage
get_component_interface_assignment <interface> <assignment>

Returns

String The specified assignment value.

Arguments

interface Specifies the interface name.

assignment Specifies the assignment key to the query.

Example

get_component_interface_assignment s1 embeddedsw.configuration.isFlash

Related Information

• get_component_interface_assignments on page 566

• load_component on page 581

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

565

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.6. get_component_interface_assignments

Description
Returns the list of assignment keys for any assignments that you define for an
interface on the loaded component.

Usage
get_component_interface_assignments <interface>

Returns

String[] The list of assignment keys.

Arguments

interface Specifies the interface name.

Example

get_component_interface_assignments s1

Related Information

• get_component_interface_assignment on page 565

• load_component on page 581

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

566

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.7. get_component_interface_parameter_property

Description
Returns the property value of a parameter in a loaded component's interface.
Parameter properties are metadata about how the Quartus Prime uses the
parameters.

Usage
get_component_interface_parameter_property <interface> <parameter>
<property>

Returns

various The parameter property value.

Arguments

interface Specifies the interface name.

parameter Specifies the parameter name.

property Specifies the parameter property. Refer to Parameter Properties.

Example

get_component_interface_parameter_property s0 setupTime ENABLED

Related Information

• get_component_interface_parameters on page 569

• get_component_interfaces on page 573

• load_component on page 581

• Parameter Properties on page 646

• get_parameter_properties on page 627

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

567

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.8. get_component_interface_parameter_value

Description
Returns the parameter value of an interface of the loaded component.

Usage
get_component_interface_parameter_value <interface> <parameter>

Returns

various The parameter value.

Arguments

interface Specifies the interface name.

parameter Specifies the parameter name.

Example

get_component_interface_parameter_value s0 setupTime

Related Information

• get_component_interface_parameters on page 569

• get_component_interfaces on page 573

• load_component on page 581

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

568

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.9. get_component_interface_parameters

Description
Returns the list of parameters for an interface of the loaded component.

Usage
get_component_interface_parameters <interface>

Returns

String[] The list of parameter names.

Arguments

interface Specifies the interface name.

Example

get_component_interface_parameters s0

Related Information

• get_component_interface_parameter_value on page 568

• get_component_interfaces on page 573

• load_component on page 581

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

569

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.10. get_component_interface_port_property

Description
Returns the property value of a port in the interface of the loaded component.

Usage
get_component_interface_port_property <interface> <port> <property>

Returns

various The port property value

Arguments

interface Specifies the interface name.

port Specifies the port name of the interface.

property Specifies the property name of the port. Refer to Port Properties.

Example

get_component_interface_port_property exports tx WIDTH

Related Information

• get_component_interface_ports on page 571

• load_component on page 581

• Port Properties on page 663

• get_port_properties on page 607

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

570

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.11. get_component_interface_ports

Description
Returns the list of interface ports of the loaded component.

Usage
get_component_interface_ports <interface>

Returns

String[] The list of port names

Arguments

interface Specifies the interface name.

Example

get_component_interface_ports s0

Related Information

• get_component_interface_port_property on page 570

• get_component_interfaces on page 573

• load_component on page 581

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

571

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.12. get_component_interface_property

Description
Returns the value of a single property from the specified interface for the loaded
component.

Usage
get_component_interface_property <interface> <property>

Returns

String The property value.

Arguments

interface Specifies the interface name.

property Specifies the property name. Refer to Element Properties.

Example

get_interface_property clk_in DISPLAY_NAME

Related Information

• load_component on page 581

• Element Properties on page 641

• get_interface_properties on page 604

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

572

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.13. get_component_interfaces

Description
Returns the list of interfaces in the loaded component.

Usage
get_component_interfaces

Returns

String[] The list of interface names.

Arguments
No arguments

Example

get_component_interfaces

Related Information

• get_component_interface_ports on page 571

• get_component_interface_property on page 572

• load_component on page 581

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

573

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.14. get_component_parameter_property

Description
Returns the property value of a parameter in the loaded component.

Usage
get_component_parameter_property <parameter> <property>

Returns

Various The parameter property value.

Arguments

parameter Specifies the parameter name in the component.

property Specifies the property name of the parameter. Refer to Parameter
Properties.

Example

get_component_parameter_property baudRate ENABLED

Related Information

• get_component_parameters on page 576

• get_parameter_properties on page 627

• load_component on page 581

• Parameter Properties on page 646

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

574

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.15. get_component_parameter_value

Description
Returns the parameter value in the loaded component.

Usage
get_component_parameter_value <parameter>

Returns

various The parameter value

Arguments

parameter Specifies the parameter name in the component.

Example

get_component_parameter_value baudRate

Related Information

• get_component_parameters on page 576

• load_component on page 581

• set_component_parameter_value on page 584

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

575

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.16. get_component_parameters

Description
Returns the list of parameters in the loaded component.

Usage
get_component_parameters

Returns

String[] The list of parameters in the component.

Arguments
No arguments

Example

get_instance_parameters

Related Information

• get_component_parameter_property on page 574

• get_component_parameter_value on page 575

• load_component on page 581

• set_component_parameter_value on page 584

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

576

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.17. get_component_project_properties

Description
Returns the list of properties that you query about the loaded component's Quartus
Prime project.

Usage
get_component_project_properties

Returns

String[] The list of project properties.

Arguments
No arguments

Example

get_component_project_properties

Related Information

• get_component_project_property on page 578

• load_component on page 581

• set_component_project_property on page 585

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

577

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.18. get_component_project_property

Description
Returns the project property value of the loaded component. Only select project
properties are available.

Usage
get_component_project_property <property>

Returns

String The property value.

Arguments

property Specifies the project property name. Refer to Project Properties.

Example

get_component_project_property HIDE_FROM_IP_CATALOG

Related Information

• get_component_project_properties on page 577

• load_component on page 581

• set_component_project_property on page 585

• Project Properties on page 651

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

578

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.19. get_component_property

Description
Returns the property value of the loaded component.

Usage
get_component_property <property>

Returns

String The property value.

Arguments

property The property name on the loaded component. Refer to Element
Properties.

Example

get_component_property CLASS_NAME

Related Information

• load_component on page 581

• get_instance_properties on page 513

• Element Properties on page 641

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

579

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.20. get_loaded_component

Description
Returns the instance name associated with the loaded component.

Usage
get_loaded_component

Returns

String The instance name.

Arguments
No arguments

Example

get_loaded_component

Related Information

• load_component on page 581

• save_component on page 583

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

580

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.21. load_component

Description
Loads the actual component inside of a generic component, so that you can modify
the component parameters.

Usage
load_component <instance>

Returns

boolean 1 if successful; 0 if unsuccessful.

Arguments

instance Specifies the instance name.

Example

load_component cpu

Related Information

• get_loaded_component on page 580

• save_component on page 583

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

581

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.22. reload_component_footprint

Description
Validates the footprint of a specified child instance, and updates the footprint of the
instance in case of issues.

Usage
reload_component_footprint [<instance>]

Returns

String[] A list of validation messages.

Arguments

instance
(optional)

Specifies the child instance name to validate. If you do not
specify this option, the command validates all the generic
components in the system.

Example

reload_component_footprint cpu_0

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• validate_component_footprint on page 621

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

582

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.23. save_component

Description
Saves the loaded component.

Usage
save_component

Returns
No return value

Arguments
No arguments

Example

save_component

Related Information

• get_loaded_component on page 580

• load_component on page 581

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

583

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.24. set_component_parameter_value

Description
Sets the parameter value for the loaded component.

Usage
set_component_parameter_value <parameter> <value>

Returns
No return value

Arguments

parameter Specifies the parameter name.

parameter Specifies the new parameter value.

Example

set_component_parameter_value baudRate 9600

Related Information

• get_component_parameter_value on page 575

• get_component_parameters on page 576

• load_component on page 581

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

584

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.6.25. set_component_project_property

Description
Sets the project property value of the loaded component, such as hiding from the IP
catalog.

Usage
set_component_project_property <property> <value>

Returns
No return value

Arguments

property Specifies the property name. Refer to Project Properties.

value Specifies the new property value.

Example

set_component_project_property HIDE_FROM_IP_CATALOG false

Related Information

• get_component_project_properties on page 577

• get_component_project_property on page 578

• load_component on page 581

• Project Properties on page 651

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

585

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7. Connections

This section lists the commands that allow you to manipulate the interface connections
in your Platform Designer system.

add_connection on page 587

auto_connect on page 588

get_connection_parameter_property on page 589

get_connection_parameter_value on page 590

get_connection_parameters on page 591

get_connection_properties on page 592

get_connection_property on page 593

get_connections on page 594

remove_connection on page 595

remove_dangling_connections on page 596

set_connection_parameter_value on page 597

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

586

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7.1. add_connection

Description
Connects the named interfaces using an appropriate connection type. Both interface
names consist of an instance name, followed by the interface name that the module
provides.

Usage
add_connection <start> [<end>]

Returns
No return value.

Arguments

start The start interface that you connect, in
<instance_name>.<interface_name> format. If you do not specify
the end argument, the connection must be of the form
<instance1>.<interface>/<instance2>.<interface>.

end (optional) The end interface that you connect, in
<instance_name>.<interface_name> format.

Example

add_connection dma.read_host sdram.s1

Related Information

• get_connection_parameter_value on page 590

• get_connection_property on page 593

• get_connections on page 594

• remove_connection on page 595

• set_connection_parameter_value on page 597

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

587

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7.2. auto_connect

Description
Creates connections from an instance or instance interface to matching interfaces of
other instances in the system. For example, Avalon memory mapped agents connect
to Avalon memory mapped hosts.

Usage
auto_connect <element>

Returns
No return value.

Arguments

element The instance interface name, or the instance name.

Example

auto_connect sdram
auto_connect uart_0.s1

Related Information

add_connection on page 587

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

588

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7.3. get_connection_parameter_property

Description
Returns the property value of a parameter in a connection. Parameter properties are
metadata about how Platform Designer uses the parameter.

Usage
get_connection_parameter_property <connection> <parameter> <property>

Returns

various The parameter property value.

Arguments

connection The connection to query.

parameter The parameter name.

property The property of the connection. Refer to Parameter Properties.

Example

get_connection_parameter_property cpu.data_host/dma0.csr baseAddress UNITS

Related Information

• get_connection_parameter_value on page 590

• get_connection_property on page 593

• get_connections on page 594

• get_parameter_properties on page 627

• Parameter Properties on page 646

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

589

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7.4. get_connection_parameter_value

Description
Returns the parameter value of the connection. Parameters represent aspects of the
connection that you can modify, such as the base address for an Avalon memory
mapped connection.

Usage
get_connection_parameter_value <connection> <parameter>

Returns

various The parameter value.

Arguments

connection The connection to query.

parameter The parameter name.

Example

get_connection_parameter_value cpu.data_host/dma0.csr baseAddress

Related Information

• get_connection_parameters on page 591

• get_connections on page 594

• set_connection_parameter_value on page 597

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

590

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7.5. get_connection_parameters

Description
Returns the list of parameters of a connection.

Usage
get_connection_parameters <connection>

Returns

String[] The list of parameter names.

Arguments

connection The connection to query.

Example

get_connection_parameters cpu.data_host/dma0.csr

Related Information

• get_connection_parameter_property on page 589

• get_connection_parameter_value on page 590

• get_connection_property on page 593

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

591

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7.6. get_connection_properties

Description
Returns the properties list of a connection.

Usage
get_connection_properties

Returns

String[] The list of connection properties.

Arguments
No arguments.

Example

get_connection_properties

Related Information

• get_connection_property on page 593

• get_connections on page 594

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

592

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7.7. get_connection_property

Description
Returns the property value of a connection. Properties represent aspects of the
connection that you can modify, such as the connection type.

Usage
get_connection_property <connection> <property>

Returns

String The connection property value.

Arguments

connection The connection to query.

property The connection property name. Refer to Connection Properties.

Example

get_connection_property cpu.data_host/dma0.csr TYPE

Related Information

• get_connection_properties on page 592

• Connection Properties on page 638

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

593

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7.8. get_connections

Description
Returns the list of all connections in the system if you do not specify any element. If
you specify a child instance, for example cpu, Platform Designer returns all
connections to any interface on the instance. If you specify an interface of a child
instance, for example cpu.instruction_host, Platform Designer returns all
connections to that interface.

Usage
get_connections [<element>]

Returns

String[] The list of connections.

Arguments

element (optional) The child instance name, or the qualified interface name on
a child instance.

Example

get_connections
get_connections cpu
get_connections cpu.instruction_host

Related Information

• add_connection on page 587

• remove_connection on page 595

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

594

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7.9. remove_connection

Description
Removes a connection from the system.

Usage
remove_connection <connection>

Returns
No return value.

Arguments

connection The connection name to remove.

Example

remove_connection cpu.data_host/sdram.s0

Related Information

• add_connection on page 587

• get_connections on page 594

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

595

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7.10. remove_dangling_connections

Description

Removes connections where both end points of the connection no longer exist in the
system.

Usage
remove_dangling_connections

Returns
No return value.

Arguments
No arguments.

Example

remove_dangling_connections

Related Information

• add_connection on page 587

• get_connections on page 594

• remove_connection on page 595

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

596

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.7.11. set_connection_parameter_value

Description
Sets the parameter value for a connection.

Usage
set_connection_parameter_value <connection> <parameter> <value>

Returns
No return value.

Arguments

connection The connection name.

parameter The parameter name.

value The new parameter value.

Example

set_connection_parameter_value cpu.data_host/dma0.csr baseAddress "0x000a0000"

Related Information

• get_connection_parameter_value on page 590

• get_connection_parameters on page 591

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

597

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8. Top-level Exports

This section lists the commands that allow you to manipulate the exported interfaces
in your Platform Designer system.

add_interface on page 599

get_exported_interface_sysinfo_parameter_value on page 600

get_exported_interface_sysinfo_parameters on page 601

get_interface_port_property on page 602

get_interface_ports on page 603

get_interface_properties on page 604

get_interface_property on page 605

get_interfaces on page 606

get_port_properties on page 607

remove_interface on page 608

set_exported_interface_sysinfo_parameter_value on page 609

set_interface_port_property on page 610

set_interface_property on page 611

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

598

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.1. add_interface

Description
Adds an interface to your system, which Platform Designer uses to export an interface
from within the system. You specify the exported internal interface with
set_interface_property <interface> EXPORT_OF instance.interface.

Usage
add_interface <name> <type> <direction>.

Returns
No return value.

Arguments

name The name of the interface that Platform Designer exports from the
system.

type The type of interface.

direction The interface direction.

Example

add_interface my_export conduit end
set_interface_property my_export EXPORT_OF uart_0.external_connection

Related Information

• get_interface_ports on page 603

• get_interface_properties on page 604

• get_interface_property on page 605

• set_interface_property on page 611

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

599

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.2. get_exported_interface_sysinfo_parameter_value

Description
Gets the value of a system info parameter for an exported interface.

Usage
get_exported_interface_sysinfo_parameter_value <interface>
<parameter>

Returns

various The system info parameter value.

Arguments

interface Specifies the name of the exported interface.

parameter Specifies the name of the system info parameter. Refer to System
Info Type.

Example

get_exported_interface_sysinfo_parameter_value clk clock_rate

Related Information

• get_exported_interface_sysinfo_parameters on page 601

• set_exported_interface_sysinfo_parameter_value on page 609

• System Info Type Properties on page 652

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

600

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.3. get_exported_interface_sysinfo_parameters

Description
Returns the list of system info parameters for an exported interface.

Usage
get_exported_interface_sysinfo_parameters <interface> [<type>]

Returns

String[] The list of system info parameter names.

Arguments

interface Specifies the name of the exported interface.

type (optional) Specifies the parameters type to return. If you do not specify
this option, the command returns all the parameters. Refer to
Access Type.

Example

get_exported_interface_sysinfo_parameters clk

Related Information

• get_exported_interface_sysinfo_parameter_value on page 600

• set_exported_interface_sysinfo_parameter_value on page 609

• Access Type on page 658

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

601

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.4. get_interface_port_property

Description
Returns the value of a property of a port contained by one of the top-level exported
interfaces.

Usage
get_interface_port_property <interface> <port> <property>

Returns

various The property value.

Arguments

interface The name of a top-level interface of the system.

port The port name in the interface.

property The property name on the port. Refer to Port Properties.

Example

get_interface_port_property uart_exports tx DIRECTION

Related Information

• get_interface_ports on page 603

• get_port_properties on page 607

• Port Properties on page 650

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

602

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.5. get_interface_ports

Description
Returns the names of all the added ports to a given interface.

Usage
get_interface_ports <interface>

Returns

String[] The list of port names.

Arguments

interface The top-level interface name of the system.

Example

get_interface_ports export_clk_out

Related Information

• get_interface_port_property on page 602

• get_interfaces on page 606

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

603

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.6. get_interface_properties

Description
Returns the names of all the available interface properties common to all interface
types.

Usage
get_interface_properties

Returns

String[] The list of interface properties.

Arguments
No arguments.

Example

get_interface_properties

Related Information

• get_interface_property on page 605

• set_interface_property on page 611

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

604

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.7. get_interface_property

Description
Returns the value of a single interface property from the specified interface.

Usage
get_interface_property <interface> <property>

Returns

various The property value.

Arguments

interface The name of a top-level interface of the system.

property The name of the property. Refer to Interface Properties.

Example

get_interface_property export_clk_out EXPORT_OF

Related Information

• get_interface_properties on page 604

• set_interface_property on page 611

• Interface Properties on page 643

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

605

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.8. get_interfaces

Description
Returns the list of top-level interfaces in the system.

Usage
get_interfaces

Returns

String[] The list of the top-level interfaces exported from the system.

Arguments
No arguments.

Example

get_interfaces

Related Information

• add_interface on page 599

• get_interface_ports on page 603

• get_interface_property on page 605

• remove_interface on page 608

• set_interface_property on page 611

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

606

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.9. get_port_properties

Description
Returns the list of properties that you can query for ports.

Usage
get_port_properties

Returns

String[] The list of port properties.

Arguments
No arguments.

Example

get_port_properties

Related Information

• get_instance_interface_port_property on page 503

• get_instance_interface_ports on page 504

• get_instance_port_property on page 512

• get_interface_port_property on page 602

• get_interface_ports on page 603

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

607

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.10. remove_interface

Description
Removes an exported top-level interface from the system.

Usage
remove_interface <interface>

Returns
No return value.

Arguments

interface The name of the exported top-level interface.

Example

remove_interface clk_out

Related Information

• add_interface on page 599

• get_interfaces on page 606

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

608

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.11. set_exported_interface_sysinfo_parameter_value

Description
Sets the system info parameter value for an exported interface.

Usage
set_exported_interface_sysinfo_parameter_value <interface>
<parameter> <value>

Returns
No return value

Arguments

interface Specifies the name of the exported interface.

parameter Specifies the name of the system info parameter. Refer to System
Info Type.

value Specifies the system info parameter value.

Example

set_exported_interface_sysinfo_parameter_value clk clock_rate 5000000

Related Information

• get_exported_interface_sysinfo_parameter_value on page 600

• get_exported_interface_sysinfo_parameters on page 601

• System Info Type Properties on page 652

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

609

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.12. set_interface_port_property

Description
Sets the port property in a top-level interface of the system.

Usage
set_interface_port_property <interface> <port> <property> <value>

Returns
No return value

Arguments

interface Specifies the top-level interface name of the system.

port Specifies the port name in a top-level interface of the system.

property Specifies the property name of the port. Refer to Port Properties.

value Specifies the property value.

Example

set_interface_port_property clk clk_clk NAME my_clk

Related Information

• Port Properties on page 663

• get_interface_ports on page 603

• get_interfaces on page 606

• get_port_properties on page 607

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

610

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.8.13. set_interface_property

Description
Sets the value of a property on an exported top-level interface. You use this command
to set the EXPORT_OF property to specify which interface of a child instance is
exported via this top-level interface.

Usage
set_interface_property <interface> <property> <value>

Returns
No return value.

Arguments

interface The name of an exported top-level interface.

property The name of the property. Refer to Interface Properties.

value The property value.

Example

set_interface_property clk_out EXPORT_OF clk.clk_out

Related Information

• add_interface on page 599

• get_interface_properties on page 604

• get_interface_property on page 605

• Interface Properties on page 643

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

611

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.9. Validation

This section lists the commands that allow you to validate the components, instances,
interfaces and connections in a Platform Designer system.

set_validation_property on page 613

sync_sysinfo_parameters on page 614

validate_component on page 615

validate_component_interface on page 616

validate_connection on page 617

validate_instance on page 618

validate_instance_interface on page 619

validate_system on page 620

validate_component_footprint on page 621

reload_component_footprint on page 582

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

612

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.9.1. set_validation_property

Description
Sets a property that affects how and when validation is run. To disable system
validation after each scripting command, set AUTOMATIC_VALIDATION to False.

Usage
set_validation_property <property> <value>

Returns
No return value.

Arguments

property The name of the property. Refer to Validation Properties.

value The new property value.

Example

set_validation_property AUTOMATIC_VALIDATION false

Related Information

• validate_system on page 620

• Validation Properties on page 655

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

613

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.9.2. sync_sysinfo_parameters

Description
Updates the system info parameters of the specified generic component.

Usage
sync_sysinfo_parameters [<instance>]

Returns

String[] A list of update messages.

Arguments

instance
(optional)

Specifies the name of the instance to sync. If you do not
specify this option, the command synchronizes all the generic
components in the system.

Example

sync_sysinfo_parameters cpu_0

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

614

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.9.3. validate_component

Description
Validates the loaded component.

Usage
validate_component

Returns

String[] A list of validation messages.

Arguments
No arguments

Example

validate_component

Related Information

• validate_component_interface on page 616

• load_component on page 581

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

615

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.9.4. validate_component_interface

Description
Validates an interface of the loaded component.

Usage
validate_component_interface <interface>

Returns

String[] List of validation messages

Arguments

instance Specifies the name of the instance for the loaded component.

Example

validate_instance_interface data_host

Related Information

• load_component on page 581

• validate_component on page 615

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

616

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.9.5. validate_connection

Description
Validates the specified connection and returns validation messages.

Usage
validate_connection <connection>

Returns
A list of validation messages.

Arguments

connection The connection name to validate.

Example

validate_connection cpu.data_host/sdram.s1

Related Information

• validate_instance on page 618

• validate_instance_interface on page 619

• validate_system on page 620

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

617

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.9.6. validate_instance

Description
Validates the specified child instance and returns validation messages.

Usage
validate_instance <instance>

Returns
A list of validation messages.

Arguments

instance The child instance name to validate.

Example

validate_instance cpu

Related Information

• validate_connection on page 617

• validate_instance_interface on page 619

• validate_system on page 620

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

618

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.9.7. validate_instance_interface

Description
Validates an interface of an instance and returns validation messages.

Usage
validate_instance_interface <instance> <interface>

Returns
A list of validation messages.

Arguments

instance The child instance name.

interface The interface to validate.

Example

validate_instance_interface cpu data_host

Related Information

• validate_connection on page 617

• validate_instance on page 618

• validate_system on page 620

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

619

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.9.8. validate_system

Description
Validates the system and returns validation messages.

Usage
validate_system

Returns
A list of validation messages.

Arguments
No arguments.

Example

validate_system

Related Information

• validate_connection on page 617

• validate_instance on page 618

• validate_instance_interface on page 619

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

620

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.9.9. validate_component_footprint

Description
Validates the footprint of the specified child instance.

Usage
validate_component_footprint <instance>

Returns

String[] List of validation messages.

Arguments

instance (optional) Specifies the child instance name. If you omit this option,
the command validates all generic components in the
system.

Example

validate_component_footprint cpu_0

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

621

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.9.10. reload_component_footprint

Description
Validates the footprint of a specified child instance, and updates the footprint of the
instance in case of issues.

Usage
reload_component_footprint [<instance>]

Returns

String[] A list of validation messages.

Arguments

instance
(optional)

Specifies the child instance name to validate. If you do not
specify this option, the command validates all the generic
components in the system.

Example

reload_component_footprint cpu_0

Related Information

• load_instantiation on page 548

• save_instantiation on page 552

• validate_component_footprint on page 621

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

622

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10. Miscellaneous

This section lists the miscellaneous commands that you can use for your Platform
Designer systems.

auto_assign_base_addresses on page 624

auto_assign_irqs on page 625

auto_assign_system_base_addresses on page 626

get_parameter_properties on page 627

lock_avalon_base_address on page 628

send_message on page 629

set_use_testbench_naming_pattern on page 630

unlock_avalon_base_address on page 631

get_testbench_dutname on page 632

get_use_testbench_naming_pattern on page 633

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

623

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10.1. auto_assign_base_addresses

Description
Assigns base addresses to all memory-mapped interfaces of an instance in the
system. Instance interfaces that are locked with lock_avalon_base_address keep
their addresses during address auto-assignment.

Usage
auto_assign_base_addresses <instance>

Returns
No return value.

Arguments

instance The name of the instance with memory-mapped interfaces.

Example

auto_assign_base_addresses sdram

Related Information

• auto_assign_system_base_addresses on page 626

• lock_avalon_base_address on page 628

• unlock_avalon_base_address on page 631

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

624

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10.2. auto_assign_irqs

Description
Assigns interrupt numbers to all connected interrupt senders of an instance in the
system.

Usage
auto_assign_irqs <instance>

Returns
No return value.

Arguments

instance The name of the instance with an interrupt sender.

Example

auto_assign_irqs uart_0

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

625

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10.3. auto_assign_system_base_addresses

Description
Assigns legal base addresses to all memory-mapped interfaces of all instances in the
system. Instance interfaces that are locked with lock_avalon_base_address keep
their addresses during address auto-assignment.

Usage
auto_assign_system_base_addresses

Returns
No return value.

Arguments
No arguments.

Example

auto_assign_system_base_addresses

Related Information

• auto_assign_base_addresses on page 624

• lock_avalon_base_address on page 628

• unlock_avalon_base_address on page 631

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

626

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10.4. get_parameter_properties

Description
Returns the list of properties that you can query for any parameters, for example
parameters of instances, interfaces, instance interfaces, and connections.

Usage
get_parameter_properties

Returns

String[] The list of parameter properties.

Arguments
No arguments.

Example

get_parameter_properties

Related Information

• get_connection_parameter_property on page 589

• get_instance_interface_parameter_property on page 500

• get_instance_parameter_property on page 508

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

627

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10.5. lock_avalon_base_address

Description
Prevents the memory-mapped base address from being changed for connections to
the specified interface of an instance when Platform Designer runs the
auto_assign_base_addresses or auto_assign_system_base_addresses
commands.

Usage
lock_avalon_base_address <instance.interface>

Returns
No return value.

Arguments

instance.interface The qualified name of the interface of an instance, in
<instance>.<interface> format.

Example

lock_avalon_base_address sdram.s1

Related Information

• auto_assign_base_addresses on page 624

• auto_assign_system_base_addresses on page 626

• unlock_avalon_base_address on page 631

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

628

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10.6. send_message

Description
Sends a message to the user of the component. The message text is normally HTML.
You can use the element to provide emphasis. If you do not want the message
text to be HTML, then pass a list like { Info Text } as the message level,

Usage
send_message <level> <message>

Returns
No return value.

Arguments

level Quartus Prime supports the following message levels:

• ERROR—provides an error message.

• WARNING—provides a warning message.

• INFO—provides an informational message.

• PROGRESS—provides a progress message.

• DEBUG—provides a debug message when debug mode is enabled.

message The text of the message.

Example

send_message ERROR "The system is down!"
send_message { Info Text } "The system is up!"

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

629

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10.7. set_use_testbench_naming_pattern

Description
Use this command to create testbench systems so that the generated file names for
the test system match the system's original generated file names. Without setting this
command, the generated file names for the test system receive the top-level
testbench system name.

Usage
set_use_testbench_naming_pattern <value>

Returns
No return value.

Arguments

value True or false.

Example

set_use_testbench_naming_pattern true

Notes
Use this command only to create testbench systems.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

630

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10.8. unlock_avalon_base_address

Description
Allows the memory-mapped base address to change for connections to the specified
interface of an instance when Platform Designer runs the
auto_assign_base_addresses or auto_assign_system_base_addresses
commands.

Usage
unlock_avalon_base_address <instance.interface>

Returns
No return value.

Arguments

instance.interface The qualified name of the interface of an instance, in
<instance>.<interface> format.

Example

unlock_avalon_base_address sdram.s1

Related Information

• auto_assign_base_addresses on page 624

• auto_assign_system_base_addresses on page 626

• lock_avalon_base_address on page 628

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

631

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10.9. get_testbench_dutname

Description
Returns the currently set dutname for the test-bench systems. Use this command only
when creating test-bench systems.

Usage
get_testbench_dutname

Returns

String The currently set dutname. Returns NULL if empty.

Arguments
No arguments.

Example

get_testbench_dutname

Related Information

• get_use_testbench_naming_pattern on page 633

• set_use_testbench_naming_pattern on page 630

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

632

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.14.10.10. get_use_testbench_naming_pattern

Description
Verifies if the test-bench naming pattern is set to be used. Use this command only
when creating test-bench systems.

Usage
get_use_testbench_naming_pattern

Returns

boolean True, if the test-bench naming pattern is set to be used.

Arguments
No arguments.

Example

get_use_testbench_naming_pattern

Related Information

• get_testbench_dutname on page 632

• set_use_testbench_naming_pattern on page 630

7.14.11. Wire-Level Connection Commands

Wire-level commands accept optional input ports and wire-level expressions as
arguments for the qsys-script utility and in _hw.tcl files.

You can use wire-level commands to:

• Apply a wire-level expression to a port with set_wirelevel_expression.

• Retrieve a list of expressions from a port, instance, or all expressions in the
current level of system hierarchy with get_wirelevel_expression.

• Remove a list of expressions from a port, instance, or all expressions in the
current level of system hierarchy with remove_wirelevel_expression.

Note: The following restrictions apply when using wire-level commands _hw.tcl files:

• Wire-level commands are only valid in a composition callback.

• Wire-level expressions can only be applied to instances created by
add_instance.

Related Information

• Scripting Wire-Level Expressions on page 71

• Create a Composed Component or Subsystem on page 196

7.14.11.1. set_wirelevel_expression

Description
Applies a wire-level expression to an optional input port or instance in the system.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

633

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage
set_wirelevel_expression <instance_or_port_bitselection> <expression>

Returns
No return value.

Arguments

instance_or_port_bitselection Specify the instance or port to which the wire-
level expression using the
<instance_name>.<port_name>[<bit_selection>]
format. The bit selection can be a bit-select, for
example [0], or a partial range defined in
descending order, for example [7:0]. If no bit
selection is specified, the full range of the port is
selected.

expression The expression to be applied to an optional input
port.

Examples

set_wirelevel_expression {module0.portA[7:0]} "8'b0"
set_wirelevel_expression module0.portA "8'b0"
set_wirelevel_expression {module0.portA[0]} "1'b0"

Related Information

Scripting Wire-Level Expressions on page 71

7.14.11.2. get_wirelevel_expressions

Description
Retrieve a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expression statement.

Usage
get_wirelevel_expressions <instance_or_port_bitselection>

Returns

String[] A flattened list of wire-level expressions. Every item in the list consists
of right- and left-hand clauses of a wire-level expression. You can loop
over the returned list using foreach{port expr}
$return_list{}.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

634

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list
of wire-level expressions are retrieved using the
<instance_name>.<port_name>[<bit_selection>]
format.

• If no <port_name>[<bit_selection>] is
specified, the command causes the return of
all expressions from the specified instance.

• If no argument is present, the command
causes the return of all expressions from the
current level of system hierarchy.

The bit selection can be a bit-select, for example
[0], or a partial range defined in descending order,
for example [7:0]. If no bit selection is specified,
the full range of the port is selected.

Example

get_wirelevel_expressions
get_wirelevel_expressions module0
get_wirelevel_expressions {module0.portA[7:0]}

Related Information

Scripting Wire-Level Expressions on page 71

7.14.11.3. remove_wirelevel_expressions

Description
Remove a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expressions statement.

Usage
remove_wirelevel_expressions <instance_or_port_bitselection>

Returns
No return value.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list
of wire-level expressions are removed using the
<instance_name>.<port_name>[<bit_selection>]
format.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

635

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If no <port_name>[<bit_selection>] is
specified, the command causes the removal of
all expressions from the specified instance.

• If no argument is present, the command
causes the return of all expressions from the
current level of system hierarchy.

The bit selection can be a bit-select, for example
[0], or a partial range defined in descending order,
for example [7:0]. If no bit selection is specified,
the full range of the port is selected.

Examples

remove_wirelevel_expressions
remove_wirelevel_expressions module0
remove_wirelevel_expressions {module0.portA[7:0]}

Related Information

Scripting Wire-Level Expressions on page 71

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

636

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15. Platform Designer Scripting Property Reference

Interface properties work differently for _hw.tcl scripting than with Platform Designer
scripting. In _hw.tcl, interfaces do not distinguish between properties and
parameters. In Platform Designer scripting, the properties and parameters are unique.

The following are the Platform Designer scripting properties:

Connection Properties on page 638

Design Environment Type Properties on page 639

Direction Properties on page 640

Element Properties on page 641

Instance Properties on page 642

Interface Properties on page 643

Message Levels Properties on page 644

Module Properties on page 645

Parameter Properties on page 646

Parameter Status Properties on page 648

Parameter Type Properties on page 649

Port Properties on page 650

Project Properties on page 651

System Info Type Properties on page 652

Units Properties on page 654

Validation Properties on page 655

Interface Direction on page 656

File Set Kind on page 657

Access Type on page 658

Instantiation HDL File Properties on page 659

Instantiation Interface Duplicate Type on page 660

Instantiation Interface Properties on page 661

Instantiation Properties on page 662

Port Properties on page 663

VHDL Type on page 664

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

637

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.1. Connection Properties

Type Name Description

string END Indicates the end interface of the connection.

string NAME Indicates the name of the connection.

string START Indicates the start interface of the connection.

String TYPE The type of the connection.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

638

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.2. Design Environment Type Properties

Description
IP cores use the design environment to identify the most appropriate interfaces to
connect to the parent system.

Name Description

NATIVE Supports native IP interfaces.

QSYS Supports standard Platform Designer interfaces.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

639

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.3. Direction Properties

Name Description

BIDIR Indicates the direction for a bidirectional signal.

INOUT Indicates the direction for an input signal.

OUTPUT Indicates the direction for an output signal.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

640

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.4. Element Properties

Description
Element properties are, with the exception of ENABLED and NAME, read-only
properties of the types of instances, interfaces, and connections. These read-only
properties represent metadata that does not vary between copies of the same type.
ENABLED and NAME properties are specific to particular instances, interfaces, or
connections.

Type Name Description

String AUTHOR The author of the component or interface.

Boolean AUTO_EXPORT Indicates whether unconnected interfaces on the instance are automatically
exported.

String CLASS_NAME The type of the instance, interface or connection, for example, altera_nios2.

String DESCRIPTION The description of the instance, interface or connection type.

String DISPLAY_NAME The display name for referencing the type of instance, interface or connection.

Boolean EDITABLE Indicates whether you can edit the component in the Platform Designer
Component Editor.

Boolean ENABLED Indicates whether the instance is enabled.

String GROUP The IP Catalog category.

Boolean INTERNAL Hides internal IP components or sub-components from the IP Catalog..

String NAME The name of the instance, interface or connection.

String VERSION The version number of the instance, interface or connection, for example, 16.1.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

641

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.5. Instance Properties

Type Name Description

String AUTO_EXPORT Indicates whether Platform Designer automatically exports the unconnected
interfaces on the instance.

Boolean ENABLED If true, Platform Designer includes this instance in the generated system.

String NAME The name of the system, which Platform Designer uses as the name of the top-
level module in the generated HDL.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

642

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.6. Interface Properties

Type Name Description

String EXPORT_OF Indicates which interface of a child instance to export through the top-level interface.
Before using this command, you must create the top-level interface using the
add_interface command. You must use the format:
<instanceName.interfaceName>. For example:

set_interface_property CSC_input EXPORT_OF my_colorSpaceConverter.input_port

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

643

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.7. Message Levels Properties

Name Description

COMPONENT_INFO Reports an informational message only during component editing.

DEBUG Provides messages when debug mode is enabled.

ERROR Provides an error message.

INFO Provides an informational message.

PROGRESS Reports progress during generation.

TODOERROR Provides an error message that indicates the system is incomplete.

WARNING Provides a warning message.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

644

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.8. Module Properties

Type Name Description

String GENERATION_ID The generation ID for the system.

String NAME The name of the instance.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

645

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.9. Parameter Properties

Type Name Description

Boolean AFFECTS_ELABORATION Set AFFECTS_ELABORATION to false for parameters that do not
affect the external interface of the module. An example of a
parameter that does not affect the external interface is
isNonVolatileStorage. An example of a parameter that does
affect the external interface is width. When the value of a parameter
changes and AFFECTS_ELABORATION is false, the elaboration phase
does not repeat and improves performance. When
AFFECTS_ELABORATION is set to true, the default value, Platform
Designer reanalyzes the HDL file to determine the port widths and
configuration each time a parameter changes.

Boolean AFFECTS_GENERATION The default value of AFFECTS_GENERATION is false if you provide a
top-level HDL module. The default value is true if you provide a fileset
callback. Set AFFECTS_GENERATION to false if the value of a
parameter does not change the results of fileset generation.

Boolean AFFECTS_VALIDATION The AFFECTS_VALIDATION property determines whether a
parameter's value sets derived parameters, and whether the value
affects validation messages. Setting this property to false may
improve response time in the parameter editor when the value
changes.

String[] ALLOWED_RANGES Indicates the range or ranges of the parameter. For integers, each
range is a single value, or a range of values defined by a start and
end value, and delimited by a colon, for example, 11:15. This
property also specifies the legal values and description strings for
integers, for example, {0:None 1:Monophonic 2:Stereo
4:Quadrophonic}, where 0, 1, 2, and 4 are the legal values. You
can assign description strings in the parameter editor for string
variables. For example,

ALLOWED_RANGES {"dev1:Cyclone IV GX""dev2:Stratix V
 GT"}

String DEFAULT_VALUE The default value.

Boolean DERIVED When True, indicates that the parameter value is set by the
component and cannot be set by the user. Derived parameters are not
saved as part of an instance's parameter values. The default value is
False.

String DESCRIPTION A short user-visible description of the parameter, suitable for a tooltip
description in the parameter editor.

String[] DISPLAY_HINT Provides a hint about how to display a property.
• boolean--For integer parameters whose value are 0 or 1. The

parameter displays as an option that you can turn on or off.
• radio—displays a parameter with a list of values as radio buttons.
• hexadecimal—for integer parameters, displays and interprets

the value as a hexadecimal number, for example: 0x00000010
instead of 16.

• fixed_size—for string_list and integer_list
parameters, the fixed_size DISPLAY_HINT eliminates the
Add and Remove buttons from tables.

• file--displays a file selection button that allows the user to enter
a path to a file for the parameter.

String DISPLAY_NAME The GUI label that appears to the left of this parameter.

String DISPLAY_UNITS The GUI label that appears to the right of the parameter.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

646

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

Boolean ENABLED When False, the parameter is disabled. The parameter displays in
the parameter editor but is grayed out, indicating that you cannot edit
this parameter.

String GROUP Controls the layout of parameters in the GUI.

Boolean HDL_PARAMETER When True, Platform Designer passes the parameter to the HDL
component description. The default value is False.

String LONG_DESCRIPTION A user-visible description of the parameter. Similar to DESCRIPTION,
but allows a more detailed explanation.

String NEW_INSTANCE_VALUE Changes the default value of a parameter without affecting older
components that do not explicitly set a parameter value, and use the
DEFAULT_VALUE property. Oder instances continue to use
DEFAULT_VALUE for the parameter and new instances use the value
assigned by NEW_INSTANCE_VALUE.

String[] SYSTEM_INFO Allows you to assign information about the instantiating system to a
parameter that you define. SYSTEM_INFO requires an argument
specifying the type of information. For example:

SYSTEM_INFO <info-type>

String SYSTEM_INFO_ARG Defines an argument to pass to SYSTEM_INFO. For example, the
name of a reset interface.

(various) SYSTEM_INFO_TYPE Specifies the types of system information that you can query. Refer to
System Info Type Properties.

(various) TYPE Specifies the type of the parameter. Refer to Parameter Type
Properties.

(various) UNITS Sets the units of the parameter. Refer to Units Properties.

Boolean VISIBLE Indicates whether or not to display the parameter in the parameter
editor.

String WIDTH Indicates the width of the logic vector for the STD_LOGIC_VECTOR
parameter.

Related Information

• System Info Type Properties on page 652

• Parameter Type Properties on page 649

• Units Properties on page 654

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

647

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.10. Parameter Status Properties

Type Name Description

Boolean ACTIVE Indicates that this parameter is an active parameter.

Boolean DEPRECATED Indicates that this parameter exists only for backwards compatibility, and may
not have any effect.

Boolean EXPERIMENTAL Indicates that this parameter is experimental and not exposed in the design
flow.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

648

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.11. Parameter Type Properties

Name Description

BOOLEAN A boolean parameter set to true or false.

FLOAT A signed 32-bit floating point parameter. (Not supported for HDL parameters.)

INTEGER A signed 32-bit integer parameter.

INTEGER_LIST A parameter that contains a list of 32-bit integers. (Not supported for HDL
parameters.)

LONG A signed 64-bit integer parameter. (Not supported for HDL parameters.)

NATURAL A 32-bit number that contains values 0 to 2147483647 (0x7fffffff).

POSITIVE A 32-bit number that contains values 1 to 2147483647 (0x7fffffff).

STD_LOGIC A single bit parameter set to 0 or 1.

STD_LOGIC_VECTOR An arbitrary-width number. The parameter property WIDTH determines the size of the
logic vector.

STRING A string parameter.

STRING_LIST A parameter that contains a list of strings. (Not supported for HDL parameters.)

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

649

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.12. Port Properties

Type Name Description

(various) DIRECTION The direction of the signal. Refer to Direction Properties.

String ROLE The type of the signal. Each interface type defines a set of interface types for its
ports.

Integer WIDTH The width of the signal in bits.

Related Information

Direction Properties on page 640

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

650

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.13. Project Properties

Type Name Description

String DEVICE The device part number in the Quartus Prime project that contains the Platform
Designer system.

String DEVICE_FAMILY The device family name in the Quartus Prime project that contains the Platform
Designer system.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

651

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.14. System Info Type Properties

Type Name Description

String ADDRESS_MAP An XML-formatted string that describes the address map
for the interface specified in the SYSTEM_INFO
parameter property.

Integer ADDRESS_WIDTH The number of address bits that Platform Designer
requires to address memory-mapped agents connected
to the specified memory-mapped host in this instance.

String AVALON_SPEC The version of the Platform Designer interconnect. Refer
to Avalon Interface Specifications.

Integer CLOCK_DOMAIN An integer that represents the clock domain for the
interface specified in the SYSTEM_INFO parameter
property. If this instance has interfaces on multiple clock
domains, you can use this property to determine which
interfaces are on each clock domain. The absolute value
of the integer is arbitrary.

Long, Integer CLOCK_RATE The rate of the clock connected to the clock input
specified in the SYSTEM_INFO parameter property. If
zero, the clock rate is currently unknown.

String CLOCK_RESET_INFO The name of this instance's primary clock or reset sink
interface. You use this property to determine the reset
sink for global reset when you use Platform Designer
interconnect that conforms to Avalon Interface
Specifications.

String CUSTOM_INSTRUCTION_SLAVES Provides agent information, including the name, base
address, address span, and clock cycle type.

String DESIGN_ENVIRONMENT A string that identifies the current design environment.
Refer to Design Environment Type Properties.

String DEVICE The device part number of the selected device.

String DEVICE_FAMILY The family name of the selected device.

String DEVICE_FEATURES A list of key/value pairs delimited by spaces that
indicate whether a device feature is available in the
selected device family. The format of the list is suitable
for passing to the array command. The keys are device
features. The values are 1 if the feature is present, and
0 if the feature is absent.

String DEVICE_SPEEDGRADE The speed grade of the selected device.

Integer GENERATION_ID An integer that stores a hash of the generation time that
Platform Designer uses as a unique ID for a generation
run.

BigInteger,
Long

INTERRUPTS_USED A mask indicating which bits of an interrupt receiver are
connected to interrupt senders. The interrupt receiver is
specified in the system info argument.

Integer MAX_SLAVE_DATA_WIDTH The data width of the widest agent connected to the
specified memory-mapped host.

String,
Boolean,
Integer

QUARTUS_INI The value of the quartus.ini setting specified in the
system info argument.

Integer RESET_DOMAIN An integer representing the reset domain for the
interface specified in the SYSTEM_INFO parameter
property If this instance has interfaces on multiple reset

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

652

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

domains, you can use this property to determine which
interfaces are on each reset domain. The absolute value
of the integer is arbitrary.

String TRISTATECONDUIT_INFO An XML description of the tri-state conduit hosts
connected to a tri-state conduit agent. The agent is
specified as the SYSTEM_INFO parameter property. The
value contains information about the agent, connected
host instance and interface names, and signal names,
directions, and widths.

String TRISTATECONDUIT_MASTERS The names of the instance's interfaces that are tri-state
conduit agents.

String UNIQUE_ID A string guaranteed to be unique to this instance.

Related Information

• Design Environment Type Properties on page 639

• Avalon Interface Specifications

• Platform Designer Interconnect on page 251

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

653

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.15. Units Properties

Name Description

ADDRESS A memory-mapped address.

BITS Memory size in bits.

BITSPERSECOND Rate in bits per second.

BYTES Memory size in bytes.

CYCLES A latency or count in clock cycles.

GIGABITSPERSECOND Rate in gigabits per second.

GIGABYTES Memory size in gigabytes.

GIGAHERTZ Frequency in GHz.

HERTZ Frequency in Hz.

KILOBITSPERSECOND Rate in kilobits per second.

KILOBYTES Memory size in kilobytes.

KILOHERTZ Frequency in kHz.

MEGABITSPERSECOND Rate, in megabits per second.

MEGABYTES Memory size in megabytes.

MEGAHERTZ Frequency in MHz.

MICROSECONDS Time in microseconds.

MILLISECONDS Time in milliseconds.

NANOSECONDS Time in nanoseconds.

NONE Unspecified units.

PERCENT A percentage.

PICOSECONDS Time in picoseconds.

SECONDS Time in seconds.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

654

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.16. Validation Properties

Type Name Description

Boolean AUTOMATIC_VALIDATION When true, Platform Designer runs system validation and
elaboration after each scripting command. When false, Platform
Designer runs system validation with validation scripting commands.
Some queries affected by system elaboration may be incorrect if
automatic validation is disabled. You can disable validation to make a
system script run faster.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

655

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.17. Interface Direction

Type Name Description

String INPUT Indicates that the interface is an agent (input, transmitter, sink, or end).

String OUTPUT Indicates that the interface is a host (output, receiver, source, or start).

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

656

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.18. File Set Kind

Name Description

EXAMPLE_DESIGN This file-set contains example design files.

QUARTUS_SYNTH This file-set contains files that Platform Designer uses for Quartus Prime Synthesis

SIM_VERILOG This file-set contains files that Platform Designer uses for Verilog HDL Simulation.

SIM_VHDL This file-set contains files that Platform Designer uses for VHDL Simulation.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

657

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.19. Access Type

Name Type Description

String READ_ONLY Indicates that the parameter can be only read-only.

String WRITABLE Indicates that the parameter has read/write properties.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

658

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.20. Instantiation HDL File Properties

Name Type Description

Boolean CONTAINS_INLINE_CONFIGURATION Returns True if the HDL file contains inline configuration.

Boolean IS_CONFIGURATION_PACKAGE Returns True if the HDL file is a configuration package.

Boolean IS_TOP_LEVEL Returns True if the HDL file is the top-level HDL file.

String OUTPUT_PATH Specifies the output path of the HDL file.

String TYPE Specifies the HDL file type of the HDL file.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

659

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.21. Instantiation Interface Duplicate Type

Type Name Description

String CLONE Creates a copy of an interface and all the interface ports.

String MIRROR Creates a copy of an interface with all the port roles and directions reversed.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

660

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.22. Instantiation Interface Properties

Name Type Description

String DIRECTION The direction of the interface.

String TYPE The type of the interface.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

661

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.23. Instantiation Properties

Name Type Description

String HDL_COMPILATION_LIBRARY Indicates the HDL compilation library name of the generic
component.

String HDL_ENTITY_NAME Indicates the HDL entity name of the Generic Component.

String IP_FILE Indicates the .ip file path that implements the generic component.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

662

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.24. Port Properties

Name Type Description

String DIRECTION Specifies the direction of the signal

String NAME Renames a top-level port. Only use with set_interface_port_property

String ROLE Specifies the type of the signal. Each interface type defines a set of interface types
for its ports.

String VHDL_TYPE Specifies the VHDL type of the signal. Can be either STANDARD_LOGIC, or
STANDARD_LOGIC_VECTOR.

Integer WIDTH Specifies the width of the signal in bits.

Related Information

Direction Properties on page 640

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

663

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.15.25. VHDL Type

Name Description

STD_LOGIC Represents the value of a digital signal in a wire.

STD_LOGIC_VECTOR Represents an array of digital signals and variables.

7.16. Platform Designer Command-Line Utilities Revision History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.
• Added new Apply Presets to a New Board topic.
• Added missing file option to Parameter Properties topic.

2023.12.20 23.4 • Updated Run the Platform Designer Editor with qsys-edit topic for new
metrics logging switches.

• Updated qsys-generate Command-Line Options topic for new metrics
logging switches.

• Updated Generate a Platform Designer System with qsys-script topic
for new metrics logging switches.

2023.04.03 23.1 • Updated Board-Aware Flow Scripting Support topic for new
get_quartus_instance_path_for_entity Tcl API.

• The product family name is updated to "Intel Agilex 7" to reflect the
different family members.

2022.12.12 22.4 • Added new Board-Aware Flow Scripting Support topic.

2022.06.20 22.2 • Revised add_instance topic to indicate that the version argument
is required.

2021.03.29 21.1 • Revised Archive and Extract Platform Designer Systems with qsys-
archive title and link to GUI topic.

• Converted to "host" and "agent" inclusive terminology for Avalon
memory mapped interface descriptions and related GUI elements
throughout.

2020.06.22 20.1 • Added set_design_id command.

2019.11.11 19.1 • Added statement to qsys-generate topic indicating that graybox
option is only for individual Intel FPGA IP cores, and not for complete
Platform Designer systems.

• Added statement to qsys-generate topic indicating that upgrade-
ip-cores has no impact on subsystems.

2019.04.01 19.1 • Added new Domains command-line reference and deprecated
get_interconnect_requirement,
get_interconnect_requirements, and
set_interconnect_requirement assignments.

2018.12.15 18.1 First release as separate chapter.

2016.10.31 16.1 • Added command-line options for qsys-archive.
• Added command-line options for quartus_ipgenerate.
• Updated the Qsys Pro scripting commands.

continued...

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

664

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2016.05.03 16.0 • Qsys Command-Line Utilities updated with latest supported command-
line options.

June 2012 12.0 • Added command-line utilities, and scripts.

December 2010 10.1 Initial release of content.

7. Platform Designer Command-Line Utilities

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

665

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Component Interface Tcl Reference
Tcl commands allow you to perform a wide range of functions in Platform Designer.
Command descriptions contain the Platform Designer phases where you can use the
command, for example, main program, elaboration, composition, or fileset callback.
This reference denotes optional command arguments in brackets [].

Note: Intel now refers to Qsys Pro as Platform Designer.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

For more information about procedures for creating IP component _hw.tcl files in the
Platform Designer Component Editor, and supported interface standards, refer to
Creating Platform Designer Components and Platform Designer Interconnect.

If you are developing an IP component to work with the Nios II processor, refer to
Publishing Component Information to Embedded Software in section 3 of the Nios II
Software Developer's Handbook, which describes how to publish hardware IP
component information for embedded software tools, such as a C compiler and a
Board Support Package (BSP) generator.

Related Information

• Avalon Interface Specifications

• Creating Platform Designer Components on page 153

• Platform Designer Interconnect on page 251

8.1. Platform Designer _hw.tcl Command Reference

683609 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

8.1.1. Interfaces and Ports

add_interface on page 668

add_interface_port on page 670

get_interfaces on page 672

get_interface_assignment on page 673

get_interface_assignments on page 674

get_interface_ports on page 675

get_interface_properties on page 676

get_interface_property on page 677

get_port_properties on page 678

get_port_property on page 679

set_interface_assignment on page 680

set_interface_property on page 682

set_port_property on page 683

set_interface_upgrade_map on page 684

Related Information

Interface Properties on page 765

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

667

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.1. add_interface

Description
Adds an interface to your module. An interface represents a collection of related
signals that are managed together in the parent system. These signals are
implemented in the IP component's HDL, or exported from an interface from a child
instance. As the IP component author, you choose the name of the interface.

Availability
Discovery, Main Program, Elaboration, Composition

Usage
add_interface <name> <type> <direction> [<associated_clock>]

Returns
No returns value.

Arguments

name A name you choose to identify an interface.

type The type of interface.

direction The interface direction.

associated_clock
(optional)

(deprecated) For interfaces requiring associated clocks,
use: set_interface_property <interface>
associatedClock <clockInterface> For interfaces
requiring associated resets, use:
set_interface_property <interface>
associatedReset <resetInterface>

Example

add_interface mm_agent avalon agent

add_interface my_export conduit end
set_interface_property my_export EXPORT_OF uart_0.external_connection

Notes
By default, interfaces are enabled. You can set the interface property ENABLED to
false to disable an interface. If an interface is disabled, it is hidden and its ports are
automatically terminated to their default values. Active high signals are terminated to
0. Active low signals are terminated to 1.

If the IP component is composed of child instances, the top-level interface is
associated with a child instance's interface with set_interface_property
interface EXPORT_OF child_instance.interface.

The following direction rules apply to Platform Designer-supported interfaces.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

668

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface Type Direction

avalon host, agent

axi manager, subordinate

tristate_conduit host, agent

avalon_streaming source, sink

interrupt sender, receiver

conduit end

clock source, sink

reset source, sink

nios_custom_instruction slave

Related Information

• add_interface_port on page 670

• get_interface_assignments on page 674

• get_interface_properties on page 676

• get_interfaces on page 672

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

669

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.2. add_interface_port

Description
Adds a port to an interface on your module. The name must match the name of a
signal on the top-level module in the HDL of your IP component. The port width and
direction must be set before the end of the elaboration phase. You can set the port
width as follows:

• In the Main program, you can set the port width to a fixed value or a width
expression.

• If the port width is set to a fixed value in the Main program, you can update the
width in the elaboration callback.

Availability
Main Program, Elaboration

Usage
add_interface_port <interface> <port> [<signal_type> <direction>
<width_expression>]

Returns

Arguments

interface The name of the interface to which this port belongs.

port The name of the port. This name must match a signal in your top-level
HDL for this IP component.

signal_type
(optional)

The type of signal for this port, which must be unique. Refer
to the Avalon Interface Specifications for the signal types
available for each interface type.

direction (optional) The direction of the signal. Refer to Direction Properties.

width_expression
(optional)

The width of the port, in bits. The width may be a
fixed value, or a simple arithmetic expression of
parameter values.

Example

fixed width:
add_interface_port mm_agent s0_rdata readdata output 32

width expression:
add_parameter DATA_WIDTH INTEGER 32
add_interface_port s0 rdata readdata output "DATA_WIDTH/2"

Related Information

• add_interface on page 668

• get_port_properties on page 678

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

670

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• get_port_property on page 679

• get_port_property on page 679

• Direction Properties on page 774

• Avalon Interface Specifications

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

671

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.3. get_interfaces

Description
Returns a list of top-level interfaces.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interfaces

Returns
A list of the top-level interfaces exported from the system.

Arguments
No arguments.

Example

get_interfaces

Related Information

add_interface on page 668

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

672

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.4. get_interface_assignment

Description
Returns the value of the specified assignment for the specified interface

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_interface_assignment <interface> <assignment>

Returns
The value of the assignment.

Arguments

interface The name of a top-level interface.

assignment The name of an assignment.

Example

get_interface_assignment s1 embeddedsw.configuration.isFlash

Related Information

• add_interface on page 668

• get_interface_assignments on page 674

• get_interfaces on page 672

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

673

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.5. get_interface_assignments

Description
Returns the value of all interface assignments for the specified interface.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_interface_assignments <interface>

Returns
A list of assignment keys.

Arguments

interface The name of the top-level interface whose assignment is being
retrieved.

Example

get_interface_assignments s1

Related Information

• add_interface on page 668

• get_interface_assignment on page 673

• get_interfaces on page 672

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

674

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.6. get_interface_ports

Description
Returns the names of all of the ports that have been added to a given interface. If the
interface name is omitted, all ports for all interfaces are returned.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interface_ports [<interface>]

Returns
A list of port names.

Arguments

interface (optional) The name of a top-level interface.

Example

get_interface_ports mm_agent

Related Information

• add_interface_port on page 670

• get_port_property on page 679

• set_port_property on page 683

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

675

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.7. get_interface_properties

Description
Returns the names of all the interface properties for the specified interface as a space
separated list

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interface_properties <interface>

Returns
A list of properties for the interface.

Arguments

interface The name of an interface.

Example

get_interface_properties interface

Notes

The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Information

• get_interface_property on page 677

• set_interface_property on page 682

• Avalon Interface Specifications

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

676

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.8. get_interface_property

Description
Returns the value of a single interface property from the specified interface.

Availability
Discovery, Main Program, Elaboration, Composition, Fileset Generation

Usage
get_interface_property <interface> <property>

Returns

Arguments

interface The name of an interface.

property The name of the property whose value you want to retrieve. Refer to
Interface Properties.

Example

get_interface_property mm_agent linewrapBursts

Notes

The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Information

• get_interface_properties on page 676

• set_interface_property on page 682

• Avalon Interface Specifications

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

677

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.9. get_port_properties

Description
Returns a list of port properties.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_port_properties

Returns
A list of port properties. Refer to Port Properties.

Arguments
No arguments.

Example

get_port_properties

Related Information

• add_interface_port on page 670

• get_port_property on page 679

• set_port_property on page 683

• Port Properties on page 772

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

678

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.10. get_port_property

Description
Returns the value of a property for the specified port.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_port_property <port> <property>

Returns
The value of the property.

Arguments

port The name of the port.

property The name of a port property. Refer to Port Properties.

Example

get_port_property rdata WIDTH_VALUE

Related Information

• add_interface_port on page 670

• get_port_properties on page 678

• set_port_property on page 683

• Port Properties on page 772

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

679

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.11. set_interface_assignment

Description
Sets the value of the specified assignment for the specified interface.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_interface_assignment <interface> <assignment> [<value>]

Returns
No return value.

Arguments

interface The name of the top-level interface whose assignment is being set.

assignment The assignment whose value is being set.

value (optional) The new assignment value.

Example

set_interface_assignment s1 embeddedsw.configuration.isFlash 1

Notes

Assignments for Nios II Software Build Tools

Interface assignments provide extra data for the Nios II Software Build Tools working
with the generated system.

Assignments for Platform Designer Tools

There are several assignments that guide behavior in the Platform Designer tools.

qsys.ui.export_name: If present, this interface should always be
exported when an instance is added to a
Platform Designer system. The value is the
requested name of the exported interface in
the parent system.

qsys.ui.connect: If present, this interface should be auto-
connected when an instance is added to a
Platform Designer system. The value is a
comma-separated list of other interfaces on
the same instance that should be connected
with this interface.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

680

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ui.blockdiagram.direction: If present, the direction of this interface in
the block diagram is set by the user. The
value is either "output" or "input".

Related Information

• add_interface on page 668

• get_interface_assignment on page 673

• get_interface_assignments on page 674

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

681

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.12. set_interface_property

Description
Sets the value of a property on an exported top-level interface. You can use this
command to set the EXPORT_OF property to specify which interface of a child instance
is exported via this top-level interface.

Availability
Main Program, Elaboration, Composition

Usage
set_interface_property <interface> <property> <value>

Returns
No return value.

Arguments

interface The name of an exported top-level interface.

property The name of the property Refer to Interface Properties.

value The new property value.

Example

set_interface_property clk_out EXPORT_OF clk.clk_out
set_interface_property mm_agent linewrapBursts false

Notes
The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Information

• get_interface_properties on page 676

• get_interface_property on page 677

• Avalon Interface Specifications

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

682

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.13. set_port_property

Description
Sets a port property.

Availability
Elaboration

Usage
set_port_property <port> <property> [<value>]

Returns
The new value.

Arguments

port The name of the port.

property One of the supported properties. Refer to Port Properties.

value (optional) The value to set.

Example

set_port_property rdata WIDTH 32

Related Information

• add_interface_port on page 670

• get_port_properties on page 678

• set_port_property on page 683

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

683

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1.14. set_interface_upgrade_map

Description
Maps the interface name of an older version of an IP core to the interface name of the
current IP core. The interface type must be the same between the older and newer
versions of the IP cores. This allows system connections and properties to maintain
proper functionality. By default, if the older and newer versions of IP core have the
same name and type, then Platform Designer maintains all properties and connections
automatically.

Availability
Parameter Upgrade

Usage

set_interface_upgrade_map { <old_interface_name> <new_interface_name>
<old_interface_name_2> <new_interface_name_2> … }

Returns
No return value.

Arguments

{ <old_interface_name>
<new_interface_name>}

List of mappings between names of older
and newer interfaces.

Example

set_interface_upgrade_map { avalon_host_interface new_avalon_host_interface }

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

684

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.2. Parameters

add_parameter on page 686

get_parameters on page 687

get_parameter_properties on page 688

get_parameter_property on page 689

get_parameter_value on page 690

get_string on page 691

load_strings on page 692

set_parameter_property on page 693

set_parameter_value on page 694

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

685

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.2.1. add_parameter

Description
Adds a parameter to your IP component.

Availability
Main Program

Usage
add_parameter <name> <type> [<default_value> <description>]

Returns

Arguments

name The name of the parameter.

type The data type of the parameter Refer to Parameter Type Properties.

default_value (optional) The initial value of the parameter in a new instance of
the IP component.

description (optional) Explains the use of the parameter.

Example

add_parameter seed INTEGER 17 "The seed to use for data generation."

Notes

Most parameter types have a single GUI element for editing the parameter value.
string_list and integer_list parameters are different, because they are edited
as tables. A multi-column table can be created by grouping multiple into a single
table. To edit multiple list parameters in a single table, the display items for the
parameters must be added to a group with a TABLE hint:
add_parameter coefficients INTEGER_LIST add_parameter positions
INTEGER_LIST add_display_item "" "Table Group" GROUP TABLE
add_display_item "Table Group" coefficients PARAMETER
add_display_item "Table Group" positions PARAMETER

Related Information

• get_parameter_properties on page 688

• get_parameter_property on page 689

• get_parameter_value on page 690

• set_parameter_property on page 693

• set_parameter_value on page 694

• Parameter Type Properties on page 770

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

686

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.2.2. get_parameters

Description
Returns the names of all the parameters in the IP component.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameters

Returns
A list of parameter names

Arguments
No arguments.

Example

get_parameters

Related Information

• add_parameter on page 686

• get_parameter_property on page 689

• get_parameter_value on page 690

• get_parameters on page 687

• set_parameter_property on page 693

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

687

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.2.3. get_parameter_properties

Description
Returns a list of all the parameter properties as a list of strings. The
get_parameter_property and set_parameter_property commands are used to
get and set the values of these properties, respectively.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameter_properties

Returns
A list of parameter property names. Refer to Parameter Properties.

Arguments
No arguments.

Example

set property_summary [get_parameter_properties]

Related Information

• add_parameter on page 686

• get_parameter_property on page 689

• get_parameter_value on page 690

• get_parameters on page 687

• set_parameter_property on page 693

• Parameter Properties on page 768

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

688

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.2.4. get_parameter_property

Description
Returns the value of a property of a parameter.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameter_property <parameter> <property>

Returns
The value of the property.

Arguments

parameter The name of the parameter whose property value is being retrieved.

property The name of the property. Refer to Parameter Properties.

Example

set enabled [get_parameter_property parameter1 ENABLED]

Related Information

• add_parameter on page 686

• get_parameter_properties on page 688

• get_parameter_value on page 690

• get_parameters on page 687

• set_parameter_property on page 693

• set_parameter_value on page 694

• Parameter Properties on page 768

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

689

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.2.5. get_parameter_value

Description
Returns the current value of a parameter defined previously with the add_parameter
command.

Availability
Discovery, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage
get_parameter_value <parameter>

Returns
The value of the parameter.

Arguments

parameter The name of the parameter whose value is being retrieved.

Example

set width [get_parameter_value fifo_width]

Notes

If AFFECTS_ELABORATION is false for a given parameter, get_parameter_value
is not available for that parameter from the elaboration callback. If
AFFECTS_GENERATION is false then it is not available from the generation callback.

Related Information

• add_parameter on page 686

• get_parameter_property on page 689

• get_parameters on page 687

• set_parameter_property on page 693

• set_parameter_value on page 694

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

690

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.2.6. get_string

Description
Returns the value of an externalized string previously loaded by the load_strings
command.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_string <identifier>

Returns
The externalized string.

Arguments

identifier The string identifier.

Example

hw.tcl:
load_strings test.properties
set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]
add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

test.properties:
DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.

Notes

Use uppercase words separated with underscores to name string identifiers. If you are
externalizing module properties, use the module property name for the string
identifier:

set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]

If you are externalizing a parameter property, qualify the parameter property with the
parameter name, with uppercase format, if needed:

set_parameter_property my_param DISPLAY_NAME [get_string MY_PARAM_DISPLAY_NAME]

If you use a string to describe a string format, end the identifier with _FORMAT.

set formatted_string [format [get_string TWO_ARGUMENT_MESSAGE_FORMAT] "arg1"
"arg2"]

Related Information

load_strings on page 692

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

691

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.2.7. load_strings

Description
Loads strings from an external .properties file.

Availability
Discovery, Main Program

Usage
load_strings <path>

Returns
No return value.

Arguments

path The path to the properties file.

Example

hw.tcl:
load_strings test.properties
set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]
add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

test.properties:
DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.

Notes

Refer to the Java Properties File for properties file format. A .properties file is a
text file with KEY=value pairs. For externalized strings, the KEY is a string identifier
and the value is the externalized string.
For example:

TROGDOR = A dragon with a big beefy arm

Related Information

• get_string on page 691

• Java Properties File

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

692

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.2.8. set_parameter_property

Description
Sets a single parameter property.

Availability
Main Program, Edit, Elaboration, Validation, Composition

Usage
set_parameter_property <parameter> <property> <value>

Returns

Arguments

parameter The name of the parameter that is being set.

property The name of the property. Refer to Parameter Properties.

value The new value for the property.

Example

set_parameter_property BAUD_RATE ALLOWED_RANGES {9600 19200 38400}

Related Information

• add_parameter on page 686

• get_parameter_properties on page 688

• set_parameter_property on page 693

• Parameter Properties on page 768

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

693

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.2.9. set_parameter_value

Description
Sets a parameter value. The value of a derived parameter can be updated by the IP
component in the elaboration callback or the edit callback. Any changes to the value of
a derived parameter in the edit callback is not preserved.

Availability
Edit, Elaboration, Validation, Composition, Parameter Upgrade

Usage
set_parameter_value <parameter> <value>

Returns
No return value.

Arguments

parameter The name of the parameter that is being set.

value Specifies the new parameter value.

Example

set_parameter_value half_clock_rate [expr { [get_parameter_value
clock_rate] / 2 }]

8.1.3. Interconnect Parameters

set_domain_assignment on page 694

get_domain_assignment on page 695

get_domain_assignments on page 695

set_postadaptation_assignment on page 696

get_postadaptation_assignment on page 696

get_postadaptation_assignments on page 697

8.1.3.1. set_domain_assignment

Description
Sets the assignment value to all connections on the given domain.

Availability
Composition

Usage

set_domain_assignment <element> <assignment> <value>

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

694

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments

element Connection or interface in the domain to which you want to set the
assignment. If the element name is $system, the assignment applies
to all the domains in the system.

assignment The name of the assignment.

value The value of the assignment.

8.1.3.2. get_domain_assignment

Description
Returns the value for the specified assignment in the given domain.

Availability
Composition

Usage

get_domain_assignment <element> <assignment>

Arguments

element Connection or interface in the domain for which you want to get the
assignment value.

assignment The name of the assignment.

8.1.3.3. get_domain_assignments

Description
Returns all domain assignments for the given domain as a list of strings. Each "group"
of three elements in the list contains the element name, assignment name, and value,
in that order. Element name in the output is the input element name. If the input
element is $system, then the output element name is the connection point in the
domain. The Returns section shows a typical list.

Returns

[element0 name0 value0 element1 name1 value1 ...]

In TCL, you'd loop over the list by writing a foreach loop:

 foreach {element name value } \
 $requirement_list { puts " $element $name $value" }

Availability
Composition

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

695

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage

get_domain_assignments <element>

Arguments

element Connection or interface in the domains for which you want to get the
assignments value. If you specify $system as the element, the
command returns values of all the domains in the system.

8.1.3.4. set_postadaptation_assignment

Description
Adds an post adaptation interconnect assignment.

Availability
Composition

Usage

set_postadaptation_assignment <element> <assignment> <value>

Arguments

element Connection or interface in the domain to which you want to set the
assignment.

assignment The name of the assignment.

value The value of the assignment.

8.1.3.5. get_postadaptation_assignment

Description
Returns the value of the named post adaptation interconnect assignment on the
specified element.

Availability
Composition

Usage

get_postadaptation_assignment <element> <assignment>

Arguments

element Connection or interface in the domain for which you want to get the
assignment value.

assignment The name of the assignment.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

696

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.3.6. get_postadaptation_assignments

Description
Returns all post adaptation interconnect assignments for the given domain as a list of
strings. Each "group" of three elements in the list contains the element name,
assignment name and value in that order. The Returns section shows a typical list.

Returns

[element0 name0 value0 element1 name1 value1 ...]

In Tcl, you loop over the list by writing a foreach loop:

foreach {element name value } $requirement_list \
 { puts " $element $name $value" }

Availability
Composition

Usage

get_postadaptation_assignments <element>

Arguments

element Connection or interface in the domain to which you want to set the
assignment.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

697

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.4. Display Items

add_display_item on page 699

get_display_items on page 701

get_display_item_properties on page 702

get_display_item_property on page 703

set_display_item_property on page 704

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

698

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.4.1. add_display_item

Description
Specifies the following aspects of the IP component display:

• Creates logical groups for an IP component's parameters. For example, to create
separate groups for the IP component's timing, size, and simulation parameters.
An IP component displays the groups and parameters in the order that you specify
the display items in the _hw.tcl file.

• Groups a list of parameters to create multi-column tables.

• Specifies an image to provide representation of a parameter or parameter group.

• Creates a button by adding a display item of type action. The display item
includes the name of the callback to run.

Availability
Main Program

Usage
add_display_item <parent_group> <id> <type> [<args>]

Returns

Arguments

parent_group Specifies the group to which a display item belongs

id The identifier for the display item. If the item being added is a parameter,
this is the parameter name. If the item is a group, this is the group name.

type The type of the display item. Refer to Display Item Kind Properties.

args (optional) Provides extra information required for display items.

Example

add_display_item "Timing" read_latency PARAMETER
add_display_item "Sounds" speaker_image_id ICON speaker.jpg

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

699

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Notes

The following examples illustrate further illustrate the use of arguments:

• add_display_item groupName id icon path-to-image-file

• add_display_item groupName parameterName parameter

• add_display_item groupName id text "your-text"

The your-text argument is a block of text that is displayed in the GUI. Some
simple HTML formatting is allowed, such as and <i>, if the text starts with
<html>.

• add_display_item parentGroupName childGroupName group [tab]

The tab is an optional parameter. If present, the group appears in separate tab in
the GUI for the instance.

• add_display_item parentGroupName actionName action
buttonClickCallbackProc

Related Information

• get_display_item_properties on page 702

• get_display_item_property on page 703

• get_display_items on page 701

• set_display_item_property on page 704

• Display Item Kind Properties on page 776

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

700

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.4.2. get_display_items

Description
Returns a list of all items to be displayed as part of the parameterization GUI.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_display_items

Returns
List of display item IDs.

Arguments
No arguments.

Example

get_display_items

Related Information

• add_display_item on page 699

• get_display_item_properties on page 702

• get_display_item_property on page 703

• set_display_item_property on page 704

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

701

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.4.3. get_display_item_properties

Description
Returns a list of names of the properties of display items that are part of the
parameterization GUI.

Availability
Main Program

Usage
get_display_item_properties

Returns
A list of display item property names. Refer to Display Item Properties.

Arguments
No arguments.

Example

get_display_item_properties

Related Information

• add_display_item on page 699

• get_display_item_property on page 703

• set_display_item_property on page 704

• Display Item Properties on page 775

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

702

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.4.4. get_display_item_property

Description
Returns the value of a specific property of a display item that is part of the
parameterization GUI.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_display_item_property <display_item> <property>

Returns
The value of a display item property.

Arguments

display_item The id of the display item.

property The name of the property. Refer to Display Item Properties.

Example

set my_label [get_display_item_property my_action DISPLAY_NAME]

Related Information

• add_display_item on page 699

• get_display_item_properties on page 702

• get_display_items on page 701

• set_display_item_property on page 704

• Display Item Properties on page 775

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

703

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.4.5. set_display_item_property

Description
Sets the value of specific property of a display item that is part of the
parameterization GUI.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition

Usage
set_display_item_property <display_item> <property> <value>

Returns
No return value.

Arguments

display_item The name of the display item whose property value is being set.

property The property that is being set. Refer to Display Item Properties.

value The value to set.

Example

set_display_item_property my_action DISPLAY_NAME "Click Me"
set_display_item_property my_action DESCRIPTION "clicking this button runs the
click_me_callback proc in the hw.tcl file"

Related Information

• add_display_item on page 699

• get_display_item_properties on page 702

• get_display_item_property on page 703

• Display Item Properties on page 775

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

704

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5. Module Definition

add_documentation_link on page 706

get_module_assignment on page 707

get_module_assignments on page 708

get_module_ports on page 709

get_module_properties on page 710

get_module_property on page 711

send_message on page 712

set_module_assignment on page 713

set_module_property on page 714

add_hdl_instance on page 715

package on page 716

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

705

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5.1. add_documentation_link

Description
Allows you to link to documentation for your IP component.

Availability
Discovery, Main Program

Usage
add_documentation_link <title> <path>

Returns
No return value.

Arguments

title The title of the document for use on menus and buttons.

path A path to the IP component documentation, using a syntax that provides
the entire URL, not a relative path. For example: http://
www.mydomain.com/my_memory_controller.html or file:///
datasheet.txt

Example

add_documentation_link "Avalon Verification IP Suite User Guide" http://
www.altera.com/literature/ug/ug_avalon_verification_ip.pdf

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

706

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5.2. get_module_assignment

Description
This command returns the value of an assignment. You can use the
get_module_assignment and set_module_assignment and the
get_interface_assignment and set_interface_assignment commands to
provide information about the IP component to embedded software tools and
applications.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_module_assignment <assignment>

Returns
The value of the assignment

Arguments

assignment The name of the assignment whose value is being retrieved

Example

get_module_assignment embeddedsw.CMacro.colorSpace

Related Information

• get_module_assignments on page 708

• set_module_assignment on page 713

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

707

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5.3. get_module_assignments

Description
Returns the names of the module assignments.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_module_assignments

Returns
A list of assignment names.

Arguments
No arguments.

Example

get_module_assignments

Related Information

• get_module_assignment on page 707

• set_module_assignment on page 713

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

708

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5.4. get_module_ports

Description
Returns a list of the names of all the ports which are currently defined.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_ports

Returns
A list of port names.

Arguments
No arguments.

Example

get_module_ports

Related Information

• add_interface on page 668

• add_interface_port on page 670

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

709

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5.5. get_module_properties

Description
Returns the names of all the module properties as a list of strings. You can use the
get_module_property and set_module_property commands to get and set
values of individual properties. The value returned by this command is always the
same for a particular version of Platform Designer

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_properties

Returns
List of strings. Refer to Module Properties.

Arguments
No arguments.

Example

get_module_properties

Related Information

• get_module_property on page 711

• set_module_property on page 714

• Module Properties on page 778

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

710

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5.6. get_module_property

Description
Returns the value of a single module property.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_property <property>

Returns
Various.

Arguments

property The name of the property, Refer to Module Properties.

Example

set my_name [get_module_property NAME]

Related Information

• get_module_properties on page 710

• set_module_property on page 714

• Module Properties on page 778

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

711

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5.7. send_message

Description
Sends a message to the user of the IP component. The message text is normally
interpreted as HTML. You can use the element to provide emphasis. If you do not
want the message text to be interpreted as HTML, then pass a list as the message
level, for example, { Info Text }.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
send_message <level> <message>

Returns
No return value .

Arguments

level The following message levels are supported:

• ERROR--Provides an error message. The Platform Designer system
cannot be generated with existing error messages.

• WARNING--Provides a warning message.

• INFO--Provides an informational message. The INFO level is not
available in the Main Program.

• PROGRESS--Reports progress during generation.

• DEBUG--Provides a debug message when debug mode is enabled.

message The text of the message.

Example

send_message ERROR "The system is down!"
send_message { Info Text } "The system is up!"

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

712

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5.8. set_module_assignment

Description
Sets the value of the specified assignment.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_module_assignment <assignment> [<value>]

Returns
No return value.

Arguments

assignment The assignment whose value is being set

value (optional) The value of the assignment

Example

set_module_assignment embeddedsw.CMacro.colorSpace CMYK

Related Information

• get_module_assignment on page 707

• get_module_assignments on page 708

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

713

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5.9. set_module_property

Description
Allows you to set the values for module properties.

Availability
Discovery, Main Program

Usage
set_module_property <property> <value>

Returns
No return value.

Arguments

property The name of the property. Refer to Module Properties.

value The new value of the property.

Example

set_module_property VERSION 10.0

Related Information

• get_module_properties on page 710

• get_module_property on page 711

• Module Properties on page 778

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

714

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5.10. add_hdl_instance

Description
Adds an instance of a predefined module, referred to as a child or child instance. The
HDL entity generated from this instance can be instantiated and connected within this
IP component's HDL.

Availability
Main Program, Elaboration, Composition

Usage
add_hdl_instance <entity_name> <ip_type> [<version>]

Returns
The entity name of the added instance.

Arguments

entity_name Specifies a unique local name that you can use to manipulate the
instance. This name is used in the generated HDL to identify the
instance.

ip_type The type refers to a kind of instance available in the IP Catalog, for
example altera_avalon_uart.

version (optional) The required version of the specified instance type. If no
version is specified, the latest version is used.

Example

add_hdl_instance my_uart altera_avalon_uart

Related Information

• get_instance_parameter_value on page 733

• get_instance_parameters on page 731

• get_instances on page 723

• set_instance_parameter_value on page 736

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

715

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.5.11. package

Description
Allows you to specify a particular version of the Platform Designer software to avoid
software compatibility issues, and to determine which version of the _hw.tcl API to
use for the IP component. You must use the package command at the beginning of
your _hw.tcl file.

Availability
Main Program

Usage
package require -exact qsys <version>

Returns
No return value

Arguments

version The version of Platform Designer that you require, such as 14.1.

Example

package require -exact qsys 14.1

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

716

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6. Composition

add_instance on page 718

add_connection on page 719

get_connections on page 720

get_connection_parameters on page 721

get_connection_parameter_value on page 722

get_instances on page 723

get_instance_interfaces on page 724

get_instance_interface_ports on page 725

get_instance_interface_properties on page 726

get_instance_property on page 727

set_instance_property on page 728

get_instance_properties on page 729

get_instance_interface_property on page 730

get_instance_parameters on page 731

get_instance_parameter_property on page 732

get_instance_parameter_value on page 733

get_instance_port_property on page 734

set_connection_parameter_value on page 735

set_instance_parameter_value on page 736

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

717

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.1. add_instance

Description
Adds an instance of an IP component, referred to as a child or child instance to the
subsystem. You can use this command to create IP components that are composed of
other IP component instances. The HDL for this subsystem generates; There is no
need to write custom HDL for the IP component.

Availability
Main Program, Composition

Usage
add_instance <name> <type> [<version>]

Returns
No return value.

Arguments

name Specifies a unique local name that you can use to manipulate the
instance. This name is used in the generated HDL to identify the instance.

type The type refers to a type available in the IP Catalog, for example
altera_avalon_uart.

version The required version of the specified instance type. This argument is
required in Package version 19.1 and later. Before package version
19.1, when not specified the latest IP version is used.

Example

add_instance my_uart altera_avalon_uart
add_instance my_uart altera_avalon_uart 22.1

Related Information

• add_connection on page 719

• get_instance_interface_property on page 730

• get_instance_parameter_value on page 733

• get_instance_parameters on page 731

• get_instance_property on page 727

• get_instances on page 723

• set_instance_parameter_value on page 736

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

718

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.2. add_connection

Description
Connects the named interfaces on child instances together using an appropriate
connection type. Both interface names consist of a child instance name, followed by
the name of an interface provided by that module. For example, mux0.out is the
interface named out on the instance named mux0. Be careful to connect the start to
the end, and not the other way around.

Availability
Main Program, Composition

Usage
add_connection <start> [<end> <kind> <name>]

Returns
The name of the newly added connection in start.point/end.point format.

Arguments

start The start interface to be connected, in
<instance_name>.<interface_name> format.

end (optional) The end interface to be connected,
<instance_name>.<interface_name>.

kind (optional) The type of connection, such as avalon or clock.

name
(optional)

A custom name for the connection. If unspecified, the name will be
<start_instance>.<interface>.<end_instance><interface>

Example

add_connection dma.read_host sdram.s1 avalon

Related Information

• add_instance on page 718

• get_instance_interfaces on page 724

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

719

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.3. get_connections

Description
Returns a list of all connections in the composed subsystem.

Availability
Main Program, Composition

Usage
get_connections

Returns
A list of connections.

Arguments
No arguments.

Example

set all_connections [get_connections]

Related Information

add_connection on page 719

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

720

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.4. get_connection_parameters

Description
Returns a list of parameters found on a connection.

Availability
Main Program, Composition

Usage
get_connection_parameters <connection>

Returns
A list of parameter names

Arguments

connection The connection to query.

Example

get_connection_parameters cpu.data_host/dma0.csr

Related Information

• add_connection on page 719

• get_connection_parameter_value on page 722

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

721

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.5. get_connection_parameter_value

Description
Returns the value of a parameter on the connection. Parameters represent aspects of
the connection that can be modified once the connection is created, such as the base
address for an Avalon Memory Mapped connection.

Availability
Composition

Usage
get_connection_parameter_value <connection> <parameter>

Returns
The value of the parameter.

Arguments

connection The connection to query.

parameter The name of the parameter.

Example

get_connection_parameter_value cpu.data_host/dma0.csr baseAddress

Related Information

• add_connection on page 719

• get_connection_parameters on page 721

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

722

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.6. get_instances

Description
Returns a list of the instance names for all child instances in the system.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_instances

Returns
A list of child instance names.

Arguments
No arguments.

Example

get_instances

Notes

This command can be used with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 715

• add_instance on page 718

• get_instance_parameter_value on page 733

• get_instance_parameters on page 731

• set_instance_parameter_value on page 736

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

723

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.7. get_instance_interfaces

Description
Returns a list of interfaces found in a child instance. The list of interfaces can change if
the parameterization of the instance changes.

Availability
Validation, Composition

Usage
get_instance_interfaces <instance>

Returns
A list of interface names.

Arguments

instance The name of the child instance.

Example

get_instance_interfaces pixel_converter

Related Information

• add_instance on page 718

• get_instance_interface_ports on page 725

• get_instance_interfaces on page 724

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

724

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.8. get_instance_interface_ports

Description
Returns a list of ports found in an interface of a child instance.

Availability
Validation, Composition, Fileset Generation

Usage
get_instance_interface_ports <instance> <interface>

Returns
A list of port names found in the interface.

Arguments

instance The name of the child instance.

interface The name of an interface on the child instance.

Example

set port_names [get_instance_interface_ports cpu data_host]

Related Information

• add_instance on page 718

• get_instance_interfaces on page 724

• get_instance_port_property on page 734

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

725

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.9. get_instance_interface_properties

Description
Returns the names of all of the properties of the specified interface

Availability
Validation, Composition

Usage
get_instance_interface_properties <instance> <interface>

Returns
List of property names.

Arguments

instance The name of the child instance.

interface The name of an interface on the instance.

Example

set properties [get_instance_interface_properties cpu data_host]

Related Information

• add_instance on page 718

• get_instance_interface_property on page 730

• get_instance_interfaces on page 724

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

726

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.10. get_instance_property

Description
Returns the value of a single instance property.

Availability
Main Program, Elaboration, Validation, Composition, Fileset Generation

Usage
get_instance_property <instance> <property>

Returns
Various.

Arguments

instance The name of the instance.

property The name of the property. Refer to Instance Properties.

Example

set my_name [get_instance_property myinstance NAME]

Related Information

• add_instance on page 718

• get_instance_properties on page 729

• set_instance_property on page 728

• Instance Properties on page 767

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

727

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.11. set_instance_property

Description
Allows a user to set the properties of a child instance.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_instance_property <instance> <property> <value>

Returns

Arguments

instance The name of the instance.

property The name of the property to set. Refer to Instance Properties.

value The new property value.

Example

set_instance_property myinstance SUPRESS_ALL_WARNINGS true

Related Information

• add_instance on page 718

• get_instance_properties on page 729

• get_instance_property on page 727

• Instance Properties on page 767

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

728

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.12. get_instance_properties

Description
Returns the names of all the instance properties as a list of strings. You can use the
get_instance_property and set_instance_property commands to get and set
values of individual properties. The value returned by this command is always the
same for a particular version of Platform Designer

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_instance_properties

Returns
List of strings. Refer to Instance Properties.

Arguments
No arguments.

Example

get_instance_properties

Related Information

• add_instance on page 718

• get_instance_property on page 727

• set_instance_property on page 728

• Instance Properties on page 767

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

729

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.13. get_instance_interface_property

Description
Returns the value of a property for an interface in a child instance.

Availability
Validation, Composition

Usage
get_instance_interface_property <instance> <interface> <property>

Returns
The value of the property.

Arguments

instance The name of the child instance.

interface The name of an interface on the child instance.

property The name of the property of the interface.

Example

set value [get_instance_interface_property cpu data_host setupTime]

Related Information

• add_instance on page 718

• get_instance_interfaces on page 724

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

730

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.14. get_instance_parameters

Description
Returns a list of names of the parameters on a child instance that can be set using
set_instance_parameter_value. It omits parameters that are derived and those
that have the SYSTEM_INFO parameter property set.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_instance_parameters <instance>

Returns
A list of parameters in the instance.

Arguments

instance The name of the child instance.

Example

set parameters [get_instance_parameters instance]

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 715

• add_instance on page 718

• get_instance_parameter_value on page 733

• get_instances on page 723

• set_instance_parameter_value on page 736

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

731

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.15. get_instance_parameter_property

Description
Returns the value of a property on a parameter in a child instance. Parameter
properties are metadata that describe how the Platform Designer tools use the
parameter.

Availability
Validation, Composition

Usage
get_instance_parameter_property <instance> <parameter> <property>

Returns
The value of the parameter property.

Arguments

instance The name of the child instance.

parameter The name of the parameter in the instance.

property The name of the property of the parameter. Refer to Parameter
Properties.

Example

get_instance_parameter_property instance parameter property

Related Information

• add_instance on page 718

• Parameter Properties on page 768

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

732

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.16. get_instance_parameter_value

Description
Returns the value of a parameter in a child instance. You cannot use this command to
get the value of parameters whose values are derived or those that are defined using
the SYSTEM_INFO parameter property.

Availability
Elaboration, Validation, Composition

Usage
get_instance_parameter_value <instance> <parameter>

Returns
The value of the parameter.

Arguments

instance The name of the child instance.

parameter Specifies the parameter whose value is being retrieved.

Example

set dpi [get_instance_parameter_value pixel_converter input_DPI]

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 715

• add_instance on page 718

• get_instance_parameters on page 731

• get_instances on page 723

• set_instance_parameter_value on page 736

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

733

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.17. get_instance_port_property

Description
Returns the value of a property of a port contained by an interface in a child instance.

Availability
Validation, Composition, Fileset Generation

Usage
get_instance_port_property <instance> <port> <property>

Returns
The value of the property for the port.

Arguments

instance The name of the child instance.

port The name of a port in one of the interfaces on the child instance.

property The property whose value is being retrieved. Only the following port
properties can be queried on ports of child instances: ROLE,
DIRECTION, WIDTH, WIDTH_EXPR and VHDL_TYPE. Refer to Port
Properties.

Example

get_instance_port_property instance port property

Related Information

• add_instance on page 718

• get_instance_interface_ports on page 725

• Port Properties on page 772

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

734

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.18. set_connection_parameter_value

Description
Sets the value of a parameter of the connection. The start and end are each interface
names of the format <instance>.<interface>. Connection parameters depend on
the type of connection, for Avalon memory mapped they include base addresses and
arbitration priorities.

Availability
Main Program, Composition

Usage
set_connection_parameter_value <connection> <parameter> <value>

Returns
No return value.

Arguments

connection Specifies the name of the connection as returned by the
add_conection command. It is of the form start.point/
end.point.

parameter The name of the parameter.

value The new parameter value.

Example

set_connection_parameter_value cpu.data_host/dma0.csr baseAddress "0x000a0000"

Related Information

• add_connection on page 719

• get_connection_parameter_value on page 722

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

735

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.6.19. set_instance_parameter_value

Description
Sets the value of a parameter for a child instance. Derived parameters and
SYSTEM_INFO parameters for the child instance cannot be set with this command.

Availability
Main Program, Elaboration, Composition

Usage
set_instance_parameter_value <instance> <parameter> <value>

Returns
Vo return value.

Arguments

instance Specifies the name of the child instance.

parameter Specifies the parameter that is being set.

value Specifies the new parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 715

• add_instance on page 718

• get_instance_parameter_value on page 733

• get_instances on page 723

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

736

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.7. Fileset Generation

add_fileset on page 738

add_fileset_file on page 739

set_fileset_property on page 740

get_fileset_file_attribute on page 741

set_fileset_file_attribute on page 742

get_fileset_properties on page 743

get_fileset_property on page 744

get_fileset_sim_properties on page 745

set_fileset_sim_properties on page 746

create_temp_file on page 747

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

737

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.7.1. add_fileset

Description
Adds a generation fileset for a particular target as specified by the kind. Platform
Designer calls the target (SIM_VHDL, SIM_VERILOG, QUARTUS_SYNTH, or
EXAMPLE_DESIGN) when the specified generation target is requested. You can define
multiple filesets for each kind of fileset. Platform Designer passes a single argument to
the specified callback procedure. The value of the argument is a generated name,
which you must use in the top-level module or entity declaration of your IP
component. To override this generated name, you can set the fileset property
TOP_LEVEL.

Availability
Main Program

Usage
add_fileset <name> <kind> [<callback_proc> <display_name>]

Returns
No return value.

Arguments

name The name of the fileset.

kind The kind of fileset. Refer to Fileset Properties.

callback_proc
(optional)

A string identifying the name of the callback procedure. If
you add files in the global section, you can then specify a
blank callback procedure.

display_name (optional) A display string to identify the fileset.

Example

add_fileset my_synthesis_fileset QUARTUS_SYNTH mySynthCallbackProc "My Synthesis"
proc mySynthCallbackProc { topLevelName } { ... }

Notes

If using the TOP_LEVEL fileset property, all parameterizations of the component must
use identical HDL.

Related Information

• add_fileset_file on page 739

• get_fileset_property on page 744

• Fileset Properties on page 780

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

738

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.7.2. add_fileset_file

Description
Adds a file to the generation directory. You can specify source file locations with either
an absolute path, or a path relative to the IP component's _hw.tcl file. When you
use the add_fileset_file command in a fileset callback, the Quartus Prime
software compiles the files in the order that they are added.

Availability
Main Program, Fileset Generation

Usage
add_fileset_file <output_file> <file_type> <file_source> <path_or_contents>
[<attributes>]

Returns
No return value.

Arguments

output_file Specifies the location to store the file after Platform Designer
generation

file_type The kind of file. Refer to File Kind Properties.

file_source Specifies whether the file is being added by path, or by file contents.
Refer to File Source Properties.

path_or_contents When the file_source is PATH, specifies the file to be
copied to output_file. When the file_source is TEXT,
specifies the text contents to be stored in the file.

attributes
(optional)

An optional list of file attributes. Typically used to specify that
a file is intended for use only in a particular simulator. Refer
to File Attribute Properties.

Example

add_fileset_file "./implementation/rx_pma.sv" SYSTEM_VERILOG PATH synth_rx_pma.sv
add_fileset_file gui.sv SYSTEM_VERILOG TEXT "Customize your IP core"

Related Information

• add_fileset on page 738

• get_fileset_file_attribute on page 741

• File Kind Properties on page 784

• File Source Properties on page 785

• File Attribute Properties on page 783

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

739

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.7.3. set_fileset_property

Description
Allows you to set the properties of a fileset.

Availability
Main Program, Elaboration, Fileset Generation

Usage
set_fileset_property <fileset> <property> <value>

Returns
No return value.

Arguments

fileset The name of the fileset.

property The name of the property to set. Refer to Fileset Properties.

value The new property value.

Example

set_fileset_property mySynthFileset TOP_LEVEL simple_uart

Notes

When a fileset callback is called, the callback procedure is passed a single argument.
The value of this argument is a generated name which must be used in the top-level
module or entity declaration of your IP component. If set, the TOP_LEVEL specifies a
fixed name for the top-level name of your IP component.

The TOP_LEVEL property must be set in the global section. It cannot be set in a
fileset callback.

If using the TOP_LEVEL fileset property, all parameterizations of the IP component
must use identical HDL.

Related Information

• add_fileset on page 738

• Fileset Properties on page 780

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

740

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.7.4. get_fileset_file_attribute

Description
Returns the attribute of a fileset file.

Availability
Main Program, Fileset Generation

Usage
get_fileset_file_attribute <output_file> <attribute>

Returns
Value of the fileset File attribute.

Arguments

output_file Location of the output file.

attribute Specifies the name of the attribute Refer to File Attribute Properties.

Example

get_fileset_file_attribute my_file.sv ALDEC_SPECIFIC

Related Information

• add_fileset on page 738

• add_fileset_file on page 739

• get_fileset_file_attribute on page 741

• File Attribute Properties on page 783

• add_fileset on page 738

• add_fileset_file on page 739

• get_fileset_file_attribute on page 741

• File Attribute Properties on page 783

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

741

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.7.5. set_fileset_file_attribute

Description
Sets the attribute of a fileset file.

Availability
Main Program, Fileset Generation

Usage
set_fileset_file_attribute <output_file> <attribute> <value>

Returns
The attribute value if it was set.

Arguments

output_file Location of the output file.

attribute Specifies the name of the attribute Refer to File Attribute Properties.

value Value to set the attribute to.

Example

set_fileset_file_attribute my_file_pkg.sv COMMON_SYSTEMVERILOG_PACKAGE
my_file_package

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

742

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.7.6. get_fileset_properties

Description
Returns a list of properties that can be set on a fileset.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_fileset_properties

Returns
A list of property names. Refer to Fileset Properties.

Arguments
No arguments.

Example

get_fileset_properties

Related Information

• add_fileset on page 738

• get_fileset_properties on page 743

• set_fileset_property on page 740

• Fileset Properties on page 780

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

743

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.7.7. get_fileset_property

Description
Returns the value of a fileset property for a fileset.

Availability
Main Program, Elaboration, Fileset Generation

Usage
get_fileset_property <fileset> <property>

Returns
The value of the property.

Arguments

fileset The name of the fileset.

property The name of the property to query. Refer to Fileset Properties.

Example

get_fileset_property fileset property

Related Information

Fileset Properties on page 780

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

744

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.7.8. get_fileset_sim_properties

Description
Returns simulator properties for a fileset.

Availability
Main Program, Fileset Generation

Usage
get_fileset_sim_properties <fileset> <platform> <property>

Returns
The fileset simulator properties.

Arguments

fileset The name of the fileset.

platform The operating system that applies to the property. Refer to Operating
System Properties.

property Specifies the name of the property to set. Refer to Simulator
Properties.

Example

get_fileset_sim_properties my_fileset LINUX64 OPT_CADENCE_64BIT

Related Information

• add_fileset on page 738

• set_fileset_sim_properties on page 746

• Operating System Properties on page 792

• Simulator Properties on page 786

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

745

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.7.9. set_fileset_sim_properties

Description
Sets simulator properties for a given fileset

Availability
Main Program, Fileset Generation

Usage
set_fileset_sim_properties <fileset> <platform> <property> <value>

Returns
The fileset simulator properties if they were set.

Arguments

fileset The name of the fileset.

platform The operating system that applies to the property. Refer to Operating
System Properties.

property Specifies the name of the property to set. Refer to Simulator
Properties.

value Specifies the value of the property.

Example

set_fileset_sim_properties my_fileset LINUX64 OPT_MENTOR_PLI "{libA} {libB}"

Related Information

• get_fileset_sim_properties on page 745

• Operating System Properties on page 792

• Simulator Properties on page 786

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

746

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.7.10. create_temp_file

Description
Creates a temporary file, which you can use inside the fileset callbacks of a _hw.tcl
file. This temporary file is included in the generation output if it is added using the
add_fileset_file command.

Availability
Fileset Generation

Usage
create_temp_file <path>

Returns
The path to the temporary file.

Arguments

path The name of the temporary file.

Example

set filelocation [create_temp_file "./hdl/compute_frequency.v"]
add_fileset_file compute_frequency.v VERILOG PATH ${filelocation}

Related Information

• add_fileset on page 738

• add_fileset_file on page 739

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

747

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.8. Miscellaneous

check_device_family_equivalence on page 749

get_device_family_displayname on page 750

get_qip_strings on page 751

set_qip_strings on page 752

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

748

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.8.1. check_device_family_equivalence

Description
Returns 1 if the device family is equivalent to one of the families in the device families
list. Returns 0 if the device family is not equivalent to any families. This command
ignores differences in capitalization and spaces.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Fileset
Generation, Parameter Upgrade

Usage
check_device_family_equivalence <device_family> <device_family_list>

Returns
1 if equivalent, 0 if not equivalent.

Arguments

device_family The device family name that is being checked.

device_family_list The list of device family names to check against.

Example

check_device_family_equivalence "CYLCONE III LS" { "stratixv" "Cyclone IV"
"cycloneiiils" }

Related Information

get_device_family_displayname on page 750

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

749

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.8.2. get_device_family_displayname

Description
Returns the display name of a given device family.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Fileset
Generation, Parameter Upgrade

Usage
get_device_family_displayname <device_family>

Returns
The preferred display name for the device family.

Arguments

device_family A device family name.

Example

get_device_family_displayname cycloneiiils (returns: "Cyclone IV LS")

Related Information

check_device_family_equivalence on page 749

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

750

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.8.3. get_qip_strings

Description
Returns a Tcl list of QIP strings for the IP component.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Parameter
Upgrade

Usage
get_qip_strings

Returns
A Tcl list of qip strings set by this IP component.

Arguments
No arguments.

Example

set strings [get_qip_strings]

Related Information

set_qip_strings on page 752

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

751

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.8.4. set_qip_strings

Description
Places strings in the Quartus Prime IP File (.qip) file, which Platform Designer passes
to the command as a Tcl list. You add the .qip file to your Quartus Prime project on
the Files page, in the Settings dialog box. Successive calls to set_qip_strings are
not additive and replace the previously declared value.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Parameter
Upgrade

Usage
set_qip_strings <qip_strings>

Returns
The Tcl list which was set.

Arguments

qip_strings A space-delimited Tcl list.

Example

set_qip_strings {"QIP Entry 1" "QIP Entry 2"}

Notes
You can use the following macros in your QIP strings entry:

%entityName% The generated name of the entity replaces this macro when
the string is written to the .qip file.

%libraryName% The compilation library this IP component was compiled into
is inserted in place of this macro inside the .qip file.

%instanceName% The name of the instance is inserted in place of this macro
inside the .qip file.

Related Information

get_qip_strings on page 751

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

752

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.9. SystemVerilog Interface Commands

add_sv_interface on page 754

get_sv_interfaces on page 755

get_sv_interface_property on page 756

get_sv_interface_properties on page 757

set_sv_interface_property on page 758

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

753

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.9.1. add_sv_interface

Description
Adds a SystemVerilog interface to the IP component.

Availability
Elaboration, Global

Usage
add_sv_interface <sv_interface_name> <sv_interface_type>

Returns
No return value.

Arguments

sv_interface_name The name of the SystemVerilog interface in the IP
component.

sv_interface_type The type of the SystemVerilog interface used by the IP
component.

Example

add_sv_interface my_sv_interface my_sv_interface_type

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

754

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.9.2. get_sv_interfaces

Description
Returns the list of SystemVerilog interfaces in the IP component.

Availability
Elaboration, Global

Usage
get_sv_interfaces

Returns

String[] Returns the list of SystemVerilog interfaces defined in the IP
component.

Arguments
No arguments.

Example

get_sv_interfaces

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

755

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.9.3. get_sv_interface_property

Description
Returns the value of a single SystemVerilog interface property from the specified
interface.

Availability
Elaboration, Global

Usage
get_sv_interface_property <sv_interface_name> <sv_interface_property>

Returns

various The property value.

Arguments

sv_interface_name The name of a SystemVerilog interface of the system.

sv_interface_property The name of the property. Refer to System Verilog
Interface Properties.

Example

get_sv_interface_property my_sv_interface USE_ALL_PORTS

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

756

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.9.4. get_sv_interface_properties

Description
Returns the names of all the available SystemVerilog interface properties common to
all interface types.

Availability
Elaboration, Global

Usage
get_sv_interface_properties

Returns

String[] The list of SystemVerilog interface properties.

Arguments
No arguments.

Example

get_sv_interface_properties

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

757

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.9.5. set_sv_interface_property

Description
Sets the value of a property on a SystemVerilog interface.

Availability
Elaboration, Global

Usage
set_sv_interface_property <sv_interface_name> <sv_interface_property>
<value>

Returns
No return value.

Arguments

interface The name of a SystemVerilog interface.

sv_interface_property The name of the property. Refer to SystemVerilog
Interface Properties.

value The property value.

Example

set_sv_interface_property my_sv_interface USE_ALL_PORTS True

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

758

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.10. Wire-Level Expression Commands

set_wirelevel_expression on page 633

get_wirelevel_expressions on page 634

remove_wirelevel_expressions on page 635

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

759

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.10.1. set_wirelevel_expression

Description
Applies a wire-level expression to an optional input port or instance in the system.

Usage
set_wirelevel_expression <instance_or_port_bitselection> <expression>

Returns
No return value.

Arguments

instance_or_port_bitselection Specify the instance or port to which the wire-
level expression using the
<instance_name>.<port_name>[<bit_selection>]
format. The bit selection can be a bit-select, for
example [0], or a partial range defined in
descending order, for example [7:0]. If no bit
selection is specified, the full range of the port is
selected.

expression The expression to be applied to an optional input
port.

Examples

set_wirelevel_expression {module0.portA[7:0]} "8'b0"
set_wirelevel_expression module0.portA "8'b0"
set_wirelevel_expression {module0.portA[0]} "1'b0"

Related Information

Scripting Wire-Level Expressions on page 71

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

760

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.10.2. get_wirelevel_expressions

Description
Retrieve a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expression statement.

Usage
get_wirelevel_expressions <instance_or_port_bitselection>

Returns

String[] A flattened list of wire-level expressions. Every item in the list consists
of right- and left-hand clauses of a wire-level expression. You can loop
over the returned list using foreach{port expr}
$return_list{}.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list
of wire-level expressions are retrieved using the
<instance_name>.<port_name>[<bit_selection>]
format.

• If no <port_name>[<bit_selection>] is
specified, the command causes the return of
all expressions from the specified instance.

• If no argument is present, the command
causes the return of all expressions from the
current level of system hierarchy.

The bit selection can be a bit-select, for example
[0], or a partial range defined in descending order,
for example [7:0]. If no bit selection is specified,
the full range of the port is selected.

Example

get_wirelevel_expressions
get_wirelevel_expressions module0
get_wirelevel_expressions {module0.portA[7:0]}

Related Information

Scripting Wire-Level Expressions on page 71

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

761

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.10.3. remove_wirelevel_expressions

Description
Remove a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expressions statement.

Usage
remove_wirelevel_expressions <instance_or_port_bitselection>

Returns
No return value.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list
of wire-level expressions are removed using the
<instance_name>.<port_name>[<bit_selection>]
format.

• If no <port_name>[<bit_selection>] is
specified, the command causes the removal of
all expressions from the specified instance.

• If no argument is present, the command
causes the return of all expressions from the
current level of system hierarchy.

The bit selection can be a bit-select, for example
[0], or a partial range defined in descending order,
for example [7:0]. If no bit selection is specified,
the full range of the port is selected.

Examples

remove_wirelevel_expressions
remove_wirelevel_expressions module0
remove_wirelevel_expressions {module0.portA[7:0]}

Related Information

Scripting Wire-Level Expressions on page 71

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

762

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2. Platform Designer _hw.tcl Property Reference

Script Language Properties on page 764

Interface Properties on page 765

SystemVerilog Interface Properties on page 765

Instance Properties on page 767

Parameter Properties on page 768

Parameter Type Properties on page 770

Parameter Status Properties on page 771

Port Properties on page 772

Direction Properties on page 774

Display Item Properties on page 775

Display Item Kind Properties on page 776

Display Hint Properties on page 777

Module Properties on page 778

Fileset Properties on page 780

Fileset Kind Properties on page 781

Callback Properties on page 782

File Attribute Properties on page 783

File Kind Properties on page 784

File Source Properties on page 785

Simulator Properties on page 786

Port VHDL Type Properties on page 787

System Info Type Properties on page 788

Design Environment Type Properties on page 790

Units Properties on page 791

Operating System Properties on page 792

Quartus.ini Type Properties on page 793

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

763

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.1. Script Language Properties

Name Description

TCL Implements the script in Tcl.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

764

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.2. Interface Properties

Name Description

CMSIS_SVD_FILE Specifies the connection point's associated CMSIS file.

CMSIS_SVD_VARIABLES Defines the variables inside a .svd file.

ENABLED Specifies whether or not interface is enabled.

EXPORT_OF For composed _hwl.tcl files, the EXPORT_OF property indicates
which interface of a child instance is to be exported through this
interface. Before using this command, you must have created the
border interface using add_interface. The interface to be
exported is of the form <instanceName.interfaceName>.
Example:

set_interface_property CSC_input
 EXPORT_OF my_colorSpaceConverter.input_port

PORT_NAME_MAP A map of external port names to internal port names, formatted as
a Tcl list. Example:

set_interface_property <interface name> PORT_NAME_MAP
 "<new port name> <old port name> <new port name 2> <old
port name 2>"

SVD_ADDRESS_GROUP Generates a CMSIS SVD file. Hosts in the same SVD address group
write register data of their connected agents into the same SVD file

SVD_ADDRESS_OFFSET Generates a CMSIS SVD file. Agents connected to this host have
their base address offset by this amount in the SVD file.

SV_INTERFACE When SV_INTERFACE is set, all the ports in the given interface are
part of the SystemVerilog interface.
Example:

set_interface_property my_qsys_interface SV_INTERFACE
 my_sv_interface

IPXACT_REGISTER_MAP Specifies the connection point's associated IP-XACT register map
file. Platform Designer supports register map files in IP-XACT 2009
or 2014 format.
Example:

set_interface_property my_qsys_interface
 IPXACT_REGISTER_MAP <path_to_ipxact_reg_file>

IPXACT_REGISTER_MAP_VARIABLES For macro substitution inside the IP-XACT register map file.
Specifies a list of key value pairs, where key is the macro name and
value is the replacement text that substitutes the macros in the IP-
XACT register map.

Related Information

Interfaces and Ports on page 667

8.2.3. SystemVerilog Interface Properties

Name Description

SV_INTERFACE_TYPE Set the interface type of the SystemVerilog interface.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

765

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

USE_ALL_PORTS When USE_ALL_PORTS is set to true, all the ports defined in the Module, are
declared in this SystemVerilog interface.
USE_ALL_PORTS must be set to true only if the module has one SystemVerilog
interface and the SystemVerilog interface signal names match with the port names
declared for Platform Designer interface.
When USE_ALL_PORTS is true, SV_INTERFACE_PORT or SV_INTERFACE_SIGNAL
port properties should not be set.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

766

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.4. Instance Properties

Name Description

HDLINSTANCE_GET_GENERATED_NAME Platform Designer uses this property to get the auto-generated
fixed name when the instance property
HDLINSTANCE_USE_GENERATED_NAME is set to true, and only
applies to fileSet callbacks.

HDLINSTANCE_USE_GENERATED_NAME If true, instances added with the add_hdl_instance command
are instructed to use unique auto-generated fixed names based on
the parameterization.

SUPPRESS_ALL_INFO_MESSAGES If true, allows you to suppress all Info messages that originate
from a child instance.

SUPPRESS_ALL_WARNINGS If true, allows you to suppress all warnings that originate from a
child instance

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

767

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.5. Parameter Properties

Type Name Description

Boolean AFFECTS_ELABORATION Set AFFECTS_ELABORATION to false for parameters that do not
affect the external interface of the module. An example of a
parameter that does not affect the external interface is
isNonVolatileStorage. An example of a parameter that does
affect the external interface is width. When the value of a
parameter changes, if that parameter has set
AFFECTS_ELABORATION=false, the elaboration phase (calling
the callback or hardware analysis) is not repeated, improving
performance. Because the default value of
AFFECTS_ELABORATION is true, the provided HDL file is
normally re-analyzed to determine the new port widths and
configuration every time a parameter changes.

Boolean AFFECTS_GENERATION The default value of AFFECTS_GENERATION is false if you
provide a top-level HDL module; it is true if you provide a fileset
callback. Set AFFECTS_GENERATION to false if the value of a
parameter does not change the results of fileset generation.

Boolean AFFECTS_VALIDATION The AFFECTS_VALIDATION property marks whether a
parameter's value is used to set derived parameters, and whether
the value affects validation messages. When set to false, this
may improve response time in the parameter editor UI when the
value is changed.

String[] ALLOWED_RANGES Indicates the range or ranges that the parameter value can have.
For integers, The ALLOWED_RANGES property is a list of ranges
that the parameter can take on, where each range is a single
value, or a range of values defined by a start and end value
separated by a colon, such as 11:15. This property can also
specify legal values and display strings for integers, such as
{0:None 1:Monophonic 2:Stereo 4:Quadrophonic}
meaning 0, 1, 2, and 4 are the legal values. You can also assign
display strings to be displayed in the parameter editor for string
variables. For example, ALLOWED_RANGES {"dev1:Cyclone IV
GX""dev2:Stratix V GT"}.

String DEFAULT_VALUE The default value.

Boolean DERIVED When true, indicates that the parameter value can only be set by
the IP component, and cannot be set by the user. Derived
parameters are not saved as part of an instance's parameter
values. The default value is false.

String DESCRIPTION A short user-visible description of the parameter, suitable for a
tooltip description in the parameter editor.

String[] DISPLAY_HINT Provides a hint about how to display a property. The following
values are possible:
• boolean--for integer parameters whose value can be 0 or

1. The parameter displays as an option that you can turn on or
off.

• radio--displays a parameter with a list of values as radio
buttons instead of a drop-down list.

• hexadecimal--for integer parameters, display and
interpret the value as a hexadecimal number, for example:
0x00000010 instead of 16.

• fixed_size--for string_list and integer_list
parameters, the fixed_size DISPLAY_HINT eliminates the
add and remove buttons from tables.

String DISPLAY_NAME This is the GUI label that appears to the left of this parameter.

String DISPLAY_UNITS This is the GUI label that appears to the right of the parameter.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

768

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

Boolean ENABLED When false, the parameter is disabled, meaning that it is
displayed, but greyed out, indicating that it is not editable on the
parameter editor.

String GROUP Controls the layout of parameters in GUI

Boolean HDL_PARAMETER When true, the parameter must be passed to the HDL IP
component description. The default value is false.

String LONG_DESCRIPTION A user-visible description of the parameter. Similar to
DESCRIPTION, but allows for a more detailed explanation.

String NEW_INSTANCE_VALUE This property allows you to change the default value of a
parameter without affecting older IP components that have did
not explicitly set a parameter value, and use the DEFAULT_VALUE
property. The practical result is that older instances continue to
use DEFAULT_VALUE for the parameter and new instances use
the value that NEW_INSTANCE_VALUE assigns.

String SV_INTERFACE_PARAMETER This parameter is used in the SystemVerilog interface
instantiation.
Example:

set_parameter_property my_parameter SV_INTERFACE_PARAMETER
my_sv_interface

String[] SYSTEM_INFO Allows you to assign information about the instantiating system to
a parameter that you define. SYSTEM_INFO requires an argument
specifying the type of information requested, <info-type>.

String SYSTEM_INFO_ARG Defines an argument to be passed to a particular SYSTEM_INFO
function, such as the name of a reset interface.

(various) SYSTEM_INFO_TYPE Specifies one of the types of system information that can be
queried. Refer to System Info Type Properties.

(various) TYPE Specifies the type of the parameter. Refer to Parameter Type
Properties.

(various) UNITS Sets the units of the parameter. Refer to Units Properties.

Boolean VISIBLE Indicates whether or not to display the parameter in the
parameterization GUI.

String WIDTH For a STD_LOGIC_VECTOR parameter, this indicates the width of
the logic vector.

Related Information

• System Info Type Properties on page 788

• Parameter Type Properties on page 770

• Units Properties on page 791

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

769

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.6. Parameter Type Properties

Name Description

BOOLEAN A boolean parameter whose value is true or false.

FLOAT A signed 32-bit floating point parameter. Not supported for HDL parameters.

INTEGER A signed 32-bit integer parameter.

INTEGER_LIST A parameter that contains a list of 32-bit integers. Not supported for HDL
parameters.

LONG A signed 64-bit integer parameter. Not supported for HDL parameters.

NATURAL A 32-bit number that contain values 0 to 2147483647 (0x7fffffff).

POSITIVE A 32-bit number that contains values 1 to 2147483647 (0x7fffffff).

STD_LOGIC A single bit parameter whose value can be 1 or 0;

STD_LOGIC_VECTOR An arbitrary-width number. The parameter property WIDTH determines the size of the
logic vector.

STRING A string parameter.

STRING_LIST A parameter that contains a list of strings. Not supported for HDL parameters.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

770

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.7. Parameter Status Properties

Type Name Description

Boolean ACTIVE Indicates the parameter is a regular parameter.

Boolean DEPRECATED Indicates the parameter exists only for backwards compatibility, and may not
have any effect.

Boolean EXPERIMENTAL Indicates the parameter is experimental, and not exposed in the design flow.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

771

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.8. Port Properties

Type Name Description

(various) DIRECTION The direction of the port from the IP component's perspective.
Refer to Direction Properties.

String DRIVEN_BY Indicates that this output port is always driven to a constant
value or by an input port. If all outputs on an IP component
specify a driven_by property, the HDL for the IP component
is generated automatically.

String[] FRAGMENT_LIST This property can be used in 2 ways: First you can take a
single RTL signal and split it into multiple Platform Designer
signals add_interface_port <interface> alpha
<role> <direction> <width> add_interface_port
<interface> bar <role> <direction> <width>
set_port_property alpha fragment_list
"my_rtl_signal(3:0)" set_port_property bar
fragment_list "my_rtl_signal(6:4)" Second you can
take multiple RTL signals and combine them into a single
Platform Designer signal add_interface_port
<interface> baz <role> <direction> <width>
set_port_property baz fragment_list
"rtl_signal_1(3:0) rtl_signal_2(3:0)" Note: The
listed bits in a port fragment must match the declared width
of the Platform Designer signal.

String ROLE Specifies an Avalon signal type such as waitrequest,
readdata, or read. For a complete list of signal types, refer
to the Avalon Interface Specifications.

String SV_INTERFACE_PORT This port from the module is used as I/O in the SystemVerilog
interface instantiation. The top-level wrapper of the module
which contains this port is from the SystemVerilog interface.
Example:

set_port_property port_x SV_INTERFACE_PORT my_sv_interface

String SV_INTERFACE_PORT_NAME This property is used only when the Platform Designer port
name defined for the module is different from the port name
in the SystemVerilog interface.
Example:

set_port_property port_x SV_INTERFACE_PORT_NAME port_a

When writing the RTL, the Platform Designer port name
port_x is mapped to RTL name port_a in the SystemVerilog
interface

String SV_INTERFACE_SIGNAL This port from the module is assumed to be inside the
SystemVerilog interface or the modport used by the module.
The top-level wrapper of the module containing this port is
unwrapped from SystemVerilog interface.
Example:

set_port_property port_y SV_INTERFACE_SIGNAL
my_sv_interface

String SV_INTERFACE_SIGNAL_NAME This property is only used when the Platform Designer port
name defined for the module is different from the port name
in the SystemVerilog interface.
Example:

set_port_property port_y SV_INTERFACE_SIGNAL_NAME port_b

Boolean TERMINATION When true, instead of connecting the port to the Platform
Designer system, it is left unconnected for output and
bidir or set to a fixed value for input.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

772

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

BigInteger TERMINATION_VALUE The constant value to drive an input port.

(various) VHDL_TYPE Indicates the type of a VHDL port. The default value, auto,
selects std_logic if the width is fixed at 1, and
std_logic_vector otherwise. Refer to Port VHDL Type
Properties.

String WIDTH The width of the port in bits. Cannot be set directly. Any
changes must be set through the WIDTH_EXPR property.

String WIDTH_EXPR The width expression of a port. The width_value_expr
property can be set directly to a numeric value if desired.
When get_port_property is used width always returns the
current integer width of the port while width_expr always
returns the unevaluated width expression.

Integer WIDTH_VALUE The width of the port in bits. Cannot be set directly. Any
changes must be set through the WIDTH_EXPR property.

Related Information

• Direction Properties on page 774

• Port VHDL Type Properties on page 787

• Avalon Interface Specifications

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

773

https://www.intel.com/content/www/us/en/docs/programmable/683091.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.9. Direction Properties

Name Description

Bidir Direction for a bidirectional signal.

Input Direction for an input signal.

Output Direction for an output signal.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

774

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.10. Display Item Properties

Type Name Description

String DESCRIPTION A description of the display item, which you can use as a tooltip.

String[] DISPLAY_HINT A hint that affects how the display item displays in the parameter editor.

String DISPLAY_NAME The label for the display item in a the parameter editor.

Boolean ENABLED Indicates whether the display item is enabled or disabled.

String PATH The path to a file. Only applies to display items of type ICON.

String TEXT Text associated with a display item. Only applies to display items of type TEXT.

Boolean VISIBLE Indicates whether this display item is visible or not.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

775

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.11. Display Item Kind Properties

Name Description

ACTION An action displays as a button in the GUI. When the button is clicked, it calls the callback
procedure. The button label is the display item id.

GROUP A group that is a child of the parent_group group. If the parent_group is an empty string,
this is a top-level group.

ICON A .gif, .jpg, or .png file.

PARAMETER A parameter in the instance.

TEXT A block of text.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

776

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.12. Display Hint Properties

Name Description

BIT_WIDTH Bit width of a number

BOOLEAN Integer value either 0 or 1.

COLLAPSED Indicates whether a group is collapsed when initially displayed.

COLUMNS Number of columns in text field, for example, "columns:N".

EDITABLE Indicates whether a list of strings allows free-form text entry (editable combo box).

FILE Indicates that the string is an optional file path, for example, "file:jpg,png,gif".

FIXED_SIZE Indicates a fixed size for a table or list.

GROW if set, the widget can grow when the IP component is resized.

HEXADECIMAL Indicates that the long integer is hexadecimal.

RADIO Indicates that the range displays as radio buttons.

ROWS Number of rows in text field, or visible rows in a table, for example, "rows:N".

SLIDER Range displays as slider.

TAB if present for a group, the group displays in a tab

TABLE if present for a group, the group must contain all list-type parameters, which display
collectively in a single table.

TEXT String is a text field with a limited character set, for example, "text:A-Za-z0-9_".

WIDTH width of a table column

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

777

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.13. Module Properties

Name Description

ANALYZE_HDL When set to false, prevents a call to the Quartus Prime mapper to
verify port widths and directions, speeding up generation time at
the expense of fewer validation checks. If this property is set to
false, invalid port widths and directions are discovered during the
Quartus Prime software compilation. This does not affect IP
components using filesets to manage synthesis files.

AUTHOR The IP component author.

COMPOSITION_CALLBACK The name of the composition callback. If you define a
composition callback, you cannot not define the generation or
elaboration callbacks.

DATASHEET_URL Deprecated. Use add_documentation_link to provide
documentation links.

DESCRIPTION The description of the IP component, such as "This IP component
implements a half-rate bridge."

DISPLAY_NAME The name to display when referencing the IP component, such as
"My Platform Designer IP Component".

EDITABLE Indicates whether you can edit the IP component in the
Component Editor.

ELABORATION_CALLBACK The name of the elaboration callback. When set, the IP
component's elaboration callback is called to validate and
elaborate interfaces for instances of the IP component.

GROUP The group in the IP Catalog that includes this IP component.

ICON_PATH A path to an icon to display in the IP component's parameter
editor.

INSTANTIATE_IN_SYSTEM_MODULE If true, this IP component is implemented by HDL provided by the
IP component. If false, the IP component creates exported
interfaces allowing the implementation to be connected in the
parent.

INTERNAL An IP component which is marked as internal does not appear in
the IP Catalog. This feature allows you to hide the sub-IP-
components of a larger composed IP component.

MODULE_DIRECTORY The directory in which the hw.tcl file exists.

MODULE_TCL_FILE The path to the hw.tcl file.

NAME The name of the IP component, such as my_qsys_component.

OPAQUE_ADDRESS_MAP For composed IP components created using a _hw.tcl file that
include children that are memory-mapped agents, specifies
whether the children's addresses are visible to downstream
software tools. When true, the children's address are not visible.
When false, the children's addresses are visible.

PREFERRED_SIMULATION_LANGUAGE The preferred language to use for selecting the fileset for
simulation model generation.

REPORT_HIERARCHY null

STATIC_TOP_LEVEL_MODULE_NAME Deprecated.

STRUCTURAL_COMPOSITION_CALLBACK The name of the structural composition callback. This callback is
used to represent the structural hierarchical model of the IP
component and the RTL can be generated either with module
property COMPOSITION_CALLBACK or by ADD_FILESET with
target QUARTUS_SYNTH

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

778

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

SUPPORTED_DEVICE_FAMILIES A list of device family supported by this IP component.

TOP_LEVEL_HDL_FILE Deprecated.

TOP_LEVEL_HDL_MODULE Deprecated.

UPGRADEABLE_FROM null

VALIDATION_CALLBACK The name of the validation callback procedure.

VERSION The IP component's version, such as 10.0.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

779

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.14. Fileset Properties

Name Description

ENABLE_FILE_OVERWRITE_MODE null

ENABLE_RELATIVE_INCLUDE_PATHS If true, HDL files can include other files using relative paths in the
fileset.

TOP_LEVEL The name of the top-level HDL module that the fileset generates. If
set, the HDL top level must match the TOP_LEVEL name, and the
HDL must not be parameterized. Platform Designer runs the
generate callback one time, regardless of the number of instances in
the system.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

780

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.15. Fileset Kind Properties

Name Description

EXAMPLE_DESIGN Contains example design files.

QUARTUS_SYNTH Contains files that Platform Designer uses for the Quartus Prime software
synthesis.

SIM_VERILOG Contains files that Platform Designer uses for Verilog HDL simulation.

SIM_VHDL Contains files that Platform Designer uses for VHDL simulation.

SYSTEMVERILOG_INTERFACE This file is treated as SystemVerilog interface file by the Platform Designer.
Example:

add_fileset_file mem_ifc.sv SYTEM_VERILOG PATH “.ifc/mem_ifc.sv”
SYSTEMVERILOG_INTERFACE

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

781

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.16. Callback Properties

Description
This list describes each type of callback. Each command may only be available in some
callback contexts.

Name Description

ACTION Called when an ACTION display item's action is performed.

COMPOSITION Called during instance elaboration when the IP component contains a
subsystem.

EDITOR Called when the IP component is controlling the parameterization
editor.

ELABORATION Called to elaborate interfaces and signals after a parameter change. In
API 9.1 and later, validation is called before elaboration. In API 9.0 and
earlier, elaboration is called before validation.

GENERATE_VERILOG_SIMULATION Called when the IP component uses a custom generator to generates
the Verilog simulation model for an instance.

GENERATE_VHDL_SIMULATION Called when the IP component uses a custom generator to generates
the VHDL simulation model for an instance.

GENERATION Called when the IP component uses a custom generator to generates
the synthesis HDL for an instance.

PARAMETER_UPGRADE Called when attempting to instantiate an IP component with a newer
version than the saved version. This allows the IP component to
upgrade parameters between released versions of the component.

STRUCTURAL_COMPOSITION Called during instance elaboration when an IP component is
represented by a structural hierarchical model which may be different
from the generated RTL.

VALIDATION Called to validate parameter ranges and report problems with the
parameter values. In API 9.1 and later, validation is called before
elaboration. In API 9.0 and earlier, elaboration is called before
validation.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

782

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.17. File Attribute Properties

Name Description

ALDEC_SPECIFIC Applies to Aldec simulation tools and for simulation filesets only.

CADENCE_SPECIFIC Applies to Cadence simulation tools and for simulation filesets only.

COMMON_SYSTEMVERILOG_PACKAGE The name of the common SystemVerilog package. Applies to
simulation filesets only.

MENTOR_SPECIFIC Applies to Mentor simulation tools and for simulation filesets only.

SYNOPSYS_SPECIFIC Applies to Synopsys simulation tools and for simulation filesets only.

TOP_LEVEL_FILE Contains the top-level module for the fileset and applies to synthesis
filesets only.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

783

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.18. File Kind Properties

Name Description

DAT DAT Data

FLI_LIBRARY FLI Library

HEX HEX Data

MIF MIF Data

OTHER Other

PLI_LIBRARY PLI Library

SDC Timing Constraints

SYSTEM_VERILOG SystemVerilog HDL

SYSTEM_VERILOG_ENCRYPT Encrypted SystemVerilog HDL

SYSTEM_VERILOG_INCLUDE SystemVerilog Include

VERILOG Verilog HDL

VERILOG_ENCRYPT Encrypted Verilog HDL

VERILOG_INCLUDE Verilog Include

VHDL VHDL

VHDL_ENCRYPT Encrypted VHDL

VPI_LIBRARY VPI Library

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

784

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.19. File Source Properties

Name Description

PATH Specifies the original source file and copies to output_file.

TEXT Specifies an arbitrary text string for the contents of output_file.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

785

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.20. Simulator Properties

Name Description

ENV_ALDEC_LD_LIBRARY_PATH LD_LIBRARY_PATH when running riviera-pro

ENV_CADENCE_LD_LIBRARY_PATH LD_LIBRARY_PATH when running ncsim

ENV_MENTOR_LD_LIBRARY_PATH LD_LIBRARY_PATH when running modelsim

ENV_SYNOPSYS_LD_LIBRARY_PATH LD_LIBRARY_PATH when running vcs

OPT_ALDEC_PLI -pli option for riviera-pro

OPT_CADENCE_64BIT -64bit option for ncsim

OPT_CADENCE_PLI -loadpli1 option for ncsim

OPT_CADENCE_SVLIB -sv_lib option for ncsim

OPT_CADENCE_SVROOT -sv_root option for ncsim

OPT_MENTOR_64 -64 option for modelsim

OPT_MENTOR_CPPPATH -cpppath option for modelsim

OPT_MENTOR_LDFLAGS -ldflags option for modelsim

OPT_MENTOR_PLI -pli option for modelsim

OPT_SYNOPSYS_ACC +acc option for vcs

OPT_SYNOPSYS_CPP -cpp option for vcs

OPT_SYNOPSYS_FULL64 -full64 option for vcs

OPT_SYNOPSYS_LDFLAGS -LDFLAGS option for vcs

OPT_SYNOPSYS_LLIB -l option for vcs

OPT_SYNOPSYS_VPI +vpi option for vcs

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

786

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.21. Port VHDL Type Properties

Name Description

AUTO The VHDL type of this signal is automatically determined. Single-bit signals are
STD_LOGIC; signals wider than one bit are STD_LOGIC_VECTOR.

STD_LOGIC Indicates that the signal is not rendered in VHDL as a STD_LOGIC signal.

STD_LOGIC_VECTOR Indicates that the signal is rendered in VHDL as a STD_LOGIC_VECTOR signal.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

787

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.22. System Info Type Properties

Type Name Description

String ADDRESS_MAP An XML-formatted string describing the address map for
the interface specified in the system info argument.

Integer ADDRESS_WIDTH The number of address bits required to address all
memory-mapped agents connected to the specified
memory-mapped host in this instance, using byte
addresses.

String AVALON_SPEC The version of the interconnect. SOPC Builder
interconnect uses Avalon Specification 1.0. Platform
Designer interconnect uses Avalon Specification 2.0.

Integer CLOCK_DOMAIN An integer that represents the clock domain for the
interface specified in the system info argument. If this
instance has interfaces on multiple clock domains, this
can be used to determine which interfaces are on each
clock domain. The absolute value of the integer is
arbitrary.

Long, Integer CLOCK_RATE The rate of the clock connected to the clock input
specified in the system info argument. If 0, the clock
rate is currently unknown.

String CLOCK_RESET_INFO The name of this instance's primary clock or reset sink
interface. This is used to determine the reset sink to use
for global reset when using SOPC interconnect.

String CUSTOM_INSTRUCTION_SLAVES Provides custom instruction agent information, including
the name, base address, address span, and clock cycle
type.

(various) DESIGN_ENVIRONMENT A string that identifies the current design environment.
Refer to Design Environment Type Properties.

String DEVICE The device part number of the currently selected device.

String DEVICE_FAMILY The family name of the currently selected device.

String DEVICE_FEATURES A list of key/value pairs delineated by spaces indicating
whether a particular device feature is available in the
currently selected device family. The format of the list is
suitable for passing to the Tcl array set command. The
keys are device features; the values are 1 if the feature
is present, and 0 if the feature is absent.

String DEVICE_SPEEDGRADE The speed grade of the currently selected device.

Integer GENERATION_ID A integer that stores a hash of the generation time to be
used as a unique ID for a generation run.

BigInteger,
Long

INTERRUPTS_USED A mask indicating which bits of an interrupt receiver are
connected to interrupt senders. The interrupt receiver is
specified in the system info argument.

Integer MAX_SLAVE_DATA_WIDTH The data width of the widest agent connected to the
specified memory-mapped host.

String,
Boolean,
Integer

QUARTUS_INI The value of the quartus.ini setting specified in the
system info argument.

Integer RESET_DOMAIN An integer that represents the reset domain for the
interface specified in the system info argument. If this
instance has interfaces on multiple reset domains, this
can be used to determine which interfaces are on each
reset domain. The absolute value of the integer is
arbitrary.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

788

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

String TRISTATECONDUIT_INFO An XML description of the Avalon Tri-state Conduit hosts
connected to an Avalon Tri-state Conduit agent. The
agent is specified as the system info argument. The
value contains information about the agent, the
connected host instance and interface names, and signal
names, directions and widths.

String TRISTATECONDUIT_MASTERS The names of the instance's interfaces that are tri-state
conduit agents.

String UNIQUE_ID A string guaranteed to be unique to this instance.

Related Information

Design Environment Type Properties on page 790

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

789

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.23. Design Environment Type Properties

Description
A design environment is used by IP to tell what sort of interfaces are most appropriate
to connect in the parent system.

Name Description

NATIVE Design environment prefers native IP interfaces.

QSYS Design environment prefers standard Platform Designer interfaces.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

790

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.24. Units Properties

Name Description

Address A memory-mapped address.

Bits Memory size, in bits.

BitsPerSecond Rate, in bits per second.

Bytes Memory size, in bytes.

Cycles A latency or count, in clock cycles.

GigabitsPerSecond Rate, in gigabits per second.

Gigabytes Memory size, in gigabytes.

Gigahertz Frequency, in GHz.

Hertz Frequency, in Hz.

KilobitsPerSecond Rate, in kilobits per second.

Kilobytes Memory size, in kilobytes.

Kilohertz Frequency, in kHz.

MegabitsPerSecond Rate, in megabits per second.

Megabytes Memory size, in megabytes.

Megahertz Frequency, in MHz.

Microseconds Time, in micros.

Milliseconds Time, in ms.

Nanoseconds Time, in ns.

None Unspecified units.

Percent A percentage.

Picoseconds Time, in ps.

Seconds Time, in s.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

791

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.25. Operating System Properties

Name Description

ALL All operating systems

LINUX32 Linux 32-bit

LINUX64 Linux 64-bit

WINDOWS32 Windows 32-bit

WINDOWS64 Windows 64-bit

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

792

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.26. Quartus.ini Type Properties

Name Description

ENABLED Returns 1 if the setting is turned on, otherwise returns 0.

STRING Returns the string value of the .ini setting.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

793

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.3. Component Interface Tcl Reference Revision History

The table below indicates edits made to the Component Interface Tcl Reference
content since its creation:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.
• Added missing file option to Parameter Properties topic.

2023.04.03 23.1 • The product family name is updated to "Intel Agilex 7" to reflect the
different family members.

2022.09.26 22.3 • Updated Port Properties and Module Properties topics to remove
instances of obsolete GENERATION_CALLBACK port and module
properties.

2022.06.20 22.2 • Revised add_instance topic to indicate that the version argument
is required.

2021.03.29 21.1 • Converted to "host" and "agent" inclusive terminology for Avalon
memory mapped interface descriptions and related GUI elements
throughout.

2019.04.01 19.1.0 • Described new domain and post adaptation assignments in
"Interconnect Parameters" topic.

2018.09.24 18.1.0 • Added new _hw.tcl interface properties that allow importing and
exporting register maps in IP-XACT format.

2018.05.07 18.0.0 • Added wire-level expression commands to support wire-level interfaces.
• Updated send_message level availability for INFO messages.
• Updated set_port_property availability.

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer
• Added statement clarifying use of brackets.
• Added properties and interface commands to support SystemVerilog.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Edit to add_fileset_file command.

December 2014 14.1.0 • set_interface_upgrade_map
• Moved Port Roles (Interface Signal Types) section to Qsys

Interconnect.

November 2013 13.1.0 • add_hdl_instance

May 2013 13.0.0 • Consolidated content from other Qsys chapters.
• Added AMBA APB support.

November 2012 12.1.0 • Added the demo_axi_memory example with screen shots and
example _hw.tcl code.

June 2012 12.0.0 • Added AXI 3 support.
• Added: set_display_item_property,

set_parameter_property,LONG_DESCRIPTION, and static filesets.

continued...

8. Component Interface Tcl Reference

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

794

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

November 2011 11.1.0 • Template update.
• Added: set_qip_strings, get_qip_strings,

get_device_family_displayname,
check_device_family_equivalence.

May 2011 11.0.0 • Revised section describing HDL and composed component
implementations.

• Separated reset and clock interfaces in example.
• Added: TRISTATECONDUIT_INFO, GENERATION_ID, UNIQUE_ID

SYSTEM_INFO.
• Added: WIDTH and SYSTEM_INFO_ARG parameter properties.
• Removed the doc_type argument from the

add_documentation_link command.
• Removed: get_instance_parameter_properties
• Added: add_fileset, add_fileset_file, create_temp_file.
• Updated Tcl examples to show separate clock and reset interfaces.

December 2010 10.1.0 • Initial release.

8. Component Interface Tcl Reference

683609 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Platform Designer

795

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. Quartus Prime Pro Edition User Guide: Platform
Designer Document Archives

For the latest and previous versions of this user guide, refer to Quartus Prime Pro
Edition User Guide: Platform Designer. If an IP or software version is not listed, the
user guide for the previous IP or software version applies.

683609 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel FPGA devices, and program CPLD and configuration
devices, via connection with an Intel FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683609 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

A. Quartus Prime Pro Edition User Guides

683609 | 2024.04.01

Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

798

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(683609%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Pro Edition
User Guide
Design Recommendations

Updated for Intel® Quartus® Prime Design Suite: 23.1

This document is part of a collection - Intel® Quartus® Prime Pro Edition User Guides - Combined
PDF link

Online Version

Send Feedback UG-20131

683082

2023.08.03

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Recommended HDL Coding Styles ..4
1.1. Using Provided HDL Templates.. 4

1.1.1. Inserting HDL Code from a Provided Template... 4
1.2. Instantiating IP Cores in HDL.. 5
1.3. Inferring Multipliers and DSP Functions...5

1.3.1. Inferring Multipliers..6
1.3.2. Inferring Multiply-Accumulator and Multiply-Adder Functions........................... 7

1.4. Inferring Memory Functions from HDL Code ... 8
1.4.1. Inferring RAM functions from HDL Code.. 9
1.4.2. Inferring ROM Functions from HDL Code... 26
1.4.3. Inferring Shift Registers in HDL Code..29
1.4.4. Inferring FIFOs in HDL Code.. 32

1.5. Register and Latch Coding Guidelines... 38
1.5.1. Register Power-Up Values..39
1.5.2. Secondary Register Control Signals Such as Clear and Clock Enable................40
1.5.3. Latches ..42

1.6. General Coding Guidelines.. 45
1.6.1. Tri-State Signals ... 45
1.6.2. Clock Multiplexing.. 45
1.6.3. Adder Trees ..48
1.6.4. State Machine HDL Guidelines... 49
1.6.5. Multiplexer HDL Guidelines ...55
1.6.6. Cyclic Redundancy Check Functions ...58
1.6.7. Comparator HDL Guidelines...60
1.6.8. Counter HDL Guidelines.. 61

1.7. Designing with Low-Level Primitives... 61
1.8. Cross-Module Referencing (XMR) in HDL Code... 62
1.9. Using force Statements in HDL Code.. 64
1.10. Recommended HDL Coding Styles Revision History... 66

2. Recommended Design Practices... 69
2.1. Following Synchronous FPGA Design Practices..69

2.1.1. Implementing Synchronous Designs... 69
2.1.2. Asynchronous Design Hazards... 70

2.2. HDL Design Guidelines..71
2.2.1. Considerations for the Intel Hyperflex FPGA Architecture............................... 71
2.2.2. Optimizing Combinational Logic... 71
2.2.3. Optimizing Clocking Schemes.. 74
2.2.4. Optimizing Physical Implementation and Timing Closure................................79
2.2.5. Optimizing Power Consumption..82
2.2.6. Managing Design Metastability...82

2.3. Use Clock and Register-Control Architectural Features...82
2.3.1. Use Global Reset Resources...82
2.3.2. Use Global Clock Network Resources.. 91
2.3.3. Use Clock Region Assignments to Optimize Clock Constraints.........................92
2.3.4. Avoid Asynchronous Register Control Signals... 94

2.4. Implementing Embedded RAM... 94

Contents

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5. Design Assistant Design Rule Checking... 96
2.5.1. Setting Up Design Assistant...97
2.5.2. Running Design Assistant During Compilation.. 98
2.5.3. Running Design Assistant in Analysis Mode.. 101
2.5.4. Cross-Probing from Design Assistant...104
2.5.5. Managing Design Assistant Rules..107
2.5.6. Design Assistant Rule Categories..116

2.6. Recommended Design Practices Revision History.. 117

3. Managing Metastability with the Intel Quartus Prime Software.................................. 121
3.1. Metastability Analysis in the Intel Quartus Prime Software....................................... 121

3.1.1. Data Synchronization Register Chains... 122
3.1.2. Identify Synchronizers for Metastability Analysis...123
3.1.3. How Timing Constraints Affect Synchronizer Identification and

Metastability Analysis..123
3.2. Metastability and MTBF Reporting...124

3.2.1. Metastability Reports.. 124
3.2.2. Synchronizer Data Toggle Rate in MTBF Calculation.....................................126

3.3. MTBF Optimization... 127
3.3.1. Synchronization Register Chain Length..127

3.4. Reducing Metastability Effects..128
3.4.1. Apply Complete System-Centric Timing Constraints for the Timing Analyzer... 128
3.4.2. Force the Identification of Synchronization Registers................................... 129
3.4.3. Set the Synchronizer Data Toggle Rate..129
3.4.4. Optimize Metastability During Fitting...129
3.4.5. Increase the Length of Synchronizers to Protect and Optimize......................129
3.4.6. Increase the Number of Stages Used in Synchronizers................................ 130
3.4.7. Select a Faster Speed Grade Device..130

3.5. Scripting Support...130
3.5.1. Identifying Synchronizers for Metastability Analysis.................................... 130
3.5.2. Synchronizer Data Toggle Rate in MTBF Calculation.....................................131
3.5.3. report_metastability and Tcl Command..131
3.5.4. MTBF Optimization... 131
3.5.5. Synchronization Register Chain Length..132

3.6. Managing Metastability... 132
3.7. Managing Metastability with the Intel Quartus Prime Software Revision History...........132

4. Intel Quartus Prime Pro Edition User Guide: Design Recommendations Archive......... 134

A. Intel Quartus Prime Pro Edition User Guides.. 135

Contents

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Recommended HDL Coding Styles
This chapter provides Hardware Description Language (HDL) coding style
recommendations to ensure optimal synthesis results when targeting Intel FPGA
devices.

HDL coding styles have a significant effect on the quality of results for programmable
logic designs. Synthesis tools optimize HDL code for both logic utilization and
performance; however, synthesis tools cannot interpret the intent of your design.
Therefore, the most effective optimizations require conformance to recommended
coding styles.

Note: For style recommendations, options, or HDL attributes specific to your synthesis tool,
refer to the synthesis tool vendor’s documentation.

1.1. Using Provided HDL Templates

The Intel® Quartus® Prime software provides templates for Verilog HDL,
SystemVerilog, and VHDL templates to start your HDL designs. Many of the HDL
examples in this document correspond with the Full Designs examples in the Intel
Quartus Prime Templates. You can insert HDL code into your own design using the
templates or examples.

1.1.1. Inserting HDL Code from a Provided Template

1. Click File ➤ New.

2. In the New dialog box, select the HDL language for the design files:
SystemVerilog HDL File, VHDL File, or Verilog HDL File; and click OK.
A text editor tab with a blank file opens.

3. Right-click the blank file and click Insert Template.

4. In the Insert Template dialog box, expand the section corresponding to the
appropriate HDL, then expand the Full Designs section.

5. Select a template.
The template now appears in the Preview pane.

6. To paste the HDL design into the blank Verilog or VHDL file you created, click
Insert.

7. Click Close to close the Insert Template dialog box.

683082 | 2023.08.03

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 1. Inserting a RAM Template

Note: Use the Intel Quartus Prime Text Editor to modify the HDL design or save the template
as an HDL file to edit in your preferred text editor.

1.2. Instantiating IP Cores in HDL

Intel provides parameterizable IP cores that are optimized for Intel FPGA device
architectures. Using IP cores instead of coding your own logic saves valuable design
time.

Additionally, the Intel-provided IP cores offer more efficient logic synthesis and device
implementation. Scale the IP core’s size and specify various options by setting
parameters. To instantiate the IP core directly in your HDL file code, invoke the IP core
name and define its parameters as you would do for any other module, component, or
sub design. Alternatively, you can use the IP Catalog (Tools ➤ IP Catalog) and
parameter editor GUI to simplify customization of your IP core variation. You can infer
or instantiate IP cores that optimize device architecture features, for example:

• Transceivers

• LVDS drivers

• Memory and DSP blocks

• Phase-locked loops (PLLs)

• Double-data rate input/output (DDIO) circuitry

For some types of logic functions, such as memories and DSP functions, you can infer
device-specific dedicated architecture blocks instead of instantiating an IP core. Intel
Quartus Prime synthesis recognizes certain HDL code structures and automatically
infers the appropriate IP core or map directly to device atoms.

1.3. Inferring Multipliers and DSP Functions

The following sections describe how to infer multiplier and DSP functions from generic
HDL code, and, if applicable, how to target the dedicated DSP block architecture in
Intel FPGA devices.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Intel FPGA Digital Signal Processing

1.3.1. Inferring Multipliers

To infer multiplier functions, synthesis tools detect multiplier logic and implement this
in Intel FPGA IP cores, or map the logic directly to device atoms.

For devices with DSP blocks, Intel Quartus Prime synthesis can implement the function
in a DSP block instead of logic, depending on device utilization. The Intel Quartus
Prime fitter can also place input and output registers in DSP blocks (that is, perform
register packing) to improve performance and area utilization.

The following Verilog HDL and VHDL code examples show that synthesis tools can infer
signed and unsigned multipliers as IP cores or DSP block atoms. Each example fits
into one DSP block element. In addition, when register packing occurs, no extra logic
cells for registers are required.

Example 1. Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
 output [15:0] out;
 input [7:0] a;
 input [7:0] b;
 assign out = a * b;
endmodule

Note: The signed declaration in Verilog HDL is a feature of the Verilog 2001 Standard.

Example 2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining =
2)

module signed_mult (out, clk, a, b);
 output [15:0] out;
 input clk;
 input signed [7:0] a;
 input signed [7:0] b;

 reg signed [7:0] a_reg;
 reg signed [7:0] b_reg;
 reg signed [15:0] out;
 wire signed [15:0] mult_out;

 assign mult_out = a_reg * b_reg;

 always @ (posedge clk)
 begin
 a_reg <= a;
 b_reg <= b;
 out <= mult_out;
 end
endmodule

Example 3. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsigned_mult IS
 PORT (
 a: IN UNSIGNED (7 DOWNTO 0);

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

6

https://www.intel.com/content/www/us/en/architecture-and-technology/programmable/digital-signal-processing/overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 b: IN UNSIGNED (7 DOWNTO 0);
 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 result: OUT UNSIGNED (15 DOWNTO 0)
);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
 SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO 0);
BEGIN
 PROCESS (clk, aclr)
 BEGIN
 IF (aclr ='1') THEN
 a_reg <= (OTHERS => '0');
 b_reg <= (OTHERS => '0');
 result <= (OTHERS => '0');
 ELSIF (rising_edge(clk)) THEN
 a_reg <= a;
 b_reg <= b;
 result <= a_reg * b_reg;
 END IF;
 END PROCESS;
END rtl;

Example 4. VHDL Signed Multiplier

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY signed_mult IS
 PORT (
 a: IN SIGNED (7 DOWNTO 0);
 b: IN SIGNED (7 DOWNTO 0);
 result: OUT SIGNED (15 DOWNTO 0)
);
END signed_mult;

ARCHITECTURE rtl OF signed_mult IS
BEGIN
 result <= a * b;
END rtl;

1.3.2. Inferring Multiply-Accumulator and Multiply-Adder Functions

Synthesis tools detect multiply-accumulator or multiply-adder functions, and either
implement them as Intel FPGA IP cores or map them directly to device atoms. During
placement and routing, the Intel Quartus Prime software places multiply-accumulator
and multiply-adder functions in DSP blocks.

Note: Synthesis tools infer multiply-accumulator and multiply-adder functions only if the
Intel device family has dedicated DSP blocks that support these functions.

A simple multiply-accumulator consists of a multiplier feeding an addition operator.
The addition operator feeds a set of registers that then feeds the second input to the
addition operator. A simple multiply-adder consists of two to four multipliers feeding
one or two levels of addition, subtraction, or addition/subtraction operators. Addition
is always the second-level operator, if it is used. In addition to the multiply-
accumulator and multiply-adder, the Intel Quartus Prime Fitter also places input and
output registers into the DSP blocks to pack registers and improve performance and
area utilization.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Some device families offer additional advanced multiply-adder and accumulator
functions, such as complex multiplication, input shift register, or larger multiplications.

The Verilog HDL and VHDL code samples infer multiply-accumulator and multiply-
adder functions with input, output, and pipeline registers, as well as an optional
asynchronous clear signal. Using the three sets of registers provides the best
performance through the function, with a latency of three. To reduce latency, remove
the registers in your design.

Note: To obtain high performance in DSP designs, use register pipelining and avoid
unregistered DSP functions.

Example 5. Verilog HDL Multiply-Accumulator

module sum_of_four_multiply_accumulate
 #(parameter INPUT_WIDTH=18, parameter OUTPUT_WIDTH=44)
 (
 input clk, ena,
 input [INPUT_WIDTH-1:0] dataa, datab, datac, datad,
 input [INPUT_WIDTH-1:0] datae, dataf, datag, datah,
 output reg [OUTPUT_WIDTH-1:0] dataout
);
 // Each product can be up to 2*INPUT_WIDTH bits wide.
 // The sum of four of these products can be up to 2 bits wider.
 wire [2*INPUT_WIDTH+1:0] mult_sum;

 // Store the results of the operations on the current inputs
 assign mult_sum = (dataa * datab + datac * datad) +
 (datae * dataf + datag * datah);

 // Store the value of the accumulation
 always @ (posedge clk)
 begin
 if (ena == 1)
 begin
 dataout <= dataout + mult_sum;
 end
 end
endmodule

1.4. Inferring Memory Functions from HDL Code

The following coding recommendations provide portable examples of generic HDL code
targeting dedicated Intel FPGA memory IP cores. However, if you want to use some of
the advanced memory features in Intel FPGA devices, consider using the IP core
directly so that you can customize the ports and parameters easily.

You can also use the Intel Quartus Prime templates provided in the Intel Quartus
Prime software as a starting point.

Table 1. Intel Memory HDL Language Templates

Language Full Design Name

VHDL Single-Port RAM
Single-Port RAM with Initial Contents
Simple Dual-Port RAM (single clock)
Simple Dual-Port RAM (dual clock)
True Dual-Port RAM (single clock)
True Dual-Port RAM (dual clock)

continued...

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Language Full Design Name

Mixed-Width RAM
Mixed-Width True Dual-Port RAM
Byte-Enabled Simple Dual-Port RAM
Byte-Enabled True Dual-Port RAM
Single-Port ROM
Dual-Port ROM

Verilog HDL Single-Port RAM
Single-Port RAM with Initial Contents
Simple Dual-Port RAM (single clock)
Simple Dual-Port RAM (dual clock)
True Dual-Port RAM (single clock)
True Dual-Port RAM (dual clock)
Single-Port ROM
Dual-Port ROM

SystemVerilog Mixed-Width Port RAM
Mixed-Width True Dual-Port RAM
Mixed-Width True Dual-Port RAM (new data on same port read during write)
Byte-Enabled Simple Dual Port RAM
Byte-Enabled True Dual-Port RAM

Related Information

• Introduction to Intel® FPGA IP Cores

• Intel® Hyperflex™ Architecture High-Performance Design Handbook

• Intel® Arria® 10 Core Fabric and General Purpose I/Os Handbook

1.4.1. Inferring RAM functions from HDL Code

To infer RAM functions, synthesis tools recognize certain types of HDL code and map
the detected code to technology-specific implementations. For device families that
have dedicated RAM blocks, the Intel Quartus Prime software uses an Intel FPGA IP
core to target the device memory architecture.

Synthesis tools typically consider all signals and variables that have a multi-
dimensional array type and then create a RAM block, if applicable. This is based on the
way the signals or variables are assigned or referenced in the HDL source description.

Standard synthesis tools recognize single-port and simple dual-port (one read port
and one write port) RAM blocks. Some synthesis tools (such as the Intel Quartus
Prime software) also recognize true dual-port (two read ports and two write ports)
RAM blocks that map to the memory blocks in certain Intel FPGA devices.

Some tools (such as the Intel Quartus Prime software) also infer memory blocks for
array variables and signals that are referenced (read/written) by two indexes, to
recognize mixed-width and byte-enabled RAMs for certain coding styles.

Note: If your design contains a RAM block that your synthesis tool does not recognize and
infer, the design might require a large amount of system memory that can potentially
cause compilation problems.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

9

https://www.intel.com/content/www/us/en/docs/programmable/683102.html
https://www.intel.com/content/www/us/en/docs/programmable/683353.html
https://www.intel.com/content/www/us/en/docs/programmable/683461.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.1.1. Use Synchronous Memory Blocks

Memory blocks in Intel FPGA are synchronous. Therefore, RAM designs must be
synchronous to map directly into dedicated memory blocks. For these devices, Intel
Quartus Prime synthesis implements asynchronous memory logic in regular logic cells.

Synchronous memory offers several advantages over asynchronous memory, including
higher frequencies and thus higher memory bandwidth, increased reliability, and less
standby power. To convert asynchronous memory, move registers from the datapath
into the memory block.

A memory block is synchronous if it has one of the following read behaviors:

• Memory read occurs in a Verilog HDL always block with a clock signal or a VHDL
clocked process. The recommended coding style for synchronous memories is to
create your design with a registered read output.

• Memory read occurs outside a clocked block, but there is a synchronous read
address (that is, the address used in the read statement is registered). Synthesis
does not always infer this logic as a memory block, or may require external
bypass logic, depending on the target device architecture. Avoid this coding style
for synchronous memories.

Note: The synchronous memory structures in Intel FPGA devices can differ from the
structures in other vendors’ devices. For best results, match your design to the target
device architecture.

This chapter provides coding recommendations for various memory types. All the
examples in this document are synchronous to ensure that they can be directly
mapped into the dedicated memory architecture available in Intel FPGAs.

1.4.1.2. Avoid Unsupported Reset and Control Conditions

To ensure correct implementation of HDL code in the target device architecture, avoid
unsupported reset conditions or other control logic that does not exist in the device
architecture.

The RAM contents of Intel FPGA memory blocks cannot be cleared with a reset signal
during device operation. If your HDL code describes a RAM with a reset signal for the
RAM contents, the logic is implemented in regular logic cells instead of a memory
block. Do not place RAM read or write operations in an always block or process
block with a reset signal. To specify memory contents, initialize the memory or write
the data to the RAM during device operation.

In addition to reset signals, other control logic can prevent synthesis from inferring
memory logic as a memory block. For example, if you use a clock enable on the read
address registers, you can alter the output latch of the RAM, resulting in the
synthesized RAM result not matching the HDL description. Use the address stall
feature as a read address clock enable to avoid this limitation. Check the
documentation for your FPGA device to ensure that your code matches the hardware
available in the device.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 6. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in
Device Architecture

module clear_ram
(
 input clock, reset, we,
 input [7:0] data_in,
 input [4:0] address,
 output reg [7:0] data_out
);

 reg [7:0] mem [0:31];
 integer i;

 always @ (posedge clock or posedge reset)
 begin
 if (reset == 1'b1)
 mem[address] <= 0;
 else if (we == 1'b1)
 mem[address] <= data_in;

 data_out <= mem[address];
 end
endmodule

Related Information

Specifying Initial Memory Contents at Power-Up on page 24

1.4.1.3. Check Read-During-Write Behavior

Ensure the read-during-write behavior of the memory block described in your HDL
design is consistent with your target device architecture.

Your HDL source code specifies the memory behavior when you read and write from
the same memory address in the same clock cycle. The read returns either the old
data at the address, or the new data written to the address. This is referred to as the
read-during-write behavior of the memory block. Intel FPGA memory blocks have
different read-during-write behavior depending on the target device family, memory
mode, and block type.

Synthesis tools preserve the functionality described in your source code. Therefore, if
your source code specifies unsupported read-during-write behavior for the RAM
blocks, the Intel Quartus Prime software implements the logic in regular logic cells as
opposed to the dedicated RAM hardware.

Example 7. Continuous read in HDL code

One common problem occurs when there is a continuous read in the HDL code, as in
the following examples. Avoid using these coding styles:

//Verilog HDL concurrent signal assignment
assign q = ram[raddr_reg];

-- VHDL concurrent signal assignment
q <= ram(raddr_reg);

This type of HDL implies that when a write operation takes place, the read
immediately reflects the new data at the address independent of the read clock, which
is the behavior of asynchronous memory blocks. Synthesis cannot directly map this
behavior to a synchronous memory block. If the write clock and read clock are the

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

same, synthesis can infer memory blocks and add extra bypass logic so that the
device behavior matches the HDL behavior. If the write and read clocks are different,
synthesis cannot reliably add bypass logic, so it implements the logic in regular logic
cells instead of dedicated RAM blocks. The examples in the following sections discuss
some of these differences for read-during-write conditions.

In addition, the MLAB memories in certain device logic array blocks (LABs) does not
easily support old data or new data behavior for a read-during-write in the dedicated
device architecture. Implementing the extra logic to support this behavior significantly
reduces timing performance through the memory.

Note: For best performance in MLAB memories, ensure that your design does not depend on
the read data during a write operation.

In many synthesis tools, you can declare that the read-during-write behavior is not
important to your design (for example, if you never read from the same address to
which you write in the same clock cycle). In Intel Quartus Prime Pro Edition synthesis,
set the synthesis attribute ramstyle to no_rw_check to allow Intel Quartus Prime
software to define the read-during-write behavior of a RAM, rather than use the
behavior specified by your HDL code. This attribute can prevent the synthesis tool
from using extra logic to implement the memory block, or can allow memory inference
when it would otherwise be impossible.

1.4.1.4. Controlling RAM Inference and Implementation

Intel Quartus Prime synthesis provides options to control RAM inference and
implementation for Intel FPGA devices with synchronous memory blocks. Synthesis
tools usually do not infer small RAM blocks because implementing small RAM blocks is
more efficient if using the registers in regular logic.

To direct the Intel Quartus Prime software to infer RAM blocks globally for all sizes,
enable the Allow Any RAM Size for Recognition option in the Advanced Analysis
& Synthesis Settings dialog box (Assignments ➤ Settings ➤ Compiler Settings
➤ Synthesis Settings (Advanced)).

Alternatively, use the ramstyle RTL attribute to specify how an inferred RAM is
implemented, including the type of memory block or the use of regular logic instead of
a dedicated memory block. Intel Quartus Prime synthesis does not map inferred
memory into MLABs unless the HDL code specifies the appropriate ramstyle
attribute, although the Fitter may map some memories to MLABs.

Set the ramstyle attribute in the RTL or in the .qsf file.

(* ramstyle = "mlab" *) my_shift_reg

set_instance_assignment -name RAMSTYLE_ATTRIBUTE LOGIC -to ram

. This attribute controls the implementation of an inferred memory. Apply the attribute
to a variable declaration that infers a RAM, ROM, or shift-register. Legal values are:
"M9K", "M10K", "M20K", "M144K", "MLAB, "no_rw_check", "logic"

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can also specify the maximum depth of memory blocks for RAM or ROM inference
in RTL. Specify the max_depth synthesis attribute to the declaration of a variable that
represents a RAM or ROM in your design file. For example:

// Limit the depth of the memory blocks implement "ram" to 512
// This forces the Intel Quartus Prime software to use two M512 blocks instead
of one M4K block to implement this RAM
(* max_depth = 512 *) reg [7:0] ram[0:1023];

In addition, you can specify the no_ram synthesis attribute to prevent RAM inference
on a specific array. For example:

 (* no_ram *) logic [11:0] my_array [0:12];

1.4.1.5. Single-Clock Synchronous RAM with Old Data Read-During-Write
Behavior

The code examples in this section show Verilog HDL and VHDL code that infers simple
dual-port, single-clock synchronous RAM. Single-port RAM blocks use a similar coding
style.

The read-during-write behavior in these examples is to read the old data at the
memory address. For best performance in MLAB memories, use the appropriate
attribute so that your design does not depend on the read data during a write
operation. The simple dual-port RAM code samples map directly into Intel synchronous
memory.

Single-port versions of memory blocks (that is, using the same read address and write
address signals) allow better RAM utilization than dual-port memory blocks, depending
on the device family. Refer to the appropriate device handbook for recommendations
on your target device.

Example 8. Verilog HDL Single-Clock, Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

module single_clk_ram(
 output reg [7:0] q,
 input [7:0] d,
 input [4:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [31:0];

 always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;
 q <= mem[read_address]; // q doesn't get d in this clock cycle
 end
endmodule

Example 9. VHDL Single-Clock, Simple Dual-Port Synchronous RAM with Old Data Read-
During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_ram IS
 PORT (
 clock: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
 SIGNAL ram_block: MEM;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 q <= ram_block(read_address);
 -- VHDL semantics imply that q doesn't get data
 -- in this clock cycle
 END IF;
 END PROCESS;
END rtl;

Note: The small size of this single_clock_ram causes the Compiler to infer the memory
as MLAB memory blocks, rather than M20K memory blocks. If single_clock_ram
specifies a larger width, the Compiler infers the memory as M20K memory blocks.

1.4.1.6. Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior

The examples in this section describe RAM blocks in which the read-during-write
behavior returns the new value being written at the memory address.

To implement this behavior in the target device, synthesis tools add bypass logic
around the RAM block. This bypass logic increases the area utilization of the design,
and decreases the performance if the RAM block is part of the design’s critical path. If
the device memory supports new data read-during-write behavior when in single-port
mode (same clock, same read address, and same write address), the Verilog memory
block doesn't require any bypass logic. Refer to the appropriate device handbook for
specifications on your target device.

The following examples use a blocking assignment for the write so that the data is
assigned intermediately.

Example 10. Verilog HDL Single-Clock, Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

module single_clock_wr_ram(
 output reg [7:0] q,
 input [7:0] d,
 input [6:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [127:0];

 always @ (posedge clk) begin
 if (we)
 mem[write_address] = d;
 q = mem[read_address]; // q does get d in this clock
 // cycle if we is high
 end
endmodule

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 11. VHDL Single-Clock, Simple Dual-Port Synchronous RAM with New Data Read-
During-Write Behavior:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY single_clock_ram IS
 PORT (
 clock: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)
);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);

BEGIN
 PROCESS (clock)
 VARIABLE ram_block: MEM;
 BEGIN
 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN
 ram_block(write_address) := data;
 END IF;
 q <= ram_block(read_address);
 -- VHDL semantics imply that q doesn't get data
 -- in this clock cycle
 END IF;
 END PROCESS;
END rtl;

It is possible to create a single-clock RAM by using an assign statement to read the
address of mem and create the output q. By itself, the RTL describes new data read-
during-write behavior. However, if the RAM output feeds a register in another
hierarchy, a read-during-write results in the old data. Synthesis tools may not infer a
RAM block if the tool cannot determine which behavior is described, such as when the
memory feeds a hard hierarchical partition boundary. Avoid this type of RTL.

Example 12. Avoid Verilog Coding Style with Vague read-during-write Behavior

reg [7:0] mem [127:0];
reg [6:0] read_address_reg;

always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;
 read_address_reg <= read_address;
end
assign q = mem[read_address_reg];

Example 13. Avoid VHDL Coding Style with Vague read-during-write Behavior

The following example uses a concurrent signal assignment to read from the RAM, and
presents a similar behavior.

ARCHITECTURE rtl OF single_clock_rw_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
 SIGNAL ram_block: MEM;
 SIGNAL read_address_reg: INTEGER RANGE 0 to 31;
BEGIN
 PROCESS (clock)
 BEGIN

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 read_address_reg <= read_address;
 END IF;
 END PROCESS;
 q <= ram_block(read_address_reg);
END rtl;

1.4.1.7. Simple Dual-Port, Dual-Clock Synchronous RAM

With dual-clock designs, synthesis tools cannot accurately infer the read-during-write
behavior because it depends on the timing of the two clocks within the target device.
Therefore, the read-during-write behavior of the synthesized design is undefined and
may differ from your original HDL code.

Example 14. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

module simple_dual_port_ram_dual_clock
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)
(
 input [(DATA_WIDTH-1):0] data,
 input [(ADDR_WIDTH-1):0] read_addr, write_addr,
 input we, read_clock, write_clock,
 output reg [(DATA_WIDTH-1):0] q
);

 // Declare the RAM variable
 reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

 always @ (posedge write_clock)
 begin
 // Write
 if (we)
 ram[write_addr] <= data;
 end

 always @ (posedge read_clock)
 begin
 // Read
 q <= ram[read_addr];
 end

endmodule

Example 15. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dual_clock_ram IS
 PORT (
 clock1, clock2: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
);
END dual_clock_ram;
ARCHITECTURE rtl OF dual_clock_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL ram_block: MEM;
 SIGNAL read_address_reg : INTEGER RANGE 0 to 31;
BEGIN

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 PROCESS (clock1)
 BEGIN
 IF (rising_edge(clock1)) THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 END IF;
 END PROCESS;
 PROCESS (clock2)
 BEGIN
 IF (rising_edge(clock2)) THEN
 q <= ram_block(read_address_reg);
 read_address_reg <= read_address;
 END IF;
 END PROCESS;
END rtl;

Related Information

Check Read-During-Write Behavior on page 11

1.4.1.8. True Dual-Port Synchronous RAM

The code examples in this section show Verilog HDL and VHDL code that infers true
dual-port synchronous RAM. Different synthesis tools may differ in their support for
these types of memories.

Intel FPGA synchronous memory blocks have two independent address ports, allowing
for operations on two unique addresses simultaneously. A read operation and a write
operation can share the same port if they share the same address.

The Intel Quartus Prime software infers true dual-port RAMs in Verilog HDL and VHDL,
with the following characteristics:

• Any combination of independent read or write operations in the same clock cycle.

• At most two unique port addresses.

• In one clock cycle, with one or two unique addresses, they can perform:

— Two reads and one write

— Two writes and one read

— Two writes and two reads

In the synchronous RAM block architecture, there is no priority between the two ports.
Therefore, if you write to the same location on both ports at the same time, the result
is indeterminate in the device architecture. You must ensure your HDL code does not
imply priority for writes to the memory block, if you want the design to be
implemented in a dedicated hardware memory block. For example, if both ports are
defined in the same process block, the code is synthesized and simulated sequentially
so that there is a priority between the two ports. If your code does imply a priority,
the logic cannot be implemented in the device RAM blocks and is implemented in
regular logic cells. You must also consider the read-during-write behavior of the RAM
block to ensure that it can be mapped directly to the device RAM architecture.

When a read and write operation occurs on the same port for the same address, the
read operation may behave as follows:

• Read new data—Intel Arria® 10 and Intel Stratix® 10 devices support this
behavior.

• Read old data—Not supported.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When a read and write operation occurs on different ports for the same address (also
known as mixed port), the read operation may behave as follows:

• Read new data—Intel Quartus Prime Pro Edition synthesis supports this mode by
creating bypass logic around the synchronous memory block.

• Read old data—Intel Arria 10 and Intel Cyclone® 10 devices support this
behavior.

• Read don’t care—Synchronous memory blocks support this behavior in simple
dual-port mode.

The Verilog HDL single-clock code sample maps directly into synchronous Intel Arria
10 memory blocks. When a read and write operation occurs on the same port for the
same address, the new data being written to the memory is read. When a read and
write operation occurs on different ports for the same address, the old data in the
memory is read. Simultaneous writes to the same location on both ports results in
indeterminate behavior.

If you generate a dual-clock version of this design describing the same behavior, the
inferred memory in the target device presents undefined mixed port read-during-write
behavior, because it depends on the relationship between the clocks.

Example 16. Verilog HDL True Dual-Port RAM with Single Clock

/ Quartus Prime Verilog Template
// True Dual Port RAM with single clock
//
// Read-during-write behavior is undefined for mixed ports
// and "new data" on the same port

module true_dual_port_ram_single_clock
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)
(
 input [(DATA_WIDTH-1):0] data_a, data_b,
 input [(ADDR_WIDTH-1):0] addr_a, addr_b,
 input we_a, we_b, clk,
 output reg [(DATA_WIDTH-1):0] q_a, q_b
);

 // Declare the RAM variable
 reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

 // Port A
 always @ (posedge clk)
 begin
 if (we_a)
 begin
 ram[addr_a] = data_a;
 end
 q_a <= ram[addr_a];
 end

 // Port B
 always @ (posedge clk)
 begin
 if (we_b)
 begin
 ram[addr_b] = data_b;
 end
 q_b <= ram[addr_b];
 end

endmodule

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 17. VHDL Read Statement Example

-- Port A
process(clk)
 begin
 if(rising_edge(clk)) then
 if(we_a = '1') then
 ram(addr_a) := data_a;
 end if;
 q_a <= ram(addr_a);
 end if;
end process;

-- Port B
process(clk)
 begin
 if(rising_edge(clk)) then
 if(we_b = '1') then
 ram(addr_b) := data_b;
 end if;
 q_b <= ram(addr_b);
 end if;
end process;

The VHDL single-clock code sample maps directly into Intel FPGA synchronous
memory. When a read and write operation occurs on the same port for the same
address, the new data writing to the memory is read. When a read and write operation
occurs on different ports for the same address, the behavior results in old data for
Intel Arria 10 and Intel Cyclone 10 devices, and is undefined for Intel Stratix 10
devices. Simultaneous write operations to the same location on both ports results in
indeterminate behavior.

If you generate a dual-clock version of this design describing the same behavior, the
memory in the target device presents undefined mixed port read-during-write
behavior because it depends on the relationship between the clocks.

Example 18. VHDL True Dual-Port RAM with Single Clock

-- Quartus Prime VHDL Template
-- True Dual-Port RAM with single clock
--
-- Read-during-write behavior is undefined for mixed ports
-- and "new data" on the same port

library ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram_single_clock is

 generic
 (
 DATA_WIDTH : natural := 8;
 ADDR_WIDTH : natural := 6
);

 port
 (
 clk : in std_logic;
 addr_a : in natural range 0 to 2**ADDR_WIDTH - 1;
 addr_b : in natural range 0 to 2**ADDR_WIDTH - 1;
 data_a : in std_logic_vector((DATA_WIDTH-1) downto 0);
 data_b : in std_logic_vector((DATA_WIDTH-1) downto 0);
 we_a : in std_logic := '1';
 we_b : in std_logic := '1';
 q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
 q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)
);

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

end true_dual_port_ram_single_clock;

architecture rtl of true_dual_port_ram_single_clock is

 -- Build a 2-D array type for the RAM
 subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
 type memory_t is array(2**ADDR_WIDTH-1 downto 0) of word_t;

 -- Declare the RAM
 shared variable ram : memory_t;

begin

 -- Port A
 process(clk)
 begin
 if(rising_edge(clk)) then
 if(we_a = '1') then
 ram(addr_a) := data_a;
 end if;
 q_a <= ram(addr_a);
 end if;
 end process;

 -- Port B
 process(clk)
 begin
 if(rising_edge(clk)) then
 if(we_b = '1') then
 ram(addr_b) := data_b;
 end if;
 q_b <= ram(addr_b);
 end if;
 end process;

end rtl;

Related Information

Intel® Arria® 10 Core Fabric and General Purpose I/Os Handbook

1.4.1.9. Mixed-Width Dual-Port RAM

The RAM code examples in this section show SystemVerilog and VHDL code that infers
RAM with data ports with different widths.

Verilog-1995 doesn't support mixed-width RAMs because the standard lacks a multi-
dimensional array to model the different read width, write width, or both. Verilog-2001
doesn't support mixed-width RAMs because this type of logic requires multiple packed
dimensions. Different synthesis tools may differ in their support for these memories.
This section describes the inference rules for Intel Quartus Prime Pro Edition
synthesis.

The first dimension of the multi-dimensional packed array represents the ratio of the
wider port to the narrower port. The second dimension represents the narrower port
width. The read and write port widths must specify a read or write ratio supported by
the memory blocks in the target device. Otherwise, the synthesis tool does not infer a
RAM.

Refer to the Intel Quartus Prime HDL templates for parameterized examples with
supported combinations of read and write widths. You can also find examples of true
dual port RAMs with two mixed-width read ports and two mixed-width write ports.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

20

https://www.intel.com/content/www/us/en/docs/programmable/683461.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 19. SystemVerilog Mixed-Width RAM with Read Width Smaller than Write Width

module mixed_width_ram // 256x32 write and 1024x8 read
(
 input [7:0] waddr,
 input [31:0] wdata,
 input we, clk,
 input [9:0] raddr,
 output logic [7:0] q
);
 logic [3:0][7:0] ram[0:255];
 always_ff@(posedge clk)
 begin
 if(we) ram[waddr] <= wdata;
 q <= ram[raddr / 4][raddr % 4];
 end
endmodule : mixed_width_ram

Example 20. SystemVerilog Mixed-Width RAM with Read Width Larger than Write Width

module mixed_width_ram // 1024x8 write and 256x32 read
(
 input [9:0] waddr,
 input [31:0] wdata,
 input we, clk,
 input [7:0] raddr,
 output logic [9:0] q
);
 logic [3:0][7:0] ram[0:255];
 always_ff@(posedge clk)
 begin
 if(we) ram[waddr / 4][waddr % 4] <= wdata;
 q <= ram[raddr];
 end
endmodule : mixed_width_ram

Example 21. VHDL Mixed-Width RAM with Read Width Smaller than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
 type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
 type ram_t is array (0 to 255) of word_t;
end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
 port (
 we, clk : in std_logic;
 waddr : in integer range 0 to 255;
 wdata : in word_t;
 raddr : in integer range 0 to 1023;
 q : out std_logic_vector(7 downto 0));
end mixed_width_ram;

architecture rtl of mixed_width_ram is
 signal ram : ram_t;
begin -- rtl
 process(clk, we)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 ram(waddr) <= wdata;
 end if;
 q <= ram(raddr / 4)(raddr mod 4);
 end if;
 end process;
end rtl;

Example 22. VHDL Mixed-Width RAM with Read Width Larger than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
 type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
 type ram_t is array (0 to 255) of word_t;
end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
 port (
 we, clk : in std_logic;
 waddr : in integer range 0 to 1023;
 wdata : in std_logic_vector(7 downto 0);
 raddr : in integer range 0 to 255;
 q : out word_t);
end mixed_width_ram;

architecture rtl of mixed_width_ram is
 signal ram : ram_t;
begin -- rtl
 process(clk, we)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then
 ram(waddr / 4)(waddr mod 4) <= wdata;
 end if;
 q <= ram(raddr);
 end if;
 end process;
end rtl;

1.4.1.10. RAM with Byte-Enable Signals

The RAM code examples in this section show SystemVerilog and VHDL code that infers
RAM with controls for writing single bytes into the memory word, or byte-enable
signals.

Synthesis models byte-enable signals by creating write expressions with two indexes,
and writing part of a RAM "word." With these implementations, you can also write
more than one byte at once by enabling the appropriate byte enables.

Verilog-1995 doesn't support mixed-width RAMs because the standard lacks a multi-
dimensional array to model the different read width, write width, or both. Verilog-2001
doesn't support mixed-width RAMs because this type of logic requires multiple packed
dimensions. Different synthesis tools may differ in their support for these memories.
This section describes the inference rules for Intel Quartus Prime Pro Edition
synthesis.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Refer to the Intel Quartus Prime HDL templates for parameterized examples that you
can use for different address widths, and true dual port RAM examples with two read
ports and two write ports.

Example 23. SystemVerilog Simple Dual-Port Synchronous RAM with Byte Enable

module byte_enabled_simple_dual_port_ram
(
 input we, clk,
 input [ADDRESS_WIDTH-1:0] waddr, raddr,// address width = 6
 input [NUM_BYTES-1:0] be, // 4 bytes per word
 input [(BYTE_WIDTH * NUM_BYTES -1):0] wdata, // byte width = 8, 4 bytes per
word
 output reg [(BYTE_WIDTH * NUM_BYTES -1):0] q // byte width = 8, 4 bytes per
word
);

 parameter ADDRESS_WIDTH = 6;
 parameter DEPTH = 2**ADDRESS_WIDTH;
 parameter BYTE_WIDTH = 8;
 parameter NUM_BYTES = 4;

 // use a multi-dimensional packed array
 //to model individual bytes within the word
 logic [NUM_BYTES-1:0][BYTE_WIDTH-1:0] ram[0:DEPTH-1];
 // # words = 1 << address width

 // port A
 always@(posedge clk)
 begin
 if(we) begin
 for (int i = 0; i < NUM_BYTES; i = i + 1) begin
 if(be[i]) ram[waddr][i] <= wdata[i*BYTE_WIDTH +: BYTE_WIDTH];
 end
 end
 q <= ram[raddr];
 end
endmodule

Example 24. VHDL Simple Dual-Port Synchronous RAM with Byte Enable

library ieee;
use ieee.std_logic_1164.all;
library work;

entity byte_enabled_simple_dual_port_ram is
generic (DEPTH : integer := 64;
 NUM_BYTES : integer := 4;
 BYTE_WIDTH : integer := 8
);
port (
 we, clk : in std_logic;
 waddr, raddr : in integer range 0 to DEPTH -1 ; -- address width = 6
 be : in std_logic_vector (NUM_BYTES-1 downto 0); -- 4 bytes per word
 wdata: in std_logic_vector((NUM_BYTES * BYTE_WIDTH -1) downto 0); --
width = 32
 q : out std_logic_vector((NUM_BYTES * BYTE_WIDTH -1) downto 0)); --
width = 32
end byte_enabled_simple_dual_port_ram;

architecture rtl of byte_enabled_simple_dual_port_ram is

 -- build up 2D array to hold the memory
 type word_t is array (0 to NUM_BYTES-1) of std_logic_vector(BYTE_WIDTH-1
downto 0);
 type ram_t is array (0 to DEPTH-1) of word_t;

 signal ram : ram_t;
 signal q_local : word_t;

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 begin -- Re-organize the read data from the RAM to match the output
 unpack: for i in 0 to NUM_BYTES-1 generate
 q(BYTE_WIDTH*(i+1) - 1 downto BYTE_WIDTH*i) <= q_local(i);
 end generate unpack;

 -- port A
 process(clk)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then
 for I in (NUM_BYTES-1) downto 0 loop
 if(be(I) = '1') then
 ram(waddr)(I) <= wdata(((I+1)*BYTE_WIDTH-1) downto
I*BYTE_WIDTH);
 end if;
 end loop;
 end if;
 q_local <= ram(raddr);
 end if;
 end process;
end rtl;

1.4.1.11. Specifying Initial Memory Contents at Power-Up

Your synthesis tool may offer various ways to specify the initial contents of an inferred
memory. There are slight power-up and initialization differences between dedicated
RAM blocks and the MLAB memory, due to the continuous read of the MLAB.

Intel FPGA dedicated RAM block outputs always power-up to zero, and are set to the
initial value on the first read. For example, if address 0 is pre-initialized to FF, the RAM
block powers up with the output at 0. A subsequent read after power-up from address
0 outputs the pre-initialized value of FF. Therefore, if a RAM powers up and an enable
(read enable or clock enable) is held low, the power-up output of 0 maintains until the
first valid read cycle. The synthesis tool implements MLAB using registers that power-
up to 0, but initialize to their initial value immediately at power-up or reset. Therefore,
the initial value is seen, regardless of the enable status. The Intel Quartus Prime
software maps inferred memory to MLABs when the HDL code specifies an appropriate
ramstyle attribute.

In Verilog HDL, you can use an initial block to initialize the contents of an inferred
memory. Intel Quartus Prime Pro Edition synthesis automatically converts the initial
block into a Memory Initialization File (.mif) for the inferred RAM.

Example 25. Verilog HDL RAM with Initialized Contents

module ram_with_init(
 output reg [7:0] q,
 input [7:0] d,
 input [4:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [0:31];
 integer i;

 initial begin
 for (i = 0; i < 32; i = i + 1)
 mem[i] = i[7:0];
 end

 always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 q <= mem[read_address];
 end
endmodule

Intel Quartus Prime Pro Edition synthesis and other synthesis tools also support the
$readmemb and $readmemh attributes. These attributes allow RAM initialization and
ROM initialization work identically in synthesis and simulation.

Example 26. Verilog HDL RAM Initialized with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
 $readmemb("ram.txt", ram);
end

In VHDL, you can initialize the contents of an inferred memory by specifying a default
value for the corresponding signal. Intel Quartus Prime Pro Edition synthesis
automatically converts the default value into a .mif file for the inferred RAM.

Example 27. VHDL RAM with Initialized Contents

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;

ENTITY ram_with_init IS
 PORT(
 clock: IN STD_LOGIC;
 data: IN UNSIGNED (7 DOWNTO 0);
 write_address: IN integer RANGE 0 to 31;
 read_address: IN integer RANGE 0 to 31;
 we: IN std_logic;
 q: OUT UNSIGNED (7 DOWNTO 0));
END;

ARCHITECTURE rtl OF ram_with_init IS

 TYPE MEM IS ARRAY(31 DOWNTO 0) OF unsigned(7 DOWNTO 0);
 FUNCTION initialize_ram
 return MEM is
 variable result : MEM;
 BEGIN
 FOR i IN 31 DOWNTO 0 LOOP
 result(i) := to_unsigned(natural(i), natural'(8));
 END LOOP;
 RETURN result;
 END initialize_ram;

 SIGNAL ram_block : MEM := initialize_ram;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 q <= ram_block(read_address);
 END IF;
 END PROCESS;
END rtl;

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.2. Inferring ROM Functions from HDL Code

Synthesis tools infer ROMs when a CASE statement exists in which a value is set to a
constant for every choice in the CASE statement.

Because small ROMs typically achieve the best performance when they are
implemented using the registers in regular logic, each ROM function must meet a
minimum size requirement for inference and placement in memory.

For device architectures with synchronous RAM blocks, to infer a ROM block, synthesis
must use registers for either the address or the output. When your design uses output
registers, synthesis implements registers from the input registers of the RAM block
without affecting the functionality of the ROM. If you register the address, the power-
up state of the inferred ROM can be different from the HDL design. In this scenario,
Intel Quartus Prime synthesis issues a warning.

The following ROM examples map directly to the Intel FPGA memory architecture.

Example 28. Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_out);
 input clock;
 input [7:0] address;
 output reg [5:0] data_out;
 reg [5:0] data_out;

 always @ (posedge clock)
 begin
 case (address)
 8'b00000000: data_out = 6'b101111;
 8'b00000001: data_out = 6'b110110;
 ...
 8'b11111110: data_out = 6'b000001;
 8'b11111111: data_out = 6'b101010;
 endcase
 end
endmodule

Example 29. VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY sync_rom IS
 PORT (
 clock: IN STD_LOGIC;
 address: IN STD_LOGIC_VECTOR(7 downto 0);
 data_out: OUT STD_LOGIC_VECTOR(5 downto 0)
);
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)
 BEGIN
 IF rising_edge (clock) THEN
 CASE address IS
 WHEN "00000000" => data_out <= "101111";
 WHEN "00000001" => data_out <= "110110";
 ...
 WHEN "11111110" => data_out <= "000001";
 WHEN "11111111" => data_out <= "101010";
 WHEN OTHERS => data_out <= "101111";
 END CASE;

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 END IF;
 END PROCESS;
END rtl;

Example 30. Verilog HDL Dual-Port Synchronous ROM Using readmemb

module dual_port_rom
#(parameter data_width=8, parameter addr_width=8)
(
 input [(addr_width-1):0] addr_a, addr_b,
 input clk,
 output reg [(data_width-1):0] q_a, q_b
);
 reg [data_width-1:0] rom[2**addr_width-1:0];

 initial // Read the memory contents in the file
 //dual_port_rom_init.txt.
 begin
 $readmemb("dual_port_rom_init.txt", rom);
 end

 always @ (posedge clk)
 begin
 q_a <= rom[addr_a];
 q_b <= rom[addr_b];
 end
endmodule

Example 31. VHDL Dual-Port Synchronous ROM Using Initialization Function

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dual_port_rom is
 generic (
 DATA_WIDTH : natural := 8;
 ADDR_WIDTH : natural := 8
);
 port (
 clk : in std_logic;
 addr_a : in natural range 0 to 2**ADDR_WIDTH - 1;
 addr_b : in natural range 0 to 2**ADDR_WIDTH - 1;
 q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
 q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)
);
end entity;

architecture rtl of dual_port_rom is
 -- Build a 2-D array type for the ROM
 subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
 type memory_t is array(2**ADDR_WIDTH - 1 downto 0) of word_t;

 function init_rom
 return memory_t is
 variable tmp : memory_t := (others => (others => '0'));
 begin
 for addr_pos in 0 to 2**ADDR_WIDTH - 1 loop
 -- Initialize each address with the address itself
 tmp(addr_pos) := std_logic_vector(to_unsigned(addr_pos, DATA_WIDTH));
 end loop;
 return tmp;
 end init_rom;

 -- Declare the ROM signal and specify a default initialization value.
 signal rom : memory_t := init_rom;
begin
 process(clk)

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 begin
 if (rising_edge(clk)) then
 q_a <= rom(addr_a);
 q_b <= rom(addr_b);
 end if;
 end process;
end rtl;

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.3. Inferring Shift Registers in HDL Code

The Intel Quartus Prime software Analysis & Synthesis stage of the Compiler
automatically detects and infers shift registers in your HDL code according to the
following guidelines:

• Shift Register Inference for Intel Stratix 10 and Intel Agilex™ 7 Devices on page
29

• Shift Register Inference for Intel Arria 10 and Intel Cyclone 10 GX Devices on
page 30

Shift Register Inference for Intel Stratix 10 and Intel Agilex™ 7 Devices

Because of the high prevalence of registers in routing segments of the Intel
Hyperflex™ architecture, the Compiler's threshold for shift register inference is
increased for Intel Stratix 10 and Intel Agilex™ 7 devices. This increase in the
threshold means that some logic that the Compiler infers as a shift register in a
previous generation FPGA, may not be inferred as a shift register when targeting Intel
Stratix 10 or Intel Agilex 7 devices. This threshold increase allows more register
retiming, thus improving overall design performance.

The following criteria apply to shift register detection and inference for Intel Stratix 10
and Intel Agilex 7 devices.

Default shift register inference requirements for Intel Stratix 10 and Intel
Agilex 7 Devices:

1. The minimum number of registers inferred in the shift register is 64. When the
width of a chain of registers is 1, the chain must contain at least 69 registers for
synthesis to infer a shift register. From these 69 registers, synthesis does not
include the first and second registers in the chain in the inferred shift register.
Synthesis places these first and second shift registers in ALMs. Synthesis infers a
64 bit long shift register with the third through sixty sixth registers. Synthesis
does not include the last three registers in the chain in the inferred shift register.
Rather, synthesis places the last three registers in ALMs.

2. The minimum depth of registers inferred in the shift register is 32. When the width
of a chain of registers is two or more, the chain must contain at least 37 register
levels for synthesis to infer a shift register. As in the first requirement, synthesis
does not include the first and second registers levels in each chain in the inferred
shift register, nor are the last three register levels.

Figure 2. Shift Register Inference for Intel Stratix 10 and Intel Agilex 7 Devices

1 2 3 4 5 65 66 67 68 69

First Two Registers Not
Included in Inferred

Shift Register

Shift Register Inferred
from 64 Registers

Last Three Registers
Not Included In

Inferred Shift Register

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• With the following assignment, the total number of required registers (depth *
width) drops to 37:

set_global_assignment -name ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_RECOGNITION ON

Note: An additional stage of inference takes place during the early retiming stage
as physical synthesis optimization recovers area for registers that have not
been retimed.

• With both of the following assignments, the total number of required registers
(depth * width) drops to 13:

set_global_assignment -name ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_RECOGNITION ON
set_global_assignment -name PHYSICAL_SHIFT_REGISTER_INFERENCE=OFF

Note: Reducing the shift register inference threshold can negatively impact design
performance, as the technique reduces the number of registers available for retiming.

Shift Register Inference for Intel Arria 10 and Intel Cyclone 10 GX Devices
For Intel Arria 10 devices, Analysis & Synthesis detects a group of shift registers of the
same length, and implements the registers using the Shift Register Intel FPGA IP.

For automatic detection, all of the shift registers must have the following
characteristics:

• Use the same clock and clock enable

• Have no other secondary signals

• Have equally spaced taps that are at least three registers apart

Synthesis recognizes shift registers only for device families with dedicated RAM blocks.
Intel Quartus Prime Pro Edition synthesis uses the following guidelines:

• The Intel Quartus Prime software determines whether to infer the Shift Register
Intel FPGA IP based on the width of the registered bus (W), the length between
each tap (L), or the number of taps (N).

• If the Auto Shift Register Recognition option is set to Auto, Intel Quartus
Prime Pro Edition synthesis determines which shift registers are implemented in
RAM blocks for logic by using the following methods:

— The Optimization Technique setting

— Logic and RAM utilization information about the design

— Timing information from Timing-Driven Synthesis

• If the registered bus width is one (W = 1), Intel Quartus Prime synthesis infers
the shift register IP if the number of taps, times the length between each tap, is
greater than or equal to 64 (N x L > 64).

• If the registered bus width is greater than one (W > 1), and the registered bus
width times the number of taps times the length between each tap is greater than
or equal to 32 (W × N × L > 32), then Intel Quartus Prime synthesis the Shift
Register Intel FPGA IP.

• If the length between each tap (L) is not a power of two, Intel Quartus Prime
synthesis needs external logic (LEs or ALMs) to decode the read and write
counters, because of different sizes of shift registers. This extra decode logic
eliminates the performance and utilization advantages of implementing shift
registers in memory.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The registers that Intel Quartus Prime synthesis maps to the Shift Register Intel FPGA
IP, and places in RAM are not available in a Verilog HDL or VHDL output file for
simulation tools, because their node names do not exist after synthesis.

Note: The Compiler cannot implement a shift register that uses a shift enable signal into
MLAB memory; instead, the Compiler uses dedicated RAM blocks. To control the type
of memory structure that implements the shift register, use the ramstyle attribute.
For example:

(* ramstyle = "mlab" *) my_shift_reg

1.4.3.1. Simple Shift Register

The examples in this section show a simple, single-bit wide, 69-bit long shift register.

Intel Quartus Prime synthesis implements the register (W = 1 and M = 69) by using
the Shift Register Intel FPGA IP, and maps it to RAM in the device, which may be
placed in dedicated RAM blocks or MLAB memory. If the length of the register is less
than 69 bits, Intel Quartus Prime synthesis implements the shift register in logic.

Example 32. Verilog HDL Single-Bit Wide, 69-Bit Long Shift Register

module shift_1x69 (clk, shift, sr_in, sr_out);
 input clk, shift;
 input sr_in;
 output sr_out;

 reg [68:0] sr;

 always @ (posedge clk)
 begin
 if (shift == 1'b1)
 begin
 sr[68:1] <= sr[67:0];
 sr[0] <= sr_in;
 end
 end
 assign sr_out = sr[68];
endmodule

Example 33. VHDL Single-Bit Wide, 69-Bit Long Shift Register

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_1x69 IS
 PORT (
 clk: IN STD_LOGIC;
 shift: IN STD_LOGIC;
 sr_in: IN STD_LOGIC;
 sr_out: OUT STD_LOGIC
);
END shift_1x69;

ARCHITECTURE arch OF shift_1x69 IS
 TYPE sr_length IS ARRAY (68 DOWNTO 0) OF STD_LOGIC;
 SIGNAL sr: sr_length;
BEGIN
 PROCESS (clk)
 BEGIN
 IF (rising_edge(clk)) THEN
 IF (shift = '1') THEN
 sr(68 DOWNTO 1) <= sr(67 DOWNTO 0);
 sr(0) <= sr_in;
 END IF;

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 END IF;
 END PROCESS;
 sr_out <= sr(68);
END arch;

1.4.3.2. Shift Register with Evenly Spaced Taps

The following examples show a Verilog HDL and VHDL 8-bit wide, 255-bit long shift
register (W > 1 and M = 255) with evenly spaced taps at 64, 128, 192, and 254.

The synthesis software implements this function in a single ALTSHIFT_TAPS IP core
and maps it to RAM in supported devices, which is allowed placement in dedicated
RAM blocks or MLAB memory.

Example 34. Verilog HDL 8-Bit Wide, 255-Bit Long Shift Register with Evenly Spaced Taps

module top (clk, shift, sr_in, sr_out, sr_tap_one, sr_tap_two,
 sr_tap_three);
 input clk, shift;
 input [7:0] sr_in;
 output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;
 reg [7:0] sr [254:0];
 integer n;
 always @ (posedge clk)
 begin
 if (shift == 1'b1)
 begin
 for (n = 254; n>0; n = n-1)
 begin
 sr[n] <= sr[n-1];
 end
 sr[0] <= sr_in;
 end
 end
 assign sr_tap_one = sr[64];
 assign sr_tap_two = sr[128];
 assign sr_tap_three = sr[192];
 assign sr_out = sr[254];
endmodule

1.4.4. Inferring FIFOs in HDL Code

There are various methods of implementing dual clock FIFOs, depending on the
features needed in your design. The following dual clock FIFO example shows the
basic FIFO functionality, with a design goal of high speed (fMAX) and small area.

The FIFO supports parameterization up to 32 words deep, and targets memory LABs
(MLABs) for its memory block. Synthesis infers the MLABs from behavioral RTL in the
generic_mlab_dc module.

Note: If you don’t want to code your own FIFO, you can parameterize the dual clock FIFO IP
with the IP parameter editor in the Intel Quartus Prime software. Refer to the FIFO
Intel FPGA IP User Guide.

Related Information

FIFO Intel FPGA IP User Guide

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

32

https://www.intel.com/content/www/us/en/programmable/documentation/eis1414462767872.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.4.1. Dual Clock FIFO Example in Verilog HDL

// Copyright 2021 Intel Corporation.
//
// This reference design file is subject licensed to you by the terms and
// conditions of the applicable License Terms and Conditions for Hardware
// Reference Designs and/or Design Examples (either as signed by you or
// found at https://www.altera.com/common/legal/leg-license_agreement.html).
//
// As stated in the license, you agree to only use this reference design
// solely in conjunction with Intel FPGAs or Intel CPLDs.
//
// THE REFERENCE DESIGN IS PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED
// WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY,
// NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. Intel does not
// warrant or assume responsibility for the accuracy or completeness of any
// information, links or other items within the Reference Design and any
// accompanying materials.
//
// In the event that you do not agree with such terms and conditions, do not
// use the reference design file.
///

module dcfifo_example
#(
 parameter LOG_DEPTH = 5,
 parameter WIDTH = 20,
 parameter ALMOST_FULL_VALUE = 30,
 parameter ALMOST_EMPTY_VALUE = 2,
 parameter NUM_WORDS = 2**LOG_DEPTH - 1,
 parameter OVERFLOW_CHECKING = 0, // Overflow checking circuitry is \
 using extra area. Use only if you need it
 parameter UNDERFLOW_CHECKING = 0 // Underflow checking circuitry is \
 using extra area. Use only if you need it
)
(
 input aclr,

 input wrclk,
 input wrreq,
 input [WIDTH-1:0] data,
 output reg wrempty,
 output reg wrfull,
 output reg wr_almost_empty,
 output reg wr_almost_full,
 output [LOG_DEPTH-1:0] wrusedw,

 input rdclk,
 input rdreq,
 output [WIDTH-1:0] q,
 output reg rdempty,
 output reg rdfull,
 output reg rd_almost_empty,
 output reg rd_almost_full,
 output [LOG_DEPTH-1:0] rdusedw
);

initial begin
 if ((LOG_DEPTH > 5) || (LOG_DEPTH < 3))
 $error("Invalid parameter value: LOG_DEPTH = %0d; valid range is 2 \
 < LOG_DEPTH < 6", LOG_DEPTH);

 if ((ALMOST_FULL_VALUE > 2 ** LOG_DEPTH - 1) || (ALMOST_FULL_VALUE < 1))
 $error("Incorrect parameter value: ALMOST_FULL_VALUE = %0d; valid \
 range is 0 < ALMOST_FULL_VALUE < %0d",
 ALMOST_FULL_VALUE, 2 ** LOG_DEPTH);

 if ((ALMOST_EMPTY_VALUE > 2 ** LOG_DEPTH - 1) || (ALMOST_EMPTY_VALUE < 1))
 $error("Incorrect parameter value: ALMOST_EMPTY_VALUE = %0d; valid \
 range is 0 < ALMOST_EMPTY_VALUE < %0d",

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 ALMOST_EMPTY_VALUE, 2 ** LOG_DEPTH);

 if ((NUM_WORDS > 2 ** LOG_DEPTH - 1) || (NUM_WORDS < 1))
 $error("Incorrect parameter value: NUM_WORDS = %0d; \
 valid range is 0 < NUM_WORDS < %0d",
 NUM_WORDS, 2 ** LOG_DEPTH);
end

(* altera_attribute = "-name AUTO_CLOCK_ENABLE_RECOGNITION OFF" *) reg \
 [LOG_DEPTH-1:0] write_addr = 0;
(* altera_attribute = "-name AUTO_CLOCK_ENABLE_RECOGNITION OFF" *) reg \
 [LOG_DEPTH-1:0] read_addr = 0;
reg [LOG_DEPTH-1:0] wrcapacity = 0;
reg [LOG_DEPTH-1:0] rdcapacity = 0;

wire [LOG_DEPTH-1:0] wrcapacity_w;
wire [LOG_DEPTH-1:0] rdcapacity_w;

wire [LOG_DEPTH-1:0] rd_write_addr;
wire [LOG_DEPTH-1:0] wr_read_addr;

wire wrreq_safe;
wire rdreq_safe;
assign wrreq_safe = OVERFLOW_CHECKING ? wrreq & ~wrfull : wrreq;
assign rdreq_safe = UNDERFLOW_CHECKING ? rdreq & ~rdempty : rdreq;

initial begin
 write_addr = 0;
 read_addr = 0;
 wrempty = 1;
 wrfull = 0;
 rdempty = 1;
 rdfull = 0;
 wrcapacity = 0;
 rdcapacity = 0;
 rd_almost_empty = 1;
 rd_almost_full = 0;
 wr_almost_empty = 1;
 wr_almost_full = 0;
end

// ------------------ Write -------------------------

add_a_b_s0_s1 #(LOG_DEPTH) wr_adder(
 .a(write_addr),
 .b(~wr_read_addr),
 .s0(wrreq_safe),
 .s1(1'b1),
 .out(wrcapacity_w)
);

always @(posedge wrclk or posedge aclr) begin

 if (aclr) begin
 write_addr <= 0;
 wrcapacity <= 0;
 wrempty <= 1;
 wrfull <= 0;
 wr_almost_full <= 0;
 wr_almost_empty <= 1;
 end else begin
 write_addr <= write_addr + wrreq_safe;
 wrcapacity <= wrcapacity_w;
 wrempty <= (wrcapacity == 0) && (wrreq == 0);
 wrfull <= (wrcapacity == NUM_WORDS) || (wrcapacity == NUM_WORDS - 1) \
 && (wrreq == 1);

 wr_almost_empty <=
 (wrcapacity < (ALMOST_EMPTY_VALUE-1)) ||
 (wrcapacity == (ALMOST_EMPTY_VALUE-1)) && (wrreq == 0);

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 wr_almost_full <=
 (wrcapacity >= ALMOST_FULL_VALUE) ||
 (wrcapacity == ALMOST_FULL_VALUE - 1) && (wrreq == 1);
 end
end

assign wrusedw = wrcapacity;

// ------------------ Read -------------------------

add_a_b_s0_s1 #(LOG_DEPTH) rd_adder(
 .a(rd_write_addr),
 .b(~read_addr),
 .s0(1'b0),
 .s1(~rdreq_safe),
 .out(rdcapacity_w)
);

always @(posedge rdclk or posedge aclr) begin
 if (aclr) begin
 read_addr <= 0;
 rdcapacity <= 0;
 rdempty <= 1;
 rdfull <= 0;
 rd_almost_empty <= 1;
 rd_almost_full <= 0;
 end else begin
 read_addr <= read_addr + rdreq_safe;
 rdcapacity <= rdcapacity_w;
 rdempty <= (rdcapacity == 0) || (rdcapacity == 1) && (rdreq == 1);
 rdfull <= (rdcapacity == NUM_WORDS) && (rdreq == 0);
 rd_almost_empty <=
 (rdcapacity < ALMOST_EMPTY_VALUE) ||
 (rdcapacity == ALMOST_EMPTY_VALUE) && (rdreq == 1);

 rd_almost_full <=
 (rdcapacity > ALMOST_FULL_VALUE) ||
 (rdcapacity == ALMOST_FULL_VALUE) && (rdreq == 0);
 end
end

assign rdusedw = rdcapacity;

// ---------------- Synchronizers --------------------

wire [LOG_DEPTH-1:0] gray_read_addr;
wire [LOG_DEPTH-1:0] wr_gray_read_addr;
wire [LOG_DEPTH-1:0] gray_write_addr;
wire [LOG_DEPTH-1:0] rd_gray_write_addr;

binary_to_gray #(.WIDTH(LOG_DEPTH)) rd_b2g (.clock(rdclk), .aclr(aclr), \
 .din(read_addr), .dout(gray_read_addr));
synchronizer_ff_r2 #(.WIDTH(LOG_DEPTH)) rd2wr
(.din_clk(rdclk), .din(gray_read_addr), \
 .dout_clk(wrclk), .dout(wr_gray_read_addr));
gray_to_binary #(.WIDTH(LOG_DEPTH)) rd_g2b (.clock(wrclk), .aclr(aclr), \
 .din(wr_gray_read_addr), .dout(wr_read_addr));

binary_to_gray #(.WIDTH(LOG_DEPTH)) wr_b2g
(.clock(wrclk), .aclr(aclr), .din(write_addr), \
 .dout(gray_write_addr));
synchronizer_ff_r2 #(.WIDTH(LOG_DEPTH)) wr2rd
(.din_clk(wrclk), .din(gray_write_addr), \
 .dout_clk(rdclk), .dout(rd_gray_write_addr));
gray_to_binary #(.WIDTH(LOG_DEPTH)) wr_g2b (.clock(rdclk), .aclr(aclr), \
 .din(rd_gray_write_addr), .dout(rd_write_addr));

// ------------------ MLAB ---------------------------

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

generic_mlab_dc #(.WIDTH(WIDTH), .ADDR_WIDTH(LOG_DEPTH)) mlab_inst (
 .rclk(rdclk),
 .wclk(wrclk),
 .din(data),
 .waddr(write_addr),
 .we(1'b1),
 .re(1'b1),
 .raddr(read_addr),
 .dout(q)
);

endmodule

module add_a_b_s0_s1 #(
 parameter SIZE = 5
)(
 input [SIZE-1:0] a,
 input [SIZE-1:0] b,
 input s0,
 input s1,
 output [SIZE-1:0] out
);
 wire [SIZE:0] left;
 wire [SIZE:0] right;
 wire temp;

 assign left = {a ^ b, s0};
 assign right = {a[SIZE-2:0] & b[SIZE-2:0], s1, s0};
 assign {out, temp} = left + right;

endmodule

module binary_to_gray #(
 parameter WIDTH = 5
) (
 input clock,
 input aclr,
 input [WIDTH-1:0] din,
 output reg [WIDTH-1:0] dout
);

 always @(posedge clock or posedge aclr) begin
 if (aclr)
 dout <= 0;
 else
 dout <= din ^ (din >> 1);
 end

endmodule

module gray_to_binary #(
 parameter WIDTH = 5
) (
 input clock,
 input aclr,
 input [WIDTH-1:0] din,
 output reg [WIDTH-1:0] dout
);

 wire [WIDTH-1:0] dout_w;

 genvar i;
 generate
 for (i = 0; i < WIDTH; i=i+1) begin : loop
 assign dout_w[i] = ^(din[WIDTH-1:i]);
 end
 endgenerate

 always @(posedge clock or posedge aclr) begin
 if (aclr)
 dout <= 0;

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 else
 dout <= dout_w;
 end

endmodule

(* altera_attribute = "-name SYNCHRONIZER_IDENTIFICATION OFF" *)
module generic_mlab_dc #(
 parameter WIDTH = 8,
 parameter ADDR_WIDTH = 5
)(
 input rclk,
 input wclk,
 input [WIDTH-1:0] din,
 input [ADDR_WIDTH-1:0] waddr,
 input we,
 input re,
 input [ADDR_WIDTH-1:0] raddr,
 output [WIDTH-1:0] dout
);

 localparam DEPTH = 1 << ADDR_WIDTH;
 (* ramstyle = "mlab" *) reg [WIDTH-1:0] mem[0:DEPTH-1];

 reg [WIDTH-1:0] dout_r;
 always @(posedge wclk) begin
 if (we)
 mem[waddr] <= din;
 end
 always @(posedge rclk) begin
 if (re)
 dout_r <= mem[raddr];
 end
 assign dout = dout_r;

endmodule

module synchronizer_ff_r2 #(
 parameter WIDTH = 8
)(
 input din_clk,
 input [WIDTH-1:0] din,
 input dout_clk,
 output [WIDTH-1:0] dout
);

 reg [WIDTH-1:0] ff_launch = {WIDTH {1'b0}}
 /* synthesis preserve dont_replicate */;
 always @(posedge din_clk) begin
 ff_launch <= din;
 end

 reg [WIDTH-1:0] ff_meta = {WIDTH {1'b0}}
 /* synthesis preserve dont_replicate */;
 always @(posedge dout_clk) begin
 ff_meta <= ff_launch;
 end

 reg [WIDTH-1:0] ff_sync = {WIDTH {1'b0}}
 /* synthesis preserve dont_replicate */;
 always @(posedge dout_clk) begin
 ff_sync <= ff_meta;
 end

 assign dout = ff_sync;
endmodule

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.4.2. Dual Clock FIFO Timing Constraints

If you choose to code your own dual clock FIFO, you must also create appropriate
timing constraints in Synopsis Design Constraints format (.sdc).

Typically, you set the read and write clock domains asynchronous to each other by
using the set_clock_groups SDC command. You typically specify the
set_clock_groups command in a top-level .sdc file.

Constrain the read and write pointer clock domain crossings with skew and net delay
constraints.

A skew constraint ensures the gray-coded pointer values transfer correctly between
the clock domains. A net delay constraint bounds the wire delay between the two
clock domains, to help reduce latency through the FIFO.

In the RTL example above, the pointers cross clock domains at the ff_launch to
ff_meta register path, in two instances of the synchronizer_ff_r2 entity.

The following example constraints are appropriate for the RTL above. You can
customize the -from and -to names as necessary for your implementation.

Skew from read to write domain
set_max_skew -from rd2wr|ff_launch[*] -to rd2wr|ff_meta[*] \
 -get_skew_value_from_clock_period
src_clock_period -skew_value_multiplier 0.8
Skew from write to read domain
set_max_skew -from wr2rd|ff_launch[*] -to wr2rd|ff_meta[*] \
 -get_skew_value_from_clock_period
src_clock_period -skew_value_multiplier 0.8
Net delay from read to write domain
set_net_delay -from rd2wr|ff_launch[*] -to rd2wr|ff_meta[*] \
 -get_value_from_clock_period
dst_clock_period -value_multiplier 0.8 -max
Net delay from write to read domain
set_net_delay -from wr2rd|ff_launch[*] -to wr2rd|ff_meta[*] \
 -get_value_from_clock_period
dst_clock_period -value_multiplier 0.8 -max

After writing the skew and net delay constraints in the .sdc file, specify an entity-
bound .sdc file .qsf assignment to apply the constraints to the synchronizer register
paths in all instances of your FIFO.

Use the name of the .sdc file containing these constraints in the entity-bound .sdc
file assignment in your .qsf. Also provide the name of the FIFO entity to which the
constraints apply.

The following .qsf assignment example assumes that you save the constraints in
fifo_synchronizer.sdc in your project directory, and that the constraints therein
apply to the dcfifo_example entity:

set_global_assignment -name SDC_ENTITY_FILE fifo_synchronizer.sdc \
 -entity dcfifo_example

1.5. Register and Latch Coding Guidelines

This section provides device-specific coding recommendations for Intel registers and
latches. Understanding the architecture of the target Intel device helps ensure that
your RTL produces the expected results and achieves the optimal quality of results.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.1. Register Power-Up Values

Registers in the device core power-up to a low (0) logic level on all Intel FPGA devices.
However, for designs that specify a power-up level other than 0, synthesis tools can
implement logic that directs registers to behave as if they were powering up to a high
(1) logic level.

For designs that use preset signals, but the target device does not support presets in
the register architecture, synthesis may convert the preset signal to a clear signal,
which requires to perform a NOT gate push-back optimization. NOT gate push-back
adds an inverter to the input and the output of the register, so that the reset and
power-up conditions appear high, and the device operates as expected. In this case,
the synthesis tool may issue a message about the power-up condition. The register
itself powers up low, but since the register output inverts, the signal that arrives at all
destinations is high.

Due to these effects, if you specify a non-zero reset value, the synthesis tool may use
the asynchronous clear (aclr) signals available on the registers to implement the
high bits with NOT gate push-back. In that case, the registers look as though they
power-up to the specified reset value.

When an asynchronous load (aload) signal is available in the device registers, the
synthesis tools can implement a reset of 1 or 0 value by using an asynchronous load
of 1 or 0. When the synthesis tool uses a load signal, it is not performing NOT gate
push-back, so the registers power-up to a 0 logic level. For additional details, refer to
the appropriate device family handbook.

Optionally you can force all registers into their appropriate values after reset through
an explicit reset signal. This technique allows to reset the device after power-up to
restore the proper state.

Synchronizing the device architecture's external or combinational logic before driving
the register's asynchronous control ports allows for more stable designs and avoids
potential glitches.

Related Information

Recommended Design Practices on page 69

1.5.1.1. Specifying a Power-Up Value

Options available in synthesis tools allow you to specify power-up conditions for the
design. Intel Quartus Prime Pro Edition synthesis provides the Power-Up Level logic
option.

You can also specify the power-up level with an altera_attribute assignment in
the source code. This attribute forces synthesis to perform NOT gate push-back,
because synthesis tools cannot change the power-up states of core registers.

You can apply the Power-Up Level logic option to a specific register, or to a design
entity, module, or sub design. When you assign this option, every register in that
block receives the value. Registers power up to 0 by default. Therefore, you can use
this assignment to force all registers to power-up to 1 using NOT gate push-back.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting the Power-Up Level to a logic level of high for a large design entity could
degrade the quality of results due to the number of inverters that requires. In some
situations, this design style causes issues due to enable signal inference or
secondary control logic inference. It may also be more difficult to migrate this type of
designs.

Some synthesis tools can also read the default or initial values for registered signals
and implement this behavior in the device. For example, Intel Quartus Prime Pro
Edition synthesis converts default values for registered signals into Power-Up Level
settings. When the Intel Quartus Prime software reads the default values, the
synthesized behavior matches the power-up state of the HDL code during a functional
simulation.

Example 35. Verilog Register with High Power-Up Value

reg q = 1’b1; //q has a default value of ‘1’

always @ (posedge clk)
begin
 q <= d;
end

Example 36. VHDL Register with High Power-Up Level

SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'

PROCESS (clk, reset)
BEGIN
 IF (rising_edge(clk)) THEN
 q <= d;
 END IF;
END PROCESS;

Your design may contain undeclared default power-up conditions based on signal type.
If you declare a VHDL register signal as an integer, Intel Quartus Prime synthesis uses
the left end of the integer range as the power-up value. For the default signed integer
type, the default power-up value is the highest magnitude negative integer (100…
001). For an unsigned integer type, the default power-up value is 0.

Note: If the target device architecture does not support two asynchronous control signals,
such as aclr and aload, you cannot set a different power-up state and reset state. If
the NOT gate push-back algorithm creates logic to set a register to 1, that register
powers-up high. If you set a different power-up condition through a synthesis
attribute or initial value, synthesis ignores the power-up level.

1.5.2. Secondary Register Control Signals Such as Clear and Clock Enable

The registers in Intel FPGAs provide a number of secondary control signals. Use these
signals to implement control logic for each register without using extra logic cells.
Intel FPGA device families vary in their support for secondary signals, so consult the
device family data sheet to verify which signals are available in your target device.

To make the most efficient use of the signals in the device, ensure that HDL code
matches the device architecture as closely as possible. The control signals have a
certain priority due to the nature of the architecture. Your HDL code must follow that
priority where possible.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Your synthesis tool can emulate any control signals using regular logic, so achieving
functionally correct results is always possible. However, if your design requirements
allow flexibility in controlling use and priority of control signals, match your design to
the target device architecture to achieve the most efficient results. If the priority of
the signals in your design is not the same as that of the target architecture, you may
require extra logic to implement the control signals. This extra logic uses additional
device resources, and can cause additional delays for the control signals.

In certain cases, using logic other than the dedicated control logic in the device
architecture can have a larger impact. For example, the clock enable signal has
priority over the synchronous reset or clear signal in the device architecture. The
clock enable turns off the clock line in the LAB, and the clear signal is
synchronous. Therefore, in the device architecture, the synchronous clear takes effect
only when a clock edge occurs.

If you define a register with a synchronous clear signal that has priority over the
clock enable signal, Intel Quartus Prime synthesis emulates the clock enable
functionality using data inputs to the registers. You cannot apply a Clock Enable
Multicycle constraint, because the emulated functionality does not use the clock
enable port of the register. In this case, using a different priority causes unexpected
results with an assignment to the clock enable signal.

The signal order is the same for all Intel FPGA device families. However, not all device
families provide every signal. The priority order is:

1. Asynchronous Clear (clrn)—highest priority

2. Enable (ena)

3. Synchronous Clear (sclr)

4. Synchronous Load (sload)

5. Data In (data)—lowest priority

The priority order for secondary control signals in Intel FPGA devices differs from the
order for other vendors’ FPGA devices. If your design requirements are flexible
regarding priority, verify that the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors. To achieve the best
results. try to match your target device architecture.

Example 37. Verilog D-type Flipflop bus with Secondary Signals

This module uses all Intel Arria 10 DFF secondary signals: clrn, ena, sclr, and
sload. Note that it instantiates 8-bit bus of DFFs rather than a single DFF, because
synthesis infers some secondary signals only if there are multiple DFFs with the same
secondary signal.

module top(clk, clrn, sclr, sload, ena, data, sdata, q);
 input clk, clrn, sclr, sload, ena;
 input [7:0] data, sdata;
 output [7:0] q;
 reg [7:0] q;
 always @ (posedge clk or posedge clrn)
 begin
 if (clrn)
 q <= 8'b0;
 else if (ena)
 begin
 if (sclr)
 q <= 8'b0;

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 else if (!sload)
 q <= data;
 else
 q <= sdata;
 end
 end
endmodule

Related Information

Intel® Quartus® Prime Timing Analyzer Cookbook

1.5.3. Latches

A latch is a small combinational loop that holds the value of a signal until a new value
is assigned. Synthesis tools can infer latches from HDL code when you did not intend
to use a latch. If you do intend to infer a latch, it is important to infer it correctly to
guarantee correct device operation.

Note: Design without the use of latches whenever possible.

Related Information

Avoid Unintended Latch Inference on page 72

1.5.3.1. Avoid Unintentional Latch Generation

When you design combinational logic, certain coding styles can create an unintentional
latch. For example, when CASE or IF statements do not cover all possible input
conditions, synthesis tools can infer latches to hold the output if a new output value is
not assigned. Check your synthesis tool messages for references to inferred latches.

If your code unintentionally creates a latch, modify your RTL to remove the latch:

• Synthesis infers a latch when HDL code assigns a value to a signal outside of a
clock edge (for example, with an asynchronous reset), but the code does not
assign a value in an edge-triggered design block.

• Unintentional latches also occur when HDL code assigns a value to a signal in an
edge-triggered design block, but synthesis optimizations remove that logic. For
example, when a CASE or IF statement tests a condition that only evaluates to
FALSE, synthesis removes any logic or signal assignment in that statement during
optimization. This optimization may result in the inference of a latch for the signal.

• Omitting the final ELSE or WHEN OTHERS clause in an IF or CASE statement can
also generate a latch. Don’t care (X) assignments on the default conditions are
useful in preventing latch generation. For the best logic optimization, assign the
default CASE or final ELSE value to don’t care (X) instead of a logic value.

In Verilog HDL designs, use the full_case attribute to treat unspecified cases as
don’t care values (X). However, since the full_case attribute is synthesis-only, it can
cause simulation mismatches, because simulation tools still treat the unspecified cases
as latches.

Example 38. VHDL Code Preventing Unintentional Latch Creation

Without the final ELSE clause, the following code creates unintentional latches to
cover the remaining combinations of the SEL inputs. When you are targeting a Stratix
series device with this code, omitting the final ELSE condition can cause synthesis

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

42

https://www.intel.com/content/www/us/en/docs/programmable/683081.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

tools to use up to six LEs, instead of the three it uses with the ELSE statement.
Additionally, assigning the final ELSE clause to 1 instead of X can result in slightly
more LEs, because synthesis tools cannot perform as much optimization when you
specify a constant value as opposed to a don’t care value.

LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
 PORT (a,b,c: IN STD_LOGIC;
 sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 oput: OUT STD_LOGIC);
END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN
 PROCESS (a,b,c,sel) BEGIN
 IF sel = "00000" THEN
 oput <= a;
 ELSIF sel = "00001" THEN
 oput <= b;
 ELSIF sel = "00010" THEN
 oput <= c;
 ELSE --- Prevents latch inference
 oput <= 'X'; --/
 END IF;
 END PROCESS;
END rtl;

1.5.3.2. Inferring Latches Correctly

Synthesis tools can infer a latch that does not exhibit the glitch and timing hazard
problems typically associated with combinational loops. Intel Quartus Prime Pro
Edition software reports latches that synthesis inferred in the User-Specified and
Inferred Latches section of the Compilation Report. This report indicates whether
the latch presents a timing hazard, and the total number of user-specified and inferred
latches.

Note: In some cases, timing analysis does not completely model latch timing. As a best
practice, avoid latches unless required by the design and you fully understand the
impact.

If latches or combinational loops in the design do not appear in the User Specified
and Inferred Latches section, then Intel Quartus Prime synthesis did not infer the
latch as a safe latch, so the latch is not considered glitch-free.

All combinational loops listed in the Analysis & Synthesis Logic Cells
Representing Combinational Loops table in the Compilation Report are at risk of
timing hazards. These entries indicate possible problems with the design that require
further investigation. However, correct designs can include combinational loops. For
example, it is possible that the combinational loop cannot be sensitized. This occurs
when there is an electrical path in the hardware, but either:

• The designer knows that the circuit never encounters data that causes that path to
be activated, or

• The surrounding logic is set up in a mutually exclusive manner that prevents that
path from ever being sensitized, independent of the data input.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For 6-input LUT-based devices, Intel Quartus Prime synthesis implements all latch
inputs with a single adaptive look-up table (ALUT) in the combinational loop.
Therefore, all latches in the User-Specified and Inferred Latches table are free of
timing hazards when a single input changes.

If Intel Quartus Prime synthesis report lists a latch as a safe latch, other
optimizations, such as physical synthesis netlist optimizations in the Fitter, maintain
the hazard-free performance. To ensure hazard-free behavior, only one control input
can change at a time. Changing two inputs simultaneously, such as deasserting set
and reset at the same time, or changing data and enable at the same time, can
produce incorrect behavior in any latch.

Intel Quartus Prime synthesis infers latches from always blocks in Verilog HDL and
process statements in VHDL. However, Intel Quartus Prime synthesis does not infer
latches from continuous assignments in Verilog HDL, or concurrent signal assignments
in VHDL. These rules are the same as for register inference. The Intel Quartus Prime
synthesis infers registers or flipflops only from always blocks and process
statements.

Example 39. Verilog HDL Set-Reset Latch

module simple_latch (
 input SetTerm,
 input ResetTerm,
 output reg LatchOut
);
 always @ (SetTerm or ResetTerm) begin
 if (SetTerm)
 LatchOut = 1'b1;
 else if (ResetTerm)
 LatchOut = 1'b0;
 end
endmodule

Example 40. VHDL Data Type Latch

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simple_latch IS
 PORT (
 enable, data : IN STD_LOGIC;
 q : OUT STD_LOGIC
);
END simple_latch;
ARCHITECTURE rtl OF simple_latch IS
BEGIN
 latch : PROCESS (enable, data)
 BEGIN
 IF (enable = '1') THEN
 q <= data;
 END IF;
 END PROCESS latch;
END rtl;

The following example shows a Verilog HDL continuous assignment that does not infer
a latch in the Intel Quartus Prime software:

Example 41. Verilog Continuous Assignment Does Not Infer Latch

assign latch_out = (~en & latch_out) | (en & data);

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The behavior of the assignment is similar to a latch, but it may not function correctly
as a latch, and its timing is not analyzed as a latch. Intel Quartus Prime Pro Edition
synthesis also creates safe latches when possible for instantiations of an Intel FPGA
latch IP core. Intel FPGA latch IPs allow you to define a latch with any combination of
data, enable, set, and reset inputs. The same limitations apply for creating safe
latches as for inferring latches from HDL code.

Inferring the Intel FPGA latch IP core in another synthesis tool ensures that Intel
Quartus Prime synthesis also recognizes the implementation as a latch. If a third-party
synthesis tool implements a latch using the Intel FPGA latch IP core, Intel Quartus
Prime Pro Edition synthesis reports the latch in the User-Specified and Inferred
Latches table, in the same manner as it lists latches you define in HDL source code.
The coding style necessary to produce an Intel FPGA latch IP core implementation
depends on the synthesis tool. Some third-party synthesis tools list the number of
Intel FPGA latch IP cores that are inferred.

The Fitter uses global routing for control signals, including signals that synthesis
identifies as latch enables. In some cases, the global insertion delay decreases timing
performance. If necessary, you can turn off the Intel Quartus Prime Global Signal
logic option to manually prevent the use of global signals. The Global & Other Fast
Signals table in the Compilation Report reports Global latch enables.

1.6. General Coding Guidelines

This section describes how coding styles impact synthesis of HDL code into the target
Intel FPGA devices. You can improve your design efficiency and performance by
following these recommended coding styles, and designing logic structures to match
the appropriate device architecture.

1.6.1. Tri-State Signals

Use tri-state signals only when they are attached to top-level bidirectional or output
pins.

Avoid lower-level bidirectional pins. Also avoid using the Z logic value unless it is
driving an output or bidirectional pin. Even though some synthesis tools implement
designs with internal tri-state signals correctly in Intel FPGA devices using multiplexer
logic, do not use this coding style for Intel FPGA designs.

Note: In hierarchical block-based design flows, a hierarchical boundary cannot contain any
bidirectional ports, unless the lower-level bidirectional port is connected directly
through the hierarchy to a top-level output pin without connecting to any other design
logic. If you use boundary tri-states in a lower-level block, synthesis software must
push the tri-states through the hierarchy to the top level to make use of the tri-state
drivers on output pins of Intel FPGA devices. Because pushing tri-states requires
optimizing through hierarchies, lower-level tri-states are restricted with block-based
design methodologies.

1.6.2. Clock Multiplexing

Clock multiplexing is sometimes used to operate the same logic function with different
clock sources. This type of logic can introduce glitches that create functional problems.
The delay inherent in the combinational logic can also lead to timing problems. Clock
multiplexers trigger warnings from a wide range of design rule check and timing
analysis tools.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the Clock Switchover feature or the
Clock Control Block available in certain Intel FPGA devices. These dedicated hardware
blocks avoid glitches, ensure that you use global low-skew routing lines, and avoid any
possible hold time problems on the device due to logic delay on the clock line. Intel
FPGA devices also support dynamic PLL reconfiguration, which is the safest and most
robust method of changing clock rates during device operation.

If your design has too many clocks to use the clock control block, or if dynamic
reconfiguration is too complex for your design, you can implement a clock multiplexer
in logic cells. However, if you use this implementation, consider simultaneous toggling
inputs and ensure glitch-free transitions.

Figure 3. Simple Clock Multiplexer in a 6-Input LUT

clk0

clk1

clk2

clk3

Sys_clk

clk_select (static)

Each device datasheet describes how LUT outputs can glitch during a simultaneous
toggle of input signals, independent of the LUT function. Even though the 4:1 MUX
function does not generate detectable glitches during simultaneous data input toggles,
some cell implementations of multiplexing logic exhibit significant glitches, so this
clock mux structure is not recommended. An additional problem with this
implementation is that the output behaves erratically during a change in the
clk_select signals. This behavior could create timing violations on all registers fed
by the system clock and result in possible metastability.

A more sophisticated clock select structure can eliminate the simultaneous toggle and
switching problems.

Figure 4. Glitch-Free Clock Multiplexer Structure

sel0

sel1

clk0

clk1

clk_out

DQ DQ DQ

DQDQDQ

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can generalize this structure for any number of clock channels. The design
ensures that no clock activates until all others are inactive for at least a few cycles,
and that activation occurs while the clock is low. The design applies a
synthesis_keep directive to the AND gates on the right side, which ensures there
are no simultaneous toggles on the input of the clk_out OR gate.

Note: Switching from clock A to clock B requires that clock A continue to operate for at least
a few cycles. If clock A stops immediately, the design sticks. The select signals are
implemented as a “one-hot” control in this example, but you can use other encoding if
you prefer. The input side logic is asynchronous and is not critical. This design can
tolerate extreme glitching during the switch process.

Example 42. Verilog HDL Clock Multiplexing Design to Avoid Glitches

This example works with Verilog-2001.

module clock_mux (clk,clk_select,clk_out);

 parameter num_clocks = 4;

 input [num_clocks-1:0] clk;
 input [num_clocks-1:0] clk_select; // one hot
 output clk_out;

 genvar i;

 reg [num_clocks-1:0] ena_r0;
 reg [num_clocks-1:0] ena_r1;
 reg [num_clocks-1:0] ena_r2;
 wire [num_clocks-1:0] qualified_sel;

 // A look-up-table (LUT) can glitch when multiple inputs
 // change simultaneously. Use the keep attribute to
 // insert a hard logic cell buffer and prevent
 // the unrelated clocks from appearing on the same LUT.

 wire [num_clocks-1:0] gated_clks /* synthesis keep */;

 initial begin
 ena_r0 = 0;
 ena_r1 = 0;
 ena_r2 = 0;
 end

 generate
 for (i=0; i<num_clocks; i=i+1)
 begin : lp0
 wire [num_clocks-1:0] tmp_mask;
 assign tmp_mask = {num_clocks{1'b1}} ^ (1 << i);

 assign qualified_sel[i] = clk_select[i] & (~|(ena_r2 & tmp_mask));

 always @(posedge clk[i]) begin
 ena_r0[i] <= qualified_sel[i];
 ena_r1[i] <= ena_r0[i];
 end

 always @(negedge clk[i]) begin
 ena_r2[i] <= ena_r1[i];
 end

 assign gated_clks[i] = clk[i] & ena_r2[i];
 end
 endgenerate

 // These will not exhibit simultaneous toggle by construction

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 assign clk_out = |gated_clks;

endmodule

1.6.3. Adder Trees

Structuring adder trees appropriately to match your targeted Intel FPGA device
architecture can provide significant improvements in your design's efficiency and
performance.

A good example of an application using a large adder tree is a finite impulse response
(FIR) correlator. Using a pipelined binary or ternary adder tree appropriately can
greatly improve the quality of your results.

1.6.3.1. Architectures with 6-Input LUTs in Adaptive Logic Modules

In Intel FPGA device families with 6-input LUT in their basic logic structure, ALMs can
simultaneously add three bits. Take advantage of this feature by restructuring your
code for better performance.

Although code targeting 4-input LUT architectures compiles successfully for 6-input
LUT devices, the implementation can be inefficient. For example, to take advantage of
the 6-input adaptive ALUT, you must rewrite large pipelined binary adder trees
designed for 4-input LUT architectures. By restructuring the tree as a ternary tree, the
design becomes much more efficient, significantly improving density utilization.

Example 43. Verilog HDL Pipelined Ternary Tree

The example shows a pipelined adder, but partitioning your addition operations can
help you achieve better results in non-pipelined adders as well. If your design is not
pipelined, a ternary tree provides much better performance than a binary tree. For
example, depending on your synthesis tool, the HDL code
sum = (A + B + C) + (D + E) is more likely to create the optimal
implementation of a 3-input adder for A + B + C followed by a 3-input adder for
sum1 + D + E than the code without the parentheses. If you do not add the
parentheses, the synthesis tool may partition the addition in a way that is not optimal
for the architecture.

module ternary_adder_tree (a, b, c, d, e, clk, out);
 parameter width = 16;
 input [width-1:0] a, b, c, d, e;
 input clk;
 output [width-1:0] out;

 wire [width-1:0] sum1, sum2;
 reg [width-1:0] sumreg1, sumreg2;
 // registers

 always @ (posedge clk)
 begin
 sumreg1 <= sum1;
 sumreg2 <= sum2;
 end

 // 3-bit additions
 assign sum1 = a + b + c;
 assign sum2 = sumreg1 + d + e;
 assign out = sumreg2;
endmodule

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.3.2. Change Adder Tree Styles

Because ALMs can implement functions of up to six inputs, you can improve the
performance of certain designs by using a compressor implementation for adder trees,
rather than the default balanced binary tree implementation. The expected downside
tradeoff of the compressor implementation is the use of more ALM logic resources.
However the overall logic depth is lower, and the final timing characteristics improve.

Figure 5. Balanced Binary Versus Compressor Style Adder Trees

Balanced Adder Tree Abstract View Compressor Adder Tree Abstract View

For designs that may benefit, you can apply the Use Compressor Implementation
(USE_COMPRESSOR_IMPLEMENTATION) global, entity, or instance assignment to
specify whether the Compiler synthesizes adder trees as balanced binary trees, or as
compressor style trees.

You can specify this assignment in the Assignment Editor, or with the following
assignment in the .qsf.

set_instance_assignment -name USE_COMPRESSOR_IMPLEMENTATION ALWAYS -to <foo>

The following options are available for this assignment:

Table 2. Use Compressor Implementation Assignment Options

Option Description

Always The Compiler always synthesizes all adder trees with this assignment as compressor
style trees. There is a limit of at least 2 non-constant operands before this triggers
(otherwise synthesis implements a binary add or a pure-LUT implementation
depending on size).

Never The Compiler never synthesizes the assigned adder tree as a compressor. The
Compiler synthesizes the adder as either a balanced binary tree, or if sufficiently
small, in pure LUTs.

Auto This setting currently behaves the same as the Never setting. The Compiler
synthesizes the adder as either a balanced binary tree, or if sufficiently small, in pure
LUTs. This setting never uses compressor style adder trees.

1.6.4. State Machine HDL Guidelines

Synthesis tools can recognize and encode Verilog HDL and VHDL state machines
during synthesis. This section presents guidelines to secure the best results when you
use state machines.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Synthesis tools that can recognize a piece of code as a state machine can perform
optimizations that improve the design area and performance. For example, the tool
can recode the state variables to improve the quality of results, or optimize other
parts of the design through known properties of state machines.

To achieve the best results, synthesis tools often use one-hot encoding for FPGA
devices and minimal-bit encoding for CPLD devices, although the choice of
implementation can vary for different state machines and different devices. Refer to
the synthesis tool documentation for techniques to control the encoding of state
machines.

To ensure proper recognition and inference of state machines and to improve the
quality of results, observe the following guidelines for both Verilog HDL and VHDL:

• Assign default values to outputs derived from the state machine so that synthesis
does not generate unwanted latches.

• Separate state machine logic from all arithmetic functions and datapaths,
including assigning output values.

• For designs in which more than one state perform the same operation, define the
operation outside the state machine, and direct the output logic of the state
machine to use this value.

• Ensure a defined power-up state with a simple asynchronous or synchronous
reset. In designs where the state machine contains more elaborate reset logic,
such as both an asynchronous reset and an asynchronous load, the Intel Quartus
Prime software infers regular logic rather than a state machine.

If a state machine enters an illegal state due to a problem with the device, the design
likely ceases to function correctly until the next reset of the state machine. Synthesis
tools do not provide for this situation by default. The same issue applies to any other
registers if there is some fault in the system. A default or when others clause
does not affect this operation, assuming that the design never deliberately enters this
state. Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Many synthesis tools (including Intel Quartus Prime synthesis) have an option to
implement a safe state machine. The Intel Quartus Prime software inserts extra logic
to detect illegal states and force the state machine’s transition to the reset state.
Safe state machines are useful when the state machine can enter an illegal state, for
example, when a state machine has control inputs that originate in another clock
domain, such as the control logic for a dual-clock FIFO.

This option protects state machines by forcing them into the reset state. All other
registers in the design are not protected this way. As a best practice for designs with
asynchronous inputs, use a synchronization register chain instead of relying on the
safe state machine option.

1.6.4.1. State Machine Power-Up

In Intel Stratix 10 devices, registers do not necessarily power-up in the same clock
cycle if they are not in the same sector. This fact can cause issues with state machines
if the state machine enters an undefined state.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

One-hot encoded state machines are especially susceptible to this issue, as the
number of undefined states is large compared to the number of legal states. Retiming
also increases the risk of this issue because when state registers retime across logic or
routing, it becomes more likely that the different state registers of one state machine
are in different sectors.

To mitigate this risk, the Compiler automatically uses Safe State Machine for any
state machine of 6 or less states for Intel Stratix 10 designs. This Safe State
Machine setting forces the state machines back into the reset state if they enter an
undefined state. The Compiler does not automatically use Safe State Machine for
state machines of more than 6 states, or for Intel Arria 10 or Intel Cyclone 10 GX
devices, because the effect on the quality of results can be significant.

1.6.4.2. Verilog HDL State Machines

To ensure proper recognition and inference of Verilog HDL state machines, observe the
following additional Verilog HDL guidelines.

Refer to your synthesis tool documentation for specific coding recommendations. If
the synthesis tool doesn't recognize and infer the state machine, the tool implements
the state machine as regular logic gates and registers, and the state machine doesn't
appear as a state machine in the Analysis & Synthesis section of the Intel Quartus
Prime Compilation Report. In this case, Intel Quartus Prime synthesis does not
perform any optimizations specific to state machines.

• If you are using the SystemVerilog standard, use enumerated types to describe
state machines.

• Represent the states in a state machine with the parameter data types in
Verilog-1995 and Verilog-2001, and use the parameters to make state
assignments. This parameter implementation makes the state machine easier to
read and reduces the risk of errors during coding.

• Do not directly use integer values for state variables, such as next_state <= 0.
However, using an integer does not prevent inference in the Intel Quartus Prime
software.

• Intel Quartus Prime software doesn't infer a state machine if the state transition
logic uses arithmetic similar to the following example:

case (state)
 0: begin
 if (ena) next_state <= state + 2;
 else next_state <= state + 1;
 end
 1: begin
 ...
endcase

• Intel Quartus Prime software doesn't infer a state machine if the state variable is
an output.

• Intel Quartus Prime software doesn't infer a state machine for signed variables.

1.6.4.2.1. Verilog-2001 State Machine Coding Example

The following module verilog_fsm is an example of a typical Verilog HDL state
machine implementation. This state machine has five states.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The asynchronous reset sets the variable state to state_0. The sum of in_1 and
in_2 is an output of the state machine in state_1 and state_2. The difference
(in_1 – in_2) is also used in state_1 and state_2. The temporary variables
tmp_out_0 and tmp_out_1 store the sum and the difference of in_1 and in_2.
Using these temporary variables in the various states of the state machine ensures
proper resource sharing between the mutually exclusive states.

Example 44. Verilog-2001 State Machine

module verilog_fsm (clk, reset, in_1, in_2, out);
 input clk, reset;
 input [3:0] in_1, in_2;
 output [4:0] out;
 parameter state_0 = 3'b000;
 parameter state_1 = 3'b001;
 parameter state_2 = 3'b010;
 parameter state_3 = 3'b011;
 parameter state_4 = 3'b100;

 reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
 reg [2:0] state, next_state;

 always @ (posedge clk or posedge reset)
 begin
 if (reset)
 state <= state_0;
 else
 state <= next_state;
 end
 always @ (*)
 begin
 tmp_out_0 = in_1 + in_2;
 tmp_out_1 = in_1 - in_2;
 case (state)
 state_0: begin
 tmp_out_2 = in_1 + 5'b00001;
 next_state = state_1;
 end
 state_1: begin
 if (in_1 < in_2) begin
 next_state = state_2;
 tmp_out_2 = tmp_out_0;
 end
 else begin
 next_state = state_3;
 tmp_out_2 = tmp_out_1;
 end
 end
 state_2: begin
 tmp_out_2 = tmp_out_0 - 5'b00001;
 next_state = state_3;
 end
 state_3: begin
 tmp_out_2 = tmp_out_1 + 5'b00001;
 next_state = state_0;
 end
 state_4:begin
 tmp_out_2 = in_2 + 5'b00001;
 next_state = state_0;
 end
 default:begin
 tmp_out_2 = 5'b00000;
 next_state = state_0;
 end
 endcase

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 end
 assign out = tmp_out_2;
endmodule

You can achieve an equivalent implementation of this state machine by using
‘define instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, you assign `state_x instead of state_x to state and next_state,
for example:

next_state <= ‘state_3;

Note: Although Intel supports the ‘define construct, use the parameter data type,
because it preserves the state names throughout synthesis.

1.6.4.2.2. SystemVerilog State Machine Coding Example

Use the following coding style to describe state machines in SystemVerilog.

Example 45. SystemVerilog State Machine Using Enumerated Types

The module enum_fsm is an example of a SystemVerilog state machine
implementation that uses enumerated types.

In Intel Quartus Prime Pro Edition synthesis, the enumerated type that defines the
states for the state machine must be of an unsigned integer type. If you do not
specify the enumerated type as int unsigned, synthesis uses a signed int type by
default. In this case, the Intel Quartus Prime software synthesizes the design, but
does not infer or optimize the logic as a state machine.

module enum_fsm (input clk, reset, input int data[3:0], output int o);
enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;
always_comb begin : next_state_logic
 next_state = S0;
 case(state)
 S0: next_state = S1;
 S1: next_state = S2;
 S2: next_state = S3;
 S3: next_state = S3;
 endcase
end
always_comb begin
 case(state)
 S0: o = data[3];
 S1: o = data[2];
 S2: o = data[1];
 S3: o = data[0];
 endcase
end
always_ff@(posedge clk or negedge reset) begin
 if(~reset)
 state <= S0;
 else
 state <= next_state;
end
endmodule

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.4.3. VHDL State Machines

To ensure proper recognition and inference of VHDL state machines, represent the
different states with enumerated types, and use the corresponding types to make
state assignments.

This implementation makes the state machine easier to read, and reduces the risk of
errors during coding. If your RTL does not represent states with an enumerated type,
Intel Quartus Prime synthesis (and other synthesis tools) do not recognize the state
machine. Instead, synthesis implements the state machine as regular logic gates and
registers. Consequently, and the state machine does not appear in the state machine
list of the Intel Quartus Prime Compilation Report, Analysis & Synthesis section.
Moreover, Intel Quartus Prime synthesis does not perform any of the optimizations
that are specific to state machines.

1.6.4.3.1. VHDL State Machine Coding Example

The following state machine has five states. The asynchronous reset sets the variable
state to state_0.

The sum of in1 and in2 is an output of the state machine in state_1 and state_2.
The difference (in1 - in2) is also used in state_1 and state_2. The temporary
variables tmp_out_0 and tmp_out_1 store the sum and the difference of in1 and
in2. Using these temporary variables in the various states of the state machine
ensures proper resource sharing between the mutually exclusive states.

Example 46. VHDL State Machine

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
ENTITY vhdl_fsm IS
 PORT(
 clk: IN STD_LOGIC;
 reset: IN STD_LOGIC;
 in1: IN UNSIGNED(4 downto 0);
 in2: IN UNSIGNED(4 downto 0);
 out_1: OUT UNSIGNED(4 downto 0)
);
END vhdl_fsm;
ARCHITECTURE rtl OF vhdl_fsm IS
 TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);
 SIGNAL state: Tstate;
 SIGNAL next_state: Tstate;
BEGIN
 PROCESS(clk, reset)
 BEGIN
 IF reset = '1' THEN
 state <=state_0;
 ELSIF rising_edge(clk) THEN
 state <= next_state;
 END IF;
 END PROCESS;
PROCESS (state, in1, in2)
 VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
 VARIABLE tmp_out_1: UNSIGNED (4 downto 0);
 BEGIN
 tmp_out_0 := in1 + in2;
 tmp_out_1 := in1 - in2;
 CASE state IS
 WHEN state_0 =>
 out_1 <= in1;

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 next_state <= state_1;
 WHEN state_1 =>
 IF (in1 < in2) then
 next_state <= state_2;
 out_1 <= tmp_out_0;
 ELSE
 next_state <= state_3;
 out_1 <= tmp_out_1;
 END IF;
 WHEN state_2 =>
 IF (in1 < "0100") then
 out_1 <= tmp_out_0;
 ELSE
 out_1 <= tmp_out_1;
 END IF;
 next_state <= state_3;
 WHEN state_3 =>
 out_1 <= "11111";
 next_state <= state_4;
 WHEN state_4 =>
 out_1 <= in2;
 next_state <= state_0;
 WHEN OTHERS =>
 out_1 <= "00000";
 next_state <= state_0;
 END CASE;
 END PROCESS;
END rtl;

1.6.5. Multiplexer HDL Guidelines

Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexer logic, you ensure the most efficient implementation.

This section addresses common problems and provides design guidelines to achieve
optimal resource utilization for multiplexer designs. The section also describes various
types of multiplexers, and how they are implemented.

For more information, refer to the Advanced Synthesis Cookbook.

1.6.5.1. Intel Quartus Prime Software Option for Multiplexer Restructuring

Intel Quartus Prime Pro Edition synthesis provides the Restructure Multiplexers
logic option that extracts and optimizes buses of multiplexers during synthesis. The
default Auto for this option setting uses the optimization whenever beneficial for your
design. You can turn the option on or off specifically to have more control over use.

Even with this Intel Quartus Prime-specific option turned on, it is beneficial to
understand how your coding style can be interpreted by your synthesis tool, and avoid
the situations that can cause problems in your design.

1.6.5.2. Multiplexer Types

This section addresses how Intel Quartus Prime synthesis creates multiplexers from
various types of HDL code.

State machines, CASE statements, and IF statements are all common sources of
multiplexer logic in designs. These HDL structures create different types of
multiplexers, including binary multiplexers, selector multiplexers, and priority
multiplexers.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The first step toward optimizing multiplexer structures for best results is to
understand how Intel Quartus Prime infers and implements multiplexers from HDL
code.

1.6.5.2.1. Binary Multiplexers

Binary multiplexers select inputs based on binary-encoded selection bits.

Device families featuring 6-input look up tables (LUTs) are perfectly suited for 4:1
multiplexer building blocks (4 data and 2 select inputs). The extended input mode
facilitates implementing 8:1 blocks, and the fractured mode handles residual 2:1
multiplexer pairs.

Example 47. Verilog HDL Binary-Encoded Multiplexers

case (sel)
 2'b00: z = a;
 2'b01: z = b;
 2'b10: z = c;
 2'b11: z = d;
endcase

1.6.5.2.2. Selector Multiplexers

Selector multiplexers have a separate select line for each data input. The select lines
for the multiplexer are one-hot encoded. Intel Quartus Prime commonly builds selector
multiplexers as a tree of AND and OR gates.

Even though the implementation of a tree-shaped, N-input selector multiplexer is
slightly less efficient than a binary multiplexer, in many cases the select signal is the
output of a decoder. Intel Quartus Prime synthesis combines the selector and decoder
into a binary multiplexer.

Example 48. Verilog HDL One-Hot-Encoded CASE Statement

case (sel)
 4'b0001: z = a;
 4'b0010: z = b;
 4'b0100: z = c;
 4'b1000: z = d;
 default: z = 1'bx;
endcase

1.6.5.2.3. Priority Multiplexers

In priority multiplexers, the select logic implies a priority. The options to select the
correct item must be checked in a specific order based on signal priority.

Synthesis tools commonly infer these structures from IF, ELSE, WHEN, SELECT,
and ?: statements in VHDL or Verilog HDL.

Example 49. VHDL IF Statement Implying Priority

The multiplexers form a chain, evaluating each condition or select bit sequentially.

IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Priority Multiplexer Implementation of an IF Statement

sel[1:0]

Binary MUX
sel[3:2]

“10xx”“01xx”

“00xx” “11xx”

z

a b c d

Depending on the number of multiplexers in the chain, the timing delay through this
chain can become large, especially for device families with 4-input LUTs.

To improve the timing delay through the multiplexer, avoid priority multiplexers if
priority is not required. If the order of the choices is not important to the design, use a
CASE statement to implement a binary or selector multiplexer instead of a priority
multiplexer. If delay through the structure is important in a multiplexed design
requiring priority, consider recoding the design to reduce the number of logic levels to
minimize delay, especially along your critical paths.

1.6.5.3. Implicit Defaults in IF Statements

IF statements in Verilog HDL and VHDL can simplify expressing conditions that do not
easily lend themselves to a CASE-type approach. However, IF statements can result in
complex multiplexer trees that are not easy for synthesis tools to optimize. In
particular, all IF statements have an ELSE condition, even when not specified in the
code. These implicit defaults can cause additional complexity in multiplexed designs.

You can simplify multiplexed logic and remove unneeded defaults with multiple
methods. The optimal method is recoding the design, so the logic takes the structure
of a 4:1 CASE statement. Alternatively, if priority is important, you can restructure the
code to reduce default cases and flatten the multiplexer. Examine whether the default
"ELSE IF" conditions are don’t care cases. You can add a default ELSE statement to
make the behavior explicit. Avoid unnecessary default conditions in the multiplexer
logic to reduce the complexity and logic utilization that the design implementation
requires.

1.6.5.4. default or OTHERS CASE Assignment

To fully specify the cases in a CASE statement, include a default (Verilog HDL) or
OTHERS (VHDL) assignment.

This assignment is especially important in one-hot encoding schemes where many
combinations of the select lines are unused. Specifying a case for the unused select
line combinations gives the synthesis tool information about how to synthesize these
cases, and is required by the Verilog HDL and VHDL language specifications.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For some designs you do not need to consider the outcome in the unused cases,
because these cases are unreachable. For these types of designs, you can specify any
value for the default or OTHERS assignment. However, the assignment value you
choose can have a large effect on the logic utilization required to implement the
design.

To obtain best results, explicitly define invalid CASE selections with a separate
default or OTHERS statement, instead of combining the invalid cases with one of the
defined cases.

If the value in the invalid cases is not important, specify those cases explicitly by
assigning the X (don’t care) logic value instead of choosing another value. This
assignment allows your synthesis tool to perform the best area optimizations.

1.6.6. Cyclic Redundancy Check Functions

CRC computations are used heavily by communications protocols and storage devices
to detect any corruption of data. These functions are highly effective; there is a very
low probability that corrupted data can pass a 32-bit CRC check

CRC functions typically use wide XOR gates to compare the data. The way synthesis
tools flatten and factor these XOR gates to implement the logic in FPGA LUTs can
greatly impact the area and performance results for the design. XOR gates have a
cancellation property that creates an exceptionally large number of reasonable
factoring combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for these designs.
When properly synthesized, CRC processing designs can run at high speeds in devices
with 6-input ALUTs.

The following guidelines help you improve the quality of results for CRC designs in
Intel FPGA devices.

1.6.6.1. If Performance is Important, Optimize for Speed

To minimize area and depth of levels of logic, synthesis tools flatten XOR gates.

By default, Intel Quartus Prime Pro Edition synthesis targets area optimization for XOR
gates. Therefore, for more focus on depth reduction, set the synthesis optimization
technique to speed.

Note: Flattening for depth sometimes causes a significant increase in area.

1.6.6.2. Use Separate CRC Blocks Instead of Cascaded Stages

Some designs optimize CRC to use cascaded stages (for example, four stages of 8
bits). In such designs, Intel Quartus Prime synthesis uses intermediate calculations
(such as the calculations after 8, 24, or 32 bits) depending on the data width.

This design is not optimal for FPGA devices. The XOR cancellations that Intel Quartus
Prime synthesis performs in CRC designs mean that the function does not require all
the intermediate calculations to determine the final result. Therefore, forcing the use
of intermediate calculations increases the area required to implement the function, as

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

well as increasing the logic depth because of the cascading. It is typically better to
create full separate CRC blocks for each data width that you require in the design, and
then multiplex them together to choose the appropriate mode at a given time

1.6.6.3. Use Separate CRC Blocks Instead of Allowing Blocks to Merge

Synthesis tools often attempt to optimize CRC designs by sharing resources and
extracting duplicates in two different CRC blocks because of the factoring options in
the XOR logic.

CRC logic allows significant reductions, but this works best when the Compiler
optimizes CRC function separately. Check for duplicate extraction behavior if for
designs with different CRC functions that are driven by common data signals or that
feed the same destination signals.

For designs with poor quality results that have two CRC functions sharing logic you
can ensure that the blocks are synthesized independently with one of the following
methods:

• Define each CRC block as a separate design partition in a hierarchical compilation
design flow.

• Synthesize each CRC block as a separate project in a third-party synthesis tool
and then write a separate Verilog Quartus Mapping (.vqm) or EDIF netlist file for
each.

1.6.6.4. Take Advantage of Latency if Available

If your design can use more than one cycle to implement the CRC functionality, adding
registers and retiming the design can help reduce area, improve performance, and
reduce power utilization.

If your synthesis tool offers a retiming feature (such as the Intel Quartus Prime
software Perform gate-level register retiming option), you can insert an extra
bank of registers at the input and allow the retiming feature to move the registers for
better results. You can also build the CRC unit half as wide and alternate between
halves of the data in each clock cycle.

1.6.6.5. Save Power by Disabling CRC Blocks When Not in Use

CRC designs are heavy consumers of dynamic power because the logic toggles
whenever there is a change in the design.

To save power, use clock enables to disable the CRC function for every clock cycle that
the logic is not required. Some designs don’t check the CRC results for a few clock
cycles while other logic is performing. It is valuable to disable the CRC function even
for this short amount of time.

1.6.6.6. Initialize the Device with the Synchronous Load (sload) Signal

CRC designs often require the data to be initialized to 1’s before operation. In devices
that support the sload signal, you can use this signal to set all registers in the design
to 1’s before operation.

To enable the sload signal, follow the coding guidelines in this chapter. After
compilation you can check the register equations in the Chip Planner to ensure that
the signal behaves as expected.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you must force a register implementation using an sload signal, refer to Designing
with Low-Level Primitives User Guide to see how you can use low-level device
primitives.

Related Information

Secondary Register Control Signals Such as Clear and Clock Enable on page 40

1.6.7. Comparator HDL Guidelines

This section provides information about the different types of implementations
available for comparators (<, >, or ==), and provides suggestions on how you can
code the design to encourage a specific implementation. Synthesis tools, including
Intel Quartus Prime Pro Edition synthesis, use device and context-specific
implementation rules, and select the best one for the design.

Synthesis tools implement the == comparator in general logic cells and the <
comparison in either the carry chain or general logic cells. In devices with 6-input
ALUTs, the carry chain can compare up to three bits per cell. Carry chain
implementation tends to be faster than general logic on standalone benchmark test
cases, but can result in lower performance on larger designs due to increased
restrictions on the Fitter. The area requirement is similar for most input patterns. The
synthesis tools select an appropriate implementation based on the input pattern.

You can guide the Intel Quartus Prime Synthesis engine by choosing specific coding
styles. To select a carry chain implementation explicitly, rephrase the comparison in
terms of addition.

For example, the following coding style allows the synthesis tool to select the
implementation, which is most likely using general logic cells in modern device
families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except for a few
cases, such as when the chain is very short, or the signals a and b minimize to the
same signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in two's
complement logic if a is less than b, because the subtraction a - b results in a negative
number.

If you have any information about the range of the input, you can use “don’t care”
values to optimize the design. This information is not available to the synthesis tool,
so specific hand implementation of the logic can reduce the device area required to
implement the comparator.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following logic structure, which occurs frequently in address decoders, allows you
to check whether a bus value is within a constant range with a small amount of logic
area:

Figure 7. Example Logic Structure for Using Comparators to Check a Bus Value Range

Address[]

Select[0]Select[3] Select[2] Select[1]

< 200< 2f00 < 1a0 < 100

1.6.8. Counter HDL Guidelines

The Intel Quartus Prime synthesis engine implements counters in HDL code as an
adder followed by registers, and makes available register control signals such as
enable (ena), synchronous clear (sclr), and synchronous load (sload). For best
area utilization, ensure that the up and down control or controls are expressed in
terms of one addition operator, instead of two separate addition operators.

If you use the following coding style, your synthesis engine may implement two
separate carry chains for addition:

out <= count_up ? out + 1 : out - 1;

For simple designs, the synthesis engine identifies this coding style and optimizes the
logic. However, in complex designs, or designs with preserve pragmas, the Compiler
cannot optimize all logic, so more careful coding becomes necessary.

The following coding style requires only one adder along with some other logic:

out <= out + (count_up ? 1 : -1);

This style makes more efficient use of resources and area, since it uses only one carry
chain adder, and the –1 constant logic is implemented in the LUT before the adder.

1.7. Designing with Low-Level Primitives

Low-level HDL design is the practice of using low-level primitives and assignments to
dictate a particular hardware implementation for a piece of logic. Low-level primitives
are small architectural building blocks that assist you in creating your design.

With the Intel Quartus Prime software, you can use low-level HDL design techniques
to force a specific hardware implementation that can help you achieve better resource
utilization or faster timing results.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Using low-level primitives is an optional advanced technique to help with specific
design challenges. For many designs, synthesizing generic HDL source code and Intel
FPGA IP cores give you the best results.

Low-level primitives allow you to use the following types of coding techniques:

• Instantiate the logic cell or LCELL primitive to prevent Intel Quartus Prime Pro
Edition synthesis from performing optimizations across a logic cell

• Instantiate registers with specific control signals using DFF primitives

• Specify the creation of LUT functions by identifying the LUT boundaries

• Use I/O buffers to specify I/O standards, current strengths, and other I/O
assignments

• Use I/O buffers to specify differential pin names in your HDL code, instead of using
the automatically-generated negative pin name for each pair

For details about and examples of using these types of assignments, refer to the
Designing with Low-Level Primitives User Guide.

1.8. Cross-Module Referencing (XMR) in HDL Code

Cross Module Referencing (XMR), also known as hierarchical reference, is enabled by
default. It is a mechanism built into Verilog, SystemVerilog, and VHDL to globally
reference nets in any hierarchy across modules, which means you can refer to any net
of a particular module in a different module (irrespective of the hierarchy) directly
without going through the ports. Hence, XMR can be a downward reference or an
upward reference.

Note: XMR also works in mixed language designs.

You can use XMR to read from nets or write to a net in different hierarchies. XMR is
helpful in debugging and verification, for example:

• Override or force any signal. For more information, refer to Using force
Statements in HDL Code on page 64.

• Write cover points for functional coverage.

• Tap into any signal from anywhere in the entire design.

Consider the following hierarchy within the instance top of module a:

module a
 net x
 instance p of module b
 net x
 instance m of module d
 net x
 instance q of module c
 net x
 instance n of module e
 net x
 instance r of module b
 net x
 instance m of module d
 net x

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the above scenario, all modules consist of a net named x. By using full-path-based
XMR, you can globally reference each net x anywhere within the hierarchy, as follows:

• top.x

• top.p.x

• top.p.m.x

• top.q.x

• top.q.n.x

• top.r.x

• top.r.m

XMR starts with searching within the current module. Then, it hierarchically searches
downwards through child instances. If XMR is unresolved, it searches one step above
in the hierarchy (parent module) and hierarchically downwards. It keeps going further
in the hierarchy until it gets resolved. To avoid unexpected behavior, Intel
recommends always using the hierarchy path where possible.

XMR Use Case Examples

Example 50. XMR of Signals in Higher Modules from Lower Modules

In the following example, the signal d in the sub module is assigned to the value a
from the top module:

module top (input a, input b, output c, output d);
 sub inst1 (.a(a), .b(b), .c(c), .d(d));
endmodule

module sub (input a, input b, output c, output d);
 assign c = a & b;
 assign d = top.a;
endmodule

Example 51. XMR of Signals in Lower Modules from Higher Modules

In the following example, the sub module's value a assigns the output value d, given
the complete path in the top module:

module top (input a, input b, output c, output d);
 sub inst1 (.a(a), .b(b), .c(c));
 assign d = inst1.a;
endmodule
module sub (input a, input b, output c);
 assign c = a & b;
endmodule

Example 52. XMR of Signals in generate Block

Consider the following example with a generate block where you write the value to
temp at the top module and read the out2 value from the top module:

module top (input [3:0] in1, in2, input clk, output [3:0] out1, out2);
 generate
 begin:blk1 sub inst (in1, clk, out1, temp);
 end:blk1
 endgenerate

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

//XMR read
assign out2 = top.blk1.inst.temp;
endmodule

Example 53. XMR From Inside an always Block

Consider the following example of XMR of signals within the always_comb construct,
where the output value d in the top module is assigned from the sub module value a:

module top (input logic a, input logic b, output logic c, output logic d);
 sub inst1 (.a(a), .b(b), .c(c));
 always_comb d = inst1.a;

endmodule

module sub (input logic a, input logic b, output logic c);
 assign c = b & a;
endmodule

Limitations of XMR

The following are some limitations of XMR in the Intel Quartus Prime software:

• XMR must be within the same design partition. For example, if there are partitions
A and B, then in partition B, there cannot be any XMR to anything in partition A
and vice versa.

Note: The same partition requirement applies for global signals that are specified
in a package and can be used in any module.

• Multiple-driven nets are not supported. So, you cannot use XMR to drive a net
already driven by another signal.

• You can use XMR only in Verilog, SystemVerilog, and VHDL. It does not work for
Text Design File (TDF) or Block Design File (BDF).

Note: Intel does not recommend using XMR on SystemVerilog interfaces since
they are prone to errors.

• You cannot use XMR to refer to signals inside an Intel FPGA IP core or a Signal Tap
partition that is automatically created during synthesis.

Related Information

Synplify Pro for Microsemi Edition Language Support Reference Manual

1.9. Using force Statements in HDL Code

force statement in SystemVerilog is a continuous procedural assignment on a net or
a variable. Applying a force statement to a net or variable overrides all other drivers
to that net or variable. In simulation, you can use a force statement in conjunction
with a release statement. However, Intel Quartus Prime software synthesis supports
using only the force statement to override the drivers of a net (gate outputs, module
outputs, and continuous assignments) and previous assignments made on a particular
net or a net bus.

Note: Synthesis supports using a force statement only inside an initial block.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

64

https://www.microsemi.com/document-portal/doc_download/1244946-synopsys-fpga-synthesis-synplify-pro-me-p2019-03msp1-1hdl-language-reference-manual
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Examples of force Statements in Synthesis

The following are some examples of force statements that the Intel Quartus Prime
software synthesis supports:

Example 54. Using a force Statement to Set Counter enable to 0

The following is an example of how you can use a force statement to tie the en port
of the counter instance u1 to logic 0:

module top(clk, rst, enable, dout);
 input clk, rst, enable;
 output [3:0] dout;
 counter u1(.clk(clk), .reset(rst), .en(enable), .q(dout));

 initial begin
 force u1.en = 1'b0
 end
endmodule

You can observe that the force statement overrides the other driver of the en port,
which is the enable port of the top module.

Example 55. Using a force Statement to Change Connections

The following example shows how you can use a force statement to change the
connections in the design:

module top(input [3:0] din, din1, output logic [3:0] dout, dout1, input clk,
rst);
 dff i0(.din(din), .dout(dout), .clk(clk), .rst(rst));
 dff i1(.din(din1), .dout(dout1), .clk(clk), .rst(rst));
endmodule

module top_modified(input [3:0] din, din1, output logic [3:0] dout, dout1, input
clk, rst);
 top i_top(.*);
 initial
 begin
 force i_top.i1.din = i_top.din;
 end
endmodule

In this example, the design's top module instantiates two instances of the dff
module. din and din1 ports of the top module drive the din port of i0 and i1
instances.

Suppose you want to change the connections in the top module without changing the
RTL inside the top module. In this situation, you can use a force statement within a
wrapper module (top_modified), which becomes the new top module. In the new
top module, use the force statement to modify the connections in the top module
such that the din port of both i0 and i1 instances is driven by the same din port of
the top module. The force statement uses a cross-module reference (XMR) to
access signals in a hierarchy below it. For more information about XMR, refer to Cross-
Module Referencing (XMR) in HDL Code on page 62.

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For this example, instead of creating a wrapper top_modified that instantiates the
top module, you can also create a secondary top-level entity and make the force
assignment in it, as shown in the following:

module secondary_top(input [3:0] din, din1, output logic [3:0] dout, dout1,
input clk, rst);
initial begin
 force top.i1.din = top.din;
end
endmodule

1.10. Recommended HDL Coding Styles Revision History

The following revisions history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2023.10.02 23.1 • Made minor updates to code snippets in Using force Statements in HDL
Code and Cross-Module Referencing (XMR) in HDL Code.

2023.04.03 23.1 • Updated product family name to "Intel Agilex 7."

2022.09.26 22.3 • Added Using force Statements in HDL Code.
• Added Cross-Module Referencing (XMR) in HDL Code.

2021.10.04 21.3 • Added new Inferring FIFOs in HDL Code topic and linked to FIFO Intel
FPGA IP User Guide.

• Added new Dual Clock FIFO Example in Verilog HDL topic.
• Added new Dual Clock FIFO Timing Constraints topic.

2021.06.21 21.2 • Updated Inferring Shift Registers in HDL Code for Intel Stratix 10 and
Intel Agilex 7 devices.

• Updated wording of Controlling RAM Inference and Implementation for
clarity.

2019.09.30 19.3 • Updated Simple Dual-Port Synchronous RAM with Byte Enable
examples.

• Updated True Dual-Port Synchronous RAM examples.
• Updated Verilog HDL Single-Bit Wide Shift Register example from 64 to

69 bits.
• Updated VHDL Single-Bit Wide Shift Register example from 67 to 69

bits.
• Updated Verilog HDL 8-Bit Wide Shift Register with Evenly Spaced Taps

from 64 to 254 bits.

2018.09.24 18.1 • Added "State Machine Power-Up" topic.
• Updated "Designing with Low-Level Primitives" to remove support for

carry and cascade chains using CARRY, CARRY_SUM, and CASCADE
primitives.

• Renamed topic: "Use the Device Synchronous Load (sload) Signal to
Initialize" to "Initialize the Device with the Synchronous Load (sload)
Signal"

2017.11.06 17.1 • Described new no_ram synthesis attribute.

2017.05.08 17.0 • Updated example: Verilog HDL Multiply-Accumulator
• Updated information about use of safe state machine.
• Revised Check Read-During-Write Behavior.
• Revised Controlling RAM Inference and Implementation.
• Revised Single-Clock Synchronous RAM with Old Data Read-During-

Write Behavior.
• Revised Single-Clock Synchronous RAM with New Data Read-During-

Write Behavior.

continued...

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Updated and moved template for VHDL Single-Clock Simple Dual Port
Synchronous RAM with New Data Read-During-Write Behavior.

• Revised Inferring ROM Functions from HDL Code.
• Removed example: VHDL 8-Bit Wide, 64-Bit Long Shift Register with

Evenly Spaced Taps.
• Removed example: Verilog HDL D-Type Flipflop (Register) With ena,

aclr, and aload Control Signals
• Removed example: VHDL D-Type Flipflop (Register) With ena, aclr, and

aload Control Signals
• Added example: Verilog D-type Flipflop bus with Secondary Signals
• Removed references to 4-input LUT-based devices.
• Removed references to Integrated Synthesis.
• Created example: Avoid this VHDL Coding Style.

2016.10.31 16.1 • Provided corrected Verilog HDL Pipelined Binary Tree and Ternary Tree
examples.

• Implemented Intel rebranding.

2016.05.03 16.0 • Added information about use of safe state machine.
• Updated example code templates with latest coding styles.

2015.11.02 15.1 • Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0 Added information and reference about ramstyle attribute for sift register
inference.

2014.12.15 14.1 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

2014.08.18 14.0.a10 • Added recommendation to use register pipelining to obtain high
performance in DSP designs.

2014.06.30 14.0 Removed obsolete MegaWizard Plug-In Manager support.

November 2013 13.1 Removed HardCopy device support.

June 2012 12.0 • Revised section on inserting Altera templates.
• Code update for Example 11-51.
• Minor corrections and updates.

November 2011 11.1 • Updated document template.
• Minor updates and corrections.

December 2010 10.1 • Changed to new document template.
• Updated Unintentional Latch Generation content.
• Code update for Example 11-18.

July 2010 10.0 • Added support for mixed-width RAM
• Updated support for no_rw_check for inferring RAM blocks
• Added support for byte-enable

November 2009 9.1 • Updated support for Controlling Inference and Implementation in
Device RAM Blocks

• Updated support for Shift Registers

continued...

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

March 2009 9.0 • Corrected and updated several examples
• Added support for Arria II GX devices
• Other minor changes to chapter

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Updates for the Intel Quartus Prime software version 8.0 release,
including:
• Added information to “RAM
• Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions from

HDL Code” on page 6–13
• Added information to “Avoid Unsupported Reset and Control Conditions”

on page 6–14
• Added information to “Check Read-During-Write Behavior” on page 6–

16
• Added two new examples to “ROM Functions—Inferring ALTSYNCRAM

and LPM_ROM Megafunctions from HDL Code” on page 6–28:
Example 6–24 and Example 6–25

• Added new section: “Clock Multiplexing” on page 6–46
• Added hyperlinks to references within the chapter
• Minor editorial updates

1. Recommended HDL Coding Styles

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Recommended Design Practices
This chapter provides design recommendations for Intel FPGA devices.

Current FPGA applications have reached the complexity and performance
requirements of ASICs. In the development of complex system designs, design
practices have an enormous impact on the timing performance, logic utilization, and
system reliability of a device. Well-coded designs behave in a predictable and reliable
manner even when retargeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and ASIC
implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when designing with
Intel FPGA devices, you should adhere to the following guidelines:

• Understand the impact of synchronous design practices

• Follow recommended design techniques, including hierarchical design partitioning,
and timing closure guidelines

• Take advantage of the architectural features in the targeted device

2.1. Following Synchronous FPGA Design Practices

The first step in good design methodology is to understand the implications of your
design practices and techniques. This section outlines the benefits of optimal
synchronous design practices and the hazards involved in other approaches.

Good synchronous design practices can help you meet your design goals consistently.
Problems with other design techniques can include reliance on propagation delays in a
device, which can lead to race conditions, incomplete timing analysis, and possible
glitches.

In a synchronous design, a clock signal triggers every event. If you ensure that all the
timing requirements of the registers are met, a synchronous design behaves in a
predictable and reliable manner for all process, voltage, and temperature (PVT)
conditions. You can easily migrate synchronous designs to different device families or
speed grades.

2.1.1. Implementing Synchronous Designs

In a synchronous design, the clock signal controls the activities of all inputs and
outputs.

On every active edge of the clock (usually the rising edge), the data inputs of registers
are sampled and transferred to outputs. Following an active clock edge, the outputs of
combinational logic feeding the data inputs of registers change values. This change
triggers a period of instability due to propagation delays through the logic as the

683082 | 2023.08.03

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

signals go through several transitions and finally settle to new values. Changes that
occur on data inputs of registers do not affect the values of their outputs until after
the next active clock edge.

Because the internal circuitry of registers isolates data outputs from inputs, instability
in the combinational logic does not affect the operation of the design if you meet the
following timing requirements:

• Before an active clock edge, you must ensure that the data input has been stable
for at least the setup time of the register.

• After an active clock edge, you must ensure that the data input remains stable for
at least the hold time of the register.

When you specify all your clock frequencies and other timing requirements, the
Intel Quartus Prime Timing Analyzer reports actual hardware requirements for the
setup times (tSU) and hold times (tH) for every pin in your design. By meeting
these external pin requirements and following synchronous design techniques, you
ensure that you satisfy the setup and hold times for all registers in your device.

Tip: To meet setup and hold time requirements on all input pins, any inputs to
combinational logic that feed a register should have a synchronous
relationship with the clock of the register. If signals are asynchronous, you
can register the signals at the inputs of the device to help prevent a violation
of the required setup and hold times.

When you violate the setup or hold time of a register, you might oscillate the
output, or set the output to an intermediate voltage level between the high
and low levels called a metastable state. In this unstable state, small
perturbations such as noise in power rails can cause the register to assume
either the high or low voltage level, resulting in an unpredictable valid state.
Various undesirable effects can occur, including increased propagation delays
and incorrect output states. In some cases, the output can even oscillate
between the two valid states for a relatively long period of time.

2.1.2. Asynchronous Design Hazards

Asynchronous design techniques, such as ripple counters or pulse generators, can
work as “short cuts” to save device resources. However, asynchronous techniques
have inherent problems. For example, relying on propagation delays can result in
incomplete timing constraints and possible glitches and spikes, because propagation
delay varies with temperature and voltage fluctuations.

Asynchronous design structures that depend on the relative propagation delays can
present race conditions. Race conditions arise when the order of signal changes affect
the output of the logic. The same logic design can have varying timing delays with
each compilation, depending on placement and routing. The number of possible
variations make it impossible to determine the timing delay associated with a
particular block of logic. As devices become faster due to process improvements,
delays in asynchronous designs may decrease, resulting in designs that do not
function as expected. Relying on a particular delay also makes asynchronous designs
difficult to migrate to other architectures, devices, or speed grades.

The timing of asynchronous design structures is often difficult or impossible to model
with timing assignments and constraints. If you do not have complete or accurate
timing constraints, the timing-driven algorithms that synthesis and place-and-route
tools use may not be able to perform the best optimizations, and the reported results
may be incomplete.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Additionally, asynchronous design structures can generate glitches, which are pulses
that are very short compared to clock periods. Combinational logic is the main cause
of glitches. When the inputs to the combinational logic change, the outputs exhibit
several glitches before settling to their new values. Glitches can propagate through
combinational logic, leading to incorrect values on the outputs in asynchronous
designs. In synchronous designs, glitches on register's data inputs have no negative
consequences, because data processing waits until the next clock edge.

2.2. HDL Design Guidelines

When designing with HDL code, consider how synthesis tools interpret different HDL
design techniques and what results to expect.

Design style can affect logic utilization and timing performance, as well as the design’s
reliability. This section describes basic design techniques that ensure optimal synthesis
results for designs that target Intel FPGA devices while avoiding common causes of
unreliability and instability. As a best practice, consider potential problems when
designing combinational logic, and pay attention to clocking schemes so that the
design maintains synchronous functionality and avoids timing issues.

2.2.1. Considerations for the Intel Hyperflex FPGA Architecture

The Intel Hyperflex FPGA architecture and the Hyper-Retimer require a review of the
best design practices to achieve the highest clock rates possible.

While most common techniques of high-speed design apply to designing for the Intel
Hyperflex architecture, you must use some new approaches to achieve the highest
performance. Follow these general RTL design guidelines to enable the Hyper-Retimer
to optimize design performance:

• Design in a way that facilitates register retiming by the Hyper-Retimer.

• Use a latency-insensitive design that supports the addition of pipeline stages at
clock domain boundaries, top-level I/Os, and at the boundaries of functional
blocks.

• Restructure RTL to avoid performance-limiting loops.

For more information about best design practices targeting Intel Stratix 10 devices,
refer to the Intel Stratix 10 High-Performance Design Handbook.

Related Information

Intel® Hyperflex™ Architecture High-Performance Design Handbook

2.2.2. Optimizing Combinational Logic

Combinational logic structures consist of logic functions that depend only on the
current state of the inputs. In Intel FPGAs, these functions are implemented in the
look-up tables (LUTs) with either logic elements (LEs) or adaptive logic modules
(ALMs).

For cases where combinational logic feeds registers, the register control signals can
implement part of the logic function to save LUT resources. By following the
recommendations in this section, you can improve the reliability of your combinational
design.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

71

https://www.intel.com/content/www/us/en/docs/programmable/683353.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.2.1. Avoid Combinational Loops

Combinational loops are among the most common causes of instability and
unreliability in digital designs. Combinational loops generally violate synchronous
design principles by establishing a direct feedback loop that contains no registers.

Avoid combinational loops whenever possible. In a synchronous design, feedback
loops should include registers. For example, a combinational loop occurs when the
left-hand side of an arithmetic expression also appears on the right-hand side in HDL
code. A combinational loop also occurs when you feed back the output of a register to
an asynchronous pin of the same register through combinational logic.

Figure 8. Combinational Loop Through Asynchronous Control Pin

Logic

D Q

Tip: Use recovery and removal analysis to perform timing analysis on asynchronous ports,
such as clear or reset in the Intel Quartus Prime software.

Combinational loops are inherently high-risk design structures for the following
reasons:

• Combinational loop behavior generally depends on relative propagation delays
through the logic involved in the loop. As discussed, propagation delays can
change, which means the behavior of the loop is unpredictable.

• In many design tools, combinational loops can cause endless computation loops .
Most tools break open combinational loops to process the design. The various tools
used in the design flow may open a given loop differently, and process it in a way
inconsistent with the original design intent.

2.2.2.2. Avoid Unintended Latch Inference

Avoid using latches to ensure that you can completely analyze the timing performance
and reliability of your design. A latch is a small circuit with combinational feedback
that holds a value until a new value is assigned. You can implement latches with the
Intel Quartus Prime Text Editor or Block Editor.

A common mistake in HDL code is unintended latch inference; Intel Quartus Prime
Synthesis issues a warning message if this occurs. Unlike other technologies, a latch in
FPGA architecture is not significantly smaller than a register. However, the architecture
is not optimized for latch implementation and latches generally have slower timing
performance compared to equivalent registered circuitry.

Latches have a transparent mode in which data flows continuously from input to
output. A positive latch is in transparent mode when the enable signal is high (low for
a negative latch). In transparent mode, glitches on the input can pass through to the
output because of the direct path created. This presents significant complexity for
timing analysis. Typical latch schemes use multiple enable phases to prevent long
transparent paths from occurring. However, timing analysis cannot identify these safe
applications.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Timing Analyzer analyzes latches as synchronous elements clocked on the falling
edge of the positive latch signal by default. It allows you to treat latches as having
nontransparent start and end points. Be aware that even an instantaneous transition
through transparent mode can lead to glitch propagation. The Timing Analyzer cannot
perform cycle-borrowing analysis.

Due to various timing complexities, latches have limited support in formal verification
tools. Therefore, you should not rely on formal verification for a design that includes
latches.

Related Information

Avoid Unintentional Latch Generation on page 42

2.2.2.3. Avoid Delay Chains in Clock Paths

Delays in PLD designs can change with each placement and routing cycle. Effects such
as rise and fall time differences and on-chip variation mean that delay chains,
especially those placed on clock paths, can cause significant problems in your design.
Avoid using delay chains to prevent these kinds of problems.

You require delay chains when you use two or more consecutive nodes with a single
fan-in and a single fan-out to cause delay. Inverters are often chained together to add
delay. Delay chains are sometimes used to resolve race conditions created by other
asynchronous design practices.

In some ASIC designs, delays are used for buffering signals as they are routed around
the device. This functionality is not required in FPGA devices because the routing
structure provides buffers throughout the device.

2.2.2.4. Use Synchronous Pulse Generators

Use synchronous techniques to design pulse generators.

Figure 9. Asynchronous Pulse Generators
The figure shows two methods for asynchronous pulse generation. The first method uses a delay chain to
generate a single pulse (pulse generator). The second method generates a series of pulses (multivibrators).

Trigger

Pulse Trigger
Pulse

Clock

Using an AND Gate Using a Register

In the first method, a trigger signal feeds both inputs of a 2-input AND gate, and the
design adds inverters to one of the inputs to create a delay chain. The width of the
pulse depends on the time differences between the path that feeds the gate directly
and the path that goes through the delay chain. This is the same mechanism
responsible for the generation of glitches in combinational logic following a change of
input values. This technique artificially increases the width of the glitch.

In the second method, a register’s output drives its asynchronous reset signal through
a delay chain. The register resets itself asynchronously after a certain delay. The
Compiler can determine the pulse width only after placement and routing, when
routing and propagation delays are known. You cannot reliably create a specific pulse

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

width when creating HDL code, and it cannot be set by EDA tools. The pulse may not
be wide enough for the application under all PVT conditions. Also, the pulse width
changes if you change to a different device. Additionally, verification is difficult
because static timing analysis cannot verify the pulse width.

Multivibrators use a glitch generator to create pulses, together with a combinational
loop that turns the circuit into an oscillator. This method creates additional problems
because of the number of pulses involved. Additionally, when the structures generate
multiple pulses, they also create a new artificial clock in the design that must be
analyzed by design tools.

Figure 10. Recommended Synchronous Pulse-Generation Technique

Trigger Signal

Clock

Pulse

The pulse width is always equal to the clock period. This pulse generator is
predictable, can be verified with timing analysis, and is easily moved to other
architectures, devices, or speed grades.

2.2.3. Optimizing Clocking Schemes

Like combinational logic, clocking schemes have a large effect on the performance and
reliability of a design.

Intel recommends avoiding the use of internally generated clocks (other than PLLs)
wherever possible because they can cause functional and timing problems in the
design. If not carefully designed, clocks generated with or passing through
combinational logic can introduce glitches that create functional problems, and the
delay inherent in combinational logic can lead to timing problems. Refer to the
sections listed below for information on some common scenarios of using
combinational logic in a clock path (for example, clock mux) and design considerations
to prevent unexpected failures.

Tip: Specify all clock relationships in the Intel Quartus Prime software to allow for the best
timing-driven optimizations during fitting and to allow correct timing analysis. Use
clock setting assignments on any derived or internal clocks to specify their relationship
to the base clock.

Use global device-wide, low-skew dedicated routing for all internally-generated clocks,
instead of routing clocks on regular routing lines.

Avoid data transfers between different clocks wherever possible. If you require a data
transfer between different clocks, use FIFO circuitry. You can use the clock uncertainty
features in the Intel Quartus Prime software to compensate for the variable delays
between clock domains. Consider setting a clock setup uncertainty and clock hold
uncertainty value of 10% to 15% of the clock delay.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following sections provide specific examples and recommendations for avoiding
clocking scheme problems:

2.2.3.1. Register Combinational Logic Outputs

If you use the output from combinational logic as a clock signal or as an asynchronous
reset signal, you can expect to see glitches in your design. In a synchronous design,
glitches on data inputs of registers are normal events that have no consequences.
However, a glitch or a spike on the clock input (or an asynchronous input) to a register
can have significant consequences.

Narrow glitches can violate the register’s minimum pulse width requirements. Setup
and hold requirements might also be violated if the data input of the register changes
when a glitch reaches the clock input. Even if the design does not violate timing
requirements, the register output can change value unexpectedly and cause functional
hazards elsewhere in the design.

To avoid these problems, you should always register the output of combinational logic
before you use it as a clock signal.

Figure 11. Recommended Clock-Generation Technique

D Q
Internally Generated Clock

Routed on Global Clock Resource

D Q D Q

D Q
Clock

Generation
Logic

Registering the output of combinational logic ensures that glitches generated by the
combinational logic are blocked at the data input of the register.

2.2.3.2. Avoid Asynchronous Clock Division

Designs often require clocks that you create by dividing a master clock. Most Intel
FPGAs provide dedicated phase-locked loop (PLL) circuitry for clock division. Using
dedicated PLL circuitry can help you avoid many of the problems that can be
introduced by asynchronous clock division logic.

When you must use logic to divide a master clock, always use synchronous counters
or state machines. Additionally, create your design so that registers always directly
generate divided clock signals, and route the clock on global clock resources. To avoid
glitches, do not decode the outputs of a counter or a state machine to generate clock
signals.

2.2.3.3. Avoid Ripple Counters

To simplify verification, avoid ripple counters in your design. In the past, FPGA
designers implemented ripple counters to divide clocks by a power of two because the
counters are easy to design and may use fewer gates than their synchronous
counterparts.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Ripple counters use cascaded registers, in which the output pin of one register feeds
the clock pin of the register in the next stage. This cascading can cause problems
because the counter creates a ripple clock at each stage. These ripple clocks must be
handled properly during timing analysis, which can be difficult and may require you to
make complicated timing assignments in your synthesis and placement and routing
tools.

You can often use ripple clock structures to make ripple counters out of the smallest
amount of logic possible. However, in all Intel devices supported by the Intel Quartus
Prime software, using a ripple clock structure to reduce the amount of logic used for a
counter is unnecessary because the device allows you to construct a counter using one
logic element per counter bit. You should avoid using ripple counters completely.

2.2.3.4. Use Multiplexed Clocks

Use clock multiplexing to operate the same logic function with different clock sources.
In these designs, multiplexing selects a clock source.

For example, telecommunications applications that deal with multiple frequency
standards often use multiplexed clocks.

Figure 12. Multiplexing Logic and Clock Sources

Clock 1
Multiplexed Clock Routed
on Global Clock Resource

Clock 2

Select Signal

D Q

D Q

D Q

Adding multiplexing logic to the clock signal can create the problems addressed in the
previous sections, but requirements for multiplexed clocks vary widely, depending on
the application. Clock multiplexing is acceptable when the clock signal uses global
clock routing resources and if the following criteria are met:

• The clock multiplexing logic does not change after initial configuration

• The design uses multiplexing logic to select a clock for testing purposes

• Registers are always reset when the clock switches

• A temporarily incorrect response following clock switching has no negative
consequences

If the design switches clocks in real time with no reset signal, and your design cannot
tolerate a temporarily incorrect response, you must use a synchronous design so that
there are no timing violations on the registers, no glitches on clock signals, and no
race conditions or other logical problems. By default, the Intel Quartus Prime software
optimizes and analyzes all possible paths through the multiplexer and between both
internal clocks that may come from the multiplexer. This may lead to more restrictive

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

analysis than required if the multiplexer is always selecting one particular clock. If you
do not require the more complete analysis, you can assign the output of the
multiplexer as a base clock in the Intel Quartus Prime software, so that all register-to-
register paths are analyzed using that clock.

Tip: Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the clock-switchover feature or
clock control block available in certain Intel FPGA devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any possible hold
time problems on the device due to logic delay on the clock line.

Note: For device-specific information about clocking structures, refer to the appropriate
device data sheet or handbook.

2.2.3.5. Use Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that controls gating
circuitry. When a clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive.

Figure 13. Gated Clock

Clock

Gated Clock

D Q D Q

Gating Signal

You can use gated clocks to reduce power consumption in some device architectures
by effectively shutting down portions of a digital circuit when they are not in use.
When a clock is gated, both the clock network and the registers driven by it stop
toggling, thereby eliminating their contributions to power consumption. However,
gated clocks are not part of a synchronous scheme and therefore can significantly
increase the effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These clocks are also
sensitive to glitches, which can cause design failure.

Use dedicated hardware to perform clock gating rather than an AND or OR gate. For
example, you can use the clock control block in newer Intel FPGA devices to shut
down an entire clock network. Dedicated hardware blocks ensure that you use global
routing with low skew, and avoid any possible hold time problems on the device due to
logic delay on the clock line.

From a functional point of view, you can shut down a clock domain in a purely
synchronous manner using a synchronous clock enable signal. However, when using a
synchronous clock enable scheme, the clock network continues toggling. This practice
does not reduce power consumption as much as gating the clock at the source does.
In most cases, use a synchronous scheme.

2.2.3.5.1. Recommended Clock-Gating Methods

Use gated clocks only when your target application requires power reduction and
gated clocks provide the required reduction in your device architecture. If you must
use clocks gated by logic, follow a robust clock-gating methodology and ensure the
gated clock signal uses dedicated global clock routing.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can gate a clock signal at the source of the clock network, at each register, or
somewhere in between. Since the clock network contributes to switching power
consumption, gate the clock at the source whenever possible to shut down the entire
clock network instead of further along.

Figure 14. Recommended Clock-Gating Technique for Clock Active on Rising Edge

D Q

Clock

Enable Gated Clock Routed on
Global Clock Resources

D Q D Q

Gating Signal

To generate a gated clock with the recommended technique, use a register that
triggers on the inactive edge of the clock. With this configuration, only one input of
the gate changes at a time, preventing glitches or spikes on the output. If the clock is
active on the rising edge, use an AND gate. Conversely, for a clock that is active on
the falling edge, use an OR gate to gate the clock and register

Pay attention to the delay through the logic generating the enable signal, because the
enable command must be ready in less than one-half the clock cycle. This might cause
problems if the logic that generates the enable command is particularly complex, or if
the duty cycle of the clock is severely unbalanced. However, careful management of
the duty cycle and logic delay may be an acceptable solution when compared with
problems created by other methods of gating clocks.

In the Timing Analyzer, ensure to apply a clock setting to the output of the AND gate.
Otherwise, the timing analyzer might analyze the circuit using the clock path through
the register as the longest clock path and the path that skips the register as the
shortest clock path, resulting in artificial clock skew.

In certain cases, converting the gated clocks to clock enable pins may help reduce
glitch and clock skew, and eventually produce a more accurate timing analysis. You
can set the Intel Quartus Prime software to automatically convert gated clocks to clock
enable pins by turning on the Auto Gated Clock Conversion option. The conversion
applies to two types of gated clocking schemes: single-gated clock and cascaded-
gated clock.

Related Information

Auto Gated Clock Conversion logic option
In Intel Quartus Prime Help

2.2.3.6. Use Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous clock enable
signal. FPGAs efficiently support clock enable signals because there is a dedicated
clock enable signal available on all device registers.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

78

http://quartushelp.altera.com/current/#logicops/logicops/def_synth_gated_clock_conversion.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This scheme does not reduce power consumption as much as gating the clock at the
source because the clock network keeps toggling, and performs the same function as
a gated clock by disabling a set of registers. Insert a multiplexer in front of the data
input of every register to either load new data, or copy the output of the register.

Figure 15. Synchronous Clock Enable

D Q

Enable

Data

When designing for Intel Stratix 10 devices, consider that high fan-out clock enable
signals can limit the performance achievable by the Hyper- Retimer. For specific
recommendations, refer to the Intel Stratix 10 High-Performance Design Handbook.

Related Information

Intel® Hyperflex™ Architecture High-Performance Design Handbook

2.2.4. Optimizing Physical Implementation and Timing Closure

This section provides design and timing closure techniques for high speed or complex
core logic designs with challenging timing requirements. These techniques may also
be helpful for low or medium speed designs.

2.2.4.1. Planning Physical Implementation

When planning a design, consider the following elements of physical implementation:

• The number of unique clock domains and their relationships

• The amount of logic in each functional block

• The location and direction of data flow between blocks

• How data routes to the functional blocks between I/O interfaces

Interface-wide control or status signals may have competing or opposing constraints.
For example, when a functional block's control or status signals interface with physical
channels from both sides of the device. In such cases you must provide enough
pipeline register stages to allow these signals to traverse the width of the device. In
addition, you can structure the hierarchy of the design into separate logic modules for
each side of the device. The side modules can generate and use registered control
signals per side. This simplifies floorplanning, particularly in designs with transceivers,
by placing per-side logic near the transceivers.

When adding register stages to pipeline control signals, turn off Auto Shift Register
Replacement in the Assignment Editor (Assignments ➤ Assignment Editor) for
each register as needed. By default, chains of registers can be converted to a RAM-
based implementation based on performance and resource estimates. Since pipelining
helps meet timing requirements over long distance, this assignment ensures that
control signals are not converted.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

79

https://www.intel.com/content/www/us/en/docs/programmable/683353.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.4.2. Planning FPGA Resources

Your design requirements impact the use of FPGA resources. Plan functional blocks
with appropriate global, regional, and dual-regional network signals in mind.

In general, after allocating the clocks in a design, use global networks for the highest
fan-out control signals. When a global network signal distributes a high fan-out control
signal, the global signal can drive logic anywhere in the device. Similarly, when using
a regional network signal, the driven logic must be in one quadrant of the device, or
half the device for a dual-regional network signal. Depending on data flow and
physical locations of the data entry and exit between the I/Os and the device,
restricting a functional block to a quadrant or half the device may not be practical for
performance or resource requirements.

When floorplanning a design, consider the balance of different types of device
resources, such as memory, logic, and DSP blocks in the main functional blocks. For
example, if a design is memory intensive with a small amount of logic, it may be
difficult to develop an effective floorplan. Logic that interfaces with the memory would
have to spread across the chip to access the memory. In this case, it is important to
use enough register stages in the data and control paths to allow signals to traverse
the chip to access the physically disparate resources needed.

2.2.4.3. Optimizing for Timing Closure

To achieve timing closure for your design, you can enable compilation settings in the
Intel Quartus Prime software, or you can directly modify your timing constraints.

Compilation Settings for Timing Closure

Note: Changes in project settings can significantly increase compilation time. You can view
the performance gain versus runtime cost by reviewing the Fitter messages after
design processing.

Table 3. Compilation Settings that Impact Timing Closure

Setting Location Effect on Timing Closure

Allow Register Duplication Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings (Fitter)

This technique is most useful where registers have
high fan-out, or where the fan-out is in physically
distant areas of the device.
Review the netlist optimizations report and consider
manually duplicating registers automatically added by
physical synthesis. You can also locate the original and
duplicate registers in the Chip Planner. Compare their
locations, and if the fan-out is improved, modify the
code and turn off register duplication to save compile
time.

Prevent Register Retiming Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings (Fitter)

Useful if some combinatorial paths between registers
exceed the timing goal while other paths fall short.
If a design is already heavily pipelined, register
retiming is less likely to provide significant
performance gains, since there should not be
significantly unbalanced levels of logic across pipeline
stages.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Guidelines for Optimizing Timing Closure using Timing Constraints

Appropriate timing constraints are essential to achieving timing closure. Use the
following general guidelines in applying timing constraints:

• Apply multicycle constraints in your design wherever single-cycle timing analysis is
not necessary.

• Apply False Path constraints to all asynchronous clock domain crossings or resets
in the design. This technique prevents overconstraining and the Fitter focuses only
on critical paths to reduce compile time. However, overconstraining timing critical
clock domains can sometimes provide better timing results and lower compile
times than physical synthesis.

• Overconstrain rather than using physical synthesis when the slack improvement
from physical synthesis is near zero. Overconstrain the frequency requirement on
timing critical clock domains by using setup uncertainty.

• When evaluating the effect of constraint changes on performance and runtime,
compile the design with at least three different seeds to determine the average
performance and runtime effects. Different constraint combinations produce
various results. Three samples or more establish a performance trend. Modify your
constraints based on performance improvement or decline.

• Leave settings at the default value whenever possible. Increasing performance
constraints can increase the compile time significantly. While those increases may
be necessary to close timing on a design, using the default settings whenever
possible minimizes compile time.

Related Information

Intel Quartus Prime Pro Edition User Guide: Design Optimization

2.2.4.4. Optimizing Critical Timing Paths

To close timing in high speed designs, review paths with the largest timing failures.
Correcting a single, large timing failure can result in a very significant timing
improvement.

Review the register placement and routing paths by clicking Tools ➤ Chip Planner.
Large timing failures on high fan-out control signals can be caused by any of the
following conditions:

• Sub-optimal use of global networks

• Signals that traverse the chip on local routing without pipelining

• Failure to correct high fan-out by register duplication

For high-speed and high-bandwidth designs, optimize speed by reducing bus width
and wire usage. To reduce wire usage, move the data as little as possible. For
example, if a block of logic functions on a few bits of a word, store inactive bits in a
FIFO or memory. Memory is cheaper and denser than registers, and reduces wire
usage.

Related Information

Intel Quartus Prime Pro Edition User Guide: Design Optimization

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

81

https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.5. Optimizing Power Consumption

The total FPGA power consumption is comprised of I/O power, core static power, and
core dynamic power. Knowledge of the relationship between these components is
fundamental in calculating the overall total power consumption.

You can use various optimization techniques and tools to minimize power consumption
when applied during FPGA design implementation. The Intel Quartus Prime software
offers power-driven compilation features to fully optimize device power consumption.
Power-driven compilation focuses on reducing your design’s total power consumption
using power-driven synthesis and power-driven placement and routing.

Related Information

Intel Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
In Intel Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

2.2.6. Managing Design Metastability

In FPGA designs, synchronization of asynchronous signals can cause metastability. You
can use the Intel Quartus Prime software to analyze the mean time between failures
(MTBF) due to metastability. A high metastability MTBF indicates a more robust
design.

Related Information

• Managing Metastability with the Intel Quartus Prime Software on page 121

• Intel Quartus Prime Pro Edition User Guide: Design Optimization

2.3. Use Clock and Register-Control Architectural Features

In addition to following general design guidelines, you must code your design with the
device architecture in mind. FPGAs provide device-wide clocks and register control
signals that can improve performance.

2.3.1. Use Global Reset Resources

ASIC designs may use local resets to avoid long routing delays. Take advantage of the
device-wide asynchronous reset pin available on most FPGAs to eliminate these
problems. This reset signal provides low-skew routing across the device.

The following are three types of resets used in synchronous circuits:

• Synchronous Reset

• Asynchronous Reset

• Synchronized Asynchronous Reset—preferred when designing an FPGA circuit

2.3.1.1. Use Synchronous Resets

The synchronous reset ensures that the circuit is fully synchronous. You can easily
time the circuit with the Intel Quartus Prime Timing Analyzer.

Because clocks that are synchronous to each other launch and latch the reset signal,
the data arrival and data required times are easily determined for proper slack
analysis. The synchronous reset is easier to use with cycle-based simulators.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

82

https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There are two methods by which a reset signal can reach a register; either by being
gated in with the data input, or by using an LAB-wide control signal (synclr). If you
use the first method, you risk adding an additional gate delay to the circuit to
accommodate the reset signal, which causes increased data arrival times and
negatively impacts setup slack. The second method relies on dedicated routing in the
LAB to each register, but this is slower than an asynchronous reset to the same
register.

Figure 16. Synchronous Reset

DFF
AND2

inst1

Figure 17. LAB-Wide Control Signals

Dedicated Row LAB Clocks

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

There are two unique
clock signals per LAB

6

6

6

labclk0

labclkena0

labclk1 labclk2 syncload labclr1

labclkena1 labclkena2 labclr0 synclr

Consider two types of synchronous resets when you examine the timing analysis of
synchronous resets—externally synchronized resets and internally synchronized
resets. Externally synchronized resets are synchronized to the clock domain outside
the FPGA, and are not very common. A power-on asynchronous reset is dual-rank
synchronized externally to the system clock and then brought into the FPGA. Inside
the FPGA, gate this reset with the data input to the registers to implement a
synchronous reset.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Externally Synchronized Reset

por_n

clock
reset_n

data_a

INPUT
VCC

VCC
INPUT

VCC
INPUT

clock

VCC
INPUTdata_b

AND2

lc 1

AND2

lc 2

OUTPUT out_a

out_bOUTPUT

FPGA

The following example shows the Verilog HDL equivalent of the schematic. When you
use synchronous resets, the reset signal is not put in the sensitivity list.

The following example shows the necessary modifications that you should make to the
internally synchronized reset.

Example 56. Verilog HDL Code for Externally Synchronized Reset

module sync_reset_ext (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2
assign out_a = reg1;
assign out_b = reg2;
always @ (posedge clock)
begin
 if (!reset_n)
 begin
 reg1 <= 1’b0;
 reg2 <= 1’b0;
 end
 else
 begin
 reg1 <= data_a;
 reg2 <= data_b;
 end
end
endmodule // sync_reset_ext

The following example shows the constraints for the externally synchronous reset.
Because the external reset is synchronous, you only need to constrain the reset_n
signal as a normal input signal with set_input_delay constraint for -max and -
min.

Example 57. SDC Constraints for Externally Synchronized Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \
 -name {clock} \
 -period 10.0 \

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 -waveform {0.0 5.0}
Input constraints on low-active reset
and data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}] \
 [get_ports {reset_n data_a data_b}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {reset_n data_a data_b}]

More often, resets coming into the device are asynchronous, and must be
synchronized internally before being sent to the registers.

Figure 19. Internally Synchronized Reset

INPUT
VCC

INPUT
VCC

INPUT
VCC

INPUT
VCC

AND2

lc 1

AND2

lc 2

OUTPUT

OUTPUT

The following example shows the Verilog HDL equivalent of the schematic. Only the
clock edge is in the sensitivity list for a synchronous reset.

Example 58. Verilog HDL Code for Internally Synchronized Reset

module sync_reset (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2
reg reg3, reg4

assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;

always @ (posedge clock)
begin
 if (!rst_n)
 begin
 reg1 <= 1’bo;
 reg2 <= 1’b0;
 end
 else
 begin

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 reg1 <= data_a;
 reg2 <= data_b;
 end
end

always @ (posedge clock)
begin
 reg3 <= reset_n;
 reg4 <= reg3;
end
endmodule // sync_reset

The SDC constraints are similar to the external synchronous reset, except that the
input reset cannot be constrained because it is asynchronous. Cut the input path with
a set_false_path statement to avoid these being considered as unconstrained
paths.

Example 59. SDC Constraints for Internally Synchronized Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \
 -name {clock} \
 -period 10.0 \
 -waveform {0.0 5.0}
Input constraints on data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}] \
 [get_ports {data_a data_b}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {data_a data_b}]
Cut the asynchronous reset input
set_false_path \
 -from [get_ports {reset_n}] \
 -to [all_registers]

An issue with synchronous resets is their behavior with respect to short pulses (less
than a period) on the asynchronous input to the synchronizer flipflops. This can be a
disadvantage because the asynchronous reset requires a pulse width of at least one
period wide to guarantee that it is captured by the first flipflop. However, this can also
be viewed as an advantage in that this circuit increases noise immunity. Spurious
pulses on the asynchronous input have a lower chance of being captured by the first
flipflop, so the pulses do not trigger a synchronous reset. In some cases, you might
want to increase the noise immunity further and reject any asynchronous input reset
that is less than n periods wide to debounce an asynchronous input reset.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Internally Synchronized Reset with Pulse Extender

INPUT
VCC

INPUT
VCC

INPUT
VCC

INPUT
VCC

AND2

lc 1

AND2

lc 2

OUTPUT

OUTPUT

BNAND2

Synchronizer Flipflops n Pulse Extender Flipflops

lc 3

Junction dots indicate the number of stages. You can have more flipflops to get a
wider pulse that spans more clock cycles.

Many designs have more than one clock signal. In these cases, use a separate reset
synchronization circuit for each clock domain in the design. When you create
synchronizers for PLL output clocks, these clock domains are not reset until you lock
the PLL and the PLL output clocks are stable. If you use the reset to the PLL, this reset
does not have to be synchronous with the input clock of the PLL. You can use an
asynchronous reset for this. Using a reset to the PLL further delays the assertion of a
synchronous reset to the PLL output clock domains when using internally synchronized
resets.

2.3.1.2. Using Asynchronous Resets

Asynchronous resets are the most common form of reset in circuit designs, as well as
the easiest to implement. Typically, you can insert the asynchronous reset into the
device, turn on the global buffer, and connect to the asynchronous reset pin of every
register in the device.

This method is only advantageous under certain circumstances—you do not need to
always reset the register. Unlike the synchronous reset, the asynchronous reset is not
inserted in the datapath, and does not negatively impact the data arrival times
between registers. Reset takes effect immediately, and as soon as the registers
receive the reset pulse, the registers are reset. The asynchronous reset is not
dependent on the clock.

However, when the reset is deasserted and does not pass the recovery (µtSU) or
removal (µtH) time check (the Timing Analyzer recovery and removal analysis checks
both times), the edge is said to have fallen into the metastability zone. Additional time
is required to determine the correct state, and the delay can cause the setup time to
fail to register downstream, leading to system failure. To avoid this, add a few follower
registers after the register with the asynchronous reset and use the output of these
registers in the design. Use the follower registers to synchronize the data to the clock
to remove the metastability issues. You should place these registers close to each
other in the device to keep the routing delays to a minimum, which decreases data
arrival times and increases MTBF. Ensure that these follower registers themselves are
not reset, but are initialized over a period of several clock cycles by “flushing out” their
current or initial state.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. Asynchronous Reset with Follower Registers

DFF DFF DFF

INPUT
VCC

INPUT
VCC

INPUT
VCC

out_aOUTPUT

The following example shows the equivalent Verilog HDL code. The active edge of the
reset is now in the sensitivity list for the procedural block, which infers a clock enable
on the follower registers with the inverse of the reset signal tied to the clock enable.
The follower registers should be in a separate procedural block as shown using non-
blocking assignments.

Example 60. Verilog HDL Code of Asynchronous Reset with Follower Registers

module async_reset (
 input clock,
 input reset_n,
 input data_a,
 output out_a,
);
reg reg1, reg2, reg3;
assign out_a = reg3;
always @ (posedge clock, negedge reset_n)
begin
 if (!reset_n)
 reg1 <= 1’b0;
 else
 reg1 <= data_a;
end
always @ (posedge clock)
begin
 reg2 <= reg1;
 reg3 <= reg2;
end
endmodule // async_reset

You can easily constrain an asynchronous reset. By definition, asynchronous resets
have a non-deterministic relationship to the clock domains of the registers they are
resetting. Therefore, static timing analysis of these resets is not possible and you can
use the set_false_path command to exclude the path from timing analysis.
Because the relationship of the reset to the clock at the register is not known, you
cannot run recovery and removal analysis in the Timing Analyzer for this path.
Attempting to do so even without the false path statement results in no paths
reported for recovery and removal.

Example 61. SDC Constraints for Asynchronous Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \
 -name {clock} \
 -period 10.0 \
 -waveform {0.0 5.0}

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Input constraints on data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}]\
 [get_ports {data_a}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {data_a}]
Cut the asynchronous reset input
set_false_path \
 -from [get_ports {reset_n}] \
 -to [all_registers]

The asynchronous reset is susceptible to noise, and a noisy asynchronous reset can
cause a spurious reset. You must ensure that the asynchronous reset is debounced
and filtered. You can easily enter into a reset asynchronously, but releasing a reset
asynchronously can lead to potential problems (also referred to as “reset removal”)
with metastability, including the hazards of unwanted situations with synchronous
circuits involving feedback.

2.3.1.3. Use Synchronized Asynchronous Reset

To avoid potential problems associated with purely synchronous resets and purely
asynchronous resets, you can use synchronized asynchronous resets. Synchronized
asynchronous resets combine the advantages of synchronous and asynchronous
resets.

These resets are asynchronously asserted and synchronously deasserted. This takes
effect almost instantaneously, and ensures that no datapath for speed is involved.
Also, the circuit is synchronous for timing analysis and is resistant to noise.

The following example shows a method for implementing the synchronized
asynchronous reset. You should use synchronizer registers in a similar manner as
synchronous resets. However, the asynchronous reset input is gated directly to the
CLRN pin of the synchronizer registers and immediately asserts the resulting reset.
When the reset is deasserted, logic “1” is clocked through the synchronizers to
synchronously deassert the resulting reset.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22. Schematic of Synchronized Asynchronous Reset

DFF

reg3

VCC
DFF

reg4
DFF

reg1

DFF

reg2

data_a

clock

INPUT
VCC

INPUT
VCC

INPUT
VCC

INPUT
VCC

reset_n

data_b

out_aOUTPUT

out_bOUTPUT

The following example shows the equivalent Verilog HDL code. Use the active edge of
the reset in the sensitivity list for the blocks.

Example 62. Verilog HDL Code for Synchronized Asynchronous Reset

module sync_async_reset (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2;
reg reg3, reg4;
assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;
always @ (posedge clock, negedge reset_n)
begin
 if (!reset_n)
 begin
 reg3 <= 1’b0;
 reg4 <= 1’b0;
 end
 else
 begin
 reg3 <= 1’b1;
 reg4 <= reg3;
 end
end
always @ (posedge clock, negedge rst_n)
begin
 if (!rst_n)
 begin
 reg1 <= 1’b0;
 reg2 <= 1;b0;

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 end
 else
 begin
 reg1 <= data_a;
 reg2 <= data_b;
 end
end
endmodule // sync_async_reset

To minimize the metastability effect between the two synchronization registers, and to
increase the MTBF, the registers should be located as close as possible in the device to
minimize routing delay. If possible, locate the registers in the same logic array block
(LAB). The input reset signal (reset_n) must be excluded with a set_false_path
command:
set_false_path -from [get_ports {reset_n}] -to [all_registers]

The set_false_path command used with the specified constraint excludes
unnecessary input timing reports that would otherwise result from specifying an input
delay on the reset pin.

The instantaneous assertion of synchronized asynchronous resets is susceptible to
noise and runt pulses. If possible, you should debounce the asynchronous reset and
filter the reset before it enters the device. The circuit ensures that the synchronized
asynchronous reset is at least one full clock period in length. To extend this time to n
clock periods, you must increase the number of synchronizer registers to n + 1. You
must connect the asynchronous input reset (reset_n) to the CLRN pin of all the
synchronizer registers to maintain the asynchronous assertion of the synchronized
asynchronous reset.

2.3.2. Use Global Clock Network Resources

Intel FPGAs provide device-wide global clock routing resources and dedicated inputs.
Use the FPGA’s low-skew, high fan-out dedicated routing where available.

By assigning a clock input to one of these dedicated clock pins or with an Intel
Quartus Prime assignment to assign global routing, you can take advantage of the
dedicated routing available for clock signals.

In an ASIC design, you must balance the clock delay distributed across the device.
Because Intel FPGAs provide device-wide global clock routing resources and dedicated
inputs, there is no need to manually balance delays on the clock network.

Limit the number of clocks in the design to the number of dedicated global clock
resources available in the FPGA. Clocks feeding multiple locations that do not use
global routing may exhibit clock skew across the device leading to timing problems. In
addition, generating internal clocks with combinational logic adds delays on the clock
path. Delay on a clock line can result in a clock skew greater than the data path length
between two registers. If the clock skew is greater than the data delay, you violate the
timing parameters of the register (such as hold time requirements) and the design
does not function correctly.

FPGAs offer low-skew global routing resources to distribute high fan-out signals. These
resources help with the implementation of large designs with multiple clock domains.
Many large FPGA devices provide dedicated global clock networks, regional clock
networks, and dedicated fast regional clock networks. These clocks are organized into
a hierarchical clock structure that allows multiple clocks in each device region with low

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

skew and delay. There are typically several dedicated clock pins to drive either global
or regional clock networks, and both PLL outputs and internal clocks can drive various
clock networks.

Intel Stratix 10 devices have a newer architecture. You can configure Intel Stratix 10
clocking resources to create efficiently balanced clock trees of various sizes, ranging
from a single clock sector to the entire device. By default, the Intel Quartus Prime
Software automatically determines the size and location of the clock tree.
Alternatively, you can directly constrain the clock tree size and location either with a
Clock Region assignment or by Logic Lock Regions.

To reduce clock skew in a given clock domain and ensure that hold times are met in
that clock domain, assign each clock signal to one of the global high fan-out, low-skew
clock networks in the FPGA device. The Intel Quartus Prime software automatically
assigns global routing resources for high fan-out control signals, PLL outputs, and
signals feeding the global clock pins on the device. To direct the software to assign
global routing for a signal, turn on the Global Signal option in the Assignment Editor.

Note: Global Signal assignments only controls whether a signal is promoted using the
specified dedicated resources or not, but does not control which or how many
resources are used.

To take full advantage of the routing resources in a design, make sure that the
sources of clock signals (input clock pins or internally-generated clocks) drive only the
clock input ports of registers. In older Intel device families, if a clock signal feeds the
data ports of a register, the signal may not be able to use dedicated routing, which
can lead to decreased performance and clock skew problems. In general, allowing
clock signals to drive the data ports of registers is not considered synchronous design
and can complicate timing closure.

2.3.3. Use Clock Region Assignments to Optimize Clock Constraints

The Intel Quartus Prime software determines how clock regions are assigned. You can
override these assignments with Clock Region assignments to specify that a signal
routed with global routing paths must use the specified clock region.

Clock Region assignments allow you to control the placement of the clock region for
floorplanning reasons. For example, use a Clock Region assignment to ensure that a
certain area of the device has access to a global signal, throughout your design
iterations. A Clock Region assignment can also be used in cases of congestion
involving global signal resources. By specifying a smaller clock region size, the
assignment prevents a signal using spine clock resources in the excluded sectors that
may be encountering clock-related congestion.

You can specify Clock Region assignments in the assignment editor.

2.3.3.1. Clock Region Assignments in Intel Stratix 10 Devices

In Intel Stratix 10 devices, clock networks are constructed using programmable clock
routing. As with other Intel device families, you can use Clock Region assignments for
floorplanning, controlling the size and location of each clock tree.

Although the Intel Quartus Prime Pro Edition software generates balanced clock trees,
there are sources of timing variation, such as process variation and jitter, which
prevents clock trees from being perfectly skew balanced. Longer paths, with higher
insertion delay, have more timing variation. However, the Timing Analyzer can account

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

for and eliminate some sources of variation in timing along common clock paths. In
practice, this means that the size of the clock region has a significant impact on the
worst-case skew of the clock tree; a larger clock tree experiences higher insertion
delay and worst-case clock skew when compared to a smaller clock region. The
distance between the clock region and the clock source also increases insertion delay,
but the impact of distance on worst-case clock skew is much smaller than the impact
of the size of the clock region.

One case to consider is when a design contains high-speed clock domains that are
expected to grow during the design process. Specifying a clock region constraint to
create a larger clock region than the compiler generates automatically helps ensure
that timing closure is robust with higher clock insertion delays and clock skews.

An additional design consideration is the minimum pulse width constraint on clock
signals. For a clock signal to propagate correctly on the Intel Stratix 10 clock network,
a minimum delay must be met between the rising edge and falling edge of the clock
pulse. If the Timing Analyzer cannot guarantee that this constraint is met, the clock
signal may not propagate as expected under all operating conditions. This can happen
when the delay variation on a clock path becomes too great. This situation does not
normally occur, but may arise if clock signals are routed through core logic elements
or core routing resources.

In designs that target Intel Stratix 10 devices, clock regions can be constrained to a
rectangle whose dimensions are defined by the sector grid, as seen in the Clock Sector
Region layer of the Chip Planner.

This assignment specifies the bottom left and top right coordinates of the rectangle in
the format "SX# SY# SX# SY#". For example, "SX0 SY0 SX1 SY1" constrains the
clock to a 2x2 region, from the bottom left of sector (0,0) to the top right of sector
(1,1). For a constraint spanning only one sector, it is sufficient to specify the location
of that sector, for example "SX1 SY1". The bounding rectangle can also be specified

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

by the bottom left and top right corners in chip coordinates, for example, "X37 Y181
X273 Y324". However, such a constraint should be sector aligned (using sector
coordinates guarantees this) or the Fitter automatically snaps to the smallest sector
aligned rectangle that still encompasses the original assignment. The "SX# SY# SX#
SY#"|"X# Y# X# Y#" strings are case-insensitive.

2.3.3.2. Clock Region Assignments in Intel Arria 10 and Older Device Families

In device families with dedicated clock network resources and predefined clock
regions, this assignment takes as its value the names of those Global, Regional,
Periphery or Spine Clock regions. These region names are visible in Chip Planner by
enabling the appropriate Clock Region layer in the Layers Settings dialog box.
Examples of valid values include Regional Clock Region 1 or Periphery Clock
Region 1.

When constraining a global signal to a smaller than normal region, for example, to
avoid clock congestion, you may specify a clock region of a different type than the
global resources being used. For example, a signal with a Global Signal assignment of
Global Clock, but a Clock Region assignment of Regional Clock Region 0,
constrains the clock to use global network routing resources, but only to the region
covered by Regional Clock Region 0. To provide a finer level of control, you can
also list multiple smaller clock regions, separated by commas. For example:
Periphery Clock Region 0, Periphery Clock Region 1 constrains a signal
to only the area reachable by those two periphery clock networks.

2.3.4. Avoid Asynchronous Register Control Signals

Avoid using an asynchronous load signal if the design target device architecture does
not include registers with dedicated circuitry for asynchronous loads. Also, avoid using
both asynchronous clear and preset if the architecture provides only one of these
control signals.

Some Intel devices directly support an asynchronous clear function, but not a preset
or load function. When the target device does not directly support the signals, the
synthesis or placement and routing software must use combinational logic to
implement the same functionality. In addition, if you use signals in a priority other
than the inherent priority in the device architecture, combinational logic may be
required to implement the necessary control signals. Combinational logic is less
efficient and can cause glitches and other problems; it is best to avoid these
implementations.

2.4. Implementing Embedded RAM

Intel’s dedicated memory architecture offers many advanced features that you can
enable with Intel-provided IP cores. Use synchronous memory blocks for your design,
so that the blocks can be mapped directly into the device dedicated memory blocks.

You can use single-port, dual-port, or three-port RAM with a single- or dual-clocking
method. You should not infer the asynchronous memory logic as a memory block or
place the asynchronous memory logic in the dedicated memory block, but implement
the asynchronous memory logic in regular logic cells.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel memory blocks have different read-during-write behaviors, depending on the
targeted device family, memory mode, and block type. Read-during-write behavior
refers to read and write from the same memory address in the same clock cycle; for
example, you read from the same address to which you write in the same clock cycle.

You should check how you specify the memory in your HDL code when you use read-
during-write behavior. The HDL code that describes the read returns either the old
data stored at the memory location, or the new data being written to the memory
location.

In some cases, when the device architecture cannot implement the memory behavior
described in your HDL code, the memory block is not mapped to the dedicated RAM
blocks, or the memory block is implemented using extra logic in addition to the
dedicated RAM block. Implement the read-during-write behavior using single-port RAM
in Arria GX devices and the Cyclone and Stratix series of devices to avoid this extra
logic implementation.

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; if, for example, you never read and write from the same
address in the same clock cycle.

Related Information

Inferring RAM functions from HDL Code on page 9

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5. Design Assistant Design Rule Checking

The Intel Quartus Prime Design Assistant increases productivity by reducing the total
number of design iterations for design closure, and by minimizing the time in each
iteration with targeted rule checks and guidance at each stage of compilation.

The Design Assistant detects and helps you to resolve design rule violations by
providing recommendations for correction and pathways to the violation source.
Avoiding design rule violations improves the reliability, timing performance, and logic
utilization of your design.

When enabled, Design Assistant automatically reports any violations against a
standard set of Intel FPGA-recommended design guidelines (1). You can run Design
Assistant automatically during compilation, and report violations detected throughout
the compilation process.

Figure 23. Design Assistant Recommends Corrections for Design Rule Violations

Alternatively, you can run Design Assistant in analysis mode, which allows you to
launch Design Assistant checks from other Intel Quartus Prime tools, such as Chip
Planner. For some rules, Design Assistant supports cross-probing to the Timing
Analyzer and Intel Quartus Prime design visualization tools for root cause analysis and
correction.

You can specify which rules Design Assistant checks, thus eliminating the rule checks
that are unimportant for your design.

(1) A set of default rules ensures design health without significant runtime increase.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

AN 919: Improving Quality of Results with Design Assistant

2.5.1. Setting Up Design Assistant

Customize the Design Assistant for individual design characteristics and reporting
requirements. For example, you can disable rules for specific stages of compilation,
change the threshold for violation reporting, and other options. Follow these steps to
specify initial options for running Design Assistant:

1. Open an Intel Quartus Prime project.

2. Click Assignments ➤ Settings ➤ Design Assistant Rule Settings.

Figure 24. Design Assistant Rule Settings

Filter Rules by Compiler Stage Filter Rules by Rule PropertiesRun Design Assistant Automatically

Enable/Disable Rule Check Increase Rule SeverityEdit Rule Parameters

3. Use the default settings or specify any of the following options:

Table 4. Design Assistant Rule Settings

Option Description

Stage filter Filters the Rules list by All, Analysis & Elaboration, Synthesis, Plan, Place, Finalize or
Timing Signoff Compiler stages.

Text Filter Filters the Rules list by matching text and the Name, Description, Parameter, Severity,
Category, or Tags of the rule.

Enable Design Assistant
execution during
compilation

Runs Design Assistant automatically during compilation. Alternatively, enable this setting
with FLOW_ENABLE_DESIGN_ASSISTANT in the .qsf. The settings in this dialog have no
impact when this setting is disabled.

Rules Lists all available Design Assistant rules and properties. Enable or disable analysis for the
rule by enabling or disabling the rule checkbox.

continued...

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

97

https://www.intel.com/content/www/us/en/docs/programmable/683369.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Name Column Specifies the alphanumeric rule ID. Rules that apply to more than one Compiler stage have
sub-rules for each stage.

Description Column Summary rule description.

Parameter Column Lists rule parameters or "Multiple Values" for rules that support multiple Compiler stages.
Select any rule to edit parameter values. Specify parameters on a per-stage basis by
specifying parameters for the stage subrule.

Severity Column Specifies Low, Medium, High, Critical, or Fatal as the rule Severity for reporting. You
can increase the Severity level of rules.

Category Column Specifies the rule class, such as Timing Closure, Reset, and others.

Tags Specifies one or more additional facet of the rule for search and filtering purposes. For
example, global-signal tag for design rule checks related to global signals. Design
Assistant Tags defines the meaning of each tag.

Stage Column Specifies the Compiler stages to which the rule applies. Rules for Analysis & Elaboration,
Synthesis, Plan, Place, Finalize, and Timing Signoff stages are available. Enable or
disable the rule on a per-stage basis by enabling or disabling the checkbox option for the
stage subrule.

Parameters for rule
Column

Allows you to specify parameters for rules that support parameters. Specify parameters on a
per-stage basis by specifying parameters for the stage subrule.

Related Information

• Managing Design Assistant Rules on page 107

• Design Assistant Tags on page 115

2.5.1.1. Design Assistant Rule Severity Levels

Design Assistant designates each rule violation with a severity level. You can increase
the severity level for any rule to match your particular design requirements.

Table 5. Design Assistant Rule Severity Levels

Severity Description Severity Level Color

Fatal Failure condition that stops the Compiler flow after violation. Red

Critical A critical issue that requires correction for sign-off. Red

High Potentially causes functional failure. May indicate missing or incorrect design data. Yellow

Medium Potentially impacts quality of results for fMAX or resource utilization. Brown

Low Optional suggestions that can reflect FPGA design best practices and may have small
impact on device performance and utilization in typical designs.

Blue

2.5.2. Running Design Assistant During Compilation

When enabled, Design Assistant runs automatically during compilation and reports
design rule violations in the Compilation Report.

When you enable or specify parameters for a rule check in compilation mode, those
specifications apply by default to running Design Assistant in compilation mode. If you
change the rule settings for analysis mode, those settings are independent from the
rule settings in compilation mode.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To run Design Assistant checking during compilation flows, ensure that Enable
Design Assistant execution during compilation is on.

2. To enable or disable specific design rule checks, turn on or off the checkbox for
that rule in the Name column. If the rule is unchecked, Design Assistant does not
report violations for the rule.

3. In the Parameters field, consider changing default values for rules you enable.

Figure 25. Design Assistant Rule Settings

Rules Checked

Rule Not Checked

Runs Design Assistant
During Compilation

4. To run Design Assistant during compilation, run one or more stages of the
Compiler from the Processing menu or Compilation Dashboard.

Figure 26. Example Design Assistant Results in Compilation Reports

5. To view the results for each rule, click the rule in the Rules list. A description of
the rule and design recommendations for correction appear.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 27. Design Assistant Rule Violation Recommendation

Design Assistant
 Recommendation

Rule Violations

Cross-Probe

2.5.2.1. Opening Design Assistant Rule Help

Each rule report contains a link to the rule's Intel Quartus Prime Help topic. Help
includes full rule descriptions and diagrams. To link to the Design Assistant rule Help:

1. In the Design Assistant report, click any rule in the Rule list. The right pane shows
the rule description.

Figure 28. Linking in Design Assistant Reports to Rule Help

Click to Display Rule Help

2. Click the rule ID link under Design Assistant Document. The rule displays in
Help.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.3. Running Design Assistant in Analysis Mode

You can launch Design Assistant in analysis mode directly from the Timing Analyzer or
Chip Planner to rapidly run the specific rule checks that relate to those tools. For
example, when you launch Design Assistant from the Chip Planner, Design Assistant is
preset to check only a subset of the FLP (floorplanning) Design Assistant rules.

Similarly, when you launch Design Assistant from the Timing Analyzer, Design
Assistant is preset to check only a subset of rules that are helpful during timing
analysis. You can cross-probe to the Timing Analyzer and design visualization tools to
determine the root cause of violations.

When you enable or specify parameters for a rule check in analysis mode, those
specifications do not apply to running Design Assistant in compilation mode. The rule
settings for analysis mode are independent from the rule settings in compilation
mode.

2.5.3.1. Launching Design Assistant from Chip Planner

You can run Design Assistant directly from Chip Planner to assist when optimizing the
floorplan in the tool. When you launch Design Assistant from the Chip Planner, Design
Assistant is preset to check only the FLP (floorplanning) Design Assistant rules. Follow
these steps to run the Design Assistant from the Chip Planner:

1. Run any stage of the Compiler. You must run at least the Analysis & Elaboration
stage before running Design Assistant from Chip Planner.

2. Click Tools ➤ Chip Planner.

Figure 29. Report DRC Dialog Box in Chip Planner

3. In Chip Planner Tasks pane, click Report DRC under Design Assistant. The
Report DRC (design rule check) dialog box appears.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Under Rules, disable any rules that are not important to your analysis by
removing the check mark.

5. Consider whether to adjust rule parameter values in the Parameters field.

6. Under Output, confirm the Report panel name and optionally specify an output
File name.

7. Click Run. The Results reports generate and appear in the Report pane and in the
Compilation Report.

Figure 30. Rule Violations in Chip Planner Reports Pane

Figure 31. Chip Planner Rule Violations in Main Compilation Report

2.5.3.2. Launching Design Assistant from Timing Analyzer

You can run Design Assistant directly from the Timing Analyzer to assist when
optimizing timing paths and other timing conditions. When you launch Design
Assistant from the Timing Analyzer, Design Assistant is preset to check only rules that
relate to timing analysis.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to run the Design Assistant from the Timing Analyzer:

1. Compile the design through at least the Compiler's Plan stage.

2. Open the Timing Analyzer for the Compiler stage from the Compilation Dashboard.

3. In the Timing Analyzer, click Reports ➤ Design Assistant ➤ Report DRC.... The
Report DRC (design rule check) dialog box opens.

4. Under Rules, disable any rules that are not important to your analysis by
removing the check mark.

5. Consider whether to adjust rule parameter values in the Parameters field.

Figure 32. Report DRC (Design Rule Check) Dialog Box

6. Confirm the Report panel name and optionally specify an output File name.

7. Click Run. The Results reports generate and appear in the Report pane, as well
as the main Compilation Report.

Figure 33. Design Assistant Reports in Timing Analyzer Report Pane

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.4. Cross-Probing from Design Assistant

In addition to the Locate Node command, Design Assistant allows you to cross-probe
individual design objects relevant to the violation. For select high-value rules, Design
Assistant provides full violation cross-probing ability into the Intel Quartus Prime
Timing Analyzer and other design visualization tools.

For example, for rule TMC-20210 - Paths Failing Setup Analysis with High Routing
Delay Added for Hold, you can right-click the violation, and then click Report Timing
(Extra Info) to locate the path in the Timing Analyzer GUI.

You can also locate from a rule violation instance to the source of the violation in Intel
Quartus Prime design visualization tools, such as RTL Viewer, Resource Property
Viewer, Technology Map Viewer, and Chip Planner. You can also locate to the violation
source in the design file.

Cross-probing with Design Assistant can help you to more rapidly identify the root
cause and resolve any rule violations negatively impacting your design.

2.5.4.1. Cross-Probing from Design Assistant to Timing Analyzer

Some Design Assistant rule violations allow cross-probing into Timing Analyzer. For
example, for a path that Design Assistant flags with a setup analysis violation due to
delay added for hold, you can cross-probe into the Timing Analyzer to view more
information on the affected path and edge.

Figure 34. Cross Probing from Design Assistant Rule TMC-20210 Violations to Timing
Analyzer

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to cross-probe from such Design Assistant rule violations to the
Timing Analyzer:

1. Compile the design through at least the Compiler's Plan stage.

2. Locate a rule violation in the Design Assistant folder of the Compilation Report.

3. Right-click the rule violation to display any Report Timing commands available
for the violation.

4. Click the Report Timing command. The Timing Analyzer opens and reports the
timing data for the violation path. Report Timing (Extra Info) includes
Estimated Delay Added for Hold and Route Stage Congestion Impact extra data.

2.5.4.2. Cross-Probing from Design Assistant to Visualization Tools

Design Assistant can cross-probe from rule violations to the source in various Intel
Quartus Prime design visualization tools. The following example demonstrates
expanding from the cross-probing location for violation analysis.

The following example illustrates cross probing for the TMC-20010 Logic Level Depth
rule violation to the RTL Viewer:

1. When Design Assistant reports FAIL status for rule TMC-20010, you can right-click
any of the rule violations in the Design Assistant report, and then click Locate
Node ➤ Locate in RTL Viewer.

Figure 35. Locate in RTL Viewer

Cross-probing allows you to locate the driver register in the RTL Viewer.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 36. Driver Register in RTL Viewer

2. To then fully visualize the logic level depth, right-click the register and click Filter
to display Sources and Destinations of the register.

Figure 37. Expanded Connections

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.5. Managing Design Assistant Rules

The Design Assistant provides functions to help you manage the rules that are
important for your design characteristics. You can use these features to help ensure
that you are only checking rules that are important for your design at the relevant
stage of compilation.

Design Assistant provides the following functionality to help you manage rule checking
and reporting:

• Waiving Design Assistant Rules on page 109

• Enabling Rules for Specific Compiler Stages on page 107

• Specifying Rule Parameters for a Specific Compiler Stage on page 108

• Modifying Rule Severity Levels on page 108

• Changing the Default Number of Violations per Rule on page 107

2.5.5.1. Changing the Default Number of Violations per Rule

The default number of violations per rule is set to 5000 to limit runtime that rule
processing incurs. The default limit is set to 5000 to help ensure that every violation is
presented in all but the most exceptional cases. In typical designs, most rule
violations do not approach this limit.

You can change the default number of violations that Design Assistant reports per
rule, to show more or less violations per rule. Specify the following assignment in the
project .qsf to change the default number of violations per rule:

set_global_assignment -name DESIGN_ASSISTANT_MAX_VIOLATIONS_PER_RULE <number>

To specify no limit on the number of violations per rule, at the possible expense of
increased runtimes, enter -1 for the <number> of the
DESIGN_ASSISTANT_MAX_VIOLATIONS_PER_RULE assignment.

Change the default number of violations for individual rules in the Design Assistant
Settings page, as Setting Up Design Assistant on page 97 describes.

2.5.5.2. Enabling Rules for Specific Compiler Stages

You can enable or disable checking of Design Assistant rules on a per stage basis. This
feature allows you to disable rule checks that are not important during one or more
stage of compilation, while leaving the rule enabled for other stages.

To enable or disable rules for specific Compiler stages, follow these steps:

1. Specify initial Design Assistant Settings, as Setting Up Design Assistant on page
97 describes.

2. In the Design Assistant Rule Settings page, click the arrow next to a rule that
supports multiple Compiler stages to expand the subrules for each stage.

3. For the subrule, enable or disable the checkbox to enable or disable checking for
that rule during that Compiler stage.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 38. Enable or Disable Rules per Stage

Enable/Disable Rules per Stage Rule Enabled Only for Finalize Stage

2.5.5.3. Specifying Rule Parameters for a Specific Compiler Stage

You can specify different parameters for Design Assistant rules for each Compiler
stages. This feature allows you apply a set of rule parameters to a specific stage of
compilation, and have a different set of rule parameters for another stage.

To enable or disable parameters for specific Compiler stages, follow these steps:

1. Specify initial Design Assistant Settings, as Setting Up Design Assistant on page
97 describes.

2. In the Design Assistant Rule Settings page, click the arrow next to a rule that
supports multiple Compiler stages to expand the subrules for each stage.

3. Select the subrule and then specify the parameters in Parameters for rule.

Figure 39. Specifying Parameters Per Stage
Specify Parameters per Stage Subrules Stage

2.5.5.4. Modifying Rule Severity Levels

You can increase the severity level of a Design Assistant rule to match the importance
of the rule for your design. You cannot decrease the severity level below the default.
Design Assistant messages and reports reflect the rule severity level. You can filter
and hide rule messages based on the severity level that you specify.

To customize rule severity level, follow these steps:

1. Specify initial Design Assistant Settings, as Setting Up Design Assistant on page
97 describes.

2. In the Design Assistant Rule Settings page, select the rule with a Severity
that you want to change. You can only change the severity level of parent rules.
Subrules for each stage must reflect the parent rule Severity level.

3. Click the Severity cell and select Low, Medium, High, Critical, or Fatal. Design
Assistant reports the severity level you specify for the rule violations. Fatal
violations cause failure of the Compiler stage.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40. Modifying Rule Severity Level

Specifies Rule Severity

Note: Fatal violations indicate conditions that cause design failure and therefore
cause the Compiler stage to be unsuccessful. You must correct the fatal
condition, reduce the rule Severity, or create a rule waiver before
proceeding to the next Compiler stage.

Figure 41. Messages Report Fatal Rule Violation Causes Compiler Failure

2.5.5.5. Waiving Design Assistant Rules

After running an initial design rule check, you can waive (ignore) design rule violations
that you determine are unimportant for one or more iterations of design rule checking.
When you create a waiver, Design Assistant does not check for compliance with the
rules that match the violation conditions you specify, nor report results for the rule.
For teams or individual designers, rule waivers also provide an audit trail that tracks
the user, description, and reason for the design rule waiver.

You can create rule waivers to ignore violations for which you already have identified
the root cause and correction, for violations that occur in a block that another
developed owns, or to waive specific rules that you determine are not an issue for
your design.

Initially, run Design Assistant checks without rule waivers to evaluate the complete list
of violations. As you begin root cause analysis and violation correction, you can
consider creating waivers to eliminate one or more rule violations from obscuring the
rule violations that are still relevant.

After creating a design rule waiver, you can modify the rule parameters to fine tune
rule checks, or you can delete waivers. For example, if a first pass rule check reports
800 violations with the Max_Violations per rule parameter set to default of 500,
Design Assistant reports only the first 500 of the 800 total violations. You could then
create rule waivers to omit the first 100 rule violations that you correct, thereby
reporting rule violations number 501 and higher the next time you run Design
Assistant.

When a Design Assistant waiver becomes completely unneeded, you can delete the
waiver in the Design Assistant Manage Waivers dialog box or directly from the
Design Assistant Waivers (.dawf) file.

Creating Design Assistant Waivers on page 110

Design Assistant Waiver Dialog Box on page 111

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Deleting Design Assistant Waivers on page 112

Design Assistant Waiver Tcl Commands on page 113

drc::add_waiver Command on page 113

drc::get_waivers Command on page 114

drc::report_waivers Command on page 115

2.5.5.5.1. Creating Design Assistant Waivers

To create a design rule waiver, follow these steps:

1. Run one or more stages of the Compiler to generate Design Assistant reports for
the rules that you enable for your design.

2. In the Design Assistant report, right-click one or more rule violations, or right-click
an entire rule category in the rule summary list, and then click Design Assistant
Waiver. The Design Assistant Waiver dialog box opens preset with values from
your violation selection.

Figure 42. Right-Click Rule Violation in Report to Create Waiver for Violation

Waiver ID Properties

Violation Conditions from Report

Lists All Violations

Previews
Waived Violations

3. Modify any of the default Violation conditions that define when the waiver
applies. The default settings are the most descriptive, using all applicable fields.
The comparison operator is always == (equal to) by default for all conditions.
Refer to Design Assistant Waiver Dialog Box on page 111 for all available options.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Click the X button to delete a sub-condition and simplify the query. Click Add
Condition to add a violation sub-condition.

5. For waiver identification and audit tracking, optionally specify the waiver Owner
name, a descriptive Tag, and a text Description.

Figure 43. Design Assistant Waiver Dialog Box

6. To preview the waived violations, click the Preview button. The Waived
violations by the waiver list shows the waived rule violations during the next
Design Assistant run. When you create a waiver after running Design Assistant,
the newly added waiver specifies To be Waived in the Waived column. For any
waivers that you delete, the Waiver column specifies Y + To be unwaived.

7. When waiver definition is complete, click OK to apply the waiver the next time you
run Design Assistant. Design Assistant does not check for compliance with the
rules that match waiver conditions, nor report results for the rules you waive. The
Design Assistant reports indicate waived violations following compilation.

Figure 44. Applied Waiver Reported in Compilation Report

Indicates Waived Rule

Waived Rules Issue No Violations

The report's Waived column specifies Y (for yes) for waived violations.

Design Assistant saves the rule waiver to a da_drc.dawf file in the project
directory.

2.5.5.5.2. Design Assistant Waiver Dialog Box

You can define and apply waivers to Design Assistant rule violations that are not of
concern in the Design Assistant Waiver dialog box.

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following table shows the Design Assistant Waiver dialog box options:

Table 6. Design Assistant Waiver Dialog Box Options

Setting Description

Rule conditions Automatically specifies the alphanumeric Rule ID and Compiler Stage of the rule violation.

Violation
conditions

Specifies the conditions that define a rule violation waiver. The default Violation conditions
automatically reflect the currently selected rule violation from the report. The available condition
attributes are context-sensitive:
• ==is equal to
• != is not equal to
• < is less than
• > is greater than
• <= is less than or equal to
• >= is greater than or equal to
• ! is a negative unary operator for boolean expressions
• =~—string contains
• !~—string does not contain
The join operators between conditions are always AND.

Add Condition Click the Add Condition button to add more conditions to the rule waiver definition. Clicking the
button adds a condition of default type.

Owner Specifies the waiver owner's ID.

Tag Specifies an identifying tag for the rule waiver.

Description Required value that specifies a text description of the waiver for tracking and identifying.

Preview button Previews the rule violations waived during the next Design Assistant run in the Waived by the
waiver field.

Waived violations
by the waiver

Upon clicking the Preview button, lists the rule violations that are waived during the next Design
Assistant run.

All violations Lists all violations of the currently selected Design Assistant rule.

2.5.5.5.3. Deleting Design Assistant Waivers

To fully remove (delete) any Design Assistant waivers that are no longer useful, delete
the waiver in the Design Assistant Manage Waivers dialog box.

Figure 45. Design Assistant Manage Waivers Dialog Box

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Right-click a rule violation with a waiver, and click Waivers ➤ Manage Waivers.

2. In the Design Assistant Manager Waivers dialog box, select the waiver you
want to delete under All waivers for rule.

3. Click the Delete Waiver button to delete the waiver.

As an alternative to the GUI, you can also create and modify Design Assistant waivers
by editing the Design Assistant Waivers File (da_drc.dawf), or by using Tcl
commands within an interactive Tcl shell. The da_drc.dawf stores the waiver
definitions you specify in the GUI. To avoid unintended results, do not edit the
da_drc.dawf file while Compiler processes are running.

Figure 46. Deleting Waiver from Design Waivers File

Delete Waiver Definition from File

2.5.5.5.4. Design Assistant Waiver Tcl Commands

As an alternative to the Design Assistant GUI, you can create, query, and report
Design Assistant waivers by specifying the following Tcl commands within an
interactive Tcl shell:

2.5.5.5.5. drc::add_waiver Command

Description
Creates a new Design Assistant waiver for the rule, Compiler stages, and query string
that you specify. Optionally maintain audit tracking with the timestamp and owner
arguments. Specify wildcard characters with the stages argument to create generic
waivers across multiple rules. Specify any subset of violation arguments, comparison
operators, and join operators to build any generic query string.

Syntax

drc::add_waiver
-description <description text>
-owner <userid>
-rule <rule_id>
query_string
-stages <compiler stages>
[-tag <string>]

Arguments

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

description Text description explaining the reason for the waiver.

owner User ID of waiver creator for audit trail.

rule Alpha-numeric rule ID.

query_string Query string specifying violation column arguments to define the
violation patterns the waiver ignores. You can specify all or a
subset of all violation column arguments, depending on the scope
of the waiver.

stages Subset of Compiler stage(s) to which the rule waiver applies.

tag Short text description for tracking different types of violations across the
entire project.

2.5.5.5.6. drc::get_waivers Command

Description

Returns a Design Assistant waiver for the rule, Compiler stages, owner, and query
string that you specify. If you specify no option, drc::get_waivers returns all
existing waivers.

Syntax

drc::get_waivers
-owner <userid>
-rule <rule_id>
query_string
-stages <compiler stages>
[-tag <string>]

Arguments

owner User ID of waiver creator for audit trail.

rule Alpha-numeric rule ID.

query_string Query string specifying violation column arguments to define the
violation patterns the waiver ignores. The query string must
exactly match the query_string you specify during waiver
creation with the add_waiver command.

stages Subset of Compiler stage(s) to which the rule waiver applies.

tag Short text description for tracking different types of violations across the
entire project.

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.5.5.7. drc::report_waivers Command

Description

Returns a collection of Design Assistant waivers for the rule, Compiler stages, and
owner that you specify, or adds those waivers to a waiver file that you specify.

Syntax

drc::report_waivers
-file <waiver_file>
-owner <userid>
-rule <rule_id>
-stages <compiler stages>
[-tag <string>]

Arguments

file A waiver output file that design assistant creates and appends the returned
waivers.

owner User ID of waiver creator for audit trail.

rule Alpha-numeric rule ID.

stages Subset of Compiler stage(s) to which the rule waiver applies.

tag Short text description for tracking different types of violations across the
entire project.

2.5.5.6. Design Assistant Tags

Different Design Assistant Tags apply to each rule to extend search or filter
capabilities based on the following facets of the rule. Refer to the Design Assistant
Rule Settings to view which tags apply to each rule.

Table 7. Design Assistant Tags

Tag Description

cdc-bus Design rule checks related to topologies that use a bus to transfer multiple bits of data
between clock domains at once.

clock-skew Design rule checks related to clock skew.

design-partition Design rule checks which check design partitions.

dsp Design rule checks related to DSP blocks inside the FPGA fabric.

false-positive-
synchronizer

Design rule checks related to automatically-detected synchronizer chains that may have
been over-zealously detected.

global-signal Design rule checks related to global signals.

impossible-requirements Design rule checks which check the requirements on failing timing paths and flag those
which fail by construction.

continued...

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tag Description

ip-parameterization Design rule checks which look for parameterizable IP modules which may need to be
adjusted to meet performance specifications.

intrinsic-margin Design rule checks which use the Intrinsic Margin metric (slack ignoring cell delay, IC delay
and clock skew) to diagnose potential timing issues on failing paths.

latch Design rule checks related to latches.

logic-levels Design rule checks which flag potentially problematic amounts of logic on a timing path.

minimum-pulse-width Design rule checks related to minimum pulse width.

nonstandard-timing Design rule checks related to topologies which have unique timing analysis methodologies
and may prove problematic.

partial-reconfiguration Design rule checks which check Partial Reconfiguration designs.

place Design rule checks which pertain to the Compiler's Place stage.

project-settings Design rule checks related to validating the project settings.

ram Design rule checks related to M20k blocks inside the FPGA fabric.

region-constraints Design rule checks related to region constraints in the design (both placement and routing).

register-duplication Design rule checks related to duplication of registers in the design, either manually or
automatically.

register-spread Design rule checks related to measuring the spread of a register's sinks, as found in the
"Report Register Spread" command.

reset-usage Design rule checks related to safe resets or appropriate use of reset modes.

reset-reachability Design rule checks related to reachability analysis of reset signals, including convergence of
multiple reset signals.

resource-usage Design rule checks related to managing the resource usage of the design.

retime Design rule checks which pertain to the Compiler's Retime stage.

route Design rule checks which pertain to the Compiler's Route stage.

sdc Design rule checks related to SDC validity checking.

synchronizer Design rule checks related to synchronizer chains.

synthesis Design rule checks which pertain to the Compiler's Analysis & Synthesis stage.

system Design rule checks which validate full-system design.

2.5.6. Design Assistant Rule Categories

Each Design Assistant rule has a unique alphanumeric ID that reflects the rule
category. You can enable or disable Design Assistant rules for specific stages of
compilation. The following lists all categories of Design Assistant rules, and provides a
link to rule documentation in Intel Quartus Prime Help. Some categories are device-
specific.

Table 8. Design Assistant Rule Categories

Rule Category and Help Link Acronym Description

Clock Domain Crossing Rules CDC Rule checks for clock domain crossings

Clock Rules CLK Rule checks for clocks

continued...

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

116

http://quartushelp.altera.com/current/#da_rules/cdc_50001.htm
http://quartushelp.altera.com/current/#da_rules/clk_30026.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Rule Category and Help Link Acronym Description

Floorplanning Rules FLP Rule checks for floorplanning, such as Logic Lock regions
and congestion

Linting Rules LNT Rules checks of source code for programmatic and stylistic
errors

Project Rules PRJ Rule checks related to Intel Quartus Prime projects

Reset Domain Crossing RDC Rule checks for reset domain crossings

Reset Rules RES Rule checks for resets

Timing Closure Rules TMC Rule checks for timing closure

Related Information

Design Assistant Rules Help

2.6. Recommended Design Practices Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2023.04.14 23.1 • Updated the recommendation in Optimizing Clocking Schemes.

2022.06.20 22.2 • Removed obsolete Block Based Design rule category from Design
Assistant Design Rule Checking topic.

2021.10.04 21.3 • Updated Design Assistant Design Rule Checking topic for latest rule
categories.

2021.03.29 21.1 • Updated Design Assistant Design Rule Checking topic with screenshot,
minor wording changes, and link to AN 919: Improving Quality of
Results with Design Assistant.

• Updated Setting Up Design Assistant topic for rule tags.
• Updated Running Design Assistant During Compilation step 4 wording.
• Updated Opening Design Assistant Rule Help topic to show rule

included in this release.
• Updated screenshots in Cross-Probing from Design Assistant to Timing

Analyzer topic.
• Removed Filtering and Hiding Rule Violations section as waivers are

most effective method in current version.
• Updated Changing the Default Number of Violations per Rule for minor

wording changes.
• Created new Design Assistant Tags topic to define all tags.
• Created new Design Assistant Waiver Dialog Box topic to define all

settings in this dialog box. including new waiver features.
• Updated Creating Design Assistant Waivers topic for waiver preview

and reporting.
• Updated Deleting Design Assistant Waivers topic for new GUI method.
• Updated Design Assistant Rule Categories topic for latest rule

categories.
• Revised Design Assistant Rule Severity Levels descriptions.

2020.09.28 20.3 • Added new "Waiving Design Assistant Rules" section.
• Added new "Cross-Probing with Design Assistant" section.
• Added description of new Fatal severity level Design Assistant rule to

"Modifying Rule Severity Levels" topic.
• Updated "Setting Up Design Assistant" for new Fatal severity level and

RDC rule category.

continued...

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

117

http://quartushelp.altera.com/current/#da_rules/flp_40001.htm
http://quartushelp.altera.com/current/#da_rules/lnt_30011.htm
http://quartushelp.altera.com/current/#da_rules/prj_10000.htm
http://quartushelp.altera.com/current/#da_rules/rdc_50001.htm
http://quartushelp.altera.com/current/#da_rules/res_10201.htm
http://quartushelp.altera.com/current/#da_rules/tmc_10107.htm
http://quartushelp.altera.com/current/#da_rules/cdc_50001.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Updated "Running Design Assistant in Analysis Mode" with screenshots
and detailed steps.

• Added RDC to "Design Assistant Rule Categories" topic.
• Removed individual Design Assistant rule descriptions from document

and linked to updated rule description in Help.
• Replaced obsolete rule screenshots throughout.

2020.04.13 20.1 • Added support for Design Assistant during Timing Signoff to "Setting
Up Design Assistant" and "Running Design Assistant During
Compilation" topics.

• Added new Design Assistant rules.
• Revised Design Assistant rules HRR-10201, HRR-10201, and

RES-30131.
• Removed various obsolete Design Assistant rules.

2019.11.01 19.3.0 • Revised "Changing Design Assistant Rule Scope or Number of
Violations" topic for clarity.

• Created separate "Clock Domain Crossing (CDC) Rules" category and
topic.

• Added "CLK-30026: Missing Clock Assignment" Design Assistant rule.
• Added "CLK-30027: Multiple Clock Assignment" Design Assistant rule.
• Added "CLK-30028: Invalid Generated Clock" Design Assistant rule.
• Added "CLK-30029: Invalid Clock Assignment" Design Assistant rule.
• Added "CLK-30030: PLL Setting Violation" Design Assistant rule.
• Added "CLK-30031: Input Delay Assigned to Clock" Design Assistant

rule.

2019.09.30 19.3.0 • Added new "Setting Up Design Assistant" topic.
• Added new "Managing Design Assistant Rules" topic.
• Added new "Enabling Rules for Specific Compiler Stages" topic.
• Added new "Specifying Rule Parameters for Specific Compiler Stages"

topic.
• Added new "Modifying Rule Severity Levels" topic.
• Added new "Filtering and Hiding Rule Violations" topic.
• Added new "Filter Options Dialog Box" topic.
• Added new "Linking to Design Assistant Rule Documentation" topic.

continued...

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Updated screenshots for latest GUI elements.
• Added the following new Design Assistant rules:

— CDC-50001: Missing 1-Bit Synchronizer
— CDC-50002: 1-Bit Synchronized Missing Constraint
— CDC-50003: CE-Type CDC No Constraints
— HRR-10015: High Fan-out Signal
— HRR-10201: Registers Cannot Power Up with Don't Care Logic Level
— HRR-10204: Reset Release Instance Count Check
— RES-30132: Registers May Not Be Properly Reset
— TMC-20500: Hierarchical Tree Duplication was Shallower than

Possible
— TMC-20501: Hierarchical Tree Duplication was Shallower than

Requested
— TMC-20550: Duplication Candidate Rejected for Placement

Constraint
— TMC-20551: Automatically-Discovered Duplication Candidate Likely

Requires More Duplication
— TMC-20552: User-Directed Duplication Candidate was Rejected
— TMC-20601: Registers with High Immediate Fan-Out Tension
— TMC-20602: Registers with High Timing Path Endpoint Tension
— TMC-20603: Registers with High Immediate Fan-Out Span
— TMC-20604: Registers with High Timing Path Endpoint Span

• Removed obsolete Design Assistant rules:
— HRR-10014: High Fan-out Nets Driving Clock-Enable Pins
— HRR-10016: Registers Cannot Power-Up With Dont Care Logic Level

2019.04.01 19.1.0 • Described new Design Assistant design rule checking tool.
• Added new topics describing each of the Design Assistant rules, under

the Recommended Design Practices > Checking for Design Rule
Violations section.

2018.09.24 18.1.0 • Created subtopics: Clock Region Assignments in Intel Arria 10 and
Older Device Families and Clock Region Assignments in Intel Stratix 10
Devices from content in topic: Use Clock Region Assignments to
Optimize Clock Constraints.

2017.11.06 17.1.0 • Updated topic: Optimizing Timing Closure.
• Updated topic Use Global Clock Network Resources and added topic Use

Clock Region Assignments to Optimize Clock Constraints for Intel
Stratix 10 support.

2017.05.08 17.0.0 • Removed information about Integrated Synthesis.
• Removed information about quartus_drc.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2016.05.03 16.0.0 • Replaced Internally Synchronized Reset code sample with corrected
version.

• Removed information about deprecated physical synthesis options.
• Removed information about unsupported Design Assistant.

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

June 2014 14.0.0 Removed references to obsolete MegaWizard Plug-In Manager.

November 2013 13.1.0 Removed HardCopy device information.

May 2013 13.0.0 Removed PrimeTime support.

continued...

2. Recommended Design Practices

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Added information to Reset Resources .

December 2010 10.1.0 • Title changed from Design Recommendations for Altera Devices and the
Quartus II Design Assistant.

• Updated to new template.
• Added references to Quartus II Help for “Metastability” on page 9–13

and “Incremental Compilation” on page 9–13.
• Removed duplicated content and added references to Help for “Custom

Rules” on page 9–15.

July 2010 10.0.0 • Removed duplicated content and added references to Quartus II Help
for Design Assistant settings, Design Assistant rules, Enabling and
Disabling Design Assistant Rules, and Viewing Design Assistant reports.

• Removed information from “Combinational Logic Structures” on page
5–4

• Changed heading from “Design Techniques to Save Power” to “Power
Optimization” on page 5–12

• Added new “Metastability” section
• Added new “Incremental Compilation” section
• Added information to “Reset Resources” on page 5–23
• Removed “Referenced Documents” section

November 2009 9.1.0 • Removed documentation of obsolete rules.

March 2009 9.0.0 • No change to content.

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size
• Added new section “Custom Rules Coding Examples” on page 5–18
• Added paragraph to “Recommended Clock-Gating Methods” on page 5–

11
• Added new section: “Design Techniques to Save Power” on page 5–12

May 2008 8.0.0 • Updated Figure 5–9 on page 5–13; added custom rules file to the flow
• Added notes to Figure 5–9 on page 5–13
• Added new section: “Custom Rules Report” on page 5–34
• Added new section: “Custom Rules” on page 5–34
• Added new section: “Targeting Embedded RAM Architectural Features”

on page 5–38
• Minor editorial updates throughout the chapter
• Added hyperlinks to referenced documents throughout the chapter

2. Recommended Design Practices

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Managing Metastability with the Intel Quartus Prime
Software

You can use the Intel Quartus Prime software to analyze the average mean time
between failures (MTBF) due to metastability caused by synchronization of
asynchronous signals, and optimize the design to improve the metastability MTBF.

All registers in digital devices, such as FPGAs, have defined signal-timing requirements
that allow each register to correctly capture data at its input ports and produce an
output signal. To ensure reliable operation, the input to a register must be stable for a
minimum amount of time before the clock edge (register setup time or tSU) and a
minimum amount of time after the clock edge (register hold time or tH). The register
output is available after a specified clock-to-output delay (tCO).

If the data violates the setup or hold time requirements, the output of the register
might go into a metastable state. In a metastable state, the voltage at the register
output hovers at a value between the high and low states, which means the output
transition to a defined high or low state is delayed beyond the specified tCO. Different
destination registers might capture different values for the metastable signal, which
can cause the system to fail.

In synchronous systems, the input signals must always meet the register timing
requirements, so that metastability does not occur. Metastability problems commonly
occur when a signal is transferred between circuitry in unrelated or asynchronous
clock domains, because the signal can arrive at any time relative to the destination
clock.

The MTBF due to metastability is an estimate of the average time between instances
when metastability could cause a design failure. A high MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design. You
should determine an acceptable target MTBF in the context of your entire system and
taking in account that MTBF calculations are statistical estimates.

The metastability MTBF for a specific signal transfer, or all the transfers in a design,
can be calculated using information about the design and the device characteristics.
Improving the metastability MTBF for your design reduces the chance that signal
transfers could cause metastability problems in your device.

The Intel Quartus Prime software provides analysis, optimization, and reporting
features to help manage metastability in Intel designs. These metastability features
are supported only for designs constrained with the Intel Quartus Prime Timing
Analyzer. Both typical and worst-case MBTF values are generated for select device
families.

3.1. Metastability Analysis in the Intel Quartus Prime Software

When a signal transfers between circuitry in unrelated or asynchronous clock domains,
the first register in the new clock domain acts as a synchronization register.

683082 | 2023.08.03

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

To minimize the failures due to metastability in asynchronous signal transfers, circuit
designers typically use a sequence of registers (a synchronization register chain or
synchronizer) in the destination clock domain to resynchronize the signal to the new
clock domain and allow additional time for a potentially metastable signal to resolve to
a known value. Designers commonly use two registers to synchronize a new signal,
but a standard of three registers provides better metastability protection.

The timing analyzer can analyze and report the MTBF for each identified synchronizer
that meets its timing requirements, and can generate an estimate of the overall
design MTBF. The software uses this information to optimize the design MTBF, and you
can use this information to determine whether your design requires longer
synchronizer chains.

Related Information

• Metastability and MTBF Reporting on page 124

• MTBF Optimization on page 127

3.1.1. Data Synchronization Register Chains

A synchronization register chain, or synchronizer, is defined as a sequence of registers
that meets the following requirements:

• The registers in the chain are all clocked by the same clock or phase-related
clocks.

• The first register in the chain is driven asynchronously or from an unrelated clock
domain.

• Each register fans out to only one register, except the last register in the chain.

For Intel Quartus Prime software to identify a synchronization register chain, the
registers in the chain must not include any resets.

The length of the synchronization register chain is the number of registers in the
synchronizing clock domain that meet the requirements listed earlier. The following
figure shows a sample two-register synchronization chain.

Figure 47. Sample Synchronization Register Chain

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Output
Registers

D Q D Q D Q

Synchronization Chain

The timing slack available in the register-to-register paths of the synchronizer allows a
metastable signal to settle, and is referred to as the available settling time. The
available settling time in the MTBF calculation for a synchronizer is the sum of the
output timing slacks for each register in the chain. Adding available settling time with
additional synchronization registers improves the metastability MTBF.

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• How Timing Constraints Affect Synchronizer Identification and Metastability
Analysis on page 123

• Force the Identification of Synchronization Registers on page 129

• Identify Synchronizers for Metastability Analysis on page 123

3.1.2. Identify Synchronizers for Metastability Analysis

The first step in enabling metastability MTBF analysis and optimization in the Intel
Quartus Prime software is to identify which registers are part of a synchronization
register chain. You can apply synchronizer identification settings globally to
automatically list possible synchronizers with the Synchronizer identification option
on the Timing Analyzer page in the Settings dialog box.

Synchronization chains are already identified within most Intel FPGA intellectual
property (IP) cores.

Related Information

Force the Identification of Synchronization Registers on page 129

3.1.3. How Timing Constraints Affect Synchronizer Identification and
Metastability Analysis

The timing analyzer can analyze metastability MTBF only if a synchronization chain
meets its timing requirements. The metastability failure rate depends on the timing
slack available in the synchronizer’s register-to-register connections, because that
slack is the available settling time for a potential metastable signal. Therefore, you
must ensure that your design is correctly constrained with the real application
frequency requirements to get an accurate MTBF report.

In addition, the Auto and Forced If Asynchronous synchronizer identification
options use timing constraints to automatically detect the synchronizer chains in the
design. These options check for signal transfers between circuitry in unrelated or
asynchronous clock domains, so clock domains must be related correctly with timing
constraints.

The timing analyzer views input ports as asynchronous signals unless they are
associated correctly with a clock domain. If an input port fans out to registers that are
not acting as synchronization registers, apply a set_input_delay constraint to the
input port; otherwise, the input register might be reported as a synchronization
register. Constraining a synchronous input port with a set_max_delay constraint for
a setup (tSU) requirement does not prevent synchronizer identification because the
constraint does not associate the input port with a clock domain.

Instead, use the following command to specify an input setup requirement associated
with a clock:

set_input_delay -max -clock <clock name> <latch – launch – tsu
requirement> <input port name>

Registers that are at the end of false paths are also considered synchronization
registers because false paths are not timing-analyzed. Because there are no timing
requirements for these paths, the signal may change at any point, which may violate
the tSU and tH of the register. Therefore, these registers are identified as

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

synchronization registers. If these registers are not used for synchronization, you can
turn off synchronizer identification and analysis. To do so, set Synchronizer
Identification to Off for the first synchronization register in these register chains.

3.2. Metastability and MTBF Reporting

The Intel Quartus Prime software reports the metastability analysis results in the
Compilation Report and Timing Analyzer reports.

The MTBF calculation uses timing and structural information about the design, silicon
characteristics, and operating conditions, along with the data toggle rate.

If you change the Synchronizer Identification settings, you can generate new
metastability reports by rerunning the timing analyzer. However, you should rerun the
Fitter first so that the registers identified with the new setting can be optimized for
metastability MTBF.

Related Information

• Metastability Reports on page 124

• MTBF Optimization on page 127

• Synchronizer Data Toggle Rate in MTBF Calculation on page 126

3.2.1. Metastability Reports

Metastability reports summarize the results of the metastability analysis. In addition
to the MTBF Summary and Synchronizer Summary reports, the Timing Analyzer tool
reports additional statistics for each synchronizer chain.

If the design uses only the Auto Synchronizer Identification setting, the reports
list likely synchronizers but do not report MTBF. To obtain an MTBF for each register
chain you must force identification of synchronization registers.

If the synchronizer chain does not meet its timing requirements, the reports list
identified synchronizers but do not report MTBF. To obtain MTBF calculations, ensure
that the design is constrained correctly, and that the synchronizer meets its timing
requirements.

Related Information

• Identify Synchronizers for Metastability Analysis on page 123

• How Timing Constraints Affect Synchronizer Identification and Metastability
Analysis on page 123

3.2.1.1. MTBF Summary Report

The MTBF Summary reports an estimate of the overall robustness of cross-clock
domain and asynchronous transfers in the design. This estimate uses the MTBF results
of all synchronization chains in the design to calculate an MTBF for the entire design.

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.1.1.1. Typical and Worst-Case MTBF of Design

The MTBF Summary Report shows the Typical MTBF of Design and the Worst-Case
MTBF of Design for supported fully-characterized devices. The typical MTBF result
assumes typical conditions, defined as nominal silicon characteristics for the selected
device speed grade, as well as nominal operating conditions. The worst-case MTBF
result uses the worst case silicon characteristics for the selected device speed grade.

When you analyze multiple timing corners in the timing analyzer, the MTBF calculation
may vary because of changes in the operating conditions, and the timing slack or
available metastability settling time. Intel recommends running multi-corner timing
analysis to ensure that you analyze the worst MTBF results, because the worst timing
corner for MTBF does not necessarily match the worst corner for timing performance.

Related Information

Timing Analyzer
In Intel Quartus Prime Help

3.2.1.1.2. Synchronizer Chains

The MTBF Summary report also lists the Number of Synchronizer Chains Found
and the length of the Shortest Synchronizer Chain, which can help you identify
whether the report is based on accurate information.

If the number of synchronizer chains found is different from what you expect, or if the
length of the shortest synchronizer chain is less than you expect, you might have to
add or change Synchronizer Identification settings for the design. The report also
provides the Worst Case Available Settling Time, defined as the available settling
time for the synchronizer with the worst MTBF.

You can use the reported Fraction of Chains for which MTBFs Could Not be
Calculated to determine whether a high proportion of chains are missing in the
metastability analysis. A fraction of 1, for example, means that MTBF could not be
calculated for any chains in the design. MTBF is not calculated if you have not
identified the chain with the appropriate Synchronizer identification option, or if
paths are not timing-analyzed and therefore have no valid slack for metastability
analysis. You might have to correct your timing constraints to enable complete
analysis of the applicable register chains.

3.2.1.1.3. Increasing Available Settling Time

The MTBF Summary report specifies how an increase of 100ps in available settling
time increases the MTBF values. If your MTBF is not satisfactory, this metric can help
you determine how much extra slack would be required in your synchronizer chain to
allow you to reach the desired design MTBF.

3.2.1.2. Synchronizer Summary Report

The Synchronizer Summary lists the synchronization register chains detected in the
design depending on the Synchronizer Identification setting.

The Source Node is the register or input port that is the source of the asynchronous
transfer. The Synchronization Node is the first register of the synchronization chain.
The Source Clock is the clock domain of the source node, and the Synchronization
Clock is the clock domain of the synchronizer chain.

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

125

http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_tqa_settings.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This summary reports the calculated Worst-Case MTBF, if available, and the Typical
MTBF, for each appropriately identified synchronization register chain that meets its
timing requirement.

Related Information

Synchronizer Chain Statistics Report in the Timing Analyzer on page 126

3.2.1.3. Synchronizer Chain Statistics Report in the Timing Analyzer

The timing analyzer provides an additional report for each synchronizer chain.

The Chain Summary tab matches the Synchronizer Summary information described
in the Synchronizer Summary Report, while the Statistics tab adds more details.
These details include whether the Method of Synchronizer Identification was User
Specified (with the Forced if Asynchronous or Forced settings for the
Synchronizer Identification setting), or Automatic (with the Auto setting). The
Number of Synchronization Registers in Chain report provides information about
the parameters that affect the MTBF calculation, including the Available Settling
Time for the chain and the Data Toggle Rate Used in MTBF Calculation.

The following information is also included to help you locate the chain in your design:

• Source Clock and Asynchronous Source node of the signal.

• Synchronization Clock in the destination clock domain.

• Node names of the Synchronization Registers in the chain.

Related Information

Synchronizer Data Toggle Rate in MTBF Calculation on page 126

3.2.2. Synchronizer Data Toggle Rate in MTBF Calculation

The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency. That is, the arriving data is assumed to
switch once every eight source clock cycles.

If multiple clocks apply, the highest frequency is used. If no source clocks can be
determined, the data rate is taken as 12.5% of the synchronization clock frequency.

If you know an approximate rate at which the data changes, specify it with the
Synchronizer Toggle Rate assignment in the Assignment Editor. You can also apply
this assignment to an entity or the entire design. Set the data toggle rate, in number
of transitions per second, on the first register of a synchronization chain. The timing
analyzer takes the specified rate into account when computing the MTBF of that
register chain. If a data signal never toggles and does not affect the reliability of the
design, you can set the Synchronizer Toggle Rate to 0 for the synchronization chain
so the MTBF is not reported. To apply the assignment with Tcl, use the following
command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

In addition to Synchronizer Toggle Rate, there are two other assignments
associated with toggle rates, which are not used for metastability MTBF calculations.
The I/O Maximum Toggle Rate is only used for pins, and specifies the worst-case

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

toggle rates used for signal integrity purposes. The Power Toggle Rate assignment is
used to specify the expected time-averaged toggle rate, and is used by the Power
Analyzer to estimate time-averaged power consumption.

3.3. MTBF Optimization

In addition to reporting synchronization register chains and MTBF values found in the
design, the Intel Quartus Prime software can also protect these registers from
optimizations that might negatively impact MTBF and can optimize the register
placement and routing if the MTBF is too low.

Synchronization register chains must first be explicitly identified as synchronizers.
Intel recommends that you set Synchronizer Identification to Forced If
Asynchronous for all registers that are part of a synchronizer chain.

Optimization algorithms, such as register duplication and logic retiming in physical
synthesis, are not performed on identified synchronization registers. The Fitter
protects the number of synchronization registers specified by the Synchronizer
Register Chain Length option.

In addition, the Fitter optimizes identified synchronizers for improved MTBF by placing
and routing the registers to increase their output setup slack values. Adding slack in
the synchronizer chain increases the available settling time for a potentially
metastable signal, which improves the chance that the signal resolves to a known
value, and exponentially increases the design MTBF. The Fitter optimizes the number
of synchronization registers specified by the Synchronizer Register Chain Length
option.

Metastability optimization is on by default. To view or change the Optimize Design
for Metastability option, click Assignments ➤ Settings ➤ Compiler Settings ➤
Advanced Settings (Fitter). To turn the optimization on or off with Tcl, use the
following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Related Information

Identify Synchronizers for Metastability Analysis on page 123

3.3.1. Synchronization Register Chain Length

The Synchronization Register Chain Length option specifies how many registers
should be protected from optimizations that might reduce MTBF for each register
chain, and controls how many registers should be optimized to increase MTBF with the
Optimize Design for Metastability option.

For example, if the Synchronization Register Chain Length option is set to 2,
optimizations such as register duplication or logic retiming are prevented from being
performed on the first two registers in all identified synchronization chains. The first
two registers are also optimized to improve MTBF when the Optimize Design for
Metastability option is turned on.

The default setting for the Synchronization Register Chain Length option is 3. The
first register of a synchronization chain is always protected from operations that might
reduce MTBF, but you should set the protection length to protect more of the

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

synchronizer chain. Intel recommends that you set this option to the maximum length
of synchronization chains you have in your design so that all synchronization registers
are preserved and optimized for MTBF.

Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis) to change the global Synchronization Register Chain Length option.

You can also set the Synchronization Register Chain Length on a node or an entity
in the Assignment Editor. You can set this value on the first register in a
synchronization chain to specify how many registers to protect and optimize in this
chain. This individual setting is useful if you want to protect and optimize extra
registers that you have created in a specific synchronization chain that has low MTBF,
or optimize less registers for MTBF in a specific chain where the maximum frequency
or timing performance is not being met. To make the global setting with Tcl, use the
following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers>

To apply the assignment to a design instance or the first register in a specific chain
with Tcl, use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers> -to <register or instance name>

3.4. Reducing Metastability Effects

You can check your design's metastability MTBF in the Metastability Summary report,
and determine an acceptable target MTBF given the context of your entire system and
the fact that MTBF calculations are statistical estimates. A high metastability MTBF
(such as hundreds or thousands of years between metastability failures) indicates a
more robust design.

This section provides guidelines to ensure complete and accurate metastability
analysis, and some suggestions to follow if the Intel Quartus Prime metastability
reports calculate an unacceptable MTBF value.

Related Information

Metastability Reports on page 124

3.4.1. Apply Complete System-Centric Timing Constraints for the Timing
Analyzer

To enable the Intel Quartus Prime metastability features, make sure that the timing
analyzer is used for timing analysis.

Ensure that the design is fully timing constrained and that it meets its timing
requirements. If the synchronization chain does not meet its timing requirements,
MTBF cannot be calculated. If the clock domain constraints are set up incorrectly, the
signal transfers between circuitry in unrelated or asynchronous clock domains might
be identified incorrectly.

Use industry-standard system-centric I/O timing constraints instead of using FPGA-
centric timing constraints.

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You should use set_input_delay constraints in place of set_max_delay
constraints to associate each input port with a clock domain to help eliminate false
positives during synchronization register identification.

Related Information

How Timing Constraints Affect Synchronizer Identification and Metastability Analysis
on page 123

3.4.2. Force the Identification of Synchronization Registers

Use the guidelines in Identifying Synchronizers for Metastability Analysis to ensure the
software reports and optimizes the appropriate register chains.

Identify synchronization registers by setting Synchronizer Identification to Forced
If Asynchronous in the Assignment Editor. If there are any registers that the
software detects as synchronous, but you want to analyze for metastability, apply the
Forced setting to the first synchronizing register. Set Synchronizer Identification
to Off for registers that are not synchronizers for asynchronous signals or unrelated
clock domains.

To help you find the synchronizers in your design, you can set the global
Synchronizer Identification setting on the Timing Analyzer page of the Settings
dialog box to Auto to generate a list of all the possible synchronization chains in your
design.

Related Information

Identify Synchronizers for Metastability Analysis on page 123

3.4.3. Set the Synchronizer Data Toggle Rate

The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency.

To obtain a more accurate MTBF for a specific chain or all chains in your design, set
the Synchronizer Toggle Rate.

Related Information

Synchronizer Data Toggle Rate in MTBF Calculation on page 126

3.4.4. Optimize Metastability During Fitting

Ensure that the Optimize Design for Metastability setting is turned on.

Related Information

MTBF Optimization on page 127

3.4.5. Increase the Length of Synchronizers to Protect and Optimize

Increase the Synchronizer Chain Length parameter to the maximum length of
synchronization chains in your design. If you have synchronization chains longer than
2 identified in your design, you can protect the entire synchronization chain from
operations that might reduce MTBF and allow metastability optimizations to improve
the MTBF.

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Synchronization Register Chain Length on page 127

3.4.6. Increase the Number of Stages Used in Synchronizers

Designers commonly use two registers in a synchronization chain to minimize the
occurrence of metastable events, and a standard of three registers provides better
metastability protection. However, synchronization chains with two or even three
registers may not be enough to produce a high enough MTBF when the design runs at
high clock and data frequencies.

If a synchronization chain is reported to have a low MTBF, consider adding an
additional register stage to your synchronization chain. This additional stage increases
the settling time of the synchronization chain, allowing more opportunity for the signal
to resolve to a known state during a metastable event. Additional settling time
increases the MTBF of the chain and improves the robustness of your design. However,
adding a synchronization stage introduces an additional stage of latency on the signal.

If you use the Intel FPGA IP core with separate read and write clocks to cross clock
domains, increase the metastability protection (and latency) for better MTBF. In the
DCFIFO parameter editor, choose the Best metastability protection, best fmax,
unsynchronized clocks option to add three or more synchronization stages. You can
increase the number of stages to more than three using the How many sync
stages? setting.

3.4.7. Select a Faster Speed Grade Device

The design MTBF depends on process parameters of the device used. Faster devices
are less susceptible to metastability issues. If the design MTBF falls significantly below
the target MTBF, switching to a faster speed grade can improve the MTBF
substantially.

3.5. Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You
can also run procedures at a command prompt.

For detailed information about scripting command options, refer to the Intel Quartus
Prime Command-Line and Tcl API Help browser. To run the Help browser, type the
following command at the command prompt and then press Enter:

quartus_sh --qhelp

Related Information

• Intel Quartus Prime Pro Edition Settings File Reference Manual

• Intel Quartus Prime Pro Edition User Guide: Scripting

3.5.1. Identifying Synchronizers for Metastability Analysis

To apply the global Synchronizer Identification assignment, use the following
command:

set_global_assignment -name SYNCHRONIZER_IDENTIFICATION <OFF|AUTO|"FORCED IF
ASYNCHRONOUS">

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

130

https://www.intel.com/content/www/us/en/docs/programmable/683296.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To apply the Synchronizer Identification assignment to a specific register or
instance, use the following command:

set_instance_assignment -name SYNCHRONIZER_IDENTIFICATION <AUTO|"FORCED IF
ASYNCHRONOUS"|FORCED|OFF> -to <register or instance name>

3.5.2. Synchronizer Data Toggle Rate in MTBF Calculation

To specify a toggle rate for MTBF calculations as described on page “R**Synchronizer
Data Toggle Rate in MTBF Calculation”, use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

Related Information

Synchronizer Data Toggle Rate in MTBF Calculation on page 126

3.5.3. report_metastability and Tcl Command

If you use a command-line or scripting flow, you can generate the metastability
analysis reports described in “C**Metastability Reports” outside of the Intel Quartus
Prime and user interfaces.

The table describes the options for the report_metastability and Tcl command.

Table 9. report_metastabilty Command Options

Option Description

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension
specified in the file name determines the file type — either
*.txt or *.html.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel.

-stdout Indicates the report be sent to the standard output, via
messages. This option is required only if you have selected
another output format, such as a file, and would also like to
receive messages.

Related Information

Metastability Reports on page 124

3.5.4. MTBF Optimization

To ensure that metastability optimization described on page “C**MTBF Optimization”
is turned on (or to turn it off), use the following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Related Information

MTBF Optimization on page 127

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.5. Synchronization Register Chain Length

To globally set the number of registers in a synchronization chain to be protected and
optimized as described on page “C**Synchronization Register Chain Length”, use the
following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers>

To apply the assignment to a design instance or the first register in a specific chain,
use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers> -to <register or instance name>

Related Information

Synchronization Register Chain Length on page 127

3.6. Managing Metastability

Intel’s Intel Quartus Prime software provides industry-leading analysis and
optimization features to help you manage metastability in your FPGA designs. Set up
your Intel Quartus Prime project with the appropriate constraints and settings to
enable the software to analyze, report, and optimize the design MTBF. Take advantage
of these features in the Intel Quartus Prime software to make your design more robust
with respect to metastability.

3.7. Managing Metastability with the Intel Quartus Prime Software
Revision History

The following revisions history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2022.03.28 22.1 • Renamed "Synchronization Register Chains" to "Data Synchronization
Register Chains" and revised the topic.

• Removed references to obsolete Advisors.

2018.05.07 18.0.0 • First release as part of the stand-alone Design Recommendations User
Guide

2017.11.06 17.1.0 • Corrected broken links to other documents.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

continued...

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

July 2010 10.0.0 Technical edit.

November 2009 9.1.0 Clarified description of synchronizer identification settings.
Minor changes to text and figures throughout document.

March 2009 9.0.0 Initial release.

3. Managing Metastability with the Intel Quartus Prime Software

683082 | 2023.08.03

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Recommendations

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Intel Quartus Prime Pro Edition User Guide: Design
Recommendations Archive

For the latest and previous versions of this user guide, refer to Intel Quartus Prime Pro
Edition User Guide: Design Recommendations. If a software version is not listed, the
user guide for the previous software version applies.

683082 | 2023.08.03

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Intel Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Pro Edition FPGA design flow.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Pro Edition software, including managing Intel Quartus Prime Pro Edition
projects and IP, initial design planning considerations, and project migration
from previous software versions.

• Intel Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Pro Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Pro Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Pro Edition Compiler. The Compiler synthesizes, places, and routes your
design before generating a device programming file.

• Intel Quartus Prime Pro Edition User Guide: Design Optimization
Describes Intel Quartus Prime Pro Edition settings, tools, and techniques that
you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Intel Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Pro Edition Programmer, which
allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683082 | 2023.08.03

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Intel Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys* that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys*. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence
Checking Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Intel Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Pro Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, system
debugging toolkits, In-System Memory Content Editor, and In-System Sources
and Probes Editor.

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Intel Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Pro Edition software and to perform a wide range of functions, such as
managing projects, specifying constraints, running compilation or timing
analysis, or generating reports.

A. Intel Quartus Prime Pro Edition User Guides

683082 | 2023.08.03

Intel Quartus Prime Pro Edition User Guide: Design Recommendations Send Feedback

136

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Recommendations%20(683082%202023.08.03)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Pro Edition User
Guide
Design Compilation

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q How can my signals persist through synthesis?
A Preserving Registers During Synthesis on page 60

Q How can I optimize my design in stages?
A Incremental Optimization Flow on page 105

Q How do I optimize for high-performance devices?
A Fast Forward Compilation Flow on page 116

Q What retiming restrictions limit performance?
A Retiming Restrictions and Workarounds on page 130

Q Can I transfer projects between software versions?
A Exporting Compilation Results on page 136

Q How do I divide a project into partitions?
A Creating a Design Partition on page 140

Q How do I add other EDA tools to the flow?
A Integrating Other EDA Tools on page 147

Q Can I target speed, area, power, or run time?
A Compiler Optimization Modes on page 149

Q How can I reduce the compilation time?
A Reducing Compilation Time on page 187

Online Version

Send Feedback UG-20132

683236

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Design Compilation... 4
1.1. Compilation Overview.. 5

1.1.1. Compilation Flows..6
1.1.2. Compilation Hierarchy.. 7
1.1.3. Compilation on a Compute Farm.. 8

1.2. Using the Compilation Dashboard.. 9
1.3. Design Netlist Infrastructure..10

1.3.1. DNI Netlist Five-Box Data Model.. 11
1.4. Using the Node Finder.. 13
1.5. Precompiled Component (PCC) Generation Flow... 18
1.6. Analysis & Elaboration Flow...20

1.6.1. Exploring the RTL Analyzer..23
1.6.2. Use Case Examples.. 50

1.7. Design Synthesis... 58
1.7.1. Preparing for Design Synthesis.. 59
1.7.2. Running Synthesis... 59
1.7.3. Using Synopsys* Design Constraint (SDC) on RTL Files................................. 64
1.7.4. Post-Synthesis Static Timing Analysis (STA)...87
1.7.5. Viewing Synthesis Reports.. 91
1.7.6. Viewing Synthesis Dynamic Report...92

1.8. Design Place and Route.. 95
1.8.1. Running the Fitter..96
1.8.2. Viewing Fitter Reports.. 98

1.9. Incremental Optimization Flow...105
1.9.1. Concurrent Analysis During Synthesis or Fitting..106
1.9.2. Analyzing Compiler Snapshots... 107
1.9.3. Validating Periphery (I/O) after the Plan Stage... 114

1.10. Fast Forward Compilation Flow... 116
1.10.1. Step 1: Run Register Retiming... 116
1.10.2. Step 2: Review Retiming Results.. 117
1.10.3. Step 3: Run Fast Forward Compile.. 120
1.10.4. Step 4: Review Fast Forward Results...124
1.10.5. Step 5: Implement Fast Forward Recommendations.................................. 129
1.10.6. Retiming Restrictions and Workarounds... 130

1.11. Full Compilation Flow.. 132
1.11.1. Full Compilation Flow with Temporary Optimization Mode...........................133

1.12. Compilation Monitoring Mode .. 134
1.13. Exporting Compilation Results..136

1.13.1. Exporting a Version-Compatible Compilation Database137
1.13.2. Importing a Version-Compatible Compilation Database 139
1.13.3. Creating a Design Partition.. 140
1.13.4. Exporting a Design Partition...142
1.13.5. Reusing a Design Partition... 144
1.13.6. Viewing Quartus Database File Information.. 145
1.13.7. Clearing Compilation Results..146

1.14. Integrating Other EDA Tools...147
1.14.1. Generating a VQM Netlist for other EDA Tools...148

Contents

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.15. Compiler Optimization Techniques.. 149
1.15.1. Compiler Optimization Modes... 149
1.15.2. Allow Register Retiming...153
1.15.3. Automatic Gated Clock Conversion..153
1.15.4. Enable Intermediate Fitter Snapshots..154
1.15.5. Fast Preserve Option...155
1.15.6. Fractal Synthesis Optimization..155

1.16. Synthesis Language Support..161
1.16.1. Verilog and SystemVerilog Synthesis Support... 161
1.16.2. VHDL Synthesis Support..165

1.17. Synthesis Settings Reference... 168
1.17.1. Advanced Synthesis Settings..168

1.18. Fitter Settings Reference... 174
1.19. Design Compilation Revision History... 180

2. Reducing Compilation Time...187
2.1. Factors Affecting Compilation Results..187
2.2. Strategies to Reduce the Overall Compilation Time... 187

2.2.1. Running the ECO Compilation Flow... 187
2.2.2. Enabling Multi-Processor Compilation..188
2.2.3. Using Block-Based Compilation.. 191

2.3. Reducing Synthesis Time and Synthesis Netlist Optimization Time............................ 192
2.3.1. Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time... 192
2.3.2. Use Appropriate Coding Style to Reduce Synthesis Time.............................. 193

2.4. Reducing Placement Time..193
2.4.1. Placement Effort Multiplier Settings.. 193

2.5. Reducing Routing Time... 193
2.5.1. Identifying Routing Congestion with the Chip Planner..................................194

2.6. Reducing Static Timing Analysis Time... 195
2.7. Setting Process Priority... 195
2.8. Reducing Compilation Time Revision History.. 195

3. Quartus Prime Pro Edition User Guide Design Compilation Archives........................... 197

A. Quartus Prime Pro Edition User Guides...198

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Design Compilation
The Quartus® Prime Compiler synthesizes, places, and routes your design before
generating device programming files. The Compiler supports a variety of high-level,
HDL, and schematic design entry methods. The modules of the Compiler include IP
Generation, Analysis & Synthesis, Fitter, Timing Analyzer, and Assembler.

Figure 1. Compilation Dashboard

Full Compilation
Modules

Enables Optional
Module

Opens Settings

Runs Module(s)

Reports/Analysis
Stage

683236 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The Quartus Prime Pro Edition version of the Compiler supports these advanced
features:

• Supports Arria® 10, Cyclone® 10 GX, Stratix® 10, and Agilex™ 7 devices.

• Incremental Fitter optimization—analyze and optimize after each Fitter stage to
maximize performance and shorten total compilation time.

• Hyper-Aware Design Flow—use Hyper-Retiming and Fast Forward compilation for
the highest performance in Stratix 10 and Agilex 7 devices.

• Partial Reconfiguration—dynamic reconfiguration of a portion of the FPGA, while
the remaining FPGA continues to function.

• Block-Based Design Flows—preservation and reuse of design blocks.

1.1. Compilation Overview

The Compiler is modular, allowing you to run only the process that you need. Each
Compiler module performs a specific function in the full compilation process. When
you run any module, the Compiler runs any prerequisite modules automatically and
generates detailed reports at each stage. The Compiler can preserve a "snapshot" of
the compilation results after each stage.

Table 1. Compilation Modules

Compilation Process Description

IP Generation Identifies the status and version of IP components in the project, reports outdated IP that
require upgrade, and generates Intel FPGA IPs in the project.

Analysis & Synthesis • Analysis & Elaboration—a stage of Analysis & Synthesis that checks for design file and
projects errors. It provides different checkpoints or previews (elaborated,
instrumented, constrained, and swept) of your design early in the compilation flow and
serves as a platform to better analyze your design and improve it.

• Synthesis—Synthesizes, optimizes, minimizes, and maps design logic to device
resources. The "synthesized" snapshot preserves the results of this stage.

Early Timing Analysis Combines Synopsys* Design Constraint (SDC) on RTL and post-synthesis static timing
analysis. The SDC-on-RTL allows you to integrate SDC constraints that target nodes using
the same names as in your RTL design early in the compilation flow and uses them in the
later stages of the Quartus Prime compilation. However, you can run the module even
without RTL SDCs where you can view the synthesized timing netlist.

Fitter (Place & Route) Assigns the placement and routing of the design to specific device resources, while
honoring timing and placement constraints. The Fitter includes the following stages:
• Plan—places all periphery elements (such as I/Os and PLLs) and determines a legal

clock plan, without core placement or routing. The "planned" snapshot preserves the
stage results.

• Place—places all core elements in a legal location. The "placed" snapshot preserves the
stage results.

• Route—creates all routing between the elements in the design. The "routed" snapshot
preserves the stage results.

• Retime—moves (retimes) existing registers into Hyper-Registers for fine-grained
performance improvement. The "retimed" snapshot preserves the stage results. (1)

• Fitter (Finalize)—for Arria 10 and Cyclone 10 GX devices, converts unnecessary tiles to
High-Speed or Low-Power. For Stratix 10 and Agilex 7 devices, performs post-Route fix-
up. The "final" snapshot preserves the stage results.

Fast Forward Timing Closure
Recommendations

Generates detailed reports that estimate performance gains achievable by making specific
RTL modifications.

continued...

(1) Retiming and Fast Forward compilation available only for Stratix 10 and Agilex 7 devices.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compilation Process Description

Timing Analysis Analyzes and validates the timing performance of all design logic with the Timing Analyzer.

Power Analysis Optional module that estimates device power consumption. Specify the electrical standard
on each I/O cell and the board trace model on each I/O standard in your design.

Assembler Converts the Fitter's placement and routing assignments into a programming image for
the FPGA device.

EDA Netlist Writer Generates output files for use in other EDA tools, as Integrating Other EDA Tools on page
147 describes.

Note: Each successive release of the Quartus Prime software typically includes:

• Added support for new features in supported FPGA devices.

• Added support for new devices.

• Efficiency and performance improvements.

• Improvements to compilation time and resource use of the design software.

Due to these improvements, different versions of the Quartus Prime Pro Edition,
Quartus Prime Standard Edition, and Quartus Prime Lite Edition software can produce
different programming files from release to release.

1.1.1. Compilation Flows

The Quartus Prime Pro Edition Compiler supports a variety of flows to help you
maximize performance and minimize compilation processing time. The modular
Compiler is flexible and efficient, allowing you to run all modules in sequence with a
single command, or to run and optimize each stage of compilation separately.

As you develop and optimize your design, run only the Compiler stages that you need,
rather than waiting for full compilation. Run full compilation only when your design is
complete and you are ready to run all Compiler modules and generate a device
programming image.

Table 2. Compilation Flows

Compiler Flow Function

Full Compilation Flow Launches all Compiler modules in sequence to synthesize, fit, analyze final timing, and
generate a device programming file. By default, the Compiler generates and preserves only
the synthesized and final snapshots during a full compilation. You can optionally Enable
Intermediate Fitter Snapshots to preserve the planned, placed, routed, and retimed
snapshots.

Block-Based Design Flows Supports preservation and reuse of design blocks in one or more projects. You can reuse
synthesized or final design blocks in other projects. Reusable design blocks can include
device core or periphery resources.

Incremental Optimization
Flow

Incremental optimization allows you to stop processing after each Fitter stage, analyze the
results, and adjust settings or RTL before proceeding to the next compilation stage. This
iterative flow optimizes at each stage, without waiting for full compilation results.

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compiler Flow Function

Hyper-Aware Design Flow Combines automated register retiming (Hyper-Retiming), with implementation of targeted
timing closure recommendations (Fast Forward Compilation), to maximize use of Hyper-
Registers and drive the highest performance in Stratix 10 and Agilex 7 devices.

Partial Reconfiguration Reconfigures a portion of the FPGA dynamically, while the remaining FPGA design continues
to function.

ECO Compilation Flow The Quartus Prime Pro Edition software supports last-minute, targeted design changes (also
known as engineering change orders (ECOs)), even after you fully compile the design. ECOs
typically occur during the design verification stage. Refer to the Quartus Prime Pro Edition
User Guide: Design Optimization.

Related Information

• Incremental Optimization Flow on page 105

• Intel Quartus Prime Pro Edition User Guide: Block-Based Design

• Full Compilation Flow on page 132

• Running the Fitter on page 96

• Fast Forward Compilation Flow on page 116

• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration

• Intel Quartus Prime Pro Edition User Guide: Design Optimization

1.1.2. Compilation Hierarchy

The Quartus Prime Pro Edition Compiler generates a hierarchical project structure that
isolates results of each compilation stage, for each design entity.

For example, the dni database directory contains checkpoint directories pertaining to
each of the Analysis and Elaboration stages, such as elaborated, instrumented, swept,
and constrained. Similarly, the synthesized directory contains a snapshot of the
Synthesis stage of the compilation.

If you use design partitions, such as in a block-based design, the Compiler also
isolates the results for each design partition. The Compiler fully preserves routing and
placement within a partition. Changes to other portions of the design hierarchy do not
impact the partition.

This hierarchical structure allows you to optimize specific design elements without
impacting placement and routing in other partitions. The hierarchical project structure
also supports distributed work groups and compilation processing across multiple
machines.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

7

https://www.intel.com/content/www/us/en/docs/programmable/683247.html
https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Hierarchical Project Structure
<My_project> - top-level project directory

dni - Intel Quartus DNI database
checkpoints - Contains all checkpoints output

<project_revision_name>
user_runs - flow execution run-related directory

default_run - run directory initiated by the default compiler flow
<checkpoint_directory> - a checkpoint directory

design - design directory with design database files
reports - compiler-generated report files
sld - Quartus-managed output directory

qdb - Intel Quartus Project database
_compiler - compilation database

_flat - flat design compilation database

root_partition - root partition compilation database

<version> - software version
_all - reports database of all stages
final - final stage compilation snapshot
legacy - legacy compilation snapshot
partitioned - partitions compilation snapshot
placed - place stage compilation snapshot
planned - plan stage compilation snapshot
retimed - retime stage compilation snapshot
routed - route stage compilation snapshot
synthesized - synthesize stage compilation snapshot

<same subdirectories as _flat partition>
<user_partition> - user partition compilation database

<same subdirectories as _flat partition>

manifest.txt - Quartus-managed metadata file
setting.json - Quartus-managed configuration file

Related Information

• Exporting Compilation Results on page 136

• Creating a Design Partition on page 140

1.1.3. Compilation on a Compute Farm

If you want to run Quartus Prime Pro Edition compiles on a compute farm, use the
Design Space Explorer II or manually submit jobs with your regular job submission
commands.

For Design Space Explorer II, refer to the following topics:

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Design Space Explorer II Tool

— Setup Page

— Project Page

— Exploration Page

— Status Page

— Report Page

• Using Design Space Explorer

• Optimize Settings with Design Space Explorer II

• Optimize Settings with Project Revisions

• Design Space Explorer II Computing Resources

• Design Space Explorer II Optimization Parameters

• Design Space Explorer II Result Management

• Running Design Space Explorer II

• How to Set Up a Remote Farm Machine in the Design Space Explorer II

Refer to the command-line commands in the Quartus Prime Pro Edition User Guide:
Scripting to run a Quartus compilation.

1.2. Using the Compilation Dashboard

The Compilation Dashboard provides immediate access to settings, controls, and
reporting for each stage of the compilation flow.

The Compilation Dashboard appears by default when you open a project, or you can
click Compilation Dashboard in the Tasks window to re-open it.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

9

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/jcc1519432181110.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/mapIdTopics/nfo1520894967918.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/mapIdTopics/cjr1521146438399.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/mapIdTopics/gzx1519433954262.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/mapIdTopics/lij1521075717701.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/mapIdTopics/whh1518655760413.htm
https://www.youtube.com/watch?v=1cc74E3zaeI
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/optimize-settings-with-design-space.html
https://www.intel.com/content/www/us/en/docs/programmable/683463/current/optimizing-settings-with-project-revisions.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/dse-ii-computing-resources.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/dse-ii-optimization-parameters.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/dse-ii-result-management.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/running-dse-ii.html
https://www.youtube.com/watch?v=WdO5VOQkl7s
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tafs.html
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tafs.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Compilation Dashboard

Full Compilation
Modules

Enables Optional
Module

Opens Settings

Runs Module(s)

Reports/Analysis
Stage

• Click the Pencil icon to edit settings for that stage of the compilation flow.

• Click any Compiler stage to run one or more Compiler stage.

You can click a Compiler stage to resume an interrupted compilation flow provided
no compilation settings have changed from the initial start of the compilation flow.

• Click the Report, RTL Viewer, Technology Map Viewer, Timing Analyzer, or
Snapshot Viewer icons for analysis of stage results.

As the Compiler progresses through the flow, the dashboard updates the status of
each module, and enables icons that you can click for reports and analysis. The
dashboard is also updated if you run your compilation flow from a command line with
the quartus_sh --flow command.

Related Information

• Analyzing Compiler Snapshots on page 107

• Compilation with quartus_sh --flow

1.3. Design Netlist Infrastructure

Design Netlist Infrastructure (DNI) is a major foundational evolution of the Quartus
Prime software. It enables new features for faster design convergence and a better
user experience.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

10

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/compilation-with-quartus-sh-flow.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

As a first step, applications and flow for Early Design Analysis have been enabled that
unlock the following significant benefits:

• Comprehensive and interactive schematic visualization of an unaltered view of
your design (RTL).

• Deeper and advanced design analysis with an intuitive and rich Tcl scripting
interface.

• Faster design interactions with granular synthesis.

• Simplified and user-friendly constraint authoring by allowing SDC-on-RTL targets.

• Faster design iterations by SDC cleanup and early timing analysis with post-
synthesis timing.

Starting from the 23.3 release, DNI compilation flow is available by default and it is
compatible with all components of the design flow. It supports the Assembler to
generate and download bit stream to the hardware. It is compatible with Signal Tap,
various design flows (Partial Reconfiguration, black box incremental compile, and
import/export flows), and simulation model generation.

Related Information

• Use Case Examples on page 50

• TCL Commands and Packages Summary

• ::quartus::dcmd_dni

• ::quartus::dni_sdc

1.3.1. DNI Netlist Five-Box Data Model

DNI introduces a conventional netlist five-box data model used in most Electronic
Design Automation (EDA) tools and uses Tcl commands to traverse the netlist.
Consider the following two instances example:

module top (input PI_1,
 input PI_2,
 input PI_3,
 output PO_4);

 wire net_2;
 wire net_3;

 AND_OR inst_1(PI_1, PI_2, PI_3, net_2);
 AND_OR inst_2(PI_3, PI_2, PI_1, net_3);
 assign PO_4 = net_2 | net_3;
endmodule

module AND_OR (input in_1,
 input in_2,
 input in_3,
 output out_1);

 wire net_1;

 assign net_1 = in_1 & in_2;
 assign out_1 = net_1 | in_3;

endmodule

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

11

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tafs.html
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl_pkg_dcmd_dni_ver_1-0.html
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl_pkg_dni_sdc_ver_1-5.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A DNI netlist consists of modules, instances, ports, instance ports, and nets, as shown
in the following color-coded diagram:

Figure 4. DNI Netlist Five-box Data Model

The following table describes the core elements of this netlist data model:

Table 3. Core Elements of the Netlist Data Model

Data Model
Elements

Description Tcl Command

Module A collection of connected netlist objects, such as
instances, ports, nets, and instance ports. It is similar to
the Verilog module or VHDL entity.
Each design has only a single top module containing a
group of instances of other modules or library cells.
Note: A library cell instance is also referred to as a leaf

instance.

–

Port An I/O interface of a module. A design can have input
ports, output ports, or bidirectional ports.
In the DNI Data Model, PI_1, PI_2, PI_3, and PO_4 are
ports.

dni::get_ports

Instance An instantiation of a module or primitive. A module
instance is also referred to as a hierarchical instance,
submodule, or a child of the top-level module.
A module instance (submodule) may also contain a group
of instances of other modules or library cells. These
nested module-children instances are referred to as
design hierarchies. You can build a hierarchy tree for the
entire design with the root as the top module.
In the DNI Data Model, inst_1, inst_2, AND_1, OR_2,
and OR_3 are instances.
Note: Multiple unique objects can reference an instance

if it exists in a netlist instantiated more than once.

dni::get_cells

Instance port
(inst_port)

A terminal of an instance. The hierarchical I/O interfaces
or leaf instances are referred to as instance ports. Their
directions can be input or output.
Note: FPGA hardware does not support bidirectional

signals. Hence, your design must not include any
bidirectional instance ports.

dni::get_pins

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Data Model
Elements

Description Tcl Command

In the DNI Data Model, inst_1|in_1, inst_2|AND_1|
in_1 are few examples of instance ports.

Net A wire that connects terminals of instantiations or a
netlist.
A local net or a hierarchical net is an object within a
submodule or top module to hold the connection between
instance ports of child instances, instance ports of the
submodule boundary, or primary ports of the top module.
Hierarchical nets in the submodule and outside the top
module of a hierarchical instance port have the same
corresponding global or flat net.
A global net or a flat net represents the connection of leaf
instances or primary ports.
In the DNI Data Model, Net_1, Net_2, Net_3, Net_4
and so on are nets.

dni::get_nets

1.4. Using the Node Finder

The Node Finder allows you to search objects in the design netlist based on your
search criteria. It returns a list of matching nodes. From the nodes list, you can also
locate a node using the RTL Analyzer and other Quartus Prime software tools. In terms
of the functionality, it is similar to the Object Finder in the RTL Analyzer. You must
complete the Analysis & Elaboration compilation stage to perform a search.

Note: This version of the Node Finder is available only in Quartus Prime Pro Edition software
versions 23.3 and later.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To launch the Node Finder, on the Quartus Prime software menu, click View ➤ Node
Finder. In the following example, the Node Finder has found all user-entered names
in your design files:

The Named field accepts partial or full-text characters and standard wildcard
characters. When you click Search, the Node Finder searches all node names
matching the specified text. Your search strings are saved, so you can access
previously searched strings using the drop-down. The Node Finder provides additional
search options (described in the section below) to refine your search.

Node Finder Search Options

Use the Show More Search Options button in the Node Finder to apply filters and
refine your search. The following search options are available:

Important: Search options available in the Node Finder vary based on the filter you select in the
Filter drop-down list.

Table 4. Node Finder Search Options

Node Finder Search Options Description

Filter Provides a set of default filters. For more information about each filter, refer to the Node
Finder Search Filters table. Depending on the filter selected, when you click the Options
button, some options are enabled, disabled, or grayed out by default.

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Node Finder Search Options Description

To refine your search, you can either use one of the default filters or create a custom filter
based on one of the default filters using the Customize button.

Options • Case-insensitivity: Allows searching case-insensitive node names. By default, the
search is case-sensitive. With this option enabled, the search returns the same result
irrespective of whether you use lowercase or uppercase search strings.

• Object Type: Specifies the object type to search for. You can choose between
instance, instance_bus, instance_port, port, port_bus, net, and net_bus.

• Properties: Allows adding or removing object properties, such as object name, name
of an object's parent, number of ports, source file or line number in the source, and so
on. You can type the property values (integer or string) manually.

Look in Allows you to refine your search hierarchy path. Use the browse button to select the
search hierarchy level. It displays the Select Hierarchy Level dialog box, allowing you to
navigate and select the desired hierarchy level.

Include subentities Includes node names below the current search hierarchy level in the Nodes Found list.

Hierarchy view Allows you to view nodes in the Nodes Found list in hierarchy levels.

Node Finder Search Filters

The following search filters are available in the Node Finder:

Table 5. Node Finder Filters and Search Mode

Filter Name Description

Design Entry (all names) Finds all user-entered names in the search hierarchy path.

Pins: assigned Finds all assigned pins in the search hierarchy path.

Pins: unassigned Finds all unassigned pins in the search hierarchy path.

Pins: input Finds all input pins in the search hierarchy path.

Pins: output Finds all output pins in the search hierarchy path.

Pins: bidirectional Finds all bidirectional pins in the search hierarchy path.

Pins: virtual Finds all I/O elements mapped to logic elements with a virtual pin logic option
assignment.

Pins: all Finds all pins in the search hierarchy path.

Pins: all & Registers: post-fitting Finds all pins and registers that persist after physical synthesis and fitting within
the search hierarchy path.
Note: This filter is a combination of the Pins: all and Registers: post-fitting

filters.

Ports: partition Finds all user-entered and compiler-generated partition ports within the post-fit
netlist and search hierarchy path.

Entity instance: pre-synthesis Finds all entity instances within the pre-synthesis netlist and search hierarchy path.

Registers: pre-synthesis Finds all user-entered register names contained in the design after Analysis &
Elaboration, but before physical synthesis performs any synthesis optimizations.

Registers: post-fitting Finds all user-entered registers in the search hierarchy path that survived physical
synthesis and fitting.

Post-synthesis Finds all user-entered and synthesis-generated nodes contained in the design after
design elaboration and physical synthesis.

Post-synthesis: preserved for
debug

Finds all internal device nodes that you have designated with preserve for debug in
the post-synthesis netlist.

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Filter Name Description

Post-Compilation Finds all user-centered and compiler-generated names that persist post-fit and do
not have location assignments.

Signal Tap: pre-synthesis Finds all internal device nodes in the pre-synthesis netlist that are preserved for
analysis by the Signal Tap Logic Analyzer.
Note: Signal Tap: pre-synthesis user defined filter option is unsupported in

the DNI mode because functionally, it is same as the Signal Tap: pre-
synthesis.

Signal Tap: post-fitting Finds all internal device nodes in the post-fit netlist that are preserved for analysis
by the Signal Tap Logic Analyzer.

Signal Tap: post-fitting user
defined

Finds all user defined internal device nodes in the post-fit netlist that are preserved
for analysis by the Signal Tap Logic Analyzer.

Signal Tap: pre-synthesis
preserved for debug

Finds all internal device nodes in the pre-synthesis netlist that are preserved for
analysis by the Signal Tap Logic Analyzer.

Signal Tap: post-fitting
preserved for debug

Finds all internal device nodes in the post-fit netlist that are preserved for analysis
by the Signal Tap Logic Analyzer.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following image illustrates an example of the Node Finder finding case-insensitive
internal device nodes in the pre-synthesis netlist:

Figure 5. Example of Finding Case-insensitive Internal Device Nodes

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following image illustrates an example of the Node Finder using the Post-synthesis
filter to find user-entered synthesis-generated nodes in the design:

Figure 6. Example of Finding User-entered Synthesis-generated Nodes

1.5. Precompiled Component (PCC) Generation Flow

Precompiled Components (PCC) generation flow is a compilation stage that runs
between IP Generation and Analysis & Synthesis stages on the compilation dashboard.
It synthesizes and caches the results of the Intel® FPGA IP components in your
design.

PCC generation reduces Synthesis compile time through the following steps and allows
you to iterate and go to post-synthesis timing analysis stages faster and reduce the
development cycle time:

1. Synthesizes Intel FPGA IP components in your design.

2. Generates and caches IP compilation results in your project's ocs_cache_dir (IP
cache) directory.

3. Reuses the IP cache in subsequent Synthesis runs.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. PCC Generation

PCC GenerationIP Generation

Out-of-context
synthesis

IP Cache
(ocs_cache_dir)

Analysis &
Synthesis

By default, the PCC generation flow is disabled. You can enable it from Assignments
➤ Settings ➤ Board and IP Settings dialog as shown in the following:

If the PCC generation flow compiles successfully, you can view the Precompiled
Components compilation report for each IP that participates in the flow under the
Compilation Reports dialog.

Advantages of PCC Generation Flow

• Each unique IP is generated only once and cached, so the subsequent Synthesis
run does not perform PCC generation if you have not modified any IP in your
design.

• If you modify any IP, the PCC generation flow synthesizes only that IP and skips
synthesizing the remaining IPs.

• The PCC generation process occurs in parallel for each IP.

• Synthesis compile time savings scales with the proportion of the design that is IP.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6. Analysis & Elaboration Flow

The Analysis & Elaboration compilation flow provides a complete and unmodified view
of your design early in the compilation flow. It serves as a platform to better analyze
your design and improve it. With this feature, the monolithic Analysis & Synthesis
stage splits into Analysis & Elaboration and Synthesis stages.

This flow allows you to access the preview modes of the Analysis & Elaboration stage,
as shown in the following image:

Figure 8. Analysis & Elaboration Checkpoints

1 2 3 4

The Analysis & Elaboration stage is composed of a series of checkpoints and you can
preview your design at each checkpoint as shown in Analysis & Elaboration
Checkpoints, where:

1. Elaborated: Provides an unmodified preview of your design captured directly
from RTL.

2. Instrumented: Provides an instrumented preview with system-level debugging
(debug fabric and Signal Tap logic analyzer inserted in your design). This
checkpoint is disabled by default (Hint: See Note below to enable it).

3. Constrained: Provides a design preview with SDC-on-RTL constraints shown on
the target nodes. This checkpoint is disabled by default (Hint: See Note below to
enable it).

4. Swept: Provides a design preview with unnecessary logic removed from your
design.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can control the number of checkpoints generated using the RTL Analysis Debug
Mode option under Project ➤ Settings. This mode is off by default, which means
only Elaborated and Swept checkpoints are available, and Instrumented and
Constrained checkpoints are unavailable. When you enable this mode, all four
checkpoints become available.

When the mode is off, you can obtain information about the Hierarchies Optimized
Away and Top Causes for Logic Optimized Away During Sweep, under
Synthesis Compilation Reports ➤ Synthesis ➤ Analysis & Elaboration.

For information about the Synthesis stage, refer to Design Synthesis on page 58.

Caution: Incompatibility with older software versions

A design compiled with the DNI-based compilation flow is not compatible with the
Quartus Prime software versions older than 23.3 due to the new DNI database. Ensure
the following:

• If you compile your design with the software version 23.3 and launch the project
in the Quartus Prime software GUI, a message displays indicating that you
compiled your design with a different compilation engine. If you continue to launch
the project, then you must recompile the design. This also applies for designs
compiled with the Quartus Prime software versions older than 23.3.

• For any partition-based design (for example, Partial Reconfiguration), mixing 23.3
version with 23.2 or older version compilation flow among the user-defined
partitions is not supported. You must compile all partitions with the same
compilation flow.

• For version-compatible design export or import feature, a design compiled with
and exported from an older Quartus Prime version requires the Quartus Prime
23.2 or older version. Similarly, the Quartus Prime 23.3 version is necessary for
version-compatible databases compiled with the DNI flow, and this feature is not
supported yet.

Executing Tcl Commands

The Quartus Prime software GUI (quartus) and Synthesis tool (quartus_syn)
support Tcl commands.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

21

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/partial-reconfiguration.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use one of the following suitable methods to execute your Tcl commands:
Quartus Prime Software GUI (quartus)

Perform the following steps in the GUI:

1. On the Compilation Dashboard, run Analysis & Synthesis ➤ Analysis &
Elaboration task to generate the netlist.

2. Click the magnifier icon to Invoke the RTL Analyzer.

3. Execute your Tcl command in the Tcl Console.

Synthesis Tool (quartus_syn)

1. Enable the flow for your project with the following command:

quartus_syn --analysis_and_elaboration <project_name>

2. Load your design.

> quartus_syn -s
<... Quartus Info Message...>
tcl> project_open top
tcl> dni::load_design -checkpoint elaborated
dms_path::sandboxes::sandbox_1239_0::design

3. Execute your Tcl commands:

tcl> foreach_in_collection p [dni::get_pins -of_objects [dni::get_cells
inst_1|out_1]] {puts [dni::get_property -name name -object $p]}
a[0]
a[1]
o
tcl> foreach_in_collection p [dni::get_pins -of_objects [dni::get_cells
inst_1|out_1]] {puts [dni::get_property -name direction -object $p]}
input
input
output
tcl>

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.1. Exploring the RTL Analyzer

You can invoke the RTL Analyzer from the Elaborated checkpoint of the Analysis &
Elaboration stage by clicking on the first magnifier icon in the compilation dashboard.
For details about checkpoints, refer to the Analysis & Elaboration Flow on page 20.

The RTL Analyzer GUI has the following major components:

• Design Hierarchy Browser

• Schematic Viewer

• Object Property Viewer

• Tcl Console

• Object Finder

Figure 10. RTL Analyzer GUI

Schematic
Viewer

Hierarchy
Browser

Properties
Viewer

Tcl
Console

Object
Finder

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Before exploring your design in the RTL Analyzer, select your desired viewing modes in
the Display settings by navigating to View ➤ Display Settings menu. The Auto
zoom to current selection and Auto expand to current selection modes are
enabled by default in the Display settings. You can disable one or both of these
modes. In the enabled mode, the object you select in the hierarchy browser gets
automatically highlighted in the schematic viewer. The schematic viewer and hierarchy
browser expands the current selected object's hierarchy and adjusts the view to
ensure the object is visible. Disable both modes if you do not want your current view
to change in the hierarchy browser and schematic viewer.

Figure 11. Display Settings

Note: RTL Analyzer automatically saves the last view of your design when you close it. So,
when you relaunch the RTL Analyzer, the last view is restored, including the
highlighted objects and nodes, and you can continue your work from where you left it
previously. However, in the event you change your RTL design and recompile the
project after exiting the RTL Analyzer, the saved view is invalidated and not restored.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Hierarchy Browser

The design hierarchy browser renders the design netlist five-box data model. The core
elements of this data model are modules, instances, ports, instance ports, and nets.
For more information about this data model, refer to DNI Netlist Five-Box Data Model
on page 11.

All objects in the hierarchy are organized by the object type. For example, I/Os are
grouped based on the direction.

Various GUI elements of the RTL analyzer are synchronized and respond to the objects
within the Objects pane. For example, for the currently selected object in the
hierarchy browser, the schematic viewer brings the object into focus with a highlight,
the Tcl Console emits an equivalent Tcl command, and the Properties viewer
provides relevant information about the object. You can cross-probe from selected
objects in the netlist to the source where they were defined by right-clicking on an
object and selecting Locate Node ➤ Locate in Design File option in the context-
sensitive menu. The source file displays in the Quartus main window showing the line
that instantiates the object.

Figure 12. Cross-probing Selected Objects in the Netlist

Schematic Viewer

The schematic viewer represents the design elements, such as modules, instances,
ports, instance ports, and nets, schematically within the viewer. The viewer reacts and
updates to bring different objects into focus as you navigate through the netlist.

Properties Viewer

The Property pane provides information about assignments and SDC constraints
attached to the selected object in the hierarchy browser. You can cross-probe to the
definition of the assignment in the source file.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Property Viewer Showing Constraints

Tcl Console

The Tcl Console provides a robust scripting interface that reports issues and displays
relevant Tcl commands for GUI actions. It allows you to traverse and analyze your
design. As you type the Tcl commands, notice how the schematic viewer and the
hierarchy browser respond accordingly.

Object Finder

The object finder helps in locating an object in the design netlist. You can refine your
search based on the object type (instance, instance bus, inst_port, port, port_bus,
net, and net_bus) and modules. For complicated designs, you can further use filters to
refine your search.

The RTL Analyzer provides the following tools and functionality:

Sweep Hints Viewer on page 26

Object Set Console on page 33

Module Interfaces on page 37

Bundled Instances on page 40

Auto-hide Unconnected Pins on page 45

Filtering Ports and Nets on page 46

Expand Connections on page 49

Related Information

Overview Video: RTL Analyzer for Quartus Prime Software

1.6.1.1. Sweep Hints Viewer

Sweep Hints Viewer allows you to visualize and identify why Synthesis removed logic
in your design. It is one of the RTL Analyzer tools you can access from the menu by
selecting Tools ➤ View Sweep Hints. You can also launch it from the context-
sensitive menu of the swept instance.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

26

https://www.intel.com/content/www/us/en/products/docs/programmable/rtl-anaylzer-overview-video.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The RTL Analyzer highlights the top-level module port and leaf instance with
associated sweep hints in orange color. When you hover over the swept port or
instance, the tooltip displays the number of swept ports, sweep hint type, and sweep
hint reason. These highlights and tooltips are available in both the schematic view and
the Netlist Navigator, as shown in the following image:

Figure 14. Sweep Hints View in the RTL Analyzer

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

From the RTL Analyzer, you can launch Sweep Hints Viewer by selecting View Sweep
Hints from the context-sensitive menu of the swept instance or the top-level module
port in the netlist navigator or schematic view, as shown in the following image:

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Upon selecting the View Sweep Hints option from the context-sensitive menu, the
Sweep Hints Viewer auto-populates with sweep hints of the selected instance or port,
as shown in the following image:

Figure 15. Auto-populated List of Sweep Hints for the Selected instance

Root Causes View of the Sweep Hints Viewer

To identify the root cause for a particular node in the design being swept away, you
must understand various reasons behind why a single node was marked during the
sweep, as listed in the following:

• A node stuck at constant 0 or 1. For example, an input port of an AND gate stuck
at 0 triggers a sweep of the AND gate since the output of the AND gate is also
stuck at 0.

• A node behaved as a wire and was deleted. For example, a multiplexer whose
select line is connected to constant acts as a wire.

• A node was modified during the sweep but it was not deleted.

• A node lost all fan-outs and it was deleted.

• A port or instance port got disconnected because the parent or child did not have
a fan-out.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Root Causes tab of the Sweep Hints Viewer provides a list of sweep records and
their root cause for being swept away, as shown in the following example:

Figure 16. Root Causes Tab of the Sweep Hints Viewer

The Root Causes view shows the root reason and total number of swept objects of a
root object in the Swept Objects Count column, which you can trace to a sweep
record in the Root Record column (for instance, 802137 in the above image).
Selecting the Show Sweep Hints option in the context-sensitive menu switches the
interface to the Sweep Hints view to show all sweep records that identify the root
record as the root cause, as shown in the following image:

Figure 17. Tracing Sweep Records of a Root Record

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For more information about the Show Hint Trace, refer to the Sweep Hints View of
the Sweep Hints Viewer on page 32 section.

Hierarchy View of the Sweep Hints Viewer

Recall from the Analysis & Elaboration Flow on page 20 how to sweep optimization
(Swept checkpoint) happens as part of the Analysis & Elaboration stage. The sweep
optimization phase leaves behind a database of objects that are swept away along
with the reason for their removal. The database also tracks relationships between the
removed objects. For example, if an output of a gate is dangling, it is swept away. Few
cells in the fan-in cone can also be swept away because their output does not drive
anything useful. The Sweep Hints Viewer allows you to view the sweep hints database
with a list of marked objects in the pre-swept design that are removed later.

Note: For large and complex designs, the total number of swept objects can be significant
(in millions). Hence, the swept objects are hierarchically arranged so that you can
quickly query, filter, and find regions of your interest.

Figure 18. Hierarchy Tab in the Sweep Hints Viewer

Within the Hierarchy tab of the Sweep Hints Viewer, you can observe various
hierarchy levels and their sweep statistics. The logic unit here is a leaf cell, which
refers to logical primitives, such as AND/OR gate or registers. A hierarchical cell is a
composite of leaf cells and other hierarchical cells.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Leaf Cells Count by Hierarchy table in the above image provides information
about the percentage of the logic swept either locally or in the full hierarchy of a given
hierarchical path. The table columns for the number of leaf cells indicate before and
after a sweep and the type of hierarchical path, which can be USER (RTL you
designed), Intel IP, or MEGAFUNCTION (Intel-provided library modules). If the
hierarchy table is large, use the filter options to refine the regions of your design.

Note: Intel IP and MEGAFUNCTION types are hidden by default since you cannot modify
them. However, you can view them in specific circumstances by selecting the desired
option in the Hierarchy Type drop-down list. Encrypted modules are always hidden
from this view.

Sweep Hints View of the Sweep Hints Viewer

Figure 19. Example of Swept Objects in the Sweep Hints Viewer

Swept Object Reason
Swept Object

Highlight
Swept Logic

Viewer

Notice the swept object highlighted with the teal color in the schematic view. If you
hover over this object tooltip or view the sweep reason in the Sweep Hints Viewer, you
can see that this instance was swept away because the instance port lost fanout.
Similarly, you can select other swept objects to identify their root cause and view
them in the schematic viewer and hierarchy view. All these objects are eventually
swept away from the design when you proceed with the compilation flow.

While the Hierarchy tab helps filter by the sweep statistics of an instance, the Sweep
Hints tab allows you to filter and query the leaf objects swept away in a given
hierarchy level. Various columns in the table describe the object involved in the sweep
and provide ways to query data. For instance, you can look for specific instance types
or limit the results to specific sweep reasons, types, and so on.

Viewing Related Swept Objects

You can also view related swept objects by right-clicking on a select object under
Sweep Hints and selecting Show Hint Trace in the context-sensitive menu. Hint
Trace for ID <number> section displays a hierarchical listing of swept objects that
caused a particular object to be swept away and objects swept away as a result of one
object. The ability to highlight and select various objects in the chain allows you to
narrow down the desired sweep information.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the following figure, when you trace the sweep hints for a port with object ID 30,
under Hint Trace for ID 30, you notice an instance port with object ID 2 being
related to the swept port 30. The sweep reason for both objects is disconnected
fanout.

Figure 20. Related Swept Objects

1.6.1.2. Object Set Console

The Object Set Console helps you conveniently navigate and manipulate the currently
selected, highlighted, or colored node object sets when you have multiple lists to
manage in the console. To launch the Object Set Console dialog box, select View ➤
Object Set Console Window on the RTL Analyzer menu.

The Object Set Console is split into a top pane and a bottom pane, which are
explained in the following sections:

Top Pane of the Object Set Console Window

The top pane displays the design's currently selected, highlighted, or colored nodes.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Consider an example where you traced fan-in or fan-out connectivity of your design.
When you view a specific traced path, it gets highlighted in the schematic viewer.
When you click Show Path for one or more traced paths, the top pane lists all paths
in different color codes, as shown in the following image:

Figure 21. Top Pane of the Object Set Console

Note: You can save all highlighted paths and restore them anytime using the Save and
Restore options, respectively, from the context-sensitive menu.

Use the context-sensitive menu to change node color, rename the traced path
identifier, toggle a node's visibility, hide one or more traced paths. or delete a node
from the list, as shown in the following image:

Figure 22. Object Set Console Window

To change the node color, use the Change Color option. Alternatively, you can directly
use the Highlight option in the bottom pane to select a color and highlight the traced
path in the desired color.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 23. Changing Node Color from the Context-sensitive Menu

Bottom Pane of the Object Set Console Window

When you select one of the nodes in the top pane, the bottom pane displays a tree or
list view of all netlist objects (ports, instances, instance ports, and nets) that are part
of that node. Using the context-sensitive menu, you can select and view the desired
node in a new tab within the schematic viewer and highlight/unhighlight the path with
a different color.

With the View sub-options (List, Hierarchy, and Type), you can change the view of the
traced paths. By default, the objects are organized hierarchically in the bottom pane.

• List lists out all the netlist objects.

• Hierarchy arranges the netlist objects in the traced path hierarchically. This is the
default view.

• Type categorizes and lists netlist objects by type (for example, Ports and Nets).

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. Bottom Pane Context-sensitive Menu

Figure 25. Example of Displaying a Node in a New Tab in the Schematic Viewer

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bottom Pane

The bottom pane lists all netlist objects, such as ports, instances, instance ports, and
nets, currently selected in the schematic viewer. Using the context-sensitive menu,
you can view the object in a new tab or locate the node in the design file.

1.6.1.3. Module Interfaces

The schematic viewer in the RTL Analyzer supports viewing module interface for
designs containing interfaces in the SystemVerilog. You can access the interface
modes by launching your design in the schematic viewer and selecting one of the
interface modes from the tab's context-sensitive menu. The RTL Analyzer supports
three interface modes, as shown in the following image:

Figure 27. Interface Modes

Note: For details about the unbundle instance mode, refer to Bundled Instances on page
40.

No Interface Mode (Default)

This is the default mode where all ports display individually, even if they are part of an
interface.

In the following example, you can observe that all ports for c, u1, and u2 modules are
listed without any grouping of ports.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. No Interface Mode

With Interface Mode

In this mode, all ports of an interface are grouped to show a compact and simplified
view of the schematic. Interfaces have an expand button "+" and double vertical lines
beside the port. You can expand each interface to view all ports under the interface.

In the following example, you can observe that in the u1 module, all ports that are
part of cpu, cpu_bus[0], cpu_bus[1], and cpu_mp interfaces are grouped
(indicated by the '+' symbol). Each interface has two dark gray lines marked beside
them.

Figure 29. With Interface Mode

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In this mode, all related ports (input/output) are automatically highlighted when you
expand an interface and select any port under the interface.

In the following example, you can see that when you expand the cpu_mp interface in
c, u1, and u2 modules and select the cpu_mp.clk port in one of the modules, all
related ports (highlighted in red) are automatically highlighted, as shown in the
following image:

Figure 30. With an Interface Expanded

Note: You can also view these related ports in the Object Set Console Window.

Interface Only Mode

In this mode, only modules with interfaces are shown in the schematic viewer. All non-
interface ports and objects are removed. This mode is helpful in viewing the
relationship between modules that are connected by an interface. You can expand
each interface to view all ports under the interface.

In the following example, you can observe that the non-interface port o[3:0] is
removed in c and u1 modules, and all other objects are no longer visible in the
schematic viewer.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 31. Interface Only Mode

1.6.1.4. Bundled Instances

To improve schematic readability, the RTL Analyzer bundles single-bit instances into a
collection known as a bundled instance and hides unconnected pins of instances by
default.

Bundled instances appear stacked, and the indexes of the bits appear in the instance
name as left and right indexes. You can expand bundled instances to view single-bit
instance members in the hierarchy browser. You can view more information about a
bundled instance, such as the number of instances, left and right index, and instance
members from the Property viewer.

In the following figure, count_int[31:0] is a bundled instance, where 31 is the left
index and 0 is the right index. Under the Objects pane (hierarchy browser),
count_int[0], count_int[10], count_int[11], and so on are single-bit
instance members.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 32. Bundled Instance

If you want to view individual bits of a bundled instance within the schematic viewer,
select the pin bus, right-click to display the context-sensitive menu, and click Display
Individual Bits. The Connectivity Details dialog displays connectivity details of the
single-bit instances.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 33. Connectivity Details of Single-bit Instances

Within the Connectivity Details dialog box, you can select the first individual
instance, right-click to display the context-sensitive menu, and select View in
Schematic. The first object in the hierarchy gets highlighted automatically.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 34. View Connectivity Details in the Schematic Viewer

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Viewing Unbundled Instances

To view unbundled instances, launch your design in the schematic viewer and use one
of the following options:

• Select New Tab with Unbundle Instance from the tab's context-sensitive
menu.

Figure 35. Opening a New Tab with Unbundled Instances

• Select Unbundle Instance option from the context-sensitive menu.

Figure 36. Viewing Unbundled Instances

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using either option, you get an unbundled view of the bundled instances in a new tab
of the schematic viewer. This mode is helpful when you want to view single-bit
instances of a bundled object.

In the following example, when you view the design in the default no interface mode
(left), you observe that the instances reduce_xor_3[1:0] and rb[1:0] are
bundled. However, within the unbundle instance mode (right), you can view single-bit
instances reduce_xor_3, reduce_xor_2, rb[1], and rb[0].

Figure 37. Example of Bundled and Unbundled Instances

Related Information

Module Interfaces on page 37

1.6.1.5. Auto-hide Unconnected Pins

The Autohide unconnected pins of hierarchical instance option is enabled by
default. However, Autohide unconnected pins of leaf instance is disabled by
default, which means that the schematic viewer displays all instance ports even when
the connected net is not displayed on the same schematic. This allows you to further
expand the connectivity of the hanging instance port without requiring you to toggle
autohide pins option first.

Note: Instance ports that are configured with default connection are hidden in the schematic
viewer to improve schematic readability. For example, RAM block.

Auto-hiding unconnected pins makes the instance symbol less cluttered by hiding pins
that are not connected to any net. You can disable both auto-hide unconnected pins
options when you want to view all pins or obtain properties of unconnected pins.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can disable auto-hide unconnected pins options either for all instances in the
Display setting or for a particular instance using the context-sensitive menu, as
shown in the following image:

Figure 38. Auto-hiding Unconnected Pins

1.6.1.6. Filtering Ports and Nets

Filtering allows you to filter your netlist and view only a desired logic path. To filter the
netlist, select ports, nodes, or node ports in the desired path.

You access the Filter feature either from the netlist hierarchy browser or the
schematic viewer of the RTL Analyzer GUI. Select and right-click on the desired design
object (port or node), point to Filter, and select the desired filter command in the
context-sensitive menu, as shown in the following image. The RTL Analyzer generates
a new page in the schematic view displaying the netlist that remains after filtering.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 39. Filtering the Design Objects

The following filtering commands are available:

Note: Sources, Destinations, Sources & Destinations, and Between Selected Objects
are visible only for ports.

• Sources: Displays only the input source nodes that feed the selected port. In the
following example image, when you use the Sources filter for the selected
instance port clk, the source port clk displays:

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Destinations: Displays only the fan-out destination nodes fed by the selected
port. In the following example image, when you use the Destinations filter for
the selected instance port clk, the destination instance port outclk displays:

• Sources & Destinations: This option is a combination of source and destination
filtering commands. The filtered view displays both sources and destinations of the
selected port. In the following example image, when you use the Sources &
Destinations filter for the selected instance port clk, you can view the source
and destination nodes:

• Between Selected Objects: Displays nodes and connections in the path between
the selected ports. In the following image, when you use the Between Selected
Objects filter for the selected instance port clk, all objects between the input
and output instance ports displays:

• Selected Objects: Displays only the selected objects. In the following image,
when you use the Selected Objects filter, only the selected instance ports clk
and outclk displays:

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For all the filtering commands, the RTL Analyzer stops tracing through the netlist to
obtain the filtered netlist when it reaches the port or instances. You can further control
the filtering result by selecting Filter ➤ Filtering Options in the context-sensitive
menu. The Filtering Options dialog box provides the following filtering options:

• Stop filtering at register (optional): The filtering stops when a register is
encountered. This option is turned on by default.

• Stop filtering at design partition (optional): The filtering stops at the design
partition. This option is turned on by default.

• A specified number of logic levels: The logic levels are counted from the
selected port. The default value is 5 to ensure optimal processing time when
performing filtering. However, you can specify a value between 1 and 15.

Note: A progress bar is shown while filtering is in progress. Click Stop trace to halt if the
process takes too long to complete.

1.6.1.7. Expand Connections

Expand connections, which was previously supported in the Netlist Viewer, is also
supported in the RTL Analyzer and useful when performing filtering. Expand
Connections allow you to expand a selected pin and reveal the next connected node.

Note: Before using the Expand Connections feature, disable the Auto-hide Unconnected
Pins in the Display settings.

To use this feature, select a pin, right-click and select Expand Connections in the
context-sensitive menu, as shown in the following image:

Figure 40. Expand Connections

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

49

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#reference/glossary/def_reg.htm
https://www.intel.com/content/www/us/en/docs/programmable/683247/current/design-partitioning.html
https://www.intel.com/content/www/us/en/docs/programmable/683247/current/design-partitioning.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The logical path from the selected pin to the next connected node is highlighted, as
shown in the following image:

1.6.2. Use Case Examples

In this section, you can explore the following examples:

Scripting Routine Tasks Using Tcl Commands on page 50

Traversing the Design Netlist Using Tcl Commands on page 52

1.6.2.1. Scripting Routine Tasks Using Tcl Commands

The following examples enumerate how you can easily script a few routine tasks, such
as attribute-based object filtering, name-based searching, or traversing object
relationships, using different features of the get command:

Example 1. Retrieving Top-level Input Ports (highlighted in the schematic)

In some scenarios, you may need a list of top-level ports. For example, to ensure all
input ports are constrained with set_input_delay, you must retrieve all ports in the
design and filter based on direction using the dni::get_ports tcl command, as
shown in the following:

dni::get_ports -filter direction==input

The tcl command returns a collection of input ports in the design, such as PI_1,
PI_2, and PI_3. You can use the returned collection to pass or chain into other
get_object commands. To access members of the collection, use collection iterators,
such as foreach_in_collection. For example:

foreach_in_collection p [dni::get_ports -filter direction=input] { puts $p }
port::top::PI_1
port::top::PI_2
port::top::PI_3

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

50

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl_pkg_dcmd_sdc_ver_1-0_cmd_dni__get_ports.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 2. Retrieving the inst_1 Instance

Within your design, you can search for a specific object (for example, instance) by
name. To find an instance, use the dni::get_cells tcl command, as shown in the
following:

dni::get_cells inst_1

The tcl command returns the inst_1 instance in the design. You can use the returned
instance to pass or chain into other get_object commands. For example:

foreach_in_collection p [dni::get_cells inst_1] { puts [dni::get_property -name
name -object $p] }
inst_1

Example 3. Retrieving the in_1 Instance Port of the inst_1 Instance

During connectivity traversal, you may want to find a specific instance pin of an
instance. In such scenarios, use the -of_object interface of the dni::get_pins
command to traverse instance-to-instance pin relationship as shown in the following:

dni::get_pins -of_objects [dni::get_cells inst_1] -filter name==in_1

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

51

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl_pkg_dcmd_sdc_ver_1-0_cmd_dni__get_cells.html
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl_pkg_dcmd_sdc_ver_1-0_cmd_dni__get_pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The tcl command returns in_1 instance port of the inst_1 instance in the design.
You can use the returned instance port to pass or chain into other get_object
commands. For example:

foreach_in_collection p [dni::get_pins -of_objects [dni::get_cells inst_1] -
filter name==in_1] { puts $p }
inst_port::top::inst_1|in_1

Example 4. Retrieving Nets of the inst_1|out1 Instance

During connectivity trace, you may want to traverse all nets connected to an instance.
In such a scenario, use the -of_objects interface of the dni::get_nets command
to traverse nets connected to an instance. For example:

dni::get_nets -of_objects [dni::get_cells inst_1|out_1]

The tcl command returns nets of the inst_1|out1 instance in the design. You can
use the returned collection to pass or chain into other commands. For example:

foreach_in_collection p [dni::get_nets -of_objects [dni::get_cells inst_1|
out_1]] { puts $p }
inst_port::top::inst_1|out_1|Net_7
inst_port::top::inst_1|out_1|Net_6
inst_port::top::inst_1|out_1|Net_8

Example 5. Listing the Properties Available on the net Object Type

The tcl interface allows you to access object schema via the dni::list_properties
tcl command. You can use this command to list accessible properties of any object
type as follows:

dni::list_properties -type net
name parent_name number_of_ports ports net_bus_name source_file source_line
is_user_declared

1.6.2.2. Traversing the Design Netlist Using Tcl Commands

In this topic, you can see examples of Tcl commands that you can use to extract basic
netlist objects or selective objects of your design using filters, pattern, and other
techniques.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

52

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl_pkg_dcmd_sdc_ver_1-0_cmd_dni__get_nets.html
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl_pkg_dcmd_dms_ver_1-0_cmd_dni__list_properties.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Traversing Basic Design Objects

The following table lists Tcl command examples for extracting hierarchical instances,
instance ports, nets, and ports from your design netlist:

Note: When using dni:: Tcl commands in an SDC file, you can skip adding dni:: as
read_sdc adds the namespace correctly.

Table 6. Tcl Commands for Traversing Design Objects

Task Tcl Command Example

Get all instances directly under
the top module.

foreach_in_collection obj [dni::get_cells] { puts $obj; }

Get all design instances at all
hierarchies.

foreach_in_collection obj [dni::get_cells -hierarchical] { puts
$obj; }

Get all instances directly under a
hierarchical instance using a
pattern with the hierarchy
separator (|).

foreach_in_collection obj [dni::get_cells auto|*] { puts
$obj; }

Get all direct child instances of a
specific hierarchical instance (for
example, the instance auto).

Use dni::current_instance to move the browsing scope to the auto hierarchical
instance.
dni::current_instance auto

Get all direct child instances of the hierarchical instance auto.
foreach_in_collection obj [dni::get_cells] { puts $obj; }

Set the scope back to top design
dni::current_instance

Get all nets directly under the
top module.

foreach_in_collection obj [dni::get_nets] { puts $obj; }

Get all nets of the design at all
hierarchies.

foreach_in_collection obj [dni::get_nets -hierarchical] { puts
$obj; }

Get all nets directly under a
hierarchical instance using a
pattern with the hierarchy
separator (|).

foreach_in_collection obj [dni::get_nets tick|*] { puts $obj; }

Get all nets directly under a
specific hierarchical instance (for
example, the instance tick).

Use dni::current_instance to move the browsing scope to the tickhierarchical
instance.
dni::current_instance tick

Get all nets directly under tick
foreach_in_collection obj [dni::get_nets] { puts $obj; }

Set the scope back to top design
dni::current_instance

Get all ports of the design. foreach_in_collection obj [dni::get_ports] { puts $obj; }

Get all instance ports of direct
child instances under the design
top module.

foreach_in_collection obj [dni::get_pins] { puts $obj; }

Get all instance ports of all child
instances under a specific
hierarchical instance (for
example, tick).

Use dni::current_instance to move the browsing scope to the tick hierarchical
instance.
dni::current_instance tick

Get all instance ports under tick
foreach_in_collection obj [dni::get_pins] { puts $obj; }

Set the scope back to the top design

dni::current_instance

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Task Tcl Command Example

Get all instance ports on all child
instances using the object ID
format to specify a hierarchical
instance.

set inst [get_cells tick]

foreach_in_collection obj [dni::get_pins -of_objects $inst] { puts
$obj; }

foreach_in_collection obj [dni::get_pins -of_objects tick|
ticket[1]] { puts $obj; }

foreach_in_collection obj [dni::get_pins -of_objects
instance::chiptrip::tick|ticket[1]] { puts $obj; }

Getting Selective Design Objects

You can use the following techniques to refine your search criteria and extract select
design objects from your netlist:

• <patterns>: It extracts objects by matching patterns in dni::get_cells,
dni::get_nets, and dni::get_pins commands. Patterns can include wildcard
characters * or ?. Wildcard characters do not match with the hierarchical
separator.

For objects in the design hierarchy:

— The hierarchical path name of the object is matched against the pattern.

— The hierarchical separator | splits the pattern into individual subpatterns, each
of which is matched against one level of hierarchy. This means that a * does
not match the hierarchy.

— The name being matched is relative to the current search root (design top
module). You can change the current search root using the
dni::current_instance command.

Table 7. Getting Selective Design Objects Using <pattern>

Tasks Using <pattern> Tcl Command Example

Get all first-level hierarchical and leaf
instances.

foreach_in_collection obj [dni::get_cells *] { puts $obj; }

Get all second-level hierarchical and
leaf instances.

foreach_in_collection obj [dni::get_cells *|*] { puts $obj; }

Get all instances under the hierarchical
instance, for example, auto.

foreach_in_collection obj [dni::get_cells auto|*] { puts
$obj; }

Get all nets under the top module. foreach_in_collection obj [dni::get_nets *] { puts $obj; }

Get all nets under the first level
hierarchical and leaf instances.

foreach_in_collection obj [dni::get_nets *|*] { puts $obj; }

Get all nets under the first-level
hierarchical instance, for example,
auto.

foreach_in_collection obj [dni::get_nets auto|*] { puts
$obj; }

Get all instance ports on first-level
hierarchical and leaf instances.

foreach_in_collection obj [dni::get_pins *|*] { puts $obj; }

Get all instance ports on the
hierarchical instance, for example,
auto.

foreach_in_collection obj [dni::get_pins auto|*] { puts
$obj; }

Get all instance ports on all the child
instances of the hierarchical instance,
for example, auto.

foreach_in_collection obj [dni::get_pins auto|*|*] { puts
$obj; }

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• <-of_objects>: It extracts related design objects of the input object collection
for dni::get_cells, dni::get_nets, dni::get_pins, and
dni::get_ports. The following object relationships are considered:

— dni::get_cells -of_objects <inst_port|net>

— dni::get_nets -of_objects <inst_port|port|instance>

— dni::get_pins -of_objects <instance|net>

— dni::get_ports -of_objects <net>

Table 8. Getting Selective Design Objects Using <-of_objects>

Tasks Using <-of_objects> Tcl Command Example

Get the hierarchical or leaf
instance on which the input
instance port is.

foreach_in_collection obj [dni::get_cells -of_objects
inst_port::chiptrip::auto|dir[0]] { puts $obj; }

foreach_in_collection obj [dni::get_cells -of_objects
inst_port::chiptrip::auto|street_map[2]|q] { puts $obj; }

Get the hierarchical or leaf
instances to which the input net
is connected.

foreach_in_collection obj [dni::get_cells -of_objects
net::chiptrip::wire_get_ticket1] { puts $obj; }

foreach_in_collection obj [dni::get_cells -of_objects
net::chiptrip::auto|n5] { puts $obj; }

foreach_in_collection obj [dni::get_cells -of_objects
[dni::get_nets *]] { puts $obj; }

foreach_in_collection obj [dni::get_cells -of_objects
[dni::get_nets auto|*]] { puts $obj; }

Get the net connecting a leaf
instance port.

foreach_in_collection obj [dni::get_nets -of_objects
inst_port::chiptrip::auto|street_map[0]|q] { puts $obj; }

Get the net connecting a
hierarchical instance port.

foreach_in_collection obj [dni::get_nets -of_objects
inst_port::chiptrip::auto|get_ticket] { puts $obj; }

Get the nets connecting to all the
instance ports of a leaf instance.

foreach_in_collection obj [dni::get_nets -of_objects
instance::chiptrip::auto|street_map[0]] { puts $obj; }

Get the nets connecting to all the
instance ports of a hierarchical
instance.

foreach_in_collection obj [dni::get_nets -of_objects
instance::chiptrip::auto] { puts $obj; }

Get the net connecting to a
primary port of the design.

foreach_in_collection obj [dni::get_nets -of_objects
port::chiptrip::gt1] { puts $obj; }

Get instance ports on a leaf
instance.

foreach_in_collection obj [dni::get_pins -of_objects
instance::chiptrip::tick|add_0] { puts $obj; }

Get instance ports on a
hierarchical instance.

foreach_in_collection obj [dni::get_pins -of_objects
instance::chiptrip::tick] { puts $obj; }

Get the instance ports on the
hierarchical instance, for
example,
instance::chiptrip::auto.

foreach_in_collection obj [dni::get_pins -of_objects
[dni::get_cells auto]] { puts $obj; }

Get instance ports connected by a
hierarchical net.

foreach_in_collection obj [dni::get_pins -of_objects
net::chiptrip::wire_get_ticket1] { puts $obj; }

Get primary ports connected by a
hierarchical net on the top level.

foreach_in_collection obj [dni::get_ports -of_objects
net::chiptrip::wire_get_ticket1] { puts $obj; }

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• <-filter>: It extracts objects by filtering objects returned from
dni::get_cells, dni::get_nets, dni::get_pins, and dni::get_ports
based on the filter expression. The filter expression verifies every object that
satisfies the other search criteria. If the object does not satisfy the filter, it is not
returned in the result.

A filter expression comprises predicates combined using logical operators, such as
&&, and/AND, ||, or/OR, and !. Parentheses () in the expression override
precedence. Each predicate has the following form:

prop_name relop value

where,

— prop_name is the name of the object property being evaluated.

— value is a number or a string. You can provide simple strings without the
surrounding double-quotes.

— relop is one of the following comparison operators:

• == (equal)

• != (not equal)

• =~ (matches, value is then a pattern)

• !~ (does not match, value is then a pattern)

• > (greater than)

• < (less than)

• >= (greater than or equal to)

• <= (less than or equal to)

For example: -filter {name=~"out[*]" && ! (master_name==mod_1 ||
parent_name != block_1)}

Table 9. Getting Selective Design Objects Using <-filter>

Tasks Using <-filter> Tcl Command Example

Get all child instances under the
top-level.

foreach_in_collection obj [dni::get_cells *] { puts $obj; }

Get properties of the instance
object type.

dni::list_properties -type instance

Get objects that are not a leaf
instance

foreach_in_collection obj [dni::get_cells * -filter {is_leaf==1}]
{ puts $obj; }

Get all objects that are
hierarchical instances.

foreach_in_collection obj [dni::get_cells * -filter {is_leaf==0}]
{ puts $obj; }

Return hierarchical instances
matching the name pattern (for
example, t*) under the design
top-level module.

foreach_in_collection obj [dni::get_cells * -filter {is_leaf==0
&& name=~"t*"}] { puts $obj; }

Get all instances under the
hierarchical instance, for example,
auto that matches the module
name in the filter.

foreach_in_collection obj [dni::get_cells auto|*] { puts $obj; }

dni::get_property -name module_name -object
instance::chiptrip::auto|Mux_0

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tasks Using <-filter> Tcl Command Example

foreach_in_collection obj [dni::get_cells auto|* -filter
{module_name=="primitive_lib_WORKING_LIBRARY_INTERNAL/
OPER_(MUX)"}] { puts $obj; }

Get properties that you can use to
filter net objects. Then, get nets
with three connected instance
ports and primary ports under the
top-level design.

dni::list_properties -type net

foreach_in_collection obj [dni::get_nets -filter
{number_of_ports==3}] { puts $obj; }

Get all nets in the full design
hierarchies that are under the
parent module, for example,
auto_max.

foreach_in_collection obj [dni::get_nets -hierarchical -filter
{parent_name=="auto_max"}] { puts $obj; }

Get all nets in the full design
hierarchies that are associated
with the net_bus, for example,
street_map.

foreach_in_collection obj [dni::get_nets -hierarchical -filter
{net_bus_name=="street_map"}] { puts $obj; }

Get properties that you can use to
filter instance port objects and get
the value of the direction
property. Then, get all output
inst_ports under the top-level
design.

dni::list_properties -type inst_port

dni::get_property -name direction -object
inst_port::chiptrip::auto|get_ticket

foreach_in_collection obj [dni::get_pins -filter
{direction==output}] { puts $obj; }

Get all primary input ports in the
design.

foreach_in_collection obj [dni::get_ports -filter
{direction==input}] { puts $obj; }

• Combined use of <pattern>, -of_objects <obj_col>, -hierarchical,
and -filter <filter_expr>:

Table 10. Combined Search Criteria

Tasks Using Combined Search
Criteria

Get all instance ports under the
design top-module that match
the combined search criteria of -
of_objects and -filter.

foreach_in_collection obj [dni::get_pins -of_objects
[dni::get_cells *] -filter {direction==input}] { puts $obj; }

Get all nets under the design top
module that match the pattern
and -hierarchical.

foreach_in_collection obj [dni::get_nets time* -hierarchical]
{ puts $obj; }

The following example shows the limitation of the combined search criteria:

tcl> foreach_in_collection obj [dni::get_pins clk -hierarchical] { puts $obj; }
inst_port::chiptrip::auto|clk
inst_port::chiptrip::speed|clk
inst_port::chiptrip::tick|clk
inst_port::chiptrip::time_c|clk

tcl> foreach_in_collection obj [dni::get_nets time* -of_objects
instance::chiptrip::time_c] { puts $obj; }
Arguments '-of_objects' and 'patterns' are mutually exclusive

tcl> foreach_in_collection obj [dni::get_pins -hierarchical -of_objects
instance::chiptrip::time_c] { puts $obj; }

Arguments '-of_objects' and '-hierarchical' are mutually exclusive

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7. Design Synthesis

The Quartus Prime compiler's Analysis & Elaboration module analyzes your complete
design source files, such as standards-compliant Verilog HDL (.v), VHDL (.vhd),
SystemVerilog (.sv), and the Verilog Quartus Mapping (.vqm) generated from other
EDA tools, and constraint files (.sdc or .rtlsdc) and provides an unmodified view of
your design early in the compilation flow. The SDC-on-RTL constraints are applied to
the elaborated netlist.

In the Synthesis stage, the compiler synthesizes and translates your design files into
an atom netlist for mapping to device resources. During synthesis, timing constraints
that were read during elaboration are propagated to the synthesized atom netlist.

Caution: Starting from the Quartus Prime Pro Edition software version 23.3, the compiler
cannot synthesize schematic Block Design File (.bdf). You must convert it to an
acceptable format, such as Verilog or VHDL using only the Quartus Prime Standard
Edition (not possible with the Pro Edition) command quartus_map as shown in the
following:

• To convert your .bdf file to Verilog Design File (.v):

quartus_map <project_name> --convert_bdf_to_verilog=<bdf_file_name>

• To convert your .bdf file to VHDL Design File (.vhd):

quartus_map <project_name> --convert_bdf_to_vhdl=<bdf_file_name>

Synthesis examines the logical completeness and consistency of the design, and
checks for boundary connectivity and syntax errors. Synthesis also minimizes and
optimizes design logic. For example, synthesis infers D flip flops, latches, and state
machines from "behavioral" languages, such as Verilog HDL, VHDL, and
SystemVerilog. Synthesis may replace operators, such as + or –, with modules from
the Quartus Prime IP library, when advantageous. During synthesis, the Compiler may
change or remove user logic and design nodes. Quartus Prime synthesis minimizes
gate count, removes redundant logic, and ensures efficient use of device resources.

At the end of synthesis, the Compiler generates an atom netlist. Atom refers to the
most basic hardware resource in the FPGA device. Atoms include logic cells organized
into look-up tables, D flip flops, I/O pins, block memory resources, DSP blocks, and
the connections between the atoms. The atom netlist is a database of the atom
elements that design synthesis requires to implement the design in silicon.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 41. Design Synthesis

Verilog HDL
(.v or .sv)

Third Party
(.vqm)

Logic Cells DFFsI/O RAM DSP Atom Connections

Synthesis

VHDL
(.vhd)

Constraint file
(.sdc or .rtlsdc)

1.7.1. Preparing for Design Synthesis

Before running synthesis, apply any of the following settings and constraints that
impact synthesis:

• To specify options for the synthesis of Verilog HDL input files, click Assignments
➤ Settings ➤ Verilog HDL Input.

• To specify options for the synthesis of VHDL input files, click Assignments ➤
Settings ➤ VHDL Input.

• To specify options that affect compilation processing time, click Assignments ➤
Settings ➤ Compilation Process Settings.

• To specify the Compiler's high-level optimization strategy and other options, click
Assignments ➤ Settings ➤ Compiler Settings. Specify the optimization goal,
according to Compiler Optimization Modes on page 149.

• On the Compiler Settings page enable or disable the Enable Intermediate
Fitter Snapshots option to preserve snapshots for the Plan, Place, Route, and
Retime stages any time you run full compilation. The Compiler does not generate
intermediate snapshots by default.

• To specify advanced synthesis settings, click Assignments ➤ Settings ➤
Compiler Settings, and then click Advanced Settings (Synthesis).

• Consider enabling fractal synthesis for arithmetic-intensive designs that exhaust
all DSP resources, according to the guidelines in Fractal Synthesis Optimization on
page 155.

• To register your SDC-on-RTL files and apply them to the elaboration netlist, refer
to Registering the SDC-on-RTL SDC File on page 65 and Applying the SDC-on-
RTL Constraints on page 66.

1.7.2. Running Synthesis

Run design synthesis as part of a full compilation, or as an independent process.
Before running synthesis, specify settings that control synthesis processing. The
Messages window dynamically displays processing information, warnings, or errors.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Following Analysis & Elaboration processing, the Synthesis report provides detailed
information about the synthesis of your project. To run synthesis, perform the
following steps.

1. Review Preparing for Design Synthesis on page 59.

2. Create or open an Quartus Prime project with valid design files for compilation.

3. Click Synthesis on the Compilation Dashboard.

Related Information

Synthesis Settings Reference on page 168

1.7.2.1. Preserving Registers During Synthesis

Quartus Prime synthesis minimizes gate count, merges redundant logic, and ensures
efficient use of device resources. If you need to preserve specific registers through
synthesis processing, you can specify any of the following entity-level assignments.

Assign the Preserve Registers in Synthesis or Preserve Fan-Out Free Register
Node options to allow Fitter optimization of the preserved registers. Preserve
Registers restricts Fitter optimization of the preserved registers. Specify synthesis
preservation assignments by clicking Assignments ➤ Assignment Editor, by
modifying the .qsf file, or by specifying synthesis attributes in your RTL.

Table 11. Synthesis Preserve Options

Assignment Description Allows Fitter
Optimization?

Assignment Syntax

Preserve
Registers in
Synthesis

Prevents removal of registers during
synthesis without restricting any
optimization after synthesis, such as
Hyper-Retiming or physical synthesis
optimizations.

Yes • set_global_assignment -name
PRESERVE_REGISTER_SYN_ONLY ON|OFF
-entity <entity name>

set_instance_assignment -name
PRESERVE_REGISTER_SYN_ONLY ON|OFF
-to <to> -entity <entity name>

• preserve_syn_only or
syn_preservesyn_only (synthesis
attributes)

Preserve
Fan-Out Free
Register
Node

Prevents removal of assigned
registers without fan-out during
synthesis.
The
PRESERVE_FANOUT_FREE_NODE
assignment cannot preserve a
fanout-free register that has no
fanout inside the Verilog HDL or
VHDL module in which you define it.
To preserve these fanout-free
registers, implement the noprune
pragma in the source file:

(*noprune*)reg r;

If there are multiple instances of this
module, with only some instances
requiring preservation of the fanout-
free register, set a dummy pragma
on the register in the HDL and also
set the
PRESERVE_FANOUT_FREE_NODE
assignment. This dummy pragma

Yes • set_instance_assignment -name
PRESERVE_FANOUT_FREE_NODE ON|OFF -
to <to> -entity <entity name>

• noprune on (see Verilog or VHDL synthesis
attribute for syntax)

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

60

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#hdl/vlog/vlog_file_dir_noprune.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#hdl/vhdl/vhdl_file_dir_noprune.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assignment Description Allows Fitter
Optimization?

Assignment Syntax

allows the register synthesis to
implement the assignment. For
example, set the following dummy
pragma for a register r in Verilog
HDL:

(*dummy*)reg r;

Preserve
Registers

Prevents removal and sequential
optimization of assigned registers
during synthesis. Sequential netlist
optimizations can eliminate
redundant registers and registers
with constant drivers.

No • set_global_assignment -name
PRESERVE_REGISTER ON|OFF -entity
<entity name>

set_instance_assignment -name
PRESERVE_REGISTER ON|OFF -to <to>
-entity <entity name>

• preserve, syn_preserve, or keep on
(synthesis attributes)

1.7.2.2. Preserving Signals for Monitoring and Debugging

The Compiler optimizes the RTL signals during synthesis and place-and-route. Unless
preserved, the signal names in your RTL might not exist in the post-fit netlist after
signal optimizations. For example, the compilation process can merge duplicate
registers, or add tildes (~) to net names that fan-out from a node.

Preserving a signal so that it is available for debugging after synthesis and place-and-
route involves the following steps:

• Marking the signal for preservation.

You can mark the signal directly in your RTL code or through a QSF assignment
command.

• Enabling signal preservation either for the entire project or for the instance that
contains the marked signal.

You can enable project-wide signal preservation through the Quartus Prime GUI or
a QSF assignment command. To preserve signals in an instance, use a QSF
assignment command.

By separating marking signals for preservation and enabling signal preservation, you
can tag signals of interest as you write your code with no effect on optimization until
you enable signal preservation.

When signal preservation is enabled, the nodes marked preserve_for_debug
inherit the following attributes:

Table 12. Attributes Inherited by Nodes Marked preserve_for_debug

Attribute Result

preserve Prevents Quartus Prime from optimizing away or retiming a register

keep Prevents Quartus Prime from minimizing or removing a signal net during combinational logic
optimization

noprune Prevents Quartus Prime from removing or optimizing a fanout free register

dont_merge Prevents Quartus Prime from merging a register with a duplicate register

dont_replicate Prevents Quartus Prime from duplicating a register

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Important: Instance-level signal preservation settings always override project-wide level settings.
Also, signal preservation settings in your RTL always override QSF settings.

After you synthesize your design, you can locate and review your preserved signals:

• The Preserve for Debug Assignments report shows the preservation status and
name of all nodes that are marked for preservation.

• The preserved for debug filters in Node Finder helps you quickly find preserved
nodes.

The overall flow to follow to preserve signals for monitoring and debugging is as
follows:

1. Mark the signals that you want to preserve in one of the following ways:

— Mark the signals directly in your RTL code with the preserve_for_debug
attribute:

Table 13. Examples of Marking Signals with the preserve_for_debug Attribute in RTL

Verilog Example VHDL Example

(* preserve_for_debug *) wire [3:0] counter_wire;
(* preserve_for_debug *) reg [3:0] counter_reg;

(* preserve_for_debug *) wire [15:0] decode_out_top;
(* preserve_for_debug *) reg [15:0] decode_out_reg_top;

attribute preserve_for_debug : boolean;
attribute preserve_for_debug of counter_wire : signal
is true;
attribute preserve_for_debug of counter_reg : signal is
true;
attribute preserve_for_debug of decode_out : signal is
true;
attribute preserve_for_debug of decode_out_reg : signal
is true;

In the Quartus Prime GUI, you can also use the Insert Template (Edit ➤
Insert Template) dialog box to add the preserve_for_debug attribute.

— Mark the signals with the PRESERVE_FOR_DEBUG assignment in one of the
following ways:

— Specify the PRESERVE_FOR_DEBUG assignment for specific nodes from a
command line or in your QSF file:

set_instance_assignment -name PRESERVE_FOR_DEBUG ON -to <node hpath>

— Specify the Preserve signal for debug assignment To any node of
interest in the Assignment Editor. Select On as the assignment value.

Important: In some rare cases, logic might be optimized away before the
signal can be preserved when you use the PRESERVE_FOR_DEBUG
assignment. If you encounter this issue, use the
preserve_for_debug attribute in your HDL code instead.

— Mark a system module, interface, or port for preservation in Platform
Designer.

For details, refer to “Preserving a System Module, Interface, or Port for
Debugging” in Quartus Prime Pro Edition User Guide: Platform Designer.

2. Enable preserve for debug either project-wide or for specific instances.

— To enable preservation and reporting project-wide, do one of the following
steps:

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

— Enable project-wide signal preservation from the Signal Tap Logic Analyzer
settings:

Select Assignments ➤ Settings ➤ Signal Tap Logic Analyzer ➤
Enable preserve for debug assignments.

— Specify the global PRESERVE_FOR_DEBUG_ENABLE assignment from a
command line or in your QSF file:

set_global_assignment -name PRESERVE_FOR_DEBUG_ENABLE ON

— Specify a global Enable preserve for debug assignments assignment
in the Assignment Editor. Select On as the assignment value.

Tip: When project-wide signal preservation and reporting is enabled, use the
instance-level setting to exclude instances from project-wide signal
preservation and reporting.

— To enable (or disable) preservation and reporting for only specific instances:

— Specify the instance PRESERVE_FOR_DEBUG_ENABLE assignment as ON
(or OFF) from a command line or in your QSF file:

set_instance_assignment -name PRESERVE_FOR_DEBUG_ENABLE ON -to
<instance hpath>

— Specify the Enable preserve for debug assignments assignment To
any instance of interest in the Assignment Editor. Select On (or Off) as
the assignment value.

— Specify the PRESERVE_FOR_DEBUG_ENABLE attribute with a value of ON
(or OFF) on the instance in your RTL.

Table 14. Examples of Setting the PRESERVE_FOR_DEBUG_ENABLE Attribute in RTL

Verilog Example VHDL Example

...
(* altera_attribute = "-name PRESERVE_FOR_DEBUG_ENABLE
ON" *)
decoder decoder_inst(
...

...
attribute altera_attribute : string;
attribute altera_attribute of my_decoder_inst : LABEL
is "-name PRESERVE_FOR_DEBUG_ENABLE ON";

...
begin
...

my_decoder_inst : decoder

3. Synthesize your design.

On the Compilation Dashboard, click Analysis & Synthesis. The Compilation
Report generates when synthesis is complete. You can also now use preserved for
debug filters in Node Finder to help you quickly find preserved nodes.

4. View the results of signal preservation.

Open the Preserve for Debug Assignments report located in the Synthesis ➤
Partition <name> ➤ Preserve for Debug report folder.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 42. Preserve for Debug Assignments Report

5. Run a full compilation to perform place and route of the design and Signal Tap
instance by selecting Processing ➤ Start Compilation.

The debug signals that you preserve persist through the Fitter into the finalized
compilation database.

After running a full compilation, you can debug your design with any of the Quartus
Prime debug tools.

Remember: After you have debugged your design, you might want to disable signal preservation
(both globally and at the instance level) and run a full compilation to optimize signals
that were preserved.

Table 15. Debug Signal Preservation Assignments

Assignment Description Example

preserve_for_debug

(Preserve signal for
debug in Assignments
Editor)

Marks a signal to be preserved during
compilation for post-synthesis or post-fit
debugging when preserve-for-debug is enabled.

set_instance_assignment -name
PRESERVE_FOR_DEBUG ON -to <node
hpath>

preserve_for_debug_en
able

(Enable preserve for
debug assignments in
Assignments Editor)

Enables preserve-for-debug at either the project
or instance level.
When enabled, the Compiler reports the results
of signal preservation in the Preserve for Debug
Assignments report after compilation.
The Compiler reports these nodes in the
Preserve for Debug Assignments report
following compilation.

set_global_assignment -name
PRESERVE_FOR_DEBUG_ENABLE ON

set_instance_assignment -name
PRESERVE_FOR_DEBUG_ENABLE ON -to
<instance hpath>

Related Information

• Intel Quartus Prime Pro Edition User Guide: Debug Tools

• Preserving Registers During Synthesis on page 60

• Using the ECO Compilation Flow chapter, User Guide: Design Optimization

• Preserving a System Module, Interface, or Port for Debugging chapter, User Guide:
Platform Designer

1.7.3. Using Synopsys* Design Constraint (SDC) on RTL Files

SDC-on-RTL supports SDC files written using SDC 2.1-compliant SDC commands and
can support general Tcl code that the Tcl console can parse. These SDC files target
your design netlist, allowing you to target hierarchical ports.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

64

https://www.intel.com/content/www/us/en/docs/programmable/683819/current/system-debugging-tools-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683609/current/preserving-system-elements-for-debug.html
https://www.intel.com/content/www/us/en/docs/programmable/683609/current/preserving-system-elements-for-debug.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: • Only the Timing Analyzer Tcl console supports the sdc_ext Tcl package.

• Quartus Prime software GUI-based constraint authoring is currently disabled for
files with RTL_SDC_FILE assignments. This means the timing constraint entry
dialogs are not available. You must enter timing constraints only by typing them
in.

• Issues, such as incorrect options or other syntax errors, found in the SDC-on-RTL
SDC files are posted as warnings in the Quartus Prime software GUI and message
console.

For more information about how to manage SDC-on-RTL SDC files, refer to the
following topics:

Registering the SDC-on-RTL SDC File on page 65

Applying the SDC-on-RTL Constraints on page 66

Inspecting SDC-on-RTL Constraints on page 67

Creating Constraints in SDC-on-RTL SDC Files on page 72

Using Entity-Based SDC-on-RTL Constraints on page 75

Types of SDC Files Used in the Quartus Prime Software on page 78

Example: Using SDC-on-RTL Features on page 80

1.7.3.1. Registering the SDC-on-RTL SDC File

For the Post-Synthesis Static Timing Analysis (STA) on page 87, your design must
include an associated SDC-on-RTL SDC file. You can use the GUI to register an SDC-
on-RTL file with your current project from the File Properties dialog by specifying its
type as SDC File Targeting RTL names, as shown in the following image:

Figure 43. Registering the SDC-on-RTL SDC File

Note: Alternatively, you can also associate an SDC-on-RTL file with your project from the
Timing Analyzer's Constraints ➤ Read SDC File option.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

SDC-on-RTL files are registered with an Quartus Prime software project through the
following RTL_SDC_FILE assignment:

set_global_assignment -name RTL_SDC_FILE sdc_on_rtl_file.sdc

Note: Although you can use any file extension, Intel recommends using an intuitive file
extension, for example, rtlsdc, to help distinguish SDC-on-RTL SDC files from the
conventional Quartus Prime software SDC files if your design uses both.

1.7.3.2. Applying the SDC-on-RTL Constraints

When you perform Analysis & Elaboration on your design, the SDC-on-RTL constraints
are read and applied to your elaborated design. If you modify the constraints after
Analysis and Elaboration, then you must rerun Analysis and Elaboration.

During the Analysis & Elaboration, quartus_syn reads all SDC-on-RTL SDC files and
applies constraints to your design netlist. The order in which the files are listed in the
QSF defines the reading order. Once this compilation stage completes, you can inspect
the constraints in multiple ways. For more information, refer to Inspecting SDC-on-
RTL Constraints on page 67 and Types of SDC Files Used in the Quartus Prime
Software on page 78.

The constraints are stored in the internal Quartus Prime software netlist. As the
compilation flow progresses, various compiler optimizations keep the constraint
targets updated. This permits a write once, use anywhere methodology for the
constraints.

Once you are satisfied with the constraints, you can run Synthesis from the
compilation dashboard. Synthesis converts the elaborated netlist into the node netlist
for mapping to device resources. When Synthesis runs, the SDC constraints are
processed and propagated by the Synthesis tool and you can review this in the Post-
Synthesis Constraints report and Constraint Propagation Report.

Figure 44. Sample Post-Synthesis Constraints Compilation Report

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Constraint Propagation Report shows a chronological history of all changes made
to each constraint during the compilation flow. You can observe an entry in the report
whenever a constraint is duplicated, moved, or deleted. This report keeps getting
updated with entries for modified constraints throughout the compilation flow and
includes a reason when a constraint is moved. This report is beneficial for
troubleshooting if the constraints changed in a way you did not expect.

Figure 45. Sample Constraint Propagation Report

1.7.3.3. Inspecting SDC-on-RTL Constraints

You can access SDC-on-RTL constraints in multiple ways in the order of the earliest
opportunity in the flow, as described in the following sections:

Note: In all of the methods discussed in this section, the SDC-on-RTL constraints are read-
only. You cannot modify the constraints in the compilation flow. You can only change
the constraints by changing the source RTL SDC file and reloading it during Analysis
and Elaboration.

Tcl Console

The Tcl console allows you to experiment conveniently with targeting constraints and
the related syntax. The netlist is read-only when accessed from the Tcl console, and
constraint commands are not saved into the design database.

Access the Tcl Console through the command-line interface using the following
command:

quartus_syn -s

Once the Analysis & Elaboration compilation stage completes, you can load the project
in the console (project_open <project_name>) and load the appropriate
checkpoint using the dni::load_design -checkpoint "constrained"
command. You can now perform tasks such as:

• Read a specific SDC file using the dni::read_sdc<file_name> command.

• Dump constraints using the dni::write_sdc command.

• Run constraint commands that are limited to the local session. For more
information, refer to Creating Constraints in SDC-on-RTL SDC Files on page 72.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

RTL Analyzer

To invoke the RTL Analyzer (Constrained mode) from the compilation dashboard,
enable the RTL Analysis Debug Mode option under Project ➤ Settings as
described in Analysis & Elaboration. The RTL Analyzer GUI allows you to view the
constraints on the design netlist. When you select a netlist object in the schematic
viewer or Netlist Navigator, you can view constraints targeting that object in the
Property viewer. This helps ensure the constraints target the intended nodes in your
RTL.

In the following example, when you select iopll_refclk[1:0] and right-click and
select Display Individual Bits from its context-sensitive menu, the Connectivity
Details pop-up window displays its ports. When you select one of the ports,
constraints applied to the port are displayed in a separate Constraints tab, as shown
in the following image:

Figure 46. Viewing Constraints in the RTL Analyzer

Besides the constraints of the selected object, the Constraints tab also includes
constraints of the associated object. For example, a net bus’ constraints are included
along with the net's constraints, an instance bus’ constraints with the instance’s
constraint, and so on.

Figure 47. Viewing Constraints of Associated Objects

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can cross-probe the SDC file by right-clicking on a constraint in the Property
viewer and selecting the View in Source option.

You can also launch the Constraints dialog box (Tools ➤ Object Constraints) from
the RTL Analyzer menu to view a list of all constraints (assignments and timing-related
SDC). It allows you to select an assignment or a constraint and cross-probe to its
source file by right-clicking and selecting View in Source. The source file that
contains the assignment or constraint launches in the Quartus Prime GUI with the
assignment line highlighted.

Figure 48. Object Constraints

The Constraints GUI allows you to filter four types of constraints:

• Global Assignments: Assignments that are created with the
set_global_assignment command.

• Source Assignments: Assignments embedded in source RTLs.

• Instance Assignments: Assignments created with the
set_instance_assignment command.

• Timing Constraints (SDC): Constraints created through SDC-on-RTL. They
usually appear in the Constrained view of the Analysis & Synthesis stage. If no
SDC is read in, the Timing Constraints (SDC) option is disabled. This can
happen in views before SDC are read in, for example, in "Elaborated" and
"Instrumented" views of the Analysis & Synthesis stage or when no SDC-on-RTL
file is read in.

You can filter the constraints further using the filtering field to view constraints
matching the string. It supports filtering through command name, file name, and line
number. You can also sort the constraints using the Command, File, and Line column
header.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 49. Filtering Constraints

Through the context-sensitive menu of the Constraints GUI, you can view the selected
constraints in its source file or the objects that it applies to.

Figure 50. Context-Sensitive Menu of the Constraints GUI

You can view objects that a constraint apply to through the Show Constrained
Objects option, which displays the Constrained Objects dialog. In the Constrained
Objects, you can select the constrained object through its context-sensitive menu.
This allows you to view the object's property in the Property Viewer. You can also
apply a color to each constrained object by clicking Create Color Set.

Figure 51. Constrained Objects

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Timing Analyzer

The Quartus Prime Timing Analyzer uses industry-standard constraint and analysis
methodology to report on all data required times, data arrival times, and clock arrival
times for all register-to-register, I/O, and asynchronous reset paths in your design.
The Timing Analyzer verifies that the required timing relationships are met for your
design to function correctly and confirms actual signal arrival times against the
constraints you specify. For more information about the Timing Analyzer, refer to the
Quartus Prime Pro Edition User Guide: Timing Analyzer.

Using the Timing Analyzer GUI or Tcl command console, you can load SDC-on-RTL
constraints into the timing analysis session by running the read_sdc command. By
default, the read_sdc command always loads SDC-on-RTL constraints, which
happens before loading other conventional Quartus Prime software SDC files
(SDC_FILE).

During static timing analysis, you can load only the SDC-on-RTL SDC constraints using
the import_sdc command. This is helpful when debugging issues you suspect are
caused by SDC-on-RTL constraints.

To disable the loading of SDC-on-RTL constraints during the calls to read_sdc, use
the read_sdc -no_import option or set the QSF variable
ENABLE_IMPORT_SDC_DURING_READ_SDC to OFF.

Note: If you change the actual SDC-on-RTL files and import them using read_sdc or
import_sdc command without rerunning Analysis & Elaboration, the Timing Analyzer
issues a warning message informing you that changes to the SDC-on-RTL files will not
be observed until Analysis & Elaboration is rerun.

Once you import the constraints using the read_sdc or import_sdc command, they
become standard constraints in the Timing Analyzer. Standard constraint diagnostic
reports (report_exceptions, report_sdc, and so on) operate on these
constraints, and you can update the constraints for the current Timing Analyzer
session using the existing Quartus Prime timing analysis API commands.

Note: You can cross-probe the constraints in the report_sdc by right-clicking on the
Location column of a constraint and selecting Locate in Constraint File.

Figure 52. SDC Report in the Timing Analyzer

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

71

https://www.intel.com/content/www/us/en/docs/programmable/683243.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.3.4. Creating Constraints in SDC-on-RTL SDC Files

SDC 2.1 Compliance

SDC-on-RTL SDCs is an industry-standard to provide constraints targeting your RTL.
Target nodes are from the elaborated netlist and aligned closely with your RTL. You
can target hierarchical nodes and propagate constraints into the compilation flow
through various compilation stages.

Note: The read_sdc command loads SDC-on-RTL SDC files into the Timing Analyzer.
Depending on the snapshot you loaded, read_sdc attempts to read other SDCs
suitable for that snapshot. For additional information about the types of SDC files used
for different use cases, refer to Types of SDC Files Used in the Quartus Prime
Software.

The Quartus Prime software preserves the order of constraints in SDC-on-RTL SDC
files. The order in which you list constraints in the SDC file defines the order in which
they are loaded in the Quartus Prime software.

SDC-on-RTL constraints are designed to support only SDC 2.1-compliant commands.
Object accessors, such as get_keepers, get_registers, or get_nodes, are
notably absent. The following is the list of supported SDC commands, and you can find
more information about them in the TCL Commands and Packages Summary section
of the Quartus Prime Pro Edition User Guide: Scripting:

• create_clock

• create_generated_clock

• set_input_delay

• set_output_delay

• set_false_path

• set_max_delay

• set_min_delay

• set_multicycle_path

• set_clock_groups

• set_clock_latency

• set_clock_uncertainty

• set_data_delay

• set_net_delay

• set_max_skew

Note: Not all of these commands support the full selection of SDC 2.1 arguments because
the Timing Analyzer does not support all arguments. If you specify an unsupported
argument, these commands issue a warning message and ignore the argument. If you
prefer a Tcl error when you encounter a warning in the Timing Analyzer, use the
following:

set_global_assignment -name ERROR_ON_WARNINGS_LOADING_SDC_ON_RTL_CONSTRAINTS ON

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

72

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tafs.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Identifying Timing Paths

For defining timing paths, use SDC standard accessors, such as get_pins, instead of
the Quartus Prime software-specific commands, such as get_keepers or
get_registers. Intel recommends using explicit get_<pins|ports|nets>
commands when targeting objects. Using bare names can result in unintended
targets, and the database issues a warning.

Quartus Prime Conventional SDC (targets Quartus Prime timing graph):

set_false_path -from [get_keepers { reg_A }] -to [get_keepers { reg_B }]

SDC-on-RTL SDC (targets your netlist nodes):

set_false_path -from [get_pins { reg_A|clk }] -to [get_pins { reg_B|d }]

Note: The path must start at the register clk pin to identify the timing path. If your design
uses reg_A|d or reg_A|q, the timing path in the Timing Analyzer is invalid, as
shown in the Report Exception report:

Status Exception
Command

From
Flag

From To
Flag

To Setup
Slack

Complete set_false_
path

-from [get_pins{tf_sy
nc[0]|ff_src|
clk}]

-to [get_pins{tf_sync[0
]|ff_dst|d}]

3.603

Invalid set_false_
path

-from [get_pins{tf_sy
nc[2]|ff_src|
q}]

-to [get_pins{tf_sync[2
]|ff_dst|d}]

Invalid

Invalid set_false_
path

-from [get_pins{tf_sy
nc[3]|ff_src|
d}]

-to [get_pins{tf_sync[3
]|ff_dst|d}]

Invalid

Note: Netlist targets are case-sensitive. Sometimes, the lower-level module ports are
capitalized. In this case, using the -nocase option with the get_<pins|ports|
nets> commands ignore the case sensitivity.

Debugging SDC-on-RTL Constraints

There are several ways to debug SDC-on-RTL constraints. For example, you can
isolate the exact locations where constraints are used in your design and analyze them
in the flow. You can also use compilation reports that report the constraints (see
Elaboration Constraints Compilation Report). However, when debugging the
constraints, consider the following:
Explicit Errors When Loading Constraints

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Errors with reading SDC-on-RTL constraints issue an error message with a command
stack showing the line number of the offending command. For example:

Figure 53. Error Message with a Command Stack

You can debug erroneous constraints directly through the Tcl console. You can iterate
on issues with initial target resolution or command syntax at this early stage easily, as
this is the stage where Quartus Prime software loads the SDC-on-RTL SDC files.

Note: In general, it is not possible to directly load SDC-on-RTL constraints in the Timing
Analyzer because of the following reasons:

• The target netlist is different in the elaborated netlist and not the timing netlist.
Although there may be some common nodes between the two netlists, both
netlists are different.

• Compliant SDC 2.1 syntax used in SDC-on-RTL can be different from the
conventional Quartus SDC commands.

Despite these caveats, if you still want to attempt to load any SDC file in the Timing
Analyzer, use read_sdc <sdc filename>.

Constraint Behavior and Interpretation Issues

When handling the constraints, ensure the following:

• Targets and basic syntax are correct (node finding or target acquisition). You can
use the RTL Analyzer to find the nodes on the elaborated netlist.

• Constraints make sense with respect to the timing graph (constraint behavior).
You can review this in the Timing Analyzer.

Examine the SDC-on-RTL constraints conveyed to the Timing Analyzer
(import_sdc loads only the SDC-on-RTL commands) from the design netlist. The
import_sdc command loads a version of the SDC-on-RTL constraints after
propagating through various stages of the compile flow. After this step, the
experience is the same as a typical Timing Analyzer session.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Although Intel does not recommend loading raw SDC-on-RTL SDC files from the
Timing Analyzer, you can issue Timing Analyzer-compatible SDC commands using the
Timing Analyzer Tcl console to debug your design. By issuing SDC commands directly,
you can override SDC-on-RTL constraints and explore the effect of changing the
values. However, the changes are valid only for that timing analysis session. For
permanent changes, you must update the source SDC-on-RTL SDC file and rerun
Analysis and Elaboration.

1.7.3.5. Using Entity-Based SDC-on-RTL Constraints

A typical design includes a combination of third-party IPs and RTL, so the primary goal
of entity-based SDC-on-RTL is to ensure seamless integration of IPs by empowering IP
owners to encapsulate their IP's SDC constraints.

Given that timing constraints specified in an SDC file are generally applied globally
throughout a design rather than to specific entities, proper encapsulation of IP SDCs
becomes crucial. This encapsulation allows utilizing the IPs without encountering
unexpected SDC leaks. To achieve this, the entity binding prepends the RTL path
name of the IPs, effectively preventing any SDC leaks and averting the potential
impact on design paths that might coincidentally match the name.

In addition, the introduction of entity based SDC-on-RTL constraints offer IP authors
the ability to define specific constraints at the module boundaries. These constraints
are optimized for post-synthesis timing analysis within the context IP instantiation in
the design hierarchy. Even when IP authors lack precise knowledge about where their
IPs are instantiated in the design hierarchy during its implementation, the constraints
remain effective. This approach allows IP authors to implement their SDC constraints
without requiring detailed information about the eventual placement of the IP within
the hierarchy.

The flow supports reading entity-based SDC-on-RTL in designs and IP cores during the
Analysis & Elaboration stage, where the entity-based SDC-on-RTL constraints are read
and saved in a low-level entity database. These constraints are eventually processed
in the SDC read-in order and applied to the hierarchical netlist objects during
compilation.

The Quartus Prime runtime generates IP SDCs along with the IP instantiation and
specifies a project assignment to associate IP SDCs with the IP design entity name.

QSF Assignment Syntax

set_instance_assignment -name RTL_SDC_FILE <sdc_file_name> -entity <entity_name>
[-no_sdc_promotion]

Where:

Argument Description

RTL_SDC_FILE Specifies the SDC-on-RTL file name.

-entity Indicates that it is an entity-based assignment. The SDC file is applied to each instance
of the design entity. The instance hierarchy path is implicitly applied to the pattern
argument search for dni::get_* (get_cells, get_pins, get_ports, and
get_nets) commands.

[-no_sdc_promotion] An optional argument that works only with the -entity flag. For the entity-based
constraints, the [-no_sdc_promotion] argument removes the default behavior of the
instance hierarchy path being the default implicit with the netlist search commands, This

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Argument Description

allows you to control which individual command to apply the instance hierarchy path in
the netlist object search. Use the get_entity_current_instance Tcl command to
obtain the current instance hierarchy path of the entity. For example:

set_false_path -from [get_pins [get_entity_current_instance]|ff_src|clk] \
-to [get_pins [get_entity_current_instance]|ff_dst|d]]

Example 6. Entity-based SDC-on-RTL Constraints Example

Furthermore, these entity-based SDC-on-RTL constraints provide flexibility. You can
enhance or override them by introducing additional SDC constraints during the
implementation stages. The following example shows how to establish logical
constraints for post-synthesis timing analysis using entity-based SDC constraints on a
design that includes two instances of IOPLLs:

Figure 54. Example Design with Two Instances of IOPLLs

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In this simple design example, observe iopll_1 and iopll_2 entities. There are
additional hierarchies inside these entities. The following image depicts the hierarchy
for iopll_1:

Figure 55. Hierarchy Inside the iopll_1 Block

1. Apply the initial SDC-on-RTL constraints file to the entire design using the
RTL_SDC_FILE argument.

set_global_assignment -name RTL_SDC_FILE test.sdc

2. Define a specific SDC-on-RTL constraint file using the RTL_SDC_FILE
complemented by the arguments -entity and -library to target each IOPLL
entity.

set_global_assignment -name RTL_SDC_FILE clock_generator.sdc -entity
"iopll_1" -library "iopll_1"
set_global_assignment -name RTL_SDC_FILE clock_generator.sdc -entity
"iopll_2" -library "iopll_2"

3. Define the constraints that rule over the IOPLL module.

Note: During the initial stages of designing when the RTL netlist is generated, the
internal connections of the PLL might not be fully known. Consequently,
apply these constraints at the module boundaries, specifically at the IOPLL
ports using the get_ports (or get_pins <port_name>) Tcl command
when addressing the module inputs and outputs. Along with other
constraints, they facilitate the creation and propagation of output clocks
generated from the incoming reference clock. The actual connections in the
RTL netlist between the clock source and the target are not required to exist
initially to apply early timing constraints. However, the Timing Analyzer will
issue a warning about the missing connectivity and continue to operate.

clock_generator.sdc
get the name of the current instance to generate a name
set current_entity_instance [get_entity_current_instance]

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Do not specify the -master_clock if you want STA to
use the source to determine the master clock name.
create_generated_clock -divide_by 1 -source [get_ports refclk] [get_ports
outclk_0] -name ${current_entity_instance}_outclk_0
create_generated_clock -divide_by 2 -source [get_ports refclk] [get_ports
outclk_1] -name ${current_entity_instance}_outclk_1

The clocks are shown here in the Timing Analyzer report, as shown in the
following:

Figure 56. Post-Synthesis Clock Reports

It is advantageous to leverage SDC-on-RTL scoping capabilities to generate timing
constraints that target RTL nodes, which can be applied during the early stages of
timing analysis. Even so, the constraints defined through entity-based SDC-on-RTL
files can be adjusted, replaced or supplemented, during the implementation stage,
where physical constraints come into play, this allows you to target internal nodes
as needed for accurate timing modeling.

Tcl Commands

The SDC commands set model closely relates to the industry-standard SDCs. In
particular, the dni::get_ports command can query hierarchical ports on an
unflattened design netlist. This behavior differs from the existing Timing Analyzer
get_ports command that can query top-level ports in the post-synthesis design.

When used in the context of entity-based SDC-on-RTL file, the dni::get_ports
command, for example, [dni::get_ports refclk] searches for a port in the
context of the current instance of the instantiated RTL. To avoid the implicit prefix of
the current instance in the dni::get_ports command, use the -
no_sdc_promotion option along with the dni::get_entity_current_instance
command in the SDC file where the entity’s instance hierarchy path is required.

Related Information

Example: Using SDC-on-RTL Features on page 80

1.7.3.6. Types of SDC Files Used in the Quartus Prime Software

This section provides a high-level summary of the differences between various SDC
file types available for use.

The Quartus Prime software uses conventional SDC files to target the timing netlist.
These SDCs are not applied until the Fitter plan stage completes. However, for Post-
Synthesis Static Timing Analysis (STA) on page 87, you can introduce SDC files to
the Quartus Prime software in one of the following ways:

• SDC-on-RTL

• Synthesis SDC

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following table attempts to summarize the differences between the various SDC
file types:

Table 16. Types of SDC Files Used in the Quartus Prime Software

SDC-on-RTL Synthesis SDC SDC
(Conventional)

Stage where
constraints
are read

Analysis & Elaboration Synthesis Fitter, Signoff

Stage where
constraints
are
processed

Synthesis through
Fitter

Synthesis only Fitter, Signoff

QSF
assignment

RTL_SDC_FILE
(supports entities)

SDC_FILE SDC_ENTITY_FILE-
read_during_post_syn_and_post_fit_timing_analy
sis

SDC_FILE SDC_ENTITY_FILE-
read_during_post_syn_and_not_post_fit_timing_a
nalysis

SDC_FILE

Syntax
supported

Tcl with SDC 2.1
commands

Tcl with Quartus Prime SDC commands Tcl with Quartus
Prime SDC
commands

SDC 2.1-
compliant

Yes No No

Target type RTL Quartus Prime timing graph Quartus Prime
timing graph

Hierarchical
targets

Yes No No

Buried timing
nodes (used
by IP)

No Core fabric only.
Note: Such nodes do not exist for the periphery in post-

synthesis STA.

Yes

STA
command to
load
constraints

Executes the
read_sdc or
import_sdc
command in any
snapshot.

Executes the read_sdc command only during static timing
analysis on the synthesized snapshot.

Executes the
read_sdc
command
during static
timing analysis
on any fitter
snapshot (plan,
place, route,
retime).
Note: Not

loaded
during
synthesis.

As shown in the table, the assignments allow different SDCs to be used during post-
synthesis STA and post-fit STA. It is also possible for an SDC to check the current
snapshot through is_post_syn_sta to determine the appropriate commands to use,
as shown in the following example:

if {[is_post_syn_sta]} {
 puts "In post syn sta!"
}

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.3.7. Example: Using SDC-on-RTL Features

This topic provides some examples of how to use SDC-on-RTL features and set up
timing constraints in your design.

You can work with both new and pre-existing designs that incorporate components
from diverse sources, including Verilog, VHDL, IPs, and Platform Designer. Suppose
your designs contain nodes that require constraint definitions, such as clocks,
generated clocks, or asynchronous paths, across various hierarchy levels. In that case,
you can efficiently target them using SDC-on-RTL constraints. It is imperative that
your chosen design successfully passes the Analysis & Elaboration stages within the
compilation flow for seamless and effective testing process.

You can control the number of stages generated during the Analysis & Elaboration
using the RTL Analysis Debug Mode option under Project ➤ Settings. This mode is
off by default, which means only Elaborated and Swept checkpoints are available, and
Instrumented and Constrained checkpoints are unavailable. When you enable this
mode, all four checkpoints become available.

Note: Currently, Quartus Prime IPs use conventional SDCs only, which means if you want to
create SDC-on-RTL constraints that interact with IP clocks, define them initially with
SDC-on-RTL constraints. These clocks can eventually be overwritten by the IP SDCs.
Alternatively, if you do not need the clocks defined at Elaboration, use
derive_clocks during Post-Synthesis Static Timing Analysis (STA) on page 87 to
automatically generate clocks temporarily for the Timing Analyzer session.

The following steps demonstrate the process of setting up timing constraints for your
designs by targeting RTL node names:

1. Click New in the left-hand Tasks pane. The New dialog appears.

2. Click SDC File targeting RTL Names (Read and stored after elaboration).

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 57. New Dialog Box

3. Click OK.

4. Within the new SDC-on-RTL file, formulate a comprehensive set of constraints
targeting nodes by their RTL names. For information about how to obtain a list of
the supported commands, refer to Creating Constraints in SDC-on-RTL SDC Files
on page 72.

5. Ensure the constraint targets are correct and the selected design passes the
Analysis & Elaboration compilation stage as the constraints are read during this
stage and applied to the elaborated netlist. This step is pivotal as it empowers the
software to generate a database of your design. Additionally, it grants access to
various checkpoints from where you can access the RTL Analyzer.

Note: The RTL Analyzer assists you in locating specific netlist nodes within your
design that require constraint application. It allows you to navigate your
design and select your desired target nodes. Subsequently, you can use
corresponding Tcl commands generated within the Tcl console to extract
hierarchical node names from the Tcl commands. This process streamlines
the task of implementing constraints on the netlist nodes. For more
information about the RTL Analyzer, refer to Exploring the RTL Analyzer on
page 23.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 58. Locating Specific Netlist Nodes in the RTL Analyzer

Alternatively, you can locate nodes within your target netlist using the Find tool,
which is available from the Edit menu in the RTL Analyzer. The Find tool allows
you to search objects within the updated database from the checkpoint accessed.

Figure 59. Find Dialog in the RTL Analyzer

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In addition, you can create your collections by focusing on the inputs and outputs
of your design through the use of the get_ports command. Within your design,
you can locate specific nets using the get_nets command or target pins using
the get_pins command.

After establishing your timing constraints in your designs, use the following
examples as a guide to set up your constraints, specifically focusing on RTL node
names, thereby ensuring precision and efficiency throughout your design process.

Example 7. Targeting Pins of Top-level Instances

In certain scenarios, it is necessary to constrain pins of top-level instances. For
example, when defining clocks and reset inputs, you can utilize the get_pins Tcl
command followed by the hierarchical pin name to filter each pin as shown in the
following:

get_pins U0|clk_in

This Tcl command returns the input pin clk_in in the instance U0.

Figure 60. Targeting Pins of Top-level Instances

Similarly, you can target other pins of the same instance and apply necessary
constraints as shown in the following:

create_clock -name clk_input -period 10 [get_pins U0|clk_in]
create_generated_clock -name clk_output -source [get_pins U0|clk_in] -divide_by
2 [get_pins U0|clk_out]

Example 8. Targeting Pins in Cells

When constraining your design, you might need to target cell pins to apply
constraints. In such scenarios, you can use the get_pins Tcl command and RTL
names to locate specific cell pins, such as clk or d inputs and q outputs. For
example:

get_pins U6|reg_a[0]|clk
get_pins U6|reg_a[0]|d
get_pins U6|reg_a[0]|q

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 61. Targeting Pins in Cells Example

These Tcl commands return specific pins of the reg_a[0] register in the U6 instance.
You can use the returned collection to constrain paths. For example, from U6|
reg_a[0] to U7|regb_a[0][7] as follows:

set_false_path -from [get_pins U6|reg_a[0]|clk] -to [get_pins U7|regb_a[0][0]|d]

Example 9. Targeting Pins Using Wildcards

Within your design, you might need to constrain several pins with similar properties
and names. In this case, use wildcards to filter the results.

Note: Use the wildcards judiciously and ensure the scope does not include more targets than
necessary. Targeting extraneous nodes can limit optimizations and increase
compilation runtime and memory.

The get_pins command can target buses porta or portb of U7, as shown in the
following:

get_pins U7|porta[*]
get_pins U7|portb[*]

Figure 62. Targeting Pins Using Wildcards Example

The Tcl command returns a collection of pins from porta[0] to porta[7] and from
portb[0] to portb[7]. You can use the returned collection to constrain all objects
simultaneously, as shown in the following:

set_false_path -from [get_pins U5|rega*|clk] -to [get_pins U7|porta[*]]
set_false_path -from [get_pins U6|rega*|clk] -to [get_pins U7|portb[*]]

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 10. Example 4. Applying Constraints at Deeper Hierarchies

Within your design, you can apply constraints at different levels of hierarchy using the
pipe character (|) to separate hierarchy levels of instances. Constraints are applied
when the hierarchy levels match and the string values, including wildcards, match the
pin names. For example:

get_pins U3|U0_lv1|U0_lv2|U0_lv3|flag

The fundamental timing analysis flow requires executing the fitter to elaborate the
timing netlist before applying any constraints. In the following example, suppose you
intend to constraint a generated clock buried deep within module A:

Figure 63. Applying Constraints at Deeper Hierarchies Example

To achieve this, locate the cell clk_out_mux where the constraint must be applied
and identify the pin name COMBOUT. This process often results in a complex path
name that can be challenging to decipher, especially when module names are intricate
(unlike straightforward names, such as A|B|C). Additionally, suppose the hierarchy
evolves in the future. In that case, you must rerun the fitter and delve into the design
again to derive the updated path, which can lead to inconsistencies between the
design and the constraint targets. You can target the COMBOUT pin as follows:

get_pins A|B|C|U0|clk_out_mux~0|combout

SDC-on-RTL also offers an efficient means of constraint propagation, enabling you to
apply constraints at module boundaries. It ensures that these constraints seamlessly
extend to the corresponding leaf instances during the synthesis stage. For instance,
revisit the previous example, in which the clock constraint embedded within module A
can be established using SDC-on-RTL constraints at the module A's boundaries,
specifically focusing on the clk_out pin.

Figure 64. Deeper Design Hierarchies

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To target the clk_out pin of module A, use the following filter:

get_pins A|clk_out

By directing your attention towards pins located at the boundaries of abstract blocks,
you gain the flexibility to modify the internal instance hierarchy as needed. Constraints
remain effective even if you decide to rename an internal instance within your module,
for instance, changing it from A|B|C|U0 to A|X|Y|U0. Importantly, this can be
accomplished without requiring alterations to your existing constraints. This
demonstrates the robust capabilities of SDC-on-RTL, allowing you to concentrate on
boundary pins rather than navigating complex hierarchies. This approach ensures
constraint accuracy and simplifies constraint management.

After creating the constraints, rerun the Analysis & Elaboration on the compilation
dashboard so that constraints are read and applied to your design. Open the
constrained checkpoint of the RTL Analyzer and carefully select the nodes where the
constraints were applied. Utilize the Property Viewer to verify the correct application of
constraints to these nodes. For additional information, refer to Inspecting SDC-on-RTL
Constraints on page 67.

Figure 65. Property Viewer in the RTL Analyzer

Utilize the Quartus Prime software's additional tools to explore and confirm that all
SDC constraints were read and successfully applied. Tools like the Constraints viewer
launched from the RTL Analyzer can assist you in verifying and cross-probing the
constraints with the Schematic Viewer.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 66. Constraints Viewer

Additionally, the reports under Compilation Report ➤ SDC Constraints folder
provide a detailed view of the constraints and their locations. Use the Constraint
Propagation Report to view how constraints are propagated as the netlist is
transformed and inspect where the constraints end up post optimizations.

Important: These tools offer valuable means to verify the accurate application of your constraints.
However, if you intend to iterate on the process of defining constraints using the SDC-
on-RTL approach, you must rerun the Analysis & Elaboration stage each time. This
iterative approach ensures that the constraints are meticulously analyzed during
netlist generation, resulting in enhanced performance and seamless integration with
your design.

1.7.4. Post-Synthesis Static Timing Analysis (STA)

Post-synthesis static timing analysis (STA) allows you to run the Timing Analyzer
directly after synthesis. This flow involves running Analysis & Elaboration and
Synthesis stages and iterating on your design's static timing analysis results early in
the Quartus Prime software compilation flow without running the Fitter.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 67. Early Timing Analysis Flow

Analysis & Elaboration

Synthesis

Fitter

Timing Analysis

RTL Analyzer

Post-Synthesis
Static Timing Analysis

Quartus Compilation Flow

Constraints
(SDC-on-RTL)

DesignDesignDesignDesignDesign

The Synopsys* Design Constraint (SDC) on RTL supports the underlying technology to
read the constraints early in the compilation flow and use them in the later stages of
the Quartus Prime compilation. However, you can run the flow even without RTL SDCs
where you can view the synthesized timing netlist.

Post-synthesis STA defaults to a simple average value delay model based on the types
of blocks a net connects. "Average Value" interconnect (IC) delay model to control STA
after synthesis. Using the STA_POST_SYN_DELAY_MODEL QSF, you can switch to the
"Zero Value" IC delay model to exclude interconnect delays from the timing model.

Note: If you want zero delays, you can also use create_timing_netlist -
zero_ic_delay argument.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can now access the Timing Analyzer right after design synthesis in the compilation
dashboard, as shown in the following image:

Figure 68. Early Timing Analysis Stage

Post-synthesis static timing analysis (STA) uses a timing netlist representing core
blocks and their contents. It also includes periphery blocks (but nothing inside them is
modeled) and cell delays of the core blocks. Routing delays between core blocks is
represented by IC delays that use the average interconnect model mentioned above.

Post-synthesis STA timing netlist provides you with an early view of your design's core
timing. You can run timing analysis reports and constraint diagnostic commands,
allowing you to examine SDC-on-RTL constraints.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Perform the following steps to run post-synthesis STA:

1. Create an Quartus Prime software project using your design RTL and associated
SDC-on-RTL SDC file.

2. Run Analysis and Elaboration compilation stage on your design as follows:

quartus_syn --analysis_and_elaboration <design>

3. Perform Synthesis on your design as follows:

quartus_syn -–synthesis <design>

You can also perform the above steps using the Quartus Prime software GUI, as shown
in the following image:

Figure 69. Performing Post-synthesis STA in the Quartus Prime Software GUI

After running post-synthesis STA on your design, you can use the Timing Analyzer
conventionally. However, a fundamental difference in the netlist topography is that the
post-synthesis STA timing netlist has no connectivity inside any periphery block.

Note: The post-synthesis STA delay model defaults to a simple average value delay model.
Cell delays are computed assuming default configurations.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For post-synthesis constraints, Intel recommends using an SDC-on-RTL file. In cases
where this is not possible, post-synthesis STA introduces the SDC_FILE -
read_during_post_syn_and_not_post_fit_timing_analysis QSF argument,
which is used to inform the Timing Analyzer to include a conventional SDC in the list of
SDCs to be read during a post-synthesis STA session. This QSF is beneficial for blocks
that do not have SDC-on-RTL constraints available. Since the post-synthesis STA
netlist differs from the post-plan STA netlist, conventional SDCs written for the post-
plan netlist might not function during post-synthesis STA. By creating a new category
of SDC files, you can identify scripts you want to load during post-synthesis STA.

1.7.5. Viewing Synthesis Reports

The Compilation Report window opens automatically during compilation processing.
The Report window displays detailed synthesis results for each partition in the current
project revision.

Figure 70. Synthesis Reports

Synthesis
Reports

Selected
Report

Table 17. Synthesis Reports (Design Dependent)

Generated Report Description

Summary Shows summary information about synthesis, such as the status, date, software
version, entity name, device family, timing model status, and various types of logic
utilization.

Settings Lists the values of all synthesis settings during design processing.

Source Files Read Lists details about all source files in design synthesis. Details include file path, file type,
and any library information.

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generated Report Description

IP Cores Summary Lists details about each IP core instance in design synthesis. Details include IP core
name, vendor, version, license type, entity instance, and IP include file.

Partition Summary Shows a summary of partitions in the design. Details include partitions names, hierarchy
path, partition type, and partition properties.

Source Assignments A series of reports that list details about source assignments. Details include
assignment, value, and source location.

Parameter Settings by Entity
Instance

A series of reports that list parameter settings for entities in your design. Details in the
reports include parameter name, parameter value, and parameter data type.
Note: You can view the parameter settings for a module directly from the Project

Navigator by locating the module and selecting View Parameter Settings in its
context-sensitive menu. Compilation Report appears, displaying the parameter
settings for the entity.

Partition reports Each design partition has a series of reports:
• Resource Utilization By Entity:

Lists the quantity of all types of logic usage for each entity in design synthesis.
• Optimization Results:

The reports in this folder provide statistics for the following items:
— Registers, including registers protected by synthesis and registers removed by

synthesis
— Multiplexers, including restructuring that synthesis performs and multiplexers

implemented.
• Post-Synthesis Netlist Statistics
• Resource Usage Summary:

Lists the quantity of all types of logic usage for the design partition in design
synthesis.

• RAM Summary:
Lists RAM usage details for the design partition in design synthesis. Details include
the name, type, mode, and density.

Messages Lists all information, warning, and error messages that report conditions observed
during the Analysis & Synthesis process.

Warning Messages A series of reports that summarize the warning messages generated during synthesis by
providing one entry per message ID, its severity, the count of all its occurrences, and
one sample warning message.
A separate report is generated for warnings from each source file. General warning
messages that are not associated with a source file are put in a separate report.

Design Assistant (Elaborated) Lists Design Assistant rules that failed during the Analysis & Elaboration stage.

Design Assistant (Synthesized) Lists Design Assistant rules that failed during the Synthesis stage.

SDC Constraints Lists all constraints-related reports. Post-Elaboration Constraints, Post-Synthesis
Constraints, and Constraint Propagation Reports are available at the end of synthesis.
For more information about these reports, refer to Applying the SDC-on-RTL Constraints
on page 66.

1.7.6. Viewing Synthesis Dynamic Report

The dynamic report feature allows you to interact with a full report that displays only a
few items in the GUI. This feature is off by default, and you can enable it through the
synth_rpt_enable_dynamic_report QSF. Currently, you can view dynamic
reports only for the Registers Removed During Synthesis report.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the following report, you can observe that the compiler removed 12984 registers
during synthesis. However, after 2780 registers, the remaining registers are truncated
from the report due to the GUI threshold. With the dynamic report feature, you can
retrieve details of these remaining registers without recompiling your design using the
updated GUI threshold.

Note: You can modify the number of removed registers reported through the Assignments
➤ Settings ➤ Compiler Settings ➤ Advanced Settings (Synthesis) ➤ Number
of Removed Registers Reported in Synthesis Report option.

Figure 71. Sample Registers Removed During Synthesis Report

Within one compilation, the compiler stores all items from the report in a dynamic
SQLite database under <project_directory>/dynamic_report/
registers_removed.sqlite. After design synthesis, you can access the SQLite
database through Tcl commands to extract a summary of the SQLite database (for
example, data column and total size of the items), query from the database using SQL
commands (for example, SELECT and WHERE), and retrieve the desired number of
truncated lines from the report.

Note: • If you recompile after generating the SQLite database, contents are rewritten to
the same database. If you turn off the QSF during recompilation, the SQLite
database retains the information from the previous compile.

• If your design does not contain registers to be removed during synthesis, the
compiler does not generate the Registers Removed During Synthesis report.
Hence, the dynamic_report directory and the SQLite database are also not
generated.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Executing Tcl Commands

You can execute the dynamic_report Tcl commands in one of the following ways:

• Include Tcl commands in a Tcl script and run it using quartus_syn -t
<name>.tcl.

• Execute a single command directly from your terminal as quartus_syn --
tcl_eval <tcl command>.

• Execute a single command from the GUI by launching your project in the Quartus
Prime software and navigating to View ➤ Tcl Console on the menu. In the Tcl
Console window, type your Tcl command.

The result is the same irrespective of the method you use to execute your
dynamic_report Tcl command.

Note: When you execute a dynamic_report Tcl command, the Tcl command attempts to
open the corresponding SQLite database immediately for further action. The path to
open the database is absolute. So, you must ensure that your current directory is
where your design is located and not in the dynamic_report directory. Otherwise,
an error displays indicating the path to the SQLite database is incorrect or an issue
with opening the SQLite database.

The following table lists some example dynamic_report Tcl commands with various
options:

Table 18. dynamic_report Tcl Command Examples

dynamic_report
Command Option

Description Tcl Command Example

-help Provides detailed help for the
dynamic_report Tcl command, including
currently supported report values, options,
and error values.

dynamic_report -help

-long_help Provides long help for the
dynamic_report Tcl command with
examples and possible return values.

dynamic_report -long_help

-report <report
name>

Targets the report that <report name>
specifies. For the Registers Removed
During Synthesis report, use
"registers removed".
Note: The -report option is mandatory

as the Tcl command takes further
action based on the report name.
Absence of the -report option or
using an unsupported value for
<report name> results in an error.

dynamic_report -report "registers
removed"

-summary Generates a summary of the specified
report, such as the table name, total size,
and column names, which help query from
the SQLite database.

dynamic_report -report "registers
removed" -summary

-query <sqlite
query>

Accepts an entire SQLite query as an option
to retrieve the desired result from the
database. For example, -query "SELECT
* FROM <table> WHERE <column> =
<...>"

dynamic_report -report "registers
removed" -query "SELECT * FROM
'Registers Removed During Synthesis'
WHERE reason = 'Stuck at VCC due to
stuck port data_in'"

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

94

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl_pkg_interactive_synthesis_ver_1-0_cmd_dynamic_report.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

dynamic_report
Command Option

Description Tcl Command Example

If the query command is incorrect or
incomplete, an error message displays with
details.
The result of this query is sent to an output
file under the <project directory>/
dynamic_report directory in ASCII format
by default.

-dump_all Dumps all items in the report.
The result of this query is sent to an output
file under the <project directory>/
dynamic_report directory in ASCII format
by default.

dynamic_report -report "registers
removed" -dump_all

-dump_lines
<unsigned
integer>

Dumps first <unsigned integer> of lines
in the report. An error message displays if
the value specified for <unsigned
integer> is not an unsigned integer or not
in the range of 1 and 999999999.
The result of this query is sent to an output
file under the <project directory>/
dynamic_report directory in ASCII format
by default.

dynamic_report -report "registers
removed" -dump_lines 250

-filename
<file_name>

Specifies an output file name for the results
dumped by -query, -dump_all, and -
dump_lines options.
-filename is optional. If you do not
specify a file name, the compiler names the
output file as <report name>.ascii. An
error message displays if the file name is
empty or contains special characters or
spaces.
Note: With the -filename option, you can

use the -html or -xml option to
generate the output file in HTML or
XML format, respectively.

dynamic_report -report "registers
removed" -dump_all -filename
"my_result"

Attention: The options -summary, -query, -dump_all, and -dump_lines are mandatory but
exclusive, which means that the dynamic_report Tcl command requires only one
option. If you include multiple options within a single dynamic_report Tcl command,
an error message displays requesting you to specify a single option.

Related Information

dynamic_report (::quartus::interactive_synthesis)

1.8. Design Place and Route

The Compiler's Fitter module (quartus_fit) performs design placement and routing.
During place and route, the Fitter determines the best placement and routing of logic
in the target FPGA device, while respecting any Fitter settings or constraints that you
specify.

By default, the Fitter selects appropriate resources, interconnection paths, and pin
locations. If you assign logic to specific device resources, the Fitter attempts to match
those requirements, and then fits and optimizes any remaining unconstrained design
logic. If the Fitter cannot fit the design in the current target device, the Fitter
terminates compilation and issues an error message.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

95

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl_pkg_interactive_synthesis_ver_1-0_cmd_dynamic_report.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime Pro Edition Fitter introduces a hybrid placement technique that
combines analytical and annealing placement techniques. Analytical placement
determines an initial mathematical starting placement. The annealing technique then
fine-tunes logic block placement in high resource utilization scenarios.

Related Information

• Running the Fitter on page 96

• Viewing Fitter Reports on page 98

1.8.1. Running the Fitter

The Compiler's Fitter module performs all stages of design place and route, including
the Plan, Early Place, Place, Route, and Retime stages.

The Quartus Prime Pro Edition Compiler allows control and optimization of each
individual Fitter stage, including the Plan, Place, and Route stages. Run all stages of
the Fitter as part of a full design compilation, or run any Fitter stage independently
after design synthesis. Before running the Fitter, you specify settings that impact Fitter
processing.

After running a Fitter stage, view detailed report data and analyze the timing of that
stage. The Compiler preserves Fitter results of the final snapshot by default.

1. Specify initial Fitter constraints:

a. To assign device I/O pins, click Assignments ➤ Pin Planner.

b. To assign device periphery, clocks, and I/O interfaces, click Tools ➤
Interface Planner.

c. To constrain logic placement regions, click Tools ➤ Chip Planner.

d. To specify Fitter optimization goals, click Assignments ➤ Settings ➤
Compiler Settings. Compiler Optimization Modes on page 149 describes
these options in detail

e. To fine-tune place and route with advanced Fitter options, click Assignments
➤ Settings ➤ Compiler Settings ➤ Advanced Settings (Fitter)

2. To run one or more stages of the Fitter, click any of the following commands on
the Compilation Dashboard:

• To run all Fitter stages in sequence, click Fitter.

• To run only device periphery placement and routing, click Plan.

• To run only logic placement, click Place.

• To run only logic routing, click Route.

• To run only retiming of ALM registers into Hyper-Registers, click Retime.(2)

• To run the Implement flow (runs Plan, Place, Route, and Retime stages), click
Fitter (Implement).

• To run the Finalize flow (runs Plan, Place, Route, Retime, and Finalize stages),
click Fitter (Finalize).

(2) Retime available for Hyperflex® architecture devices only.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Fitter Settings Reference on page 174

• Step 2: Review Retiming Results on page 117

1.8.1.1. Fitter Commands

Launch Fitter processes from the Processing menu or Compilation Dashboard with
Fitter commands.

Table 19. Start Fitter Commands

Command Description

Start Fitter (Plan) Loads synthesized periphery placement data and constraints, and assigns periphery
elements to device I/O resources. This command creates the planned snapshot.

Start Fitter (Place) Places all core elements in a legal location. This command creates the placed
snapshot.

Start Fitter (Route) Creates all routing between the elements in the design. This command creates the
routed snapshot.

Start Fitter (Retime) Performs register retiming and moves existing registers into Hyper-Registers to
increase performance by removing retiming restrictions and eliminating critical
paths. The Compiler may report hold violations for short paths following the Retime
stage. This command creates the retimed snapshot.

Start Fitter (Finalize) Performs post-routing optimization on the design. The Fitter identifies and corrects
the short paths with hold violations during the Fitter (Finalize) stage by adding
routing wire along the paths. After correcting the hold violation, the Fitter performs
the following physical synthesis optimizations for further setup timing improvement:
retiming, LUT and ALM rotation, re-synthesize logic, wire LUT removal, inverter
optimization, and skew-optimization for Agilex 7 devices. This stage converts
unneeded tiles from High Speed to Low Power. This command creates the final
snapshot. For Stratix 10 and Agilex 7 designs, the Fitter also runs post-route fix-up
to correct any short path hold violations remaining from retiming.

Note: The Compiler reports violations under the Compilation Report ➤ Fitter section. The
Fitter identifies and corrects the short paths with hold violations during the Fitter
(Finalize) stage by adding routing wire along the paths.

1.8.1.2. Disabling or Enabling Physical Synthesis Optimization

Physical synthesis optimization improves circuit performance by performing
combinational and sequential optimization and register duplication.

The Compiler performs physical synthesis optimization by default during place and
route. You can disable or enable physical synthesis optimization and related options by
following these steps:

To disable or enable physical synthesis optimization:

1. Click Assignments ➤ Settings ➤ Compiler Settings.

2. To enable retiming, combinational optimization, and register duplication, click
Advanced Settings (Fitter).

3. Enable Advanced Physical Synthesis.

4. View physical synthesis results in the Netlist Optimizations report under
Compilation Report ➤ Fitter section.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.2. Viewing Fitter Reports

The Fitter generates detailed reports and messages for each stage of place and route.
The Fitter Summary reports basic information about the Fitter run, such as date,
software version, device family, timing model, and logic utilization.

1.8.2.1. Plan Stage Reports

The Plan stage reports describe the I/O, interface, and control signals discovered
during the periphery planning stage of the Fitter.

Figure 72. Plan Stage Reports (Arria 10 and Cyclone 10 GX Designs)

For Arria 10 and Cyclone 10 GX designs, the Plan stage includes the Global & Other
Fast Signals Summary report that allows you to verify which clocks the Compiler
promotes to global clocks. Clock planning occurs after the Plan stage for Stratix 10
and Agilex 7 designs.

NoC Connectivity Report

For Agilex 7 M-Series FPGAs only, the NoC Connectivity Report provides information on
connections between NoC initiators and targets in the implemented design, and their
associated base addresses. Use this report to verify that the implementation of
connection and attribute assignments are correct. The table in this report contains a
row for each initiator to target connection. Additional rows may report any
unconnected NoC elements. The following columns report data:

• Group—displays which NoC group the connection is assigned to.

• Status—displays whether the row is for connected or unconnected elements.

• Initiator—lists the NoC initiator elements.

• Target—lists the NoC target elements.

• Address—displays the hexadecimal base address for each connection

NoC Performance Report

For Agilex 7 M-Series FPGAs only, reports the user-requested read and write
bandwidths, as well as the minimum latency of NoC request and response
transactions.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The latencies in this report are based on the minimum structural latency with respect
to the initiator and target placement. These latencies are for the NoC portion of the
path only. These latencies do not include any latency of, for instance, external memory
access. Nor do these latencies account for potential delay due to congestion on the
NoC. You can achieve lower minimum structural latency by placing the NoC initiators
and targets closer together.

1.8.2.2. Place Stage Reports

The Place stage reports describe all device resources the Fitter allocates during logic
placement, as well as use of Logic Lock regions and global and other fast signals.

Figure 73. Place Stage Reports

1.8.2.2.1. Global Signal Visualization Report

For Stratix 10 and Agilex 7 designs, you can access the Global Signal Visualization
report to view global signal routing and clock sector utilization in an interactive heat-
map. This report allows you to track the routing and placement of each individual
clock. You can use this data to analyze global signal routing congestion issues, and to
debug global signal placement and routing failures.

View global clock tree implementation details and assess capacity to add more global
signals to the design. In cases of clock tree synthesis errors, the report can also show
targeted regions for failing signals, and competing signals that are contributing to
routing congestion.

The interactive heatmap color gradients show clock sector congestion of the clock
signals terminating inside the sector. Hover the cursor over a clock signal in the table
to highlight the clocks sectors and routing elements. Select a clock signal in the table
to dim all irrelevant sectors and routing elements, while highlighting only the clock's
sectors and routing elements. The global clock signal routing on different layers
displays in the report's stacked layer view.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 74. Global Routing Wire Utilization (Single Layer)

Single Layer Routing Multi-Layer Routing

Figure 75. Heat Map Sector and Routing Wire Utilization (All Layers)

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Filter the display to Show Routing Utilization and Show Sector Utilization. The
content of the table changes based on the selections you make in the heatmap. You
can search for Signal Names, and then select the signal names to display its
properties in the lower pane. Select any signal to Locate in other tools.

Figure 76. Signals Names and Property Details

1.8.2.3. Route Stage Reports

The Route stage reports describe all device resources that the Fitter allocates during
routing. Details include the type, number, and overall percentage of each resource
type. The Route stage also reports delay chain summary information.

Figure 77. Route Stage Reports

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.2.3.1. Global Router Congestion Hotspot Summary Report

The Global Router Congestion Hotspot Summary report shows congested net hotspots
in your design by hierarchical node name.

A global routing congested region is an area of the FPGA where short wire usage in a
particular direction exceeds the capacity of that region. A congested net is a net that
passes through a congested region.

If the congested area is small, detailed routing can recover by detouring around these
overused regions. However, if the congested area is large, you most likely encounter a
no route. The exact threshold where that happens varies greatly depending on the
design.

Use the Global Router Congestion Hotspot Summary report to identify parts of your
RTL code that are associated with routing congestion.

Figure 78. Example of the Global Router Congestion Hotspot Summary Report

Note: In the Number of Congested Nets column, the numerator is the number of nets
under the current hierarchical level that overlap with the largest congestion island,
and the denominator is the total number of nets under the current hierarchical level
(including nets that are not in the congestion island). The largest congestion island is
the largest group of adjacent grids whose short wire usage exceeds capacity. You can
see a visualization of this report in the Global Router Wire Utilization Map.

The Global Router Wire Utilization Map provides a visualization of the Global Router
Congestion Hotspot Summary Report.

If the size of adjacent congested regions is below a threshold, the report shows the
threshold and size of the largest congested region instead of a hierarchical report of
congested nets.

1.8.2.3.2. Global Router Wire Utilization Map Report

The Global Router Wire Utilization Map report displays global signal routing in an
interactive heat-map. This report shows routing utilization rate of long and short
routing wires. You can also use this report to obtain a detailed view of all the nets in
the design. The report's heatmap grid shows the available device LABs. The color of
the grid ranges from blue to red as the utilization rate changes from 0% to 100%. The
color becomes pink if the utilization rate is greater than 100%.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 79. Global Router Wire Utilization Heat Map (Multiple Layers)

Filter the Global Router Wire table to show short or long Wirelengths in all
Directions. The content of the table changes based on the selections you make in the
heatmap. You can search for Signal Names, and then single- or multi-select the
signal names to display properties in the lower pane. Select one or more nodes in the
table to Locate in various editors.

Figure 80. Global Router Wire Utilization Details

Locate Selected Routing Instance

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.2.4. Retime Stage Reports

For Stratix 10 and Agilex 7 designs, the Fitter generates detailed reports showing the
results of the Retime stage, including the Retiming Limit Details report. This report
lists the limiting reason, along with the critical chain and recommendations for the
critical chain for each clock transfer.

Figure 81. Retiming Limit Details

Retiming Limit Condition

Details of Critical ChainRight-click to locate in viewer

Related Information

• Viewing Critical Chains

• Report Retiming Restrictions

• Interpreting Critical Chain Reports

1.8.2.5. Finalize Stage Reports

The Finalize stage reports describe final placement and routing operations, including:

• HSLP Summary. For Arria 10 and Cyclone 10 GX designs, the Compiler converts
unnecessary tiles to High-Speed or Low-Power (HSLP) tiles.

• Post-route hold fix-up data. For Stratix 10 and Agilex 7 designs, the Compiler
reports hold violations for short paths following the Retime stage. The Fitter
identifies and corrects the short paths with hold violations during the Fitter
(Finalize) stage by adding routing wire along the paths.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

104

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/viewing-critical-chains.html
https://www.intel.com/content/www/us/en/docs/programmable/683243/current/report-retiming-restrictions.html
https://www.intel.com/content/www/us/en/docs/programmable/683353/current/interpreting-critical-chain-reports.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 82. Finalize Stage Reports (Stratix 10 Design)

Related Information

Step 2: Review Retiming Results on page 117
For information on Retiming and Fast Forward compilation reports

1.9. Incremental Optimization Flow

The Quartus Prime Pro Edition software supports incremental optimization at each
stage of design compilation. In incremental optimization, you run and optimize each
compilation stage independently before running the next compilation module in
sequence. The Compiler preserves the results of each stage as a snapshot for
analysis. When you make changes to your design or constraints, the Compiler only
runs stages impacted by the change. Following synthesis or any Fitter stage, you can
view results and perform timing analysis; modify design RTL or Compiler settings as
needed; and then re-run synthesis or the Fitter and evaluate the results of these
changes. Repeat this process until the module performance meets requirements. This
flow maximizes the results at each stage without waiting for full compilation results.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 83. Incremental Optimization Flow

Plan Place Route

optimize optimize optimize optimize

Retime

Table 20. Incremental Optimization at Fitter Stages

Fitter Stage Incremental Optimization

Plan After this stage, you can run post-Plan timing analysis to verify timing constraints, and
validate cross-clock timing windows. View the placement and properties of the periphery
(I/O).

Place After this stage, validate resource and logic utilization in the Compilation Reports, and
review placement of design elements in the Chip Planner.

Route After this stage, perform detailed setup and hold timing closure in the Timing Analyzer, and
view routing congestion in the Chip Planner.

Retime After this stage, review the Retiming results in the Fitter report and correct any restrictions
limiting further retiming optimization.

Note: The Compiler saves the planned, placed, routed, and retimed snapshots during full
compilation only if you turn on Enable Intermediate Fitter Snapshots
(Assignments ➤ Settings ➤ Compiler Settings). You can also run any intermediate
Fitter stage independently to generate the snapshot for that stage.

1.9.1. Concurrent Analysis During Synthesis or Fitting

If you run Analysis & Synthesis, or the Fitter, you can access results while downstream
Fitter stages are still running. Once the Concurrent Analysis icons become active in
the dashboard, you can view the analysis without interrupting compilation.

During Analysis & Synthesis, you can click the Concurrent Analysis icons on the
Dashboard to view reports, the RTL Viewer, or the Technology Map Viewer. While the
Fitter is processing, you can analyze timing during the stages displaying the Timing
Analyzer icon, and view Technology Map Viewer snapshots during Fitter stages.

Caution: Do not attempt to change the SDC-on-RTL constraints during concurrent analysis.
SDC-on-RTL constraints are read and loaded in the post-elaboration stage. If you
modify the constraints at the Fitter stages, you must restart the compilation from the
beginning.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 84. Concurrent Analysis Options

Opens RTL for SnapshotAnalyzer

Opens Timing Analyzer for Snapshot

Opens Report for Snapshot

Opens Tech Map Viewer for Snapshot

1.9.2. Analyzing Compiler Snapshots

You can analyze the results of a compilation snapshot to evaluate your design before
running the next stage, or before running a full compilation. Analyze Compiler
snapshots to isolate potential problems and reduce the overall time you spend running
design compilation.

1.9.2.1. Running Snapshot Viewer

You can run the Snapshot Viewer to assist with timing closure and design analysis
after running the Plan, Place, Route, or Finalize stages of the Fitter. The Snapshot
Viewer allows you to run various analysis tasks from the Flow Navigator to achieve
faster timing closure and maximize design performance.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 85. Snapshot Viewer Flow Navigator

Folders Group Related
Commands for a Task

Commands Perform
Functions for the Task

Table 21. Snapshot Viewer Tasks and Commands

Design Task Available at
Snapshot

Snapshot Viewer Commands

Timing Closure—
Analyze Failing
Paths

Planned, Placed,
Routed, Finalized

• List Top Failing Paths—lists all top failing paths in Snapshot
Selections. Select a path to locate in RTL Viewer or Chip Planner.

• Show Full Timing Path in the Schematic—highlights the path in
RTL Viewer for further analysis.

• Show Full Timing Path in Timing Analyzer—The path loads in the
Timing Analyzer for further analysis.

Placed, Routed,
Finalized

• Show Full Timing Path in the Chip View—highlights the path in
Chip Planner for further analysis.

Timing Closure—
Analyze Clocking
This task is available
only for Stratix 10
devices.

Placed, Finalized Show Global Clock Visualization—loads the Global Signal
Visualization report for the snapshot that allows you to visualize clock
sector utilization.

Timing Closure—
Analyze High
Fanout Nets

Placed, Routed,
Finalized

• List High Fanout Nets—lists high fan-out nets in Snapshot
Selections. Select a path to locate in RTL Viewer or Chip Planner.

• Show High Fanout Nets in the Schematic—highlights the paths in
RTL Viewer for further analysis.

• Show High Fanout Nets in the Chip View—highlights the paths in
Chip Planner for further analysis.

Timing Closure—
Validate Constraints

Planned Timing Exceptions—displays the Timing Exceptions Results report that
identifies timing paths with hold or removal slack exceeding threshold.

Planned, Placed,
Finalized

Check Unregistered Ports—displays the Check Unregistered Ports
Results report that identifies unregistered partition inputs and paths.

Timing Closure—
Analyze Congestion

Placed, Routed,
Finalized

Show Logic Lock Regions with Congestion Heat Map—the Chip
Planner displays the Logic Lock regions in a congestion heat map for
further analysis.

The following sections describe each analysis task in detail.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Analyzing Failing Paths with Snapshot Viewer on page 109

Analyzing Clocking with Snapshot Viewer on page 111

Analyzing High Fan-out Nets with Snapshot Viewer on page 112

Validating Timing Constraints with Snapshot Viewer on page 112

Analyzing Congestion with Snapshot Viewer on page 113

1.9.2.1.1. Analyzing Failing Paths with Snapshot Viewer

1. To run the Plan, Place, or Route stage of the Fitter, double-click the stage in the
Compilation Dashboard.

2. After the stage completes, click the Snapshot Viewer icon for that stage in the
Compilation Dashboard. The Snapshot Viewer opens.

Figure 86. Snapshot Viewer Icon

Click Snapshot Viewer Icons
to Launch Snapshot Viewer

3. Under Analyze Failing Paths, click List Top Failing Paths.

Figure 87. List Top Failing Paths

4. In Snapshot Selections, select the failing path for analysis.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 88. Snapshot Selections

5. Under Select Failing Path to Analyze, click Show Full Timing Path in the
Chip View. The path displays and highlights in the Chip Planner for further
analysis.

6. Under Select Failing Path to Analyze, click Show Full Timing Path in
Schematic. The path displays and highlights in RTL Viewer for further analysis.

Figure 89. Show Full Timing Path in Schematic

7. Under Select Failing Path to Analyze, click View Path Characteristics. The
path loads in the Timing Analyzer for further analysis.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 90. View Path Characteristics in Timing Analyzer

1.9.2.1.2. Analyzing Clocking with Snapshot Viewer

This task is available only for Stratix 10 devices.

1. Run the Place stage, and then click the Snapshot Viewer icon for the stage in
the Compilation Dashboard. The Snapshot Viewer opens.

2. Under Analyze Clocking, double-click Show Global Clock Visualization. The
Global Signal Visualization report displays in Snapshot Viewer for analysis of clock
sector and routing utilization.

Figure 91. Global Clock Visualization Report

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.9.2.1.3. Analyzing High Fan-out Nets with Snapshot Viewer

1. To run the Place or Route stage of the Fitter, double-click the stage in the
Compilation Dashboard.

2. After the stage completes, click the Snapshot Viewer icon for that stage in the
Compilation Dashboard. The Snapshot Viewer opens.

3. Under Analyze High Fanout Nets, click Show High Fanout Nets in the
Schematic. The path displays and highlights in Tech Map Viewer for further
analysis.

4. Under Analyze High Fanout Nets, click Show High Fanout Nets in the Chip
View. The path displays and highlights in the Chip Planner for further analysis.

Figure 92. Non-Global High Fan-Out Signal in Chip Planner

1.9.2.1.4. Validating Timing Constraints with Snapshot Viewer

1. To run the Plan or Place stage of the Fitter, double-click the stage in the
Compilation Dashboard.

2. After the stage completes, click the Snapshot Viewer icon for that stage in the
Compilation Dashboard. The Snapshot Viewer opens.

3. Under Validate Constraints, double-click Timing Exceptions. The Timing
Exception Results report opens, allowing additional analysis and locating to other
tools.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 93. Validate Constraints—Timing Exceptions Report

Locate Nodes in other
Analysis Tools

4. Under Validate Constraints, double-click Check Unregistered Ports.

Figure 94. Validate Constraints—Check Unregistered Ports Report

Locate Nodes in other
Analysis Tools

1.9.2.1.5. Analyzing Congestion with Snapshot Viewer

1. To run the Place or Route stage of the Fitter, double-click the stage in the
Compilation Dashboard.

2. After the stage completes, click the Snapshot Viewer icon for that stage in the
Compilation Dashboard. The Snapshot Viewer opens.

3. Under Analyze Congestion, double-click Show Logic Lock Regions with
Congestion Heat Map. The Chip Planner displays the Logic Lock regions in a
congestion heat map for further analysis.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 95. Show Logic Lock Regions with Congestion Heat Map

Related Information

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer

• Intel Quartus Prime Pro Edition User Guide: Design Optimization

1.9.3. Validating Periphery (I/O) after the Plan Stage

The Compiler begins periphery placement during the Plan stage, and reports data
about periphery elements, such as I/O pins and PLLs. After the Plan stage, view the
Compilation Report to evaluate the placement of periphery elements before
proceeding to the next compilation stage.

Figure 96. Plan Stage Periphery Placement Message

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

114

https://www.intel.com/content/www/us/en/docs/programmable/683243/mwh1410383515225.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/design-optimization-overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the Compilation Dashboard, click the Plan stage.

2. In the Compilation Report, under the Plan Stage folder, click the Input Pins,
Output Pins, I/O Bank Usage, PLL Usage Summary, or other reports. Verify
attributes of the I/O pins, such as the physical pin location, I/O standards, and PLL
placement.

Figure 97. Input Pins Report

3. For Arria 10 and Cyclone 10 GX designs, click Global & Other Fast Signals
Summary report to verify which clocks the Compiler promotes to global clocks.
Clock planning occurs after the Plan stage for Stratix 10 and Agilex 7 designs.

Figure 98. Global & Other Fast Signals Report Shows Clock Promotion (Intel Arria 10
and Intel Cyclone 10 GX FPGAs)

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10. Fast Forward Compilation Flow

The Hyperflex architecture includes multiple Hyper-Registers in every routing segment
and block input. Maximizing the use of Hyper-Registers improves the balance of time
delays between registers, and mitigates critical path delays. Fast Forward compilation
generates design recommendations to help you to break performance bottlenecks and
maximize use of Hyper-Registers to drive the highest performance in Stratix 10 and
Agilex 7 designs.

Figure 99. Hyper-Registers in Hyperflex Architecture

ALM ALM

ALM ALM

Hyper-Registers in core fabric
Potential routing path

clk Configuration
CRAM

Hyper-Register Detail

The Fast Forward compilation reports show precisely where to make the most impact
with RTL changes, and the performance benefits you can expect from each change
after removing retiming restrictions. The Fast Forward compilation flow includes the
following high-level steps:

Figure 100. Fast Forward Compile Flow

Analyze
Timing

Fitter
Finalize

No

Yes

Review Retiming Results

Performance
 Met?

Run Fast Forward Compile

Performance
 Met?

Yes No

Register Retiming Fast Forward Compile
Run Synthesis, Fitter, and

Retime Stages
Review Recommendations

Modify RTL

1

2

3

4

5 Recompile the Design

1.10.1. Step 1: Run Register Retiming

Register retiming improves design performance by moving registers out of ALMs and
retimes them into Hyper-Registers in the Stratix 10 and Agilex 7 device interconnect.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Fitter runs the Retime stage automatically following place and route when you
target an Stratix 10 or Agilex 7 device. Alternatively, start or stop the individual
Retime stage in the Compilation Dashboard. After running register retiming, view the
Fitter reports to optimize remaining critical paths.

To run register retiming:

1. Click Retime on the Compilation Dashboard. The Compiler runs prerequisite
stages automatically before running Retime stage.

Figure 101. Retiming Stage in Compilation Dashboard

Click to
Run Flow

Click to Open
Stage Reports

2. Review the results of the register retiming stage, as Step 2: Review Retiming
Results on page 117 describes.

1.10.2. Step 2: Review Retiming Results

Follow these steps to review the results of register retiming. Use the results to
determine if additional performance improvements are necessary and possible by
removing retiming limits.

1. To open the Retiming Limit Details report, click the Report icon for the Retime
stage in the Compilation Dashboard. The Retiming Limit Details lists the
number of registers moved, their paths, and the limiting reason preventing further
retiming.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 102. Retiming Limit Details

Retiming Limit Condition

Details of Critical ChainRight-click to locate in viewer

2. To further optimize, resolve any Limiting Reason in your design, and then rerun
the Retime stage, as necessary.

Table 22. Retiming Limit Details Report Data

Report Data Description

Clock Transfer Lists each clock domain in your design. Click the domain to display data about each entry.

Limiting Reason Specifies any design condition that prevent further register retiming improvement, such as
any of the following conditions:
• Insufficient Registers—indicates insufficient quantity of registers at either end of the

chain for retiming. Adding more registers can improve performance.
• Short Path/Long Path—indicates that the critical chain has dependent paths with

conflicting characteristics. For example, one path improves performance with more
registers, and another path has no place for additional hyper-registers.

• Path Limit—indicates that there are no further Hyper-Register locations available on the
critical path, or the design reached a performance limit of the current place and route.

• Loops—indicates a feedback path in a circuit. When the critical chain includes a feedback
loop, retiming cannot change the number of registers in the loop without changing
functionality. The Compiler can retime around the loop without changing functionality.
However, the Compiler cannot place additional registers in the loop.

Critical Chain Details Lists register timing path associated with the retiming limitations. Right-click any path to
Locate Critical Chain in Technology Map Viewer.

3. If register retiming achieves all performance goals for your design, proceed to
Fitter (Finalize) and Timing Analysis stages of compilation.

4. If your design requires further optimization, run Fast Forward Timing Closure
Recommendations as Step 3: Run Fast Forward Compile on page 120 describes.

1.10.2.1. Locate Critical Chains

The Retiming Limit Details report shows the design paths that limit further register
retiming. Right-click any path to locate the path in the Technology Map Viewer - Post-
fitting view. This viewer displays a schematic representation of the complete design
after place, route, and register retiming. To view the retimed netlist in the Technology
Map Viewer, follow these steps:

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To open the Retiming Limit Details report, click the Report icon next to the
Retime stage in the Compilation Dashboard.

2. Right-click any path in the Retiming Limit Details report and click Locate
Critical Chain in Technology Map Viewer. The netlist displays as a schematic
in the Technology Map Viewer.

Figure 103. Technology Map Viewer

Figure 104. Post-Fit Viewer After Retiming
In the post-fit viewer, bypassed ALM registers are gray. Hyper-Registers are pink with the word "HYPER" below
them. Used ALMs are pink without the word "HYPER" below them

Hyper-RegisterBypassed ALM Registers

Used ALM Register

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10.3. Step 3: Run Fast Forward Compile

Fast Forward compilation generates design-specific timing closure recommendations,
and predicts the maximum performance after the removal of all timing restrictions.

You can review the Fast Forward recommendations and implement the changes in your
RTL that remove timing restrictions and enable mobility within the netlist for register
Hyper-Retiming.

You can run Fast Forward compilation for the entire design hierarchy, or for only
specific instances in the hierarchy, as Fast Forward Compile By Hierarchy on page 121
describes.

To generate Fast Forward timing closure recommendations, follow these steps:

1. Optionally, specify any of the following options if you want to automate or refine
Fast Forward analysis:

• If you want to run Fast Forward compilation during each full compilation, click
Assignments ➤ Settings ➤ Compiler Settings ➤ HyperFlex and enable
Run Fast Forward Timing Closure Recommendations during
compilation.

• If you want to modify how Fast Forward compilation interprets specific I/O and
block types, click Assignments ➤ Settings ➤ Compiler Settings ➤
HyperFlex ➤ Advanced Settings.

2. On the Compilation Dashboard, click Fast Forward Timing Closure
Recommendations. The Compiler runs prerequisite synthesis or Fitter stages
automatically, as needed, and generates timing closure recommendations in the
Compilation Report.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 105. Running Fast Forward Compilation

3. View timing closure recommendations in the Compilation Report to evaluate
design performance and implement key RTL performance improvements, as Step
4: Review Fast Forward Results on page 124 describes.

1.10.3.1. Fast Forward Compile By Hierarchy

When enabled, Fast Forward compile runs on the entire design hierarchy by default.
Optionally, you can specify the Enable Hyper-Retimer Fast Forward Hierarchy
analysis during compilation assignment to include or exclude specific design
subhierarchies and instances during Fast Forward compile. This technique allows you
to focus Fast Forward reporting and optimization efforts on only specific areas of the
design. Fast Forward compilation by hierarchy generates the same reports as Fast
Forward compilation of the entire hierarchy.

Follow these steps to include or exclude specific design subhierarchies and instances
during Fast Forward compilation:

1. To enable the optional Fast Forward Compilation stage during full compilation, turn
on Fast Forward Timing Closure Recommendations on the Compilation
Dashboard, or add the following assignment to the project .qsf:

set_global_assignment -name FLOW_ENABLE_HYPER_RETIMER_FAST_FORWARD ON

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 106. Enable Fast Forward Timing Closure Recommendations

2. To exclude a specific hierarchy or entity from Fast Forward Compilation, set the
Enable Hyper-Retimer Fast Forward Hierarchy analysis during compilation
assignment to Off in the Assignment Editor, or add the following assignment to
the project .qsf for each hierarchy or entity that you want to exclude:

set_global_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY OFF \
 <INSTANCE MODULE NAME>

3. To include a specific hierarchy or entity from Fast Forward Compilation, set the
Enable Hyper-Retimer Fast Forward Hierarchy analysis during compilation
assignment to On in the Assignment Editor, or add the following assignment to the
project .qsf for each hierarchy or entity that you want to include:

set_global_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY ON \
 <INSTANCE MODULE NAME>

4. Click the Fast Forward Timing Closure Recommendations stage on the
Compilation Dashboard, or click Processing ➤ Start Compilation to run a full
compilation that includes Fast Forward Compile.

You can mix ON and OFF assignments for the same instance within a single .qsf. If
you assign mixed ON and OFF assignments to the same instance, the last assignment
that appears in the .qsf takes precedence.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you want to perform Fast Forward analysis for a subset of the hierarchies in your
design, turn off Fast Forward analysis for all hierarchies that you want to omit from
analysis. Otherwise, turn off Fast Forward analysis at the root hierarchy, and turn on
Fast Forward analysis for the hierarchies that you want to analyze. The following
examples show some of these assignment combinations, with respect to the Example
Design Hierarchy.

Figure 107. Example Design Hierarchy

A

B C D

E F

This runs Fast Forward Compile on the entire hierarchy: A,B,C,D,E,F
This produces the same result as if FAST_FORWARD_HIERARCHY was not set in the
QSF

set_global_assignment -name FLOW_ENABLE_HYPER_RETIMER_FAST_FORWARD ON
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY ON -to |

Runs Fast Forward Compile on B and E only, ignores A,C,D,F

set_global_assignment -name FLOW_ENABLE_HYPER_RETIMER_FAST_FORWARD ON
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY OFF -to |
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY ON -to B

Runs Fast Forward Compile on C only, ignores A,B,D,E,F

set_global_assignment -name FLOW_ENABLE_HYPER_RETIMER_FAST_FORWARD ON
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY OFF -to |
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY ON -to C
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY OFF -to F

ON instance HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY takes precedence
Fast Forward Compile runs on only C and F
If the assignments were reversed then FFC would not run

set_global_assignment -name FLOW_ENABLE_HYPER_RETIMER_FAST_FORWARD ON
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY OFF -to |
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY OFF -to C
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY ON -to C

This runs on A,B,C,F

set_global_assignment -name FLOW_ENABLE_HYPER_RETIMER_FAST_FORWARD ON
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY OFF -to D
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ON_HIERARCHY OFF -to E

Note: Instance assignments apply to the post-fit netlist. Therefore, you may need to define
design partitions. Otherwise, instance names can change during synthesis, leading to
unexpected assignment results. Refer to Creating a Design Partition on page 140.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10.3.2. HyperFlex Settings

The HyperFlex settings page controls whether Fast Forward Compilation analyzes and
reports results for specific logical structures in the Hyperflex architecture. You access
this page by clicking Assignments ➤ Settings ➤ HyperFlex. Turn on Run Fast
Forward Timing Closure Recommendations during compilation to enable Fast
Forward analysis during the compilation flow by default. To access the following
additional settings, click Advanced Settings.

Table 23. Advanced HyperFlex Settings

Option Description

Fast Forward Compile
Asynchronous Clears

Specifies how Fast Forward analysis accounts for registers with asynchronous clear signals.
The options are:
• Auto—the Compiler identifies asynchronous clears as asynchronous until they limit

timing performance during Fast Forward Compilation, at which point the Compiler
identifies the asynchronous clears as removed.

• Preserve—the Compiler never assumes removal or conversion of asynchronous clears
for Fast Forward analysis.

Fast Forward Compile
Cut All Clock Transfers

Cuts all clock transfers in Fast Forward Compilation analysis.

Fast Forward Compile
Fully Registered DSP
Blocks

Specifies how Fast Forward analysis accounts for DSP blocks that limit performance. Enable
this option to generate results as if all DSP blocks are fully registered.

Fast Forward Compile
Fully Registered RAM
Blocks

Specifies how Fast Forward analysis accounts for RAM blocks that limit performance. Enable
this option to analyze the blocks as fully registered.

Fast Forward Compile
Maximum Additional
Pipeline Stages

Specifies the maximum number of pipeline stages that Fast Forward compilation explores.

Fast Forward Compile
User Preserve Directives

Specifies how Fast Forward compilation accounts for restrictions from user-preserve
directives.

1.10.4. Step 4: Review Fast Forward Results

After running Fast Forward Compilation, review the reports in the Fast Forward
Timing Closure Recommendations folder of the Compilation Report to determine
which recommendations are appropriate and practical for your design functionality and
performance goals. The following section describes these reports.

Related Information

Hyperflex Architecture High-Performance Design Handbook

1.10.4.1. Clock Fmax Summary Report

The Clock Fmax Summary in the Fast Forward Timing Closure Recommendations
report folder reports the current fmax and potential performance achievable for each
clock domain after Hyper-Retiming, Hyper-Pipelining, and Hyper-Optimization steps.
Review the Clock Fmax Summary data to determine whether each potential
performance improvement warrants further investigation and potential optimization of
design RTL.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

124

https://www.intel.com/content/www/us/en/docs/programmable/683353.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 108. Current and Potential Performance in Clock Fmax Summary

Predicts Optimized Performance After
Hyper-Retiming, Hyper-Pipelining, and Hyper-Optimization

Related Information

Viewing Clocks in the Timing Analyzer
in Hyperflex Architecture High-Performance Design Handbook

1.10.4.2. Fast Forward Details Report

The Fast Forward Details report recommends the design modifications necessary to
achieve Fast Forward compilation performance levels. Some recommendations might
be functionally impossible or impractical for your design. Consider the
recommendations that you can implement in RTL to achieve similar performance
improvement.

Click any optimization Step in the report to view the implementation details and
performance calculations for that step.

To illustrate the effectiveness of Fast Forward Timing Closure recommendations in
enhancing the timing of your design, consider the following simple design composed of
adders, multipliers, and registers:

Figure 109. Simple Design with Adders, Multipliers, and Registers

Initially, this design is required to meet a maximum frequency of 800MHz. However,
due to certain constraints, the maximum frequency is currently limited to 388.5MHz.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

125

https://www.intel.com/content/www/us/en/docs/programmable/683353/current/viewing-clocks-in-the.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Upon executing the Fast Forward Timing Closure recommendations, proceed to review
the Fast Forward Details Report. Within this report, you can find a breakdown of the
optimization steps aimed at improving timing, as shown in the following image:

Figure 110. Fast-Forward Details Report

The Optimizations Analyzed tab shows two primary recommendations: adding
pipeline stages in 50 paths and fully registering four DSP blocks. View the
Recommendations for Critical Chain tab for specific guidance on implementing
these optimizations at the RTL level.

Figure 111. Recommendations for Critical Chain

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Additionally, explore the Critical Chain Details tab for a comprehensive description
of the elements constituting the critical chain.

Figure 112. Critical Chain Details

Refer to the following table for further details on each field:

Table 24. Fast Forward Details Report Data

Report Field Description

Step Displays the pre-optimized Base Performance fMAX, the recommended Fast
Forward optimization steps, and the Fast Forward Limit critical path that
prevents further optimization.

Fast Forward Optimizations Analyzed Summarizes the optimizations necessary to implement each optimization
step.

Estimated Fmax Specifies the potential fMAX performance if you implement all Fast Forward
optimization steps.

Optimizations Analyzed For Fast
Forward Step

Lists design recommendations hierarchically for the selected Step. Click the
text to expand the report and view the clock domain, the affected module,
and the bus and bits that require modification.

Optimizations Analyzed (Cumulative) Accumulated list of all design changes necessary to reach the selected Step.

Critical Chain at Fast Forward Limit Displays information about any path that continues to limit Hyper-Retiming
even after application of all Fast Forward steps. The critical chain is any path
that limits further Hyper-Retiming. Click the Fast Forward Limit step to
display this field.

Recommendations for Critical Chain Lists register timing path associated with the retiming limitations. Right-click
any path to Locate Critical Chain in Fast Forward Viewer.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For a deeper analysis of the critical chains' structure, utilize the Fast Forward Viewer's
cross-probing feature, as shown in the following image:

Figure 113. Locate Critical Chain in Fast Forward Viewer

Figure 114. Fast Forward Viewer Shows Predictive Results

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Based on the recommendations of the Fast Forward Details report, for this example,
implement additional registers in the DSP blocks and an additional pipeline stage
between reg_output_2 and output. When you implement these modifications, the
updated design takes the following form:

Figure 115. Design Modification

By repeating the compilation process and conducting a thorough analysis using the
Timing Analyzer, you can observe tangible improvements in the timing performance of
your designs.

Although some of the Fast Forward Timing Closure recommendations may present
challenges in practical implementation within complex designs, they nonetheless offer
valuable insights and opportunities for analysis. These recommendations serve as a
valuable addition to your design optimization, providing a fresh perspective and
uncovering potential ways for enhancing timing performance.

Related Information

Interpreting Critical Chain Reports
in Hyperflex Architecture High-Performance Design Handbook

1.10.5. Step 5: Implement Fast Forward Recommendations

Implement the Fast Forward timing closure recommendations in your design RTL and
rerun synthesis and the Retime stage to perform Hyper-Retiming and realize the
predictive performance gains. The amount and type of changes that you implement
depends on your performance goals. For example, if you can achieve the target fMAX
with simple asynchronous clear removal or conversion, you can stop design
optimization after making those changes. For more information, refer to Retiming
Restrictions and Workarounds on page 130.

1. Implement one or more Fast Forward recommendations in your design RTL, such
as any of the following techniques:

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

129

https://www.intel.com/content/www/us/en/docs/programmable/683353/current/interpreting-critical-chain-reports.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Remove limitations of control logic, such as long feedback loops and state
machines.

• Restructure logic to use functionally equivalent feed-forward or pre-compute
paths, rather than long combinatorial feedback paths.

• Reduce the delay of ‘Long Paths’ in the chain. Use standard timing closure
techniques to reduce delay. Excessive combinational logic, sub-optimal
placement, and routing congestion cause delay on paths.

• Insert more pipeline stages in ‘Long Paths’ in the chain. Long paths have the
most delay between registers in the critical chain.

• Increase the delay (or add pipeline stages to ‘Short Paths’ in the chain).

• Explore performance and implement the RTL changes to your code until you
reach the desired performance target.

2. Implement your RTL changes and perform Hyper-Retiming by re-running the
Retime stage on the Compilation Dashboard (which also reruns prerequisite
synthesis and fitting stages).

1.10.6. Retiming Restrictions and Workarounds

The Compiler identifies the register chains in your design that limit further
optimization through Hyper-Retiming. The Compiler refers to these related register-to-
register paths as a critical chain. The fMAX of the critical chain and its associated clock
domain is limited by the average delay of a register-to-register path, and quantization
delays of indivisible circuit elements like routing wires. There are a variety of
situations that cause retiming restrictions. Retiming restrictions exist because of
hardware characteristics, software behavior, or are inherent to the design. The
Retiming Limit Details report the limiting reasons preventing further retiming, and
the registers and combinational nodes that comprise the chain. The Fast Forward
recommendations list the steps you can take to remove critical chains and enable
additional register retiming.

In the diagram of a simple critical chain that follows, the red line represents the same
critical chain. Timing restrictions prevent register A from retiming forward. Timing
restrictions also prevent register B from retiming backwards. A loop occurs when
register A and register B are the same register.

Figure 116. Sample Critical Chain

A B

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Particular registers in critical chains can limit performance for many other reasons.
The Compiler classifies the following types of reasons that limit further optimization by
retiming:

• Insufficient Registers—indicates insufficient quantity of registers at either end
of the chain for retiming. Adding more registers can improve performance.

• Short Path/Long Path—indicates that the critical chain has dependent paths
with conflicting characteristics. For example, one path improves performance with
more registers, and another path has no place for additional hyper-registers.

• Path Limit—indicates that there are no further Hyper-Register locations available
on the critical path, or the design reached a performance limit of the current place
and route.

• Loops—indicates a feedback path in a circuit. When the critical chain includes a
feedback loop, retiming cannot change the number of registers in the loop without
changing functionality. The Compiler can retime around the loop without changing
functionality. However, the Compiler cannot place additional registers in the loop.

After understanding why a particular critical chain limits your design’s performance,
you can then make RTL changes to eliminate that bottleneck and increase
performance.

Table 25. Hyper-Register Support for Various Design Conditions

Design Condition Hyper-Register Support

Initial conditions that cannot be preserved Hyper-Registers do have initial condition support. However, you cannot
perform some retiming operations while preserving the initial condition stage
of all registers (that is, the merging and duplicating of Hyper-Registers). If
this condition occurs in the design, the Fitter does not retime those registers.
This retiming limit ensures that the register retiming does not affect design
functionality.

Register has an asynchronous clear Hyper-Registers support only data and clock inputs. Hyper-Registers do not
have control signals such as asynchronous clears, presets, or enables. The
Fitter cannot retime any register that has an asynchronous clear. Use
asynchronous clears only when necessary, such as state machines or control
logic. Often, you can avoid or remove asynchronous clears from large parts
of a datapath.

Register drives an asynchronous signal This design condition is inherent to any design that uses asynchronous
resets. Focus on reducing the number of registers that are reset with an
asynchronous clear.

Register has don’t touch or preserve
attributes

The Compiler does not retime registers with these attributes. If you use the
preserve attribute to manage register duplication for high fan-out signals,
try removing the preserve attribute. The Compiler may be able to retime
the high fan-out register along each of the routing paths to its destinations.
Alternatively, use the dont_merge attribute. The Compiler retimes registers
in ALMs, DDIOs, single port RAMs, and DSP blocks.

Register is a clock source This design condition is uncommon, especially for performance-critical parts
of a design. If this retiming restriction prevents you from achieving the
required performance, consider whether a PLL can generate the clock, rather
than a register.

Register is a partition boundary This condition is inherent to any design that uses design partitions. If this
retiming restriction prevents you from achieving the required performance,
add additional registers inside the partition boundary for Hyper-Retiming.

Register is a block type modified by an
ECO operation

This restriction is uncommon. Avoid the restriction by making the functional
change in the design source and recompiling, rather than performing an
ECO.

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Condition Hyper-Register Support

Register location is an unknown block This restriction is uncommon. You can often work around this condition by
adding extra registers adjacent to the specified block type.

Register is described in the RTL as a latch Hyper-Registers cannot implement latches. The Compiler infers latches
because of RTL coding issues, such as incomplete assignments. If you do not
intend to implement a latch, change the RTL.

Register location is at an I/O boundary All designs contain I/O, but you can add additional pipeline stages next to
the I/O boundary for Hyper-Retiming.

Combinational node is fed by a special
source

This condition is uncommon, especially for performance-critical parts of a
design.

Register is driven by a locally routed clock Only the dedicated clock network clocks Hyper-Registers. Using the routing
fabric to distribute clock signals is uncommon, especially for performance-
critical parts of a design. Consider implementing a small clock region instead.

Register is a timing exception end-point The Compiler does not retime registers that are sources or destinations
of .sdc constraints.

Register with inverted input or output This condition is uncommon.

Register is part of a synchronizer chain The Fitter optimizes synchronizer chains to increase the mean time between
failure (MTBF), and the Compiler does not retime registers that are detected
or marked as part of a synchronizer chain. Add more pipeline stages at the
clock domain boundary adjacent to the synchronizer chain to provide
flexibility for the retiming. Alternatively, you can reduce the detection
number for that particular synchronizer chain Synchronization Register
Chain Length (default is 3). In some cases a synchronizer chain isn't
necessary, and shouldn't be inferred.

Register with multiple period requirements
for paths that start or end at the register
(cross-clock boundary)

This situation occurs at any cross-clock boundary, where a register latches
data on a clock at one frequency, and fans out to registers running at
another frequency. The Compiler does not retime registers at cross-clock
boundaries. Consider adding additional pipeline stages at one side of the
clock domain boundary, or the other, to provide flexibility for retiming.

1.11. Full Compilation Flow

Use these steps to run a full compilation of an Quartus Prime project. A full
compilation includes IP Generation, Analysis & Elaboration, Synthesis, Early Timing
Analysis, Fitter, Timing Analyzer, and any optional Compiler modules you enable.

1. Before running a full compilation, specify any of the following project settings:

• To specify the target FPGA device or development kit, click Assignments ➤
Device.

• To specify device and pin options for the target FPGA device, click
Assignments ➤ Device ➤ Device and Pin Options.

• To specify options that affect compilation processing time and netlist
preservation, click Assignments ➤ Settings ➤ Compilation Process
Settings.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To specify the Compiler's high-level optimization strategy, click Assignments
➤ Settings ➤ Compiler Settings. Specify a Balanced strategy, or optimize
for Performance, Area, Routability, Power, or Compile Time. The
Compiler targets the optimization goal you specify. Compiler Optimization
Modes on page 149 describes these options in detail.

For projects with a long compilation time, consider running full compilations
with temporarily modified compiler optimization strategies without changing
the project compiler settings. For details, see Full Compilation Flow with
Temporary Optimization Mode on page 133.

• To specify synthesis algorithm and other Advanced Settings for synthesis
and fitting, click Assignments ➤ Settings ➤ Compiler Settings. Turn on
Enable Intermediate Fitter Snapshots to preserve the planned, placed,
routed, and retimed snapshots by default during full compilation.

• To specify required timing conditions for proper operation of your design, click
Tools ➤ Timing Analyzer.

2. To run full compilation, click Processing ➤ Start Compilation.

Note: • To save processing time, the Compiler only preserves the planned,
placed, routed, and retimed snapshots during full compilation if you turn
on Enable Intermediate Fitter Snapshots (Assignments ➤
Settings ➤ Compiler Settings).

Related Information

• Full Compilation Flow with Temporary Optimization Mode on page 133

• Intel Quartus Prime Pro Edition User Guide: Design Constraints

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer

• Intel Quartus Prime Pro Edition User Guide: Programmer
For complete information about generating device programming files with the
Assembler and running the Quartus Prime Programmer.

1.11.1. Full Compilation Flow with Temporary Optimization Mode

You can run a full compilation flow that temporarily overrides the compiler
optimization mode set in the Quartus settings file (.qsf) for your design. The
optimization mode set for your project in your settings file does not change and
remains the default compilation strategy for your project.

Overriding the compiler optimization mode set in your project can be helpful when
your project has long compile times and you want to quickly produce a bitstream for
on-chip testing.

To run a full compilation with a temporary optimization mode, select a compilation
mode from the Processing ➤ Start Optimization Mode Compilation menu in the
Quartus Prime Pro Edition GUI.

The following temporary optimization mode compilation flows are available in the
Start Optimization Mode Compilation menu:

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

133

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/interface-planning.html
https://www.intel.com/content/www/us/en/docs/programmable/683243/current/timing-analysis-introduction.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Start Aggressive Compile Time Optimization Mode Compilation

In this optimization mode, the Compiler reduces its performance optimization
efforts and performs minimal reporting to provide a shorter compilation time.

• Start Fast Functional Test Optimization Mode Compilation

In this optimization mode, the Compiler minimizes its setup-timing optimization
efforts to provide an even shorter compilation time.

The selected optimization mode is enabled only for the duration of the compilation.
After the compilation completes, Quartus Prime returns to the compilation
optimization strategy that is set in the project settings.

Tip: You can customize the Quartus Prime Processing toolbar to include buttons for any of
these temporary optimization mode compilations.

Important: With these optimization modes, the clocks in the resulting compilation might not meet
setup. You might need to slow down the clocks on your design, such as by using PLL
ECOs post-compile, before generating the bitstream.

Related Information

• Compiler Optimization Modes on page 149

• Temporarily Overriding the Compiler Optimization Mode for a Compilation in Intel
Quartus Prime Pro Edition User Guide: Scripting

• Using the ECO Compilation Flow

1.12. Compilation Monitoring Mode

You can compile your design using the command-line interface (CLI) and the
interactive Quartus Prime Pro Edition GUI.

• The CLI is generally helpful when your design is part of a larger script-based
environment or the compilation is expected to take a significant amount of time. A
log file is produced that you can examine at a later stage. However, it is difficult to
examine and scroll through the textual output generated during a very long
compilation. In such cases, use the Monitoring Mode.

• The GUI presents the entire flow of a design along with tools and utilities for
design, configuration, and debugging. The entire design is assumed to be
contained in a single project directory.

Monitoring Mode

With the “Monitoring Mode,” you can bring up the Quartus Prime Pro Edition GUI,
connect to a project whose compilation has already been initiated on the CLI, and
monitor the execution of the compilation in the GUI. It helps examine compilation-
related messages in the interactive message window of the GUI, and in general,
interact with the GUI in the same way as you would in the CLI. You can also view
reports, view messages, and cross-probe to source files.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

134

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/temporarily-overriding-the-compiler.html
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/temporarily-overriding-the-compiler.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To use the Monitoring Mode, perform these steps:

1. Start compiling your project through the CLI. For more information, refer to
Compilation with quartus_sh --flow in the Quartus Prime Pro Edition Scripting
User Guide.

2. Launch the Quartus Prime Pro Edition GUI.

3. Open the same project in the GUI that you are already compiling in the CLI. The
Monitor Mode dialog appears, as shown in the following image:

Figure 117. Monitoring Mode

4. Select Open project and monitor the selected compiling revision and click
OK. The Compilation Dashboard appears, displaying the status of the compilation,
as shown in the following image:

Note: Selecting Open project opens the project in the non-monitoring mode, but
doing so might lead to design conflicts, where the underlying database
might change unexpectedly and get corrupted. Selecting Don't open
project cancels launching the project in the GUI.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

135

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/compilation-with-quartus-sh-flow.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 118. Monitoring the Compilation

Once the compilation ends, the Monitoring Mode Ended message appears on
the GUI, indicating you can continue in the GUI and perform other operations on
your project.

Guidelines for Using the Monitoring Mode

Consider the following when using the monitoring mode:

• You can start and exit the Quartus Prime Pro Edition GUI in monitoring mode as
often as you like without affecting the progress of the compilation underway.

• If you are compiling multiple revisions of a project simultaneously, you can choose
which revision compilation to monitor.

• You cannot stop a monitored compilation in the GUI. You must stop it from the
CLI.

• After a monitored compilation finishes, the Quartus Prime Pro Edition GUI
automatically switches out of monitoring mode. However, if a new command-line
compilation for the same project and revision starts, you are prompted to reenter
the monitoring mode.

• If you are currently compiling a project and revision from the CLI and open that
design in the GUI without choosing the monitoring mode, you might cause design
conflicts and corrupt the compilation database.

• For a project being compiled, the project shown when the GUI is not in the
monitoring mode might not reflect the most recent state of the project.

• If you launch a new compilation of the project, the new compilation can corrupt
the command-line compilation.

Related Information

Compilation with quartus_sh --flow in Intel Quartus Prime Pro Edition User Guide:
Scripting

1.13. Exporting Compilation Results

The Quartus Prime Compiler writes the results to a set of database files. You can run a
command to export the compilation results database as a single Quartus Database File
(.qdb).

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

136

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/compilation-with-quartus-sh-flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/compilation-with-quartus-sh-flow.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

After running design compilation, the exported .qdb file contains the data to
reproduce similar compilation results in another project, or in a later software version.
You can export your project's compilation results database for import to another
project or migration to a later Quartus Prime software version.

You can export the .qdb for your entire project or for a design partition that you
define in your project. When migrating the database for an entire project, you can
export the compilation database in a version-compatible format to ensure
compatibility for import to a later software version. Although you cannot directly read
the contents of the .qdb file after export, you can view attributes of the database file
in the Quartus Database File Viewer.

Table 26. Exporting Compilation Results

To Export
Compilation Results

For

Method Description

Complete Design Click Project ➤ Export Design Saves compilation results for the current project revision in
a version-compatible Quartus database file (.qdb) that
you can import to another project or migrate to a later
version of the Quartus Prime software. You can export the
results for the synthesized or final compilation snapshot.
Note: Not supported for Agilex 7 devices.

Design Partition Click Project ➤ Export Design
Partition

Saves compilation results for a design partition as a
Partition Database File (.qdb) that you can import to
another project using the same version of the Quartus
Prime software. You can export the results for the
synthesized or final compilation snapshot.

Related Information

• Archiving Projects

• Creating Database-Only Archives

1.13.1. Exporting a Version-Compatible Compilation Database

You can export a project compilation database to a format that ensures version-
compatibility with a later version of the Quartus Prime software. The Quartus Prime
Pro Edition software version supports export of version-compatible databases for the
following software versions and devices:

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

137

https://www.intel.com/content/www/us/en/docs/programmable/683463/current/archiving-projects.html
https://www.intel.com/content/www/us/en/docs/programmable/683463/current/creating-database-only-archives.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 27. Version-Compatible Compilation Database Support
The first table column indicates the first version to support version-compatible compilation database export for
the specified devices.

Note: • Database import supports two major versions back. For example, a database that you
export from version 19.3, you can then import using version 19.3, 20.1, and 20.3.
However, you cannot import version 19.3 to 21.1.

• You can export from any version that follows a supported version, if the version still
supports the devices.

First Version with 'Export
Design' Support

Stratix 10 and Devices Arria 10 and Cyclone 10 GX Devices

18.0 No Support. Supports all devices.

18.1 • 1SG250L
• 1SG280H_S2
• 1SG280L
• 1SG280L_S3
• 1SX250L
• 1SX280L
• 1SX280L_S3

Supports all devices.

19.1 • 1SM16BH
• 1SM21BH
• 1SM16CH
• 1SM21CH
• 1SM21KH
• 1SM16KH
• 1SM21LH
• 1SM16LH

Supports all devices.

19.3 • 1SG10MH_U1
• 1SG10MH_U2
• 1ST250E
• 1ST280E
• 1SM16E
• 1SM21E
• 1ST165E
• 1ST210E
• 1SG166H
• 1SG211H

Supports all devices.

20.1 • 1SD280P
• 1ST040E
• 1ST085E
• 1ST110E

Supports all devices.

20.3 • 1SD21BP
• 1SG040H
• 1SX040H

Supports all devices.

20.4 • 1SN21BH
• 1SN21CE

Supports all devices.

1. In the Quartus Prime software, open the project that you want to export.

2. Generate synthesis or final compilation results by running one of the following
commands:

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Click Processing ➤ Start ➤ Start Analysis & Synthesis to generate
synthesized compilation results.

• Click Processing ➤ Start Compilation to generate final compilation results.

3. Click Project ➤ Export Design. Select the synthesized or final Snapshot.

Figure 119. Export Design Dialog Box

4. Specify a name for the Quartus Database File to contain the exported results,
and click OK.

5. To include the exported design's settings and constraint files, copy the .qsf
and .sdc files to the import project directory.

1.13.2. Importing a Version-Compatible Compilation Database

Follow these steps to import a project compilation database into a newer version of
the Quartus Prime software:

Note: Designs exported from the Quartus Prime Pro Edition software versions 23.2 or earlier
cannot be imported into version 23.3 due to the new DNI database.

1. Export a version-compatible compilation database for a complete design, as
Exporting a Version-Compatible Compilation Database on page 137 describes.

2. In a newer version of the Quartus Prime software, open the original project. Click
Yes if prompted to open a project created with a different software version.

3. Click Project ➤ Import Design and specify the Quartus Database File. To
remove previous results, turn on Overwrite existing project's databases

Figure 120. Import Design Dialog Box

4. Click OK. When you compile the imported design, run only Compiler stages that
occur after the stage the .qdb preserves, rather than running a full compilation.
For example, if you import a version-compatible database that contains the
synthesized snapshot, start compilation with the Fitter (Processing ➤ Start ➤

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

139

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Start Fitter). If you import a version-compatible database that contains the final
snapshot, start compilation with Timing Analysis (Signoff) (Processing ➤ Start ➤
Start Timing Analysis (Signoff)).

Related Information

Design Netlist Infrastructure on page 10

1.13.3. Creating a Design Partition

A design partition is a logical, named, hierarchical boundary that you can assign to an
instance in your design. Defining a design partition allows you to optimize and lock
down the compilation results for individual blocks. You can then optionally export the
compilation results of a design partition for reuse in another context, such as reuse in
another project.

Figure 121. Design Partitions in Design Hierarchy

A

B C

D E F

Root Partition

Partition B Partition F
Follow these steps to create and modify design partitions:

1. In the Quartus Prime software, open the project that you want to partition.

2. Generate synthesis or final compilation results by running one of the following
commands:

• Click Processing ➤ Start ➤ Start Analysis & Synthesis to generate
synthesized compilation results.

• Click Processing ➤ Start Compilation to generate final compilation results.

3. In the Project Navigator, right-click an instance in the Hierarchy tab, click Design
Partition ➤ Set as Design Partition.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 122. Creating a Design Partition from the Project Hierarchy

4. To view and edit all design partitions in the project, click Assignments ➤ Design
Partitions Window.

Figure 123. Design Partitions Window

5. Specify the properties of the design partition in the Design Partitions Window. The
following settings are available:

Table 28. Design Partition Settings

Option Description

Partition Name Specifies the partition name. Each partition name must be unique and consist of only
alphanumeric characters. The Quartus Prime software automatically creates a top-level (|)
"root_partition" for each project revision.

Hierarchy Path Specifies the hierarchy path of the entity instance that you assign to the partition. You specify
this value in the Create New Partition dialog box. The root partition hierarchy path is |.

Type Double-click to specify one of the following partition types that control how the Compiler
processes and implements the partition:
• Default—Identifies a standard partition. The Compiler processes the partition using the

associated design source files.
• Reconfigurable—Identifies a reconfigurable partition in a partial reconfiguration flow.

Specify the Reconfigurable type to preserve synthesis results, while allowing refit of the
partition in the PR flow.

• Reserved Core—Identifies a partition in a block-based design flow that is reserved for
core development by a Consumer reusing the device periphery.

Empty Specifies an empty partition that the Compiler skips. This setting is incompatible with the
Reserved Core and Partition Database File settings for the same partition.

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Partition Database File Specifies a Partition Database File (.qdb) that the Compiler uses during compilation of the
partition. You export the .qdb for the stage of compilation that you want to reuse
(synthesized or final). Assign the .qdb to a partition to reuse those results in another context.

Entity Re-binding • PR Flow—specifies the entity that replaces the default persona in each implementation
revision.

• Root Partition Reuse Flow —specifies the entity that replaces the reserved core logic in the
consumer project.

Color Specifies the color-coding of the partition in the Chip Planner and Design Partition Planner
displays.

Post Synthesis Export
File

Automatically exports post-synthesis compilation results for the partition to the specified .qdb
file each time Analysis & Synthesis runs. You can automatically export any design partition
that does not have a preserved parent partition, including the root_partition.

Post Final Export File Automatically exports post-final compilation results for the partition to the specified .qdb file
each time the final stage of the Fitter runs. You can automatically export any design partition
that does not have a preserved parent partition, including the root_partition.

1.13.4. Exporting a Design Partition

The following steps describe export of design partitions that you create in your
project.

Note: Design partitions exported from the Quartus Prime Pro Edition software versions 23.2
or earlier cannot be imported into version 23.3 or later due to the new DNI database.

When you compile a design containing design partitions, the Compiler can preserve a
synthesis or final snapshot of results for each partition. You can export the
synthesized or final compilation results for individual design partitions with the Export
Design Partition dialog box.

If the partition includes any entity-bound .sdc files, you can include those constraints
in the .qdb. In addition, you can automate export of one or more partitions in the
Design Partitions Window.

Manual Design Partition Export

Follow these steps to manually export a design partition with the Export Design
Partition dialog box:

1. Open a project and create one or more design partitions. Creating a Design
Partition on page 140 describes this process.

2. Run synthesis (Processing ➤ Start ➤ Start Analysis & Synthesis) or full
compilation (Processing ➤ Start Compilation), depending on which compilation
results that you want to export.

3. Click Project ➤ Export Design Partition, and specify one or more options in the
Export Design Partition dialog box:

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 124. Export Design Partition Dialog Box

• Select the Partition name and the compilation Snapshot for export.

• To include any entity-bound .sdc files in the exported .qdb, turn on Include
entity-bound SDC files for the selected partition.

4. Click OK. The compilation results for the design partition exports to the file that
you specify.

Automated Design Partition Export

Follow these steps to automatically export one or more design partitions following
each compilation:

1. Open a project containing one or more design partitions. Creating a Design
Partition on page 140 describes this process.

2. To open the Design Partitions Window, click Assignments ➤ Design Partitions
Window.

3. To automatically export a partition with synthesis results after each time you run
synthesis, specify the a .qdb export path and file name for the Post Synthesis
Export File option for that partition. If you specify only a file name without a
path, the file exports to the output_files directory after compilation.

4. To automatically export a partition with final snapshot results each time you run
the Fitter, specify a .qdb file name for the Post Final Export File option for that
partition. If you specify only a file name without a path, the file exports to the
output_files directory after compilation.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 125. Specifying Export File in Design Partitions Window

.qsf Equivalent Assignment:

set_instance_assignment -name EXPORT_PARTITION_SNAPSHOT_<FINAL|SYNTHESIZED> \
 <hpath> -to <file_name>.qdb

1.13.5. Reusing a Design Partition

You can reuse the compilation results of a design partition exported from another
Quartus Prime project. Reuse of a design partition allows you to share a synthesized
or final design block with another designer. Refer to Intel Quartus Prime Pro Edition
User Guide: Block-Based Design for more information about reuse of design partitions.

To reuse an exported design partition in another project, you assign the exported
partition .qdb to an appropriately configured design partition in the target project via
the Design Partition Window:

1. Export a design partition with the appropriate snapshot, as Exporting a Design
Partition on page 142 describes.

2. Open the target Quartus Prime project that you want to reuse the exported
partition.

3. Click Processing ➤ Start ➤ Start Analysis & Elaboration.

4. Click Assignments ➤ Design Partitions Window, and then create a design
partition to contain the logic and compilation results of the exported .qdb.

5. Click the Partition Database File option for the new partition and select the
exported .qdb file.

Figure 126. Partition Database File Setting in Design Partitions Window

6. Specify any other properties of the design partition in the Design Partitions
Window. The Compiler uses the partition's assigned .qdb as the source.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.13.6. Viewing Quartus Database File Information

Although you cannot directly read a .qdb file, you can view helpful attributes about
the file to quickly identify its contents and suitability for use.

The Quartus Prime software automatically stores metadata about the project of origin
when you export a Quartus Database File (.qdb). You can then use the Quartus
Database File Viewer to display the attributes of any of these .qdb files.
Follow these steps to view the attributes of a .qdb file:

1. In the Quartus Prime software, click File ➤ Open, select Design Files for Files
of Type, and select a .qdb file.

2. Click Open. The Quartus Database File Viewer displays project and resource
utilization attributes of the .qdb.

Alternatively, run the following command-line equivalent:

quartus_cdb --extract_metadata --file <archive_name.qdb> \
 --type quartus --dir <extraction_directory> \
 [--overwrite]

Figure 127. Quartus Database File Viewer

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.13.6.1. QDB File Attribute Types

The Quartus Database Viewer can display the following attributes of a .qdb file:

Table 29. QDB File Attributes

QDB Attribute Types Attribute Example

Project Information Contents Partition

Date Thu Jan 23 10:56:23 2018

Device 10AX016C3U19E2LG

Entity (if Partition) Counter

Family Arria 10

Partition Name root_partition

Revision Name Top

Revision Type PR_BASE

Snapshot synthesized

Version 18.1.0 Pro Edition

Version-Compatible Yes

Resource Utilization (exported
for partition QDB only)

For synthesized snapshot partition
lists data from the Synthesis
Resource Usage Summary
report.

Average fan-out.16

Dedicated logic registers:14

Estimate of Logic utilization:1

I/O pins:35

Maximum fan-out:2

Maximum fan-out node:counter[23]

Total DSP Blocks:0

Total fan-out:6

...

For the final snapshot partition,
lists data from the Fitter Partition
Statistics report.

Average fan-out:.16

Combinational ALUTs: 16

I/O Registers

M20Ks

...

1.13.7. Clearing Compilation Results

You can clean the project database if you want to remove prior compilation results for
all project revisions or for specific revisions. For example, you must clear previous
compilation results before importing a version-compatible database to an existing
project.

1. Click Project > Clean Project.

2. Select All revisions to clear the databases for all revisions of the current project,
or specify a Revision name to clear only the revision’s database you specify.

3. Click OK. A message indicates when the database is clean.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 128. Clean Project Dialog Box Cleans the Project Database

1.14. Integrating Other EDA Tools

You can optionally integrate supported EDA synthesis, netlist partitioning, simulation,
and signal integrity verification tools into the Quartus Prime design flow.

The Quartus Prime software supports input netlist files from supported EDA synthesis
tools. The Compiler's EDA Netlist Writer module (quartus_eda) can automatically
generate output files for processing in other EDA tools. The EDA Netlist Writer runs
optionally as part of a full compilation, or you can run EDA Netlist Writer separately
from the GUI or at the command line. The following functions are available to simplify
EDA tool integration:

Table 30. EDA Tool Integration Functions

EDA Integration Task EDA Integration Function

Specify settings for generation of output files for
processing in other EDA tools.

Click Assignments ➤ Settings ➤ EDA Tool Settings to specify
options for supported tools.

Generate output files for processing in other EDA
tools.

Click Processing ➤ Start ➤ Start EDA Netlist Writer (or run
quartus_eda) to generate files.

Compile RTL and gate-level simulation model libraries
for your device, supported EDA simulators, and design
language.

Click Tools ➤ Launch Simulation Library Compiler to compile
simulation libraries easily.

Generate EDA tool-specific setup scripts to compile,
elaborate, and simulate Intel FPGA IP models and
simulation model library files.

Specify options for Simulation file output when generating Intel
FPGA IP with IP parameter editor.

Generate files that allow supported EDA tools to
perform netlist modifications, such as adding new
modules, partitioning the netlist, and changing
module connectivity.

Use the quartus_eda –resynthesis command to generate a
Verilog Quartus Mapping File (.vqm) that contains a node-level
(or atom) representation of the netlist in standard structural
Verilog RTL.

Include files generated by other EDA design entry or
synthesis tools in your project as synthesized design
files.

Click Project ➤ Add/Remove Files In Project to add supported
Design File files from other EDA tools.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Third-party Simulation

• Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

• Intel Quartus Prime Pro Edition User Guide: PCB Design Tools

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

147

https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.14.1. Generating a VQM Netlist for other EDA Tools

The EDA Netlist Writer (quartus_eda) can generate a node-level netlist in Verilog
Quartus Mapping File (.vqm) format for use in other EDA tools. You can process
the .vqm netlist in other EDA tools to add new modules, partition the netlist, or
change connectivity. After third-party tool changes, you resynthesize and compile
the .vqm in the Quartus Prime software.

The .vqm format is standard structural Verilog RTL. The modules can be any Intel
FPGA family-specific WYSIWYG type for core logic (such as, flip-flop, LUT, DSP, M20K).
EDA Netlist Writer does not support .vqm for periphery modules (such as transceivers,
memory interfaces, I/O, or IP including these). The RTL is a fully flattened
representation of the entire design hierarchy or partition. The module names capture
the original hierarchy, although some renaming can occur to legalize names. There is
no truncation of the netlist module names.

To perform .vqm netlist partitioning in other EDA tools, define a design partition that
includes only core logic elements. Generate the partition netlist as step 3 on page 149
describes. After processing the .vqm in third-party tools, resynthesize the .vqm files
either independently or as a design partition. If including a black box module
instantiation in the .vqm, make connections between existing logic in the .vqm and
the black box. Prior to resynthesis, specify the source file (.ip, .v, or .vqm) for the
black box in the project .qsf.

Table 31. VQM Netlist Generation Requirements and Limitations

Requirement or Limitation Description

Design partitions must only include core logic. Design partitions must include only flip-flops, LUTs, DSPs, and on-chip
memory. The EDA Netlist Writer does not support .vqm output for
periphery modules (such as transceivers, memory interfaces, I/O, or IP
that includes these).

Analysis & Synthesis does not support some
special characters in instance names that are
legal in SystemVerilog.

Analysis & Synthesis resolves these characters by placing the standard
escape character ‘\’ to escape the special character present in the RTL. If
any of the hierarchical constraints (for example, SDC timing constraints)
explicitly reference such a special character, modify these characters
manually.

Generate .vqm only for a synthesized netlist. The post-fit netlist includes atoms, such as wire-luts, that are not
appropriate for resynthesis.

Avoid module or entity name collisions If you add a .vqm, generated from an RTL design file, to the same
Quartus Prime project that generated the .vqm, beware of potential entity
or module name collisions. Name collisions can occur if the original RTL
file from which the .vqm derives, and the .vqm file itself, both specify the
same entity or module name. When the RTL and .vqm files are both
present in the project Files list, the Compiler uses the last entry in the
list.

Partition assignments might not align with the
original design.

.vqm generation flattens all logic within a partition unless you specify the
–exclude_sub_partitions argument. Compiling a design that has
assignments pertaining to a flattened partition causes an error.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To generate a .vqm for processing in other EDA tools, follow these steps:

1. In the Quartus Prime software, click Processing ➤ Start ➤ Start Analysis &
Synthesis (or run quartus_syn) to synthesize the design netlist.

2. Create a design partition containing only core logic elements for the .vqm, as
Creating a Design Partition on page 140 describes.

3. To generate the .vqm in the resynthesis directory, run any of the following
commands at the command prompt:

• To write out the entire design netlist to .vqm:

quartus_eda –-resynthesis=on <project_name>

• To write out only a specific design partition netlist to .vqm:

quartus_eda –-resynthesis=on -partition=<name> <project_name>

• To write out any sub partition as a black-box netlist to .vqm:

quartus_eda –-resynthesis=on –exclude_sub_partitions <project_name>

You can also combine –exclude_sub_partitions with -partition.

4. View the resulting .vqm in the resynthesis directory, and specify the .vqm as
input to your EDA tool.

5. After processing the .vqm in another EDA tool, add the .vqm as an Quartus Prime
project design file by clicking Project ➤ Add/Remove Files In Project. Avoid
module or entity name collisions, as the VQM Netlist Generation Requirements and
Limitations table describes.

6. Run Analysis & Synthesis on the project, followed by the remaining Compiler
stages.

1.15. Compiler Optimization Techniques

You can apply various optimization techniques via settings and entity assignments to
achieve your design requirements during compilation. For example, you can specify
options to preserve specific registers through synthesis processing, apply fractal
synthesis, enable register retiming, and various other targeted Compiler optimizations.

1.15.1. Compiler Optimization Modes

To apply the compiler optimization settings, click Assignments ➤ Settings ➤
Compiler Settings. Alternatively, you can apply the optimization settings using the
OPTIMIZATION_MODE QSF. For example:

set_global_assignment -name OPTIMIZATION_MODE "Aggressive Area"

The default value for OPTIMIZATION_MODE is "Balanced". For all other values, refer to
the Optimization Modes table.

You can enable one of the following optimization modes to focus the Compiler's
optimization effort. The settings compilation mode you select affects synthesis and
fitting results.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To select an optimization mode, start with the Balanced setting. This mode is
appropriate for many designs and provides an implementation balanced between
optimization and compile time. If this setting does not meet your goals, you can try
different optimization modes depending on your requirements.

If your design requires additional performance compared to the Balanced setting, use
the High performance effort setting that enables additional timing optimizations
during the fitting stage. You can achieve additional performance using the Superior
performance setting that further enables additional timing optimizations during the
Synthesis stage. However, these synthesis optimizations may result in increased logic
area, negatively impacting designs with high utilization. Both settings increase compile
time.

Alternatively, use the Aggressive Area setting to reduce logic area at the potential
expense of performance. Similarly, use the Aggressive power setting to reduce
dynamic power at the potential expense of performance.

If your design has difficulty routing successfully, the settings Optimize netlist for
routability, High placement routability effort, and High packing routability
effort offer a variety of optimizations to improve routability. Which optimizations work
best is design-dependent, so try each if you encounter routability issues.

Finally, use Aggressive Compile Time and Fast Functional Test settings to reduce
compile time. These settings reduce performance but may be helpful early in a design
cycle when only functionality is being verified.

Table 32. Optimization Modes (Compiler Settings Page)

Optimization
Mode

QSF Value Description Implications

Balanced
(normal flow)

Balanced The Compiler optimizes synthesis for
balanced implementation that respects
timing constraints.

The default setting that produces a
balance between optimization effort and
compile time.

High
performance
effort

High
Performance
Effort

The Compiler increases the timing
optimization effort during placement
and routing, and enables timing-
related Physical Synthesis
optimizations (per register optimization
settings).

Increases compilation time for better
performance compared to Balanced
setting.

High
performance
with maximum
placement
effort

High
Performance
With Maximum
Placement
Effort

Enables the same Compiler
optimizations as High performance
effort, with additional placement
optimization effort.

Increases compilation time for better
performance compared to High
performance effort setting.

High
performance
with aggressive
power effort

High
Performance
With
Aggressive
Power Effort

Enables the same Compiler
optimizations as High performance
effort, while performing additional
optimizations to reduce dynamic-
power.

Increases compilation time for lower
power compared to High performance
effort setting.

Superior
performance

Superior
Performance

Enables the same Compiler
optimizations as High performance
effort, and adds more optimizations
during Analysis & Synthesis to
maximize design performance with a
potential increase to logic area.

Increases compilation time for better
performance compared to High
performance effort setting. If design
utilization is very high, this mode can
cause difficulty in fitting, which can also
negatively affect overall optimization
quality.

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optimization
Mode

QSF Value Description Implications

Superior
performance
with maximum
placement
effort

Superior
Performance
With Maximum
Placement
Effort

Enables the same Compiler
optimizations as Superior
performance, with additional
placement optimization effort.

Increases compilation time for better
performance compared to Superior
performance setting.

Aggressive Area
(reduces
performance)

Agressive
Area

The Compiler makes aggressive effort
to reduce the device area required to
implement the design at the potential
expense of design performance.

Reduces performance for reduced area
compared to Balanced setting.

High placement
routability
effort

High
Placement
Routability
Effort

The Compiler makes high effort to
route the design at the potential
expense of design area, performance,
and compilation time. The Compiler
spends additional time reducing
routing utilization, which can improve
routability and also saves dynamic
power.

Increases compilation time for better
routability compared to Balanced
setting.

High packing
routability
effort

High Packing
Routability
Effort

The Compiler makes high effort to
route the design at the potential
expense of design area, performance,
and compilation time. The Compiler
spends additional time packing
registers, which can improve
routability and also saves dynamic
power.

Increases compilation time for better
routability compared to Balanced
setting.

Optimize netlist
for routability

Optimize
Netlist for
Routability

The Compiler implements netlist
modifications to increase routability at
the possible expense of performance.

Increases compilation time for better
routability compared to Balanced
setting.

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optimization
Mode

QSF Value Description Implications

Aggressive
power
(reduces
performance)

Agressive
Power

Makes aggressive effort to optimize
synthesis for low power. The Compiler
further reduces the routing usage of
signals with the highest specified or
estimated toggle rates, saving
additional dynamic power but
potentially affecting performance.

Reduces performance for lower power
compared to Balanced setting.

Aggressive
Compile Time
(reduces
performance)

Aggressive
Compile Time

Especially useful during early design
iterations, this mode reduces the
compilation run time by 30% (on
average) at the expense of design fMAX
of 15% (on average). Run time
reduction occurs through reduced
effort and fewer performance
optimizations. This mode also disables
some detailed reporting functions.
This mode produces the fastest full-
flow timing estimation with an
approximate correlation to the high-
effort modes.

• This mode reduces performance.
• Reduced effort levels can cause no-

fits, especially on highly congested
designs. Mitigate this potential by
either partitioning and constraining
the placement of congested parts of
design, or by using a high effort or
routability mode

• This mode may not identify the
same critical paths as a full-effort
compile (similar to Compiler seed-
effects).

• This mode disables some detailed
reporting functions and
enables .qsf settings that cannot
be overridden by other .qsf
settings.

Fast Functional
Test (hold-timing
optimization only)

Fast
Functional
Test

This mode produces a .sof bitstream
file that you can use for on-board
functional testing with minimal compile
time. This mode further reduces
compile time beyond Aggressive
Compile Time mode by limiting timing
optimizations to only those for hold
requirements.

• Reduced effort levels can cause no-
fits, especially on highly congested
designs. Mitigate this potential by
either partitioning and constraining
the placement of congested parts of
design, or by using a high effort or
routability mode. Refer to the
Creating a Partition topic in this
document and the Intel Quartus
Prime Pro Edition User Guide:
Design Constraints

• This mode can require clock speeds
outside the lock range of the PLL
Intel FPGA IP. Mitigate this effect by
using the adjust_pll ECO
command to update the PLL IP after
fitting.

• This mode disables some detailed
reporting functions and
enables .qsf settings that cannot
be overridden by other .qsf
settings.

Note: If you enable extended optimization modes for Design Space Explorer II by use
of .qsf assignments, and then subsequently open the Compiler Settings tab for
that project revision, the Compiler Settings tab indicates that the extended
optimization mode reverts to one of the Compiler Settings tab Optimization
Modes.

Related Information

• Creating a Design Partition on page 140

• Intel Quartus Prime Pro Edition User Guide: Design Constraints

• Full Compilation Flow with Temporary Optimization Mode on page 133

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

152

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/interface-planning.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.15.2. Allow Register Retiming

The Allow Register Retiming option on the Register Optimization tab controls
whether or not to globally disable retiming. When turned on, the Compiler
automatically performs register retiming optimizations, moving registers through
combinational logic. When turned off, the Compiler prevents any retiming
optimizations on a global scale.

Optionally, assign Allow Register Retiming to any design entity or instance for
specific portions of the design. Click Assignments ➤ Assignment Editor to specify
entity- and instance-level assignments, or use the following syntax to make the
assignment in the .qsf directly.

Remember: For devices that use the Hyperflex architecture (such as Agilex 7 devices), you can use
the Allow Register Retiming optimization option alongside the Hyper-Retiming
optimization.

Example 11. Disable register retiming for entity abc

set_global_assignment –name ALLOW_REGISTER_RETIMING ON

set_instance_assignment –name ALLOW_REGISTER_RETIMING OFF –to “abc|”

set_instance_assignment –name ALLOW_REGISTER_RETIMING ON –to “abc|def|”

Example 12. Disable register retiming for the whole design, except for registers in entity
abc

set_global_assignment –name ALLOW_REGISTER_RETIMING OFF

set_instance_assignment –name ALLOW_REGISTER_RETIMING ON –to “abc|”

set_instance_assignment –name ALLOW_REGISTER_RETIMING OFF –to “abc|def|”

1.15.3. Automatic Gated Clock Conversion

Clock gating saves power in ASIC designs by adding more logic to a circuit to prune
the clock tree. Pruning the clock tree disables portions of the circuitry so that the flip-
flops are not required to switch states. When using an Quartus Prime FPGA to
prototype ASIC designs, you must convert clock gates to clock enables in your design.

Table 33. Gated Clock Conversion Example

ASIC Gated Clock Example FPGA Clock Enable Example

module infer_enable (clk, reset, d, en, q);

input d, en, clk, reset;
output q;

wire gated_clk;
reg q;

assign gated_clk = clk & en;
always@(posedge gated_clk or reset)
 begin
 if (!reset)
 q <= 1’b0;
 else
 q <= d ;
 end
endmodule

module infer_enable (clk, reset, d, en, q);

input d, en, clk, reset;
output q;

reg q;

always@(posedge clk or reset)
 begin
 if (!reset)
 q <= 1’b0;
 else if (en)
 q <= d;
 else
 q <= q ;
 end
endmodule

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

153

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Rather than manually converting gated clocks in your RTL, you can specify the Auto
Gated Clock Conversion setting to automatically convert gated base clocks in the
design to clock enables. You can apply this setting globally to all gated base clocks in
the design, or to one or more specific clock signals.

Table 34. Gated Clock Conversion Settings

Setting Scope Description

Global Enable the Auto Gated Clock Conversion option at Assignments ➤ Settings ➤ Compiler
Settings ➤ Advanced Settings (Synthesis). Alternatively, add the global assignment to the
project .qsf:

set_global_assignment –name SYNTH_GATED_CLOCK_CONVERSION on

Instance-specific Specify the Auto Gated Clock Conversion for one or more instances in the Assignment Editor
(Assignments ➤ Assignment Editor). Alternatively, add the instance assignment to the
project .qsf:

set_instance_assignment –name SYNTH_GATED_CLOCK_CONVERSION on –to clk_in

Following design synthesis, view the results of gated clock conversion in the Gated
Clock Conversion Details report. The report lists all converted and unconverted gated
clocks with their base clocks. For unconverted gated clocks, the report specifies the
reason the clock is not converted.

Note: Automatic gated clock conversion supports explicit RAMs (such as WYSIWYG RAMs
and Intel FPGA memory IP), but does not support inferred RAMs.

Figure 129. Gated Clock Conversion Details Report

1.15.4. Enable Intermediate Fitter Snapshots

To save compilation time, the Compiler does not save the planned, placed, routed, or
retimed snapshots by default during full compilation.

However, you can turn on Enable Intermediate Fitter Snapshots (Assignments ➤
Settings ➤ Compiler Settings) to generate and preserve snapshots for the Plan,
Place, Route, and Retime stages any time you run full compilation. You can also run
any intermediate Fitter stage independently to generate the snapshot for that stage.

With the Enable Intermediate Fitter Snapshots option enabled, multiple snapshots
are saved during the Fitter stages, allowing more flexible iteration of intermediate
Fitter steps. For example, you can resume and rerun from the Place snapshot as
opposed to starting from the Fitter Plan stage, saving compilation time. However, with
this option enabled, you might incur extra runtime to write the intermediate snapshots
during Fitter stage and disk space consumption is more in order to accommodate the
additional snapshots.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Enable Intermediate Fitter Snapshots option is off by default. However, if Run
Fast Forward Timing Closure Recommendations during compilation option is
on, then the Enable Intermediate Fitter Snapshots option is forced enabled.

1.15.5. Fast Preserve Option

Enabling the Fast Preserve option on the Incremental Compile tab specifies that
the Compiler can simplify a preserved partition to only interface logic.

Interface logic is logic at the partition boundary that interfaces with the rest of the
design.

1.15.6. Fractal Synthesis Optimization

Fractal synthesis optimizations can be useful for deep-learning accelerators and other
high-throughput, arithmetic-intensive designs that exceed all available DSP resources.
For such designs, fractal synthesis optimization can achieve 20-45% area reduction.

Fractal synthesis is a set of synthesis optimizations that use FPGA resources in an
optimal way for arithmetic-intensive designs. These synthesis optimizations consist of
multiplier regularization and retiming, as well as continuous arithmetic packing. The
optimizations target designs with large numbers of low-precision arithmetic operations
(such as additions and multiplications). You can enable fractal synthesis globally or for
specific multipliers, as Enabling or Disabling Fractal Synthesis on page 160 describes.

Project-Wide Fractal Synthesis Considerations

Note: Fractal synthesis optimization is most suitable for designs with deep-learning
accelerators or other high-throughput, arithmetic-intensive functions that exceed all
DSP resources. Enabling fractal synthesis project-wide can cause unnecessary bloat on
modules that are not suitable for fractal optimizations. Consider the following factors
before enabling fractal synthesis optimization project wide:

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Intel FPGA devices contain thousands of hard DSP blocks that are perfectly suited
for arithmetic operations. If the total amount of arithmetic functions in your design
is small, then there is no need to enable Fractal Synthesis. In such cases, all the
arithmetic functions map directly into DSPs by default. Enable global Fractal
Synthesis only if there are not enough DSP blocks available to implement all
arithmetic components. Enable Fractal Synthesis only for modules that you do not
want the Compiler to map into DSPs.

• In the current version of the Quartus Prime Pro Edition software, fractal synthesis
optimizations target low-precision multiplication. Implement high-precision
multipliers (where width of every operand exceeds 11 bits) using DSP blocks.

• If you enable project-wide Fractal Synthesis, the following information message
number 20193 may generate during compilation:

Applied dense packing to "<entity>". Area: 2 LABs. Logic density: 0.775.

This information indicates the effort the Compiler is packing computational logic
into a smaller number of LABs. If the design is already highly utilized, the
Compiler can skip this stage.

— Verify that the Area the message reports does not exceed 100 LABs. If the
Area exceeds 100 LABs, divide fractal synthesis blocks to sub-blocks, and then
assign the fractal synthesis optimizations to the sub-blocks independently.

— Verify that the Logic density the message reports is greater than 0.75. If the
logic density is less than 0.75, disable Fractal Synthesis for this entity
because standard synthesis typically achieves better density.

Table 35. Fractal Synthesis Area Improvement

Area (LABs)

Device Dot-product Fractal Synthesis ON Fractal Synthesis OFF

Arria 10 and Cyclone 10 GX Sum of 16 4x4sm 12 19

Sum of 16 5x5sm 19 32

Sum of 16 6x6sm 25 36

Sum of 16 7x7sm 34 44

Sum of 16 8x8sm 45 60

Stratix 10 and Agilex 7
Devices

Sum of 16 4x4sm 15 22

Sum of 16 5x5sm 21 39

Sum of 16 6x6sm 29 47

Sum of 16 7x7sm 39 55

Sum of 16 8x8sm 55 71

Multiplier Regularization and Retiming

Multiplier regularization and retiming performs inference of highly optimized soft
multiplier implementations. The Compiler may apply backward retiming to two or
more pipeline stages if required. When you enable fractal synthesis, the Compiler
applies multiplier regularization and retiming to signed and unsigned multipliers.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 130. Multiplier Retiming

D Q D Q

a

b

q

D Q D Q

a

b

q

Before Multiplier Retiming

After Multiplier Retiming

Note: • Multiplier regularization uses only logic resources, and does not use DSP blocks.

• Multiplier regularization and retiming is applied to both signed and unsigned
multipliers in modules where the FRACTAL_SYNTHESIS QSF assignment is set.

Multiplier Regularization Example

The following simple, unsigned dot-product design example contains multiplication
operators with 5-bit operands. These short multipliers are perfect candidates for
multiplier regularization.

(* altera_attribute = "-name FRACTAL_SYNTHESIS ON" *)
module dot_product(
 input clk,
 input [4:0] a, b, c, d, e, f, g, h,
 output reg [11:0] out
);
reg [9:0] ab, cd, ef, gh;
reg [10:0] ab_cd, ef_gh;

always @(posedge clk)
begin
 ab <= a * b;
 cd <= c * d;
 ef <= e * f;
 gh <= g * h;
 ab_cd <= ab + cd;
 ef_gh <= ef + gh;
 out <= ab_cd + ef_gh;
end
endmodule

module top(
 input clk,
 input [4:0] a1, b1, c1, d1, e1, f1, g1, h1,
 input [4:0] a2, b2, c2, d2, e2, f2, g2, h2,
 output [11:0] out1, out2
);
dot_product core1(.clk(clk), .a(a1), .b(b1), .c(c1), .d(d1),
 .e(e1), .f(f1), .g(g1), .h(h1), .out(out1));

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

dot_product core2(.clk(clk), .a(a2), .b(b2), .c(c2), .d(d2),
 .e(e2), .f(f2), .g(g2), .h(h2), .out(out2));
endmodule

Quartus Prime synthesis prints the following messages to the console:

Figure 131. Console Messages

In the Chip Planner, you can observe this design having two unsigned dot-product
cores. These cores are independently optimized and placed. The LAB resources are
nearly 100% optimized, as the following image shows:

Figure 132. Design Placement

Signed dot-products are common for deep-learning applications. The following
demonstrates an example of a signed dot-product:

(* altera_attribute = "-name FRACTAL_SYNTHESIS ON" *)
module dot_product(
 input signed clk,
 input signed [4:0] a, b, c, d, e, f, g, h,
 output reg signed [11:0] out
);
reg signed [9:0] ab, cd, ef, gh;
reg signed [10:0] ab_cd, ef_gh;

always @(posedge clk)
begin
 ab <= a * b;

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 cd <= c * d;
 ef <= e * f;
 gh <= g * h;
 ab_cd <= ab + cd;
 ef_gh <= ef + gh;
 out <= ab_cd + ef_gh;
end
endmodule

module top(
 input clk,
 input signed [4:0] a1, b1, c1, d1, e1, f1, g1, h1,
 input signed [4:0] a2, b2, c2, d2, e2, f2, g2, h2,
 output signed [11:0] out1, out2
);
dot_product core1(.clk(clk), .a(a1), .b(b1), .c(c1), .d(d1),
 .e(e1), .f(f1), .g(g1), .h(h1), .out(out1));
dot_product core2(.clk(clk), .a(a2), .b(b2), .c(c2), .d(d2),
 .e(e2), .f(f2), .g(g2), .h(h2), .out(out2));
endmodule

Quartus Prime synthesis displays the following messages in the console:

Figure 133. Console Messages

In the Chip Planner, you can observe this design having two signed dot-product cores
independently optimized and placed:

Figure 134. Design Placement

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Continuous Arithmetic Packing

Continuous arithmetic packing re-synthesizes arithmetic gates into logic blocks
optimally sized to fit into Intel FPGA LABs. This optimization allows up to 100%
utilization of LAB resources for the arithmetic blocks.

When you enable fractal synthesis, the Compiler applies this optimization to all carry
chains and two-input logic gates. This optimization can pack adder trees, multipliers,
and any other arithmetic-related logic.

Figure 135. Continuous Arithmetic Packing

Before Arithmetic Repacking After Arithmetic Repacking

Note that continuous arithmetic packing works independently of multiplier
regularization. So, if you are using a multiplier that is not regularized (such as writing
your own multiplier) then continuous arithmetic packing can still operate.

1.15.6.1. Enabling or Disabling Fractal Synthesis

For Stratix 10 and Agilex 7 devices, fractal synthesis optimization runs automatically
for small multipliers (any A*B statement in Verilog HDL or VHDL where bit-width of
the operands is 7 or less). You can also disable automatic fractal synthesis for small
multipliers for these devices using either of the following methods:

• In RTL, set the DSP multstyle, as "Multstyle Verilog HDL Synthesis Attribute"
describes. For example:

(* multstyle = "dsp" *) module foo(...);
module foo(..) /* synthesis multstyle = "dsp" */;

• In the .qsf file, add as an assignment as follows:

set_instance_assignment -name DSP_BLOCK_BALANCING_IMPLEMENTATION \
 DSP_BLOCKS -to r

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In addition, for Stratix 10, Agilex 7, Arria 10, and Cyclone 10 GX devices, you can
enable fractal synthesis globally or for specific multipliers with the Fractal Synthesis
GUI option or the corresponding FRACTAL_SYNTHESIS .qsf assignment:

• In RTL, use altera_attribute as follows:

(* altera_attribute = "-name FRACTAL_SYNTHESIS ON" *)

• In the .qsf file, add as an assignment as follows:

set_global_assignment -name FRACTAL_SYNTHESIS ON -entity <module name>

In the user interface, follow these steps:

1. Click Assignments ➤ Assignment Editor.

2. Select Fractal Synthesis for Assignment Name, On for the Value, the
arithmetic-intensive entity name for Entity, and an instance name in the To
column. You can enter a wildcard (*) for To to assign all instances of the entity.

Figure 136. Fractal Synthesis Assignment in Assignment Editor

Related Information

Multstyle Verilog HDL Synthesis Attribute
In Quartus Prime Help.

1.16. Synthesis Language Support

The Quartus Prime software synthesizes standard Verilog HDL, VHDL, and
SystemVerilog design files.

1.16.1. Verilog and SystemVerilog Synthesis Support

Quartus Prime synthesis supports the following Verilog HDL language standards:

• Verilog-1995 (IEEE Standard 1364-1995)

• Verilog-2001 (IEEE Standard 1364-2001)

• SystemVerilog-2005 (IEEE Standard 1800-2005)

• SystemVerilog-2009 (IEEE Standard 1800-2009)

• SystemVerilog-2012 (IEEE Standard 1800-2012)

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

161

http://quartushelp.altera.com/current/index.htm#hdl/vlog/vlog_file_dir_multstyle.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following important guidelines apply to Quartus Prime synthesis of Verilog HDL
and SystemVerilog:

• The Compiler uses the Verilog-2001 standard by default for files with an extension
of .v, and the SystemVerilog standard for files with the extension of .sv.

• If you use scripts to add design files, you can use the -HDL_VERSION command
to specify the HDL version for each design file.

• Compiler support for Verilog HDL is case sensitive in accordance with the Verilog
HDL standard.

• The Compiler supports the compiler directive `define, in accordance with the
Verilog HDL standard.

• The Compiler supports the include compiler directive to include files with
absolute paths (with either “/” or “\” as the separator), or relative paths.

• When searching for a relative path, the Compiler initially searches relative to the
project directory. If the Compiler cannot find the file, the Compiler next searches
relative to all user libraries. Finally, the Compiler searches relative to the current
file's directory location.

• Quartus Prime Pro Edition synthesis searches for all modules or entities earlier in
the synthesis process than other Quartus software tools. This earlier search
produces earlier syntax errors for undefined entities than other Quartus software
tools.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer

• Intel Quartus Prime Pro Edition User Guide: Design Recommendations

1.16.1.1. Verilog HDL Input Settings (Settings Dialog Box)

Click Assignments ➤ Settings ➤ Verilog HDL Input to specify options for the
synthesis of Verilog HDL input files.

Figure 137. Verilog HDL Input Settings Dialog Box

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

162

https://www.intel.com/content/www/us/en/docs/programmable/683243/current/using-the-timing-analyzer.html
https://www.intel.com/content/www/us/en/docs/programmable/683082/current/recommended-design-practices.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 36. Verilog HDL Input Settings

Setting Description

Verilog Version Directs synthesis to process Verilog HDL input design files using the specified standard.
You can select any of the supported language standards to match your Verilog HDL files
or SystemVerilog design files.

Library Mapping File Allows you to optionally specify a provided Library Mapping File (.lmf) for use in
synthesizing Verilog HDL files that contain non-Intel FPGA functions mapped to IP
cores. You can specify the full path name of the LMF in the File name box.

Verilog HDL Macro Verilog HDL macros are pre-compiler directives which can be added to Verilog HDL files
to define constants, flags, or other features by Name and Setting. Macros that you
add appear in the Existing Verilog HDL macro settings list.

1.16.1.2. Design Libraries

By default, the Compiler processes all design files into one or more libraries.

• When compiling a design instance, the Compiler initially searches for the entity in
the library associated with the instance (which is the work library if you do not
specify any library).

• If the Compiler cannot locate the entity definition, the Compiler searches for a
unique entity definition in all design libraries.

• If the Compiler finds more than one entity with the same name, the Compiler
generates an error. If your design uses multiple entities with the same name, you
must compile the entities into separate libraries.

1.16.1.3. Verilog HDL Configuration

Verilog HDL configuration is a set of rules that specify the source code for particular
instances. Verilog HDL configuration allows you to perform the following tasks:

• Specify a library search order for resolving cell instances (as does a library
mapping file).

• Specify overrides to the logical library search order for specified instances.

• Specify overrides to the logical library search order for all instances of specified
cells.

1.16.1.3.1. Hierarchical Design Configurations

A design can have more than one configuration. For example, you can define a
configuration that specifies the source code you use in particular instances in a sub-
hierarchy, and then define a configuration for a higher level of the design.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, suppose a subhierarchy of a design is an eight-bit adder, and the RTL
Verilog code describes the adder in a logical library named rtllib. The gate-level
code describes the adder in the gatelib logical library. If you want to use the gate-
level code for the 0 (zero) bit of the adder and the RTL level code for the other seven
bits, the configuration might appear as follows:

Example 13. Gate-level code for the 0 (zero) bit of the adder

config cfg1;
design aLib.eight_adder;
default liblist rtllib;
instance adder.fulladd0 liblist gatelib;
endconfig

If you are instantiating this eight-bit adder eight times to create a 64-bit adder, use
configuration cfg1 for the first instance of the eight-bit adder, but not in any other
instance. A configuration that performs this function is shown below:

Example 14. Use configuration cfg1 for first instance of eight-bit adder

config cfg2;
design bLib.64_adder;
default liblist bLib;
instance top.64add0 use work.cfg1:config;
endconfig

Note: The name of the unbound module may be different from the name of the cell that is
bounded to the instance.

1.16.1.4. Initial Constructs and Memory System Tasks

The Quartus Prime software infers power-up conditions from the Verilog HDL initial
constructs. The Quartus Prime software also creates power-up settings for variables,
including RAM blocks. If the Quartus Prime software encounters non-synthesizable
constructs in an initial block, it generates an error.

To avoid such errors, enclose non-synthesizable constructs (such as those intended
only for simulation) in translate_off and translate_on synthesis directives.
Synthesis of initial constructs enables the power-up state of the synthesized design to
match the power-up state of the original HDL code in simulation.

Note: Initial blocks do not infer power-up conditions in some third-party EDA synthesis tools.
If you convert between synthesis tools, you must set your power-up conditions
correctly.

Quartus Prime synthesis supports the $readmemb and $readmemh system tasks to
initialize memories.

Example 15. Verilog HDL Code: Initializing RAM with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
$readmemb("ram.txt", ram);
end

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When creating a text file to use for memory initialization, specify the address using
the format @<location> on a new line, and then specify the memory word such as
110101 or abcde on the next line.

The following example shows a portion of a Memory Initialization File (.mif) for the
RAM.

Example 16. Text File Format: Initializing RAM with the readmemb Command

@0
00000000
@1
00000001
@2
00000010
…
@e
00001110
@f
00001111

1.16.1.5. Verilog HDL Macros

The Quartus Prime software fully supports Verilog HDL macros, which you can define
with the 'define compiler directive in your source code. You can also define macros
in the Quartus Prime software or on the command line.

To set Verilog HDL macros at the command line for the Quartus Prime Pro Edition
synthesis (quartus_syn) executable, use the following format:

quartus_syn <PROJECT_NAME> --set=VERILOG_MACRO=a=2

This command adds the following new line to the project .qsf file:

set_global_assignment -name VERILOG_MACRO "a=2"

To avoid adding this line to the project .qsf, add this option to the quartus_syn
command:

--write_settings_files=off

1.16.2. VHDL Synthesis Support

Quartus Prime synthesis supports the following VHDL language standards.

• VHDL 1987 (IEEE Standard 1076-1987)

• VHDL 1993 (IEEE Standard 1076-1993)

• VHDL 2008 (IEEE Standard 1076-2008)

• VHDL 2019 (IEEE Standard 1076-2019)(3)

The Quartus Prime Compiler uses the VHDL 1993 standard by default for files that
have the extension .vhdl or .vhd.

(3) Only a subset of the features introduced by in VHDL 2019 are supported: Interfaces and
Conditional Analysis.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The VHDL code samples follow the VHDL 1993 standard.

Related Information

• Migrating to Quartus Prime Pro Edition

• VHDL-2019 Conditional Analysis Tool Directives on page 167

1.16.2.1. VHDL Input Settings (Settings Dialog Box)

Click Assignments ➤ Settings ➤ VHDL Input to specify options for the synthesis of
VHDL input files.

Table 37. VHDL Input Settings

Setting Description

VHDL Version Specifies the VHDL standard for use during synthesis of VHDL input design files. Select
the language standards that corresponds with the VHDL files.

Library Mapping File Specifies a Library Mapping File (.lmf) for use in synthesizing VHDL files that contain
IP cores. Specify the full path name of the LMF in the File name box.

VHDL-2019 Conditional
Analysis User Definitions File

Specifies the .ini file that contains your user-defined VHDL 2019 conditional analysis
identifier-value pairs.

Figure 138. VHDL Input Settings Dialog Box

Related Information

VHDL-2019 Conditional Analysis Tool Directives on page 167

1.16.2.2. VHDL Standard Libraries and Packages

The Quartus Prime software includes the standard IEEE libraries and several vendor-
specific VHDL libraries. The IEEE library includes the standard VHDL packages
std_logic_1164, numeric_std, numeric_bit, and math_real.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

166

https://www.intel.com/content/www/us/en/docs/programmable/683463/jbr1442806931610.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The STD library is part of the VHDL language standard and includes the packages
standard (included in every project by default) and textio. For compatibility with
older designs, the Quartus Prime software also supports the following vendor-specific
packages and libraries:

• Synopsys* packages such as std_logic_arith and std_logic_unsigned in
the IEEE library.

• Mentor Graphics* packages such as std_logic_arith in the ARITHMETIC
library.

• Primitive packages altera_primitives_components (for primitives such as
GLOBAL and DFFE) and maxplus2 in the ALTERA library.

• IP core packages altera_mf_components in the ALTERA_MF library for specific
IP cores including LCELL. In addition, lpm_components in the LPM library for
library of parameterized modules (LPM) functions.

Note: Import component declarations for primitives such as GLOBAL and DFFE from the
altera_primitives_components package and not the altera_mf_components
package.

1.16.2.3. VHDL wait Constructs

The Quartus Prime software supports one VHDL wait until statement per process
block. However, the Quartus Prime software does not support other VHDL wait
constructs, such as wait for and wait on statements, or processes with multiple
wait statements.

Example 17. VHDL wait until construct example

architecture dff_arch of ls_dff is
begin
output: process begin
wait until (CLK'event and CLK='1');
Q <= D;
Qbar <= not D;
end process output;
end dff_arch;

1.16.2.4. VHDL-2019 Conditional Analysis Tool Directives

Quartus Prime Pro Edition provides support for VHDL-2019 (IEEE Std 1076-2019)
section 24.2 Conditional analysis tool directives.

With conditional analysis tool directives, your VHDL description can be varied
according to directives stored in a separate .ini file.

Create the .ini file and specify the path in the File name field of the VHDL-2019
Conditional Analysis User Definitions File panel of the VHDL Input compiler
settings page.

The format for the file is as follows:

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• One identifier="value" pair per line

• Use ; or # characters to start line or trailing comments

• Identifiers must follow the requirements for a basic identifier as specified by the
VHDL standard:

— It must start with a letter.

— It must contain only alphanumeric and underscore ("_") characters.

• Values must be surrounded by double quotes.

A line in the file with invalid syntax is ignored and generates a warning message. Lines
that attempt to redefine the standard identifiers are ignored.

An example of a conditional analysis user definitions file is as follows:

USER_VAR1="ABC"
USER_VAR2 = "xyz"

line comment
; line comment
USER_VAR3 = "TEST" # trailing comment
USER_VAR4 = "lorem" ; trailing comment

USER_VAR5=";# comment characters in quotes are ignored"

Standard Conditional Analysis Identifiers

Quartus Prime provides the following standard conditional analysis identifiers:

• VHDL_VERSION = "<version>"

For example, VHDL_VERSION = "2019". The values for <version> are restricted
by the IEEE standard.

VHDL_VERSION is set per file and can have a different value in each file.

• TOOL_TYPE = "SYNTHESIS"

The values for TOOL_TYPE are restricted by the IEEE standard.

• TOOL_VENDOR = "INTEL CORPORATION"

• TOOL_NAME = "QUARTUS"

• TOOL_EDITION = "PRIME PRO"

• TOOL_VERSION = "<major and minor version>"

For example, TOOL_VERSION = "21.3.0"

1.17. Synthesis Settings Reference

This section provides a reference to all synthesis settings. Use these settings to
customize synthesis processing for your design goals.

1.17.1. Advanced Synthesis Settings

The following section is a quick reference of all Advanced Synthesis Settings. Click
Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis) to modify these settings.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 38. Advanced Synthesis Settings (1 of 13)

Option Description

Allow Any RAM Size for
Recognition

Allows the Compiler to infer RAMs of any size, even if the RAMs do not meet the current
minimum requirements.

Allow Any ROM Size for
Recognition

Allows the Compiler to infer ROMs of any size even if the ROMs do not meet the design's
current minimum size requirements.

Allow Any Shift Register
Size for Recognition

Allows the Compiler to infer shift registers of any size even if they do not meet the
design's current minimum size requirements.

Allow Register Duplication Controls whether the Compiler duplicates registers to improve design performance.
When enabled, the Compiler performs optimization that creates a second copy of a
register and move a portion of its fan-out to this new node. This technique improves
routability and reduces the total routing wire required to route a net with many fan-
outs. If you disable this option, retiming of registers is also disabled.
Note: Only available for Arria 10 and Cyclone 10 GX devices.

Allow Register Merging Controls whether the Compiler removes (merges) identical registers. When enabled, in
cases where two registers generate the same logic, the Compiler may delete one
register and fan-out the remaining register to the deleted register's destinations. This
option is useful if you want to prevent the Compiler from removing duplicate registers
that you have used deliberately. When disabled, retiming optimizations are also
disabled.
Note: Only available for Arria 10 and Cyclone 10 GX devices.

Allow Shift Register Merging
Across Hierarchies

Allows the Compiler to take shift registers from different hierarchies of the design and
put the registers in the same RAM.

Allow Synchronous Control
Signals

Allows the Compiler to utilize synchronous clear and synchronous load signals in normal
mode logic cells. Turning on this option helps to reduce the total number of logic cells
used in the design, but can negatively impact the fitting. This negative impact occurs
because all the logic cells in a LAB share synchronous control signals.

Table 39. Advanced Synthesis Settings (2 of 13)

Option Description

Analysis & Synthesis
Message Level

Specifies the type of Analysis & Synthesis messages the Compiler display. Low displays
only the most important Analysis & Synthesis messages. Medium displays most
messages, but hides the detailed messages. High displays all messages.

Auto Clock Enable
Replacement

Allows the Compiler to locate logic that feeds a register and move the logic to the
register's clock enable input port.

Auto DSP Block
Replacement

Allows the Compiler to find a multiply-accumulate function or a multiply-add function
that can be replaced with a DSP block.

Auto Gated Clock Conversion Automatically converts gated clocks to use clock enable pins. Clock gating logic can
contain AND, OR, MUX, and NOT gates. Turning on this option may increase memory use
and overall run time. You must use the Timing Analyzer for timing analysis, and you
must define all base clocks in Synopsys Design Constraints (.sdc) format.

Table 40. Advanced Synthesis Settings (3 of 13)

Option Description

Auto Open-Drain Pins Allows the Compiler to automatically convert a tri-state buffer with a strong low data
input into the equivalent open-drain buffer.

Auto RAM Replacement Allows the Compiler to identify sets of registers and logic that it can replace with the
altsyncram or the lpm_ram_dp IP core. Turning on this option may change the
functionality of the design.

Auto ROM Replacement Allows the Compiler to identify logic that it can replace with the altsyncram or the
lpm_rom IP core. Turning on this option may change the power-up state of the design.

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Auto Resource Sharing Allows the Compiler to share hardware resources among many similar, but mutually
exclusive, operations in your HDL source code. If you enable this option, the Compiler
merges compatible addition, subtraction, and multiplication operations. Merging
operations may reduce the area your design requires. Because resource sharing
introduces extra muxing and control logic on each shared resource, it may negatively
impact the final fMAX of your design.

Auto Shift Register
Placement

Allows the Compiler to find a group of shift registers of the same length that are
replaceable with the altshift_taps IP core. The shift registers must all use the same clock
and clock enable signals. The registers must not have any other secondary signals. The
registers must have equally spaced taps that are at least three registers apart.

Automatic Parallel Synthesis Option to enable/disable automatic parallel synthesis. Use this option to speed up
synthesis compile time by using multiple processors when available.

Table 41. Advanced Synthesis Settings (4 of 13)

Option Description

Block Design Naming Specifies the naming scheme for the block design. The Compiler ignores the option if
you assign the option to anything other than a design entity.

Clock MUX Protection Causes the multiplexers in the clock network to decompose to 2-to-1 multiplexer trees.
The Compiler protects these trees from merging with, or transferring to, other logic. This
option helps the Timing Analyzer to analyze clock behavior.

DSP Block Balancing Allows you to control the conversion of certain DSP block slices during DSP block
balancing.

Table 42. Advanced Synthesis Settings (5 of 13)

Option Description

Disable DSP Negate
Inferencing

Allows you to specify whether to use the negate port on an inferred DSP block.

Disable Register Merging
Across Hierarchies

Specifies whether the Compiler allows merging of registers that are in different
hierarchies if their inputs are the same.

Enable Formal Verification
Support

Enables the Compiler to write scripts for use with the OneSpin* formal verification tool.

Enable State Machines
Inference

Allows the Compiler to infer state machines from VHDL or Verilog HDL design files. The
Compiler optimizes state machines to reduce area and improve performance. If set to
Off, the Compiler extracts and optimizes state machines in VHDL or Verilog HDL design
files as regular logic.

Enable SystemVerilog static
assertion support

Enables immediate assertions in the Compiler for information, warning, and error
messages for SystemVerilog designs.

Enable VHDL static assertion
support

Enables immediate assertions in the Compiler for information, warning, and error
messages for VHDL designs.

Force Use of Synchronous
Clear Signals

Forces the Compiler to utilize synchronous clear signals in normal mode logic cells.
Enabling this option helps to reduce the total number of logic cells in the design, but can
negatively impact the fitting. All the logic cells in a LAB share synchronous control
signals.

Fractal Synthesis Turning this option On directs the Compiler to apply dense packing to arithmetic blocks,
minimizing the area of the design for arithmetic-intensive designs.

HDL Message Level Specifies the type of HDL messages you want to view, including messages that display
processing errors in the HDL source code. Level1 displays only the most important HDL
messages. Level2 displays most HDL messages, including warning and information
based messages. Level3 displays all HDL messages, including warning and information
based messages and alerts about potential design problems or lint errors.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 43. Advanced Synthesis Settings (6 of 13)

Option Description

Ignore GLOBAL Buffers Ignores GLOBAL buffers in the design. The Compiler ignores this option if you apply the
option to anything other than an individual GLOBAL buffer, or a design entity containing
GLOBAL buffers.

Ignore LCELL Buffers Ignores LCELL buffers in the design. The Compiler ignores this option if you apply the
option to anything other than an individual LCELL buffer, or a design entity containing
LCELL buffers.

Ignore Maximum Fan-Out
Assignments

Directs the Compiler to ignore the Maximum Fan-Out Assignments on a node, an entity,
or the whole design.

Ignore SOFT Buffers Ignores SOFT buffers in the design. The Compiler ignores this option if you apply the
option to anything other than an individual SOFT buffer or a design entity containing
SOFT buffers.

Table 44. Advanced Synthesis Settings (7 of 13)

Option Description

Ignore translate_off and
synthesis_off Directives

Ignores all translate_off/synthesis_off synthesis directives in Verilog HDL and
VHDL design files. Use this option to disable these synthesis directives and include
previously ignored code during elaboration.

Infer RAMs from Raw Logic Infers RAM from registers and multiplexers. The Compiler initially converts some HDL
patterns differing from RAM templates into logic. However, these structures function as
RAM. As a result, when you enable this option, the Compiler may substitute the
altsyncram IP core instance for them at a later stage. When you enable this assignment,
the Compiler may use more device RAM resources and fewer LABs.

Iteration Limit for Constant
Verilog Loops

Defines the iteration limit for Verilog loops with loop conditions that evaluate to compile-
time constants on each loop iteration. This limit exists primarily to identify potential
infinite loops before they exhaust memory or trap the software in an actual infinite loop.

Iteration Limit for non-
Constant Verilog Loops

Defines the iteration limit for Verilog HDL loops with loop conditions that do not evaluate
to compile-time constants on each loop iteration. This limit exists primarily to identify
potential infinite loops before they exhaust memory or trap the software in an actual
infinite loop.

Table 45. Advanced Synthesis Settings (8 of 13)

Option Description

Maximum DSP Block Usage Specifies the maximum number of DSP blocks that the DSP block balancer assumes
exist in the current device for each partition. This option overrides the usual method of
using the maximum number of DSP blocks the current device supports.

Maximum Number of LABs Specifies the maximum number of LABs that Analysis & Synthesis should try to utilize
for a device. This option overrides the usual method of using the maximum number of
LABs the current device supports, when the value is non-negative and is less than the
maximum number of LABs available on the current device.

Maximum Number of
M4K/M9K/M20K/M10K
Memory Blocks

Specifies the maximum number of M4K, M9K, M20K, or M10K memory blocks that the
Compiler may use for a device. This option overrides the usual method of using the
maximum number of M4K, M9K, M20K, or M10K memory blocks the current device
supports, when the value is non-negative and is less than the maximum number of M4K,
M9K, M20K, or M10K memory blocks available on the current device.

Table 46. Advanced Synthesis Settings (9 of 13)

Option Description

Maximum Number of
Registers Created from
Uninferred RAMs

Specifies the maximum number of registers that Analysis & Synthesis uses for
conversion of uninferred RAMs. Use this option as a project-wide option or on a specific
partition by setting the assignment on the instance name of the partition root. The

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

assignment on a partition overrides the global assignment (if any) for that particular
partition. This option prevents synthesis from causing long compilations and running out
of memory when many registers are used for uninferred RAMs. Instead of continuing the
compilation, the Quartus Prime software issues an error and exits.

NOT Gate Push-Back Allows the Compiler to push an inversion (that is, a NOT gate) back through a register
and implement it on that register's data input if it is necessary to implement the design.
When this option is on, a register may power-up to an active-high state, and may need
explicit clear during initial operation of the device. The Compiler ignores this option if
you apply it to anything other than an individual register or a design entity containing
registers. When you apply this option to an output pin that is directly fed by a register,
the assignment automatically transfers to that register.

Number of Inverted
Registers Reported in
Synthesis Report

Specifies the maximum number of inverted registers that the Synthesis report displays.

Number of Protected
Registers Reported in
Synthesis Report

Specifies the maximum number of protected registers that the Synthesis Report
displays.

Number of Removed
Registers Reported in
Synthesis Migration Checks

Specifies the maximum number of rows that the Synthesis Migration Check report
displays.

Number of Swept Nodes
Reported in Synthesis
Report

Specifies the maximum number of swept nodes that the Synthesis Report displays. A
swept node is any node which was eliminated from your design because the Compiler
found the node to be unnecessary.

Number of Rows Reported in
Synthesis Report

Specifies the maximum number of rows that the Synthesis report displays.
Note: Only available for Arria 10 and Cyclone 10 GX devices.

Optimization Technique Specifies an overall optimization goal for Analysis & Synthesis. Specify a Balanced
strategy, or optimize for Performance, Area, Routability, Power, or Compile Time.
The Compiler targets the optimization goal you specify.

Table 47. Advanced Synthesis Settings (10 of 13)

Option Description

Perform WYSIWYG Primitive
Resynthesis

Specifies whether to perform WYSIWYG primitive resynthesis during synthesis. This
option uses the setting specified in the Optimization Technique logic option.

Power-Up Don't Care Causes registers that do not have a Power-Up Level logic option setting to power-up
with a do not care logic level (X). When the Power-Up Don't Care option is on, the
Compiler determines when it is beneficial to change the power-up level of a register to
minimize the area of the design. The Compiler maintains a power-up state of zero,
unless there is an immediate area advantage.

Power Optimization During
Synthesis

Controls the power-driven compilation setting of Analysis & Synthesis. This option
determines how aggressively Analysis & Synthesis optimizes the design for power. When
this option is Off, the Compiler does not perform any power optimizations. Normal
compilation performs power optimizations provided that they are not expected to
reduce design performance. Extra effort performs additional power optimizations which
may reduce design performance.

Table 48. Advanced Synthesis Settings (11 of 13)

Option Description

Remove Duplicate Registers Removes a register if it is identical to another register. If two registers generate the
same logic, the Compiler deletes the duplicate. The first instance fans-out to the
duplicates destinations. Also, if the deleted register contains different logic option
assignments, the Compiler ignores the options. This option is useful if you want to

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

prevent the Compiler from removing intentionally duplicate registers. The Compiler
ignores this option if you apply it to anything other than an individual register or a
design entity containing registers.

Remove Redundant Logic
Cells

Removes redundant LCELL primitives or WYSIWYG primitives. Turning this option on
optimizes a circuit for area and speed. The Compiler ignores this option if you apply it to
anything other than a design entity.

Report Parameter Settings Specifies whether the Synthesis report includes the reports in the Parameter Settings
by Entity Instance folder.

Report PR Initial Values as
Errors

Allows you to flag explicitly defined initial values found in PR partitions as Errors instead
of Warnings.

Report Source Assignments Specifies whether the Synthesis report includes reports in the Source Assignments
folder.

Table 49. Advanced Synthesis Settings (12 of 13)

Option Description

Resource Aware Inference
for Block RAM

Specifies whether RAM, ROM, and shift-register inference should take the design and
device resources into account.

Restructure Multiplexers Reduces the number of logic elements synthesis requires to implement multiplexers in a
design. This option is useful if your design contains buses of fragmented multiplexers.
This option repacks multiplexers more efficiently for area, allowing the design to
implement multiplexers with a reduced number of logic elements:
• On—minimizes your design area, but may negatively affect design clock speed

(fMAX).
• Off—disables multiplexer restructuring; it does not decrease logic element usage and

does not affect design clock speed (fMAX).
• Auto—allows the Quartus Prime software to determine whether multiplexer

restructuring should be enabled. The Auto setting decreases logic element usage,
but may negatively affect design clock speed (fMAX).

SDC Constraint Protection Verifies.sdc constraints in register merging. This option helps to maintain the validity
of .sdc constraints through compilation.

Safe State Machine The Safe State Machine option implements state machines that can recover from an
illegal state. The following settings are available:
• Auto—for Stratix 10 or Agilex 7 designs, this default setting enables Safe State

Machine whenever the Compiler determines this setting is advantageous in state
machines of 6 or less states. The setting helps to allow for unexpected initial power-
up conditions. For Arria 10 and Cyclone 10 GX, the Auto setting is the same as
Never.

• On—directs the Compiler to always use Safe State Machine.
• Never—never uses Safe State Machine.

Shift Register Replacement
– Allow Asynchronous Clear
Signal

Allows the Compiler to find a group of shift registers of the same length that can be
replaced with the altshift_taps IP core. The shift registers must all use the same aclr
signals, must not have any other secondary signals, and must have equally spaced taps
that are at least three registers apart. To use this option, you must turn on the Auto
Shift Register Replacement logic option.

Size of the Latch Report Allows you to specify the maximum number of latches that the Synthesis Report should
display.

Size of the PR Initial
Conditions Report

Allows you to specify the maximum number of registers that the PR Initial Conditions
Report should display.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 50. Advanced Synthesis Settings (13 of 13)

Option Description

State Machine Processing Specifies the processing style the Compiler uses to process a state machine. You can use
your own User-Encoded style, or select One-Hot, Minimal Bits, Gray, Johnson,
Sequential, or Auto (Compiler-selected) encoding.

Strict RAM Replacement When this option is On, the Compiler replace RAM only if the hardware matches the
design exactly.

Synchronization Register
Chain Length

Specifies the maximum number of registers in a row that the Compiler considers as a
synchronization chain. Synchronization chains are sequences of registers with the same
clock and no fan-out in between, such that the first register is fed by a pin, or by logic in
another clock domain. The Compiler considers these registers for metastability analysis.
The Compiler prevents optimizations of these registers, such as retiming. When gate-
level retiming is enabled, the Compiler does not remove these registers. The default
length is set to two.

Synthesis Effort Controls the synthesis trade-off between compilation speed, performance, and area. The
default is Auto. You can select Fast for faster compilation speed at the cost of
performance and area.

Synthesis Migration Check
for Stratix 10

Enables synthesis checks on Arria 10 to Stratix 10 design migration.

Timing-Driven Synthesis For Arria 10 and Cyclone 10 GX designs, allows synthesis to use timing information to
better optimize the design. The Timing-Driven Synthesis logic option impacts the
following Optimization Technique options:
• Optimization Technique Speed—optimizes timing-critical portions of your design

for performance at the cost of increasing area (logic and register utilization)
• Optimization Technique Balanced—also optimizes the timing-critical portions of

your design for performance, but the option allows only limited area increase
• Optimization Technique Area—optimizes your design only for area

1.18. Fitter Settings Reference

Use Fitter settings to customize the place and route of your design. Click
Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings (Fitter) to
access Fitter settings.

Table 51. Advanced Fitter Settings (1 of 8)

Option Description

ALM Register Packing Effort Guides aggressiveness of the Fitter in packing ALMs during register placement. Use this
option to increase secondary register locations. Increasing ALM packing density may
lower the number of ALMs needed to fit the design, but it may also reduce routing
flexibility and timing performance.
• Low—the Fitter avoids ALM packing configurations that combine LUTs and registers

which have no direct connectivity. Avoiding these configurations may improve timing
performance but increases the number of ALMs to implement the design.

• Medium—the Fitter allows some configurations that combine unconnected LUTs and
registers to be implemented in ALM locations. The Fitter makes more use of
secondary register locations within the ALM.

• High—the Fitter enables all legal and desired ALM packing configurations. In dense
designs, the Fitter automatically increases the ALM register packing effort as required
to enable the design to fit.

Advanced Physical
Synthesis

Enables the Physical Synthesis engine that includes combinational and sequential
optimization during fitting to improve circuit performance.

Allow Delay Chains Allows the Fitter to choose the optimal delay chain to meet tSU and tCO timing
requirements for all I/O elements. Enabling this option may reduce the number of tSU
violations, while introducing a minimal number of tH violations. Enabling this option does
not override delay chain settings on individual nodes.

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Allow DSP Retiming Allow retiming through DSP blocks.

Allow Early Global Retiming
in the Fitter

Allows the Compiler to run global retiming early in the Fitter.

Allow Hyper-Aware Register
Chain Area Optimizations in
the Fitter

Reduces ALM usage by automatically forcing some back-to-back registers into Hyper
Registers. Turning on this area reduction technique may reduce performance and
increase compile time.

Allow RAM Retiming Allow retiming through RAM blocks.

Allow Register Duplication Allows the Compiler to duplicate registers to improve design performance. When you
enable this option, the Compiler copies registers and moves some fan-out to this new
node. This optimization improves routability and can reduce the total routing wire in nets
with many fan-outs. If you disable this option, this disables optimizations that retime
registers.
Note: Only available for Arria 10 and Cyclone 10 GX devices.

Allow Register Merging Allows the Compiler to remove registers that are identical to other registers in the
design. When you enable this option, in cases where two registers generate the same
logic, the Compiler deletes one register, and the remaining registers fan-out to the
deleted register's destinations. This option is useful if you want to prevent the Compiler
from removing intentional use of duplicate registers.
If you disable register merging, the Compiler disables optimizations that retime registers.
Note: Only available for Arria 10 and Cyclone 10 GX devices.

Auto Delay Chains for High
Fanout Input Pins

Allows the Fitter to choose how to optimize the delay chains for high fan-out input pins.
You must enable Auto Delay Chains to enable this option. Enabling this option may
reduce the number of tSU violations, but the compile time increases significantly, as the
Fitter tries to optimize the settings for all fan-outs.

Auto Fit Effort Desired Slack
Margin

Specifies the default worst-case slack margin the Fitter maintains for. If the design is
likely to have at least this much slack on every path, the Fitter reduces optimization
effort to reduce compilation time.
Note: Only available for Arria 10 and Cyclone 10 GX devices.

Table 52. Advanced Fitter Settings (2 of 8)

Option Description

Auto Global Clock Allows the Compiler to choose the global clock signal. The Compiler chooses the signal
that feeds the most clock inputs to flip-flops. This signal is available throughout the
device on the global routing paths. To prevent the Compiler from automatically selecting
a particular signal as global clock, set the Global Signal option to Off on that signal.

Auto Global Register
Control Signals

Allows the Compiler to choose global register control signals. The Compiler chooses
signals that feed the most control signal inputs to flip-flops (excluding clock signals) as
the global signals. These global signals are available throughout the device on the global
routing paths. Depending on the target device family, these control signals can include
asynchronous clear and load, synchronous clear and load, clock enable, and preset
signals. If you want to prevent the Compiler from automatically selecting a particular
signal as a global register control signal, set the Global Signal option to Off on that
signal.

Auto Packed Registers Allows the Compiler to combine a register and a combinational function, or to implement
registers using I/O cells, RAM blocks, or DSP blocks instead of logic cells. This option
controls how aggressively the Fitter combines registers with other function blocks to
reduce the area of the design. Generally, the Auto or Sparse Auto settings are
appropriate.

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

The other settings limit the flexibility of the Fitter to combine registers with other
function blocks and can result in no fits.
• Auto—the Fitter attempts to achieve the best performance with good area. If

necessary, the Fitter combines additional logic to reduce the area of the design to
within the current device.

• Sparse Auto—the Fitter attempts to achieve the highest performance, but may
increase device usage without exceeding the device logic capacity.

• Off—the Fitter does not combine registers with other functions. The Off setting
severely increases the area of the design and may cause a no fit.

• Sparse—the Fitter combines functions in a way which improves performance for
many designs.

• Normal—the Fitter combines functions that are expected to maximize design
performance and reduce area.

• Minimize Area—the Fitter aggressively combines unrelated functions to reduce the
area required for placing the design, at the expense of performance.

• Minimize Area with Chains—the Fitter even more aggressively combines functions
that are part of register cascade chains or can be converted to register cascade
chains.

If this option is set to any value but Off, registers combine with I/O cells to improve I/O
timing. This remains true provided that the Optimize IOC Register Placement For
Timing option is enabled.

Auto RAM to MLAB
Conversion

Specifies whether the Fitter converts RAMs of Auto block type to use LAB locations. If
this option is set to Off, only MLAB cells or RAM cells with a block type setting of MLAB
use LAB locations to implement memory.

Auto Register Duplication Allows the Fitter to automatically duplicate registers within a LAB that contains empty
logic cells. This option does not alter the functionality of the design. The Compiler
ignores the Auto Register Duplication option if you select OFF as the setting for the
Logic Cell Insertion -- Logic Duplication logic option. Turning on this option allows
the Logic Cell Insertion -- Logic Duplication logic option to improve a design's
routability, but can make formal verification of a design more difficult.
Note: Only available for Arria 10 and Cyclone 10 GX devices.

Table 53. Advanced Fitter Settings (3 of 8)

Option Description

Enable Auto-Pipelining Turns on the auto-pipelining and latency-insensitive false path feature. Use this setting in
conjunction with the Maximum Additional Pipelining and optional Additional
Pipelining Group assignments in the Assignment Editor to automatically add pipeline
registers at the locations you specify.
Note: Only available for Stratix 10 and Agilex 7 devices.

Enable Bus-Hold Circuitry Enables bus-hold circuitry during device operation. When this option is On, a pin retains
its last logic level when it is not driven, and does not go to a high impedance logic level.
Do not use this option with the Weak Pull-Up Resistor option because doing so enables
the location of the Critical Chain Viewer from the Fast option. The Compiler ignores this
option if you apply it to anything other than a pin.

Enable Critical Chain
Viewer

Enables critical chain visualization in the Fast Forward Timing Closure Recommendations
report for Stratix 10 and Agilex 7 devices.

Equivalent RAM and MLAB
Paused Read Capabilities

Specifies whether RAMs implemented in MLAB cells must have equivalent paused read
capabilities as RAMs implemented in block RAM. Pausing a read is the ability to keep
around the last read value when reading is disabled. Allowing differences in paused read
capabilities provides the Fitter more flexibility in implementing RAMs using MLAB cells.
To allow the Fitter the most flexibility in deciding which RAMs are implemented using
MLAB cells, set this option to Don't Care. The following options are available:
• Don't Care—the Fitter can convert RAMs to MLAB cells, even if they do not have

equivalent paused read capabilities to a block RAM implementation. The Fitter
generates an information message about RAMs with different paused read capabilities.

• Care—the Fitter does not convert RAMs to MLAB cells unless they have the equivalent
paused read capabilities to a block RAM implementation.

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Equivalent RAM and MLAB
Power Up

Specifies whether RAMs implemented in MLAB cells must have equivalent power-up
conditions as RAMs implemented in block RAM. Power-up conditions occur when the
device powers-up or globally resets. Allowing non-equivalent power-up conditions
provides the Fitter more flexibility in implementing RAMs using MLAB cells.
To allow the Fitter the most flexibility in deciding which RAMs are implemented using
MLAB cells, set this option to Auto or Don't Care. The following options are available:
• Auto—the Fitter may convert RAMs to MLAB cells, even if the MLAB cells lack

equivalent power-up conditions to a block RAM implementation. The Fitter also
outputs a warning message about RAMs with non-equivalent power up conditions.

• Don't Care—the same behavior as Auto applies, but the message is an information
message.

• Care—the Fitter does not convert RAMs to MLAB cells unless they have equivalent
power up conditions to a block RAM implementation.

Final Placement
Optimizations

Specifies whether the Fitter performs final placement optimizations. Performing final
placement optimizations may improve timing and routability, but may also require longer
compilation time.

Fitter Aggressive
Routability Optimizations

Specifies whether the Fitter aggressively optimizes for routability. Performing aggressive
routability optimizations may decrease design speed, but may also reduce routing wire
usage and routing time. The Automatically setting allows the Fitter to decide whether
aggressive routability is beneficial.

Table 54. Advanced Fitter Settings (4 of 8)

Option Description

Fitter Effort Specifies the level of physical synthesis optimization during fitting:
• Auto—adjusts the Fitter optimization effort to minimize compilation time, while still

achieving the design timing requirements. Use the Auto Fit Effort Desired Slack
Margin option to apply sufficient optimization effort to achieve additional timing
margin.

• Standard—uses maximum effort regardless of the design's requirements, leading to
higher compilation time and more margin on easier designs. For difficult designs, Auto
and Standard both use maximum effort.

Note: Only available for Arria 10 and Cyclone 10 GX devices.

Fitter Initial Placement
Seed

Specifies the seed for the current design. The value can be any non-negative integer
value. By default, the Fitter uses a seed of 1.
The Fitter uses the seed as the initial placement configuration when optimizing design
placement to meet timing requirements fMAX. Because each different seed value results in
a somewhat different fit, you can try several different seeds to attempt to obtain superior
fitting results.
The seeds that lead to the best fits for a design may change if the design changes. Also,
changing the seed may or may not result in a better fit. Therefore, specify a seed only if
the Fitter is not meeting timing requirements by a small amount.
Note: You can also use the Design Space Explorer II (DSEII) to sweep complex flow

parameters, including the seed, in the Quartus Prime software to optimize design
performance.

Logic Cell Insertion Allows the Fitter to automatically insert buffer logic cells between two nodes without
altering the functionality of the design. The Compiler creates buffer logic cells from unused
logic cells in the device. This option also allows the Fitter to duplicate a logic cell within a
LAB when there are unused logic cells available in a LAB. Using this option can increase
compilation time. The default setting of Auto allows these operations to run when the
design requires them to fit the design.
Note: Only available for Arria 10 and Cyclone 10 GX devices.

MLAB Add Timing
Constraints for Mixed-Port
Feed-Through Mode
Setting Don't Care

Specifies whether the Timing Analyzer evaluates timing constraints between the write and
the read operations of the MLAB memory block. Performing a write and read operation
simultaneously at the same address might result in metastability issues because no timing
constraints between those operations exist by default. Turning on this option introduces
timing constraints between the write and read operations on the MLAB memory block and

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

thereby avoids metastability issues. However, turning on this option degrades the
performance of the MLAB memory blocks. If your design does not perform write and read
operations simultaneously at the same address, you do not need to set this option.

Number of Example Nodes
Reported in Fitter
Messages

Allows you to specify the maximum number of example nodes Fitter messages should
display.

Table 55. Advanced Fitter Settings (5 of 8)

Option Description

Optimize Design for
Metastability

This setting improves the reliability of the design by increasing its Mean Time Between
Failures (MTBF). When you enable this setting, the Fitter increases the output setup slacks
of synchronizer registers in the design. This slack can exponentially increase the design
MTBF. This option only applies when using the Timing Analyzer for timing-driven
compilation. Use the Timing Analyzer report_metastability command to review the
synchronizers detected in your design and to produce MTBF estimates.

Optimize Hold Timing Directs the Fitter to optimize hold time within a device to meet timing requirements and
assignments. The following settings are available:
• I/O Paths and Minimum TPD Paths—directs the Fitter to meet the following timing

requirements and assignments:
— tH from I/O pins to registers.
— Minimum tCO from registers to I/O pins.
— Minimum tPD from I/O pins or registers to I/O pins or registers.

• All Paths—directs the Fitter to meet the following timing requirements and
assignments:
— tH from I/O pins to registers.
— Minimum tCO from registers to I/O pins.
— Minimum tPD from I/O pins or registers to I/O pins or registers.

When you disable the Optimize Timing logic option, the Optimize Hold Timing option is
not available.

Optimize IOC Register
Placement for Timing

Specifies whether the Fitter optimizes I/O pin timing by automatically packing registers into
I/Os to minimize delays.
• Normal—the Fitter opportunistically packs registers into I/Os that should improve I/O

timing.
• Pack All I/O Registers— the Fitter aggressively packs any registers connected to

input, output, or output enable pins into I/Os, unless prevented by your constraints or
other legality restrictions.

• Off—performs no periphery to core optimization.

Optimize Multi-Corner
Timing

Directs the Fitter to consider all timing corners during optimization to meet timing
requirements. These timing delay corners include both fast-corner timing and slow-corner
timing. By default, this option is On, and the Fitter optimizes designs considering multi-
corner delays in addition to slow-corner delays. When this option is Off, the Fitter
optimizes designs considering only slow-corner delays from the slow-corner timing model
(slowest manufactured device for a given speed grade, operating in low-voltage
conditions). Turning this option On typically creates a more robust design implementation
across process, temperature, and voltage variations.
When you turn Off the Optimize Timing option, the Optimize Multi-Corner Timing
option is not available.

Optimize Timing Specifies whether the Fitter optimizes to meet the maximum delay timing requirements
(for example, clock cycle time). By default, this option is set to Normal compilation.
Turning this option Off helps fit designs that with extremely high interconnect
requirements. Turning this option Off can also reduce compilation time at the expense of
timing performance (because the Fitter ignores the design's timing requirements). If this
option is Off, other Fitter timing optimization options have no effect (such as Optimize
Hold Timing).

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

178

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 56. Advanced Fitter Settings (6 of 8)

Option Description

Periphery to Core
Placement and Routing
Optimization

Specifies whether the Fitter should perform targeted placement and routing optimization on
direct connections between periphery logic and registers in the FPGA core. The following
options are available:
• Auto—the Fitter automatically identifies transfers with tight timing windows, places the

core registers, and routes all connections to or from the periphery. The Fitter performs
these placement and routing decisions before the rest of core placement and routing.
This sequence ensures that these timing-critical connections meet timing, and also
avoids routing congestion.

• On— the Fitter optimizes all transfers between the periphery and core registers,
regardless of timing requirements. Do not set this option to On globally. Instead, use
the Assignment Editor to assign optimization to a targeted set of nodes or entities.

• Off—the Fitter performs no periphery to core optimization.
Note: Only available for Arria 10 and Cyclone 10 GX devices.

Physical Placement Effort Controls how much effort the Fitter spends during advanced physical placement
optimization. High and Maximum effort settings result in additional compile time to further
optimization the placement solution.

Placement Effort
Multiplier

Specifies the relative time the Fitter spends in placement. The default value is 1.0, and legal
values must be greater than 0. Specifying a floating-point number allows you to control the
placement effort. A higher value increases CPU time but may improve placement quality.
For example, a value of '4' increases fitting time by approximately 2 to 4 times but may
increase quality.

Power Optimization
During Fitting

Directs the Fitter to perform optimizations targeted at reducing the total power devices
consume. The available settings for power-optimized fitting are:
• Off—performs no power optimizations.
• Normal compilation—performs power optimizations that are unlikely to adversely

affect compilation time or design performance.
• Extra effort—performs additional power optimizations that might affect design

performance or result in longer compilation time.

Table 57. Advanced Fitter Settings (7 of 8)

Option Description

Programmable Power
Maximum High-Speed
Fraction of Used LAB
Tiles

Sets the upper limit on the fraction of the high-speed LAB tiles. Legal values must be
between 0.0 and 1.0. The default value is 1.0. A value of 1.0 means that there is no
restriction on the number of high-speed tiles, and the Fitter uses the minimum number
needed to meet the timing requirements of your design. Specifying a value lower than 1.0
might degrade timing quality, because some timing critical resources might be forced into
low-power mode.

Programmable Power
Technology Optimization

Controls how the Fitter configures tiles to operate in high-speed mode or low-power mode.
The following options are available:
• Automatic—specifies that the Fitter minimizes power without sacrificing timing

performance.
• Minimize Power Only—specifies that the Fitter sets the maximum number of tiles to

operate in low-power mode.
• Force All Used Tiles to High Speed—specifies that the Fitter sets all used tiles to

operate in high-speed mode.
• Force All Tiles with Failing Timing Paths to High Speed—sets all failing paths to

high-speed mode. For designs that meet timing, the behavior of this setting is similar to
the Automatic setting.

For designs that fail timing, all paths with negative slack are put in high-speed mode. This
mode likely does not increase the speed of the design, and it may increase static power
consumption. This mode may assist in determining which logic paths need to be re-designed
to close timing.

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

179

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Note: Only available for Arria 10 and Cyclone 10 GX devices.

Router Timing
Optimization Level

Controls how aggressively the router tries to meet timing requirements. Setting this option
to Maximum can increase design speed slightly, at the cost of increased compile time.
Setting this option to Minimum can reduce compile time, at the cost of slightly reduced
design speed. The default value is Normal.

Table 58. Advanced Fitter Settings (8 of 8)

Option Description

Synchronizer
Identification

Specifies how the Compiler identifies synchronization register chain registers for metastability
analysis. A synchronization register chain is a sequence of registers with the same clock with
no fan-out in between, which is driven by a pin or logic from another clock domain.
The following options are available:
• Off—the Timing Analyzer does not identify the specified registers, or the registers within

the specified entity, as synchronization registers.
• Auto—the Timing Analyzer identifies valid synchronization registers that are part of a

chain with more than one register that contains no combinational logic. Use the Auto
setting to generate a report of possible synchronization chains in your design.

• Forced if Asynchronous—the Timing Analyzer identifies synchronization register chains
if the software detects an asynchronous signal transfer, even if there is combinational logic
or only one register in the chain.

• Forced—the Timing Analyzer identifies the specified register, or all registers within the
specified entity, as synchronizers. Do not apply the Forced option to the entire design as
it identifies all registers in the design as synchronizers.

The Fitter optimizes the registers that it identifies as synchronizers for improved Mean Time
Between Failure (MTBF), provided that you enable Optimize Design for Metastability.
If a synchronization register chain is identified with the Forced or Forced if Asynchronous
option, then the Timing Analyzer reports the metastability MTBF for the chain when it meets
the design timing requirements.

Treat Bidirectional Pin
as Output Pin

Specifies that the Fitter treats the bidirectional pin as an output pin, meaning that the input
path feeds back from the output path.

Use Checkered Pattern
as uninitialized RAM
Content

Loads a checkered pattern as initial RAM content into all RAM blocks without specified RAM
content that supports content initialization. Turning on this option does not affect simulation,
which may cause on-chip behavior to differ from simulation results.

Weak Pull-Up Resistor Enables the weak pull-up resistor when the device is operating in user mode. This option pulls
a high-impedance bus signal to VCC. Do not enable this option simultaneously with the
Enable Bus-Hold Circuitry option. The Fitter ignores this option if you apply to anything
other than a pin.

Other Assignments
set_global_assignment –name ERROR_ON_INVALID_ENTITY_NAME

The software ignores .qsf and .qip assignments where the entity field is not a name
that exists in the design and generates a warning. If you set
ERROR_ON_INVALID_ENTITY_NAME to ON, the software generates these warnings as
errors.

1.19. Design Compilation Revision History

This document has the following revision history.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

180

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Added Precompiled Component (PCC) flow to Compilation Flows.
• Updated images and added information about the "RTL Analysis Debug

Mode" in Analysis & Elaboration Flow.
• Updated the images and enhanced the information in Using the Node

Finder.
• Revised the information in Fast Forward Details Report.
• Added Precompiled Component (PCC) Generation Flow.

2023.12.04 23.4 • Enhanced the Compiler Optimization Modes topic with additional
information.

• Updated file properties image in Registering the SDC-on-RTL SDC File
and Using SDC-on-RTL Features.

• In Design Synthesis, added information about converting .bdf to .v
or .vhd file, and updated the image.

• Renamed DNI-Based Compilation Flow as Analysis & Elaboration Flow.
• Added information about Early Timing Analysis flow in Compilation

Overview.
• Reorganized DNI-Based Analysis & Elaboration Flow and Early Timing

Analysis After Design Synthesis sections.
• Renamed DNI-Based Node Finder as Using the Node Finder
• Added an image for Property Viewer showing constraints in Exploring

the RTL Analyzer.
• Reorganized most of the topics under Design Netlist Infrastructure and

moved them into relevant sections of this chapter.
• Removed the term "DNI" in the title and content of the following topics:

— Use Case Examples
— Scripting Routine Tasks Using Tcl Commands
— Traversing the Design Netlist Using Tcl Commands

• Revised the information and image in Design Synthesis.
• Added information about SDC-on-RTL file in Running Synthesis.
• Revised the image, added a note for "Parameter Settings by Entity

Instance" and added information about SDC constraints in Viewing
Synthesis Reports.

• Revised the existing information in Concurrent Analysis During
Synthesis or Fitting.

• Added a note about version compatibility in Importing a Version-
Compatible Compilation Database, and Exporting a Design Partition.

• Renamed the topic Compilation Monitoring as Compilation Monitoring
Mode and revised the topic entirely.

• Revised Enable Intermediate Fitter Snapshots with additional
information.

• Added Preparing for Design Synthesis.
• Removed Early Timing Analysis After Design Synthesis and merged its

information with Post-Synthesis Static Timing Analysis (STA).

2023.10.02 23.3 • Enhanced the instructions and removed "Beta" in Design Netlist
Infrastructure and Exploring the RTL Analyzer.

• Made minor revisions to the description in Object Set Console.
• Updated "Viewing Unbundled Instances" section in Bundled Instances.
• Completely revised the instructions in Early Timing Analysis After

Design Synthesis.
• Made minor updates to Synopsys* Design Constraint (SDC) on RTL.
• Completely updated "RTL Analyzer" section and added additional

information about Constraints viewer in Inspecting SDC-on-RTL
Constraints.

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Added the following topics
— Entity-Based SDC-on-RTL
— Using SDC-on-RTL Features
— DNI-Based Node Finder

• Updated the commands and replaced SYN_SDC_FILE with SDC_FILE
-read_during_post_syn_and_not_post_fit_timing_analysis
in Post-Synthesis Static Timing Analysis (STA).

• Replaced SYN_SDC_FILE in Types of SDC Files Used in the Quartus
Prime Software.

• Reorganized the topics in the Design Compilation chapter per the DNI-
based compilation dashboard.

• Updated the compilation dashboard image in the following topics:
— Using the Compilation Dashboard
— Concurrent Analysis During Synthesis or Fitting
— Step 1: Run Register Retiming
— Step 3: Run Fast Forward Compile
— Fast Forward Compile By Hierarchy

• Added description for "Number of Congested Nets" column in Global
Router Congestion Hotspot Summary Report.

• Revised the descriptions of optimization modes in Compiler
Optimization Modes.

• Removed the topic Connectivity Tracer.
• Updated the "Hierarchical Project Structure" image along with its

description in Compilation Hierarchy.

2023.04.03 23.1 • In Design Netlist Infrastructure (Beta), updated the images and added
a note about the incompatibilities between classic and DNI compilation
flows.

• In Exploring the RTL Analyzer (Beta), updated the images and
improved their clarity.

• Enhanced the Sweep Hints Viewer topic with additional information and
images.

• Enhanced the Inspecting SDC-on-RTL Constraints topic with additional
information about Object Constraints viewer.

• Revised the Object Set Console topic entirely.
• Revised the Auto-hide Unconnected Pins topic entirely.
• Renamed the topic Early Timing Analysis (Beta) to Early Timing

Analysis After Design Synthesis (Beta) and revised the information and
images.

• Enhanced Applying the SDC-on-RTL Constraints with additional
information about the Constraint Propagation Report.

• Updated the images and revised some instructions in Post-Synthesis
Static Timing Analysis (STA).

• Updated the product family name to "Intel Agilex 7."
• Revised description of Fitter (Finalize) command for latest physical

synthesis optimizations.

2022.12.19 22.4 • Added Filtering.
• Added Expand Connections.
• Revised Object Set Console with additional information and images.

2022.09.26 22.3 • Added Early Timing Analysis (Beta).
• Added Synopsys* Design Constraint (SDC) on RTL.
• Added Registering the SDC-on-RTL SDC File.
• Added Applying the SDC-on-RTL Constraints.
• Added Managing SDC-on-RTL Constraints.
• Added Writing Constraints in SDC-on-RTL SDC Files.
• Added Post-synthesis Static Timing Analysis (STA).

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

182

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Added Types of SDC Files Used in the Quartus Prime Software.
• Added Object Set Console.
• Added Module Interfaces.
• Added Connectivity Tracer.
• Added DNI Use Case Examples.
• Added Scripting Routine Tasks Using DNI Tcl Commands.
• Added Traversing the DNI Netlist Using Tcl Commands.
• Added Viewing Synthesis Dynamic Report.
• Split the topic Instances Bundling and Auto-hiding Unconnected Pins

into separate topics Bundled Instances and Auto-hide Unconnected
Pins.

• Revised Bundled Instances with additional information.
• Revised images in Exploring the RTL Analyzer and Design Netlist

Infrastructure (DNI).

2022.06.21 22.2 • Added Design Netlist Infrastructure (DNI).
• Added Exploring the RTL Analyzer.
• Added Module Interfaces.
• Added Instances Bundling and Auto-hiding Unconnected Pins.

2022.03.28 22.1 • Added Compilation Monitoring.
• Added Global Router Congestion Hotspot Summary Report.
• Revised Full Compilation Flow.
• Added Full Compilation Flow with Temporary Optimization Mode.

2022.01.27 21.4 • Revised Compiler Optimization Modes topic to provide implication
details of various modes.

2021.11.03 21.3 • Made a minor correction in Reusing a Design Partition step 4.
• Removed the callouts from Creating a Design Partition topic.

2021.10.04 21.3 • Added Preserving Signals for Monitoring and Debugging topic.
• Revised Preserving Registers During Synthesis topic for new debugging

signal preservation assignments.
• Revised Viewing Synthesis Reports topic to include new warnings

summary reports.
• Revised Optimization Modes topic to include new optimization modes.
• Revised VHDL Synthesis Support to include VHDL 2019 support.
• Revised VHDL Input Settings (Settings Dialog Box) topic to include

VHDL 2019 support.
• Added VHDL-2019 Conditional Analysis topic.

2021.06.21 21.2 • Added Version-Compatible Compilation Database Support table.

2021.03.29 21.1 • Added Check Unregistered Ports report to "Validating Timing
Constraints with Snapshot Viewer" topic.

• Updated "Running Snapshot Viewer" topic to indicate the reports that
are available after the final snapshot.

• Removed reference to Rapid Recompile from "Enable Intermediate
Filter Snapshots". Support for Rapid Recompile has been removed.

• Added information to "Using the Compilation Dashboard" to indicate
that an interrupted compilation flow can be resumed.

2020.12.14 20.3 • Corrected typo in "Automatic Gated Clock Conversion" topic.

2020.11.09 20.3 • Added new "Integrating Other EDA Tools" topic.
• Added new "Generating a VQM Netlist for Other EDA Tools" topic.

2020.09.28 20.3 • Added references to ECO Compilation Flow.
• Removed references to deprecated Early Place Compiler flow.

continued...

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

183

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2020.05.08 20.1 • Added note about programming file differences between versions to
"Compilation Overview" topic.

2020.04.13 20.1 • Added new "Fast Forward Compile by Hierarchy" topic.
• Added new assignment to "Fitter Settings Reference" topic..
• Updated "Verilog and SystemVerilog Synthesis Support" topic for

SystemVerilog 2012 support.
• Added programming file generation support for Intel Agilex devices.
• Added "Analyzing with the Snapshot Viewer" topic.
• Added "Running the Snapshot Viewer" topic.
• Added "Analyzing Failing Paths with Snapshot Viewer" topic.
• Added "Analyzing Clocking with Snapshot Viewer" topic.
• Added "Analyzing High Fan-Out Nets with Snapshot Viewer" topic.
• Added "Analyzing Constraints with Snapshot Viewer" topic.
• Added "Analyzing Congestion with Snapshot Viewer" topic.
• Removed Early Place Flow
• Removed Synthesis Reports figure and table.
• Removed Heat-Map in Global Signal Visualization Report figure
• Changed sentence in Fast Forward Compilation to The Fitter

automatically retimes registers across RAM and DSP blocks from The
Fitter does not automatically retime registers across RAM and DSP
blocks.

• Added more Preservation Level information to Design Partition table.

2019.10.20 19.3 • Added "Automatic Gated Clock Conversion" topic.
• Updated "Fractal Synthesis Optimization" and "Enabling or Disabling

Fractal Synthesis" topics for automated fractal synthesis for small
multipliers.

2019.09.30 19.3 • Added support for Intel Agilex devices throughout.
• Added "Global Signal Visualization Report" topic.
• Added "Global Router Wire Utilization Map" topic.
• Added "Fast Preserve Option" topic.
• Reordering of some topics to match design flow.

2019.07.02 19.1 • Made minor changes in "Fractal Synthesis Optimization" topic.
• Added a note in step 3a of "Running Synthesis" about enabling fractal

synthesis project-wide.
• Added details about synthesis of PRESERVE_FANOUT_FREE_NODE to

"Partial Reconfiguration Design Guidelines."
• Corrected typo in "Step 3: Run Fast Forward Compile and Hyper-

Retiming."
• Removed "Enabling Timing-Driven Synthesis" topic.

2019.04.01 19.1 • In "Running Synthesis", removed a step about enabling fractal
synthesis project-wide.

• Updated the "Fractal Synthesis Optimization" topic to describe signed
multiplication feature that is now supported by multiplier regularization
and arithmetic packing algorithms.

2019.01.03 18.1.0 • Added snapshot description to "Compilation Overview" and linked to
content from "Exporting a Design Partition" and "Exporting a Version-
Compatible Compilation Database."

continued...

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2018.10.19 18.1 • Described dependency of Rapid Recompile on Enable Intermediate
Fitter Snapshots option.

2018.09.24 18.1 • Described option to enable or disable intermediate Fitter snapshots and
updated descriptions of compilation flows and dashboard accordingly.

• Added "Exporting Compilation Results section and subtopics."
• Described migration of full chip database in "Exporting a Version-

Compatible Compilation Database" topic.
• Described automated .qdb partition export in "Exporting a Design

Partition" topic.
• Described viewing QDB file metadata in "Viewing Quartus Database File

Information."
• Added "Fractal Synthesis Optimization" topic and updated "Running

Synthesis" topic steps for new option.
• Described new Compiler Optimization Modes and described notice that

appears for extended optimization modes added via .qsf.
• Described new Global Signal Visualization Report.
• Added "Factors Affecting Compilation Results" topic.
• Added "Using the Compilation Dashboard" topic.
• Added description of Enable Auto-Pipelining setting.
• Added description of Enable Formal Verification Support to "Advanced

Synthesis Settings."
• Added description of Report PR Initial Values as Errors option to

"Advanced Synthesis Settings."
• Added description of Size of the Latch Report option to "Advanced

Synthesis Settings."
• Added description of Size of the PR Initial Conditions Report option to

"Advanced Synthesis Settings."
• Added description of Advanced Physical Synthesis option to "Fitter

Settings Reference."
• Added description of Allow DSP Retiming option to "Fitter Settings

Reference."
• Added description of Allow Early Global Retiming in the Fitter option to

"Fitter Settings Reference."
• Added description of Allow Hyper-Aware Register Chain Area

Optimizations in the Fitter option to "Fitter Settings Reference."
• Added description of Allow RAM Retiming option to "Fitter Settings

Reference."
• Added description of Number of Example Nodes Reported in Fitter

Messages option to "Fitter Settings Reference."
• Added description of Physical Placement Effort option to "Fitter Settings

Reference."
• Added description of Use Checkered Pattern as uninitialized RAM

Content option to "Fitter Settings Reference."
• Updated description of Safe State Machine option for Auto setting.
• Removed support for Ignore ROW GLOBAL Buffers option.
• Removed support for Ignore CARRY Buffers option.
• Removed support for Ignore CASCADE Buffers option.

2018.05.07 18.0 • Updated Optimization Modes topic to add Compile Time (Aggressive).
• Relocated concurrent analysis content from the Early Place Flow topic

to a new Concurrent Analysis During Synthesis or Fitting topic.
• Rapid Recompile now supports Stratix 10 devices.
• Enhanced description of Retime Stage Reports.
• Enhanced description of Retime Stage to include classic register

retiming.

1. Design Compilation

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 59. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Added support for Stratix 10 Hyper-Aware design flow, Hyper-
Retiming, Fast Forward compilation, and Fast Forward Viewer.

• Added Advanced HyperFlex Settings topic.
• Added Retiming Restrictions and Workarounds topic.
• Added statement about Fast Forward compilation support for

retiming across RAM and DSP blocks.
• Added Concurrent Analysis topic.
• Added Analyzing Fitter Snapshots topic.
• Added Compilation Dashboard Early Place stage control image.
• Added Running late_place After Early Place topic.
• Updated for latest Intel naming conventions.

2017.05.08 17.0.0 • Added reference to initial compilation support for Cyclone 10 GX
devices.

• Described concurrent analysis following Early Place.
• Updated Compilation Dashboard images for Timing Analyzer,

Report, Setting, and Concurrent Analysis controls.
• Updated description for Auto DSP Block Replacement in Advanced

Synthesis Settings.
• Updated Advanced Fitter Settings for Allow Register Retiming, and

for removal of obsolete SSN Optimization option.
• Added Prevent Register Retiming topic.
• Added Preserve Registers During Synthesis topic.
• Removed limitation for Safe State Machine logic option.
• Added references to Partial Reconfiguration and Block-Based Design

Flows.

2016.10.31 16.1.0 • Implemented Intel re-branding.
• Described Compiler snapshots and added Analyzing Snapshot

Timing topic.
• Updated project directory structure diagram.
• Described new Fitter stage menu commands and reports.
• Added description of Early Place Flow, Implement Flow, and Finalize

Flow.
• Added description of Incremental Optimization in the Fitter.
• Reorganized order of topics in chapter.
• Removed deprecated Per-Stage Compilation (Beta) Compilation

Flow.

2016.05.03 16.0.0 • Added description of Fitter Plan, Place and Route stages, reporting,
and optimization.

• Added Per-Stage Compilation (Beta) Compilation Flow
• Added Compilation Dashboard information.
• Removed support for Safe State Machine logic option. Encode safe

states in RTL.
• Added Generating Dynamic Synthesis Reports topic.
• Updated Quartus project directory structure.

2015.11.02 15.1.0 • First version of document.

1. Design Compilation

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Reducing Compilation Time
You can employ various techniques to reduce the time required for synthesis and
fitting in the Quartus Prime Compiler.

2.1. Factors Affecting Compilation Results

Almost any change to the following project settings, hardware, or software can impact
the results from one compilation to the next.

• Project Files—changes to project settings (.qsf, quartus2.ini), design files,
and timing constraints (.sdc) can change the results.

• Any setting that changes the number of processors during compilation can impact
compilation results.

• Hardware—CPU architecture, not including hard disk or memory size differences.
Windows XP x32 results are not identical to Windows XP x64 results. Linux x86
results is not identical to Linux x86_64.

• Quartus Prime Software Version—including build number and installed interim
updates. Click Help > About to obtain this information.

• Operating System—Windows or Linux operating system, excluding version
updates. For example, Windows XP, Windows Vista, and Windows 7 results are
identical. Similarly, Linux RHEL, CentOS 4, and CentOS 5 results are identical.

2.2. Strategies to Reduce the Overall Compilation Time

You can use the following strategies to reduce the overall time required to compile
your design:

• Running the ECO Compilation Flow on page 187

• Enabling Multi-Processor Compilation on page 188

• Using Block-Based Compilation on page 191

2.2.1. Running the ECO Compilation Flow

The Quartus Prime Pro Edition software supports last-minute, targeted design changes
(also known as engineering change orders (ECOs)), even after you fully compile the
design. ECOs typically occur during the design verification stage. Refer to the Quartus
Prime Pro Edition User Guide: Design Optimization for details.

Related Information

Intel Quartus Prime Pro Edition User Guide: Design Optimization

683236 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2.2.2. Enabling Multi-Processor Compilation

The compiler can detect and use multiple processors to reduce total compilation time.
By default, the compiler uses the setting specified under Parallel Compilation in the
Processing page of the Options dialog box. To reserve some processors for other
tasks, specify the maximum number of processors the software must use.

Using multiple processor cores provides several benefits for improving software
performance as follows:

• Faster execution: The Quartus Prime software can support up to 24 processors,
which means the software can run algorithms in parallel. This technique reduces
the compilation time by up to 10% on systems with two processing cores and up
to 20% on systems with four processors. When running timing analysis
independently, two processors reduce the timing analysis time by an average of
10%. This reduction reaches an average of 15% when using four processors.

• Increased throughput: With more processing cores, systems can execute
multiple tasks simultaneously, which means the software can handle more
requests simultaneously. The Quartus Prime software may not necessarily utilize
all the processors specified during compilation. The software has the flexibility to
scale its usage to use up to the maximum number of processors specified. To
achieve the highest possible throughput, Intel recommends using a system
equipped with at least four processing cores, allowing the software to take full
advantage of the available computing resources.

• Reduced latency: With multiple processing cores, the software responds more
quickly to your requests, improving the overall experience. The software never
uses more than the specified number of processors, so you can work on other
tasks in parallel without slowing down your computer.

• More efficient resource utilization: By distributing tasks across multiple
processor cores, the Quartus Prime software can use available resources more
efficiently, reducing the overall cost of running the software.

The use of multiple processors does not affect the quality of the fit. The fit is the same
and deterministic for a given Fitter seed and given Maximum processors allowed
setting on a specific design. This remains true regardless of the target system and the
number of available processors. Different Maximum processors allowed
specifications produces different results of the same quality. The impact is similar to
changing the Fitter seed setting.

To enable multiprocessor compilation, follow these steps:

1. Open or create an Quartus Prime project.

2. Click Assignments ➤ Settings ➤ Compilation Process Settings.

3. Under Parallel compilation, specify options for the number of processors the
compiler uses.

View the number of processors detected on your system in the Parallel
Compilation report after compilation ends.

2. Reducing Compilation Time

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 139. Parallel Compilation Report

The following is the QSF setting that controls the maximum number of processors.
If this line is in your project's QSF file, do not specify it again.

set_global_assignment -name NUM_PARALLEL_PROCESSORS <value>

In this case, <value> is an integer from 1 to 24.

If you want the Quartus Prime software to detect the number of processors and
use all the processors for the compilation, include the following Tcl command in
your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL

Note: • Using multiple processor cores can help the Quartus Prime software run
faster, handle more tasks, and provide a better user experience.
However, other factors, such as memory bandwidth or I/O bottlenecks,
may limit performance. So, you must consider specific requirements and
constraints of each project when deciding how many processor cores to
use.

• The compiler detects Intel Hyper-Threading® Technology (Intel HT
Technology) as a single processor. If your system includes a single
processor with Intel HT Technology, set the number of processors to
one. Set the number of processors according to the number of physical
processors in your system,

The following are other factors that affect performance in the Quartus Prime
software:

2.2.2.1. Processor Base Clock Frequency

Using faster processor cores provides several advantages, including:

• Faster execution: With faster processor cores, the Quartus Prime software can
execute tasks more quickly, which can improve overall system performance and
reduce the time required to complete complex calculations, algorithms, and data
processing tasks.

• Improved multitasking: Faster processor cores can improve the ability of the
Quartus Prime software to handle multiple tasks simultaneously, reducing the risk
of system slowdowns when running several algorithms simultaneously.

• Quicker start-up and shutdown times: Faster processors can reduce the time
required for the Quartus Prime software to open and close side applications, such
as Timing Analyzer, Platform Designer, and more. This can improve your
productivity and reduce downtime.

For shortest compile times, you should choose processors with the highest base clock
frequency available and prioritizing higher CPU frequency over having more cores.
While additional cores can be beneficial for tasks that are highly parallelizable,

2. Reducing Compilation Time

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

189

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

focusing on higher frequency ensures faster execution of individual threads, leading to
improved responsiveness and overall performance of the Quartus Prime Pro Edition
software.

2.2.2.2. Random Access Memory (RAM)

There are several advantages to having more RAM, including:

• Improved performance: With more RAM, the Quartus Prime software can store
more data in memory, thereby reducing the need for the system to access the
slower hard drive for frequently used data. This can result in faster application
launch times, quicker compilation times, and faster overall system performance.

• Better multitasking: More RAM allows a computer to handle more processes
simultaneously without slowing down. This is particularly important when you
want to simultaneously use the Quartus Prime software and other applications or
programs.

• Improved productivity: More RAM can improve the productivity of the Quartus
Prime software by reducing the time required for complex tasks, such as
compilation.

Note: • The Quartus Prime Pro Edition Software and Device Support Release Notes
provides valuable information regarding the software’s system requirements and
recommended configurations. Consult the release notes to determine the
minimum required RAM for your computer to optimize performance.

• To fully leverage the system’s capabilities, Intel recommends utilizing the
maximum number of DIMM slots available. This configuration provides ample
memory capacity and bandwidth, allowing for efficient handling of complex
designs.

In addition, by tracking the virtual memory utilization, you can identify potential
performance issues and optimize your system for better efficiency when using the
Quartus Prime Pro Edition software. Consult the peak virtual memory from a previous
compile by viewing the flow report or the Flow Elapsed Time report category from the
compilation report in the compilation dashboard.

The following example Flow Elapsed Time report shows the peak virtual memory:

Figure 140. Flow Elapsed Time Report

2. Reducing Compilation Time

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

190

https://www.intel.com/content/www/us/en/docs/programmable/683706.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Running numerous processes concurrently can consume a significant amount of
memory resources and potentially lead to performance issues. so Intel recommends
considering the peak virtual memory used for each project and avoiding multiple
compilations that exceed the available memory capacity of your computer. This helps
prevent congestion in the RAM memory.

Overall, by maximizing the RAM capacity, you can ensure smooth and optimal
performance and better multitasking to enhance productivity during resource-
intensive tasks, enabling faster processing, reduced latency, and improved
productivity of the Quartus Prime Pro Edition software.

2.2.2.3. Storage

Storage can be a factor that limits performance in the Quartus Prime software since
the Quartus Prime Pro Edition software reads source files and constraints and reads/
writes to the database. For best results, Intel recommends the following to ensure
consistent system performance:

• Downloading all the necessary files from the network.

• Completing the compilation process using local disks.

• Uploading the finished results back to the network by avoiding storage latency
(varies on each system).

Intel recommends prioritizing the selection of the fastest affordable SSD drive for your
storage needs. Opting for an SSD over traditional disk drives significantly enhances
load and save times and greatly improves overall operating system performance.
SSDs offer superior speed and responsiveness, making them an excellent choice to
ensure the best performance experience when using the Quartus Prime Pro Edition
software.

2.2.3. Using Block-Based Compilation

During the design process, when making minor modifications to a design, recompiling
the entire design can result in longer compilation times than anticipated. This is
because every time you recompile a design following a change, the compiler may
apply global optimizations to enhance resource utilization and timing performance,
thus extending the compilation time. By employing a block-based flow in the Quartus
Prime Pro Edition software, you can isolate functional blocks that meet placement and
timing requirements from others still undergoing change and optimization. By isolating
functional blocks into partitions, the results and performance of unaltered logic within
a design are maintained so you can apply optimization techniques to selected areas
and only compile those areas. This approach can significantly diminish design
compilation time, enabling several iterations per day and facilitating more efficient
achievement of timing closure.

When using block-based compilation, you can enable the Fast Preserve option, which
masks the partition netlist during the fitter initialization to use only the logic that
interfaces with the rest of the design present at the partition boundary during
compilation. By implementing this approach, the time required for the compiler to
perform synthesis, place, route, and partition is effectively reduced. Consequently, the
overall compilation process becomes more efficient, enabling faster generation of the
necessary configurations for the partition. This reduction in compilation time allows for
quicker iterations and facilitates the timely completion of the design implementation
phase.

2. Reducing Compilation Time

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To create partitions dividing functional blocks:

1. In the Design Partition Planner, identify blocks of a size suitable for partitioning.

A partition generally represents roughly 15 to 20% of the total design size. You
should use the information area below the bar at the top of each entity.

Figure 141. Entity representation in the Design Partition Planner

Percent of total design size

2. Extract and collapse entities as necessary to achieve stand-alone blocks.

3. For each entity of the desired size containing related blocks of logic, right-click the
entity and click Create Design Partition to place that entity in its own partition.

The goal is to achieve partitions containing related blocks of logic.

4. To enable the Fast Preserve option that simplifies the logic of the preserved
partition to only interface logic during compilation, click Assignments ➤ Settings
➤ Compiler Settings ➤ Incremental Compile ➤ Fast Preserve.

Intel recommends consulting the Quartus Prime Pro Edition User Guide: Block-Based
Design to gain in-depth knowledge about block-based designs. This guide serves as a
comprehensive resource that provides detailed information, instructions, and
explanations related to the Quartus Prime Pro Edition software.

Related Information

Intel Quartus Prime Pro Edition User Guide: Block-Based Design

2.3. Reducing Synthesis Time and Synthesis Netlist Optimization
Time

You can reduce synthesis time without affecting the Fitter time by reducing your use
of netlist optimizations. For tips on reducing synthesis time when using third-party
EDA synthesis tools, refer to your synthesis software’s documentation.

2.3.1. Settings to Reduce Synthesis Time and Synthesis Netlist
Optimization Time

Synthesis netlist and physical synthesis optimization settings can significantly increase
the overall compilation time for large designs. Refer to Analysis and Synthesis
messages to determine the length of optimization time.

If your design already meets performance requirements without synthesis netlist or
physical synthesis optimizations, turn off these options to reduce compilation time. If
you require synthesis netlist optimizations to meet performance, optimize partitions of
your design hierarchy separately to reduce the overall time spent in Analysis and
Synthesis.

2. Reducing Compilation Time

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

192

https://www.intel.com/content/www/us/en/docs/programmable/683247/xdj1491668852667.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.2. Use Appropriate Coding Style to Reduce Synthesis Time

Your HDL coding style can also affect the synthesis time. For example, if you want to
infer RAM blocks from your code, you must follow the guidelines for inferring RAMs. If
RAM blocks are not inferred properly, the software implements those blocks as
registers.

If you are trying to infer a large memory block, the software consumes more
resources on the FPGA. This can cause routing congestion and increases compilation
time significantly. If you see high routing utilization in certain blocks, review the code
for such blocks.

2.4. Reducing Placement Time

The time required to place a design depends on two factors:

• The number of ways the logic in your design can be placed in the device.

• The settings that control the amount of effort required to find a good placement.

You can reduce the placement time by changing the settings for the placement
algorithm. If you have enabled a higher performance effort compiler optimization
mode, you can try reducing the effort setting and observe how it trades off runtime
and quality of results (QoR).

You can also observe the placement of major logic blocks in your design (over multiple
compiles) to see whether the major blocks tend to get placed in the same places in
the floorplan between the compiles. Suppose major blocks get placed in different
places in some compiles. If those placements correlate with good QoR, create Logic
Lock regions to ensure the blocks are placed in those regions with good QoR, which
should help reduce compile time.

Sometimes there is a trade-off between placement time and routing time. Routing
time can increase if the placer does not run long enough to find a good placement.
When you reduce placement time, ensure that it does not increase routing time and
negate the overall time reduction.

2.4.1. Placement Effort Multiplier Settings

The Placement Effort Multiplier option controls how much time the Fitter spends in
placement. Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Fitter) and specify a value for Placement Effort Multiplier.

The default value is 1.0, and valid values are greater than 0. Specifying a floating-
point number allows you to control the placement effort. A lower value decreases the
CPU time but may reduce placement quality. You cannot directly increase the
Placement Effort Multiplier to a value greater than 1.0. Use predefined
Optimization Mode settings to increase placement effort for improved timing
optimization.

2.5. Reducing Routing Time

The routing time is usually not a significant amount of the compilation time. The time
required to route a design depends on three factors: the device architecture, the
placement of your design in the device, and the connectivity between different parts of
your design.

2. Reducing Compilation Time

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If your design requires a long time to route, perform one or more of the following
actions:

• Check for routing congestion.

• Turn off Fitter Aggressive Routability Optimization.

2.5.1. Identifying Routing Congestion with the Chip Planner

To identify areas of routing congestion in your design:

1. Click Tools ➤ Chip Planner.

2. To view the routing congestion in the Chip Planner, double-click the Report
Routing Utilization command in the Tasks list.

3. Click Preview in the Report Routing Utilization dialog box to preview the
default congestion display.

4. Change the Routing utilization type to display congestion for specific resources.
The default display uses dark blue for 0% congestion and red for 100%.

5. Adjust the slider for Threshold percentage to change the congestion threshold
level.

The Quartus Prime compilation messages contain information about average and peak
interconnect usage. Peak interconnect usage over 75%, or average interconnect usage
over 60% indicate possible difficulties fitting your design. Similarly, peak interconnect
usage over 90%, or average interconnect usage over 75%, indicate a high chance of
not getting a valid fit.

2.5.1.1. Areas with Routing Congestion

Even if average congestion is not high, the design may have areas where congestion is
high in a specific type of routing. You can use the Chip Planner to identify areas of
high congestion for specific interconnect types.

• You can change the connections in your design to reduce routing congestion

• If the area with routing congestion is in a Logic Lock region or between Logic Lock
regions, change or remove the Logic Lock regions and recompile your design.

— If the routing time remains the same, the time is a characteristic of your
design and the placement

— If the routing time decreases, consider changing the size, location, or contents
of Logic Lock regions to reduce congestion and decrease routing time.

Related Information

Intel Quartus Prime Pro Edition User Guide: Design Optimization

2.5.1.2. Congestion due to HDL Coding style

Sometimes, routing congestion may be a result of the HDL coding style used in your
design. After identifying congested areas using the Chip Planner, review the HDL code
for the blocks placed in those areas to determine whether you can reduce interconnect
usage by code changes.

2. Reducing Compilation Time

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

194

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/analyzing-and-optimizing-the-design-03170.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6. Reducing Static Timing Analysis Time

If you are performing timing-driven synthesis, the Quartus Prime software runs the
Timing Analyzer during Analysis and Synthesis.

The Quartus Prime Fitter also runs the Timing Analyzer during placement and routing.
If there are incorrect constraints in the Synopsys Design Constraints File (.sdc), the
Quartus Prime software may spend unnecessary time processing constraints several
times.

• If you do not specify false paths and multicycle paths in your design, the Timing
Analyzer may analyze paths that are not relevant to your design.

• If you redefine constraints in the .sdc files, the Timing Analyzer may spend
additional time processing them. To avoid this situation, look for indications that
Synopsis design constraints are being redefined in the compilation messages, and
update the .sdc file.

• Ensure that you provide the correct timing constraints to your design, because the
software cannot assume design intent, such as which paths to consider as false
paths or multicycle paths. When you specify these assignments correctly, the
Timing Analyzer skips analysis for those paths, and the Fitter does not spend
additional time optimizing those paths.

2.7. Setting Process Priority

It might be necessary to reduce the computing resources allocated to the compilation
at the expense of increased compilation time. It can be convenient to reduce the
resource allocation to the compilation with single processor machines if you must run
other tasks at the same time.

Related Information

Processing Page (Options Dialog Box)
In Quartus Prime Help.

2.8. Reducing Compilation Time Revision History

Document Version Quartus Prime
Version

Changes

2023.12.04 23.4 • Enhanced the information in Reducing Placement Time.
• Revised the information in Placement Effort Multiplier Settings.

2023.06.26 23.2 • Revised the information in Enabling Multi-Processor Compilation and
Using Block-Based Compilation.

• Added the following new topics:
— Processor Base Clock Frequency
— Random Access Memory (RAM)
— Storage

2022.09.26 22.3 • Updated Enabling Multi-Processor Compilation topic for processor limit
increase from 16 to 24.

2022.01.27 21.4 • Removed references to obsolete Compilation Time Advisor.

2021.11.03 21.3 • Made minor update to step 1 in Using Block-Based Compilation.

2021.10.04 21.3 • Removed "Disabling the Register Power-up Initialization".

continued...

2. Reducing Compilation Time

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

195

http://quartushelp.altera.com/current/index.htm#global/global/gl_tab_processing.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2021.03.29 21.1 • Support for Rapid Recompile has been removed, resulting in the
following changes:
— Removed reference to Rapid Recompile from "Strategies to Reduce

the Overall Compilation Time".
— Removed "Running Rapid Recompile" topic.

2020.09.28 20.3 • Added reference to ECO Compilation flow.

2019.11.11 19.3 • Added support for Fast Preserve option to "Using Block-Based
Compilation" topic.

2019.09.30 19.3 • Added support for Intel Agilex devices throughout.

2019.07.02 19.1 Added the Using the No-Register Initialization Flow topic.

2018.10.19 18.1 • Described dependency of Rapid Recompile on Enable Intermediate
Fitter Snapshots option.

2017.11.06 17.1 • Added topic: Using Block-Based Compilation.

Date Version Changes

2017.05.08 17.0.0 • Clarified impact of multiprocessor compilation on fit quality.
• Removed reference to deprecated Fitter Effort Logic Option.
• Removed section: Preserving Routing with Incremental Compilation.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2016.05.02 16.0.0 • Corrected typo in Using Parallel Compilation with Multiple Processors.
• Removed information about deprecated physical synthesis options.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical
Synthesis Optimizations to Compiler Settings.

• Added information about Rapid Recompile feature.

2014.08.18 14.0a10.0 Added restriction about smart compilation in Arria 10 devices.

June 2014 14.0.0 Updated format.

May 2013 13.0.0 Removed the “Limit to One Fitting Attempt”, “Using Early Timing Estimation”, “Final
Placement Optimizations”, and “Using Rapid Recompile” sections.
Updated “Placement Effort Multiplier Settings” section.
Updated “Identifying Routing Congestion in the Chip Planner” section.
General editorial changes throughout the chapter.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 • Updated “Using Parallel Compilation with Multiple Processors”.
• Updated “Identifying Routing Congestion in the Chip Planner”.
• General editorial changes throughout the chapter.

December 2010 10.1.0 • Template update.
• Added details about peak and average interconnect usage.
• Added new section “Reducing Static Timing Analysis Time”.
• Minor changes throughout chapter.

July 2010 10.0.0 Initial release.

2. Reducing Compilation Time

683236 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Quartus Prime Pro Edition User Guide Design
Compilation Archives

For the latest and previous versions of this user guide, refer to Quartus Prime Pro
Edition User Guide: Design Compilation. If a software version is not listed, the guide
for the previous software version applies.

683236 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel FPGA devices, and program CPLD and configuration
devices, via connection with an Intel FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683236 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

A. Quartus Prime Pro Edition User Guides

683236 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Compilation

199

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(683236%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Pro Edition User
Guide
Design Optimization

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q What are the optimization trade-offs?
A Optimization Trade-Offs and Limitations on page 10

Q How do I use netlist viewers?
A When to Use the Netlist Viewers on page 15

Q How can I optimize for area?
A Area Optimization on page 47

Q How can I optimize for timing?
A Timing Closure and Optimization on page 65

Q Which reports help analyze timing paths?
A Timing Optimization on page 74

Q How can I run a seed sweep?
A Optimize with Design Space Explorer II on page 102

Q How can I optimize I/O timing?
A I/O Timing Optimization Techniques on page 112

Q How do I see routing congestion?
A Viewing Routing Congestion on page 151

Q How do I make last-minute design changes?
A Using the ECO Compilation Flow on page 194

Online Version

Send Feedback UG-20133

683641

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Design Optimization Overview.. 6
1.1. Initial FPGA Device Considerations... 6

1.1.1. Device Migration Considerations.. 6
1.2. Initial Compiler Settings... 7

1.2.1. Initial I/O Assignment Guidelines... 8
1.2.2. Initial Timing Constraint Guidelines.. 8

1.3. Optimization Trade-Offs and Limitations..10
1.3.1. Area Reduction Trade-Offs...10
1.3.2. Critical Path Delay Reduction Trade-Offs..11
1.3.3. Power Consumption Reduction Trade-Offs..12
1.3.4. Compilation Time Trade-Offs..12

1.4. Design Visualization and Optimization Tools...12
1.4.1. Design Visualization Tools... 12
1.4.2. Design Optimization Tools... 13

1.5. Design Optimization Overview Revision History.. 14

2. Optimizing the Design Netlist... 15
2.1. When to Use the Netlist Viewers: Analyzing Design Problems15
2.2. Quartus Prime Design Flow with the Netlist Viewers..16
2.3. RTL Viewer Overview..17

2.3.1. Maximizing Readability in RTL Viewer..18
2.3.2. Running the RTL Viewer..18

2.4. Technology Map Viewer Overview...18
2.5. Netlist Viewer User Interface... 19

2.5.1. Netlist Navigator Pane.. 21
2.5.2. Properties Pane... 22
2.5.3. Netlist Viewers Find Pane.. 23

2.6. Schematic View... 24
2.6.1. Display Schematics in Multiple Tabbed View...24
2.6.2. Schematic Symbols.. 24
2.6.3. Select Items in the Schematic View.. 29
2.6.4. Shortcut Menu Commands in the Schematic View...29
2.6.5. Filtering in the Schematic View.. 30
2.6.6. View Contents of Nodes in the Schematic View.. 30
2.6.7. Moving Nodes in the Schematic View.. 32
2.6.8. View LUT Representations in the Technology Map Viewer...............................33
2.6.9. Zoom Controls...33
2.6.10. Navigating with the Bird's Eye View.. 34
2.6.11. Partition the Schematic into Pages..35
2.6.12. Follow Nets Across Schematic Pages... 35

2.7. Cross-Probing to a Source Design File and Other Quartus Prime Windows....................35
2.8. Cross-Probing to the Netlist Viewers from Other Quartus Prime Windows.....................36
2.9. Viewing a Timing Path.. 37
2.10. Optimizing the Design Netlist Revision History..38

3. Netlist Optimizations and Physical Synthesis.. 40
3.1. Physical Synthesis Optimizations..40

3.1.1. Disabling or Enabling Physical Synthesis Optimization................................... 41

Contents

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.2. Physical Synthesis Options.. 41
3.2. Applying Netlist Optimizations... 42

3.2.1. WYSIWYG Primitive Resynthesis...42
3.3. Scripting Support...43

3.3.1. Synthesis Netlist Optimizations.. 44
3.3.2. Physical Synthesis Optimizations..44

3.4. Netlist Optimizations and Physical Synthesis Revision History.....................................45

4. Area Optimization... 47
4.1. Resource Utilization Information.. 47

4.1.1. Flow Summary Report.. 47
4.1.2. Fitter Reports.. 48
4.1.3. Design Assistant Recommendations..51
4.1.4. Analysis and Synthesis Reports..51
4.1.5. Compilation Messages.. 51
4.1.6. Chip Planner Visualization... 52

4.2. Optimizing Resource Utilization..52
4.2.1. Resource Utilization Issues Overview.. 52
4.2.2. I/O Pin Utilization or Placement..53
4.2.3. Logic Utilization or Placement.. 53
4.2.4. Routing.. 59

4.3. Scripting Support...61
4.3.1. Initial Compilation Settings... 62
4.3.2. Resource Utilization Optimization Techniques... 62

4.4. Area Optimization Revision History...63

5. Timing Closure and Optimization.. 65
5.1. Optimize Multi Corner Timing.. 65
5.2. Optimize Critical Paths..65

5.2.1. Viewing Critical Paths... 66
5.3. Optimize Critical Chains.. 66

5.3.1. Viewing Critical Chains..66
5.4. Design Evaluation for Timing Closure..67

5.4.1. Review Messages... 67
5.4.2. Evaluate Fitter Netlist Optimizations... 67
5.4.3. Evaluate Optimization Results..67
5.4.4. Evaluate Resource Usage.. 67
5.4.5. Evaluate Other Reports and Adjust Settings Accordingly................................71
5.4.6. Evaluate Clustering Difficulty... 73
5.4.7. Revise and Recompile...73

5.5. Timing Optimization... 74
5.5.1. Correct Design Assistant Rule Violations..74
5.5.2. Implement Fast Forward Timing Closure Recommendations........................... 75
5.5.3. Review Timing Path Details... 77
5.5.4. Try Optional Fitter Settings..99
5.5.5. Back-Annotating Optimized Assignments... 100
5.5.6. Optimize Settings with Design Space Explorer II...102
5.5.7. Aggregating and Comparing Compilation Results with Exploration Dashboard. 105
5.5.8. I/O Timing Optimization Techniques..112
5.5.9. Register-to-Register Timing Optimization Techniques...................................117
5.5.10. Metastability Analysis and Optimization Techniques................................... 132

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.6. Periphery to Core Register Placement and Routing Optimization133
5.6.1. Setting Periphery to Core Optimizations in the Advanced Fitter Setting

Dialog Box.. 134
5.6.2. Setting Periphery to Core Optimizations in the Assignment Editor................. 134
5.6.3. Viewing Periphery to Core Optimizations in the Fitter Report........................ 135

5.7. Scripting Support...136
5.7.1. Initial Compilation Settings..136
5.7.2. I/O Timing Optimization Techniques ...137
5.7.3. Register-to-Register Timing Optimization Techniques...................................137

5.8. Timing Closure and Optimization Revision History...138

6. Analyzing and Optimizing the Design Floorplan.. 142
6.1. Location Assignment Optimization Guidelines...143
6.2. Design Floorplan Analysis in Chip Planner.. 144

6.2.1. Starting the Chip Planner.. 145
6.2.2. Chip Planner GUI..145
6.2.3. Viewing Design Elements in Chip Planner...148
6.2.4. Finding Design Elements in the Chip Planner..158
6.2.5. Exploring Paths in the Chip Planner...160
6.2.6. Viewing Assignments in the Chip Planner...164
6.2.7. Viewing High-Speed and Low-Power Tiles in the Chip Planner.......................164
6.2.8. Viewing Design Partition Placement.. 165

6.3. Defining Logic Lock Placement Constraints...165
6.3.1. The Logic Lock Regions Window... 166
6.3.2. Defining Logic Lock Regions...167
6.3.3. Customizing the Shape of Logic Lock Regions...175
6.3.4. Assigning Device Pins to Logic Lock Regions...177
6.3.5. Viewing Connections Between Logic Lock Regions in Chip Planner................. 178
6.3.6. Example: Placement Best Practices for Arria 10 FPGAs................................ 178
6.3.7. Migrating Assignments between Quartus Prime Standard Edition and

Quartus Prime Pro Edition..179
6.4. Defining Virtual Pins... 180
6.5. Using Logic Lock Regions in Combination with Design Partitions................................181

6.5.1. Viewing Design Connectivity and Hierarchy..182
6.6. Creating Clock Region Assignments in Chip Planner.. 184

6.6.1. Creating Clock Assignments in Chip Planner...185
6.6.2. Resizing a Clock Assignment in Chip Planner.. 187
6.6.3. Moving a Clock Assignment in Chip Planner..188
6.6.4. Deleting a Clock Region Assignment in Chip Planner....................................188
6.6.5. Assigning a Clock Signal to a Clock Region in Chip Planner...........................188

6.7. Scripting Support...189
6.7.1. Creating Logic Lock Assignments with Tcl commands.................................. 189
6.7.2. Assigning Virtual Pins with a Tcl command... 190
6.7.3. Logic Lock Region Assignment Examples... 190

6.8. Analyzing and Optimizing the Design Floorplan Revision History............................... 191

7. Using the ECO Compilation Flow... 194
7.1. ECO Compilation Flow...194
7.2. ECO Tcl Script Example... 195
7.3. Viewing ECO Compilation Reports...196
7.4. ECO Commands...197

7.4.1. ECO Command Quick Reference... 198

Contents

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.4.2. make_connection... 198
7.4.3. remove_connection.. 199
7.4.4. modify_lutmask... 200
7.4.5. adjust_pll_refclk.. 200
7.4.6. modify_io_slew_rate...201
7.4.7. modify_io_current_strength...201
7.4.8. modify_io_delay_chain... 201
7.4.9. create_new_node...202
7.4.10. remove_node...203
7.4.11. place_node..203
7.4.12. unplace_node.. 204
7.4.13. create_wirelut..204

7.5. ECO Command Limitations.. 205
7.6. Interactive ECO Fitting..206

7.6.1. eco_load_design and eco_commit_design Commands................................. 206
7.7. Using the ECO Compilation Flow Revision History..207

8. Quartus Prime Pro Edition Design Optimization User Guide Archives..........................208

A. Quartus Prime Pro Edition User Guides...209

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Design Optimization Overview
In the early stages of FPGA design development, you typically focus on meeting your
timing requirement, resource usage, and power consumption goals. After meeting
these basic goals, you can focus on optimizing performance.

Optimization of FPGA design performance requires a multi-dimensional approach to
reduce resource use, critical path delays, power consumption, and runtime. The
Quartus® Prime software provides various tools and techniques for performance
optimization.

This chapter provides an overview of the initial techniques and settings in the Quartus
Prime software that you can use to optimize your design results and achieve the
highest performance in Intel FPGAs.

Related Information

Quartus Prime Pro Edition User Guide: Design Compilation

1.1. Initial FPGA Device Considerations

All Intel® FPGAs have a unique timing model that describes the delay information
between all physical elements in the device, such as combinational adaptive logic
modules, memory blocks, interconnects, and registers. The delay models comprise all
valid combinations of operating condition delays for the target FPGA. The Timing
Analyzer references these delay models in calculating performance during timing
analysis. The device size and package determine pin-out and the resource availability.
When selecting your target Intel FPGA device for your design, you must consider the
performance specifications and resources available in the device meet the needs of
your design.

1.1.1. Device Migration Considerations

If you anticipate that you might later migrate your design to a different target device
later in the design cycle (for example, a larger or faster device), you must plan for this
migration from the beginning of cycle. Planning for migration early helps you to
minimize the complex design changes that you must make later to accommodate the
new device.

When choosing a target FPGA device in the Device dialog box, you can click the
Migration Devices button to view a list of all compatible devices.

683641 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683236.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 1. Devices Available for Migration from Selected Device

Related Information

Migration Devices Dialog Box
In Quartus Prime Help

1.2. Initial Compiler Settings

Your design compilation results can vary significantly, depending on the initial
assignments and settings that you choose prior to compiling. The Quartus Prime
software initial settings for compilation are set to provide a balanced trade-off
between the time required for compilation, the device resource utilization, and the
design timing performance.

You can easily adjust this trade-off to focus the Compiler's effort more on shortening
the total compile time, reducing device resource utilization, or maximizing timing
performance.

The initial FPGA device selection and Compiler settings have a very significant impact
on design performance and optimization. You should also consider the following
guidelines for specifying initial settings before compiling your design for the first time
in the Quartus Prime software.

1. Design Optimization Overview

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

7

http://quartushelp.altera.com/current/index.htm#comp/migrate/comp_db_migration.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Compiler Optimization Mode Settings
Click Assignments ➤ Settings ➤ Compiler Settings ➤ Optimization Mode to adjust the Compiler's effort
on Performance, Area, Routability, or Compile Time.

1.2.1. Initial I/O Assignment Guidelines

The I/O standard and drive strength requirements that you specify for your design
affect the I/O timing. Follow these guidelines when specifying initial I/O assignments:

• When specifying I/O assignments, specify an accurate I/O timing delay for timing
analysis and Fitter optimizations.

• If the PCB layout does not indicate pin locations, then leave the pin locations
unconstrained. This technique allows the Compiler to search for the best layout.
Otherwise, make pin assignments to constrain the compilation appropriately.

Related Information

Quartus Prime Pro Edition User Guide: Design Constraints
In Quartus Prime Pro Edition User Guide: Design Constraints

1.2.2. Initial Timing Constraint Guidelines

Before running initial compilation or timing analysis, specify realistic timing
requirements. Specifying more stringent timing requirements than the design requires
causes the Compiler to expend effort to increase performance at the expense of
resource usage, power utilization, or compilation time.

1. Design Optimization Overview

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

8

https://www.intel.com/content/www/us/en/docs/programmable/683143.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Click Tools ➤ Timing Analyzer then click the Constraints menu to enter constraints
in the GUI, such as defining the clock signals. Alternatively, you can specify timing
constraints directly in an .sdc file.

Figure 3. Create Clock Dialog Defines Clock Constraints

Specifying realistic and comprehensive timing requirements up front helps the
Compiler to achieve the best results for the following reasons:

• Comprehensive timing assignments enable the Compiler to work hardest to
optimize the performance of the timing-critical parts of the design. This
optimization can also save area or power utilization in non-critical parts of the
design.

• Enables physical synthesis optimizations based on the comprehensive timing
requirements.

Figure 4. Timing Analyzer Shows Failing Paths in Red

Following compilation and timing analysis, the Compilation Report reports whether the
design meets the timing requirements. You can then use the Quartus Prime Timing
Analyzer to fine tune constraints and report detailed information about all timing
paths.

Related Information

• Using the Quartus Prime Timing Analyzer
In Quartus Prime Pro Edition User Guide: Timing Analyzer

1. Design Optimization Overview

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

9

https://www.intel.com/content/www/us/en/docs/programmable/683243.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Quartus Prime Timing Analyzer Cookbook

1.3. Optimization Trade-Offs and Limitations

Design optimization requires balancing the trade-offs between device performance,
resource usage, power utilization, and compilation time. Your application of project
settings and constraints determines the balance of these factors in meeting your
design goals. When you want to increase optimization of one type, you can consider
the trade-offs that might limit that optimization.

Table 1. Design Optimization Trade-Off Examples

Trade-off Comments

Resource usage and critical path
timing.

Certain techniques (such as logic duplication) can improve timing performance at
the cost of increased area.

Power requirements can result in area
and timing trade-offs.

For example, reducing the number of available high-speed tiles, or attempting to
shorten high-power nets at the expense of critical path nets.

System cost and time-to-market
considerations can affect the choice of
device.

For example, a device with a higher speed grade or more clock networks can
facilitate timing closure at the expense of higher power consumption and system
cost.

Finally, constraints that are too stringent can produce a situation with no possible
solution for the selected device. If the Fitter cannot resolve a design due to resource
limitations, timing constraints, or power constraints, consider rewriting parts of the
HDL code.

1.3.1. Area Reduction Trade-Offs

By default, the Quartus Prime Fitter might physically spread a design over the entire
device to meet the set timing constraints. If you prefer to optimize your design to use
the smallest area, you can change this behavior by selecting Aggressive Area for the
Compiler Optimization Mode. If you require reduced area, you can enable certain
physical synthesis options to modify your netlist to create a more area-efficient
implementation, but at the cost of increased runtime and decreased performance.

Figure 5. Optimize for Area

1. Design Optimization Overview

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

10

https://www.intel.com/content/www/us/en/docs/programmable/683081.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Area Optimization on page 47

• Netlist Optimizations and Physical Synthesis on page 40

1.3.2. Critical Path Delay Reduction Trade-Offs

To meet complex timing requirements involving multiple clocks, routing resources, and
area constraints, the Quartus Prime software offers a close interaction between
synthesis, floorplan editing, place-and-route, and timing analysis processes.

By default, the Quartus Prime Fitter works to meet the timing requirements, and
reduces fitting effort once the requirements are met. Therefore, specifying realistic
constraints is crucial for achieving timing closure.

Under-constraining your design can lead to sub-optimal results. Over-constraining
your design might cause the Fitter to over-optimize non-critical paths at the expense
of true critical paths. Over-constraining the design may also increase area and
compilation time.

When designs have very high resource usage, the Fitter may struggle to find a legal
placement. In such circumstances, the Fitter automatically modifies settings to try to
trade off performance for area.

In high-density FPGAs, routing accounts for a major part of critical path timing.
Because of this, duplicating or retiming logic can allow the Fitter to reduce delay on
critical paths. The Quartus Prime software offers push-button netlist optimizations and
physical synthesis options that can improve design performance at the expense of
considerable increases of compilation time and area.

Figure 6. Register Optimization

Turn on only those options that help you keep reasonable compilation times and
resource usage. Alternately, you can modify the HDL to manually duplicate or adjust
the timing logic.

Related Information

Optimize Critical Paths on page 65

1. Design Optimization Overview

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.3. Power Consumption Reduction Trade-Offs

The Quartus Prime software has features that help reduce design power consumption.
The power optimization options control the power-driven compilation settings for
Synthesis and the Fitter. You can adjust these settings

Related Information

Power Optimization
In Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

1.3.4. Compilation Time Trade-Offs

Many Fitter settings influence compilation time. Most of the default settings in the
Quartus Prime software are set for reduced compilation time. You can modify these
settings for your project requirements to trade-off longer compilation time for
increased performance.

The Quartus Prime software supports parallel compilation in computers with multiple
processors. This technique can reduce compilation times by up to 15%.

Related Information

Quartus Prime Pro Edition User Guide: Design Compilation

1.4. Design Visualization and Optimization Tools

The Quartus Prime software provides various tools to help you visualize and optimize
the design settings and constraints for the best design implementation.

1.4.1. Design Visualization Tools

The Quartus Prime software provides tools that display different graphical
representations of your design to help you visualize and optimize placement,
connectivity, and routing congestion at various stages of the design cycle.

Table 2. Design Visualization Tools

Tool Description

Snapshot Viewer The Compiler can preserve the results of each compilation stage as a snapshot
for analysis optimization at each stage. The Snapshot Viewer allows you to easily
analyze and optimize compilation results for each snapshot. The Snapshot Viewer
provides centralized access to functions and tools that allow you to rapidly
analyze clocking, congestion, and correct failing paths and high fan-out nets.

RTL Viewer Provides a schematic representation of the design before synthesis and place-
and-route.

Technology Map Viewer Provides a schematic representation of the design implementation in the selected
device architecture after synthesis and place-and-route. Optionally, you can
include timing information.

continued...

1. Design Optimization Overview

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

12

https://www.intel.com/content/www/us/en/docs/programmable/683174/current/power-optimization.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tool Description

Chip Planner Allows you to make floorplan assignments, such as Logic Lock placement
constraints, and visualize critical paths and routing congestion. Click the Report
Routing Utilization task to display the routing resource congestion.

Interface Planner Simplifies the planning of accurate constraints for physical implementation. Use
Interface Planner to prototype interface implementations, plan clocks, and
rapidly define a legal device floorplan.

Design Partition Planner Displays design entities, I/O banks, connectivity, design hierarchy, and design
partition membership. Design Partition Planner can assist you in visualizing a
design's structure for creating effective design partitions.

Related Information

• Design Floorplan Analysis in Chip Planner on page 144

• Using Logic Lock Regions in Combination with Design Partitions on page 181

• RTL Viewer Overview on page 17

• Technology Map Viewer Overview on page 18

• Quartus Prime Pro Edition User Guide: Design Compilation

• Quartus Prime Pro Edition User Guide: Design Constraints
In Quartus Prime Pro Edition User Guide: Design Constraints

1.4.2. Design Optimization Tools

The Quartus Prime software provides tools help you identify design RTL and project
settings that potentially limit performance.

Table 3. Design Optimization Tools

Tool Description To Access

Design Assistant Automatically reports any violations against a standard set
of Intel FPGA-recommended design guidelines, as Correct
Design Assistant Rule Violations on page 74 describes.

Assignments ➤ Settings
➤ Design Assistant Rule
Settings

Fast Forward Timing Closure
Recommendations

Fast Forward compilation generates design
recommendations to help you to break performance
bottlenecks and maximize use of Hyper-Registers to drive
the highest performance in Stratix® 10 and Agilex® 7
designs, as Implement Fast Forward Timing Closure
Recommendations on page 75 describes.

On the Compilation
Dashboard, click Fast
Forward Timing Closure
Recommendations.

Design Space Explorer II Provides an easy and efficient way to run seed sweeps with
different combinations of design settings and constraints to
identify the optimal combination for your design, as
Optimize Settings with Design Space Explorer II on page
102 describes.

Tools ➤ Launch Design
Space Explorer II

Assignment Back-Annotation
Dialog Box

Back-annotation copies the last compilation's resource
assignments to preserve your optimized implementation in
subsequent compilations, as Back-Annotating Optimized
Assignments on page 100 describes.

Assignments ➤ Back-
Annotate Assignments

Related Information

• Quartus Prime Pro Edition User Guide: Design Compilation

• Quartus Prime Pro Edition User Guide: Design Recommendations

1. Design Optimization Overview

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

13

https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5. Design Optimization Overview Revision History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.

2023.04.03 23.1 • Updated product family name to "Intel Agilex 7."

2022.01.07 21.4 • Removed references to obsolete Advisors.
• Added Snapshot Viewer description to Design Visualization Tools topic.
• Removed references to Advisors from Design Optimization Tools topic.

2020.09.28 20.3. • Reorganized "Design Optimization Tools" section.
• Added references to Design Assistant, Fast Forward Timing Closure

Recommendations, and assignment back-annotation to "Design
Optimization Tools" topic.

• Added Interface Planner and State Machine Viewer to list of "Design
Visualization Tools".

• Reworded titles in "Optimization Trade-Offs and Limitations" section for
greater clarity.

2018.05.07 18.0 • General topic reorganization.
• Added how DSE II works, and the main steps to follow when

performing a design exploration.

2017.11.06 17.1 • Added mention to the Design Partition Planner in Design Analysis topic.

2016.10.31 16.1 • Implemented Intel rebranding.

2016.05.03 16.0 Removed statements about serial equivalence when using multiple
processors.

2015.11.02 15.1 Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

• Updated DSE II content.

June 2014 14.0 Updated format.

November 2013 13.1 Minor changes for HardCopy.

May 2013 13.0 Added the information about initial compilation requirements. This section
was moved from the Area Optimization chapter of the Quartus Prime
Handbook. Minor updates to delineate division of Timing and Area
optimization chapters.

June 2012 12.0 Removed survey link.

November 2011 10.0 Template update.

December 2010 10.0 Changed to new document template. No change to content.

August 2010 10.0 Corrected link

July 2010 10.0 Initial release. Chapter based on topics and text in Section III of volume 2.

1. Design Optimization Overview

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Optimizing the Design Netlist
You can use the Quartus Prime Netlist Viewers to analyze and debug your design
netlist.

Related Information

• Quartus Prime Design Flow with the Netlist Viewers on page 16

• RTL Viewer Overview on page 17

• Technology Map Viewer Overview on page 18

• Filtering in the Schematic View on page 30

• Viewing a Timing Path on page 37

2.1. When to Use the Netlist Viewers: Analyzing Design Problems

You can use the Netlist Viewers to analyze and debug your design. The following
simple examples show how to use the RTL Viewer and Technology Map Viewer to
analyze problems encountered in the design process.

Using the RTL Viewer is a good way to view your initial synthesis results to determine
whether you have created the necessary logic, and that the logic and connections
have been interpreted correctly by the software. You can use the RTL Viewer to check
your design visually before simulation or other verification processes. Catching design
errors at this early stage of the design process can save you valuable time.

If you see unexpected behavior during verification, use the RTL Viewer to trace
through the netlist and ensure that the connections and logic in your design are as
expected. Viewing your design helps you find and analyze the source of design
problems. If your design looks correct in the RTL Viewer, you know to focus your
analysis on later stages of the design process and investigate potential timing
violations or issues in the verification flow itself.

You can use the Technology Map Viewer to look at the results at the end of Analysis
and Synthesis. If you have compiled your design through the Fitter stage, you can
view your post-mapping netlist in the Technology Map Viewer (Post-Mapping) and your
post-fitting netlist in the Technology Map Viewer. If you perform only Analysis and
Synthesis, both the Netlist Viewers display the same post-mapping netlist.

In addition, you can use the RTL Viewer or Technology Map Viewer to locate the
source of a particular signal, which can help you debug your design. Use the
navigation techniques described in this chapter to search easily through your design.
You can trace back from a point of interest to find the source of the signal and ensure
the connections are as expected.

The Technology Map Viewer can help you locate post-synthesis nodes in your netlist
and make assignments when optimizing your design. This functionality is useful when
making a multicycle clock timing assignment between two registers in your design.

683641 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Start at an I/O port and trace forward or backward through the design and through
levels of hierarchy to find nodes of interest, or locate a specific register by visually
inspecting the schematic.

Throughout your FPGA design, debug, and optimization stages, you can use all of the
netlist viewers in many ways to increase your productivity while analyzing a design.

2.2. Quartus Prime Design Flow with the Netlist Viewers

When you first open one of the Netlist Viewers after compiling the design, a
preprocessor stage runs automatically before the Netlist Viewer opens.

Click the link in the preprocessor process box to go to the Settings ➤ Compilation
Process Settings page where you can turn on the Run Netlist Viewers
preprocessing during compilation option. If you turn this option on, the
preprocessing becomes part of the full project compilation flow and the Netlist Viewer
opens immediately without displaying the preprocessing dialog box.

Figure 7. Quartus Prime Design Flow Including the RTL Viewer and Technology Map
Viewer

This figure shows how Netlist Viewers fit into the basic Quartus Prime design flow.

HDL or Schematic
Design Files

VQM or EDIF
Netlist Files

Analysis and
Elaboration

RTL Viewer Preprocessor
(Once per Analysis and Elaboration)

RTL Viewer

Technology Map Viewer Preprocessor
(Once per Fitting)

Technology Map Viewer Preprocessor
(Once per Synthesis)

Technology Map Viewer

Technology Map Viewer and
Technology Map Viewer (Post-Mapping)

Technology Map Viewer Preprocessor
(Once per Timing Analysis)

Technology Map Viewer

Synthesis
(Logic Synthesis and

Technology Mapping)

Fitter
(Place and Route)

Timing Analyzer

Before the Netlist Viewer can run the preprocessor stage, you must compile your
design:

• To open the RTL Viewer first perform Analysis and Elaboration.

• To open the Technology Map Viewer (Post-Fitting) or the Technology Map Viewer
(Post-Mapping), first perform Analysis and Synthesis.

The Netlist Viewers display the results of the last successful compilation.

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Therefore, if you make a design change that causes an error during Analysis and
Elaboration, you cannot view the netlist for the new design files, but you can still
see the results from the last successfully compiled version of the design files.

• If you receive an error during compilation and you have not yet successfully run
the appropriate compilation stage for your project, the Netlist Viewer cannot be
displayed; in this case, the Quartus Prime software issues an error message when
you try to open the Netlist Viewer.

Note: If the Netlist Viewer is open when you start a new compilation, the Netlist Viewer
closes automatically. You must open the Netlist Viewer again to view the new design
netlist after compilation completes successfully.

2.3. RTL Viewer Overview

The RTL Viewer allows you to view a register transfer level (RTL) graphical
representation of Quartus Prime Pro Edition synthesis results or third-party netlist files
in the Quartus Prime software.

You can view results after Analysis and Elaboration for designs that use any supported
Quartus Prime design entry method, including Verilog HDL Design Files (.v),
SystemVerilog Design Files (.sv), VHDL Design Files (.vhd), AHDL Text Design Files
(.tdf), or schematic Block Design Files (.bdf).

You can also view the hierarchy of atom primitives (such as device logic cells and I/O
ports) for designs that generate Verilog Quartus Mapping File (.vqm) or Electronic
Design Interchange Format (.edf) files through a synthesis tool.

The RTL Viewer displays a schematic view of the design netlist after Analysis and
Elaboration or after the Quartus Prime software performs netlist extraction, but before
technology mapping and synthesis or fitter optimizations. This view a preliminary pre-
optimization design structure and closely represents the original source design.

• For designs synthesized with the Quartus Prime Pro Edition synthesis, this view
shows how the Quartus Prime software interprets the design files.

• For designs synthesized with a third-party synthesis tool, this view shows the
netlist that the synthesis tool generates.

To run the RTL Viewer for an Quartus Prime project, first analyze the design to
generate an RTL netlist. To analyze the design and generate an RTL netlist, click
Processing ➤ Start ➤ Start Analysis & Elaboration. You can also perform a full
compilation on any process that includes the initial Analysis and Elaboration stage of
the Quartus Prime compilation flow.

To open the RTL Viewer, click Tools ➤ Netlist Viewers ➤ RTL Viewer.

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.1. Maximizing Readability in RTL Viewer

While displaying a design, the RTL Viewer optimizes the netlist to maximize
readability:

• Removes logic with no fan-out (unconnected output) or fan-in (unconnected
inputs) from the display.

• Hides default connections such as VCC and GND.

• Groups pins, nets, wires, module ports, and certain logic into buses where
appropriate.

• Groups constant bus connections.

• Displays values in hexadecimal format.

• Converts NOT gates into bubble inversion symbols in the schematic.

• Merges chains of equivalent combinational gates into a single gate; for example, a
2-input AND gate feeding a 2-input AND gate is converted to a single 3-input AND
gate.

2.3.2. Running the RTL Viewer

To run the RTL Viewer for an Quartus Prime project:

1. Analyze the design to generate an RTL netlist by clicking Processing ➤ Start ➤
Start Analysis & Elaboration.

You can also perform a full compilation on any process that includes the initial
Analysis and Elaboration stage of the Quartus Prime compilation flow.

2. Open the RTL Viewer by clicking Tools ➤ Netlist Viewers ➤ RTL Viewer.

2.4. Technology Map Viewer Overview

The Quartus Prime Technology Map Viewer provides a technology-specific, graphical
representation of FPGA designs after Analysis and Synthesis or after the Fitter maps
the design into the target device.

The Technology Map Viewer shows the hierarchy of atom primitives (such as device
logic cells and I/O ports) in the design. For supported device families, you can also
view internal registers and look-up tables (LUTs) inside logic cells (LCELLs), and
registers in I/O atom primitives.

Where possible, the Quartus Prime software maintains the port names of each
hierarchy throughout synthesis. However, the software may change or remove port
names from the design. For example, the software removes ports that are
unconnected or driven by GND or VCC during synthesis. If a port name changes, the
software assigns a related user logic name in the design or a generic port name such
as IN1 or OUT1.

You can view Quartus Prime technology-mapped results after synthesis, fitting, or
timing analysis. To run the Technology Map Viewer for an Quartus Prime project, on
the Processing menu, point to Start and click Start Analysis & Synthesis to
synthesize and map the design to the target technology. At this stage, the Technology
Map Viewer shows the same post-mapping netlist as the Technology Map Viewer
(Post-Mapping). You can also perform a full compilation, or any process that includes
the synthesis stage in the compilation flow.

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For designs that completed the Fitter stage, the Technology Map Viewer shows how
the Fitter changed the netlist through physical synthesis optimizations, while the
Technology Map Viewer (Post-Mapping) shows the post-mapping netlist. If you have
completed the Timing Analysis stage, you can locate timing paths from the Timing
Analyzer report in the Technology Map Viewer.

To open the Technology Map Viewer, click Tools ➤ Netlist Viewers ➤ Technology
Map Viewer (Post-Fitting) or Technology Map Viewer (Post Mapping).

Related Information

• Viewing a Timing Path on page 37

• View Contents of Nodes in the Schematic View on page 30

2.5. Netlist Viewer User Interface

The Netlist Viewer is a graphical user-interface for viewing and manipulating nodes
and nets in the netlist.

The RTL Viewer and Technology Map Viewer each consist of these main parts:

• The Netlist Navigator pane—displays a representation of the project hierarchy.

• The Find pane—allows you to find and locate specific design elements in the
schematic view.

• The Properties pane—displays the properties of the selected block when you
select Properties from the shortcut menu.

• The schematic view—displays a graphical representation of the internal structure
of the design.

Figure 8. RTL Viewer

Next Page / Previous Page Select Highlight ColorBirds Eye ViewNetlist Navigator

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Netlist Viewers also contain a toolbar that provides tools to use in the schematic view.

• Use the Back and Forward buttons to switch between schematic views.

• Click the Next Page or Previous Page buttons to navigate directly to the next or
previous page, respectively. These buttons are helpful when a long schematic
partitions to multiple pages.

• The Refresh button to restore the schematic view and optimizes the layout.
Refresh does not reload the database if you change the design and recompile.

• Click the Find button opens and closes the Find pane.

• Click the Selection Tool and Zoom Tool buttons to alternate between the
selection mode and zoom mode.

• Click the Fit in Window button resets the schematic view to encompass the
entire design.

• Click the Fit Selection in Window button resets the schematic view to
encompass the entire selection.

• Use the Hand Tool to change the focus of the viewer without changing the
perspective.

• Click the Area Selection Tool to drag a selection box around ports, pins, and
nodes in an area.

• Click the Netlist Navigator button to open or close the Netlist Navigator pane.

• Click the Color Settings button to open the Colors pane where you can
customize the Netlist Viewer color scheme.

Figure 9. Display Settings

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Click the Display Settings button to open the Display pane where you can
specify the following settings:

— Show full name or Show only <n> characters. You can specify this
separately for Node name, Port name, Pin name, or Bus index name.

— Turn Show timing info on or off.

— Turn Show node type on or off.

— Turn Show constant value on or off.

— Turn Show flat nets on or off.

— Turn Maintain selection when expand hierarchy on or off.

— Turn Enable rollover on or off.

— Turn Show located objects in new tab on or off.

• The Bird's Eye View button opens the Bird's Eye View window which displays a
miniature version of the design and allows you to navigate within the design and
adjust the magnification in the schematic view quickly.

• The Show/Hide Instance Pins button can alternate the display of instance pins
not displayed by functions such as cross-probing between a Netlist Viewer and
Timing Analyzer. You can also use this button to hide unconnected instance pins
when filtering a node results in large numbers of unconnected or unused pins. The
Netlist Viewer hides Instance pins by default.

• If the Netlist Viewer display encompasses several pages, the Show Netlist on
One Page button resizes the netlist view to a single page. This action can make
netlist tracing easier.

• Click the Highlight list to apply a highlight color to the objects that you select in
the schematic. Unhighlight objects with Unhighlight or Unhighlight All from the
right-click menu.

You can have only one RTL Viewer, one Technology Map Viewer (Post-Fitting), and one
Technology Map Viewer (Post-Mapping) window open at the same time, although each
window can show multiple pages, each with multiple tabs. For example, you cannot
have two RTL Viewer windows open at the same time.

Related Information

• Netlist Navigator Pane on page 21

• Netlist Viewers Find Pane on page 23

• Properties Pane on page 22

2.5.1. Netlist Navigator Pane

The Netlist Navigator pane displays the entire netlist in a tree format based on the
hierarchical levels of the design. Each level groups similar elements into
subcategories.

The Netlist Navigator pane allows you to traverse through the design hierarchy to
view the logic schematic for each level. You can also select an element in the Netlist
Navigator to highlight in the schematic view.

Note: The Netlist Navigator pane does not list nodes inside atom primitives.

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For each module in the design hierarchy, the Netlist Navigator pane displays the
applicable elements listed in the following table. Click the “+” icon to expand an
element.

Table 4. Netlist Navigator Pane Elements

Elements Description

Instances Modules or instances in the design that can be expanded to lower hierarchy levels.

Primitives Low-level nodes that cannot be expanded to any lower hierarchy level. These primitives
include:
• Registers and gates that you can view in the RTL Viewer when using Quartus Prime Pro

Edition synthesis.
• Logic cell atoms in the Technology Map Viewer or in the RTL Viewer when using a VQM

or EDIF from third-party synthesis software
In the Technology Map Viewer, you can view the internal implementation of certain atom
primitives, but you cannot traverse into a lower-level of hierarchy.

Ports The I/O ports in the current level of hierarchy.
• Pins are device I/O pins when viewing the top hierarchy level and are I/O ports of the

design when viewing the lower-levels.
• When a pin represents a bus or an array of pins, expand the pin entry in the list view to

see individual pin names.

2.5.2. Properties Pane

You can view the properties of an instance or primitive with the Properties pane.

Figure 10. Properties Pane
To view the properties of an instance or primitive in the RTL Viewer or Technology Map Viewer, right-click the
node and click Properties.

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Properties pane contains tabs with the following information about the selected
node:

• The Fan-in tab displays the Input port and Fan-in Node.

• The Fan-out tab displays the Output port and Fan-out Node.

• The Parameters tab displays the Parameter Name and Values of an instance.

• The Ports tab displays the Port Name and Constant value (for example, VCC or
GND). The following table lists the possible values of a port:

Table 5. Possible Port Values

Value Description

VCC The port is not connected and has VCC value (tied to VCC)

GND The port is not connected and has GND value (tied to GND)

-- The port is connected and has value (other than VCC or GND)

Unconnected The port is not connected and has no value (hanging)

If the selected node is an atom primitive, the Properties pane displays a schematic of
the internal logic.

2.5.3. Netlist Viewers Find Pane

You can narrow the range of the search process by setting the following options in the
Find pane:

Figure 11. Find Options

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Click Browse (…) next to Look in to specify the hierarchy level of the search. In
the Select Hierarchy Level dialog box, you can select a particular instance you
want to search.

• Turn on the Include subentities option to include child hierarchies of the parent
instance during the search.

• Under Find Options, turn on or off Match case, Use regular expressions, Find
whole words only, or any combination of the three option, to further refine the
parameters of the search.

• Under Find In, turn on or off Instances, Ports, Nodes, All or any combination
of options, to further refine the parameters of the search.

When you click the Find All button, a progress bar appears below the Find box.

All results that match the criteria you set are listed in a table. When you double-click
an item in the table, the related node is highlighted in red in the schematic view.

2.6. Schematic View

The schematic view is shown on the right side of the RTL Viewer and Technology Map
Viewer. The schematic view contains a schematic representing the design logic in the
netlist. This view is the main screen for viewing your gate-level netlist in the RTL
Viewer and your technology-mapped netlist in the Technology Map Viewer.

The RTL Viewer and Technology Map Viewer attempt to display schematic in a single
page view by default. If the schematic crosses over to several pages, you can highlight
a net and use connectors to trace the signal in a single page.

2.6.1. Display Schematics in Multiple Tabbed View

The RTL Viewer and Technology Map Viewer support multiple tabbed views.

With multiple tabbed view, schematics can be displayed in different tabs. Selection is
independent between tabbed views, but selection in the tab in focus is synchronous
with the Netlist Navigator pane.

To create a new blank tab, click the New Tab button at the end of the tab row . You
can now drag a node from the Netlist Navigator pane into the schematic view.

Right-click in a tab to see a shortcut menu to perform the following actions:

• Create a blank view with New Tab

• Create a Duplicate Tab of the tab in focus

• Choose to Cascade Tabs

• Choose to Tile Tabs

• Choose Close Tab to close the tab in focus

• Choose Close Other Tabs to close all tabs except the tab in focus

2.6.2. Schematic Symbols

The symbols for nodes in the schematic represent elements of your design netlist.
These elements include input and output ports, registers, logic gates, Intel primitives,
high-level operators, and hierarchical instances.

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The logic gates and operator primitives appear only in the RTL Viewer. Logic in the
Technology Map Viewer is represented by atom primitives, such as registers and
LCELLs.

Table 6. Symbols in the Schematic View
This table lists and describes the primitives and basic symbols that you can display in the schematic view of the
RTL Viewer and Technology Map Viewer.

Symbol Description

Wire indicator and net ripper Indicates the net signal flow direction into or out of the pin
or port. There can be symbols in both directions due to
automatic net bundling from the connectivity. You can click
the net to highlight the signal flow details in the schematic.

I/O Ports

CLK_SEL[1:0]

RESET_N

An input, output, or bidirectional port in the current level of
hierarchy. A device input, output, or bidirectional pin when
viewing the top-level hierarchy. The symbol can also
represent a bus. Only one wire is shown connected to the
bidirectional symbol, representing the input and output
paths.
Input symbols appear on the left-most side of the
schematic. Output and bidirectional symbols appear on the
right-most side of the schematic.

I/O Connectors

MEM_OE_N
[1,15]

[1,3]

An input or output connector, representing a net that comes
from another page of the same hierarchy. To go to the page
that contains the source or the destination, double-click the
connector to jump to the appropriate page.

OR, AND, XOR Gates

always1

always0

C

An OR, AND, or XOR gate primitive (the number of ports
can vary). A small circle (bubble symbol) on an input or
output port indicates the port is inverted.

MULTIPLEXER

Mux5
SEL[2:0]

DATA[7:0] OUT

A multiplexer primitive with a selector port that selects
between port 0 and port 1. A multiplexer with more than
two inputs is displayed as an operator.

continued...

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Symbol Description

BUFFER

OE

DATAIN OUT0

A buffer primitive. The figure shows the tri-state buffer, with
an inverted output enable port. Other buffers without an
enable port include LCELL, SOFT, and GLOBAL. The NOT
gate and EXP expander buffers use this symbol without an
enable port and with an inverted output port.

LATCH

PRE
D
ENA

Q

latch

CLR

A latch/DFF (data flipflop) primitive. A DFF has the same
ports as a latch and a clock trigger. The other flipflop
primitives are similar:
• DFFEA (data flipflop with enable and asynchronous load)

primitive with additional ALOAD asynchronous load and
ADATA data signals

• DFFEAS (data flipflop with enable and synchronous and
asynchronous load), which has ASDATA as the secondary
data port

Atom Primitive

DATAA
DATABCOMBOUT
DATAC

F

LOGIC_CELL_COMB (7F7F7F7F7F7F7F7F)

An atom primitive. The symbol displays the atom name, the
port names, and the atom type. The blue shading indicates
an atom primitive for which you can view the internal
details.

Other Primitive

PADIO

PADOUT

CPU_D[10]

BIDIR

PADIN

Any primitive that does not fall into the previous categories.
Primitives are low-level nodes that cannot be expanded to
any lower hierarchy. The symbol displays the port names,
the primitive or operator type, and its name.

Instance

speed_ch:speed

get_ticket
accel_in

clk
reset

An instance in the design that does not correspond to a
primitive or operator (a user-defined hierarchy block). The
symbol displays the port name and the instance name.

Encrypted Instance

A user-defined encrypted instance in the design. The
symbol displays the instance name. You cannot open the
schematic for the lower-level hierarchy, because the source
design is encrypted.

continued...

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Symbol Description

streaming_cont
OUT0
OUT1
OUT2
OUT3
OUT4
OUT5

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8

RAM

my_20k_sdp

PORTBDATAOUT[35:0]

RAM

CLK0
CLK1
CLR0
PORTAADDRSTALL
PORTAADDR[8:0]
PORTABYTEENMASK[3:0]
PORTADATAIN[35:0]
PORTAWE
PORTBADDRSTALL
PORTBADDR[8:0]
PORTBRE

A synchronous memory instance with registered inputs and
optionally registered outputs. The symbol shows the device
family and the type of memory block. This figure shows a
true dual-port memory block in a Stratix M-RAM block.

Constant

8’h80

A constant signal value that is highlighted in gray and
displayed in hexadecimal format by default throughout the
schematic.

Table 7. Operator Symbols in the RTL Viewer Schematic View
The following lists and describes the additional higher level operator symbols in the RTL Viewer schematic view.

Symbol Description

Add0
A[3:0]

B[3:0]
OUT[3:0]

An adder operator:
OUT = A + B

continued...

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Symbol Description

Mult0
A[0]

B[0]
OUT[0]

A multiplier operator:
OUT = A ¥ B

Div0
A[0]

B[0]
OUT[0]

A divider operator:
OUT = A / B

Equal3
A[1:0]

B[1:0]
OUT

Equals

ShiftLeft0
A[0]

COUNT[0]
OUT[0]

A left shift operator:
OUT = (A << COUNT)

ShiftRight0
A[0]

COUNT[0]
OUT[0]

A right shift operator:
OUT = (A >> COUNT)

Mod0
A[0]

B[0]
OUT[0]

A modulo operator:
OUT = (A%B)

LessThan0
A[0]

B[0]
OUT

A less than comparator:
OUT = (A<:B:A>B)

Mux5
SEL[2:0]

DATA[7:0] OUT

A multiplexer:
OUT = DATA [SEL]

The data range size is 2sel range size

continued...

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Symbol Description

Selector1
SEL[2:0]

DATA[2:0] OUT

A selector:
A multiplexer with one-hot select input and more than two input signals

Decoder0

IN[5:0] OUT[63:0]

A binary number decoder:
OUT = (binary_number (IN) == x)
for x = 0 to

x = 2 n + 1 − 1

Related Information

• Partition the Schematic into Pages on page 35

• Follow Nets Across Schematic Pages on page 35

2.6.3. Select Items in the Schematic View

To select an item in the schematic view, ensure that the Selection Tool is enabled in
the Netlist Viewer toolbar. Click an item in the schematic view to highlight in red.

Select multiple items by pressing the Shift key while selecting with the mouse.

Items selected in the schematic view are automatically selected in the Netlist
Navigator pane. The folder then expands automatically if it is required to show the
selected entry; however, the folder does not collapse automatically when you
deselected the entries.

When you select a hierarchy box, node, or port in the schematic view, the Schematic
View highlights the item in red, but not the connecting nets. When you select a net
(wire or bus) in the schematic view, the Schematic View highlights all connected nets
in red.

Once you select an item, you can perform different actions on it based on the contents
of the shortcut menu which appears when you right-click your selection.

Related Information

Netlist Navigator Pane on page 21

2.6.4. Shortcut Menu Commands in the Schematic View

When you right-click a selected instance or primitive in the schematic view, the Netlist
Viewer displays a shortcut menu.

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the selected item is a node, you see the following options:

• Click Expand to Upper Hierarchy to displays the parent hierarchy of the node in
focus.

• Click Copy ToolTip to copy the selected item name to the clipboard. This
command does not work on nets.

• Click Hide Selection to remove the selected item from the schematic view. This
command does not delete the item from the design, merely masks it in the current
view.

• Click Filtering to display a sub-menu with options for filtering your selection.

2.6.5. Filtering in the Schematic View

Filtering allows you to filter out nodes and nets in a netlist to view only the logic
elements of interest to you.

You can filter a netlist by selecting hierarchy boxes, nodes, or ports of a node, that are
part of the path you want to see. The following filter commands are available:

• Sources—displays the sources of the selection.

• Destinations—displays the destinations of the selection.

• Sources & Destinations—displays the sources and destinations of the selection.

• Selected Nodes—displays only the selected nodes.

• Between Selected Nodes—displays nodes and connections in the path between
the selected nodes.

• Bus Index—Displays the sources or destinations for one or more indexes of an
output or input bus port.

• Filtering Options—Displays the Filtering Options dialog box:

— Stop filtering at register—Turning on this option directs the Netlist Viewer to
filter out to the nearest register boundary.

— Filter across hierarchies—Turning on this option directs the Netlist Viewer to
filter across hierarchies.

— Maximum number of hierarchy levels—Sets the maximum number of
hierarchy levels that the schematic view can display.

To filter a netlist, select a hierarchy box, node, port, net, or state node, right-click in
the window, point to Filter and click the appropriate filter command. The Netlist
Viewer generates a new page showing the netlist that remains after filtering.

2.6.6. View Contents of Nodes in the Schematic View

In the RTL Viewer and the Technology Map Viewer, you can view the contents of nodes
to see their underlying implementation details.

You can view LUTs, registers, and logic gates. You can also view the implementation of
RAM and DSP blocks in certain devices in the RTL Viewer or Technology Map Viewer. In
the Technology Map Viewer, you can view the contents of primitives to see their
underlying implementation details.

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Wrapping and Unwrapping Objects
If you can unwrap the contents of an instance, a plus symbol appears in the upper right corner of the object in
the schematic view. To wrap the contents (and revert to the compact format), click the minus symbol in the
upper right corner of the unwrapped instance.

Note: In the schematic view, the internal details in an atom instance cannot be selected as
individual nodes. Any mouse action on any of the internal details is treated as a
mouse action on the atom instance.

Figure 13. Nodes with Connections Outside the Hierarchy
In some cases, the selected instance connects to something outside the visible level of the hierarchy in the
schematic view. In this case, the net appears as a dotted line. Double-click the dotted line to expand the view
to display the destination of the connection .

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. Display Nets Across Hierarchies
In cases where the net connects to an instance outside the hierarchy, you can select the net, and unwrap the
node to see the destination ports.

Figure 15. Show Connectivity Details
You can select a port, pin, bus port or bus pin and click Connectivity Details in the context menu for that
object.

You can double-click objects in the Connectivity Details window to navigate to them
quickly. If the plus symbol appears, you can further unwrap objects in the view. This
can be very useful when tracing a signal in a complex netlist.

2.6.7. Moving Nodes in the Schematic View

Rearrange items in the schematic view by dragging to destination.

To move a node from one area of the netlist to another, select the node and hold down
the Shift key. Legal placements appear as shaded areas within the hierarchy. Click to
drop the selected node.

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16. Legal Placement when Moving Nodes

To restore the schematic view to its default arrangement, right-click and click
Refresh.

2.6.8. View LUT Representations in the Technology Map Viewer

You can view different representations of a LUT by right-clicking the selected LUT and
clicking Properties.

You can view the LUT representations in the following three tabs in the Properties
dialog box:

• The Schematic tab—the equivalent gate representations of the LUT.

• The Truth Table tab—the truth table representations.

Note: LUT representations in the Tech Map Viewer are only available for Arria® 10 devices
and Cyclone® 10 GX devices in the Quartus Prime Pro Edition software.

Related Information

Properties Pane on page 22

2.6.9. Zoom Controls

Use the Zoom Tool in the toolbar, or mouse gestures, to control the magnification of
your schematic on the View menu.

By default, the Netlist Viewer displays most pages sized to fit in the window. If the
schematic page is very large, the schematic is displayed at the minimum zoom level,
and the view is centered on the first node. Click Zoom In to view the image at a
larger size, and click Zoom Out to view the image (when the entire image is not
displayed) at a smaller size. The Zoom command allows you to specify a
magnification percentage (100% is considered the normal size for the schematic
symbols).

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the Zoom Tool on the Netlist Viewer toolbar to control magnification in the
schematic view. When you select the Zoom Tool in the toolbar, clicking in the
schematic zooms in and centers the view on the location you clicked. Right-click in the
schematic to zoom out and center the view on the location you clicked. When you
select the Zoom Tool, you can also zoom into a certain portion of the schematic by
selecting a rectangular box area with your mouse cursor. The schematic is enlarged to
show the selected area.

Within the schematic view, you can also use the following mouse gestures to zoom in
on a specific section:

• zoom in—Dragging a box around an area starting in the upper-left and dragging
to the lower right zooms in on that area.

• zoom -0.5—Dragging a line from lower-left to upper-right zooms out 0.5 levels of
magnification.

• zoom 0.5—Dragging a line from lower-right to upper-left zooms in 0.5 levels of
magnification.

• zoom fit—Dragging a line from upper-right to lower-left fits the schematic view in
the page.

Related Information

Filtering in the Schematic View on page 30

2.6.10. Navigating with the Bird's Eye View

To open the Bird’s Eye View, on the View menu, click Bird’s Eye View, or click the
Bird’s Eye View icon in the toolbar.

Figure 17. Birds Eye View Button on Chip Planner Toolbar

Show Delays Button

Birds Eye View Button

Viewing the entire schematic can be useful when debugging and tracing through a
large netlist. The Quartus Prime software allows you to quickly navigate to a specific
section of the schematic using the Bird’s Eye View feature, which is available in the
RTL Viewer and Technology Map Viewer.

The Bird’s Eye View shows the current area of interest:

• Select an area by clicking and dragging the indicator or right-clicking to form a
rectangular box around an area.

• Click and drag the rectangular box to move around the schematic.

• Resize the rectangular box to zoom-in or zoom-out in the schematic view.

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.11. Partition the Schematic into Pages

For large design hierarchies, the RTL Viewer and Technology Map Viewer partition your
netlist into multiple pages in the schematic view.

When a hierarchy level is partitioned into multiple pages, the title bar for the
schematic window indicates which page is displayed and how many total pages exist
for this level of hierarchy. The schematic view displays this as Page <current page
number> of <total number of pages>.

Related Information

Netlist Viewer User Interface on page 19

2.6.12. Follow Nets Across Schematic Pages

Input and output connector symbols indicate nodes that connect across pages of the
same hierarchy. Double-click a connector to trace the net to the next page of the
hierarchy.

Note: After you double-click to follow a connector port, the Netlist Viewer opens a new page,
which centers the view on the particular source or destination net using the same
zoom factor as the previous page. To trace a specific net to the new page of the
hierarchy, Intel recommends that you first select the necessary net, which highlights it
in red, before you double-click to navigate across pages.

Related Information

Schematic Symbols on page 24

2.7. Cross-Probing to a Source Design File and Other Quartus Prime
Windows

The RTL Viewer and Technology Map Viewer allow you to cross-probe to the source
design file and to various other windows in the Quartus Prime software.

You can select one or more hierarchy boxes, nodes, state nodes, or state transition
arcs that interest you in the Netlist Viewer and locate the corresponding items in
another applicable Quartus Prime software window. You can then view and make
changes or assignments in the appropriate editor or floorplan.

To locate an item from the Netlist Viewer in another window, right-click the items of
interest in the schematic or state diagram, point to Locate, and click the appropriate
command. The following commands are available:

• Locate in Assignment Editor

• Locate in Pin Planner

• Locate in Chip Planner

• Locate in Resource Property Editor

• Locate in Technology Map Viewer

• Locate in RTL Viewer

• Locate in Design File

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The options available for locating an item depend on the type of node and whether it
exists after placement and routing. If a command is enabled in the menu, it is
available for the selected node. You can use the Locate in Assignment Editor
command for all nodes, but assignments might be ignored during placement and
routing if they are applied to nodes that do not exist after synthesis.

The Netlist Viewer automatically opens another window for the appropriate editor or
floorplan and highlights the selected node or net in the newly opened window. You can
switch back to the Netlist Viewer by selecting it in the Window menu or by closing,
minimizing, or moving the new window.

2.8. Cross-Probing to the Netlist Viewers from Other Quartus Prime
Windows

You can cross-probe to the RTL Viewer and Technology Map Viewer from other
windows in the Quartus Prime software. You can select one or more nodes or nets in
another window and locate them in one of the Netlist Viewers.

You can locate nodes between the RTL Viewer and Technology Map Viewer, and you
can locate nodes in the RTL Viewer and Technology Map Viewer from the following
Quartus Prime software windows:

• Project Navigator

• Chip Planner

• Resource Property Editor

• Node Finder

• Assignment Editor

• Messages Window

• Compilation Report

• Timing Analyzer (supports the Technology Map Viewer only)

To locate elements in the Netlist Viewer from another Quartus Prime window, select
the node or nodes in the appropriate window; for example, select an entity in the
Entity list on the Hierarchy tab in the Project Navigator, or select nodes in the
Timing Closure Floorplan, or select node names in the From or To column in the
Assignment Editor. Next, right-click the selected object, point to Locate, and click
Locate in RTL Viewer or Locate in Technology Map Viewer. After you click this
command, the Netlist Viewer opens, or is brought to the foreground if the Netlist
Viewer is open. In addition, the Locate history pane displays a list of the items that
you locate. Use the Locate history pane to easily rerun cross-probing directly within
the RTL Viewer or Technology Map Viewer. The Show located objects in new tab
option always displays the found items in a new tab, as Netlist Viewer User Interface
on page 19 describes.

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Locate History Pane

Note: The first time the window opens after a compilation, the preprocessor stage runs
before the Netlist Viewer opens.

The Netlist Viewer shows the selected nodes and, if applicable, the connections
between the nodes. The display is similar to what you see if you right-click the object,
then click Filter ➤ Selected Nodes using Filter across hierarchy. If the nodes
cannot be found in the Netlist Viewer, a message box displays the message: Can’t
find requested location.

2.9. Viewing a Timing Path

After completing a full design compilation, including the timing analyzer stage, you
can see a visual representation of a timing path cross-probe from a timing report. For
details about generating the timing report, refer to the Quartus Prime Pro Edition User
Guide: Timing Analyzer.

When you locate the timing path from the Timing Analyzer to the Technology Map
Viewer, the interconnect and cell delay associated with each node appears on top of
the schematic symbols. The total slack of the selected timing path appears in the Page
Title section of the schematic.

1. To open the report from the Compilation Report Table of Contents, click Timing
Analyzer GUI ➤ Report Timing, and double-click the timing corner.

2. To open the report from the Timing Analyzer, open the Report Timing folder in
the Report pane, and double-click the timing corner.

3. In the Summary of Paths tab, right-click a row in the table and select Locate
Path ➤ Locate in Technology Map Viewer. In the Technology Map Viewer, the
schematic page displays the nodes along the timing path with a summary of the
total delay.

Related Information

Quartus Prime Pro Edition User Guide: Timing Analyzer

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

37

https://www.intel.com/content/www/us/en/docs/programmable/683081.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10. Optimizing the Design Netlist Revision History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.
• Added device support note to View LUT Representations in the

Technology Map Viewer topic.

2023.08.01 21.3 • Replaced missing graphics in Navigating with the Bird's Eye View.

2021.10.04 21.3 • Updated Netlist Viewer User Interface topic to add Fix Selection in
Window, Unhighlight, and other new GUI controls.

• Updated Netlist Viewers Find Pane topic for new Find Options and Find
In controls.

• Updated Schematic Symbols topic for wire indicator symbol.
• Updated Show Connectivity Details figure for port or pin.
• Updated Cross-Probing to the Netlist Viewers from Other Intel Quartus

Prime Windows topic for Locate History panel.

2019.07.01 19.1 Added Maintaining Selection in the Resource Property Viewer topic
explaining how the iterm-oterm dependency is maintained in the
schematic view.

2018.09.24 18.1.0 • Added link to Viewing a Timing Path.
• Removed reference to unsupported CARRY buffer from "Schematic

Symbols" topic.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2016.05.03 16.0.0 Removed Schematic Viewer topic.

2015.11.02 15.1.0 Added Schematic Viewer topic for viewing stage snapshots.
Added information for the following new features and feature updates:
• Nets visible across hierarchies
• Connection Details
• Display Settings
• Hand Tool
• Area Selection Tool
• New default behavior for Show/Hide Instance Pins (default is now off)

2014.06.30 14.0.0 Added Show Netlist on One Page and show/Hide Instance Pins commands.

November 2013 13.1.0 Removed HardCopy device information.
Reorganized and migrated to new template.
Added support for new Netlist viewer.

November 2012 12.1.0 Added sections to support Global Net Routing feature.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Updated screenshots
• Updated chapter for the Quartus Prime software version 10.0, including

major user interface changes

November 2009 9.1.0 • Updated devices
• Minor text edits

continued...

2. Optimizing the Design Netlist

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

March 2009 9.0.0 • Chapter 13 was formerly Chapter 12 in version 8.1.0
• Updated Figure 13–2, Figure 13–3, Figure 13–4, Figure 13–14, and

Figure 13–30
• Added “Enable or Disable the Auto Hierarchy List” on page 13–15
• Updated “Find Command” on page 13–44

November 2008 8.1.0 Changed page size to 8.5” × 11”

May 2008 8.0.0 • Added Arria GX support
• Updated operator symbols
• Updated information about the radial menu feature
• Updated zooming feature
• Updated information about probing from schematic to Signal Tap

Analyzer
• Updated constant signal information
• Added .png and .gif to the list of supported image file formats
• Updated several figures and tables
• Added new sections “Enabling and Disabling the Radial Menu”,

“Changing the Time Interval”, “Changing the Constant Signal Value
Formatting”, “Logic Clouds in the RTL Viewer”, “Logic Clouds in the
Technology Map Viewer”, “Manually Group and Ungroup Logic Clouds”,
“Customizing the Shortcut Commands”

• Renamed several sections
• Removed section “Customizing the Radial Menu”
• Moved section “Grouping Combinational Logic into Logic Clouds”
• Updated document content based on the Quartus Prime software

version 8.0

2. Optimizing the Design Netlist

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Netlist Optimizations and Physical Synthesis
The Quartus Prime software offers netlist optimizations during synthesis, and physical
synthesis optimization during fitting, that can improve the performance of your
design. Synthesis netlist optimizations operate with the atom netlist of your design,
which describes a design in terms of specific primitives. This chapter provides
guidelines for applying synthesis and physical synthesis optimization settings.

You can access a range of global synthesis and physical synthesis optimization settings
from the Compiler Settings page:

Table 8. Synthesis Netlist Optimization and Physical Synthesis Options

Options Location/Description

Enable synthesis netlist
optimization settings

Enable synthesis optimization options (for example, Synthesis Effort) in the
Advanced Synthesis Settings dialog box. Click Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Synthesis) to access these options.

Enable physical synthesis options Enable physical synthesis options (for example, Advanced Physical Synthesis) in
the Advanced Fitter Settings dialog box. Click Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Fitter) to access these settings.

Note: Because the node names for primitives in the design can change when you use
physical synthesis optimizations, you should evaluate whether your design depends on
fixed node names. If you use a verification flow that might require fixed node names,
such as the Signal Tap Logic Analyzer, formal verification, or the Logic Lock based
optimization flow (for legacy devices), disable physical synthesis options.

3.1. Physical Synthesis Optimizations

The Quartus Prime Fitter places and routes the logic cells to ensure critical portions of
logic are close together and use the fastest possible routing resources. However,
routing delays are often a significant part of the typical critical path delay. Physical
synthesis optimizations take into consideration placement information, routing delays,
and timing information to determine the optimal placement. The Fitter then focuses
timing-driven optimizations at those critical parts of the design. The tight integration
of the synthesis and fitting processes is known as physical synthesis.

The following sections describe the physical synthesis optimizations available in the
Quartus Prime software, and how they can help improve performance and fitting for
the selected device.

Related Information

Compiler Settings Page (Settings Dialog Box)
In Quartus Prime Help

683641 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_physical.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3.1.1. Disabling or Enabling Physical Synthesis Optimization

Physical synthesis optimization improves circuit performance by performing
combinational and sequential optimization and register duplication.

The Compiler performs physical synthesis optimization by default during place and
route. You can disable or enable physical synthesis optimization and related options by
following these steps:

To disable or enable physical synthesis optimization:

1. Click Assignments ➤ Settings ➤ Compiler Settings.

2. To enable retiming, combinational optimization, and register duplication, click
Advanced Settings (Fitter).

3. Enable Advanced Physical Synthesis.

4. View physical synthesis results in the Netlist Optimizations report under
Compilation Report ➤ Fitter section.

3.1.2. Physical Synthesis Options

The Quartus Prime software provides physical synthesis optimization options to
improve fitting results. To access these options, click Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Fitter).

Note: To disable global physical synthesis optimizations for specific elements of your design,
assign the Netlist Optimizations logic option to Never Allow to the specific nodes
or entities.

Table 9. Physical Synthesis Options

Option Description

Advanced Physical Synthesis Uses the physical synthesis engine to perform combinational and sequential optimization
during fitting to improve circuit performance.

Netlist Optimizations You can use the Assignment Editor to apply the Netlist Optimizations logic option. Use
this option to disable physical synthesis optimizations for parts of your design. This
option is available only for Arria 10 and Cyclone 10 GX devices.

Allow Register Duplication Allows the Compiler to duplicate registers to improve design performance. When you
enable this option, the Compiler copies registers and moves some fan-out to this new
node. This optimization improves routability and can reduce the total routing wire in
nets with many fan-outs.
If you disable this option, this disables optimizations that retime registers. This setting
affects Analysis & Synthesis and the Fitter. This option is available only for Arria 10 and
Cyclone 10 GX devices.

Allow Register Merging Allows the Compiler to remove registers that are identical to other registers in the
design. When you enable this option, in cases where two registers generate the same
logic, the Compiler deletes one register, and the remaining registers fan-out to the
deleted register's destinations. This option is useful if you want to prevent the Compiler
from removing intentional use of duplicate registers.
If you disable register merging, the Compiler disables optimizations that retime
registers.
This setting affects Analysis & Synthesis and the Fitter.

3. Netlist Optimizations and Physical Synthesis

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2. Applying Netlist Optimizations

The improvement in performance when using netlist optimizations is design
dependent. If you have restructured your design to balance critical path delays, netlist
optimizations might yield minimal improvement in performance.

You may have to experiment with available options to see which combination of
settings works best for a particular design. Refer to the messages in the compilation
report to see the magnitude of improvement with each option, and to help you decide
whether you should turn on a given option or specific effort level.

Turning on more netlist optimization options can result in more changes to the node
names in the design; bear this in mind if you are using a verification flow, such as the
Signal Tap Logic Analyzer or formal verification that requires fixed or known node
names.

To find the best results, you can use the Quartus Prime Design Space Explorer II
(DSE) to apply various sets of netlist optimization options.

Related Information

Optimize Settings with Design Space Explorer II on page 102

3.2.1. WYSIWYG Primitive Resynthesis

For designs synthesized with a third-party tool, the Perform WYSIWYG primitive
resynthesis option allows you to apply optimizations to the synthesized netlist.

The Perform WYSIWYG primitive resynthesis option directs the Quartus Prime
software to un-map the logic elements (LEs) in an atom netlist to logic gates, and
then re-map the gates back to Intel-specific primitives. Third-party synthesis tools
generate either an .edf or .vqm atom netlist file using Intel-specific primitives. When
you turn on the Perform WYSIWYG primitive resynthesis option, the Quartus
Prime software uses device-specific techniques during the re-mapping process. This
feature re-maps the design using the Optimization Technique specified for your
project (Speed, Area, or Balanced).

The Perform WYSIWYG primitive resynthesis option unmaps and remaps only
logic cells, also referred to as LCELL or LE primitives, and regular I/O primitives (which
may contain registers). Double data rate (DDR) I/O primitives, memory primitives,
digital signal processing (DSP) primitives, and logic cells in carry chains are not
remapped. This process does not process logic specified in an encrypted .vqm file or
an .edf file, such as third-party intellectual property (IP).

The Perform WYSIWYG primitive resynthesis option can change node names in
the .vqm file or .edf file from your third-party synthesis tool, because the primitives
in the atom netlist are broken apart and then re-mapped by the Quartus Prime
software. The re-mapping process removes duplicate registers. Registers that are not
removed retain the same name after re-mapping.

Any nodes or entities that have the Netlist Optimizations logic option set to Never
Allow are not affected during WYSIWYG primitive resynthesis. You can use the
Assignment Editor to apply the Netlist Optimizations logic option. This option
disables WYSIWYG resynthesis for parts of your design.

3. Netlist Optimizations and Physical Synthesis

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Primitive node names are specified during synthesis. When netlist optimizations are
applied, node names might change because primitives are created and removed. HDL
attributes applied to preserve logic in third-party synthesis tools cannot be maintained
because those attributes are not written into the atom netlist, which the Quartus
Prime software reads.

If you use the Quartus Prime software to synthesize your design, you can use the
Preserve Register (preserve) and Keep Combinational Logic (keep) attributes
to maintain certain nodes in the design.

Figure 19. Quartus Prime Flow for WYSIWYG Primitive Resynthesis

3.3. Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You
can also run some procedures at a command prompt. For detailed information about
scripting command options, refer to the Quartus Prime Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp

You can specify many of the options described in this section on either an instance or
global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> -to <instance name>

Related Information

Quartus Prime Pro Edition User Guide: Scripting

3. Netlist Optimizations and Physical Synthesis

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

43

https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.1. Synthesis Netlist Optimizations

The project .qsf file preserves the settings that you specify in the GUI. Alternatively,
you can edit the .qsf directly. The .qsf file supports the following synthesis netlist
optimization commands. The Type column indicates whether the setting is supported
as a global setting, an instance setting, or both.

Table 10. Synthesis Netlist Optimizations and Associated Settings

Setting Name Quartus Prime Settings File Variable Name Values Type

Perform
WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Optimization
Mode

OPTIMIZATION_MODE BALANCED, HIGH
PERFORMANCE EFFORT, HIGH
PERFORMANCE EFFORT WITH
MAXIMUM PLACEMENT
EFFORT, HIGH PERFORMANCE
WITH AGGRESSIVE POWER
EFFORT, SUPERIOR
PERFORMANCE, SUPERIOR
PERFORMANCE WITH
MAXIMUM PLACEMENT
EFFORT, AGGRESSIVE AREA,
HIGH PLACEMENT
ROUTABILITY EFFORT, HIGH
PACKING ROUTABILITY
EFFORT, OPTIMIZE NETLIST
FOR ROUTABILITY,
AGGRESSIVE POWER,

Global,
Instance

Power-Up Don’t
Care

ALLOW_POWER_UP_DONT_CARE ON, OFF Global

3.3.2. Physical Synthesis Optimizations

The project .qsf file preserves the settings that you specify in the GUI. Alternatively,
you can edit the .qsf directly. The .qsf file supports the following synthesis netlist
optimization commands. The Type column indicates whether the setting is supported
as a global setting, an instance setting, or both.

Table 11. Physical Synthesis Optimizations and Associated Settings

Setting Name Quartus Prime Settings File Variable Name Values Type

Advanced Physical
Synthesis

ADVANCED_PHYSICAL_SYNTHESIS ON, OFF Global

3. Netlist Optimizations and Physical Synthesis

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4. Netlist Optimizations and Physical Synthesis Revision History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.

2022.01.07 21.4 • Revised Disabling or Enabling Physical Synthesis Optimization topic for
default state.

• Revised Physical Synthesis Options for device support limitations.
• Corrected syntax error in Scripting Support topic.
• Revised Synthesis Netlist Optimizations and Associated Settings topic

for latest options.

2019.04.24 18.1 Updated example in "Netlist Optimizations and Physical Synthesis" topic.

2019.04.18 18.1 Clarified wording in "Netlist Optimizations and Physical Synthesis" topic.

2018.09.24 18.1 Removed reference to unsupported CASCADE buffer from "Optimize IOC
Register Placement for Timing Logic Option" topic.

2018.05.07 18.0 Removed topic: Isolating a Partition Netlist.

2017.11.06 17.1 • Removed reference to .vqm files
• Added topic: Isolating a Partition Netlist.

2016.10.31 16.1 • Implemented Intel rebranding.
• Updated physical synthesis options and procedure.

2016.05.02 16.0 • Removed information about deprecated physical synthesis options.

2015.11.02 15.1 • Changed instances of Quartus II to Quartus Prime.
• Added Physical Synthesis.

2014.12.15 14.1 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations Settings to Compiler Settings.

• Updated DSE II content.

June 2014 14.0 Updated format.

November 2013 13.1 Removed HardCopy device information.

June 2012 12.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0 Template update.

July 2010 10.0 • Added links to Quartus Prime Help in several sections.
• Removed Referenced Documents section.
• Reformatted Document Revision History

November 2009 9.1 • Added information to “Physical Synthesis for Registers—Register
Retiming”

• Added information to “Applying Netlist Optimization Options”
• Made minor editorial updates

continued...

3. Netlist Optimizations and Physical Synthesis

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

March 2009 9.0 • Was chapter 11 in the 8.1.0 release.
• Updated the “Physical Synthesis for Registers—Register Retiming” and

“Physical Synthesis Options for Fitting”
• Updated “Performing Physical Synthesis Optimizations”
• Deleted Gate-Level Register Retiming section.
• Updated the referenced documents

November 2008 8.1 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0 • Updated “Physical Synthesis Optimizations for Performance on page
11-9

• Added Physical Synthesis Options for Fitting on page 11-16

3. Netlist Optimizations and Physical Synthesis

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Area Optimization
This chapter describes techniques for efficient use of device resources.

4.1. Resource Utilization Information

Determining device utilization provides useful information regardless of whether the
design achieved a successful fit. If the compilation results in a no-fit error, resource
utilization information helps to analyze the fitting problems in the design. If the fitting
is successful, this information allows you to determine if design changes introduce
fitting difficulties. Additionally, you can determine the impact of the resource utilization
in the timing performance. The Compilation Report provides information about
resource usage.

4.1.1. Flow Summary Report

The Flow Summary section of the compilation report indicates whether the design
exceeds the available device resources, and reports resource utilization, including
pins, memory bits, DSP blocks, and PLLs.

Figure 20. Flow Summary Report

The Fitter can spread logic throughout the device, which may lead to higher overall
utilization. As the device fills up, the Fitter automatically searches for logic functions
with common inputs to place in one ALM. The number of packed registers also

683641 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

increases. Therefore, a design that has high overall utilization might still have space
for extra logic if the logic and registers can be packed together more tightly. In those
cases, you can benefit by a report that provides more details.

4.1.2. Fitter Reports

The Fitter generates detailed reports for each stage of place and route. The Fitter
section of the Compilation Report includes reports detailing the Fitter's use of device
resources.

The Fitter Resource Usage Summary report summarizes how the Fitter utilizes
logic resources of the target device when implementing your design, such as the
number of bits in each type of memory block. This report also summarizes the usage
of global clocks, PLLs, DSP blocks, and other device-specific resources.

Related Information

Quartus Prime Pro Edition User Guide: Design Compilation

4.1.2.1. Route Stage Reports

The Route stage reports (Compilation Report ➤ Fitter ➤ Route Stage) provide
details about the various types of device resources that the Fitter allocates during
routing. These details include reports on the following types of routing information:

• The type, number, and overall use percentage of each device resource

• Nets with the highest wire count

• Delay chain summary information

• Global wire utilization information

• The top congested hierarchies and nets

Figure 21. Example Routing Usage Summary

4. Area Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

48

https://www.intel.com/content/www/us/en/docs/programmable/683236.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.1.2.1.1. Nets with Highest Wire Count Report

The Nets with Highest Wire Count report (Route Stage ➤ Nets with Highest Wire
Count) lists in descending order the nets that use the highest number of wires in the
design and their fan-out count. You can use this report to identify and evaluate the
high fan-out nets in the design. The Nets with Highest Wire Count report generates
whether or not the design routes successfully.

Figure 22. Example Nets with Highest Wire Count Report

4.1.2.1.2. Delay Chain Summary Report

A delay chain is a series of LCELL or EXP primitives or I/O delay chains in the I/O
block that you use to create an intentional delay or asynchronous pulse. A delay chain
is generally unreliable because the best-case delay of an LCELL or EXP cannot be
guaranteed. This delay chain configuration also increases the sensitivity of the design
to operating conditions.

The Delay Chain Summary report (Route Stage ➤ Delay Chain Summary)
summarizes information about the delay chains in your design. This report lists the
node name and pin type in the chain. Delay chains appear in terms of their delay
chain fan-out setting and actual delay in ps.

Figure 23. Example Delay Chain Summary Report (Truncated)

4. Area Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.1.2.1.3. Top Congested Hierarchies and Nets Reports

If your design fails to route, you can use the Top Congested Hierarchies and Top
Congested Nets reports to determine the most congested hierarchies and nets in the
design. View these reports under Compilation Report ➤ Fitter ➤ Route Stage.

Use context menu commands to locate directly to the reported hierarchies and nets in
the Text Editor, Assignment Editor, Pin Planner, Chip Planner, and other editors.
Optimize your design in the reported areas to reduce the congestion and successfully
route the design.

Figure 24. Example Top Congested Hierarchies Report (Truncated)

Figure 25. Example Top Congested Nets Report (Truncated)

4.1.2.1.4. Global Route Reports

A global routing congested region is an area of the FPGA where short wire usage in a
particular direction exceeds the capacity of that region. A congested net is a net that
passes through a global routing congested region. The Global Route reports
(Compilation Report ➤ Fitter ➤ Route Stage ➤ Global Route) show information
about the congested nets in your design.

4. Area Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 26. Example of the Global Router Congestion Hotspot Summary Report

For example, the Global Router Congestion Hotspot Summary report shows congested
net hotspots in your design organized by hierarchical node name. If the congested
area is small, the Router may be successful in detouring around overused regions.
However, if the congested area is large, routing may be unsuccessful. The exact
threshold where the Fitter cannot route the design varies greatly by design
characteristics.

Use the Global Router Congestion Hotspot Summary report to identify parts of your
RTL code that are associated with routing congestion. The Global Router Wire
Utilization Map shows the threshold and size of the largest congested region if the size
of adjacent congested regions is below a threshold.

4.1.3. Design Assistant Recommendations

You can run the Design Assistant at various stages throughout the compilation
process. Correcting Design Assistant rule violations improves the reliability, timing
performance, and logic utilization of the design.

4.1.4. Analysis and Synthesis Reports

For designs synthesized with the Quartus Prime synthesis engine, you can see reports
describing optimizations that occurred during compilation.

For example, in the Analysis & Synthesis section, Optimization Results folder, you
can find a list of registers removed during synthesis. With this report you can estimate
resource utilization for partial designs so you make sure that registers were not
removed due to missing connections with other parts of the design.

Related Information

Quartus Prime Pro Edition User Guide: Design Recommendations

4.1.5. Compilation Messages

If the reports show resource usage lower than 100%, but the design does not fit,
either resources are insufficient or the design contains invalid assignments. In either
case, the Compiler generates a message in the Processing tab of the Messages
window describing the problem. As resource utilization approaches 100%, the design
becomes increasingly difficult to fit.

4. Area Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

51

https://www.intel.com/content/www/us/en/docs/programmable/683082.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the Fitter finishes unsuccessfully and runs much faster than on similar designs, a
resource might be over-utilized, there might be an illegal location or timing
assignment that is difficult or impossible to resolve.

If the Quartus Prime software takes too long to run when compared to similar designs,
the Compiler may not be able to find a valid placement or route solution. In the
Compilation Report, look for errors and warnings that indicate these types of
problems.

Related Information

Viewing Messages

4.1.6. Chip Planner Visualization

The Chip Planner can help you find areas of the device that have routing congestion
for specific types of routing resources. If you find areas with very high congestion,
analyze the cause of the congestion. Issues such as high fan-out nets not using global
resources, an improperly chosen optimization goal (speed versus area), very
restrictive floorplan assignments, or the coding style can cause routing congestion.
After you identify the cause, modify the source or settings to reduce routing
congestion.

Related Information

Viewing Routing Congestion in Chip Planner on page 151

4.2. Optimizing Resource Utilization

The following lists the stages after design analysis:

1. Optimize resource utilization—Ensure that you have already set the basic
constraints

2. I/O timing optimization—Optimize I/O timing after you optimize resource
utilization and your design fits in the desired target device

3. Register-to-register timing optimization

Related Information

• Design Optimization Overview on page 6

• Timing Closure and Optimization on page 65

4.2.1. Resource Utilization Issues Overview

Resource utilization issues can be divided into three categories:

• Issues relating to I/O pin utilization or placement, including dedicated I/O blocks
such as PLLs or LVDS transceivers.

• Issues relating to logic utilization or placement, including logic cells containing
registers and LUTs as well as dedicated logic, such as memory blocks and DSP
blocks.

• Issues relating to routing.

4. Area Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

52

http://quartushelp.altera.com/current/index.htm#mapIdTopics/lro1403233177334.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.2. I/O Pin Utilization or Placement

Resolve I/O resource problems with these guidelines.

4.2.2.1. Guideline: Modify Pin Assignments or Choose a Larger Package

If a design that has pin assignments fails to fit, compile the design without the pin
assignments to determine whether a fit is possible for the design in the specified
device and package. You can use this approach if an Quartus Prime error message
indicates fitting problems due to pin assignments.

If the design fits when all pin assignments are ignored or when several pin
assignments are ignored or moved, you might have to modify the pin assignments for
the design or select a larger package.

If the design fails to fit because insufficient I/Os pins are available, a larger device
package (which can be the same device density) that has more available user I/O pins
can result in a successful fit.

Related Information

Quartus Prime Pro Edition User Guide: Design Constraints

4.2.3. Logic Utilization or Placement

Resolve logic resource problems, including logic cells containing registers and LUTs, as
well as dedicated logic such as memory blocks and DSP blocks, with these guidelines.

4.2.3.1. Guideline: Optimize Source Code

If your design does not fit because of logic utilization, then evaluate and modify the
design at the source. The Design Assistant reports can help you to identify source
code optimizations.

You can often improve logic significantly by making design-specific changes to your
source code. This is typically the most effective technique for improving the quality of
your results.

If your design does not fit into available logic elements (LEs) or ALMs, but you have
unused memory or DSP blocks, check if you have code blocks in your design that
describe memory or DSP functions that are not being inferred and placed in dedicated
logic. You might be able to modify your source code to allow these functions to be
placed into dedicated memory or DSP resources in the target device.

Ensure that your state machines are recognized as state machine logic and optimized
appropriately in your synthesis tool. State machines that are recognized are generally
optimized better than if the synthesis tool treats them as generic logic. In the Quartus
Prime software, you can check for the State Machine report under Analysis &
Synthesis in the Compilation Report. This report provides details, including the state
encoding for each state machine that was recognized during compilation. If your state
machine is not being recognized, you might have to change your source code to
enable it to be recognized.

Related Information

• AN 584: Timing Closure Methodology for Advanced FPGA Designs

• Quartus Prime Pro Edition User Guide: Design Recommendations

4. Area Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

53

https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683145.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.3.2. Guideline: Optimize Synthesis for Area, Not Speed

If the Fitter cannot resolve a design due to limitations in logic resources, resynthesize
the design to improve the area utilization.

First, ensure that the device and timing constraints are set correctly in the synthesis
tool. Particularly when area utilization of the design is a concern, ensure that you do
not over-constrain the timing requirements for the design. Synthesis tools try to meet
the specified requirements, which can result in higher device resource usage if the
constraints are too aggressive.

If resource utilization is an important concern, you can optimize for area instead of
speed.

• If you are using Quartus Prime synthesis, click Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Synthesis) and select Balanced or
Area for the Optimization Technique.

• The Aggressive Area Optimization Mode optimizes for area at the cost of
performance.

• If you want to reduce area for specific modules in the design using the Area or
Speed setting while leaving the default Optimization Technique setting at
Balanced, use the Assignment Editor.

• In some synthesis tools, not specifying an fMAX requirement can result in less
resource utilization.

Optimizing for area or speed can affect the register-to-register timing performance.

Note: In the Quartus Prime software, the Balanced setting typically produces utilization
results that are very similar to those produced by the Area setting, with better
performance results. The Area setting can give better results in some cases.

The Quartus Prime software provides additional attributes and options that can help
improve the quality of the synthesis results.

Related Information

Optimization Mode

4.2.3.3. Guideline: Restructure Multiplexers

Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexed logic, you can achieve a more efficient implementation in
your Intel device.

Related Information

Restructure Multiplexers logic option
For more information about the Restructure Multiplexers option

4.2.3.4. Guideline: Perform WYSIWYG Primitive Resynthesis with Balanced or
Area Setting

The Perform WYSIWYG Primitive Resynthesis logic option specifies whether to
perform WYSIWYG primitive resynthesis during synthesis. This option uses the setting
specified in the Optimization Technique logic option. The Perform WYSIWYG
Primitive Resynthesis logic option is useful for resynthesizing some or all of the

4. Area Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

54

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/mwh1465495272256.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_mux_restructure.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

WYSIWYG primitives in your design for better area or performance. However,
WYSIWYG primitive resynthesis can be done only when you use third-party synthesis
tools.

Note: The Balanced setting typically produces utilization results that are very similar to the
Area setting with better performance results. The Area setting can give better results
in some cases. Performing WYSIWYG resynthesis for area in this way typically reduces
register-to-register timing performance.

Related Information

Perform WYSIWYG Primitive Resynthesis logic option
For information about this logic option

4.2.3.5. Guideline: Use Register Packing

The Auto Packed Registers option implements the functions of two elements into
one logic element by combining the register of one element, in which only the register
is used with the LUT of another element, in which only the LUT is used.

Remember: DSP register packing is not always possible. For a list of conditions that prevent
register packing, refer to the "Fixed Point DSP Register Packing Summary and Fixed
Point DSP Register Packing Details" section of Fitter Feature Specific Report in the
Quartus Prime Pro Edition help.

DSP Register Packing Entity Assignment

In addition, you can control DSP register packing at the entity level by specifying the
DSP Register Packing entity assignment in the Assignment Editor, or with the
corresponding DSP_REGISTER_PACKING assignment in the project .qsf. DSP
Register Packing specifies how aggressively the Fitter optimizes DSP performance by
automatically packing registers into the internal registers of the specified DSP blocks.
With the default Balanced setting, the Fitter packs registers into the specified DSP
blocks that improve timing. With Always enabled, the Fitter aggressively pack
registers into the specified DSP blocks, unless your constraints or other legality
restrictions prevent packing. With Disable enabled, registers do not pack into the
specified DSP blocks. The following is the equivalent .qsf assignment:

set_instance_assignment -name DSP_REGISTER_PACKING -to \
<to> -entity <name> <value>

DSP_REGISTER_PACKING_LEVEL Entity Assignment

In addition, you can enter the DSP_REGISTER_PACKING_LEVEL entity assignment
directly in the project .qsf to specify the maximum number of register stages desired
for a specific DSP. DSP_REGISTER_PACKING_LEVEL specifies the maximum number
of registers that you want to pack in the specified DSP instance. The following are
DSP_REGISTER_PACKING_LEVEL setting values:

• 0—equivalent to disabling DSP register packing operation of the DSP.

• 1—the Fitter tries to pack one layer of registers from the DSP's input side.

• 2—the Fitter tries to add an additional layer of registers from the DSP's output
side.

• 3 or 4—the Fitter tries to add one or two layers of the pipeline registers from the
input side.

4. Area Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

55

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the Compiler cannot implement the packing level you specify, the Compiler issues a
warning message indicating that the assignment is not respected. the Fixed Point DSP
Register Packing Details report also describes the reasons the packing level cannot be
met. The following is the equivalent .qsf assignment:

set_instance_assignment -name DSP_REGISTER_PACKING_LEVEL -to \
<to> -entity <entity name> <value>

Fixed Point DSP Register Packing Summary Report and Fixed Point DSP
Register Packing Details Report

After running the Compiler's Plan stage, the Compilation Report includes the Fixed
Point DSP Register Packing Summary report, and the Fixed Point DSP Register Packing
Details report. These reports provide information about the use of DSP blocks in your
design, including DSP register packing data. The summary report lists how many DSP
blocks are fully registered, partially registered, or unregistered.

The Fixed Point DSP Register Packing Details report also indicates the names of the
registers packed into register banks, the register usage (fully registered, partially
registered, or unregistered), and the reasons preventing any register packing. Viewing
these register name details in the report allows you to readily identify registers for
packing assignments.

Related Information

• DSP_REGISTER_PACKING Assignment, Quartus Prime Pro Edition Settings File
Reference Manual

For complete command syntax and options

• DSP_REGISTER_PACKING_LEVEL Assignment, Quartus Prime Pro Edition Settings
File Reference Manual

For complete command syntax and options

• Fixed Point DSP Register Packing Summary and Fixed Point DSP Register Packing
Details, Quartus Prime Pro Edition Help

For details about reason preventing register packing

4.2.3.6. Guideline: Remove Fitter Constraints

A design with conflicting constraints or constraints that are difficult to meet may not fit
in the targeted device. For example, a design might fail to fit if the location or Logic
Lock assignments are too strict and not enough routing resources are available on the
device.

To resolve routing congestion caused by restrictive location constraints or Logic Lock
region assignments, use the Routing Congestion task in the Chip Planner to locate
routing problems in the floorplan, then remove any internal location or Logic Lock
region assignments in that area. If your design still does not fit, the design is over-
constrained. To correct the problem, remove all location and Logic Lock assignments
and run successive compilations, incrementally constraining the design before each
compilation. You can delete specific location assignments in the Assignment Editor or
the Chip Planner. To remove Logic Lock assignments in the Chip Planner, in the Logic
Lock Regions Window, or on the Assignments menu, click Remove Assignments.
Turn on the assignment categories you want to remove from the design in the
Available assignment categories list.

Related Information

Analyzing and Optimizing the Design Floorplan on page 142

4. Area Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

56

https://www.intel.com/content/www/us/en/docs/programmable/683296/22-4/fitterassignmentsdspregisterpacking.html
https://www.intel.com/content/www/us/en/docs/programmable/683296/22-4/fitterassignmentsdspregisterpacking.html
https://www.intel.com/content/www/us/en/docs/programmable/683296/22-4/fitterassignmentsdspregisterpackinglevel.html
https://www.intel.com/content/www/us/en/docs/programmable/683296/22-4/fitterassignmentsdspregisterpackinglevel.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/report/rpt/rpt_file_fit_feature_specific.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/report/rpt/rpt_file_fit_feature_specific.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.3.7. Guideline: Flatten the Hierarchy During Synthesis

Synthesis tools typically provide the option of preserving hierarchical boundaries,
which can be useful for verification or other purposes. However, the Quartus Prime
software optimizes across hierarchical boundaries so as to perform the most logic
minimization, which can reduce area in a design with no design partitions.

4.2.3.8. Guideline: Re-target Memory Blocks

If the Fitter cannot resolve a design due to memory resource limitations, the design
may require a type of memory that the device does not have.

For memory blocks created with the Parameter Editor, edit the RAM block type to
target a new memory block size.

The Compiler can also infer ROM and RAM memory blocks from the HDL code, and the
synthesis engine can place large shift registers into memory blocks by inferring the
Shift register (RAM-based) IP core. When you turn off this inference in the synthesis
tool, the synthesis engine places the memory or shift registers in logic instead of
memory blocks. Also, turning off this inference prevents registers from being moved
into RAM, improving timing performance,

Depending on the synthesis tool, you can also set the RAM block type for inferred
memory blocks. In Quartus Prime synthesis, set the ramstyle attribute to the desired
memory type for the inferred RAM blocks. Alternatively, set the option to logic to
implement the memory block in standard logic instead of a memory block.

Review the Resource Utilization by Entity report in the report file to determine whether
there is an unusually high register count in any of the modules corresponding with an
unexpectedly low RAM block count. Some coding styles prevent the Quartus Prime
software from inferring RAM blocks from the source code because of the blocks’
architectural implementation, forcing the software to implement the logic in flip-flops.

For example, an asynchronous reset on a register bank might make the register bank
incompatible with the RAM blocks in the device architecture, so Compiler implements
the register bank in flip-flops. It is often possible to move a large register bank into
RAM by slight modification of associated logic.

Using the appropriate memory can also help reduce resource use. For example, a
shallow but wider memory may be more suitable for MLABs, rather than for M20K
memory blocks.

Related Information

• Quartus Prime Pro Edition User Guide: Design Recommendations

• Agilex 7 Embedded Memory User Guide

• Stratix 10 Embedded Memory User Guide

• Arria 10 Embedded Memory User Guide

4.2.3.9. Guideline: Use Physical Synthesis Options to Reduce Area

The physical synthesis options available at Assignments ➤ Settings ➤ Compiler
Settings ➤ Advanced Settings (Fitter) help you decrease resource usage. When
you enable physical synthesis, the Quartus Prime software makes placement-specific
changes to the netlist that reduce resource utilization for a specific Intel device.

4. Area Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

57

https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/agilex/ug-ag-memory.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-10/ug-s10-memory.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-10/a10_handbook.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Physical synthesis increases compilation time. To reduce the impact on compilation
time, you can apply physical synthesis options to specific instances.

Related Information

Advanced Fitter Settings Dialog Box

4.2.3.10. Guideline: Retarget or Balance DSP Blocks

A design might not fit because it requires more DSP blocks than the target FPGA
device has available.

You can implement all DSP block functions with logic cells, so you can retarget some
of the DSP blocks to logic to obtain a fit.

If the DSP function was created with the parameter editor, open the parameter editor
and edit the function so it targets logic cells instead of DSP blocks. The Quartus Prime
software uses the DEDICATED_MULTIPLIER_CIRCUITRY IP core parameter to control
the implementation.

DSP blocks also can be inferred from your HDL code for multipliers, multiply-adders,
and multiply-accumulators. You can turn off this inference in your synthesis tool.
When you are using Quartus Prime synthesis, you can disable inference by turning off
the Auto DSP Block Replacement logic option for your entire project. Click
Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis). Turn off Auto DSP Block Replacement. Alternatively, you can disable
the option for a specific block with the Assignment Editor.

The Quartus Prime software also offers the DSP Block Balancing logic option, which
implements DSP block elements in logic cells or in different DSP block modes. The
default Auto setting allows DSP block balancing to convert the DSP block slices
automatically as appropriate to minimize the area and maximize the speed of the
design. You can use other settings for a specific node or entity, or on a project-wide
basis, to control how the Quartus Prime software converts DSP functions into logic
cells and DSP blocks. Using any value other than Auto or Off overrides the
DEDICATED_MULTIPLIER_CIRCUITRY parameter used in IP core variations.

For designs with large number of low-precision arithmetic operations, such as
additions and multiplications, you can enable fractal synthesis optimizations. Fractal
synthesis optimizations are useful for high-throughput, arithmetic-intensive designs
that exceed all available DSP resources. These optimizations are beneficial in designs
with large numbers of low-precision arithmetic operations, such as additions and
multiplications.

Related Information

Fractal Synthesis Optimizations, Quartus Prime Pro Edition User Guide: Design
Compilation

4.2.3.11. Guideline: Use a Larger Device

If a successful fit cannot be achieved because of a shortage of routing resources, you
might require a larger device.

4.2.3.12. Guideline: Reduce Global Signal Congestion

4. Area Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

58

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_physical.htm
https://www.intel.com/content/www/us/en/docs/programmable/683236/current/fractal-synthesis-optimization.html
https://www.intel.com/content/www/us/en/docs/programmable/683236/current/fractal-synthesis-optimization.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For Stratix 10 and Arria 10 devices, you can refer to the generated Global Signal
Visualization report to see global signal routing and clock sector utilization in an
interactive heat map.

The presence of too many signals in a clock sector can result in congestion and routing
failures in the Fitter's place stage. Use the Global Signal Visualization Report to debug
global signal routing congestion and global signal placement and routing failures.

The interactive heat map shows the number of signals in use for a given clock sector.
If these global signals are clocks, use clock region assignments to move clocks away
from the affected clock sectors.

4.2.3.13. Guideline: Report Pipelining Information

Pipelining the design can be useful for providing resources for retiming and improving
performance. However, excessive pipelining can unnecessarily consume area. Use the
report_pipeline function to identify areas in the design with excess pipelining.

Related Information

Quartus Prime Pro Edition User Guide: Design Optimization

4.2.4. Routing

Resolve routing resource problems with these guidelines.

4.2.4.1. Guideline: Set Auto Packed Registers to Sparse or Sparse Auto

The Auto Packed Registers option reduces LE or ALM count in a design. You can set
this option by clicking Assignment ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Fitter).

Related Information

Auto Packed Registers logic option

4.2.4.2. Guideline: Set Fitter Aggressive Routability Optimizations to Always

The Fitter Aggressive Routability Optimization option is useful if your design does
not fit due to excessive routing wire utilization.

If there is a significant imbalance between placement and routing time (during the
first fitting attempt), it might be because of high wire utilization. Turning on the Fitter
Aggressive Routability Optimizations option can reduce your compilation time.

On average, this option can save up to 6% wire utilization, but can also reduce
performance by up to 4%, depending on the device.

Related Information

Fitter Aggressive Routability Optimizations logic option

4.2.4.3. Guideline: Increase Router Effort Multiplier

The Router Effort Multiplier controls how quickly the router tries to find a valid
solution. The default value is 1.0 and legal values must be greater than 0.

4. Area Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

59

https://www.intel.com/content/www/us/en/docs/programmable/683641.html
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_register_packing.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_fitter_aggressive_routability_optimization.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Numbers higher than 1 help designs that are difficult to route by increasing the
routing effort.

• Numbers closer to 0 (for example, 0.1) can reduce router runtime, but usually
reduce routing quality slightly.

Experimental evidence shows that a multiplier of 3.0 reduces overall wire usage by
approximately 2%. Using a Router Effort Multiplier higher than the default value can
benefit designs with complex datapaths with more than five levels of logic. However,
congestion in a design is primarily due to placement, and increasing the Router Effort
Multiplier does not necessarily reduce congestion.

Note: Any Router Effort Multiplier value greater than 4 only increases by 10% for every
additional 1. For example, a value of 10 is actually 4.6.

4.2.4.4. Guideline: Remove Fitter Constraints

A design with conflicting constraints or constraints that are difficult to meet may not fit
in the targeted device. For example, a design might fail to fit if the location or Logic
Lock assignments are too strict and not enough routing resources are available on the
device.

To resolve routing congestion caused by restrictive location constraints or Logic Lock
region assignments, use the Routing Congestion task in the Chip Planner to locate
routing problems in the floorplan, then remove any internal location or Logic Lock
region assignments in that area. If your design still does not fit, the design is over-
constrained. To correct the problem, remove all location and Logic Lock assignments
and run successive compilations, incrementally constraining the design before each
compilation. You can delete specific location assignments in the Assignment Editor or
the Chip Planner. To remove Logic Lock assignments in the Chip Planner, in the Logic
Lock Regions Window, or on the Assignments menu, click Remove Assignments.
Turn on the assignment categories you want to remove from the design in the
Available assignment categories list.

Related Information

Analyzing and Optimizing the Design Floorplan on page 142

4.2.4.5. Guideline: Optimize Synthesis for Routability

You can specify Compiler optimization modes that optimize for routability over speed.

If resource utilization is an important concern, you can optimize for routability rather
than speed.

The High-Placement Routability Effort, High Packing Routability Effort, and
Optimize Netlist for Routability Optimization modes apply optimizations that
improve routability of the design.

The Quartus Prime software provides additional attributes and options that can help
improve the quality of your synthesis results.

Related Information

Optimization Mode

4. Area Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

60

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/mwh1465495272256.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.4.6. Guideline: Optimize Source Code

If your design does not fit because of routing problems and the methods described in
the preceding sections do not sufficiently improve the routability of the design, you
can modify the design at the source to achieve the desired results.

You can often improve results significantly by making design-specific changes to your
source code, such as duplicating logic or changing the connections between blocks
that require significant routing resources.

You can use the Design Assistant to help you identify areas in the design that can
benefit from optimization. For example, the following Design Assistant rules identify
registers in the design with high tension span, for which register duplication simplifies
place and route.

You can also view the Global Router Wire Utilization Map report to identify instances
and nets that utilize many global wire resources.

Related Information

• Design Assistant Rules List

• Design Assistant Design Rule Checking, Quartus Prime Pro Edition User Guide:
Design Recommendations

• Global Router Wire Visualization Map, Quartus Prime Pro Edition User Guide:
Design Recommendations

4.2.4.7. Guideline: Use a Larger Device

If a successful fit cannot be achieved because of a shortage of routing resources, you
might require a larger device.

4.3. Scripting Support

You can run procedures and assign settings described in this chapter in a Tcl script.
You can also run procedures at a command prompt. For detailed information about
scripting command options, refer to the Quartus Prime command-line and Tcl API Help
browser.

1. To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp

You can specify many of the options described in this section either in an instance,
or at a global level, or both.

2. Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value>

3. Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> -to <instance name>

Note: If the <value> field includes spaces (for example, ‘Standard Fit’), you must enclose
the value in straight double quotation marks.

4. Area Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

61

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#da_rules/da-root-topic.htm
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959528162
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959528162
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html#sdy1566315401818
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html#sdy1566315401818
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Quartus Prime Pro Edition Settings File Reference Manual
For information about all settings and constraints in the Quartus Prime
software.

• Quartus Prime Pro Edition User Guide: Scripting

4.3.1. Initial Compilation Settings

Use the Quartus Prime Settings File (.qsf) variable name in the Tcl assignment to
make the setting along with the appropriate value. The Type column indicates
whether the setting is supported as a global setting, an instance setting, or both.

Table 12. Advanced Compilation Settings

Setting Name .qsf File Variable Name Values Type

Placement Effort Multiplier PLACEMENT_EFFORT_MULTIPLIER Any positive, non-zero value Global

Router Effort Multiplier ROUTER_EFFORT_MULTIPLIER Any positive, non-zero value Global

Router Timing Optimization level ROUTER_TIMING_OPTIMIZATION_LEVEL NORMAL, MINIMUM, MAXIMUM Global

Final Placement Optimization FINAL_PLACEMENT_OPTIMIZATION ALWAYS, AUTOMATICALLY, NEVER Global

4.3.2. Resource Utilization Optimization Techniques

This table lists QSF assignments and applicable values for Resource Utilization
Optimization settings:

Table 13. Resource Utilization Optimization Settings

Setting Name .qsf File Variable Name Values Type

Auto Packed Registers QII_AUTO_PACKED_REGISTERS AUTO, OFF, NORMAL,
MINIMIZE AREA, MINIMIZE
AREA WITH CHAINS,SPARSE,
SPARSE AUTO

Global,
Instance

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Optimization Technique OPTIMIZATION_TECHNIQUE AREA, SPEED, BALANCED Global,
Instance

Speed Optimization
Technique for Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Encoding

STATE_MACHINE_PROCESSING AUTO, ONE-HOT, GRAY,
JOHNSON, MINIMAL BITS,
ONE-HOT, SEQUENTIAL,
USER-ENCODE

Global,
Instance

Auto RAM Replacement AUTO_RAM_RECOGNITION ON, OFF Global,
Instance

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,
Instance

continued...

4. Area Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

62

https://www.intel.com/content/www/us/en/docs/programmable/683296.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Name .qsf File Variable Name Values Type

Auto Shift Register
Replacement

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,
Instance

Auto Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,
Instance

Number of Processors
for Parallel Compilation

NUM_PARALLEL_PROCESSORS Integer between 1 and 16
inclusive, or ALL

Global

4.4. Area Optimization Revision History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.

2023.10.02 23.3 • Updated Guideline: Use Register Packing to include link to help topic
with list of reasons that prevent register packing.

2023.07.24 23.2 • Added new Route Stage Reports section to describe latest routing
reports to alleviate routing congestion.

2023.04.03 23.1 • Revised Guideline: Use Register Packing to describe latest changes for
DSP Register Packing and DSP_REGISTER_PACKING_LEVEL entity
assignments and reporting.

2022.01.07 21.4 • Corrected syntax error in Scripting Support topic.
• Added link to Fitter Reports topic.
• Added new Design Assistant Recommendations topic.
• Revised Compilation Messages topic.
• Added Chip Planner Visualization topic.
• Added reference to Design Assistant to Guideline: Optimize Source

Code topic.
• Revised Guideline: Optimize Synthesis for Area, Not Speed topic to

mention Aggressive Area Optimization Mode.
• Revised Guideline: Optimize Synthesis for Area, Not Speed topic to

mention Aggressive Area Optimization Mode and remove Speed
Optimization Technique for Clock Domains reference.

• Revised Guideline: Retarget Memory Blocks topic to mention use of
appropriate embedded memory IP.

• Revised Guideline: Retarget or Balance DSP Blocks topic to mention use
of fractal synthesis.

• Added Guideline: Report Pipelining Information topic.
• Added reference to Global Router Wire Utilization Map report to

Guideline: Optimize Source Code topic.
• Removed references to obsolete Timing Optimization Advisor.

2018.10.18 18.1 • Corrected broken link to Optimization Modes Help topic.

2018.09.24 18.1 • Divided topic: Resource Utilization into topics: Resource Utilization
Information, Flow Summary Report, Fitter Reports, Analysis and
Synthesis Reports, and Compilation Messages.

2018.07.03 18.0 Fixed typo and added links in topic Guideline: Retarget Memory Blocks.

2017.05.08 17.0 • Removed information about deprecated Integrated Synthesis
• Revised topics: Resolving Resource Utilization Issues, Guideline:

Optimize Synthesis for Area, Not Speed

2016.10.31 16.1 • Implemented Intel rebranding.

continued...

4. Area Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2016.05.02 16.0 • Removed information about deprecated physical synthesis options.

2015.11.02 15.1 Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

June 2014 14.0 • Removed Cyclone III and Stratix III devices references.
• Removed Macrocell-Based CPLDs related information.
• Updated template.

May 2013 13.0 Initial release.

4. Area Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Timing Closure and Optimization
This chapter describes techniques to improve timing performance when designing for
Intel FPGA devices. The application of techniques varies between designs and target
FPGA device. Applying each technique does not improve results in all cases.

The default settings and options in the Quartus Prime software provide the most
balanced trade-off between compilation time, resource utilization, and timing
performance. You can then adjust these settings to determine whether a different mix
of settings might provide better results for your design.

5.1. Optimize Multi Corner Timing

Process variations and changes in operating conditions can result in path delays that
are significantly smaller than those in the slow corner timing model. As a
consequence, the design can present hold time violations on those paths, and in rare
cases, additional setup time violations.

In addition, designs targeting newer device families (with smaller process geometry)
do not always present the slowest circuit performance at the highest operating
temperature. The temperature at which the circuit is slowest depends on the selected
device, the design, and the compilation results. The Quartus Prime software manages
this new dependency by providing newer device families with three different timing
corners—Slow 85°C corner, Slow 0°C corner, and Fast 0°C corner. For other device
families, two timing corners are available—Fast 0°C and Slow 85°C corner.

The Optimize multi-corner timing option directs the Fitter to meet timing
requirements at all process corners and operating conditions. The resulting design
implementation is more robust across process, temperature, and voltage variations.
This option is on by default, and increases compilation time by approximately 10%.

When this option is off, the Fitter optimizes designs considering only slow-corner
delays from the slow-corner timing model (slowest manufactured device for a given
speed grade, operating in low-voltage conditions).

5.2. Optimize Critical Paths

Critical paths are timing paths in your design that have a negative slack and may
require optimization. These timing paths can span from device I/Os to internal
registers, registers to registers, or from registers to device I/Os.

The slack of a path determines its criticality; slack appears in the timing analysis
report, which you can generate using the Timing Analyzer.

Design analysis for timing closure is a fundamental requirement for optimal
performance in highly complex designs. The analytical capability of the Chip Planner
helps you close timing on complex designs.

683641 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Related Information

Critical Path Delay Reduction Trade-Offs on page 11

5.2.1. Viewing Critical Paths

Viewing critical paths in the Chip Planner shows why a specific path is failing. You can
see if any modification in the placement can reduce the negative slack. To display
paths in the floorplan, perform a timing analysis and display results on the Timing
Analyzer.

5.3. Optimize Critical Chains

Critical chains are design paths that limit further register retiming optimization. You
can use the Hyper-Aware design flow to shorten design cycles and optimize critical
chain performance for Stratix 10 and Agilex 7 devices. The Hyper-Aware design flow
maximizes use of Hyper-Registers by combining automated register retiming with
implementation of targeted timing closure recommendations (Fast Forward
compilation). This sum of techniques drive the highest performance for Hyperflex®

architecture designs.

A critical chain reports the design paths that limit further register retiming
optimization. The Quartus Prime Pro Edition software provides the Hyper-Retimer
critical chain reports to help you improve design performance. You can focus on higher
level optimization, because the Hyper-Retimer uses Hyper-Registers to evenly balance
slacks on all the registers in a critical chain.

Related Information

Hyperflex Architecture High-Performance Design Handbook

5.3.1. Viewing Critical Chains

Looking at the critical chain shows the exact logic that limits retiming operations in
your design. For example, you can see if the retiming is limited by your RTL code, or
by the constraints you applied on the design. Quartus Prime Pro Edition reports one
critical chain per clock domain and clock domain crossing.

The critical chain is available at two different stages in the Hyper Aware Design Flow:

• In the Retiming Limit Details Report—this report for the retiming stage in the
Hyper Aware Design Flow, and is enabled by default.

• In the Fast Forward Compilation Report—Click Fast Forward Timing Closure
Recommendations on the Compilation Dashboard to run..

• You can also graphically visualize the critical chains in the Technology Map Viewer.

Related Information

• Hyperflex Architecture High-Performance Design Handbook

• Stratix 10 HyperFlex Design: Analyzing Critical Chains (OS10CRCHNS)
Online Course

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

66

https://www.intel.com/content/www/us/en/docs/programmable/683353.html
https://www.intel.com/content/www/us/en/docs/programmable/683353.html
https://www.altera.com/support/training/course/os10crchns.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4. Design Evaluation for Timing Closure

As you move towards completion of your design, you can begin evaluating your design
for timing closure. Follow the techniques in this section to evaluate whether your
design is likely to close timing. If your design requires further steps for timing closure,
you can use the analysis techniques in this section to determine whether RTL changes
can help you to close timing.

5.4.1. Review Messages

After compiling your design, review the messages in each section of the compilation
report. Most designs that fail timing start out with other problems that the Fitter
reports as warning messages during compilation. Determine what causes a warning
message, and whether to fix or ignore the warning.

After reviewing the warning messages, review the informational messages. Take note
of anything unexpected, for example, unconnected ports, ignored constraints, missing
files, or other unexpected conditions.

5.4.2. Evaluate Fitter Netlist Optimizations

You can specify options that direct the Fitter to perform optimizations to the design
netlist. Specify global options, such as register packing, duplicating or deleting logic
cells, or inverting signals by clicking Assignments ➤ Settings ➤ Compiler Settings
➤ Advanced Settings (Fitter).

Figure 27. Netlist Optimizations Report

5.4.3. Evaluate Optimization Results

After checking what optimizations were done and how they improved performance,
evaluate the runtime it took to get the extra performance. To reduce compilation time,
review the physical synthesis and netlist optimizations over a couple of compilations,
and edit the RTL to reflect the changes that physical synthesis performed. If a
particular set of registers consistently get retimed, edit the RTL to retime the registers
the same way. If the changes are made to match what the physical synthesis
algorithms did, the physical synthesis options can be turned off to save compile time
while getting the same type of performance improvement.

5.4.4. Evaluate Resource Usage

Evaluate the device resources that the design consumes, including global and non-
global signal usage, routing utilization, and clustering difficulty. Determine whether
you approach capacity for any type of resource that might limit performance.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.4.1. Evaluate Global and Non-Global Usage

For Arria 10 and Cyclone 10 GX designs that contain many clocks, evaluate global and
non-global signals to determine whether global resources are used effectively, and if
not, consider making changes. After running the Fitter, refer to the Global and Other
Fast Signals report to review data on these signals.

Note: Stratix 10 and Cyclone 10 GX devices do not contain regional clocks, but use local
routing.

The figure shows an example of inefficient use of a global clock.

Figure 28. Inefficient Use of a Global Clock in Arria 10 Design—Single Fan-Out from
Global Clock

If you assign these resources to a Regional Clock, the Global Clock becomes available
for another signal. You can ignore signals with an empty value in the Global Line
Name column as the signal uses dedicated routing, and not a clock buffer. The Non-
Global High Fan-Out Signals report lists the highest fan-out nodes not routed on global
signals. Reset and enable signals appear at the top of the list.

If there is routing congestion in the design, and there are high fan-out non-global
nodes in the congested area, consider using global or regional signals to fan-out the
nodes, or duplicate the high fan-out registers so that each of the duplicates can have
fewer fan-outs. Use the Chip Planner to locate high fan-out nodes, to report routing
congestion, and to determine whether the alternatives are viable.

5.4.4.2. Evaluate Routing Usage

Review routing usage reported in the Fitter Resource Usage Summary report.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. Fitter Resource Usage Summary Report

Average interconnect usage reports the average amount of interconnect that is
used, out of what is available on the device. Peak interconnect usage reports the
largest amount of interconnect used in the most congested areas.

Designs with an average value below 50% typically do not have any problems with
routing. Designs with an average between 50-65% may have difficulty routing.
Designs with an average over 65% typically have difficulty meeting timing unless the
RTL tolerates a highly utilized chip. Peak values at or above 90% are likely to have
problems with timing closure; a 100% peak value indicates that all routing in an area
of the device has been used, so there is a high possibility of degradation in timing
performance.

5.4.4.3. Evaluate Wires Added for Hold

During routing the Fitter may add wire between register paths to increase delay to
meet hold time requirements. The Fitter reports how much routing delay was added in
the Estimated Delay Added for Hold Timing report. Excessive additional wire can
indicate an error with the constraint. The cause of such errors is typically incorrect
multicycle transfers between multi-rate clocks, and between different clock networks.

Review the specific register paths in the Estimated Delay Added for Hold Timing
report to determine whether the Fitter adds excessive wire to meet hold timing.

Figure 30. Estimated Delay Added for Hold Timing Report

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

An example of an incorrect constraint which can cause the router to add wire for hold
requirements is when there is data transfer from 1x to 2x clocks. Assume the design
intent is to allow two cycles per transfer. Data can arrive any time in the two
destination clock cycles by adding a multicycle setup constraint as shown in the
example:

set_multicycle_path -from 1x -to 2x -setup -end 2

The timing requirement is relaxed by one 2x clock cycle, as shown in the black line in
the waveform in the figure.

Figure 31. Timing Requirement Relaxed Waveform

The default hold requirement, shown with the dashed blue line, can force the router to
add wire to guarantee that data is delayed by one cycle. To correct the hold
requirement, add a multicycle constraint with a hold option.

set_multicycle_path -from 1x -to 2x -setup -end 2
set_multicycle_path -from 1x -to 2x -hold -end 1

The orange dashed line in the figure above represents the hold relationship, and no
extra wire is required to delay the data.

The router can also add wire for hold timing requirements when data transfers in the
same clock domain, but between clock branches that use different buffering.
Transferring between clock network types happens more often between the periphery
and the core. The following figure shows data is coming into a device, a periphery
clock drives the source register, and a global clock drives the destination register. A
global clock buffer has larger insertion delay than a periphery clock buffer. The clock
delay to the destination register is much larger than to the source register, hence
extra delay is necessary on the data path to ensure that it meets its hold requirement.

Figure 32. Clock Delay

Fitter may add routing delay to meet
hold requirementPeriphery clock buffer

with small insertion delay

Global clock buffer with large insertion delay

To identify cases where a path has different clock network types, review the path in
the Timing Analyzer, and check nodes along the source and destination clock paths.
Also, check the source and destination clock frequencies to see whether they are the

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

same, or multiples, and whether there are multicycle exceptions on the paths. Finally,
ensure that all cross-domain paths that are false by intent have an associated false
path exception.

If you suspect that routing is added to fix real hold problems, you can disable the
Optimize hold timing advanced Fitter setting (Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Fitter) ➤ Optimize hold timing).
Recompile the design with Optimize hold timing disabled, and then rerun timing
analysis to identify and correct any paths that fail hold time requirements.

Note: Disable the Optimize hold timing option only when debugging your design. Ensure
to enable the option (default state) during normal compiles. Wire added for hold is a
normal part of timing optimization during routing and is not always a problem.

5.4.5. Evaluate Other Reports and Adjust Settings Accordingly

5.4.5.1. Difficulty Packing Design

In the Fitter Resource Section, under the Resource Usage Summary, review the
Difficulty Packing Design report. The Difficulty Packing Design report details the
effort level (low, medium, or high) of the Fitter to fit the design into the device,
partition, and Logic Lock region.

As the effort level of Difficulty Packing Design increases, timing closure gets harder.
Going from medium to high can result in significant drop in performance or increase in
compile time. Consider reducing logic to reduce packing difficulty.

5.4.5.2. Review Ignored Assignments

The Compilation Report includes details of any assignments that the Fitter ignores.
The Fitter may ignore assignments if they refer to nodes names that change, but
assignments are not updated accordingly. Make sure that the Fitter is not ignoring any
valid assignments.

5.4.5.3. Review Non-Default Settings

The Synthesis and Fitter reports list all settings set to a non-default value during the
compilation. Review the non-default settings to ensure benefit.

5.4.5.4. Review the Design Floorplan

Use the Chip Planner for reviewing placement. You can use the Chip Planner to locate
hierarchical entities, using colors for each located entity in the floorplan. Look for logic
that seems out of place, based on where you expect it to be

For example, logic that interfaces with I/Os should be close to the I/Os, and logic that
interfaces with an IP or memory should be close to the IP or memory.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 33. Floorplan with Color-Coded Entities

The following notes describe use of the visualization in Floorplan with Color-Coded
Entities:

• The green block is spread apart. Check to see if those paths are failing timing, and
if so, what connects to that module that could affect placement.

• The blue and aqua blocks are spread out and mixed together. Check if connections
between the two modules contribute to this.

• The pink logic at the bottom must interface with I/Os at the bottom edge. Check
fan-in and fan-out of a highlighted module by using the buttons on the task bar.
Look for signals that go a long way across the chip and see if they are contributing
to timing failures.

• Check global signal usage for signals that affect logic placement, and verify if the
Fitter placed logic feeding a global buffer close to the buffer and away from related
logic. Use settings like high fan-out on non-global resource to pull logic together.

• Check for routing congestion. The Fitter spreads out logic in highly congested
areas, making the design harder to route.

5.4.5.5. Adjust Placement Effort

You can increase the Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Fitter) ➤ Placement Effort Multiplier value to spend additional
compilation time and effort in Place stage of the Fitter.

Adjust the multiplier after reviewing and optimizing other settings and RTL. Try an
increased value, up to 4, and reset to default if performance or compile time does not
improve.

5.4.5.6. Adjust Fitter Effort

Fitter Optimization mode settings allow you to specify whether the Compiler focuses
optimization efforts for performance, resource utilization, power, or compile times.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, the Fitter Optimization mode is set to Balanced (Normal flow) mode,
which reduces Fitter effort and compilation time as soon as timing requirements are
met. You can optionally select another Optimization mode to target performance,
area, routability, power, or compile time.

To increase Fitter effort further, you can also enable the Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Fitter) ➤ Fitter Effort option. The
default Auto Fit setting reduces Fitter effort once timing requirements are met.
Standard Fit (highest effort) setting uses maximum effort regardless of the
design's requirements, leading to higher compilation time and more timing margin.

5.4.5.7. Review Timing Constraints

Ensure that you constrain all clocks with the correct frequency requirements.

To confirm the proper application of timing constraints, run the Design Assistant and
then review and correct any timing constraint rule violations. In addition, you can
review the Ignored Constraints report to locate any constraints assigned to invalid
node names in the design. These invalid node names are most commonly caused by
changes that you make in the design hierarchy that are not yet reflected in the
constraint. Similarly, review the Report Unconstrained Paths report to locate
unconstrained paths. Add constraints as necessary so that the Compiler can fully
optimize the design.

5.4.6. Evaluate Clustering Difficulty

You can evaluate clustering difficulty to help reach timing closure. You can monitor
clustering difficulty whenever you add logic and recompile. Use the clustering
information to gauge how much timing closure difficulty is inherent in your design.

• If your design is full but clustering difficulty is low or medium, your design itself,
rather than clustering, is likely the main cause of congestion.

• Conversely, congestion occurring after adding a small amount of logic to the
design, can be due to clustering. If clustering difficulty is high, this contributes to
congestion regardless of design size.

5.4.7. Revise and Recompile

Look for obvious problems that you can fix with minimal effort. To identify where the
Compiler had trouble meeting timing, perform seed sweeping with about five
compiles. Doing so shows consistently failing paths. Consider recoding or redesigning
that part of the design.

To reach timing closure, a well written RTL can be more effective than changing your
compilation settings. Seed sweeping can also be useful if the timing failure is very
small, and the design has already been optimized for performance improvements and
is close to final release. Additionally, seed sweeping can be used for evaluating
changes to compilation settings. Compilation results vary due to the random nature of
fitter algorithms. If a compilation setting change produces lower average performance,
undo the change.

Sometimes, settings or constraints can cause more problems than they fix. When
significant changes to the RTL or design architecture have been made, compile
periodically with default settings and without Logic Lock regions, and re-evaluate
paths that fail timing.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5. Timing Optimization

You can use the techniques and tools in this section to optimize timing when your
design does not meet its timing requirements. Also, refer to the design
recommendations in Optimizing for Timing Closure, Quartus Prime Pro Edition User
Guide: Design Recommendations.

5.5.1. Correct Design Assistant Rule Violations

After running any stage of the Compiler, review the Design Assistant reports to
analyze any design rule violations and view recommendations to correct failing paths.
When enabled, the Quartus Prime Design Assistant automatically runs during
compilation and reports any violations against a set of Intel FPGA-recommended
design guidelines. Design Assistant rules include Timing Closure, Clocking, CDC, reset,
and floorplanning.

You can customize the Design Assistant for your design characteristics and reporting
requirements. Run Design Assistant in Compilation Flow mode to view the violations
relevant for Compiler stages. Run in analysis mode from tools like the Timing Analyzer
and Chip Planner to cross-probe from an individual rule violation to more information.

Follow these steps to enable and run Design Assistant and view results following
compilation:

1. Click Assignments ➤ Settings ➤ Design Assistant Rules Settings.

Figure 34. Design Assistant Rules Settings

Rules Checked

Rule Not Checked

Runs Design Assistant
During Compilation

2. To enable Design Assistant checking during compilation, turn on Enable Design
Assistant execution during compilation.

3. To run Design Assistant during compilation, run one or more modules of the
Compiler. Design Assistant reports results for each stage in the Compilation
Report.

4. To view the results for each rule, click the rule in the Rules list. A description of
the rule and design recommendations for correction appear.

5. For timing path-related rule violations, right-click the node or path, and then click
Report Timing (Extra Info) or Report Path (Extra Info). The Timing Analyzer
loads and automatically displays the Report Timing or Report Path data related
to the rule violation, allowing you to probe every aspect of the violation. Report
Path can report timing even for paths that are cut.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 35. Cross Probing From Design Assistant Rule Violations to Timing Analyzer

Related Information

Quartus Prime Pro Edition User Guide: Design Recommendations

5.5.2. Implement Fast Forward Timing Closure Recommendations

In traditional FPGA timing closure flows, the starting point for most design analysis is
the critical path. Due to the nature of Hyperflex architecture and the availability of the
Hyper Retimer, it is best to start you timing closure activities from the Retiming Limit
Report. Provide the Hyper-Retimer as many optimization opportunities as possible,
before having to look into more time intensive and potentially manual timing closure
techniques.

Related Information

Hyperflex Architecture High-Performance Design Handbook

5.5.2.1. Retiming Limit Details Report

Use the Retiming Limit Details report to get specific information on what is currently
limiting the Hyper Retimer from performing more optimizations.

The Retiming Limit Details report specifies:

• Clock Transfer: Clock domain, or the clock domain transfer for which the critical
chain applies

• Limiting Reason: Design conditions which prevent further optimizations from
happening.

• Critical Chain Details: Timing paths associated with the timing restrictions.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

75

https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683353.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.2.1.1. Using the Retiming Limit Details Report

To access the Retiming Limit Details report:

1. In the Reports tab, double-click Retiming Limit Details under Fitter ➤ Retime
Stage.

2. To locate the critical chain in the Technology Map Viewer, right-click any path and
click Locate Critical Chain in Technology Map Viewer.

The Technology Map Viewer displays a schematic representation of the complete
critical chain after place, route and register retiming.

Figure 36. Critical Chain in Technology Map Viewer

5.5.2.2. Fast Forward Timing Closure Recommendations

When running Fast Forward compilation, the Compiler removes signals from registers
to allow mobility within the netlist for subsequent retiming. Fast Forward compilation
generates design-specific timing closure recommendations, and predicts maximum
performance with removal of all timing restrictions.

After you complete Fast Forward explorations, you can determine which
recommendations to implement to provide the most benefit. Implement appropriate
recommendations in your RTL, and recompile the design to achieve the performance
levels that Fast Forward reports.

The Fast Forward Details Report provides the following information:

Table 14. Fast Forward Details Report Information

Name Description

Step Displays the various Fast Forward optimization steps, starting from the pre-
optimization base compilation.
• Each step comes with its associated critical chain.
• Each step corresponds to a new optimization cumulative to the previous step.

Fast Forward Optimization Analyzed Summary of the optimizations necessary to implement each step.

Estimated fMAX Estimated fMAX performance after you implement the recommendations for this
step in your design. This is cumulative, and step n represents the potential fMAX
after implementing all previous steps.

Optimization Analyzed (cumulative) List of all the consecutive optimization steps applied.

Recommendation for Critical Chain Lists recommended changes to your designs. These recommendations are geared
towards removing retiming limitations, and allowing register movement.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.2.2.1. Generating Fast Forward Timing Closure Recommendations

To generate Fast Forward timing closure recommendations:

1. On the Compilation Dashboard, click Fast Forward Timing Closure
Recommendations.
The Compiler runs prerequisite synthesis or Fitter stages as needed, and
generates timing closure recommendations in the Compilation Report.

2. View timing closure recommendations in the Compilation Report to evaluate
design performance, and implement key RTL performance improvements.

The Quartus Prime Pro Edition software allows you to automate or refine Fast Forward
analysis:

• To run Fast Forward compilation during each full compilation, click Assignments
➤ Settings ➤ Compiler Settings ➤ HyperFlex, and turn on Run Fast Forward
Timing Closure Recommendations during compilation.

• To modify how Fast Forward compilation interprets specific I/O and block types,
click Assignments ➤ Settings ➤ Compiler Settings ➤ HyperFlex Advanced
Settings.

5.5.2.2.2. Implementing Fast Forward Recommendations

After implementing timing closure recommendations in your design, you can rerun the
Retime stage to obtain the predictive performance gains.

You can continue exploring performance and implementing RTL changes to your code
until you reach the desired performance target. Once you have completed all the
modifications you want to do, continue your timing closure activities with the
traditional techniques explained in this document.

For more information about implementing Fast Forward timing closure
recommendations in your design, refer to the Implement Fast Forward
Recommendations section of the Hyperflex Architecture High Performance Design
Handbook

5.5.3. Review Timing Path Details

Reporting the timing paths and routing details can help uncover correctable timing and
routing delays and other conditions that prevent retiming registers for higher
performance.

5.5.3.1. Report Timing

The Timing Analyzer's Reports ➤ Timing Slack ➤ Report Timing… command
allows you to specify settings to report the timing of any path or clock domain in the
design. The equivalent scripting command is report_timing.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 37. Report Timing Report

You can specify diverse options to customize the reporting. You can specify the Clocks
and Targets that the report displays, the Analysis Type to run, whether to display
Extra Info in the report, and the Output options for the report. For example, you can
increase the number of paths to report, add a Target filter, and add a From Clock.

Figure 38. Report Timing Dialog Box (Top Section)

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 39. Report Timing Dialog Box (Bottom Section)

Table 15. Report Timing Settings

Option Description

Clocks From Clock and To Clock filter paths in the report to show only the launching or latching
clocks you specify.

Targets Specifies the target node for From Clock and To Clock to report paths with only those
endpoints. Specify an I/O or register name or I/O port for this option. The field also supports
wildcard characters. For example, to report only paths within a specific hierarchy:

report_timing -from *|egress:egress_inst|* \
 -to *|egress:egress_inst|* -(other options)

When the From, To, or Through boxes are empty, the Timing Analyzer assumes all possible
targets in the device. The Through option limits the report to paths that pass through
combinatorial logic, or a particular pin on a cell.

Analysis type The Analysis type options are Setup, Hold, Recovery, or Removal. The Timing Analyzer
reports the results for the type of analysis you select.

Paths Specifies the number of paths to display by endpoint and slack level. The default value for
Report number of paths is 10, otherwise, the report can be very long. Enable Pairs only to
list only one path for each pair of source and destination. Limit further with Maximum
number of paths per endpoints. You can also filter paths by entering a value in the
Maximum slack limit field.

Extra Info Provides additional data that is relevant for diagnosing timing failure root cause, such as setup
slack breakdown, and unexpected routing detours caused by congestion and hold time fix-up.
Specify whether to include None, Basic, or All extra information in the report. The Extra Info
tab data can help you identify potential, unnecessary routing detours, as well as placement or
circuit issues that restrict the path fMAX performance. Refer to Setup Slack Breakdown On the
Extra Info Tab on page 81.
• All—report includes Extra Info tab that reports extra information for source timing

endpoints that pass through the unregistered output of a RAM or DSP block, or for
destination timing endpoints that pass through the unregistered input of a DSP block. The
Data Path tab includes Estimated Delay Added for Hold and Route Stage Congestion
Impact data.

• Basic—report includes the Extra Info tab but no extra information on the Data Path tab.
• None—report includes no Extra Info tab or other extra information on the Data Path tab.

Output Specify the path types the analysis includes in output for Detail level:
continued...

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

• Summary—level includes basic summary reports. Review the Clock Skew column in the
Summary report. If the skew is less than +/-150ps, the clock tree is well balanced
between source and destination.

• Path only—displays all the detailed information, except the Data Path tab displays the
clock tree as one line item.

• Path and Clock—displays the same as Path only with respect to the clock.
• Full path—when higher clock skew is present, enable the Full path option. This option

breaks the clock tree into greater detail, showing every cell, including the input buffer, PLL,
global buffer (called CLKCTRL_), and any logic. Review this data to determine the cause of
clock skew in your design. Use the Full path option for I/O analysis because only the
source clock or destination clock is inside the FPGA, and therefore the delay is a critical
factor to meet timing.

Show routing Shows routing data in the report.

Split the report by
operating conditions

For the operating condition timing corners, subdivides the data by each operating condition.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces
the report as HTML. If you enable File name, you can Overwrite or Append the file with
latest data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

Figure 40. Extra Info Tab

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setup Slack Breakdown On the Extra Info Tab

The Extra Info tab contains other timing metrics to help you diagnose timing closure
issues, including Setup Slack Breakdown for the path.

The slack of a path specifies the margin by which the path meets its timing
requirement. The setup slack breakdown is a numeric value that the Timing Analyzer
calculates from the following timing requirements and path element delays:

Figure 41. Setup Slack Breakdown Calculations

Clock Relationship

Clock Uncertainty

µParameters

t = 0

Intrinsics

Non-Intrinsics

Time

Slack
IC

Delay
Cell

Delay

Clock Skew

Required Time = Latch Edge + Required Clock Delay - Clock Uncertainty + µtSU | µtH

Arrival Time = Launch Edge + Arrival Clock Delay + µtCO + Data Cell Delay + Data IC Delay

Intrinsic Margin = Clock Relationship - µParameters - Clock Uncertainty

Intrinsic Margin (Setup) = Slack + Data Cell Delay + Data IC Delay - Clock Skew

Intrinsic Delays = Orange
Non-Intrinsic Delays = Blue

A path can fail timing requirements for many varied reasons. For example, the clock
relationship can be impossibly tight, or there can be excessive routing delays that
alone cause failure for the timing path. Calculating the intrinsic margin of a timing
path, and then comparing that margin to other delays of the path, can help identify
the specific reasons why a path fails its timing requirement.

The Extra Info tab can help you identify potential significant or unexpected routing
detours caused by congestion and hold time fix-up. The Extra Info tab can also
report extra information for source timing endpoints that pass through the
unregistered output of a RAM or DSP block, or for destination timing endpoints that
pass through the unregistered input of a DSP block.

You can review the Extra Info data and Locate Path or Locate Chip Area in Chip
Planner, Technology Map Viewer, or Resource Property Viewer to determine whether to
make changes to improve placement and routing.

Some delay elements are more sensitive to a path’s placement and routing than
others. Intrinsic delays that are part of Setup Slack Breakdown are less sensitive to
placement and routing, and are inherent in the RTL and timing requirements. Non-
intrinsic delays are the other delays that are sensitive to placement and routing.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16. Extra Info Tab Data

Extra Info Data Description

Intrinsic Margin Reports the intrinsic and non-intrinsic timing elements that comprise the timing path slack
value. Intrinsic margin is a numeric value that the Timing Analyzer calculates from the timing
requirements and path element delays. The Timing Analyzer also derives the slack of the path
from the same requirements and delays, but with a different calculation. Intrinsic delays are
less sensitive to placement and routing, and are inherent in the RTL and timing requirements.
Non-intrinsic delays are the other delays that are sensitive to placement and routing.

From Node Info Specifies the node Type, any Retiming Restriction, and any Power-Up "Don't Care" attributes for
the From Node. Consider removing the retiming restriction to allow retiming and improve
performance for timing closure.

To Node Info Specifies the node Type, any Retiming Restriction, and any Power-Up "Don't Care" attributes for
the To Node. Consider removing the retiming restriction to allow retiming and improve
performance for timing closure.

Max Fanout Reports the maximum fan-out of register and combinational nodes in the path.

Route Stage
Congestion Impact

Reports whether routing has a Low, Medium, or High impact on congestion. A Low value
suggests timing issues are not congestion related. A High value suggests competition for
scarce routing resources plays a role in poor timing.

Estimated Delay
Added for Hold

Reports the estimated amount of delay added on to the fastest delay route to satisfy hold. This
value can help you determine whether delays are routing congestion or Hold related.

Sufficient Setup
Margin for Hold

Reports whether the setup margin is suitable for the hold timing. Yes, indicates that the setup
margin is sufficient. No indicates that the setup margin is insufficient for hold timing.

Source/Destination
Bounding Box

Reports the lower-left and upper-right coordinates for the boundary box enclosing the source
and destination registers.
In an ideal case, the Source/Destination Bounding Box, Cell Bounding Box, and
Interconnect Bounding Box values are roughly the same, and the relative areas are
approximately 1.0. If the cell bounding box size grows relative to the Source/Destination
Bounding Box, that can indicate a potential unnecessary routing detour on the path.

Source/Destination
Area Covered

Reports the total area covered in terms of LABs.

Source/Destination
Relative Area

Reports the area for the source and destination, relative to the Source/Destination
Bounding Box. The value is always 1.0, which equals the same size.

Cell Bounding Box Reports the lower-left and upper-right coordinates for the boundary box enclosing the source
and destination registers, and any cells in the path.

Cell Area Covered Reports the area for the cell, relative to the Source/Destination Bounding Box. A value of
1.0 equals the same size. A value greater than 1.0 can indicate a path has a cell outside of the
space between the registers in the path.

The following describe the interpretation of timing conditions indicated by the Setup
Slack Breakdown:

• When the Setup Slack Breakdown is less than 0—the path has such a tight
timing relationship, a significant difference in microparameters, or such significant
clock source uncertainty, that the path fails before the addition of any delay.
Review the SDC constraints to verify that the timing relationship is correct. An
incorrect relationship can exist between unrelated clocks that lack the proper
timing cut. Ensure that parameterizable hard blocks (such as 20K RAM and DSP
blocks) are fully registered. Investigate clock sources to verify that the clocks use
global signals for routing.

• When the clock skew exceeds the Setup Slack Breakdown—address the
clock transfer to meet timing on the path. You may need to create clock region
assignments. You might also need to redesign cross-clock transfers to switch from
synchronous to asynchronous implementation, such as with a FIFO or other
handshake.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• When the cell delay is greater than its intrinsic margin—reduce the cell
delay, as the path would fail timing even if the clocks are perfect and use no
routing wires. Rewrite RTL to reduce the logic depth, restructure logic to allow the
Compiler to use faster LUT inputs, or unblock retiming optimizations. The Compiler
can automatically retime registers to reduce logic depth, but only in ways that
maintain functionality and that the device architecture supports. To unblock the
Hyper-Retimer, remove asynchronous resets and initial conditions.

• When the interconnect delay is greater than its intrinsic margin—the path
would fail timing even if the clocks are perfect, and there is no logic. This occurs if
registers are too far apart, or a timing path detours around a congested chip area.
Review the fan-in and fan-out of registers that are far apart. Apply Logic Lock
regions so the Fitter places the registers closer together. Use Logic Lock regions
only after determining why placement is initially poor.

Related Information

Hyperflex Architecture High-Performance Design Handbook

5.5.3.2. Report Logic Depth

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Logic Depth...
command allows you to report the number of logic levels within a clock domain. This
value typically corresponds to the number of look-up tables (LUTs) that a path passes
through.

The equivalent scripting command is report_design_metrics -logic_depth.
Report Logic Depth shows the distribution of logic depth among the critical paths,
allowing you to identify areas where you can reduce logic levels in your RTL.

Figure 42. Report Logic Depth (Histogram)

Figure 43. Report Paths of Depth 3
Call report logic depth by topology for each clock, intraclock only.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

83

https://www.intel.com/content/www/us/en/docs/programmable/683353.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 44. Summary of Paths
Close timing with accurate histogram cross probing.

You can specify various options to customize the reporting.

Table 17. Report Logic Depth Settings

Option Description

Clocks From Clock and To Clock filter paths in the report to show only the launching or latching clocks
you specify.

Targets Specifies the target node for From Clock and To Clock to report logic depth with only those
endpoints. Specify an I/O or register name or I/O port for this option. The field also supports
wildcard characters. When the From, To, or Through boxes are empty, the Timing Analyzer
assumes all possible targets in the device. The Through option limits the report for paths that
pass through combinatorial logic, or a particular pin on a cell.

Analysis type The Setup, Hold, Recovery, and Removal analyses report the logic depths of the top X paths
by slack. Topology analysis reports the logic depths of the top X paths by logic depth.

Paths Specifies the number of paths to display by endpoint and slack level. The default value for Report
number of paths is 10, otherwise, the report can be very long. Enable Pairs only to list only
one path for each pair of source and destination. Limit further with Maximum number of paths
per endpoints. You can also filter paths by entering a value in the Maximum slack limit field.

Detail Specify whether to display on Histogram or full Path level of detail.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces the
report as HTML. If you enable File name, you can Overwrite or Append the file with latest
data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

5.5.3.3. Report Neighbor Paths

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Neighbor Paths...
command helps you to determine the root cause of critical paths (for example, high
logic level, retiming limitation, sub-optimal placement, I/O column crossing, hold fix-
up, time borrowing, or others). The equivalent scripting command is
report_design_metrics -neighbor_paths.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 45. Report Neighbor Paths Report

Report Neighbor Paths reports the most timing-critical paths in the design,
including associated slack, additional path summary information, and path bounding
boxes. Report Neighbor Paths shows the most timing-critical Path Before and
Path After each critical Path. You can optionally view multiple before and after paths.
Retiming or logic balancing of the Path can simplify timing closure if there is negative
slack on the Path, but positive slack on the Path Before or Path After.

Table 18. Report Neighbor Path Dialog Box Settings

Option Description

Clocks From Clock and To Clock filter paths in the report to show only the launching or latching
clocks you specify.

Targets Specifies the target node for From Clock and To Clock to report neighbor paths with only
those endpoints. Specify an I/O or register name or I/O port for this option. The field also
supports wildcard characters. When the From, To, or Through boxes are empty, the Timing
Analyzer assumes all possible targets in the device. The Through option limits the report for
paths that pass through combinatorial logic, or a particular pin on a cell.

Analysis type The Analysis type options are Setup, Hold, Recovery, or Removal. The Timing Analyzer
reports the results for the type of analysis you select.

Paths Specifies the number of paths to display by endpoint and slack level. The default value for
Report number of paths is 10, otherwise, the report can be very long. Enable Pairs only to
list only one path for each pair of source and destination. Limit further with Maximum
number of paths per endpoints. You can also filter paths by entering a value in the
Maximum slack limit field.

Report Number of
Neighbor Paths

Specifies the number of neighbor paths to report, allowing you to view a number of the top
adjacent paths entering the critical path, and the top paths exiting the critical path.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces
the report as HTML. If you enable File name, you can Overwrite or Append the file with
latest data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

Extra Info Specifies extra info.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.3.4. Report Register Spread

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Register Spread...
command analyzes the final placement to identify registers with sinks pulling them in
various directions. These registers are potential candidates for duplication. The
equivalent scripting command is report_register_spread.

Registers that drive in opposite directions and connect to high fan-out can have
placement-warping effects on the floorplan that impact fMAX. The placement-warping
may not cause timing failures. Therefore, you can view this report to identify such
registers. Taking steps to address the registers listed in the report can make
placement of the design easier and improve fMAX performance.

You can automate duplication of registers with the DUPLICATE_REGISTER and
DUPLICATE_HIERARCHY_DEPTH .qsf assignments, or you can manually modify RTL
to duplicate registers or refactor logic. Refer to "Automatic Register Duplication:
Hierarchical Proximity" in Quartus Prime Pro Edition User Guide: Design Optimization.

Figure 46. Report Register Spread Report

You can specify various options to customize the report.

Table 19. Report Register Spread Settings

Option Available Settings

Spread Type Specifies the type of spread data in the report:
• Tension—reports the sum over each sink of the distance from it to the centroid of all the

sinks.
• Angle—reports how far around the source register the fan-outs wrap, expressed from 0 to

360 degrees. This value corresponds to 360 minus the maximum angle between any two
angularly adjacent sinks. This metric complements Tension by identifying registers which
are surrounded by their sinks in all directions, and not those registers only being pulled in a
few directions.

• Span—reports the maximum 1-dimensional delta between the left bottom-most sink and
the right top-most sink.

• Area—reports the coverage of the sinks by number of LABs on the FPGA device. This option
multiplies the span of the sinks in both X- and Y- dimensions. This metric complements
Span by incorporating both dimensional spans of the sinks, and not only the maximum
sink.

• Count—reports registers with the largest sink counts.

Sink Type Specifies the type of sink in the report:
• Endpoint—the nodes (usually registers) that terminate timing paths from a register.
• Immediate Fanout—the immediately connected nodes of the register. For example, lookup

tables, other registers, RAM, or DSP blocks.

From Clock Filters paths in the report to show only the launching clocks you specify.

continued...

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Available Settings

To Clock Filters paths in the report to show only the latching clocks you specify, allowing you to debug
one clock at a time.

Report number of
registers

Specifies the number of registers to display in the report. The default value for Report
number of registers is 10.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces
the report as HTML. If you enable File name, you can Overwrite or Append the file with
latest data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

Figure 47. Report Register Spread Types

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 48. Report Register Spread Dialog Box

5.5.3.5. Report Route Net of Interest

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Route Net of
Interest... command allows you to report the nets that require the most effort from
the router. The report shows the percentage of total router effort for the nets
reported. The equivalent scripting command is report_route_net_of_interest.

This report allows you to identify nets that should not require significant router effort.
For example, you might expect that low speed management interface nets are not
timing critical, and therefore not require much router effort. However, if Report
Route Net of Interest reports that some nets in the low speed management
interface require significant effort from the router, you can investigate that further.
The investigation can determine whether the timing constraints are correct, whether
the fan-out is significant and can reduce through driver duplication, or whether the net
passes through congested areas.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 49. Report Route Net of Interest Report

Figure 50. Report Route Net of Interest Dialog Box

From the Route Net of Interest Report in the Timing Analyzer GUI, you can right-click
on any net and run Report Timing for more details about the net, its slack, and any of
the net's paths.

Table 20. Report Route Net of Interest Settings

Option Available Settings

Nets Specifies the Maximum number of nets to report. The default value is 50.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces the
report as HTML. If you enable File name, you can Overwrite or Append the file with latest data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.3.6. Report Retiming Restrictions

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Retiming
Restrictions... command allows you to report the occurrences of design conditions
that restrict Hyper-Retiming, such as Power-up "Care" restrictions, and don’t touch or
preserve attributes for each port. You can refer to this report to improve the circuit
and remove retiming restrictions that limit circuit performance.
report_retiming_restrictions is the equivalent scripting command.

Figure 51. Report Retiming Restrictions Report

For table entries with two number values, the number in parentheses indicates the
number of retiming restrictions in the specific entity alone. The number listed outside
of parentheses indicates the number of retiming restrictions in the specific entity and
all of its sub-entities in the hierarchy.

Related Information

Retiming Restrictions and Workarounds, Hyperflex Architecture High-Performance
Design Handbook

5.5.3.7. Report Pipelining Information

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Pipelining
Information... command allows you to generate a report that can help you to identify
potential areas of over-pipelining in your design. Excessive pipelining unnecessarily
consumes area. The equivalent scripting command is report_pipelining_info.

Report Pipelining Information... does not perform any functional analysis in
making the recommended pipeline stage adjustment. You must be aware of any
potential functional changes from removing pipeline stages. There may be
circumstances when all the stages in a register pipeline are necessary for functional
reasons. The report helps to identify location with more registers than necessary for
covering distance.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

90

https://www.intel.com/content/www/us/en/programmable/documentation/jbr1444752564689.html#jbr1457936807030
https://www.intel.com/content/www/us/en/programmable/documentation/jbr1444752564689.html#jbr1457936807030
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 52. Report Pipelining Information Report

Figure 53. Report Detailed Pipelining

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The detailed report shows every register in a tree structure. Over- or under-pipelining
recommendations are in the main report. The following shows every single register
inside the bus chain in a tree structure:

Figure 54. Detailed Pipelining Result

To help identify potential over-pipelining, Report Pipelining Information reports:

• The recommended pipeline stage adjustment across bus

• The minimum total slack of one bit across bus

• The minimum average slack of one bit across bus

• The distance between the registers

• The width of buses in your design

• The number of sequential registers

• The number of registers on the bus

The Recommended Pipeline Stage Adjustment Across Bus reports the number of
registers that you can remove from the bus for each bit. The Average Distance Per
Stage, Max Distance Per Stage, and Min Distance Per Stage columns report the
Manhattan distance measured in logic array blocks (LABs). The Bus Average Depth,
Bus Max Depth, and Bus Min Depth columns report the number of sequential, single
fan-out registers. For registers that have more than one clock source, the report lists
the fastest one.

The 1+ sign under Recommended Pipeline Stage Adjustment Across Bus column
means that the bus might need to add more registers to meet timing requirement.
Refer to the Fast Forward Timing Closure Recommendations report.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the report identifies a large register chain with multiple sequential registers, and the
distance between registers is low, that condition can suggest over-pipelining. You may
be able to remove some registers to recover some of the device area and reduce
congestion.

The following options are available for this report:

Figure 55. Report Pipelining Information Dialog Box

Table 21. Report Pipelining Information Settings

Option Available Settings

Pipeline Specifies the thresholds for reporting a register pipeline. You can define the Minimum average
bus depth, the Minimum bus width, and the Maximum number of rows that the report
includes.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces the
report as HTML. If you enable File name, you can Overwrite or Append the file with latest data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

5.5.3.8. Report CDC Viewer

The Timing Analyzer's Reports ➤ Clock Domain Crossings ➤ Report CDC
Viewer... command allows you to configure and display a custom clock domain
crossing report and the Clock Domain Crossing (CDC) Viewer. The CDC Viewer
graphically displays the setup, hold, recovery, or removal analysis of all clock transfers
in your design. The equivalent scripting command is report_cdc_viewer.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 22. Report Clock Domain Crossing Viewer Settings

Option Description

Clocks From Clock and To Clock filter paths in the report to show only the launching or latching
clocks you specify.

Analysis type Options are Setup, Hold, Recovery, or Removal. The Timing Analyzer reports the results for
the type of analysis you select.

Transfers Specifies the type of clock transfers to include or exclude from the report, including Timed
transfers, Fully cut transfers, Clock groups, Inactive clocks, and Non-crossing
transfers. You can specify the Maximum slack limit and Grid options for the report.

Detail level Full shows all details of the report and Summary filters the details and shows summary data.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces
the report as HTML. If you enable File name, you can Overwrite or Append the file with
latest data, and specify Grid or List format.
Note: In grid format reports, clocks with non-crossing transfers always appear if they have

transfers between other clocks.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

You can specify the following options to customize CDC Viewer reporting:

Table 23. CDC Viewer Report Controls

Control Description

From Clock: and To Clock: Filters the display according to the clock names you specify. Click From Clock: or To
Clock: to search for specific clock names.

Legend Defines the status colors. A color coded grid displays the clock transfer status. The clock
headers list each clock with transfers in the design. The GUI truncates long clock names,
but you can view the full name in a tool tip or by resizing the clock header cell. The GUI
represents the generated clocks as children of the parent clock. A '+' icon next to a clock
name indicates the presence of generated clocks. Clicking on the clock header displays
the generated clocks associated with that clock.

Toggle Data The text in each transfer cell contains data specific to each transfer. Turn on or off display
of the following types of data:
• Number of timed endpoints between clocks— the number of timed, endpoint-

unique paths in the transfer. A path being “timed” means that analysis occurs on that
path. Only paths with unique endpoints count towards this total.

• Number of cut endpoints between clocks— the number of cut endpoint-unique
paths, instead of timed paths. These paths are cut by either a false path or clock
group assignment. Timing analysis skips such paths.

• Worst-case slack between clocks— the worst-case slack among all endpoint-unique
paths in the transfer.

• Total negative slack between clocks— the sum of all negative slacks among all
endpoint-unique paths in this transfer.

• Tightest relationship between clocks— the lowest-value setup, hold, recovery, or
removal relationship between the two clocks in this transfer.

Show Filters and Show
Legend

Turns on or off Filters and Legend.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 56. CDC Viewer Setup Transfers Report

Each block in the grid is a transfer cell. Each transfer cell uses color and text to display
important details of the paths in the transfer. The color coding represents the following
states:

Table 24. Transfer Cell Content

Cell Color Color Legend

Black Indicates no transfers. There are no paths crossing between the source and destination clock
of this cell.

Green Indicates passing timing. All timing paths in this transfer, that have not been cut, meet their
timing requirements.

Red Indicates failing timing. One or more of the timing paths in the transfer do not meet their
timing requirements. If the transfer is between unrelated clocks, the paths likely require a
synchronizer chain.

Blue Indicates clock groups. The source and destination clocks of these transfers are cut by means
of asynchronous clock groups.

Gray Indicates a cut transfer. All paths in this transfer are cut by false paths. Therefore, timing
analysis does not consider these paths.

Orange Indicates inactive clocks. One of the clocks in the transfer is an inactive clock (with the
set_active_clocks command). The Timing Analyzer ignores such transfers.

Right-click menus allow you to perform operations on transfer cells and clock headers.
When the operation is a Timing Analyzer report or SDC command, a dialog box opens
containing the contents of the transfer cell.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 25. Transfer Cell Right-Click Menus

Command Description

Copy Copies the contents of the transfer cell or clock header to the clipboard.

Report Timing Reports timing. Not available for transfer cells with no valid paths (gray or black cells).

Report Endpoints Reports endpoints. Not available for transfer cells with no cut paths (gray or black cells).

Report False Path Reports false paths. Not available for transfer cells with no valid paths (black cells).

Report Exceptions Reports exceptions. Only available for clock group transfers (blue cells).

Report Exceptions
(with clock groups)

Reports exceptions with clock groups. Only available for clock group transfers (blue cells).

Set False Path Sets a false path constraint.

Set Multicycle Path Sets a multicycle path exception.

Set Min Delay Sets a min delay constraint.

Set Max Delay Sets a max delay constraint.

Set Clock Uncertainty Sets a clock uncertainty constraint.

Table 26. Clock Header Right-Click Menus

Command Description

Copy (include children) Copies the name of the clock header, and the names of each of its derived clocks. This option
only appears for clock headers with generated clocks.

Expand/Collapse All
Rows/Columns

Shows or hides all derived clocks in the grid.

Create Slack Histogram Generates a slack histogram report for the clock you select.

Report Timing From/To
Clock

Generates a timing report for the clock you select. If you do not expand the clock to display
derived clocks, the timing report includes all clocks that derive from the clock. To prevent this,
expand the clock before right-clicking it.

Remove Clock(s) Removes the clock you select from the design. If you do not expand the clock, timing analysis
removes all clocks that derive from the clock.

You can view CDC Viewer output in any of the following formats:

• A report panel in the Timing Analyzer

• Output in the Timing Analyzer Tcl console

• A plain-text file

• An HTML file you can view in a web browser.

Related Information

Tips for Analyzing Failing Clock Paths that Cross Clock Domains on page 129

5.5.3.9. Timing Closure Recommendations

The Report Timing Closure Recommendations command in the Timing Analyzer
Task pane analyzes paths and provides specific recommendations based on path
characteristics. Since Design Assistant now provides more targeted timing closure
recommendations, Report Timing Closure Recommendations is marked for
deprecation.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.3.10. Global Network Buffers

Routing paths allow you to identify global network buffers that fail timing. Buffer
locations names reflect the network they drive.

• CLK_CTRL_Gn—for Global driver

• CLK_CTRL_Rn—for Regional driver

Buffers that access the global networks are in the center of each side of the device.
Buffering to route a core logic signal on a global signal network causes insertion delay.
Trade-offs to consider for global and non-global routing are source location, insertion
delay, fan-out, distance a signal travels, and possible congestion if the signal demotes
to local routing.

5.5.3.10.1. Source Location

If you cannot move the register feeding the global buffer closer, then consider
changing either the design logic or the routing type.

5.5.3.10.2. Insertion Delay

If the design requires a global signal, consider adding half a cycle to timing by using a
negative-edge triggered register to generate the signal, and use a multicycle setup
constraint.

Figure 57. Negative-Edge Triggered Register

Figure 58. Multicycle Setup Constraint

set_multicycle_path -from <generating_register> -setup -end 2

5.5.3.10.3. Fan-Out

Nodes with very high fan-out that use local routing tend to pull logic that they drive
close to the source node. This can make other paths fail timing. Duplicating registers
can help reduce the impact of high fan-out paths. Consider manually duplicating and
preserving these registers. Using a MAX_FANOUT assignment may make arbitrary
groups of fan-out nodes, whereas a designer can make more intelligent fan-out
groups.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.3.10.4. Global Signal Assignment

You can use the Global Signal assignment to control the global signal usage on a per-
signal basis. For example, if a signal needs local routing, you set the Global Signal
assignment to Off.

5.5.3.11. Resets and Global Networks

The Compiler often routes reset signals on global networks. Sometimes, the use of a
global network causes recovery failures. Consider reviewing the placement of the
register that generates the reset and the routing path of the signal.

5.5.3.12. Suspicious Setup

Suspicious setup failures include paths with very small or very large requirements.

One typical cause is math precision error. For example, 10Mhz/3 = 33.33 ns per
period. In three cycles, the time is 99.999 ns vs 100.000 ns. Setting a maximum
delay can provide an appropriate setup relationship.

Another cause of failure are paths that must be false by design intent, such as:

• Asynchronous paths handled through FIFOs, or

• Slow asynchronous paths that rely on handshaking for data that remain available
for multiple clock cycles.

To prevent the Fitter from having to meet unnecessarily restrictive timing
requirements, consider adding false or multicycle path statements.

5.5.3.13. Auto Shift Register Replacement

During synthesis, the Compiler can convert shift registers or register chains into RAMs
to save area. However, conversion to RAM often reduces speed. The Compiler names
the converted registers with the prefix "altshift_taps".

• If paths that fail timing begin or end in shift registers, consider disabling the Auto
Shift Register Replacement option. Do not convert registers that are intended
for pipelining.

• For shift registers that are converted to a chain, evaluate area/speed trade off of
implementing in RAM or logic cells.

• If a design uses nearly the full device capacity, you can save area by shifting
register conversion to RAM, benefiting non-critical clock domains. You can change
the settings from the default AUTO to OFF globally, or on a register or hierarchy
basis.

5.5.3.14. Clocking Architecture

For better timing results, place all registers driven by a regional clock in one quadrant
of the chip. You can review the clock region boundaries in the Chip Planner.

Timing failure can occur when the I/O interface at the top of the device connects to
logic driven by a regional clock which is in one quadrant of the device, and placement
restrictions force long paths to and from I/Os to logic across quadrants.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use a different type of clock source to drive the logic, such as global, which covers the
whole device, or dual-regional which covers half the device. Alternatively, you can
reduce the frequency of the I/O interface to accommodate the long path delays. You
can also redesign the pinout of the device to place all the specified I/Os adjacent to
the regional clock quadrant. This issue can happen when register locations are
restricted, such as with Logic Lock regions, clocking resources, or hard blocks
(memories, DSPs, IPs).

The Extra Fitter Information tab in the Timing Analyzer timing report informs you
when placement is restricted for nodes in a path.

Related Information

Viewing Available Clock Networks in Chip Planner on page 149

5.5.4. Try Optional Fitter Settings

This section focuses only on the optional timing-optimization Fitter settings, which are
the Optimize Hold Timing, Optimize Multi-Corner Timing, and Fitter Aggressive
Routability Optimization.

Caution: The settings that best optimize different designs might vary. The group of settings that
work best for one design does not necessarily produce the best result for another
design.

Related Information

Advanced Fitter Setting Dialog Box Help Topic
In Quartus Prime Help

5.5.4.1. Optimize Hold Timing

The Optimize Hold Timing option directs the Quartus Prime software to optimize
minimum delay timing constraints.

When you turn on Optimize Hold Timing in the Advanced Fitter Settings dialog
box, the Quartus Prime software adds delay to paths to ensure that your design meets
the minimum delay requirements. If you select I/O Paths and Minimum TPD
Paths, the Fitter works to meet the following criteria:

• Hold times (tH) from the device input pins to the registers

• Minimum delays from I/O pins to I/O registers or from I/O registers to I/O pins

• Minimum clock-to-out time (tCO) from registers to output pins

If you select All Paths, the Fitter also works to meet hold requirements from registers
to registers, as highlighted in blue in the figure, in which a derived clock generated
with logic causes a hold time problem on another register.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

99

http://quartushelp.altera.com/current/#comp/comp/comp_tab_physical.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 59. Optimize Hold Timing Option Fixing an Internal Hold Time Violation

clk
Logic

D Q

D Q

Derived Clock Hold-Time Violation

Fitter Adds Routing Delay Here

However, if your design still has internal hold time violations between registers, you
can manually add delays by instantiating LCELL primitives, or by making changes to
your design, such as using a clock enable signal instead of a derived or gated clock.

Related Information

Quartus Prime Pro Edition User Guide: Design Recommendations

5.5.4.2. Fitter Aggressive Routability Optimization

The Fitter Aggressive Routability Optimizations logic option allows you to specify
whether the Fitter aggressively optimizes for routability. Performing aggressive
routability optimizations may decrease design speed, but may also reduce routing wire
usage and routing time.

This option is useful if routing resources are resulting in no-fit errors, and you want to
reduce routing wire use.

The table lists the settings for the Fitter Aggressive Routability Optimizations
logic option.

Table 27. Fitter Aggressive Routability Optimizations Logic Option Settings

Settings Description

Always The Fitter always performs aggressive routability optimizations. If you set the Fitter Aggressive
Routability Optimizations logic option to Always, reducing wire utilization may affect the
performance of your design.

Never The Fitter never performs aggressive routability optimizations. If improving timing is more important
than reducing wire usage, then set this option to Automatically or Never.

Automatically The Fitter performs aggressive routability optimizations automatically, based on the routability and
timing requirements of the design. If improving timing is more important than reducing wire usage,
then set this option to Automatically or Never.

5.5.5. Back-Annotating Optimized Assignments

The Compiler maps the elements of your design to specific device resources during
fitting. After compilation, you can back-annotate (copy) the Compiler's resource
assignments to preserve that same implementation in subsequent compilations. Back-
annotation can simplify timing closure by allowing you to lock down placement of your
optimized results.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

100

https://www.intel.com/content/www/us/en/docs/programmable/683082.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Locking down placement of large blocks related to Clocks, RAMs, and DSPs can
produce higher fMAX with less noise. Large blocks like RAMs and DSPs have heavier
connectivity than regular LABs, complicating movement during placement. When a
seed produces good results from suitable RAM and DSP placement, you can capture
that placement with back-annotation. Subsequent compiles can then benefit from the
high quality RAM and DSP placement from the good seed.

Figure 60. Back-Annotate Assignments Dialog Box

Assignment Type
 to Back-Annotate

Back-Annotate Only Nodes
Matching Name Filter

Assignment Storage Location

To back-annotate (copy) the device resource assignments from the last compilation to
the project .qsf (or to a Tcl file) for use in the next compilation:

1. Run a full compilation, or run the Fitter through at least the Place stage.

2. Click Assignments ➤ Back-Annotate Assignments.

3. Under Assignments to back-annotate, specify whether you want to preserve
Pin assignments, RAM assignments, DSP assignments, Clock assignments,
and Clock Spine assignments in the back-annotation.

4. In Filter, specify a text string (including wildcards) if you want to filter back-
annotated assignments by entity name.

5. Under Output, specify whether to save the back-annotated assignments to
the .qsf or to a Tcl file. A default Tcl file name displays.

Alternatively, you can run back-annotation with the following quartus_cdb
executable. The Shell command field displays the shell command constructed by the
options that you specify in the GUI.

quartus_cdb chiptrip_nf --back_annotate --pin --ram --dsp --clocks \
 --spines --file "<file>.tcl"

Note: Check available arguments by running quartus_cdb <project> --
back_annotate --help.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.6. Optimize Settings with Design Space Explorer II

The Design Space Explorer II tool (Tools ➤ Launch Design Space Explorer II)
allows you to find optimal project settings for resource, performance, or power
optimization goals. Design Space Explorer II (DSE II) processes a design using
combinations of settings and constraints, and reports the best combination of settings
and constraints for the design. You can also take advantage of the DSE II
parallelization abilities to compile on multiple computers.

In DSE II, an exploration point is a collection of Analysis & Synthesis, Fitter, and
placement settings, and a group of exploration points is a design exploration. A design
exploration can also include different fitter seeds.

DSE II compiles the design using the settings corresponding to each exploration point.
When the compilation finishes, DSE II evaluates the performance data against an
optimization goal that you specify. You can direct the DSE II to optimize for timing,
area, or power.

If a design is close to meeting timing or area requirements, you can try different
seeds with the DSE II, and find one seed that meets timing or area requirements.

Figure 61. Design Space Explorer II

You can run DSE II at any step in the design process; however, because large changes
in a design can neutralize gains achieved from optimizing settings, Intel FPGA
recommends that you run DSE II late in the design cycle.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: When comparing the results of different seed sweeps with DSE II, changing any of the
following variables can cause differences in the compilation results between seed
sweeps, resulting in a somewhat different fit in each case:

• The number or type of CPUs that DSE II uses to perform the seed sweeps

• Any change to the operating system

• Any change to source file content or location

• Any change to the Compiler settings or Timing Analyzer settings

For more information, refer to Fitter Seed on page 127.

Related Information

Using Design Space Explorer
21 Minute Online Course

5.5.6.1. DSE II Computing Resources

You can configure DSE II to take advantage of your computing resources to run the
design explorations. In the DSE II GUI, the Setup page contains the job launch
options, and the Status page allows you to monitor and control jobs.

DSE II supports running compilations on your local computer or a remote host through
LSF, SSH or Torque. For SSH, you can also define a comma-separated list of remote
hosts.

If you have a laptop or standard computer, you can use the single compilation feature
to compile your design on a workstation with higher computing performance and
memory capacity.

When running on a compute farm, you can direct the DSE II to safely exit after
submitting all the jobs while the compilations continue to run until completion.
Optionally, you can receive an e-mail when the compilations are complete.

If you launch jobs using SSH, the remote host must enable public and private key
authentication. For private keys encrypted with a pass phrase, the remote host must
run the ssh key agent to decrypt the private key, so the quartus_dse executable can
access the key.

Note: Windows remote hosts require Cygwin's sshd server and PuTTY.

5.5.6.2. DSE II Optimization Parameters

DSE II provides a collection of predefined exploration spaces that focus on what you
want to optimize. Additionally, you can define a set of compilation seeds. The number
of explorations points is the number of seeds multiplied by the number of exploration
modes.

Note: The availability of predefined spaces depends on the device family that the design
targets.

In the DSE GUI, you specify these settings in the Exploration page.

Related Information

Exploration Page (Design Space Explorer II)
In Quartus Prime Help

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

103

https://www.altera.com/support/training/course/odse.html
http://quartushelp.altera.com/current/index.htm#mapIdTopics/gzx1519433954262.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.6.3. DSE II Result Management

DSE II compares the compilation results to determine the best Quartus Prime software
settings for the design. The Report page displays a summary of results.

In an exploration, DSE II selects the best worst-case slack value from among all
timing corners across all exploration points. If you want to optimize for worst-case
setup slack or hold slack, specify timing constraints in the Quartus Prime software.

Disk Space

By default, DSE II saves all the compilation data. You can save disk space by limiting
the type of files that you want to save after a compilation finishes. These settings are
in the Exploration page, Results section.

Reports

DSE II has reporting tools that help you quickly determine important design metrics,
such as worse-case slack, across all exploration points.

DSE II provides a performance data report for all points it explores and saves the
information in a project-name.dse.rpt file in the project directory. DSE II archives
the settings of the exploration points in Quartus Prime Archive Files (.qar).

Related Information

Report Page (Design Space Explorer II)
In Quartus Prime Help

5.5.6.4. Running DSE II

Note: Before running DSE II, specify the timing constraints for the design.

This description covers the type of settings that you need to define when you want to
run a design exploration. For details about all the options available in the GUI, refer to
the Quartus Prime Help.

To perform a design exploration with the DSE II tool:

1. Start the DSE II tool.

If you have an open project in the Quartus Prime software and launch DSE II, a
dialog box appears asking if you want to close the Quartus Prime software. Click
Yes.

2. In the Project page, specify the project and revision that you want to explore.

3. In the Setup page, specify whether you want to perform a local or a remote
exploration, and set up the job launch.

4. In the Exploration page, specify optimization settings and goals.

5. When the configuration is complete, click Start.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

104

http://quartushelp.altera.com/current/index.htm#mapIdTopics/whh1518655760413.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.7. Aggregating and Comparing Compilation Results with Exploration
Dashboard

You can use the Exploration Dashboard (quartus_edw) in the Quartus Prime Pro
Edition software to aggregate and compare compilation results between multiple
Quartus Prime projects or sets of compilation results.

The Exploration Dashboard allows you to easily coordinate and view the compilation
and timing results from multiple projects running on separate instances of the Quartus
Prime software. For example, you can analyze and compare versions of the same
design that differ by RTL changes, or perhaps only differ by project settings. The
Exploration Dashboard provides the power and flexibility to support multi-project
analysis for a diverse range of work flows and analysis tasks.(1)

The Exploration Dashboard interfaces with multiple Quartus Prime projects
simultaneously in a single workspace to help you close timing by aggregating and
comparing results from multiple seeds or multiple versions of your design.

• Aggregating compilation results—Exploration Dashboard reports what is common
in all the compilation results for a version of your design.

• Comparing compilation results—Exploration Dashboard reports the differences
between different versions of your design.

Figure 62. Exploration Dashboard Use Model

Compiler
DBs

Compiler
DBs

DBDBDB DB DB

Use the Exploration Dashboard to quickly compare the aggregated compilation results
from multiple projects or sets of results to determine the best implementation and
impact of changes. The Exploration Dashboard supports use cases like the following:

• Identify all of the failing timing paths, in all seeds, after completing a seed sweep.

• Determine whether the average fMAX improves after RTL optimization.

• Track a scorecard of design performance as the project proceeds towards
completion.

• Compare compilation results across Quartus Prime software versions.

(1) Exploration Dashboard is pre-production status in Quartus Prime Pro Edition v.24.1, and
supports analysis of compilation results generated with Quartus Prime Pro Edition software
version 21.1 through version 24.1. Other versions may function but are not verified.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, you can use Exploration Dashboard to report timing on all of your
various compilation seeds, and view the path from all seeds in a single report view.
Exploration dashboard allows you to compare historical results against new data. This
allows you to track improvement over time on critical design metrics, such as Fmax
and power.

The Exploration Dashboard is currently a Tcl-based API that employs an object-
property model to aggregate and compare objects across multiple compilation
databases that store results from your different compilations.

Note: For a step-by-step tutorial using the Exploration Dashboard GUI and an example
design, refer to AN 1006: Multi-Project Analysis with Exploration Dashboard.

Related Information

AN 1006: Multi-Project Analysis with Exploration Dashboard

5.5.7.1. Aggregation Use Case

Aggregation helps you see all the results from your compiles in one workspace. For
example, you can use aggregation to determine whether particular timing failures
occur commonly or occasionally. Focusing your optimization work on failures that
occur commonly has higher impact than focusing on failures that occur occasionally.

Aggregation is helpful because of the stochastic nature of the Quartus Prime Compiler.
This stochastic nature means that the Compiler employs random heuristics in some
decision-making processes. These heuristics perform well on average, but certain
sequences can have unusually good or bad outcomes.

Often, the seed value that governs these random decisions is a project input that you
can change to explore for a given design without changing the design. Because these
random decisions are sensitive to specific netlist topologies, constraints, and design
file content ordering, various different project element changes can result in the “seed
effect” without any meaningful change to the design. Therefore, any given compilation
result is not a precise measure of the quality of the design. While an individual
compilation is the only source of programming files, you can run multiple compilations
with different seed values in parallel, with each project containing its own seed value,
to obtain the best results.

When performing aggregation, you are usually looking for common trends and
limitations among the results. Since the compiles that you analyze with aggregation
are different compilations of the exact same design, any random differences between
the projects should cancel out, and any fundamental issues should recur.

Nevertheless, there can be certain projects and seeds that are outliers. You can then
compare to the aggregate of the remaining projects. You can use this method to either
explain unusually good or unusually bad results in the outlier projects in comparison
with typical results.

5.5.7.2. Comparison Use Case

Comparison of compilation results can be helpful in determining the set of conditions
or properties that are different between two sets of compilation results. For example,
you can compare the differences between sets of compilation results that you
generate at different times from the similar source files. From the perspective of the
Quartus Prime Compiler, such projects are technically different. You can also export
Exploration Dashboard results for further mathematical analysis in other tools.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

106

https://www.intel.com/content/www/us/en/docs/programmable/816589.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Comparison allows you to determine whether certain design changes result in the
compilation results that you want. You can compare the aggregate-before results to
the aggregate-after results. Exploration Dashboard can analyze multiple seeds of each
version of the design together first, and then compare the common results across
versions of the design. In comparison use cases, the goal is to decide if the design
changes made the design better or worse overall.

Figure 63. Visualization of Fmax Aggregation and Comparison Analysis

Visualization of Fmax Aggregation and Comparison Analysis illustrates an example of
aggregation followed by comparison. In this example use-case:

1. The designer first compiles “Version1” of their design four times through four
different seed values.

2. The designer next makes some changes to the design for “Version2”.

3. The designer compiles “Version2” four times.

To determine if the “Version2” design changes improve the design performance
overall, the designer can follow these steps:

1. Aggregate the Fmax results from each version by taking the geometric mean
(geomean) of the Fmax across seeds.

2. Compare the geomean values and conclude that “Version2” has an expected
+12% improvement to Fmax compared to "Version1".

The Exploration Dashboard is instrumental in this comparison because no other
individual seed versus seed comparison can show this result. Comparison of the
individual compilation results can lead to a different conclusion.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.7.3. Exploration Dashboard Object-Property Model

The Exploration Dashboard operates on an object-property model that defines the
following roles, responsibilities, and properties of the major object types:

Figure 64. Visualization of the Objects in the Exploration Dashboard Environment

Compiler DB Compiler DB Compiler DB Compiler DB

Timing Analyzer Timing Analyzer Timing Analyzer Timing Analyzer

Table 28. Exploration Dashboard Terms

Term Description

Workspace The workspace is a single container for all other Exploration Dashboard objects, reports, and
results. The workspace governs all persistence, namespace, and portability requirements of
Exploration Dashboard flows. The properties of the workspace govern global settings and
behaviors that do not pertain to any individual group or project.

Project Handle Corresponds 1:1 with a Compiler database and the necessary configurations to access it.
The purpose of the Project Handle is to launch a new Quartus Prime software process and
send commands and data back and forth over a communication channel.

Project Group Provides a method to refer to and work with an arbitrary subset of the Project Handles that
are loaded in the workspace. Each project group can contain any number of projects. Each
project ID present in a group’s projects property corresponds to a project object that is
guaranteed to have that group’s ID present in its groups property.

Compiler database The database that preserves the compilation results from one previous run of the Compiler.

Note: For the complete Exploration Dashboard Tcl API, refer to ::quartus::qed in the Quartus
Prime Pro Edition User Guide: Scripting.

Related Information

::quartus::qed, Quartus Prime Pro Edition User Guide: Scripting

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

108

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl_pkg_qed_ver_1-0.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.7.3.1. Base Exploration Dashboard Properties

This section describes the Exploration Dashboard objects and properties that you can
configure and use for aggregating and comparing compilation results in the
Exploration Dashboard.

The following base objects and properties are common across all objects and
accessible using set_property and get_property.

Table 29. Base Exploration Dashboard Objects and Properties

Property
Name

Property Type Property Description Default Value Read-
Only

Comments

type Either:
project,
group, or
workspace

Type of the object N/A (must be
specified)

True

id string Identifier associated
with the object

Automatically
generated based
on the type (for
example,
project_1)

All IDs must be globally
unique within a Workspace.
Constructing an object
causes an error if you
specify an ID that is already
allocated to another object.

user_data string Arbitrary data you want
to store

N/A You can optionally access
user_data using methods
described below.

::qed::set_user_data and ::qed::get_user_data Specializations

In addition to set_property and get_property user_data also supports the
set_user_data and get_user_data specializations for access. These
specializations allow for more convenience when using the recommended (but
unrequired) method of managing user_data like a Tcl dictionary.

For example, you can use the qed::get_property command to retrieve the value of
the user_data property. You could then treat it as a dict and use dict get or
dict set commands to manipulate the value, and optionally store any changes with
the qed::set_property command.

The following shows equivalent examples using the two methods discussed:

::qed::get_user_data <object> -key <key>

is equivalent to:

set tmp [::qed::get_property <object> -property user_data]
dict get $tmp <key>

Similarly,

::qed::set_user_data <object> -key <key> -value <value>

is equivalent to:

set tmp [qed::get_property <object> -property user_data]
dict set tmp <key> <value>
::qed::set_property <object> -property user_data -value $tmp

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.7.3.2. Project Handle Properties

The main purpose of Project Handle objects is to configure, launch, and manage a
connection to a single project compilation database.

Table 30. Project Handle Properties

Property Name Property
Type

Property Description Default
Value

Read-
Only

Comments

qpf_path String
(must be a
valid path
to a .qpf
file)

Project file corresponding
to the project and
database to open and
interface with

N/A

project_directory String Directory name of the
project file you interface
with

N/A True Derived from the qpf_path
value

project_name String Base name of the project
file being interfaced with

N/A True Derived from the qpf_path
value

revision_name String Revision name to specify N/A If unspecified, Exploration
Dashboard assumes that the
revision name is the default
revision name for the
project. This updates when
you set the qpf_path
property.

connection_status Enum Reflects the state of the
communication channel
after the
launch_connection or
disconnect methods
complete successfully.

CLOSED True Can be one of STARTING,
READY, CLOSED, RUNNING,
TIMEOUT, or ANY

groups List of
Project
Group IDs

Set of groups to which
the project belongs.

N/A A project can be in any
number of groups. Each
group ID present in a
project’s groups property
corresponds to a group
object that is guaranteed to
have that project’s ID
present in its projects
property . Project groups
properties are kept
consistent with group
projects properties).
Note: All projects must be in

at least one group.
Running
sanitize_workspace
creates and places all
ungrouped projects
into a default group.

db_state Enum Indicates whether the
project's compilation
database is loaded or not

Unloaded True Can be one of unloaded or
loaded.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.7.3.3. Project Group Objects and Properties

The main purpose of a Project Group is to provide a convenient way to refer to and
work with an arbitrary subset of the Project Handles that are loaded in the workspace.

Table 31. Project Group Objects and Properties

Property
Name

Property
Type

Property
Description

Default Value Read-Only Comments

projects List of
Project
Group IDs

Set of projects
belonging to the
group

N/A A group can contain any number of
projects. Each project ID present in
a group’s projects property
corresponds to a project object that
is guaranteed to have that group’s
ID present in its groups property
(group projects properties are
kept consistent with project
groups properties).

5.5.7.3.4. Workspace Objects and Properties

The main purpose of a workspace is to act as a single container for all other
Exploration Dashboard objects, reports, and results. The workspace also handles
persistence, namespace, and portability for Exploration Dashboard flows.

Table 32. Workspace Objects and Properties

Property Name Property
Type

Property Description Default Value Read-
Only

Comments

default_gro
up_id

Valid Group
ID

ID of the default group
that
sanitize_workspace
uses to ensure all
projects are placed in at
least one group.

default_group_1 The default group ID is
reserved upon workspace
construction, but the
default group itself isn’t
constructed until required
by
sanitize_workspace.
You can modify this
property to designate a
specific group as the
default group for un-
grouped projects.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.7.4. Starting the Exploration Dashboard

To start the Exploration Dashboard using the Tcl API, follow these steps:

1. To start the Exploration Dashboard, perform one of the following:

• To start Exploration Dashboard in shell mode with the Quartus Prime Pro
Edition software, type the following command:

quartus_ed -s

• To start the Exploration Dashboard in GUI mode with the Quartus Prime Pro
Edition software, type the following command:

quartus_edw

2. To create a group in the workspace, type the following command and specify a
group name:

::qed::create_object -type group <group name>

3. To add project objects to the workspace for exploration, type the following
command to specify the type of object (project), a unique ID (for example based
on the seednumber), and the path to the .qpf file:

::qed::create_object -type <project|group> -qpf_path <qpf path> <id>

The following commands show examples of this syntax:

::qed::create_object -type project -qpf_path ../seed2/top.qpf seed2

The Exploration Dashboard creates the id if unspecified. Repeat this step for each
project object that you want to add to the workspace for aggregation and
comparison.

4. To perform workspace legality checks and modify the state of your workspace to
make it legal, type the following command:

qed::sanitize_workspace

The Exploration Dashboard is ready to receive other commands to analyze, aggregate,
and compare the compilations results from the project objects in the workspace. For
the complete Exploration Dashboard Tcl API, search for ::quartus::qed in the Quartus
Prime Pro Edition User Guide: Scripting.

Note: For a step-by-step tutorial using the Exploration Dashboard GUI and an example
design, refer to AN 1006: Multi-Project Analysis with Exploration Dashboard.

Related Information

• AN 1006: Multi-Project Analysis with Exploration Dashboard

• ::quartus::qed, Quartus Prime Pro Edition User Guide: Scripting

5.5.8. I/O Timing Optimization Techniques

This stage of design optimization focuses on I/O timing, including setup delay (tSU),
hold time (tH), and clock-to-output (tCO) parameters.

Before proceeding with I/O timing optimization, ensure that:

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

112

https://www.intel.com/content/www/us/en/docs/programmable/816589.html
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl_pkg_qed_ver_1-0.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The design's assignments follow the suggestions in the Initial Compilation:
Required Settings section of the Design Optimization Overview chapter.

• Resource utilization is satisfactory.

Note: Complete this stage before proceeding to the register-to-register timing optimization
stage. Changes to the I/O paths affect the internal register-to-register timing.

Summary of Techniques for Improving Setup and Clock-to-Output Times

The table lists the recommended order of techniques to reduce tSU and tCO times.
Reducing tSU times increases hold (tH) times.

Note: Verify which options are available to each device family

Table 33. Improving Setup and Clock-to-Output Times

Order Technique Affects tSU Affects tCO

1 Verify of that the appropriate constraints are set for the failing I/Os (refer to Initial
Compilation: Required Settings)

Yes Yes

2 Use timing-driven compilation for I/O (refer to Fast Input, Output, and Output
Enable Registers)

Yes Yes

3 Use fast input register (refer to Programmable Delays) Yes N/A

4 Use fast output register, fast output enable register, and fast OCT register (refer to
Programmable Delays)

N/A Yes

5 Decrease the value of Input Delay from Pin to Input Register or set Decrease
Input Delay to Input Register = ON

Yes N/A

6 Decrease the value of Input Delay from Pin to Internal Cells or set Decrease
Input Delay to Internal Cells = ON

Yes N/A

7 Decrease the value of Delay from Output Register to Output Pin or set
Increase Delay to Output Pin = OFF (refer to Fast Input, Output, and Output
Enable Registers)

N/A Yes

8 Increase the value of Input Delay from Dual-Purpose Clock Pin to Fan-Out
Destinations (refer to Fast Input, Output, and Output Enable Registers)

Yes N/A

9 Use PLLs to shift clock edges Yes Yes

10 Increase the value of Delay to output enable pin or set Increase delay to
output enable pin (refer to Use PLLs to Shift Clock Edges)

N/A Yes

I/O Timing Constraints on page 114

Optimize IOC Register Placement for Timing Logic Option on page 114

Fast Input, Output, and Output Enable Registers on page 114

Programmable Delays on page 115

Use PLLs to Shift Clock Edges on page 116

Use Fast Regional Clock Networks and Regional Clocks Networks on page 116

Spine Clock Limitations on page 116

Related Information

Initial Compiler Settings on page 7

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.8.1. I/O Timing Constraints

Timing Analyzer supports the Synopsys* Design Constraints (SDC) format for
constraining your design. When using the Timing Analyzer for timing analysis, use the
set_input_delay constraint to specify the data arrival time at an input port with
respect to a given clock. For output ports, use the set_output_delay command to
specify the data arrival time at an output port’s receiver with respect to a given clock.
You can use the report_timing Tcl command to generate the I/O timing reports.

The I/O paths that do not meet the required timing performance are reported as
having negative slack and are highlighted in red in the Timing Analyzer Report pane.
In cases where you do not apply an explicit I/O timing constraint to an I/O pin, the
Quartus Prime timing analysis software still reports the Actual number, which is the
timing number that must be met for that timing parameter when the device runs in
your system.

Related Information

Quartus Prime Pro Edition User Guide: Timing Analyzer

5.5.8.2. Optimize IOC Register Placement for Timing Logic Option

This option moves registers into I/O elements to meet tSU or tCO assignments,
duplicating the register if necessary (as in the case in which a register fans out to
multiple output locations). This option is turned on by default and is a global setting.

The Optimize IOC Register Placement for Timing logic option affects only pins
that have a tSU or tCO requirement. Using the I/O register is possible only if the
register directly feeds a pin or is fed directly by a pin. Therefore, this logic option does
not affect registers with any of the following characteristics:

Note: To optimize registers with these characteristics, use other Quartus Prime Fitter
optimizations.

• Have combinational logic between the register and the pin

• Are part of a carry chain

• Have an overriding location assignment

• Use the asynchronous load port and the value is not 1 (in device families where
the port is available)

Related Information

Optimize IOC Register Placement for Timing Logic Option Help Topic
In Quartus Prime Help

5.5.8.3. Fast Input, Output, and Output Enable Registers

You can place individual registers in I/O cells manually by making fast I/O
assignments with the Assignment Editor. By default, with correct timing assignments,
the Fitter places the I/O registers in the correct I/O cell or in the core, to meet the
performance requirement.

If the fast I/O setting is on, the register is always placed in the I/O element. If the fast
I/O setting is off, the register is never placed in the I/O element. This is true even if
the Optimize IOC Register Placement for Timing option is turned on. If there is

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

114

https://www.intel.com/content/www/us/en/docs/programmable/683243.html
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimize_io_timing.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

no fast I/O assignment, the Quartus Prime software determines whether to place
registers in I/O elements if the Optimize IOC Register Placement for Timing
option is turned on.

You can also use the four fast I/O options (Fast Input Register, Fast Output
Register, Fast Output Enable Register, and Fast OCT Register) to override the
location of a register that is in a Logic Lock region and force it into an I/O cell. If you
apply this assignment to a register that feeds multiple pins, the Fitter duplicates the
register and places it in all relevant I/O elements.

For more information about the Fast Input Register option, Fast Output Register
option, Fast Output Enable Register option, and Fast OCT (on-chip termination)
Register option, refer to Quartus Prime Help.

Related Information

• Fast Input Register logic option Help Topic

• Fast Output Register logic option

• Fast Output Enable Register logic option

• Fast OCT Register logic option

5.5.8.4. Programmable Delays

You can use various programmable delay options to minimize the tSU and tCO times.
Programmable delays are advanced options that you use only after you compile a
project, check the I/O timing, and determine that the timing is unsatisfactory.

The Quartus Prime software automatically adjusts the applicable programmable delays
to help meet timing requirements. For detailed information about the effect of these
options, refer to the device family handbook or data sheet.

After you have made a programmable delay assignment and compiled the design, you
can view the implemented delay values for every delay chain and every I/O pin in the
Delay Chain Summary section of the Compilation Report.

You can assign programmable delay options to supported nodes with the Assignment
Editor. You can also view and modify the delay chain setting for the target device with
the Chip Planner and Resource Property Editor. When you use the Resource Property
Editor to make changes after performing a full compilation, recompiling the entire
design is not necessary; you can save changes directly to the netlist. Because these
changes are made directly to the netlist, the changes are not made again
automatically when you recompile the design. The change management features allow
you to reapply the changes on subsequent compilations.

Although the programmable delays in newer devices are user-controllable, Intel
recommends their use for advanced users only. However, the Quartus Prime software
might use the programmable delays internally during the Fitter phase.

For details about the programmable delay logic options available for Intel devices,
refer to the following Quartus Prime Help topics:

Related Information

• Input Delay from Pin to Input Register logic option Help Topic

• Input Delay from Pin to Internal Cells logic option Help Topic

• Output Enable Pin Delay logic option Help Topic

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

115

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_input_register.htm
http://quartushelp.altera.com/current/logicops/logicops/def_output_register.htm
http://quartushelp.altera.com/current/logicops/logicops/def_output_enable_register.htm
http://quartushelp.altera.com/current/logicops/logicops/def_oct_register.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_pad_to_input_register_delay.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_pad_to_core_delay.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_output_enable_delay.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Delay from Output Register to Output Pin logic option Help Topic

• Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations logic option Help
Topic

In Quartus Prime Help

5.5.8.5. Use PLLs to Shift Clock Edges

Using a PLL typically improves I/O timing automatically. If the timing requirements are
still not met, most devices allow the PLL output to be phase shifted to change the I/O
timing. Shifting the clock backwards gives a better tH at the expense of tSU, while
shifting it forward gives a better tSU at the expense of tH. You can use this technique
only in devices that offer PLLs with the phase shift option.

Figure 65. Shift Clock Edges Forward to Improve tSU at the Expense of tH

Original

With PLL

You can achieve the same type of effect in certain devices by using the programmable
delay called Input Delay from Dual Purpose Clock Pin to Fan-Out Destinations.

5.5.8.6. Use Fast Regional Clock Networks and Regional Clocks Networks

Regional clocks provide the lowest clock delay and skew for logic contained in a single
quadrant. In general, fast regional clocks have less delay to I/O elements than
regional and global clocks, and are used for high fan-out control signals. Placing clocks
on these low-skew and low-delay clock nets provides better tCO performance.

Intel devices have a variety of hierarchical clock structures. These include dedicated
global clock networks, regional clock networks, fast regional clock networks, and
periphery clock networks. The available resources differ between the various Intel
device families.

For the number of clocking resources available in your target device, refer to the
appropriate device handbook.

5.5.8.7. Spine Clock Limitations

In Arria 10 and Cyclone 10 GX designs with high clock routing demands, limitations in
the Quartus Prime software can cause spine clock errors. These limits do not apply to
Stratix 10 or Agilex 7 designs.

These errors can occur with designs using multiple memory interfaces and high-speed
serial interface (HSSI) channels, especially with PMA Direct mode.

Global clock networks, regional clock networks, and periphery clock networks have an
additional level of clock hierarchy known as spine clocks. Spine clocks drive the final
row and column clocks to their registers; thus, the clock to every register in the chip is
reached through spine clocks. Spine clocks are not directly user controllable.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

116

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_clock_to_output_delay.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_dual_purpose_clock_pin_delay.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_dual_purpose_clock_pin_delay.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To reduce these spine clock errors, constrain your design to use your regional clock
resources better:

• If your design does not use Logic Lock regions, or if the Logic Lock regions are not
aligned to your clock region boundaries, create additional Logic Lock regions and
further constrain your logic.

• To ensure that the global promotion process uses the correct locations, assign
specific pins to the I/Os using these periphery features.

• By default, some Intel FPGA IP functions apply a global signal assignment with a
value of dual-regional clock. If you constrain your logic to a regional clock region
and set the global signal assignment to Regional instead of Dual-Regional, you
can reduce clock resource contention.

Related Information

Viewing Available Clock Networks in Chip Planner on page 149

5.5.9. Register-to-Register Timing Optimization Techniques

The next stage of design optimization seeks to improve register-to-register (fMAX)
timing. The following sections provide available options if the design does not meet
timing requirements after compilation.

Coding style affects the performance of a design to a greater extent than other
changes in settings. Always evaluate the code and make sure to use synchronous
design practices.

Note: In the context of the Timing Analyzer, register-to-register timing optimization is the
same as maximizing the slack on the clock domains in a design. The techniques in this
section can improve the slack on different timing paths in the design.

Before performing design optimizations, understand the structure of the design as well
as the effects of techniques in different types of logic. Techniques that do not benefit
the logic structure can decrease performance.

Related Information

• Quartus Prime Pro Edition User Guide: Design Recommendations

• Design Assistant Rules List

5.5.9.1. Optimize Source Code

In many cases, optimizing the design’s source code can have a very significant effect
on your design performance. In fact, optimizing your source code is typically the most
effective technique for improving the quality of your results and is often a better
choice than using Logic Lock or location assignments.

You can use the Design Assistant to help identify areas in the design for timing
optimization. Be aware of the number of logic levels needed to implement your logic
while you are coding. Too many levels of logic between registers might result in critical
paths failing timing. Try restructuring the design to use pipelining or more efficient
coding techniques. Also, try limiting high fan-out signals in the source code. When
possible, duplicate and pipeline control signals. Make sure the duplicate registers are
protected by a preserve attribute, to avoid merging during synthesis.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

117

https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#da_rules/da-root-topic.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the critical path in your design involves memory or DSP functions, check whether
you have code blocks in your design that describe memory or functions that are not
being inferred and placed in dedicated logic. You might be able to modify your source
code to cause these functions to be placed into high-performance dedicated memory
or resources in the target device. When using RAM/DSP blocks, enable the optional
input and output registers.

Ensure that your state machines are recognized as state machine logic and optimized
appropriately in your synthesis tool. State machines that are recognized are generally
optimized better than if the synthesis tool treats them as generic logic. In the Quartus
Prime software, you can check the State Machine report under Analysis & Synthesis
in the Compilation Report. This report provides details, including state encoding for
each state machine that was recognized during compilation. If your state machine is
not recognized, you might have to change your source code to enable it to be
recognized.

Related Information

AN 584: Timing Closure Methodology for Advanced FPGA Designs

5.5.9.2. Improving Register-to-Register Timing

The choice of options and settings to improve the timing margin (slack) or to improve
register-to-register timing depends on the failing paths in the design. To achieve the
results that best approximate your performance requirements, apply the following
techniques and compile the design after each step:

1. Ensure that your timing assignments are complete and correct. For details, refer
to the Initial Compilation: Required Settings section in the Design Optimization
Overview chapter.

2. Review all Design Assistant rule violations and other warning messages from your
initial compilation and check for ignored timing assignments. Design Assistant
helps to identify and correct any invalid timing constraints.

3. Apply netlist synthesis optimization options.

4. To optimize for speed, apply the following synthesis options:

— Optimize Synthesis for Speed, Not Area

— Flatten the Hierarchy During Synthesis

— Set the Synthesis Effort to High

— Prevent Shift Register Inference

— Use Other Synthesis Options Available in Your Synthesis Tool

5. To optimize for performance, turn on Advanced Physical Optimization

6. Try different Fitter seeds. If only a small number of paths are failing by small
negative slack, then you can try with a different seed to find a fit that meets
constraints in the Fitter seed noise.

Note: Omit this step if a large number of critical paths are failing, or if the paths
are failing by a long margin.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

118

https://www.intel.com/content/www/us/en/docs/programmable/683145.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. To control placement, make Logic Lock assignments.

8. Modify your design source code to fix areas of the design that are still failing
timing requirements by significant amounts.

9. Make location assignments, or as a last resort, perform manual placement by
back-annotating the design.

You can use Design Space Explorer II (DSE) to automate the process of running
different compilations with different settings.

If these techniques do not achieve performance requirements, additional design
source code modifications might be required.

Related Information

• Optimize Settings with Design Space Explorer II on page 102

• Initial Compiler Settings on page 7

5.5.9.3. Physical Synthesis Optimizations

The Quartus Prime software offers physical synthesis optimizations that can help
improve design performance regardless of the synthesis tool. You can apply physical
synthesis optimizations both during synthesis and during fitting.

During the synthesis stage of the Quartus Prime compilation, physical synthesis
optimizations operate either on the output from another EDA synthesis tool, or as an
intermediate step in synthesis. These optimizations modify the synthesis netlist to
improve either area or speed, depending on the technique and effort level you select.

To view and modify the synthesis netlist optimization options, click Assignments ➤
Settings ➤ Compiler Settings ➤ Advanced Settings (Fitter).

If you use a third-party EDA synthesis tool and want to determine if the Quartus Prime
software can remap the circuit to improve performance, use the Perform WYSIWYG
Primitive Resynthesis option. This option directs the Quartus Prime software to un-
map the LEs in an atom netlist to logic gates, and then map the gates back to Intel-
specific primitives. Intel-specific primitives enable the Fitter to remap the circuits
using architecture-specific techniques.

The Quartus Prime Compiler optimizes the design to achieve maximum speed
performance, minimum area usage, or balances high performance and minimal logic
usage, according to the setting of the Optimization Technique option. Set this
option to Speed or Balanced.

During the Fitter stage of the Quartus Prime compilation, physical synthesis
optimizations make placement-specific changes to the netlist that improve speed
performance results for the specific Intel device.

Related Information

• Perform WYSIWYG Primitive Resynthesis Logic Option Help Topic

• Optimization Technique Logic Option Help Topic
In Quartus Prime Help

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

119

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimization_technique.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.9.4. Set Power Optimization During Synthesis to Normal Compilation

The default value for the Compiler's Power Optimization During Synthesis setting
is Normal Compilation. However, if Power Optimization During Synthesis is set
to Extra Effort, design performance can be affected. To avoid any possible effect,
click Assignments ➤ Settings ➤ Compiler Settings ➤ Power Optimization
During Synthesis to confirm the Normal Compilation setting value.

Related Information

Power Optimization

5.5.9.5. Optimize Synthesis for Performance, Not Area

Design performance varies depending on coding style, synthesis tool used, and
options you specify when synthesizing. Change your synthesis options if a large
number of paths are failing, or if specific paths fail by a great margin and have many
levels of logic.

Identify the default optimization targets of your Synthesis tool, and set your device
and timing constraints accordingly. For example, if you do not specify a target
frequency, some synthesis tools optimize for area.

Optimize for performance by specifying the High Performance Effort, High
Performance with Maximum Placement Effort, High Performance with
Aggressive Power Effort, Superior Performance, or Superior Performance
with Maximum Placement Effort optimization mode.

Related Information

Optimization Technique Logic Option Help Topic
In Quartus Prime Help

5.5.9.6. Flatten the Hierarchy During Synthesis

Synthesis tools typically let you preserve hierarchical boundaries, which can be useful
for verification or other purposes. However, the best optimization results generally
occur when the synthesis tool optimizes across hierarchical boundaries, because doing
so often allows the synthesis tool to perform the most logic minimization, which can
improve performance. Whenever possible, flatten your design hierarchy to achieve the
best results.

5.5.9.7. Set the Synthesis Effort to High

Synthesis tools offer varying synthesis effort levels to trade off compilation time with
synthesis results. Set the synthesis effort to high to achieve best results when
applicable.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

120

https://www.intel.com/content/www/us/en/docs/programmable/683174.html
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimization_technique.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.9.8. Change Adder Tree Styles

Structuring adder trees appropriately to match your targeted Intel FPGA device
architecture and application can provide significant improvements in your design's
efficiency and performance.

A good example of an application using a large adder tree is a finite impulse response
(FIR) correlator. Using a pipelined binary or ternary adder tree appropriately can
greatly improve the quality of your results for such applications.

Because ALMs can implement functions of up to six inputs, you can improve the
performance of certain designs by using a compressor implementation for adder trees,
rather than the default balanced binary tree implementation. The expected downside
tradeoff of the compressor implementation is the use of more ALM logic resources.
However, the overall logic depth is lower, and the final timing characteristics improve.

Figure 66. Balanced Binary Versus Compressor Style Adder Trees

Balanced Adder Tree Abstract View Compressor Adder Tree Abstract View

For designs that may benefit, you can apply the Use Compressor Implementation
(USE_COMPRESSOR_IMPLEMENTATION) global, entity, or instance assignment to
specify whether the Compiler synthesizes adder trees as balanced binary trees, or as
compressor style trees.

You can specify this assignment in the Assignment Editor, or with the following
assignment in the .qsf.

set_instance_assignment -name USE_COMPRESSOR_IMPLEMENTATION ALWAYS -to <foo>

You can specify this assignment as either a global assignment, entity assignment, or
instance assignment. You can alternatively use this assignment with
altera_attribute to create instance assignments as well. For example:

(* altera_attribute = "-name USE_COMPRESSOR_IMPLEMENTATION ALWAYS" *) module
foo(a, b, c, o);

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following options are available for this assignment:

Table 34. Use Compressor Implementation Assignment Options

Option Description

Always The Compiler always synthesizes all adder trees with this assignment as compressor
style trees. There is a limit of at least 2 non-constant operands before this triggers
(otherwise synthesis implements a binary add or a pure-LUT implementation
depending on size).

Never The Compiler never synthesizes the assigned adder tree as a compressor. The
Compiler synthesizes the adder as either a balanced binary tree, or if sufficiently
small, in pure LUTs.

Auto This setting currently behaves the same as the Never setting. The Compiler
synthesizes the adder as either a balanced binary tree, or if sufficiently small, in pure
LUTs. This setting never uses compressor style adder trees.

5.5.9.9. Duplicate Registers for Fan-Out Control

Often, timing failures can occur due to the influence of signals that are not directly
involved in the failing transfers. This condition tends to manifest when off-critical nets,
most commonly with a high fan-out, span a large distance and consequentially, warp
the optimization of other paths around them.

Duplicating the sources of these types of globally-influential signals can help to
disperse them across many hops, or even across many clock cycles, and focus more
on local transfers.

For example, by duplicating a high fan-out signal in the form of a tree of registers, you
can disperse the signal over several clock cycles. As the signal progresses down the
tree, it progressively feeds more into local copies of the original registers, such that
any individual register's destinations are well-localized and its influence on register
optimization is minimal. The key to this optimization is to determine how to assign the
original signal’s fan-outs among the duplicates. If any individual register requires
driving a large distance, the benefit of the tree can be removed.

You can manually create a register tree and group the endpoints in the RTL by
leveraging your system-level knowledge about how best to disperse the signal
throughout your design, but it can be time consuming and have a widespread impact.
For more information about manually creating a register tree, refer to Manual Register
Duplication on page 122.

You can create register trees automatically in one of the following ways.

• Estimated Physical Proximity

• Hierarchical Proximity

Each method has its own methodology to determine the number of duplicates to
create and how to assign the fan-outs between the duplicates.

5.5.9.9.1. Manual Register Duplication

Synthesis tools support options or attributes that specify the maximum fan-out of a
register. When using Quartus Prime synthesis, you can set the Maximum Fan-Out
logic option in the Assignment Editor to control the number of destinations for a node
so that the fan-out count does not exceed a specified value. You can also use the
maxfan attribute in your HDL code. The software duplicates the node as required to
achieve the specified maximum fan-out.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Logic duplication using Maximum Fan-Out assignments normally increases resource
utilization, and can potentially increase compilation time, depending on the placement
and the total resource usage within the selected device.

The improvement in timing performance that results from Maximum Fan-Out
assignments is design-specific. This is because when you use the Maximum Fan-Out
assignment, the Fitter duplicates the source logic to limit the fan-out, but does not
control the destinations that each of the duplicated sources drive. Therefore, it is
possible for duplicated source logic to be driving logic located all around the device. To
avoid this situation, you can use the Manual Logic Duplication logic option.

If you are using Maximum Fan-Out assignments, benchmark your design with and
without these assignments to evaluate whether they give the expected improvement
in timing performance. Use the assignments only when you get improved results.

You can manually duplicate registers in the Quartus Prime software regardless of the
synthesis tool used. To duplicate a register, apply the Manual Logic Duplication logic
option to the register with the Assignment Editor.

Note: Some Fitter optimizations may cause a small violation to the Maximum Fan-Out
assignments to improve timing.

5.5.9.9.2. Automatic Register Duplication: Estimated Physical Proximity

The DUPLICATE_REGISTER assignment helps in leveraging estimated physical
proximity information to guide the creation of duplicates and their fan-out
assignments.

set_instance_assignment -name DUPLICATE_REGISTER -to <register_name>
<num_duplicates>

where,

• register_name is the register to duplicate. To create a register tree from a
chain, create a unique assignment for each register in the chain.
DUPLICATE_REGISTER assignments are processed in the appropriate order if
they apply to registers that drive each other in a chain.

• num_duplicates is the number of duplicates of the register to create (including
the original). If the original signal has M fan-out, the average fan-outs of the
duplicates are M/N but any individual duplicate may have more or fewer, at the
discretion of the algorithm.

The DUPLICATE_REGISTER assignment is processed during the Fitter stage. It is
necessary to create the duplicates and assign fan-outs between the duplicates based
on early estimates of physical proximity to maximize the amount of time spent
optimizing the design post-duplication. However, this renders fine-grained assignment
decisions imprecise. The DUPLICATE_REGISTER assignment is best used when the
number of duplicates is small (under 100) and the groups created are coarse-grained
enough to allow for flexibility during optimization after the duplicates are created.

The Fitter Duplication Summary panel of the Fit report details the
DUPLICATE_REGISTER assignments picked up by Quartus Prime Pro Edition. It also
summarizes any registered signal with greater than 1000 fan-outs, as they could be
reasonable candidates for DUPLICATE_REGISTER assignments in future.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Important: • Setting PHYSICAL_SYNTHESIS to OFF disables DUPLICATE_REGISTER.

• Unlike other physical synthesis optimizations, the DUPLICATE_REGISTER
assignment does allow duplication of registers that feed asynchronous clears and
registers having location assignments.

• The DUPLICATE_REGISTER assignment does not process registers that have any
of the following conditions:

— Registers drive global signals or clock signals.

— Registers have timing assignments or exceptions applied to them.

— Registers have a preserve attribute or a PRESERVE_REGISTER assignment.

— Registers are marked as don't touch.

— Registers drive or are driven by other partitions.

5.5.9.9.3. Automatic Register Duplication: Hierarchical Proximity

Leveraging design hierarchy information to guide the creation of duplicates and their
fan-out assignments is enabled by the DUPLICATE_HIERARCHY_DEPTH assignment.

set_instance_assignment -name DUPLICATE_HIERARCHY_DEPTH -to <register_name>
<num_levels>

where,

• register_name is the last register in a chain that fans out to multiple
hierarchies. To create a register tree, ensure that there are sufficient simple
registers behind the node and those simple registers are automatically pulled into
the tree.

• num_levels corresponds to the upper bound of the number of registers that exist
in the chain to use for duplicating down the hierarchies.

The DUPLICATE_HIERARCHY_DEPTH assignment is processed during the Synthesis
stage. It is common for high-fanout signals to go through a pipeline of registers and
drive into a sub-hierarchy of modules. For example, a system-wide reset can be
propagated over several clock cycles and driven into many modules across the design.
In several scenarios, it is useful to take advantage of the structure of this sub-
hierarchy to infer the structure of the register tree to be created, such that endpoints
within similar hierarchies are assigned the same copy of the signal, and branches in
the design hierarchy dictates where to place branches in the register tree.

Important: The registers in the chain must satisfy all of the following conditions to be included in
duplication:

• Registers must be fed only by another register.

• Registers must not be fed by a combinational logic.

• Registers must not be part of a synchronizer chain.

• Registers must not have any secondary signals.

• Registers must not have a preserve attribute or a PRESERVE_REGISTER
assignment.

• All registers in the chain except the last one must have only one fan-out.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Consider the following example illustration of a netlist with a register chain and
hierarchical organization of the endpoints it drives. The
DUPLICATE_HIERARCHY_DEPTH assignment duplicates the pipeline registers across
hierarchies, as shown in Registers Duplicated Across Hierarchies.

Figure 67. Original Diagram Showing Four Pipeline Registers Connected to Multiple
Hierarchies

inst_b

inst_c

inst_d

inst_e

inst_a

regA regX regY regZ

In this case, regZ is the appropriate assignment target as it is the endpoint in a chain
of four registers. There is a maximum of three duplication candidates in this example
(regZ, regY, and regX), so the assignment value can be anywhere between 1 and 3.
regA is not pulled into the hierarchy to preserve the timing and optimization of paths
that precede it. The DUPLICATE_HIERARCHY_DEPTH assignment is best used when a
signal must be duplicated to more than 100 duplicates and the sub-hierarchy below
the chain is deep and meaningful enough to guide the structure of the tree required.

Figure 68. Netlist After Duplicating regZ to Hierarchy Level One
set_instance_assignment -name DUPLICATE_HIERARCHY_DEPTH -to regZ 1

inst_b

inst_c

inst_d

inst_e

inst_a

regA regX regY regZ

num_levels=1

When num_levels is set to 1, only regZ is pulled out of the chain and pushed down
one hierarchy level into its fan-out tree.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 69. Netlist After Duplicating regZ to Hierarchy Level Two
set_instance_assignment -name DUPLICATE_HIERARCHY_DEPTH -to regZ 2

inst_b

inst_c

inst_d

inst_e

inst_a

regA regX regY regZ

num_levels=2

When num_levels is set to 2, both regY and regZ are pulled out of the chain. regZ
ends up at a maximum hierarchy depth two and regY ends up at hierarchy depth one.

Figure 70. Registers Duplicated Across Hierarchies
set_instance_assignment -name DUPLICATE_HIERARCHY_DEPTH -to regZ 3

inst_b

inst_c

inst_d

inst_e

inst_a

regA regX regY regZ

num_levels=3

When num_levels is set to 3, all three registers (regZ, regY and regZ) are pulled
out of the chain and pushed to a maximum hierarchy depth of three, two, and one
levels, respectively.

The Hierarchical Tree Duplication Summary panel in the Synthesis report provides
information on the registers specified by the DUPLICATE_HIERARCHY_DEPTH
assignment. It also includes a reason for the chain length that can be used as a
starting point for further improvements with the assignment. The Synthesis report
also provides a panel named Hierarchical Tree Duplication Details, which provides
information about the individual registers in the chain that can be used to better
understand the structure of the implemented duplicates.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Synchronous Reset Design Strategies, AN 917 Reset Design Techniques for Intel
Hyperflex Architecture FPGAs

5.5.9.10. Prevent Shift Register Inference

Turning off the inference of shift registers can increase performance. This setting
forces the software to use logic cells to implement the shift register, instead of using
the ALTSHIFT_TAPS IP core to implement the registers in memory block. If you
implement shift registers in logic cells instead of memory, logic utilization increases.

5.5.9.11. Use Other Synthesis Options Available in Your Synthesis Tool

With your synthesis tool, experiment with the following options if they are available:

• Turn on register balancing or retiming

• Turn on register pipelining

• Turn off resource sharing

These options can increase performance, but typically increase the resource utilization
of your design.

5.5.9.12. Fitter Seed

The Fitter seed affects the initial placement configuration of the design. Any change in
the initial conditions changes the Fitter results; accordingly, each seed value results in
a somewhat different fit. You can experiment with different seeds to attempt to obtain
better fitting results and timing performance.

Changes in the design impact performance between compilations. This random
variation is inherent in placement and routing algorithms—it is impossible to try all
seeds and get the absolute best result.

Note: Any design change that directly or indirectly affects the Fitter has the same type of
random effect as changing the seed value. This includes any change in source files,
Compiler Settings or Timing Analyzer Settings. The same effect can appear if you
use a different computer processor type or different operating system, because
different systems can change the way floating point numbers are calculated in the
Fitter.

If a change in optimization settings marginally affects the register-to-register timing
or number of failing paths, you cannot always be certain that your change caused the
improvement or degradation, or whether it is due to random effects in the Fitter. If
your design is still changing, running a seed sweep (compiling your design with
multiple seeds) determines whether the average result improved after an optimization
change, and whether a setting that increases compilation time has benefits worth the
increased time, such as with physical synthesis settings. The sweep also shows the
amount of random variation to expect for your design.

If your design is finalized you can compile your design with different seeds to obtain
one optimal result. However, if you subsequently make any changes to your design,
you might need to perform seed sweep again.

Click Assignments ➤ Compiler Settings to control the initial placement with the
seed. You can use the DSE II to perform a seed sweep easily.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

127

https://www.intel.com/content/www/us/en/docs/programmable/683539/current/synchronous-reset-design-strategies.html
https://www.intel.com/content/www/us/en/docs/programmable/683539/current/synchronous-reset-design-strategies.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify a Fitter seed use the following Tcl command :

set_global_assignment -name SEED <value>

Related Information

Optimize Settings with Design Space Explorer II on page 102

5.5.9.13. Set Maximum Router Timing Optimization Level

To improve routability in designs where the router did not pick up the optimal routing
lines, set the Router Timing Optimization Level to Maximum. This setting
determines how aggressively the router tries to meet the timing requirements. Setting
this option to Maximum can marginally increase design speed at the cost of increased
compilation time. Setting this option to Minimum can reduce compilation time at the
cost of marginally reduced design speed. The default value is Normal.

Related Information

Router Timing Optimization Level Logic Option
In Quartus Prime Help

5.5.9.14. Register-to-Register Timing Analysis

Your design meets timing requirements when you do not have negative slack on any
register-to-register path on any of the clock domains. When timing requirements are
not met, a report on the failed paths can uncover more detail.

5.5.9.14.1. Tips for Analyzing Failing Paths

When you are analyzing failing paths, examine the reports and waveforms to
determine if the correct constraints are being applied, and add timing exceptions as
appropriate. A multicycle constraint relaxes setup or hold relationships by the specified
number of clock cycles. A false path constraint specifies paths that can be ignored
during timing analysis. Both constraints allow the Fitter to work harder on affected
paths.

• Focus on improving the paths that show the worst slack. The Fitter works hardest
on paths with the worst slack. If you fix these paths, the Fitter might be able to
improve the other failing timing paths in the design.

• Check for nodes that appear in many failing paths. These nodes are at the top of
the list in a timing report panel, along with their minimum slacks. Look for paths
that have common source registers, destination registers, or common
intermediate combinational nodes. In some cases, the registers are not identical,
but are part of the same bus.

• In the timing analysis report panels, click the From or To column headings to sort
the paths by source or destination registers. If you see common nodes, these
nodes indicate areas of your design that might be improved through source code
changes or Quartus Prime optimization settings. Constraining the placement for
just one of the paths might decrease the timing performance for other paths by
moving the common node further away in the device.

Related Information

• Exploring Paths in the Chip Planner on page 160

• Design Evaluation for Timing Closure on page 67

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

128

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_router_timing_optimization_level.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Review Timing Path Details on page 77

5.5.9.14.2. Tips for Analyzing Failing Clock Paths that Cross Clock Domains

When analyzing clock path failures:

• Check whether these paths cross two clock domains. In paths that cross two clock
domains, the From Clock and To Clock in the timing analysis report are
different.

Figure 71. Different Value in From Clock and To Clock Field

• Check if the design contains paths that involve a different clock in the middle of
the path, even if the source and destination register clock are the same.

• Check whether failing paths between these clock domains need to be analyzed
synchronously. Set failing paths that are not to be analyzed synchronously as false
paths.

• When you run report_timing on a design, the report shows the launch clock
and latch clock for each failing path. Check whether the relationship between the
launch clock and latch clock is realistic and what you expect from your knowledge
of the design. For example, the path can start at a rising edge and end at a falling
edge, which reduces the setup relationship by one half clock cycle.

• Review the clock skew that appears in the Timing Report. A large skew may
indicate a problem in the design, such as a gated clock, or a problem in the
physical layout (for example, a clock using local routing instead of dedicated clock
routing). When you have made sure the paths are analyzed synchronously and
that there is no large skew on the path, and that the constraints are correct, you
can analyze the data path. These steps help you fine tune your constraints for
paths across clock domains to ensure you get an accurate timing report.

• Check if the PLL phase shift is reducing the setup requirement. You might adjust
this by using PLL parameters and settings.

• Ignore paths that cross clock domains for logic protected with synchronization
logic (for example, FIFOs or double-data synchronization registers), even if the
clocks are related. Alternatively, specify the set_clock_groups -exclusive
setting between unrelated clocks

• Set false path constraints on all unnecessary paths. Attempting to optimize
unnecessary paths can prevent the Fitter from meeting the timing requirements
on timing paths that are critical to the design.

Related Information

Report CDC Viewer on page 93

5.5.9.14.3. Tips for Critical Path Analysis

When analyzing the failing paths in a design, it is helpful to understand the
interactions around the critical paths.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To understand what may be pulling on a critical path, the following report_timing
command can be useful.

1. In the project directory, run the report_timing command to find the nodes in a
critical path.

2. Copy the code below in a .tcl file, and replace the first two variable with the
node names from the From Node and To Node columns of the worst path. The
script analyzes the path between the worst source and destination registers.

set wrst_src <insert_source_of_worst_path_here>
set wrst_dst <insert_destination_of_worst_path_here>
report_timing -setup -npaths 50 -detail path_only -from $wrst_src \
-panel_name "Worst Path||wrst_src -> *"
report_timing -setup -npaths 50 -detail path_only -to $wrst_dst \
-panel_name "Worst Path||* -> wrst_dst"
report_timing -setup -npaths 50 -detail path_only -to $wrst_src \
-panel_name "Worst Path||* -> wrst_src"
report_timing -setup -npaths 50 -detail path_only -from $wrst_dst \
-panel_name "Worst Path||wrst_dst -> *"

3. From the Script menu, source the .tcl file.

4. In the resulting timing panel, locate timing failed paths (highlighted in red) in the
Chip Planner, and view information such as distance between the nodes and large
fan-outs.

The figure shows a simplified example of what these reports analyzed.

Figure 72. Timing Report

LUT

LUT

LUT
LUT

LUT LUT

LUTLUT

LUT

LUT

wrst_src -> *
* -> wrst_dst
* -> wrst_src
wrst_dst -> *
Critical Path

Legend

Source Register
of Worst Path

Destination
Register of
Worst Path

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The critical path of the design is in red. The relation between the .tcl script and
the figure is:

• The first two lines show everything inside the two endpoints of the critical path
that are pulling them in different directions.

— The first report_timing command analyzes all paths the source is
driving, shown in green.

— The second report_timing command analyzes all paths going to the
destination, including the critical path, shown in orange.

• The last two report_timing commands show everything outside of the
endpoints pulling them in other directions.

If any of these neighboring paths have slacks near the critical path, the Fitter is
balancing these paths with the critical path, trying to achieve the best slack.

Related Information

Review Timing Path Details on page 77

5.5.9.14.4. Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles

Many designs have the same critical paths show up after each compile. In other
designs, critical paths bounce around between different hierarchies, changing with
each compile.

This behavior happens in high speed designs where many register-to-register paths
have very little slack. Different placements can then result in timing failures in the
marginal paths.

1. In the project directory, create a script named TQ_critical_paths.tcl.

2. After compilation, review the critical paths and then write a generic
report_timing command to capture those paths.

For example, if several paths fail in a low-level hierarchy, add a command such as:

report_timing –setup –npaths 50 –detail path_only \
 –to “main_system: main_system_inst|app_cpu:cpu|*” \
 –panel_name “Critical Paths||s: * -> app_cpu”

3. If there is a specific path, such as a bit of a state-machine going to other
count_sync registers, you can add a command similar to:

report_timing –setup –npaths 50 –detail path_only \
 –from “main_system: main_system_inst|egress_count_sm:egress_inst|update” \
 –to “*count_sync*” –panel_name “Critical Paths||s: egress_sm|update ->
count_sync”

4. Execute this script in the Timing Analyzer after every compilation, and add new
report_timing commands as new critical paths appear.

This helps you monitor paths that consistently fail and paths that are only
marginal, so you can prioritize effectively

5.5.9.14.5. Global Routing Resources

Global routing resources are designed to distribute high fan-out, low-skew signals
(such as clocks) without consuming regular routing resources. Depending on the
device, these resources can span the entire chip or a smaller portion, such as a

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

quadrant. The Quartus Prime software attempts to assign signals to global routing
resources automatically, but you might be able to make more suitable assignments
manually.

For details about the number and types of global routing resources available, refer to
the relevant device handbook.

Check the global signal utilization in your design to ensure that the appropriate signals
have been placed on the global routing resources. In the Compilation Report, open the
Fitter report and click Resource Section. Analyze the Global & Other Fast Signals and
Non-Global High Fan-out Signals reports to determine whether any changes are
required.

You might be able to reduce skew for high fan-out signals by placing them on global
routing resources. Conversely, you can reduce the insertion delay of low fan-out
signals by removing them from global routing resources. Doing so can improve clock
enable timing and control signal recovery/removal timing, but increases clock skew.
Use the Global Signal setting in the Assignment Editor to control global routing
resources.

5.5.9.14.6. Register RAMS and DSPs

If your design includes long timing paths going to and from RAMs and DSPs, you must
fully register the RAMs and DSPs.

RAM and DSP performance can vary, depending on the memory mode. A memory
using read-during-write mode is slower than a memory that uses a different mode.
Refer to your FPGA device documentation for hardware performance specifications. If
the fMAX is restricted due to mode, change to a different memory mode with a higher
performance specification, if possible.

5.5.10. Metastability Analysis and Optimization Techniques

Metastability problems can occur when a signal is transferred between circuitry in
unrelated or asynchronous clock domains, because the designer cannot guarantee that
the signal meets its setup and hold time requirements. The mean time between
failures (MTBF) is an estimate of the average time between instances when
metastability could cause a design failure.

You can use the Quartus Prime software to analyze the average MTBF due to
metastability when a design synchronizes asynchronous signals and to optimize the
design to improve the MTBF. These metastability features are supported only for
designs constrained with the Timing Analyzer, and for select device families.

Synchronization identification can affect retiming. Registers that the Compiler
identifies as being part of a synchronizer are not retimed. The default chain length is
3, but in some cases, a synchronizer chain is not necessary and should not be
inferred. Use the report_metastability command to identify synchronizer chains that
you can reduce.

For example, consider a bus that uses a synchronized enable when crossing clock
domains. If you pipeline such a bus, the pipeline stages can be considered as part of a
synchronizer chain, and are not used to retime the paths. Setting the chain length to 1
for these paths allows the pipeline registers to be used for retiming.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Quartus Prime Pro Edition User Guide: Design Recommendations

5.6. Periphery to Core Register Placement and Routing Optimization

The Periphery to Core Register Placement and Routing Optimization (P2C) option
specifies whether the Fitter performs targeted placement and routing optimization on
direct connections between periphery logic and registers in the FPGA core. P2C is an
optional pre-routing-aware placement optimization stage that enables you to more
reliably achieve timing closure.

Note: The Periphery to Core Register Placement and Routing Optimization option
applies in both directions, periphery to core and core to periphery.

Transfers between external interfaces (for example, high-speed I/O or serial
interfaces) and the FPGA often require routing many connections with tight setup and
hold timing requirements. When this option is turned on, the Fitter performs P2C
placement and routing decisions before those for core placement and routing. This
reserves the necessary resources to ensure that your design achieves its timing
requirements and avoids routing congestion for transfers with external interfaces.

This option is available as a global assignment, or can be applied to specific instances
within your design.

Figure 73. Periphery to Core Register Placement and Routing Optimization (P2C) Flow
P2C runs after periphery placement, and generates placement for core registers on corresponding P2C/C2P
paths, and core routing to and from these core registers.

User Design

Synthesis

Periphery Placement

 P2C

Core Placement

Routing

Design Implementation

Generates periphery placement and routing.

Generates core register placement for periphery interfaces.
Generates core Routing to/from those registers.

Setting Periphery to Core Optimizations in the Advanced Fitter Setting Dialog Box on
page 134

Setting Periphery to Core Optimizations in the Assignment Editor on page 134

Viewing Periphery to Core Optimizations in the Fitter Report on page 135

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

133

https://www.intel.com/content/www/us/en/docs/programmable/683082.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.6.1. Setting Periphery to Core Optimizations in the Advanced Fitter
Setting Dialog Box

The Periphery to Core Placement and Routing Optimization setting specifies
whether the Fitter optimizes targeted placement and routing on direct connections
between periphery logic and registers in the FPGA core.

You can optionally perform periphery to core optimizations by instance with settings in
the Assignment Editor.

1. In the Quartus Prime software, click Assignments ➤ Settings ➤ Compiler
Settings ➤ Advanced Settings (Fitter).

2. In the Advanced Fitter Settings dialog box, for the Periphery to Core
Placement and Routing Optimization option, select one of the following
options depending on how you want to direct periphery to core optimizations in
your design:

a. Select Auto to direct the software to automatically identify transfers with tight
timing windows, place the core registers, and route all connections to or from
the periphery.

b. Select On to direct the software to globally optimize all transfers between the
periphery and core registers, regardless of timing requirements.

Note: Setting this option to On in the Advanced Fitter Settings is not
recommended. The intended use for this setting is in the Assignment
Editor to force optimization for a targeted set of nodes or instance.

c. Select Off to disable periphery to core path optimization in your design.

5.6.2. Setting Periphery to Core Optimizations in the Assignment Editor

When you turn on the Periphery to Core Placement and Routing Optimization
(P2C/C2P) setting in the Assignment Editor, the Quartus Prime software performs
periphery to core, or core to periphery optimizations on selected instances in your
design.

You can optionally perform periphery to core optimizations by instance with settings in
the Advanced Fitter Settings dialog box.

1. In the Quartus Prime software, click Assignments ➤ Assignment Editor.

2. For the selected path, double-click the Assignment Name column, and then click
the Periphery to core register placement and routing optimization option in
the drop-down list.

3. In the To column, choose either a periphery node or core register node on a
P2C/C2P path you want to optimize. Leave the From column empty.
For paths to appear in the Assignments Editor, you must first run Analysis &
Synthesis on your design.

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.6.3. Viewing Periphery to Core Optimizations in the Fitter Report

The Quartus Prime software generates a periphery to core placement and routing
optimization summary in the Fitter (Place & Route) report after compilation.

1. Compile your Quartus Prime project.

2. In the Tasks pane, select Compilation.

3. Under Fitter (Place & Route), double-click View Report.

4. In the Fitter folder, expand the Place Stage folder.

5. Double-click Periphery to Core Transfer Optimization Summary.

Table 35. Fitter Report - Periphery to Core Transfer Optimization (P2C) Summary

From Path To Path Status

Node 1 Node 2 Placed and Routed—Core register is locked. Periphery to core/core to periphery
routing is committed.

Node 3 Node 4 Placed but not Routed—Core register is locked. Routing is not committed. This
occurs when P2C is not able to optimize all targeted paths within a single group,
for example, the same delay/wire requirement, or the same control signals.
Partial P2C routing commitments may cause unresolvable routing congestion.

Node 5 Node 6 Not Optimized—This occurs when P2C is set to Auto and the path is not
optimized due to one of the following issues:
a. The delay requirement is impossible to achieve.
b. The minimum delay requirement (for hold timing) is too large. The P2C

algorithm cannot efficiently handle cases when many wires need to be added
to meet hold timing.

c. P2C encountered unresolvable routing congestion for this particular path.

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.7. Scripting Support

You can run procedures and make settings described in this manual in a Tcl script. You
can also run procedures at a command prompt. For detailed information about
scripting command options, refer to the Quartus Prime command-line and Tcl API Help
browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp

You can specify many of the options described in this section either in an instance, or
at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <.qsf variable name> <value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <.qsf variable name> <value> -to <instance name>

Note: If the <value> field includes spaces (for example, ‘Standard Fit’), you must enclose
the value in straight double quotation marks.

Related Information

• Quartus Prime Pro Edition Settings File Reference Manual

• Quartus Prime Pro Edition User Guide: Scripting

• Quartus Prime Pro Edition User Guide: Scripting

5.7.1. Initial Compilation Settings

Use the Quartus Prime Settings File (.qsf) variable name in the Tcl assignment to
make the setting along with the appropriate value. The Type column indicates
whether the setting is supported as a global setting, an instance setting, or both.

The top table lists the .qsf variable name and applicable values for the settings
described in the Initial Compilation: Required Settings section in the Design
Optimization Overview chapter. The bottom table lists the advanced compilation
settings.

Table 36. Initial Compilation Settings

Setting Name .qsf File Variable Name Values Type

Optimize IOC Register
Placement For Timing

OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING ON, OFF Global

Optimize Hold Timing OPTIMIZE_HOLD_TIMING OFF, IO PATHS AND
MINIMUM TPD PATHS,
ALL PATHS

Global

Table 37. Advanced Compilation Settings

Setting Name .qsf File Variable Name Values Type

Router Timing Optimization level ROUTER_TIMING_OPTIMIZATION_LEVEL NORMAL, MINIMUM, MAXIMUM Global

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

136

https://www.intel.com/content/www/us/en/docs/programmable/683296.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Design Optimization Overview on page 6

5.7.2. I/O Timing Optimization Techniques

The table lists the .qsf file variable name and applicable values for the I/O timing
optimization settings.

Table 38. I/O Timing Optimization Settings

Setting Name .qsf File Variable Name Values Type

Optimize IOC Register Placement For
Timing

OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING ON, OFF Global

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output Register FAST_OUTPUT_REGISTER ON, OFF Instance

Fast Output Enable Register FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Fast OCT Register FAST_OCT_REGISTER ON, OFF Instance

5.7.3. Register-to-Register Timing Optimization Techniques

The table lists the .qsf file variable name and applicable values for the settings
described in Register-to-Register Timing Optimization Techniques.

Table 39. Register-to-Register Timing Optimization Settings

Setting Name .qsf File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Fitter Seed SEED <integer> Global

Maximum Fan-Out MAX_FANOUT <integer> Instance

Manual Logic Duplication DUPLICATE_ATOM <node name> Instance

Optimize Power during
Synthesis

OPTIMIZE_POWER_DURING_SYNTHESIS NORMAL, OFF
EXTRA_EFFORT

Global

Optimize Power during
Fitting

OPTIMIZE_POWER_DURING_FITTING NORMAL, OFF
EXTRA_EFFORT

Global

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.8. Timing Closure and Optimization Revision History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Revised Aggregating and Comparing Compilation Results with
Exploration Dashboard and added links to AN 1006: Multi-Project
Analysis with Exploration Dashboard.

• Added link to AN 917: Reset Design Techniques for Intel Hyperflex
Architecture FPGAs to Synchronous Reset Design Strategies topic.

• Updated Starting the Exploration Dashboard for new GUI and added
links to AN 1006: Multi-Project Analysis with Exploration Dashboard.

2023.10.02 23.3 • Updated version support information and introduction of the Exploration
Dashboard GUI (quartus_edw) in Aggregating and Comparing
Compilation Results with Exploration Dashboard topic.

• Revised command syntax in Base Exploration Dashboard Properties
topic.

• Added new property names to Project Handle Properties topic.
• Updated Starting the Exploration Dashboard for the Exploration

Dashboard GUI (quartus_edw) and options.

2023.08.01 23.2 • Updated version support information in Aggregating and Comparing
Compilation Results with Exploration Dashboard topic.

• Corrected graphic size in Use PLLs to Shift Clock Edges.

2023.06.26 23.2 • Revised Base Exploration Dashboard Properties topic to describe
user_data property.

2023.04.03 23.1 • Added new Aggregating and Comparing Compilation Results with
Exploration Dashboard section.

• Added new Change Adder Tree Styles topic describing new
USE_COMPRESSOR_IMPLEMENTATION assignment.

• Updated product family name to "Intel Agilex 7."

2022.01.07 21.4 • Clarified device applicability in Spine Clock Limitations topic.
• Added Design Assistant information to Review Timing Constraints topic.
• Added Design Assistant information to Review Timing Constraints topic.
• Removed references to obsolete Advisors throughout.
• Added Design Assistant information to Optimize Source Code topic.
• Added Design Assistant information to Improving Register-to-Register

Timing topic.
• Added Design Assistant information to Optimize Synthesis for

Performance, Not Area topic.
• Added set_clock_groups -exclusive setting information to Tips for

Analyzing Failing Clock Paths that Cross Clock Domains topic.
• Added new Register RAMS and DSPs topic.
• Revised Metastability Analysis and Optimization Techniques topic for

synchronizers.

2021.10.04 21.3 • Updated name of Report Hierarchical Retiming Restrictions command
and report to Report Retiming Restrictions.

2021.06.21 21.2 • Added note about variables that can cause differences in the
compilation results between seed sweeps with DSE II.

2020.09.28 20.3 • Added "Back-Annotate Optimized Assignments" topic to describe new
GUI support for back-annotation of pin, RAM, DSP, and clock
assignments.

• Added "Correct Design Assistant Rule Violations" topic.
• Updated "Report Timing" topic for Extra Info tab data.

continued...

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Added new "Report Logic Depth," "Report Neighbor Paths, "Report
Register Spread," "Report Route Net of Interest," "Report Hierarchical
Retiming Restrictions," and "Report Pipelining Information," topics to
"Review Details of Timing Paths" section.

• Moved "Optimize Settings with Design Space Explorer II" to "Design
Evaluation for Timing Closure" section and updated links to Help.

• Retitled "Intel Stratix 10 Timing Closure Recommendations" topic to
"Implement Fast Forward Timing Closure Recommendations".

2019.07.01 19.1 Added important notes to Automatic Register Duplication: Estimated
Physical Proximity and Automatic Register Duplication: Hierarchical
Proximity topics.

2019.04.01 19.1 • Added more information about register duplication methods in
Duplicate Logic for Fan-out Control topic.

• Moved content related to manual register duplication from Duplicate
Logic for Fan-out Control topic to a newly created sub-topic Manually
Adding Duplicate Registers.

• Added Automatic Register Duplication: Estimated Physical Proximity
and Automatic Register Duplication: Hierarchical Proximity as new sub-
topics under Duplicate Logic for Fan-out Control to describe automatic
register duplication process.

2018.11.12 18.1.0 • Updated "Placement Effort Multiplier" figure and text descriptions in
"Adjust Placement Effort" topic.

• Updated "Fitter Effort" figure and text descriptions in "Adjust Fitter
Effort" topic.

• Updated "Optimize Hold Timing Option" screenshot in "Wires Added for
Hold" topic.

2018.09.24 18.1.0 • Removed duplicated topic: Resource Utilization Optimization
Techniques. The topic is now in the Area Optimization chapter.

• Removed reference to unsupported CARRY and CASCADE buffers from
"Optimize IOC Register Placement for Timing Logic Option" topic.

2017.11.06 17.1.0 • Added support for Stratix 10 Hyper-Retiming, Fast Forward compilation,
and Fast Forward Viewer.
— Added topics: Critical Chains, Viewing Critical Chains, Intel Stratix

10 Timing Closure Recommendations, Retiming Limit Details Report,
Using the Retiming Limit Details Report, Fast Forward Timing
Closure Recommendations, Generating Fast Forward Timing Closure
Recommendations, Implementing Fast Forward Recommendations.

• Added topic about using partitions to achieve timing closure.
• Moved Topic: Design Evaluation for Timing Closure after Initial

Compilation: Optional Fitter Settings.
• Removed statement about applying physical synthesis optimizations in

a portion of a design.
• Removed references to optimizing hold timing for selected paths.
• Updated logic options about resource utilization optimization settings.

2017.05.08 17.0.0 • Added topic: Critical Paths.
• Updated Register-to-Register Timing and renamed to Register-to-

Register Timing Analysis.
• Renamed topic: Timing Analysis with the Timing Analyzer to Displaying

Path Reports with the Timing Analyzer.
• Removed (LUT-Based Devices) remark from topic titles.
• Renamed topic: Optimizing Timing (LUT-Based Devices) to Timing

Optimization.
• Renamed topic: Debugging Timing Failures in the Timing Analyzer to

Displaying Timing Closure Recommendations for Failing Paths.
• Renamed topic: Improving Register-to-Register Timing Summary to

Improving Register-to-Register Timing .

continued...

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

139

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Removed topics: Tips for Locating Multiple Paths to the Chip Planner,
LogicLock Assignments and Hierarchy Assignments, .

• Removed reference to deprecated Fitter Effort Logic Option.
• Removed information about Pin Advisor and Resource Optimization

Advisor.
• Removed figure: Clock Regions

2016.10.31 16.1.0 • Implemented Intel rebranding.

2016.05.02 16.0.0 • Removed information about deprecated physical synthesis options.
• Added information about monitoring clustering difficulty.

2015.11.02 15.1.0 • Added: Periphery to Core Register Placement and Routing Optimization.
• Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

• Updated DSE II content.

June 2014 14.0.0 • Dita conversion.
• Removed content about obsolete devices that are no longer supported

in QII software v14.0: Arria GX, Arria II, Cyclone III, Stratix II, Stratix
III.

• Replaced Megafunction content with IP core content.

November 2013 13.1.0 • Added Design Evaluation for Timing Closure section.
• Removed Optimizing Timing (Macrocell-Based CPLDs) section.
• Updated Optimize Multi-Corner Timing and Fitter Aggressive Routability

Optimization.
• Updated Timing Analysis with the Timing Analyzer to show how to

access the Report All Summaries command.
• Updated Ignored Timing Constraints to include a help link to Fitter

Summary Reports with the Ignored Assignment Report information.

May 2013 13.0.0 • Renamed chapter title from Area and Timing Optimization to Timing
Closure and Optimization.

• Removed design and area/resources optimization information.
• Added the following sections:

Fitter Aggressive Routability Optimization.
Tips for Analyzing Paths from/to the Source and Destination of Critical
Path.
Tips for Locating Multiple Paths to the Chip Planner.
Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles.

November 2012 12.1.0 • Updated “Initial Compilation: Optional Fitter Settings” on page 13–2,
“I/O Assignments” on page 13–2, “Initial Compilation: Optional Fitter
Settings” on page 13–2, “Resource Utilization” on page 13–9, “Routing”
on page 13–21, and “Resolving Resource Utilization Problems” on
page 13–43.

June 2012 12.0.0 • Updated “Optimize Multi-Corner Timing” on page 13–6, “Resource
Utilization” on page 13–10, “Timing Analysis with the Timing Analyzer”
on page 13–12, “Using the Resource Optimization Advisor” on page 13–
15, “Increase Placement Effort Multiplier” on page 13–22, “Increase
Router Effort Multiplier” on page 13–22 and “Debugging Timing Failures
in the Timing Analyzer” on page 13–24.

• Minor text edits throughout the chapter.

continued...

5. Timing Closure and Optimization

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

November 2011 11.1.0 • Updated the “Timing Requirement Settings”, “Standard Fit”, “Fast Fit”,
“Optimize Multi-Corner Timing”, “Timing Analysis with the Timing
Analyzer”, “Debugging Timing Failures in the Timing Analyzer”,
“LogicLock Assignments”, “Tips for Analyzing Failing Clock Paths that
Cross Clock Domains”, “Flatten the Hierarchy During Synthesis”, “Fast
Input, Output, and Output Enable Registers”, and “Hierarchy
Assignments” sections

• Updated Table 13–6
• Added the “Spine Clock Limitations” section
• Removed the Change State Machine Encoding section from page 19
• Removed Figure 13-5
• Minor text edits throughout the chapter

May 2011 11.0.0 • Reorganized sections in “Initial Compilation: Optional Fitter Settings”
section

• Added new information to “Resource Utilization” section
• Added new information to “Duplicate Logic for Fan-Out Control” section
• Added links to Help
• Additional edits and updates throughout chapter

December 2010 10.1.0 • Added links to Help
• Updated device support
• Added “Debugging Timing Failures in the Timing Analyzer” section
• Removed Classic Timing Analyzer references
• Other updates throughout chapter

August 2010 10.0.1 Corrected link

July 2010 10.0.0 • Moved Compilation Time Optimization Techniques section to new
Reducing Compilation Time chapter

• Removed references to Timing Closure Floorplan
• Moved Smart Compilation Setting and Early Timing Estimation sections

to new Reducing Compilation Time chapter
• Added Other Optimization Resources section
• Removed outdated information
• Changed references to DSE chapter to Help links
• Linked to Help where appropriate
• Removed Referenced Documents section

5. Timing Closure and Optimization

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Analyzing and Optimizing the Design Floorplan
Determining the layout (placement) of your design elements into physical resources
on the FPGA device is known as floorplanning. Floorplanning is a critical design step
that helps to ensure that the Compiler places important design logic in the most
effective locations for optimum performance and rapid timing closure.

By default, the Compiler determines the best location for logic placement based on
your design characteristics and project settings and constraints. You can use the
Quartus Prime Chip Planner to visualize the available device resources, and then use a
variety of constraints to implement specific placement for important logic, and to
group blocks together within specific device regions.

For example, you can define a Logic Lock placement constraint to assign design logic
to any arbitrary region of physical resources on the target device that you define.
When you assign nodes or entities to the Logic Lock region, the Compiler always
places that logic inside the region during fitting. You can define the Logic Lock region's
size and location.

Figure 74. Logic Lock Regions in Chip Planner Floorplan

683641 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

After compilation, you can back-annotate (copy) the Compiler's resource assignments
to preserve that same implementation in subsequent compilations. Assignment back-
annotation can simplify timing closure by allowing you to lock down placement of your
optimized results.

Related Information

Back-Annotate Optimized Assignments, Quartus Prime Pro Edition User Guide: Getting
Started

6.1. Location Assignment Optimization Guidelines

Refer to the following optimization guidelines for assigning locations to specific
registers and combinational nodes.

Guideline: Assigning Logic to Specific Locations

As part of design optimization, you may want to assign logic in your design to specific
locations in the target device floorplan. You may want to make this type of assignment
to preserve a good placement result, or to replicate a result in future compiles. In
most cases, design partitions are the best way to preserve placement. For more
information, refer to Creating a Design Partition in Quartus Prime Pro Edition User
Guide: Design Compilation

Guideline: Assigning the Location of One or Two Registers

Sometimes, you may want to assign the location of one or two registers or
combinational nodes. In cases where the amount of logic is extremely small, a design
partition is not usually practical. If you want to restrict placement to an area of the
floorplan, you can use a Logic Lock region placement constraint. For more information,
refer to Defining Logic Lock Placement Constraints.

Guideline: Assigning a Register to a Specific Location in an ALM

If you want to assign a register to a specific location in an ALM, you must know the
specific location you want to assign. The specific location includes the X and Y
coordinates of the LAB that contains the ALM, as well as the sub-location of the
register in the ALM in the LAB. The easiest way to find this information during design
optimization is to start from a compiled version of the design, and review a timing
path report in the Timing Analyzer. Use the string in the Location column as the value
for a location assignment.

For example, to assign the LOOP[42].my_div|r[6] register to the location shown in
Example Compilation Results, use the following QSF statement:

set_location_assignment -to LOOP[42].my_div|r[6] FF_X117_Y26_N49

Figure 75. Example Compilation Results

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

143

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/defining-placement-constraints.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/defining-placement-constraints.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Guideline: Making Assignments to Compiler-Modified Nodes

If you make location assignments to registers that the Compiler modifies or optimizes
during compilation, is unlikely that the Compiler will honor the assignment in
subsequent compiles. Compiler-modified or optimized registers include a suffix that
begins with a tilde character (~). If the Compiler modifies a register during
compilation, the suffix is likely to change on subsequent compiles as you change other
parts of the circuit. When the suffix changes, the name associated with the
assignment also changes, so the Compiler does not honor the assignment.

Guideline: Assigning Combinational Logic to Specific Locations

Generally it is not worth assigning combinational logic to specific locations.
Combinational logic names are more likely to change in subtle ways from one compile
to another. When the names change, any location assignments are ignored if the
names don’t match.

Related Information

Creating a Design Partition, Quartus Prime Pro Edition User Guide: Design Compilation

6.2. Design Floorplan Analysis in Chip Planner

The Chip Planner simplifies floorplanning by allowing you to view and constrain design
logic within a visual display of the FPGA chip resources. You can use the Chip Planner
to view and modify the logic placement, connections, and routing paths after running
the Fitter. You can also make assignment changes, such as creating and deleting Logic
Lock, clock region, and resource assignments.

Figure 76. The Chip Planner

Toolbar Chip View Resource PropertiesEdit Mode

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

144

https://www.intel.com/content/www/us/en/docs/programmable/683236/current/creating-a-design-partition.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.2.1. Starting the Chip Planner

To start the Chip Planner, select Tools ➤ Chip Planner. You can also start the Chip
Planner by using any of the following methods:

• Click the Chip Planner button on the Quartus Prime software toolbar.

Figure 77. Chip Planner Button on Toolbar

Chip Planner Button

• In the following tools, right-click any chip resource and select Locate ➤ Locate in
Chip Planner:

— Compilation Report

— Logic Lock Regions Window

— Technology Map Viewer

— Project Navigator window

— Node Finder

— Simulation Report

— Report Timing panel of the Timing Analyzer

6.2.2. Chip Planner GUI

The Chip Planner GUI helps you to visualize and modify the use of device resources for
your design. As you zoom in, the level of abstraction decreases, revealing more details
about your design.

Figure 78. Zoom to View Device Resource Details in Chip Planner

Chip Planner Toolbar

The Chip Planner toolbar provides access to the main Chip Planner functions for
visualizing and modifying device resources. Alternatively, you can access the same
Chip Planner commands from the Chip Planner View menu.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 79. Chip Planner Toolbar

Attach/Detach Window

Selection Tool

Zoom In/Out

Magnify Area

Hand Tool

Create Clock Assignment

Create Logic Lock Region

Add Logic Lock Region

Subtract Logic Lock Region

Merge Logic Lock Regions

Show Fan-In

Show Fan-Out

Show Connections

Clear Connections

Expand Connections

Toggle Synchronization

Show Delays

Tooltip Details

Text Search

Bird’s Eye View

Chip Planner Floorplan Views

The Chip Planner includes multiple views to shows various levels of detail for the
targeted Intel FPGA device. You can toggle between these different views when you
require more or less detail. As you zoom in to the chip, the level of abstraction
decreases, revealing more details about the resources that your design targets.

Click the Bird’s Eye View button to instantly display a summary high-level chip view,
on top of your current Chip Planner view. Use this Bird's Eye view to show your
current selection within the larger chip, and to navigate quickly between areas of
interest.

Figure 80. Bird’s Eye View

Bird’s Eye View

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Bird’s Eye View is particularly useful when the parts of your design that you want
to view are at opposite ends of the chip, allowing you to quickly navigate between
resource elements without losing the current frame of reference.

Figure 81. Selected Element Properties

Selected Element’s Properties

When you select any element in the Chip Planner, the Properties window displays the
detailed properties of the objects (such as atoms, paths, Logic Lock regions, or routing
elements). To display the Properties window, right-click the object and select View
➤ Properties.

Layers Settings Pane

clicking View ➤ Layers Settings to customize which device structures the Chip
Planner displays.

You can select the Basic, Detailed, or Floorplan Editing settings that are
preconfigured for specific planning tasks, or specify your own layer settings.

Figure 82. Layer Settings Control Display of Device Resources

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Editing Mode

The Chip Planner has two editing modes.

Figure 83. Editing Mode Selection

Edit Mode

• Assignment—editing mode allows you to make assignment changes that are
implemented the next time you run the Fitter.

• ECO—editing mode allows you to make post-compilation changes, commonly
referred to as engineering change orders (ECOs), without running a full
compilation.

Locate History

The Locate History window records all searches you perform using the Locate in
Chip Planner command, allowing you to quickly rerun common searches.

6.2.3. Viewing Design Elements in Chip Planner

The Chip Planner allows you to locate and report details on various elements of your
design, such as viewing available clock networks, routing congestion, I/O banks,
design partitions, and high-speed serial interfaces in the floorplan.

The following section describes how to view various design elements in the Chip
Planner.

6.2.3.1. Viewing Architecture-Specific Design Information in Chip Planner

The Chip Planner allows you to view architecture-specific information related to your
design. By enabling the options in the Layers Settings pane and Properties tab, you
can view:

• Device routing resources used by your design—view how blocks are
connected, as well as the signal routing that connects the blocks.

• LE configuration—view logic element (LE) configuration in your design. For
example, you can view which LE inputs are used; whether the LE utilizes the
register, the look-up table (LUT), or both; as well as the signal flow through the
LE.

• ALM configuration—view ALM configuration in your design. For example, you can
view which ALM inputs are used; whether the ALM utilizes the registers, the upper
LUT, the lower LUT, or all of them. You can also view the signal flow through the
ALM.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• I/O configuration—view device I/O resource usage. For example, you can view
which components of the I/O resources are used, whether the delay chain settings
are enabled, which I/O standards are set, and the signal flow through the I/O.

• PLL configuration—View phase-locked loop (PLL) configuration in your design.
For example, you can view which control signals of the PLL are used with the
settings for your PLL.

• Timing—view the delay between the inputs and outputs of FPGA elements. For
example, you can analyze the timing of the DATAB input to the COMBOUT output.

6.2.3.2. Viewing Available Clock Networks in Chip Planner

When you enable a clock region layer in the Layers Settings pane, you display the
areas of the chip that are driven by global and regional clock networks. When the
selected device does not contain a given clock region, the option for that category is
unavailable in the dialog box.

Depending on the clock layers that you activate in the Layers Settings pane, the
Chip Planner displays regional and global clock regions in the device, and the
connectivity between clock regions, pins, and PLLs.

Note: The Stratix 10 and Agilex 7 device clocking architecture does not include regional
clocks nor spine clocks.

Clock regions appear as rectangular overlay boxes with labels indicating the clock type
and index. Select a clock network region by clicking the clock region. The clock-shaped
icon at the top-left corner indicates that the region represents a clock network region.

Figure 84. Clock Regions

Spine/sector clock regions have a dotted vertical line in the middle. This dotted line
indicates where two columns of row clocks meet in a sector clock.

To change the color in which the Chip Planner displays clock regions, select Tools ➤
Options ➤ Colors ➤ Clock Regions.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Spine Clock Limitations on page 116

6.2.3.3. Viewing Clock Sector Utilization in Chip Planner

The Chip Planner provides a visual representation of a design's clock sector utilization.

To generate the report in the Chip Planner:

1. In the Tasks pane, double-click Report Clock Sector Utilization to open the
Report Clock Sector Utilization dialog box.

2. If you want the report to include the source nodes, turn on Report source
nodes.
The equivalent TCL command appears at the bottom of the Dialog Box.

3. Click OK.

The report output shows the most used clock sectors.

The Report pane displays a list of clock sectors, with colors according to utilization.
The clock sector with the highest utilization appears in red, and the sector with least
utilization appears in blue.

You can turn on or off the sector visibility from the Report pane. You can also
highlight nodes, if applicable.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 85. Clock Sector Utilization Report

Click to highlight

6.2.3.4. Viewing Routing Congestion in Chip Planner

The Report Routing Utilization task allows you to determine the percentage of
routing resources in use following a compilation. This feature can identify zones with
lack of routing resources, helping you to make design changes to meet routing
congestion design requirements.

To view the routing congestion in the Chip Planner:

1. In the Tasks pane, double-click the Report Routing Utilization command to
launch the Report Routing Utilization dialog box.

2. Click Preview in the Report Routing Utilization dialog box to preview the
default congestion display.

3. Change the Routing Utilization Type to display congestion for specific
resources.
The default display uses dark blue for 0% congestion (blue indicates zero
utilization) and red for 100%. You can adjust the slider for Threshold
percentage to change the congestion threshold level.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The congestion map helps you determine whether you can modify the floorplan, or
modify the RTL to reduce routing congestion. Consider:

• The routing congestion map uses the color and shading of logic resources to
indicate relative resource utilization; darker shading represents a greater
utilization of routing resources. Areas where routing utilization exceeds the
threshold value that you specify in the Report Routing Utilization dialog box
appear in red.

• To identify a lack of routing resources, you must investigate each routing
interconnect type separately by selecting each interconnect type in turn in the
Routing Utilization Settings dialog box.

• The Compiler's messages contain information about average and peak
interconnect usage. Peak interconnect usage over 75%, or average interconnect
usage over 60%, can indicate difficulties fitting your design. Similarly, peak
interconnect usage over 90%, or average interconnect usage over 75%, show
increased chances of not getting a valid fit.

Related Information

Viewing Routing Resources on page 162

6.2.3.5. Viewing I/O Banks in Chip Planner

To view the I/O bank map of the device in the Chip Planner, double-click Report All
I/O Banks in the Tasks pane.

6.2.3.6. Viewing High-Speed Serial Interfaces (HSSI) in Chip Planner

The Chip Planner displays a detailed block view of the receiver and transmitter
channels of the high-speed serial interfaces. To display the HSSI block view, double-
click Report HSSI Block Connectivity in the Tasks pane.

Figure 86. Arria 10 HSSI Channel Blocks

6.2.3.7. Viewing Source and Destination Nodes in Chip Planner

The Chip Planner allows you to view the registered fan-in or fan-outs of nodes in
compiled designs with the Report Registered Connections task. This report is
different from the Generate Fanin/Fanout connections report in that the source
and destination nodes appear without connection lines, which may obscure the view.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the Chip Planner, select one or more nodes.

2. In the Task pane, double-click Report Registered Connections.

3. Select the options from the dialog box, and click OK.

The Reports pane displays the registered source and destination nodes. Turn on or off
to switch visibility in the graphic view.

Figure 87. Report Registered Connections

Turn on or off

Related Information

Viewing Fan-In and Fan-Out in Chip Planner on page 153

6.2.3.8. Viewing Fan-In and Fan-Out in Chip Planner

Displays the atoms that fan-in to or fan-out from a resource, including connectivity
lines.

To display the fan-in or fan-out connections from a resource you selected,

1. In the Chip Planner toolbar, click the Generate Fan-In Connections button or
the Generate Fan-Out Connections button.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

153

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 88. Chip Planner Toolbar Buttons

Generate Fan-in Connections

Generate Fan-Out Connections

Clear Unselected Connections

Expand Connections

2. To remove other connections that appear on the Chip Planner view, click the Clear
Unselected Connections button.

You can also perform this actions from the Chip Planner View menu.

Related Information

Viewing Source and Destination Nodes in Chip Planner on page 152

6.2.3.9. Viewing Immediate Fan-In and Fan-Out in Chip Planner

Displays the immediate fan-in or fan-out connection for the selected atom.

For example, when you view the immediate fan-in for a logic resource, you see the
routing resource that drives the logic resource. You can generate immediate fan-ins
and fan-outs for all logic resources and routing resources.

• To display the immediate fan-in or fan-out connections, click View ➤ Generate
Immediate Fan-In Connections or View ➤ Generate Immediate Fan-Out
Connections.

• To remove the connections displayed, use the Clear Unselected Connections
button in the Chip Planner toolbar.

Figure 89. Chip Planner Toolbar Buttons

Generate Fan-in Connections

Generate Fan-Out Connections

Clear Unselected Connections

Expand Connections

6.2.3.10. Viewing the Selected Contents in Chip Planner

You can view a detailed report of the contents of any area that you select in the Chip
Planner. When you view the contents of a selected area, Chip Planner generates a
hierarchical, color coded list of the design elements in the selection. This functionality
allows you to quickly determine where the Compiler places specific modules of the
design.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 90. Report Selection Contents Dialog Box

Follow these steps to view selected contents in the Chip Planner:

1. In the Tasks pane, double-click Report Selection Contents. The Report
Selection Contents dialog box appears.

2. Under Report design instances in selection, turn on or off Show registers
names and Show combinational names to display names of those type in the
report.

3. Click OK. The report generates and displays the list of selected elements in the
Reports pane.

Figure 91. Viewing Selected Contents

Selected AreaReport Selection Contents

4. To customize the color coding of report folders, right-click any report, and then
click Properties. You can customize the Report Name, Report Color, and the
Highlighted Area Minimum Size for the report.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 92. Selected Entities Report Properties

6.2.3.11. Viewing the Location and Utilization of Device Resources in Chip
Planner

Chip Planner can generate reports about the different types of device resources
located in the in Chip Planner view, including the resource location and utilization.

To view the location and utilization of a device resource in Chip Planner:

1. On the Chip Planner Tasks pane, click Report Resources. The Report
Resources dialog box appears.

Figure 93. Report Resources Dialog Box

2. In Resource Type, select the device resource type that you want to locate.

3. Click OK. The report generates and displays the list of selected resources in the
Reports pane.

4. In the Reports pane, right-click a resource type to Zoom to Report or view the
Properties of the resource in the Resources report.

6.2.3.12. Viewing Module Placement by Cross-Probing to Chip Planner

You can use cross-probing to determine the location of a design module on the device
in Chip Planner.

To view the placement of a module with cross-probing following place and route:

1. On the Project Navigator Hierarchy tab, right-click on a module name and click
Locate in Chip Planner.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 94. Locate in Chip Planner Command from Project Navigator

2. In the Reports pane, view the list of Located Entities color-coded and separated
by module.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 95. Located Entities in Reports Pane

6.2.4. Finding Design Elements in the Chip Planner

Use the Find tab to locate any design atom, port, location, or routing element by
name within the Chip Planner view. The Find tab located in Chip Planner, you can view
more information about the element on the Properties tab.

Figure 96. Click the Find Button to Search Chip Planner

Find Button

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To use the Find tab to locate design elements in Chip Planner:

1. In Chip Planner, click the Find button. The Find tab opens.

2. In Find what, enter the design element name(s) (and any wildcard characters) to
find in Chip Planner.

3. Under Find In, enable or disable the types of design elements to include in the
search, as Find Options (Chip Planner Search) on page 160 describes.

Figure 97. Find Options and Controls

4. To begin the search, click Find Next. The search results display in the Results
list.

5. To view details about any item in the Results list, click the Properties tab.

6. To locate found elements in Chip Planner, right-click the design element in the
Results list and click Zoom Into Selections. Chip Planner zooms into the
selected elements.

Figure 98. Zoom Into Selections from Search Results

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.2.4.1. Find Options (Chip Planner Search)

You can enable or disable the following Find In options to narrow or expand the
search for design elements in Chip Planner:

Table 40. Find In Options

Option Description

Atoms Finds all matching atom names in the design within Chip Planner.

Location Assignments Finds all matching location assignments in the design within Chip Planner.

Routing Elements Find all matching routing element names in the design within Chip Planner.

All Find all matching elements of all supported types within Chip Planner.

Input/Output Ports Find all matching input and output port names in the design within Chip Planner.

Resource Locations Find all matching routing element names in the design within Chip Planner.

Partition Ports Find all matching partition port names in the design within Chip Planner.

Select all found Automatically selects all found elements following search.

6.2.5. Exploring Paths in the Chip Planner

Use the Chip Planner to explore paths between logic elements. The following examples
use the Chip Planner to traverse paths from the Timing Analysis report.

6.2.5.1. Analyzing Connections for a Path

To determine the elements forming a selected path or connection in the Chip Planner,
click the Expand Connections button in the Chip Planner toolbar.

Figure 99. Chip Planner Toolbar Buttons

Generate Fan-in Connections

Generate Fan-Out Connections

Clear Unselected Connections

Expand Connections

6.2.5.2. Locate Path from the Timing Analysis Report to the Chip Planner

To locate a path from the Timing Analysis report to the Chip Planner, perform the
following steps:

1. Select the path you want to locate in the Timing Analysis report.

2. Right-click the path and point to Locate Path ➤ Locate in Chip Planner.
The path appears in the Locate History window of the Chip Planer.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 100. Path List in the Locate History Window

6.2.5.3. Show Delays

With the Show Delays feature, you can view timing delays for paths appearing in
Timing Analyzer reports. To access this feature, click View ➤ Show Delays in the
main menu. Alternatively click the Show Delays button in the Chip Planner toolbar. To
see the partial delays on the selected path, click the “+” sign next to the path delay
displayed in the Locate History window.

Figure 101. Show Delays Button on Chip Planner Toolbar

Show Delays Button

Birds Eye View Button

For example, you can view the delay between two logic resources or between a logic
resource and a routing resource.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 102. Show Delays Associated in a Timing Analyzer Path

6.2.5.4. Viewing Routing Resources

With the Chip Planner and the Locate History window, you can view the routing
resources that a path or connection uses. You can also select and display the Arrival
Data path and the Arrival Clock path.

In the Locate History window, right-click a path and select Show Physical Routing
to display the physical path. To adjust the display, right-click and select Zoom to
Selection.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 103. Show Physical Routing

Figure 104. Highlight Routing

To see the rows and columns where the Fitter routed the path, right-click a path and
select Highlight Routing.

Related Information

Viewing Routing Congestion in Chip Planner on page 151

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.2.6. Viewing Assignments in the Chip Planner

You can view location assignments in the Chip Planner by selecting the appropriate
layer, or any custom preset that displays block utilization in the Layers Settings
pane. The Chip Planner displays assigned resources in a predefined color (gray, by
default).

Figure 105. Viewing Assignments in the Chip Planner

Drag resource to move to neighboring cell

To create or move an assignment, or to make node and pin location assignments to
Logic Lock regions, drag the selected resource to a new location. The Fitter applies the
assignments that you create during the next place-and-route operation.

6.2.7. Viewing High-Speed and Low-Power Tiles in the Chip Planner

Some Intel devices have ALMs that can operate in either high-speed mode or low-
power mode. The power mode is set during the fitting process in the Quartus Prime
software. These ALMs are grouped together to form larger blocks, called “tiles”.

Figure 106. High-Speed and Low Power Tiles in an Arria 10 Device

Yellow Tiles
Operate in
High-Speed
Mode

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To view a power map, double-click Tasks ➤ Core Reports ➤ Report High-Speed/
Low-Power Tiles after running the Fitter. The Chip Planner displays low-power and
high-speed tiles in contrasting colors; yellow tiles operate in a high-speed mode, while
blue tiles operate in a low-power mode.

6.2.8. Viewing Design Partition Placement

With the Report Design Partitions command, you can view the physical placement
of design partitions using the same color map as the Design Partition Planner.

The Report Design Partitions Advanced command opens the Report Design
Partitions Advanced dialog box that allows you to select a partition and generate a
report of the pins belonging to the partition. It highlights the selected partition's
boundary ports and pins in the Chip Planner, and optionally reports the routing
utilization and routing element details.

6.3. Defining Logic Lock Placement Constraints

A Logic Lock region is a powerful type of logic placement and routing constraint. You
can define any arbitrary region of physical resources on the target device as a Logic
Lock region, and then assign design nodes and other properties to the region. When
you constrain design nodes to a Logic Lock region, the Fitter always places those
nodes within the region resulting in more predictable results with each design
iteration.

Your floorplan can contain multiple Logic Lock regions, depending on your design
characteristics. You can also define a routing region as part of a Logic Lock region. The
routing region specifies the routing area constraint.

The Chip Planner makes it easy to visualize and constrain device resources within a
device floorplan. You can draw or specify the dimensions of a Logic Lock region in the
floorplan using the Logic Lock Regions window. After running synthesis or fitting, you
can then assign design nodes as members of the region to implement the constraint.

Figure 107. u_blinking_led Logic Lock Region Defined in Chip Planner

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To detect and resolve any potential problems with Logic Lock regions in your project,
click Report DRC to run the Design Assistant to check for the FLP rule category. FLP
Design Assistant rules detect possible issues with floorplanning and Logic Lock
regions.

Figure 108. Floorplanning (FLP) Design Assistant Rules

6.3.1. The Logic Lock Regions Window

Use the Logic Lock Regions window GUI to view, define, and modify the attributes of
Logic Lock regions in your project.

Figure 109. Logic Lock Regions Window

The Logic Lock Regions window organizes the constraints into the following two tabs:

Table 41. Logic Lock Regions Window Tabs

Logic Lock Regions Window Tab Description

Assignment Regions Displays the properties of all Logic Lock regions that you define in the current
project (saved in the .qsf). Modify Logic Lock region properties in this tab.

Compilation Regions Displays the properties of any Logic Lock region contained in a .qdb file in the
project. Tab is read-only because you must edit imported Logic Lock region
properties in the original project.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Open the Logic Lock Regions window by clicking:

• Assignments ➤ Logic Lock Window.

• View ➤ Logic Lock Window in the Chip Planner.

• Right-click Logic Lock Region ➤ Logic Lock Regions Window in Project
Navigator.

You can customize the appearance of Logic Lock Regions window by dragging the
columns to change their order and showing or hiding optional columns by right-
clicking any column.

6.3.2. Defining Logic Lock Regions

The Quartus Prime provides multiple entry points in the GUI to create and modify
Logic Lock constraints as appropriate in your workflow.

• Before Analysis & Elaboration—you can use the Logic Lock Regions window and
the Chip Planner to visualize the chip and define empty regions without member
nodes.

• After Analysis & Elaboration or Fitter—you can assign member nodes, and even
define a Logic Lock region from a selected design entity.

You can assign an entity in the design to only one Logic Lock region, but the entity can
inherit regions by hierarchy. This hierarchy allows a reserved region to have a sub
region without reserving the resources in the sub region.

If a Logic Lock region boundary includes part of a device resource, the Quartus Prime
software allocates the entire resource to that Logic Lock region.

Figure 110. Chip Planner with Logic Lock Button on Toolbar

6.3.2.1. Defining a Logic Lock Region in Chip Planner

The Chip Planner allows you to easily see Logic Lock region locations and properties in
relation to other resources in the device.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Before Analysis and Elaboration, the Chip Planner displays the device floorplan
resources that are available. You can define Logic Lock regions in this floorplan. After
running Analysis & Elaboration, you can add member nodes to the region.

To draw a Logic Lock region in the Chip Planner:

1. Open an Quartus Prime project.

2. Click Processing ➤ Start ➤ Start Analysis & Elaboration.

Note: You can this step if you want to reserve the empty region without adding
member nodes yet.

3. To open the Chip Planner, click Tools ➤ Chip Planner. Chip Planner opens and
loads device resource information.

4. Click the Create Logic Lock Region button on the Chip Planner Toolbar.

Figure 111. Create Logic Lock Region Button on Toolbar

5. To define the region dimensions and location, click and drag the cursor on the Chip
Planner floorplan to draw a region of your preferred location and size. An
<<unassigned>> Logic Lock region appears in the Chip Planner and Logic Lock
Regions window at the coordinates you specify.

Figure 112. Drag Cursor to Define Region Location and Size

6. In the Logic Lock Regions window, double-click <<unassigned>> and type a
descriptive name for the region.

7. To add member nodes to the region, click the Members cell, and then click the
(…) button to search for the nodes you want to add. You must complete step 2
before this step.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 113. Specifying Region Name and Members

8. Confirm or customize the region Width, Height, and point of Origin settings in
the Logic Lock Regions window.

9. To prevent the Fitter from placing any other logic in the region, turn on the
Reserved option. This option is useful for preliminary floorplanning and for
reserving device resources for logic to be added later. Otherwise, leave this option
off.

10. To exclude periphery device resources from the region, turn on the Core-Only
option.

11. For region Size/State, specify whether you or the Fitter determines the size and
placement of the Logic Lock region:

• If set to Fixed/Locked, the default value, you define the Logic Lock region's
size and placement.

• If set to Auto/Floating, the Fitter determines the size and placement of the
Logic Lock region.

12. For Routing Region, specify the type of routing region constraint, such as
Unconstrained, Whole Chip, or Fixed Width Expansion options. Refer to
Defining Routing Regions on page 173.

6.3.2.1.1. Logic Lock Region Properties

You can view and modify the following properties for the Logic Lock regions that you
define. You can access these properties using either of these methods:

• Click Assignments ➤ Logic Lock Regions Window.

• Right-click and existing Logic Lock region, and then click Logic Lock Region
Properties.

Table 42. Attributes of Logic Lock Regions

Option Values Behavior

Width Number of
columns

Specifies the width of the Logic Lock region.
If Size/State is set to Auto/Floating, the attribute is set to Undetermined.

Height Number of rows Specifies the height of the Logic Lock region.
If Size/State is set to Auto/Floating, the attribute is set to Undetermined.

Origin Any Floorplan
Location

Specifies the location of the Logic Lock region on the floorplan. The origin is at
the lower left corner of the Logic Lock region.

Reserved Off | On Prevents the Fitter from placing other logic in the region. Unless enabled, the
Fitter fills unoccupied resources with other nodes and entities that have not been
assigned to another region. You cannot apply the Reserved assignment to
routing regions.

continued...

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Values Behavior

Core-Only Off | On Excludes periphery resources from a region. Quartus Prime Pro Edition region
assignments apply to periphery resources by default. If the region is designated
as Reserved and Core Only, periphery resources are not reserved from the
region.

Size/State Fixed/Locked |
Auto/Floating

Specifies whether you or the Fitter determines the size and placement of the
Logic Lock region.
• If set to Fixed/Locked, the default value, you define the Logic Lock region's

size and placement.
• If set to Auto/Floating, the Fitter determines the size and placement of the

Logic Lock region.

Routing
Region

Unconstrained |
Whole Chip | Fixed
with Expansion |
Custom

The type of routing region constraint, such as Unconstrained, Whole Chip, or
Fixed Width Expansion options. For more details, refer to Defining Routing
Regions on page 173.

6.3.2.1.2. Snapping to a Region

When placing Logic Lock regions in the Chip Planner by hand, Chip Planner is set to
snap the placement of the region to adjacent LAB boundaries by default. This means
that as you drag the region to a location, the region snaps to the adjacent lab
boundary when you drop the region in the floorplan.

Alternatively, you can click View ➤ Logic Lock Regions ➤ Snap Logic Lock Region
to to toggle the snapping between Snap to Lab or Snap to Clock Sector Region.
When your turn on Snap to Clock Sector Region, orange grid lines appear to show
the clock sector region boundaries when you create, resize, or move the region.

Figure 114. Snapped to the Region

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Creating Region: Left-click on the mouse to create the Logic Lock region. Upon
releasing the mouse, the created Logic Lock region snaps to the containing clock
region or sector.

• Resize region (and resize diagonal): Left-click on the mouse and drag the
Logic Lock region handle. Upon releasing the mouse, the Logic Lock region resizes
and snaps to the containing clock region or sector.

• Move region: Select and drag the Logic Lock region to highlight the clock region
boundaries. Upon releasing the mouse button, the Logic Lock region moves to the
new position and snaps to the containing clock region or sector.

— Same place and route regions are moved: Both Logic Lock regions move
and snap to the containing clock sectors.

— Only place | route region is moved: The selected region moves and snaps
to the clock sector, and prompts warning if the new location or size of the
region does not adhere to 'place bboxes contained within route bboxes' rule.

• Subtract or make a hole: When performing subtract in the snap-to-clock-region
mode, you create a region where the region is snapped to a clock region or a
sector, and then subtract away.

6.3.2.1.3. Considerations for Auto Sized Regions

If you use Auto/Floating Size/State Logic Lock regions, consider the following
limitations and effects:

• Auto/Floating regions cannot be reserved.

• Verify that your Logic Lock region is not empty. If you do not assign any instance
to the region, the Fitter reduces the size to 0 by 0, making the region invalid.

• The region may or may not be associated with a partition. When you combine
partitions with Auto/Floating Size/State Logic Lock regions, you get flexibility to
solve your particular fitting challenges. However, every constraint that you add
reduces the solutions available, and too many constraints can result in the Fitter
not finding a solution. Some cases are:

— If a partition is preserved at synthesis or not preserved, the Logic Lock region
confines the logic to a specific area, allowing the Fitter to optimize the logic
within the partition, and optimize the placement within the Logic Lock region.

— If a partition is preserved at placement, routed, or final; a Logic Lock region is
not an effective placement boundary, because the location of the partition's
logic is fixed.

— However, if the Logic Lock region is reserved, the Fitter avoids placing other
logic in the area, which can help you reduce resource congestion.

• Once the outcome of the Logic Lock region meets your specification, you can:

— Convert the Logic Lock region to Fixed/Locked Size/State.

— Leave the Logic Lock region with Auto/Floating Size/State attribute and use
the region as a “keep together” type of function.

— If the Logic Lock region is also a partition, you can preserve the place and
route through the partition and remove the Logic Lock region entirely.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.3.2.2. Defining a Logic Lock Region from the Project Navigator

After you run Analysis & Elaboration or the Fitter, you can assign the member nodes to
the Logic Lock region. The Project Navigator facilitates easy Logic Lock constraint
creation and member assignment from your design entities in a single step.

To define a Logic Lock region from the Project Navigator:

1. Run Analysis & Elaboration or the Fitter (Finalize) from the Compilation
Dashboard. The Project Navigator displays the design hierarchy when complete.

2. Expand the design hierarchy in the Project Navigator, right-click any design entity,
and click Logic Lock Region ➤ Create New Logic Lock Region.

Figure 115. Create New Logic Lock Region

The new region appears with the assigned node in the Logic Lock Regions window.
Modify the Region Name and other properties in the Logic Lock Regions window.

Figure 116. New Logic Lock Region In Logic Lock Regions Window

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.3.2.3. Defining Routing Regions

A routing region is an element of a Logic Lock region that specifies the routing area. A
routing region must encompass the existing Logic Lock placement region. Routing
regions cannot be set as reserved. To define the routing region, double-click the
Routing Region cell in the Logic Lock Regions window, and select an option from
the drop-down menu.

Figure 117. Routing Regions

Fixed with Expansion
+2

Custom Routing

Table 43. Routing Region Options

Option Description

Unconstrained (default) Allows the Fitter to use any available routes on the device.

Whole Chip Same result as Unconstrained, but writes the constraint in the Quartus Prime settings
file (.qsf).

Fixed with Expansion Follows the outline of the placement region. The routing region scales by a number of
rows and columns larger than the placement region.

Custom Allows you to define a custom shape routing region around the Logic Lock region. When
you select the Custom option, the placement and routing regions move independently
in the Chip Planner. In this case, move the placement and routing regions by selecting
both using the Shift key.

6.3.2.4. Defining Empty Logic Lock Regions

The Quartus Prime supports the use of Logic Lock regions without any members. You
can use such empty regions to reserve device resources to contain logic to be add
later. This technique require that you turn on the region's Reserved setting to prevent
the Fitting from placing any other logic within this region.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Empty Logic Lock regions can be useful for the following scenarios:

• Preliminary floorplanning

• Complex incremental builds, such as root partition reuse

• Team based design and interconnect logic

• Confining logic placements

Since Logic Lock regions do not reserve any routing resources by default, the Fitter
may use the reserved area for routing purposes.

Use the Core Only attribute for empty Logic Lock regions. When you include
periphery resources in empty regions, you restrict the periphery component
placement, which can result in a no fit design. After you name the empty region, you
can perform the same manipulations as with any Logic Lock region that includes
members.

Figure 118. All Logic Placed Outside an Empty region
The figure shows an empty Logic Lock region and the logic placed around it. However, some I/Os, HSSIO, and
PLLs are present in the empty region because the output port connects to the I/O that is part of the
root_partition (top-level partition).

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.3.2.5. Defining Hierarchical Logic Lock Regions

Logic Lock regions can be fully hierarchical. Parent regions must completely contain all
child regions. The Reserved and Core-Only assignments also apply hierarchically.

Logic Lock assignments follow the same precedence as other constraints and
assignments.

You can assign an entity in the design to only one Logic Lock region, but the entity can
inherit regions by hierarchy. This hierarchy allows a reserved region to have a sub
region without reserving the resources in the sub region.

6.3.3. Customizing the Shape of Logic Lock Regions

To create custom shaped Logic Lock regions, you can perform logic operations. Non-
rectangular Logic Lock regions can help you exclude certain resources, or place parts
of your design around specific device resources to improve performance.

Attention: There is no undo feature for the Logic Lock shapes for 17.1.

Logic Lock Regions Properties Dialog Box

Use the Logic Lock Regions Properties dialog box to view and modify detailed
information about your Logic Lock region, such as which entities and nodes are
assigned to your region, and which resources are required.

To open the Logic Lock Regions Properties dialog box, right-click the region and
select Logic Lock Regions Properties....

6.3.3.1. Adding a New Shape to a Logic Lock Region

To add a new shape to an existing Logic Lock region, perform the following steps in
the Chip Planner:

1. Select the Logic Lock region.

2. In the Navigation toolbar, click the Add Logic Lock Region button.

Figure 119. Add Logic Lock Region Button in Toolbar

Add Logic Lock Region

3. Click and drag to generate the shape you want to add. The new shape merges
automatically with the selected Logic Lock region.

Attention: If you selected more than one region, the operation appends the new
shape to all of the regions.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 120. Using the Add Logic Lock Region Feature

6.3.3.2. Subtracting Shape from Logic Lock Region

To subtract a shape from an existing Logic Lock region, perform the following steps in
the Chip Planner:

1. Select the Logic Lock region.

2. In the Navigation toolbar, click the Subtract Logic Lock Region button.

Figure 121. Subtract Logic Lock Region Toolbar Button

Subtract Logic Lock Region

3. Click and drag the shape you want to subtract. The modified region displays
automatically.

The operation performs in all selected regions.

Figure 122. Using the Subtract Logic Lock Region Feature

6.3.3.3. Merging Logic Lock Regions

To merge two or more Logic Lock regions, perform the following steps:

1. Ensure that no more than one of the regions that you intend to merge has logic
assignments.

2. Arrange the regions into the locations where you want the resultant region.

3. Select all the individual regions that you want to merge by clicking each of them
while pressing the Shift key.

4. Right-click the title bar of any of the selected Logic Lock regions and select Logic
Lock Regions ➤ Merge Logic Lock Region. The individual regions that you
select merge to create a single new region.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you select multiple named regions, the Merge Logic Lock Region option is
deactivated.

Figure 123. Using the Merge Logic Lock Region command

6.3.3.4. Defining Noncontiguous Logic Lock Regions

You can create disjointed regions by using the Logic Lock region manipulation tools.
Noncontiguous regions act as a single Logic Lock region for all Logic Lock region
attributes.

Figure 124. Logic Lock Regions in Chip Planner Floorplan

6.3.4. Assigning Device Pins to Logic Lock Regions

A Logic Lock region incorporates all device resources within its boundaries, including
memory and pins. The Quartus Prime Pro Edition software does not include pins
automatically when you assign an entity to a region, unless the Core Only attribute is
off.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can manually assign pins to Logic Lock regions; however, this placement puts
location constraints on the region. The software only obeys pin assignments to locked
regions that border the periphery of the device. The locked regions must include the
I/O pins as resources.

6.3.5. Viewing Connections Between Logic Lock Regions in Chip Planner

You can view and edit Logic Lock regions using the Chip Planner. To view and edit
Logic Lock regions, use Floorplan Editing in the Layers Settings window, or any
layers setting mode that has the User-assigned Logic Lock regions setting
enabled.

The Chip Planner shows the connections between Logic Lock regions. By default, you
can view each connection as an individual line. You can choose to display connections
between two Logic Lock regions as a single bundled connection rather than as
individual connection lines. To use this option, open the Chip Planner and on the View
menu, click Inter-region Bundles.

Related Information

Inter-region Bundles Dialog Box
For more information about the Inter-region Bundles dialog box, refer to Quartus
Prime Help.

6.3.6. Example: Placement Best Practices for Arria 10 FPGAs

Logic Lock regions must take into account the device topology.

This example describes how I/O Columns constrain locations in Logic Lock regions in
designs targeting Arria 10 FPGAs.

Figure 125. I/O Columns in Arria 10 FPGAs
Arria 10 FPGAs have I/O columns located in the middle of the device. Signals can only enter or exit these
columns from the side that faces the device edge.

Core I/O
Column

Core I/O
Column

Signals enter and exit
the I/O column

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

178

http://quartushelp.altera.com/current/index.htm#optimize/ace/acv_db_generate_interregion_bundles.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 126. Signals Crossing I/O Columns in Arria 10 FPGAs
Routing a signal to cross the I/O column increases the routing delay, and can reduce design performance.

Core I/O
Column

Core I/O
Column

Figure 127. Strategic Placement for Logic Lock Regions in Arria 10 FPGAs
• If a Logic Lock region contains a register that interface with the I/O column, place the Logic Lock region

so that the region covers the I/O column and the core logic, for better access to the I/O column adjacent
to the outer column edge.

• For high speed signal, you can get best results if you place the Logic Lock region on the outside of the I/O
column, because the fitter is less likely to cross the column and incur delay.

Core I/O
Column

Core I/O
Column

Logic Lock
Region including I/O

Logic Lock Region
for High Speed Signal

6.3.7. Migrating Assignments between Quartus Prime Standard Edition
and Quartus Prime Pro Edition

The Quartus Prime Pro Edition software does not support the Quartus Prime Standard
Edition Logic Lock (Standard) assignments. Therefore, if you are migrating a design
from Quartus Prime Standard Edition to Quartus Prime Pro Edition, you must convert
the Logic Lock (Standard) assignments into Logic Lock assignments.

Related Information

Replace Logic Lock Regions
In Quartus Prime Pro Edition User Guide: Getting Started

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

179

https://www.intel.com/content/www/us/en/docs/programmable/683463/current/replace-regions.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4. Defining Virtual Pins

A virtual pin is an I/O element that the Compiler temporarily maps to a logic element,
rather than to a pin. The Compiler implements these virtual pins as LUTs.

By making assignments to virtual pins, you can ensure that the Fitter places those
pins in the same device region as the corresponding internal nodes in the top-level
module. You can apply the Virtual Pin option to successfully compile a Logic Lock
module that has more pins than the target device. The Virtual Pin option can enable
timing analysis of a design module that more closely matches the performance of the
module after you integrate it into the top-level design.

You can create and assign virtual pins to an I/O element using the Virtual Pin logic
option in the Assignment Editor (Assignments ➤ Assignment Editor).

Figure 128. Virtual Pin Logic Option in the Assignment Editor

When you apply the Virtual Pin assignment to an input pin, the pin no longer appears
as an FPGA pin. Rather, the Compiler fixes the virtual pin to GND in the design. The
virtual pin is not a floating node.

Use virtual pins only for I/O elements in lower-level design entities that become nodes
after you import the entity to the top-level design; for example, when compiling a
partial design. In the top-level design, you connect these virtual pins to an internal
node of another module

Note: You must assign the Virtual Pin logic option to an input or output pin. If you assign
this option to a bidirectional pin, tri-state pin, or registered I/O element, synthesis
ignores the assignment. If you assign this option to a tri-state pin, the Fitter inserts an
I/O buffer to account for the tri-state logic; therefore, the pin cannot be a virtual pin.
You can use multiplexer logic instead of a tri-state pin if you want to continue to use
the assigned pin as a virtual pin. Do not use tri-state logic except for signals that
connect directly to device I/O pins.

To display all assigned virtual pins in the design with the Node Finder, you can set
Filter Type to Pins: Virtual. To access the Node Finder from the Assignment Editor,
double-click the To field; when the arrow appears on the right side of the field, click
and select Node Finder.

Related Information

Assigning Virtual Pins with a Tcl command on page 190

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

180

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.5. Using Logic Lock Regions in Combination with Design
Partitions

You can optimize timing in a design by placing entities that share significant logical
connectivity close to each other on the device.

By default, the Fitter attempts to place closely connected entities in the same area of
the device. However, without constraint, this same placement is not assured for each
compilation. You can use Logic Lock regions, together with design partitions, to ensure
that logically connected entities retain optimal placement from one compilation to the
next.

Using Logic Lock regions in combination with design partitions allows you to preserve
the location and performance of a block, so that the Fitter focuses time and effort on
other portions of the design.

Note: For more details about these techniques, refer to Quartus Prime Pro Edition User
Guide: Block-Based Design

To use the Design Partition Planner in conjunction with the Chip Planner to readily
create partitions and define Logic Lock regions, follow these steps:

1. On the Compilation Dashboard, double-click Plan to compile through that Fitter
stage, or run a full compilation.

2. Open the Chip Planner and the Design Partition Planner:

• Click Tools ➤ Chip Planner

• Click Tools ➤ Design Partition Planner

3. In the Chip Planner, double-click Report Design Partitions in the Tasks pane.
The Chip Planner displays the physical locations of design partitions using the
same colors as the entities in the Design Partition Planner.

Figure 129. Design Partition Planner Overlaying Chip Planner

4. In the Chip Planner, click View ➤ Bird's Eye View

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. In the Design Partition Planner, drag all the larger entities out from their parents.
Alternatively, you can right-click the entity and click Extract from Parent.
The Chip Planner displays the physical placement of the entities shown in the
Design Partition Planner, with consistent colors between the two tools. You can
view physical placement in the Chip Planner and connectivity in the Design
Partition Planner.

6. Identify entities that are unsuitable to place in Logic Lock regions:

• The Chip Planner shows an entity to be physically dispersed over
noncontiguous areas of the device.

• The Design Partition Planner shows an entity to have a large number of
connections to other entities.

7. Drag the entities that are unsuitable for placement in Logic Lock regions back to
the parent entities. Alternatively, right-click the entity and click Collapse to
Parent.

8. Create a partition for each remaining entity by right-clicking the entity, and then
clicking Create Design Partition.

9. Create a Logic Lock region for each partition by right-clicking the partition, and
then clicking Create Logic Lock Region.

Related Information

• Quartus Prime Pro Edition User Guide: Block-Based Design

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration

6.5.1. Viewing Design Connectivity and Hierarchy

By default, when you open a compiled design, the Design Partition Planner displays
the design as a single top-level entity, containing lower-level entities. If the Design
Partition Planner has opened the design previously, the design appears in its last
state.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

182

https://www.intel.com/content/www/us/en/docs/programmable/683247.html
https://www.intel.com/content/www/us/en/docs/programmable/683834.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 130. Top-Level Entity in the Design Partition Planner

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

183

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To show connectivity between entities, extract entities from the top-level entity by
dragging them into the surrounding white space, or by right-clicking an entity and
clicking Extract from Parent on the shortcut menu.
When you extract entities, Design Partition Planner draws the connection bundles
between entities, showing the number of connections between pairs of entities.

Figure 131. Partitioned Design with Connection Bundles

• To customize the appearance of connection bundles or to set thresholds for
connection counts, click View ➤ Bundle Configuration, and set the necessary
options in the Bundle Configuration dialog box.

• To see bundles containing failing paths, open the Timing Analyzer, and then click
View ➤ Show Timing Data in the Design Partition Planner. Bundles containing
failing paths are displayed in red, as are entities having nodes that reside on
failing paths.

• To see detailed information about the connections in a bundle, right-click the
bundle, and then click Bundle Properties to open the Bundle Properties dialog
box.

• To switch between connectivity display mode and hierarchical display mode, click
View ➤ Hierarchy Display. Alternatively, click and hold the hierarchy button in
the top-left corner of any entity to switch temporarily to a hierarchy display.

Figure 132. Hierarchy Display Button

6.6. Creating Clock Region Assignments in Chip Planner

You can easily create and manipulate clock regions in the Chip Planner and make clock
assignments to the regions.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can create a user-defined clock region assignment to ensure that a given global
clock signal is available to resources in a certain area of the device throughout all
design iterations. In instances of congestion involving global signal resources, you
may specify a smaller clock region assignment to prevent a signal from using
congested clock resources in other sectors.

If you create user-defined clock regions and subsequently compile the design, those
user-defined clock regions become Fitter-defined clock regions, and are read-only.

Summary of User-Defined Clock Region Feature Support

Feature Clock Region Support

Shapes of clock regions Limited to rectangular regions that snap to clock sector grids.

Peripheral element
assignments

Limited to clocking design elements.

Clock region name Identified by the source clocking design element.

Support for multiple
instances per region

Create one region per clock design element, and then specify the same definition for
multiple clock design elements to assign to the same clock region.

Using Clock Region Assignments in Stratix 10 and Agilex 7 Devices

You can constrain clock regions to a rectangle whose dimensions are defined by the
sector grid, as seen in the Clock Sector Region layer of the Chip Planner. The
rectangle is defined by the coordinates of its bottom-left and top-right corners. For
example, SX0, SY0, SX1, SY1 constrains the clock to a 2 × 2 region, from the bottom
left of sector 0,0 to the top right of sector 1,1.

You can alternatively specify the bounding rectangle in chip coordinates, for example
X37 Y181 X273 Y324. However, you should sector-align such a constraint. The Fitter
automatically snaps to the smallest sector-aligned rectangle that encompasses the
original assignment.

6.6.1. Creating Clock Assignments in Chip Planner

To create clock assignments with the Chip Planner, follow these steps:

1. Select the Create Clock Assignment button, or click View ➤ Clock
Assignments ➤ Create Clock Assignment.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 133. Create Clock Assignment Button on Chip Planner Toolbar

Create Clock Assignment

Figure 134. Newly Created Clock Region

Region Title Bar with Clock Symbol
and Default Assignment Name

2. Click and drag the mouse on the Chip Planner floorplan to draw a clock region of
your preferred location and size. The region that you draw snaps to the smallest
clock sector capable of containing the region. Orange clock sector grids help
visualize positioning of the clock region relative to clock sectors.

3. Assign a clock signal from the context menu. A clock symbol in the region title bar
identifies a clock region. The clock region is unassigned until you assign a clock
signal from the context menu.

6.6.1.1. Clock Assignment Properties

The Clock Assignment Properties pane displays properties of the selected clock
assignment.

By default, the Clock Assignment Properties pane appears on a tab at the right
side of the Chip Planner.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 135. Clock Assignment Properties Pane

6.6.2. Resizing a Clock Assignment in Chip Planner

To resize an existing clock assignment in the Chip Planner, follow these steps:

Figure 136. Clock Assignment in Chip Planner

1. Select an existing clock assignment in the Chip Planner floorplan. Handles appear
on each side of the region and at the corners.

2. Position the crosshairs over the handle of your choice and the resize mouse cursor
appears.

3. Hold the left mouse button and drag the resize cursor to expand or shrink the
boundary of the clock assignment. When you release the mouse button, the clock
assignment boundaries snap to the nearest containing clock sector grid.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.6.3. Moving a Clock Assignment in Chip Planner

To move a clock assignment in the Chip Planner, follow these steps:

1. Select the clock assignment in the Chip Planner floorplan.

2. Position the crosshairs over the clock assignment title bar and the move cursor
appears.

3. Hold the left mouse button and drag the clock assignment to the new location.

6.6.4. Deleting a Clock Region Assignment in Chip Planner

To delete a clock region assignment in the Chip Planner, follow these steps:

1. Select the clock assignment that you want to delete in the Chip Planner floorplan.

2. Right-click the clock assignment title bar to display the context menu, or select
View from the main menu bar.

3. Click Clock Assignments ➤ Delete Clock Assignment.

4. You are prompted to confirm that you want to delete the selected clock
assignment. Click Yes to confirm the deletion.

The specified clock region assignment is deleted from the system.

6.6.5. Assigning a Clock Signal to a Clock Region in Chip Planner

To assign a clock signal to a clock region in the Chip Planner, follow these steps:

1. Right-click the clock assignment title bar to display the context menu, or select
View from the main menu bar in the Chip Planner.

2. Click Clock Assignments ➤ Set Clock Signal Name.

3. In the Set Clock Signal Name dialog box, browse to or type the desired clock
signal name.

4. Click Ok.

The system renames the clock assignment according to the name of the specified
clock signal.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7. Scripting Support

You can run the commands and specify the settings described in this chapter as part
of a Tcl script. You can also run some commands at a command prompt. The following
topics describe the commands.

Related Information

Quartus Prime Pro Edition User Guide: Scripting

6.7.1. Creating Logic Lock Assignments with Tcl commands

The Quartus Prime software supports Tcl commands to create or modify Logic Lock
assignments.

Note: Specify node names by using the full hierarchy path to the node.

Create or Modify a Placement Region

You can create the Logic Lock region from the GUI, or add the region directly to the
QSF. The QSF entry contains the X/Y coordinates of the vertices and the Placement
Region name.

The following assignment creates a new placement region with bounding box
coordinates X46 Y36 X65 Y49:

set_instance_assignment -name PLACE_REGION "X46 Y36 X65 Y49" -to <node names>

• You can use the same command format to modify an existing assignment.

• To specify a non-rectangular or disjoint region, use a semicolon (;) as the
delimiter between two or more bounding boxes.

• Assign multiple instances to the same region with multiple PLACE_REGION
instance assignments.

Create or Modify a Routing Region

The following assignment creates a routing region with bounding box coordinates X5
Y5 X30 Y30:

set_instance_assignment -name ROUTE_REGION -to <node names> "X5 Y5 X30 Y30"

• You can use the same command format to modify an existing assignment.

• All instances with a routing region assignment must have a respective placement
region; the routing region must fully contain the placement region.

Specify a Region as Reserved

The following assignment reserves an existing region:

set_instance_assignment -name <instance name> RESERVE_PLACE_REGION -to <node
names> ON

• You can only reserve placement regions.

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

189

https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specify a Region as Core Only

By default, the Quartus Prime Pro Edition software includes pins in Logic Lock
assignments. To specify a region as core only (that is, periphery logic in the instance
that is not constrained), use the following assignment:

set_instance_assignment -name <instance name> CORE_ONLY_PLACE_REGION -to <node
names> ON

Related Information

Defining Logic Lock Regions on page 167

6.7.2. Assigning Virtual Pins with a Tcl command

Use the following Tcl command to turn on the virtual pin setting for a pin called
my_pin:

set_instance_assignment -name VIRTUAL_PIN ON -to my_pin

Related Information

Defining Virtual Pins on page 180

6.7.3. Logic Lock Region Assignment Examples

The following examples show the syntax of Logic Lock region assignments in the .qsf
file. Optionally, you can enter these assignments in the Assignment Editor, the Logic
Lock Regions Window, or the Chip Planner.

Example 1. Assign Rectangular Logic Lock Region

Assigns a rectangular Logic Lock region to a lower left corner location of (10,10), and
an upper right corner of (20,20) inclusive.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"

Example 2. Assign Non-Rectangular Logic Lock Region

Assigns instance with full hierarchical path "x|y|z" to non-rectangular L-shaped Logic
Lock region. The software treats each set of four numbers as a new box.

set_instance_assignment –name PLACE_REGION –to x|y|z "X10 Y10 X20 Y50; X20 Y10
X50 Y20"

Example 3. Assign Subordinate Logic Lock Instances

By default, the Quartus Prime software constrains every child instance to the Logic
Lock region of its parent. Any constraint to a child instance intersects with the
constraint of its ancestors. For example, in the following example, all logic beneath
“a|b|c|d” constrains to box (10,10), (15,15), and not (0,0), (15,15). This
result occurs because the child constraint intersects with the parent constraint.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name PLACE_REGION –to a|b|c|d "X0 Y0 X15 Y15"

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 4. Assign Multiple Logic Lock Instances

By default, a Logic Lock region constraint allows logic from other instances to share
the same region. These assignments place instance c and instance g in the same
location. This strategy is useful if instance c and instance g are heavily interacting.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X20 Y20"

Example 5. Assigned Reserved Logic Lock Regions

Optionally reserve an entire Logic Lock region for one instance and any of its
subordinate instances.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name RESERVE_PLACE_REGION –to a|b|c ON

The following assignment causes an error. The logic in e|f|g is not
legally placeable anywhere:
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X20 Y20"

The following assignment does *not* cause an error, but is effectively
constrained to the box (20,10), (30,20), since the (10,10),(20,20) box is
reserved
for a|b|c
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X30 Y20"

6.8. Analyzing and Optimizing the Design Floorplan Revision
History

The following revision history applies to this chapter:

Table 44. Document Revision History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.

2023.12.04 23.4 • Added new Location Assignment Optimization Guidelines topic.

2023.08.01 23.2 • Replaced missing graphics in Analyzing Connections for a Path.
• Replaced missing graphics in Navigating with the Bird's Eye View.
• Replaced missing graphics in Viewing Immediate Fan-In and Fan-Out in

Chip Planner.
• Replaced missing graphics in Show Delays.
• Replaced missing graphics in Starting the Chip Planner.
• Replaced missing graphics in Adding a New Shape to a Logic Lock

Region.
• Replaced missing graphics in Creating Clock Assignments in Chip

Planner.
• Replaced missing graphics in Viewing Fan-In and Fan-Out in Chip

Planner.
• Replaced missing graphics in Viewing Design Connectivity and

Hierarchy.
• Replaced missing graphics in Subtracting Shape from Logic Lock

Region.

2023.04.03 23.1 • Updated product family name to "Intel Agilex 7."

continued...

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2022.09.26 22.3 • Updated chapter for new Compilation Regions tab in the Logic Lock
Regions window. This read-only tab displays the properties of any Logic
Lock regions contained in a .qdb file in the current project.

2022.01.07 21.4 • Added Properties tab information to Viewing Architecture-Specific
Design Information topic.

• Added Design Assistant information to Using Logic Lock Regions in the
Chip Planner topic.

• Added new Viewing the Location and Utilization of Device Resources in
Chip Planner topic.

• Added new Viewing Module Placement by Cross-Probing to Chip Planner
topic.

• Added new Finding Design Elements in the Chip Planner topic.
• Added new Find In Options topic.

2019.07.30 19.3.0 Added new Using User-Defined Clock Regions in the Chip Planner section.

2019.07.01 19.1.0 Added new "Snapping to a Region" topic that describes the Snap Logic
Lock Region to option.

2019.04.01 19.1.0 • Added new "Viewing Selected Contents" topic that describes a new
report listing selected design elements.

2018.09.24 18.1.0 • Added topic: Viewing Clock Sector Utilization
• Added topic: Viewing the Source and Destination of Placed Nodes.
• Renamed topic: Generating Fan-In and Fan-Out Connections to Viewing

Fan-In and Fan-Out Connections of Placed Resources.

2018.05.07 18.0.0 • Added recommendations for using iterative methods for floorplanning.

2017.11.06 17.1.0 • Changed instances of LogicLock Plus to Logic Lock.
• Added support for auto-sized Logic Lock regions.
• Added support for empty Logic Lock regions.
• Added topics: Considerations on Using Auto Sized Regions, Creating

Partitions and Logic Lock Regions with the Design Partition Planner and
Chip Planner.

2017.05.08 17.0.0 • Chapter reorganization and content update.
• Added figures: Clock Regions, Path List in the Locate History Window,

Show Physical Routing, Using the Add Rectangle Feature, Using the
Subtract Rectangle Feature, Creating a Hole in a LogicLock Region,
Noncontiguous LogicLock Region, Routing Regions, Logic Placed Outside
of an Empty Region.

• Updated figures: HSSI Channel Blocks, Highlight Routing, High-Speed
and Low Power Tiles in an Arria 10 Device, Show Delays Highlight
Routing, Viewing Assignments in the Chip Planner, LogicLock Plus
Regions Window, Using the Merge LogicLock Plus Region Command.

• Created topics: Adding Rectangle to a LogicLock Plus Region,
Subtracting Rectangle from a LogicLock Plus Region.

• Moved topic: Viewing Critical Paths to Timing Closure and Optimization
chapter and renamed to Critical Paths.

• Renamed topic: Creating Non-Rectangular LogicLock Plus Regions to
Merging LogicLock Plus Regions.

• Renamed topic: Chip Planner Overview to Design Floorplan Analysis in
the Chip Planner.

• Renamed chapter from Analyzing and Optimizing the Design Floorplan
with the Chip Planner to Analyzing and Optimizing the Design Floorplan.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Added topic describing how to create a hole in a LogicLock Plus region.

2016.05.02 16.0.0 Updated information on creating LogicLock Plus regions.

continued...

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

192

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.
• Added information on how to use LogicLock regions.

2015.05.04 15.0.0 Added information about color coding of LogicLock regions.

2014.12.15 14.1.0 Updated description of Virtual Pins assignment to clarify that assigned
input is not available.

June 2014 14.0.0 Updated format

November 2013 13.1.0 Removed HardCopy device information.

May 2013 13.0.0 Updated “Viewing Routing Congestion” section
Updated references to Quartus UI controls for the Chip Planner

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 • Updated for the 11.0 release.
Edited “LogicLock Regions”
Updated “Viewing Routing Congestion”
Updated “Locate History”
Updated Figures 15-4, 15-9, 15-10, and 15-13
Added Figure 15-6

December 2010 10.1.0 • Updated for the 10.1 release.

July 2010 10.0.0 • Updated device support information
• Removed references to Timing Closure Floorplan; removed “Design

Analysis Using the Timing Closure Floorplan” section
• Added links to online Help topics
• Added “Using LogicLock Regions with the Design Partition Planner”

section
• Updated “Viewing Critical Paths” section
• Updated several graphics
• Updated format of Document revision History table

November 2009 9.1.0 • Updated supported device information throughout
• Removed deprecated sections related to the Timing Closure Floorplan

for older device families. (For information on using the Timing Closure
Floorplan with older device families, refer to previous versions of the
Quartus Prime Handbook, available in the Documentation Archive.)

• Updated “Creating Nonrectangular LogicLock Regions” section
• Added “Selected Elements Window” section
• Updated table 12-1

May 2008 8.0.0 • Updated the following sections:
“Chip Planner Tasks and Layers”
“LogicLock Regions”
“Back-Annotating LogicLock Regions”
“LogicLock Regions in the Timing Closure Floorplan”

• Added the following sections:
“Reserve LogicLock Region”
“Creating Nonrectangular LogicLock Regions”
“Viewing Available Clock Networks in the Device”

• Updated Table 10–1
• Removed the following sections:

Reserve LogicLock Region Design Analysis Using the Timing Closure
Floorplan

6. Analyzing and Optimizing the Design Floorplan

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Using the ECO Compilation Flow
In a typical FPGA project development cycle, the specification of the programmable
logic portion of the design can change during the design process. The Quartus Prime
software supports these last-minute, targeted engineering change orders (ECOs),
even after full compilation is complete.

ECOs typically occur during the design verification stage. For example, during
verification you may determine that the design requires a small change, such as a
netlist connection change, correcting a LUT logic error, or placing a node in a new
location. Implementing an ECO change, rather than changing RTL and fully
recompiling the design, requires significantly less time, and changes only the affected
logic.

You specify the ECO commands in a Tcl script using the ::quartus::eco package.

Note: The Quartus Prime Pro Edition software supports ECOs for Stratix 10 and Agilex 7
devices only.

7.1. ECO Compilation Flow

1. Identify an ECO modification you want to make in a compiled design.

2. Determine if ECO commands support the change, by reviewing ECO Commands on
page 197 and ECO Command Limitations on page 205.

3. Create a Tcl script, as ECO Tcl Script Example on page 195 shows.

4. Before running ECO compilation, click Project ➤ Archive Project and archive the
compilation database and output file set.

5. Click Processing ➤ Start ➤ Perform ECO Compilation.

6. Specify the ECO Tcl Script file, and click OK. The Fitter processes the ECO
commands and updates the finalized netlist. The Fitter generates an error if you
specify any commands incorrectly. The changes apply when the Fitter processing
completes.

7. View the ECO results in post-fit analysis tools, such as the Compilation Report,
Timing Analyzer, Netlist Viewer, or Chip Planner. To view ECO changes in the Fitter
report, click Processing ➤ Compilation Report ➤ Fitter ➤ ECO Changes.

683641 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 137. Example of ECO Changes Report

As an alternative to the GUI methods, you can use the following commands to run
the ECO Tcl scripts. If running from command line, any active Quartus Prime GUI
application does not refresh. Close and reopen the project to refresh the GUI.

$ quartus_fit -s
load_package eco
project_open <project_name>
eco_load_design
...
eco_commit_design
project_close

Note: If you rerun the Fitter on a design after implementing an ECO, the Fitter
overwrites the ECO changes. Update RTL, IP parameters, and recompile the
design to permanently implement the ECO changes.

7.2. ECO Tcl Script Example

The following shows an example ECO Tcl script that places existing nodes in new
locations:

Figure 138. ECO Tcl Script Example

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

195

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3. Viewing ECO Compilation Reports

The Compiler generates a report showing the details of each ECO compilation that you
run successfully. You can view the report contents in the ECO Changes report under
Fitter in the Compilation Report.

Figure 139. Example of ECO Changes Report

Alternatively, you can view this data in the generated fit.eco file. The Compiler
organizes the report output according to the category of ECO change, such as
Placement Changes. The table specifies the "Changes in Previous ECO Runs" and
"Changes in Current ECO Run".

Figure 140. ECO Report Example

Locate nodes from the Fitter's ECO reports to confirm ECO changes.

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 141. Locate Node from Fitter ECO Reports

7.4. ECO Commands

The Quartus Prime Pro Edition software supports the following ECO commands:

Note: Check available arguments by running <eco_command> -h|help|long_help.

ECO Command Quick Reference on page 198

make_connection on page 198

remove_connection on page 199

modify_lutmask on page 200

adjust_pll_refclk on page 200

modify_io_slew_rate on page 201

modify_io_current_strength on page 201

modify_io_delay_chain on page 201

create_new_node on page 202

remove_node on page 203

place_node on page 203

unplace_node on page 204

create_wirelut on page 204

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.4.1. ECO Command Quick Reference

Table 45. ECO Command Quick Reference

ECO Change ECO Commands

Route make_connection -from <src> -to <dst> -port <port>
remove_connection -from <src> -to <dst> -port <port>

Tie-Off make_connection –tieoff <VCC/GND> -to <node> -port <port>

Lutmask modify_lutmask -to <node> [-eqn <lut equation>] [-mask 0x00]

Slew Rate modify_io_slew_rate <value> -to <pin_name>

Current Strength modify_io_current_strength <value> -to <pin_name>

Delay Chains modify_io_delay_chain <value> -type <io_type> -to <pin_name>

Update MIF update_mif_files

IOPLL Ref Clock
(Stratix 10 devices
only)

adjust_pll_refclk -to <pll name> -refclk <freq>

Create New Node create_new_node -type <LUT|FF> -name <name>

Remove Node remove_node -name <name>

Place Node place_node -name <name> [-location <location>]

Unplace Node unplace_node -name <name>

Create Wirelut create_wirelut -from <src> -to <dst> -port <port> [-location <location>]

7.4.2. make_connection

Description
Connects the source signal to the destination block port. If the port has an existing
connection, the command removes the previous connection and connects it to the
signal you specify. The actual routing change occurs implicitly when appropriate. You
can locate node names by right-clicking a node in Netlist Viewer, and then clicking
Properties.

make_connection also supports adding connections from and to Hyper-Registers. In
the case of Hyper-Registers, the command first disconnects the destination port,
before making a new connection. You can the run the make_connection command
to specify a replacement signal source or destination.

If a port is shared among multiple RAM slice atoms, then the ECO Fitter automatically
updates all relevant atoms, and reports them accordingly.

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

198

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage

The following example connects top|a_out to the D input port of node top|x.

make_connection -from top|a_out -to top|x -port D

Arguments

from Output net of the source block of the new connection.

to Name of the destination block.

port The input port name of the destination block.

Options

tieoff To explicitly tie off an input port to VCC or GND.

VCC or GND

Example:

make_connection –tieoff VCC –to {node1} –port DATAA

to Name of the destination block.

port The input port name of the destination block.

7.4.3. remove_connection

Description
Disconnects the src signal from the destination block port. The actual routing change
occurs implicitly. You can locate node names by right-clicking a node in Netlist Viewer,
and then clicking Properties.

If a port is shared among multiple RAM slice atoms, then the ECO Fitter automatically
updates all relevant atoms, and reports them accordingly.

Usage

The following example disconnects top|a_out from the D input port of node top|x,
and set top|x:D to a disconnected state.

remove_connection -from top|a_out -to top|x -port D

Arguments

from Output net of the source block of the current connection.

to Name of the destination block.

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

199

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

port The input port name of the destination block.

7.4.4. modify_lutmask

Description
Modifies the lutmask of the matching destination node, with the lutmask value (-
mask) in binary or hexadecimal, or with the equivalent lutmask value (-eqn)
computed from specified logical equation.

Usage

The following example disconnects top|a_out from the D input port of node top|x,
and set top|x:D to a disconnected state.

modify_lutmask -to top|lut_c -eqn {a&b&c}
modify_lutmask -to top|lut_a -mask 0xFF00FF00
modify_lutmask -to top|lut_b -mask 0b111111111001010

Arguments

eqn The logical equation of the inputs (A, B, C, D, E, F). The supported
lexical tokens include AND('&'), OR('|'), XOR('^'), NOT('!'),
OPEN_BRACE('('), CLOSE_BRACE(')'). Specify -mask or -eqn

to Destination atom name.

mask The lutmask value to be modified in binary or hexadecimal format.
Specify -mask or -eqn

Note: When you view the lutmask equations in the Resource Property Viewer, the equations
display in terms of F0/F1/F2/F3 LUTs for A, B, C and D inputs. For LUTs also using E
or F inputs, you must combine these sub-functions using the connectivity that the ALM
diagram shows for the E and F muxes.

7.4.5. adjust_pll_refclk

Description
Changes the IOPLL frequencies by modifying the input reference clock frequency. The
following stipulations apply:

• Maintain the original refclk and outclk ratios.

• The IOPLLs you change cannot generate IP clocks.

• Cascaded IOPLLs must connect directly (no clock gates in between them).

• IOPLLs cannot be in 'nondedicated' compensation modes.

• For all IOPLLs, outclks duty cycle equals 50 and phase shift equals 0.

• No support for Agilex 7 devices.

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

200

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage

The following example adjusts the *pll_main* IOPLL by modifying the input clock
frequency to 100 MHz.

adjust_pll_refclk -to {*pll_main*} -refclk 100

Arguments

to Instance name of upstream IOPLL that you want to adjust. Escape any [or]
characters in the target name.

refclk New refclk frequency value in MHz.

7.4.6. modify_io_slew_rate

Description
Implements the I/O pin slew setting rate that you specify for the I/O pin.

Usage

modify_io_slew_rate 1 -to top|ipin

Arguments

to Instance name of destination pin that you want to modify.

7.4.7. modify_io_current_strength

Description
Implements the change to the I/O pin current strength setting that you specify for the
I/O pin.

Usage

modify_io_current_strength 3mA -to top|ipin

Arguments

to Instance name of the destination pin that you want to modify.

7.4.8. modify_io_delay_chain

Description
Implements the change to the delay chain settings that you specify for the I/O pin.

Usage

modify_io_delay_chain 3 -to top|ipin -type input

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

201

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments

type Specifies one of the following I/O types: input, output, oe,
io_12_lane_input, io_12_lane_input_strobe

to Instance name of I/O pin that you want to modify the delay chain settings.

7.4.9. create_new_node

Description

Creates a LUT cell or flip-flop in the design netlist. The following use cases apply:

• Adding a gate to fix a logic bug.

• Adding a wire LUT to help add hold delay.

• Creates a new flip-flop or flip-flops where needed.

The name of the new node is hierarchical. Therefore, when creating node a|b|c|d,
you must ensure that hierarchy a|b|c exists in the netlist. If the source or destination
node lies under a partition, the new LUT inserts under that partition.

Note: This command does not support extended or arithmetic LUTs.

After creating the new node, you can run the following commands to connect, modify
the lutmask, or place the new node:

1. Run make_connection to connect to the new LUT’s DATA inputs and output port.

2. Run modify_lutmask to change the lutmask for the new LUT.

3. Run place_node to place (and subsequently route) the new LUT.

This flow ensures that all routing requirements are analyzed when determining a legal
placement for the new node.

Usage

The following example creates a new_lut LUT node with input ports DATAA and
DATAB, and with outputs connected accordingly. modify_lutmask the modifies the
lutmask to perform A&B logic. place_node next places the new LUT. The connections
route after node placement is complete.

create_new_node -name new_lut -type lut
make_connection -from src_a -to new_lut -port DATAA
make_connection -from src_b -to enew_lut -port DATAB
make_connection -from new_lut -to dst_reg -port D
modify_lutmask -to new_lut -eqn A&B
place_node -name new_lut

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

202

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To connect to a new flip-flop node that you create, use the make_connection
command to connect to the flip-flop data port (D), and control ports (CLK, ENA, SCLR,
CLRN), and from its output Q port. You must place the new flip-flop node with the
place_node command. The connections are automatically routed after the
place_node command.

create_new_node -name my_ff -type ff
make_connection -from reg0 -to my_ff -port D
make_connection -from clk -to my_ff -port CLK
make_connection -from my_ff -to reg1 -port D
place_node -name my_ff -location “X10 Y10 X10 Y10”

Arguments

name Name of the new LUT of flip-flop node.

7.4.10. remove_node

Description

Removes a LUT cell or flip-flop from the design netlist.

Usage

The following example deletes a flip-flop node with the name ff1:

remove_node -name ff1

Arguments

name Name of the LUT of flip-flop node to delete.

7.4.11. place_node

Description

Places the node that you specify in a location that the ECO Fitter selects. Optionally,
you can specify the location argument to assign a specific device region location.
You can also run this command for nodes already placed by the Fitter.

place_node also supports placement of newly added or existing flip-flops.
place_node does not support Hyper-Register locations.

Usage

The following examples show three placement cases. For node1, the ECO Fitter
determines the placement location. For node2, the command specifies the exact LAB
location constraint. For node3, the command specifies a placement region constraint.

place_node -name node1 # let ECO Fitter decide placement
place_node -name node2 -location FF_X20_Y60_N17 # place node at specific location
place_node -name node3 -location “X10 Y10 X20 Y20” # place node in region
place_node -name my_ff -location “X10 Y10 X10 Y10” # place flip-flop in region

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

203

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments

name Name of the node.

location Device region coordinates (X1 Y1 X10 Y10)(X1 Y1)
(FF_X20_Y60_N17).

7.4.12. unplace_node

Description

Unplaces the node that you specify. unplace_node supports moving larger clouds of
logic. To simplify the process of moving a larger cloud of logic, such as an entire ALM,
you can first unplace all of the nodes. The Fitter does not perform placement legality
checking until you re-place the final ALM cell.

Usage

The following example unplaces a node with the name ff1:

unplace_node -name ff1

Arguments

name Name of the node to unplace.

7.4.13. create_wirelut

Description

Creates and inserts a wire LUT node in the connection that you specify. The ECO Fitter
places the new LUT and routes the modified connections automatically. Optionally, you
can specify the location argument to specify a particular device region location
constraint.

The name of the new node is hierarchical. Therefore, when creating node a|b|c|d,
you must ensure that hierarchy a|b|c exists in the netlist. If the source or destination
node lies under a partition, the new wire LUT inserts under that partition.

create_wirelut also supports adding connections from and to Hyper-Registers. In
the case of Hyper-Registers, the command first disconnects the destination port,
before making a new connection. You can the run the create_wirelut command to
specify a replacement signal source or destination.

If a port is shared among multiple atoms (for example, RAM), then the ECO Fitter
automatically updates all relevant atoms, and reports them accordingly.

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

204

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage

The following example creates the my_wirelut wire LUT, connects my_wirelut
output to the D input port of dest_node, and connects the output of src_output to
the input port of the wire LUT. Finally, the ECO Fitter places the new node within
region (20, 20) to (40, 40) and routes automatically.

create_wirelut -name my_wirelut -from src_output -to dest_node \
 -port D -location "X20 Y20 X40 Y40"

Arguments

name Name of the node.

From Source of the connection.

To Name of destination node.

Port Input port name of destination node.

location Device region coordinates (X1 Y1 X10 Y10) (X1 Y1)
(FF_X20_Y60_N17).

7.5. ECO Command Limitations

The ECO commands have the following limitations due to connection dependencies
within Intel FPGA devices.

• You cannot use ECO commands to modify dedicated connections.

• You cannot modify dedicated connections within a single ALM. This limitation
applies to direct connections between LUT and flip-flop nodes.

• You can connect from or to a Hyper-Register. However, you cannot remove
connections from or to a Hyper-Register because removing a connection from a
Hyper-Register would leave the routing dangling. As an alternative, you can use
make_connection to change a Hyper-Register connection immediately, without
removing the previous connection first.

• Use of the place_node command with location arguments does not overwrite
Partial Reconfiguration region constraints.

• If a LAB already has the maximum number of legal connections where a node is
placed, the place_node or make_connection commands can fail, preventing
the connection to the first placed node that cannot be legalized. You can then
either move the original node to a different location, or move other nodes from
the LAB to free up routing resources.

• The Fitter may fail to apply some I/O related ECO modifications, such as
modify_io_slew_rate, modify_io_current_strength, and
modify_io_delay_chain, if called using a command-line Tcl script or in
interactive context. That is, any case that calls the eco_load_design command
directly. To ensure all I/O modifications are applied successfully, use the standard
ECO Tcl script approach this document describes.

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

205

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The recommended order for creating and placing new LUTs or new flipflops is:

1. Create the node by using the create_new_node command.

2. Make connections to and from the node by using the make_connection
command.

3. Update the lutmask by using the modify_lutmask command.

4. Place the node by using the place_node command.

This flow ensures that analysis includes all routing requirements when determining a
legal placement for the new node. For example:

Create a new LUT in an exact location

set lut_name new_lut
create_new_node –name $lut_name –type lut
make_connection –from input1 –to $lut_name –port DATAA
make_connection –from input2 –to $lut_name –port DATAB
make_connection –from $lut_name –to output_dest –port DATAD
modify_lutmask –to $lut_name –eqn {A&B}
place_node –name $lut_name –location “X80 Y80 X85 Y95”

Create a new Flipflop in an exact location

set ff_name new_ff
create_new_node –name $ff_name –type ff
make_connection –from input1 –to $ff_name –port DATAA
make_connection –from input2 –to $ff_name –port DATAB
make_connection –from $ff_name –to output_dest –port DATAD
modify_lutmask –to $ff_name –eqn {A&B}
place_node –name $ff_name –location “X80 Y80 X85 Y95”

Note: To minimize issues with name matching caused by escaped characters, it can be useful
to surround entity names with {} characters, instead of "". This technique is
particularly useful if entity names contain backslashes or any other special characters.

7.6. Interactive ECO Fitting

The quartus_fit executable supports ECO changes in an interactive shell through
quartus_fit -s.

In an interactive context, the ECO Fitter legalizes the changes, when appropriate. For
example, for make_connection changes immediately after node creation, the Fitter
does not attempt to route the connections immediately; rather, the Fitter waits until
after the placement of the node prior to routing.

7.6.1. eco_load_design and eco_commit_design Commands

Description

• eco_load_design—loads the final netlist in the ECO context.

• eco_commit_design—commits the ECO modified netlist to disk while running in
interactive mode.

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

206

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage

The following example shows an interactive ECO session to modify the lut_x lutmask
for project top. If the ECO modifications are legal, the eco_commit_design
command commits the final netlist.

$ quartus_fit -s
>> load_package eco
>> project_open top
>> eco_load_design
>> modify_lutmask -to lut_x -eqn B&C # some ECO changes
>> eco_commit_design
>> project_close

7.7. Using the ECO Compilation Flow Revision History

The following revision history applies to this chapter:

Table 46. Document Revision History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.

2020.09.28 20.3 • Revised chapter title to "Using the ECO Compilation Flow."
• Added descriptions of new unplace_node and delete_node

commands.
• Described new support for placement of flip-flop nodes and exact

locations in place_node command topic.
• Described new support for creation of flip-flop nodes in

create_new_node command topic.
• Updated limitations in "ECO Command Limitations to remove obsolete

limitations."
• Revised wording of introduction.
• Added report screenshots to "Viewing ECO Compilation Reports" topic.

2020.05.08 20.1 • Added descriptions of new create_new_node, place_node, and
create_wirelut commands.

• Referenced support for multi-node ECOs in make_connection,
remove_connection, and create_wirelut command topics.

• Referenced Support for ECO connections to Hyper-Registers in the
make_connection topic.

• Described updates to ECO reporting in "Viewing ECO Compilation
Reports."

• Updated limitations in "ECO Command Limitations."
• Added ECO Command Quick Reference

2019.09.30 19.3.0 • Added information about tieoff option for make_connection
command.

• Added support for modify_io_slew_rate command.
• Added support for modify_io_current_strength command.
• Added support for modify_io_delay_chain command.
• Added "Viewing ECO Compilation Reports" topic.
• Added information about num option for modify_lutmask command.
• Mentioned RTL Viewer for locating node names.
• Added device support note.

2019.07.01 19.2.0 • First release of chapter.

7. Using the ECO Compilation Flow

683641 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Optimization

207

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Quartus Prime Pro Edition Design Optimization User
Guide Archives

For the latest and previous versions of this user guide, refer to Quartus Prime Pro
Edition User Guide: Design Optimization. If an IP or software version is not listed, the
user guide for the previous IP or software version applies.

683641 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel FPGA devices, and program CPLD and configuration
devices, via connection with an Intel FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683641 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

A. Quartus Prime Pro Edition User Guides

683641 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Optimization Send Feedback

210

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Optimization%20(683641%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Pro Edition User
Guide
Programmer

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q How do I generate programming files?
A Generating Device Programming Files on page 5

Q What do I use to configure my device?
A Using the Programmer on page 40

Q What are the basic device programming steps?
A Basic Device Configuration Steps on page 41

Q Is there security for the programming bitstream?
A Using PR Bitstream Security Verification on page 53

Q How do I configure a PR bitstream?
A Generating Programming Files for PR on page 25

Q Can I program a device without Quartus?
A Stand-Alone Programmer on page 54

Q How to I program for HPS designs?
A Using the HPS Flash Programmer on page 74

Online Version

Send Feedback UG-20134

683039

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Quartus® Prime Programmer User Guide.. 4
1.1. Generating Primary Device Programming Files...5
1.2. Generating Secondary Programming Files... 6

1.2.1. Generating Secondary Programming Files (Programming File Generator)...........6
1.2.2. Generating Secondary Programming Files (Convert Programming File

Dialog Box)... 11
1.2.3. Generating Secondary Programming Files (Settings: Programming Files

Dialog Box)... 16
1.3. Enabling Bitstream Security for Stratix 10 and Agilex 7 Devices................................. 19

1.3.1. Enabling Bitstream Authentication (Programming File Generator)................... 20
1.3.2. Specifying Additional Physical Security Settings (Programming File

Generator)..22
1.3.3. Enabling Bitstream Encryption (Programming File Generator).........................23

1.4. Enabling Bitstream Encryption or Compression for Arria 10 and Cyclone 10 GX
Devices..24

1.5. Generating Programming Files for Partial Reconfiguration.. 25
1.5.1. Generating PR Bitstream Files..26
1.5.2. Partial Reconfiguration Bitstream Compatibility Checking...............................28
1.5.3. Raw Binary Programming File Byte Sequence Transmission Examples..............30
1.5.4. Generating a Merged .pmsf File from Multiple .pmsf Files (Arria 10 and

Cyclone 10 GX Designs)..30
1.6. Generating Programming Files for Intel FPGA Devices with Hard Processor Systems......31

1.6.1. Generating Programming Files for HPS Boot First Boot Flows..........................31
1.6.2. Generating Programming Files for FPGA Configuration First Boot Flows............34

1.7. Scripting Support...36
1.7.1. quartus_pfg Command Line Tool.. 37
1.7.2. quartus_cpf Command Line Tool.. 37

1.8. Generating Programming Files Revision History..38

2. Using the Quartus Prime Programmer.. 40
2.1. Quartus Prime Programmer...40
2.2. Programming and Configuration Modes... 41
2.3. Basic Device Configuration Steps... 41
2.4. Specifying the Programming Hardware Setup.. 43

2.4.1. JTAG Chain Debugger Tool...46
2.4.2. Editing the Details of an Unknown Device..50
2.4.3. Running JTAG Daemon with Linux.. 50

2.5. Programming with Flash Loaders..51
2.5.1. Specifying Flash Partitions...51
2.5.2. Full Erase of Flash Memory Sectors...52

2.6. Verifying the Programming File Source with Project Hash.. 52
2.6.1. Obtaining Project Hash for Arria 10 Devices...52

2.7. Using PR Bitstream Security Verification (Stratix 10 Designs).....................................53
2.8. Stand-Alone Programmer..54

2.8.1. Stand-Alone Programmer Memory Consumption...54
2.9. Programmer Settings Reference...55

2.9.1. Device & Pin Options Dialog Box.. 55
2.9.2. More Security Options Dialog Box...63

Contents

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.3. Output Files Tab Settings (Programming File Generator)................................63
2.9.4. Input Files Tab Settings (Programming File Generator)..................................64
2.9.5. Bitstream Co-Signing Security Settings (Programming File Generator)............ 65
2.9.6. Configuration Device Tab Settings.. 65
2.9.7. Add Partition Dialog Box (Programming File Generator)................................. 66
2.9.8. Add Filesystem Dialog Box (Programming File Generator)..............................66
2.9.9. Convert Programming File Dialog Box... 67
2.9.10. Compression and Encryption Settings (Convert Programming File)................ 67
2.9.11. SOF Data Properties Dialog Box (Convert Programming File)........................ 68
2.9.12. Select Devices (Flash Loader) Dialog Box.. 69

2.10. Scripting Support...69
2.10.1. The jtagconfig Debugging Tool... 70

2.11. Using the Quartus Prime Programmer Revision History.. 71

3. Using the HPS Flash Programmer... 74
3.1. Supported Devices...74
3.2. HPS Flash Programmer Command-Line Utility.. 75
3.3. How the HPS Flash Programmer Works... 75
3.4. Using the Flash Programmer from the Command Line... 76

3.4.1. HPS Flash Programmer... 76
3.4.2. HPS Flash Programmer Command Line Examples... 78

3.5. Supported Memory Devices...79
3.6. HPS Flash Programmer User Guide Revision History..80

A. Quartus Prime Pro Edition User Guide: Programmer Document Archive....................... 82

B. Quartus Prime Pro Edition User Guides...83

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Quartus® Prime Programmer User Guide
The Quartus® Prime Programmer allows you to program and configure Intel® CPLD,
FPGA, and configuration devices. Following full design compilation, you generate the
primary device programming files in the Assembler, and then use the Programmer to
load the programming file to a device. This user guide details Intel FPGA programming
file generation and use of the Quartus Prime Programmer.

Figure 1. Quartus Prime Programmer

Specify Programming Hardware Specify Programming Mode Programming Progress

Add Programming Files or Devices Programming Options

Related Information

• Generating Primary Device Programming Files on page 5

• Generating Secondary Programming Files on page 6

• Enabling Bitstream Security for Stratix 10 and Agilex 7 Devices on page 19

• Using the Quartus Prime Programmer on page 40

• Programming with Flash Loaders on page 51

683039 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1.1. Generating Primary Device Programming Files

By default, the Compiler's Assembler module generates the primary device
programming files at the end of full compilation. Alternatively, you can start the
Assembler independently any time after design place and route to generate primary
device programming files, such as SRAM Object Files (.sof) for configuration of Intel
FPGAs.

Follow these steps to generate primary device programming files:

1. To specify programming options that enable features in the primary device
programming file, such as Configuration, Error Detection CRC, and device
Security options, click Assignments ➤ Device ➤ Device & Pin Options. Device
& Pin Options Dialog Box on page 55 describes all options.

Figure 2. Device & Pin Options Dialog Box (Stratix® 10 Design)

2. To generate primary device programming files, click Processing ➤ Start ➤ Start
Assembler, or double-click Assembler on the Compilation Dashboard. The
Assembler generates the programming files according to the options you specify.

3. After running the Assembler, view detailed information about programming file
generation, including the programming file Summary and Encrypted IP information
in the Assembler report folder in the Compilation Report.

Figure 3. Assembler Reports

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Each successive release of the Quartus Prime software typically includes:

• Added support for new features in supported FPGA devices.

• Added support for new devices.

• Efficiency and performance improvements.

• Improvements to compilation time and resource use of the design
software.

Due to these improvements, different versions of the Quartus Prime Pro
Edition, Quartus Prime Standard Edition, and Quartus Prime Lite Edition
software can produce different programming files from release to release.

1.2. Generating Secondary Programming Files

After generating primary device programming files, you can optionally generate one or
more derivative programming files for alternative device configurations, such as flash
programming, partial reconfiguration, remote system update, Configuration via
Protocol (CvP), or hard processor system (HPS) core configuration.

You can use the Programming File Generator or Convert Programming Files
dialog box to generate secondary programming files:

• The Programming File Generator supports advanced programming features and
is optimized for Agilex™ 5, Agilex 7, Stratix® 10, MAX® 10, and Cyclone® 10 LP
devices.

• The Convert Programming Files dialog box supports all devices released prior
to Stratix 10 devices.

Table 1. Secondary Programming File Generators

Programming File
Generator

Convert Programming Files

Device Support • Agilex 5
• Agilex 7
• Stratix 10
• MAX 10
• Cyclone 10 LP

• Arria® 10
• Cyclone 10GX and LP
• MAX 10

APEX20K, Arria II GX and GZ, Arria V,
Cyclone, Cyclone II, Cyclone III and LS,
Cyclone IV E and GX, Cyclone V,
HardCopy® III, HardCopy II, HardCopy
IV, MAX V, Stratix, Stratix II, Stratix III,
Stratix IV, Stratix V

1.2.1. Generating Secondary Programming Files (Programming File
Generator)

Follow these steps to generate secondary programming files for alternative device
programming methods with the Programming File Generator.

1. Generate the primary programming files for your design, as Generating Primary
Device Programming Files on page 5 describes.

2. Click File ➤ Programming File Generator.

3. For Device family, select your target device. The options available in the
Programming File Generator change dynamically, according to your device and
configuration mode selection.

4. For Configuration mode, select the target configuration mode for your device.
Configuration Modes (Programming File Generator) on page 9 describes all
modes.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. On the Output Files tab, enable the checkbox for generation of the file you want
to generate. The Input Files tab is now available. Secondary Programming Files
(Programming File Generator) on page 10 describes all output files.

6. Specify the Output directory and Name for the file you generate. Output Files
Tab Settings (Programming File Generator) on page 63 describes all options.

Figure 4. Programming File Generator

Select Device and
Configuration Mode

Select Output Files
To Generate, Input
File Source, and
Configuration
Device

Generate Selected
Files

7. To specify a .sof file that contains the configuration bitstream data, on the Input
Files tab, click Add Bitstream.

8. To include raw data, click Add Raw Data and specify a Hexadecimal (Intel-
Format) file (.hex), Binary (.bin) file, or uncompressed ZIP file (.zip).

Important: The ZIP file must be uncompressed. For example, in WinZip® file
compression software, ensure that the compression mode is set to No
compression.

9. To specify bitstream authentication or encryption security settings for the file,
select the .sof and click Properties, as Enabling Bitstream Authentication
(Programming File Generator) on page 20 describes.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Input Files Tab

10. To create a flash memory partition and specify a .sof file that occupies the flash
memory partition, click Add Partition on the Configuration Device tab. Add
Partition Dialog Box (Programming File Generator) on page 66 describes all
options.

Figure 6. Add Flash Partition

11. To create a file system partition and specify an uncompressed .zip file that
contains the files to write to the file system partition, click Add Filesystem on the
Configuration Device tab. Add Filesystem Dialog Box (Programming File
Generator) on page 66 describes all options.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Add Flash Filesystem Partition

Important: The ZIP file must be uncompressed. For example, in WinZip file
compression software, ensure that the compression mode is set to No
compression.

12. To select a supported flash memory device and predefined programming flow, click
Add Device on the Configuration Device tab. Alternatively, click <<new
device>> to define a new flash memory device and programming flow.
Configuration Device Tab Settings on page 65 describes all settings.

13. Click the Select button for Flash Loader and select the device that controls
loading of the flash memory device. Select Devices (Flash Loader) Dialog Box on
page 69 describes all settings.

14. After you specify all options in Programming File Generator, the Generate
button enables. Click Generate to create the files.

1.2.1.1. Configuration Modes (Programming File Generator)

Select one of the following Configuration modes in Programming File Generator
for generation of secondary programming files:

Table 2. Programming File Generator Configuration Modes

Programming Mode Description Supports Devices

Active Serial x4
For storing configuration data in a low-cost serial configuration device with
non-volatile memory and four-pin interface. Serial configuration devices
provide a serial interface to access the configuration data. During device

• Agilex 5
• Agilex 7
• Stratix 10

continued...

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Programming Mode Description Supports Devices

configuration, Stratix 10 devices read the configuration data through the
serial interface, decompress the data if necessary, and configure their
SRAM cells.

AVST x8 The Avalon® streaming configuration mode uses an external host, such as
a microprocessor or MAX 10 device. The external host controls the
transfer of configuration data from an external storage such as flash
memory to the FPGA. The design that controls the configuration process
resides in the external host. You can use the PFL II IP core with an MAX
10 device as the host to read configuration data from a flash memory
device that configures an Stratix 10 FPGA.

AVST x16

AVST x32

1-Bit Passive Serial

An external controller passes configuration data to one or more FPGA
devices via a serial data stream. The FPGA device is a slave device with a
5-wire interface to the external controller. The external controller can be
an intelligent host such as a microcontroller or CPU. Cyclone 10 LP

Active Serial Stores configuration data in a low-cost serial configuration device with
non-volatile memory and four-pin interface.

Internal
Configuration

Uses a .pof file for internal configuration of the MAX 10 device’s
Configuration Flash Memory (CFM) and User Flash Memory (UFM) via a
download cable Quartus Prime Programmer.

MAX 10

1.2.1.2. Secondary Programming Files (Programming File Generator)

After generating primary device programming files, you can generate the following
secondary device programming files with the Programming File Generator for
alternative device configuration modes:

Table 3. Programming File Generator Output File Types

Programming File Type Extension Description

Hexadecimal (Intel-Format)
Output File for SRAM

.hexout An ASCII text file in Intel hexadecimal format that contains configuration
data for programming a parallel data source, such as a configuration
device or a mass storage device. The parallel data source in turn
configures an SRAM-based Intel device.

JTAG Indirect Configuration
File

.jic Proprietary Intel FPGA file type that stores serial flash programming data
for programming via Intel FPGA JTAG pins. This method only supports
Active Serial configuration. Before programming the flash, the
Programmer first configures the FPGA with the Serial Flash Helper
Design.

Memory Map File .map A text file containing the byte addresses of pages and HEX data stored in
the memory of the selected configuration device. The file stores the start
and end addresses of the Main Block Data and Bottom Boot Data
items, and the start and end addresses of pages within the Main Block
Data item.

Programmer Object File .pof A binary file used by the Programmer to program a flash memory device
via active serial header, or to program a flash memory device via the
Parallel Flash Loader Intel FPGA IP.

Raw Binary File .rbf Configuration bitstream file for use with a third-party data source, partial
reconfiguration, or HPS data source. Supports Passive Serial (PS) and
Avalon-Streaming (AVST) modes.

Raw Binary File for CvP Core
Configuration

.rbf A binary file that containing logic that is programmed by configuration
(CRAM) for CvP phase 2. The core bitstream is in .rbf format.

continued...

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Programming File Type Extension Description

Raw Binary File for HPS Core
Configuration

.rbf A binary file that containing logic that is programmed by configuration
(CRAM) for HPS configuration phase 2. The core bitstream is in .rbf
format.

Raw Programming Data File .rpd Stores data for configuration with third-party programming hardware.
You generate Raw Programming Data Files from a .pof or .sof.
The .rpd file is a subset of a .pof or .jic that includes only device-
specific binary programming data for Active Serial configuration scheme
with EPCS or EPCQ serial configuration devices and remote system
update.

Tabular Text File .ttf A TTF contains the decimal equivalent of a Raw Binary File (.rbf).

1.2.2. Generating Secondary Programming Files (Convert Programming
File Dialog Box)

You can use the Convert Programming File dialog box to generate secondary
programming files for alternative device programming methods. For example,
generating the .jic file for flash programming, the .rbf file for partial
reconfiguration, or the .rpd file for a third-party programmer configuration.

Figure 8. Convert Programming File Dialog Box

Configuration Device Add FilesGenerate
Files

Output Programming
File

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The options available in the Convert Programming File dialog box change
dynamically, according to your device and configuration mode selection.

1. Generate the primary programming files for your design, as Generating Primary
Device Programming Files on page 5 describes.

2. Click File ➤ Convert Programming Files.

3. Under Output programming file, select the Programming file type that you
want to generate. Secondary Programming Files (Convert Programming Files) on
page 13 describes all file options.

4. Specify the File name and output directory (…) for the file that you generate.

5. For the configuration Mode, select Active Serial x4 or Active Serial.
Configuration Modes (Convert Programming Files) on page 14 describes all
modes.

Note: Stratix 10 devices support only Active Serial x4.

6. To specify the Configuration device, click the (…) button to select a supported
flash memory device and predefined programming flow. When you select a
predefined device, you cannot modify any setting. Alternatively, click <<new
device>> to define a new flash memory device and programming flow.
Configuration Device Tab Settings on page 65 describes all settings.

Figure 9. Configuration Device Dialog Box

7. Under Input files to convert, select the SOF Data item, and then click the Add
File button. Specify the .sof file that contains the configuration bitstream data.
To include raw data, click Add Hex Data and specify a .hex file.

8. To enable bitstream compression or encryption security settings, select the .sof
file and click Properties, as Enabling Bitstream Encryption or Compression for
Arria 10 and Cyclone 10 GX Devices on page 24 describes.

9. Select the Flash Loader text, and then click the Add Device button. Select the
device that controls loading of the flash device.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. Selecting the Flash Loader Device

10. After you specify all options in the Convert Programming File dialog box, click
the Generate button to create the files.

1.2.2.1. Secondary Programming Files (Convert Programming Files)

After generating primary device programming files, you can generate the following
secondary device programming files with the Convert Programming Files dialog box
for alternative device configuration modes:

Table 4. Output File Types

Programming File Type Extension Description

CvP Files .jic/.rbf Files required for CvP configuration.

Hexadecimal (Intel-Format)
Output File for SRAM

.hexout An ASCII text file in Intel hexadecimal format that contains
configuration data for programming a parallel data source, such as a
configuration device or a mass storage device. The parallel data
source in turn configures an SRAM-based Intel device.

JTAG Indirect Configuration File .jic Proprietary Intel FPGA file type that stores serial flash programming
data for programming via Intel FPGA JTAG pins. This method only
supports Active Serial configuration. Before programming the flash,
the Programmer first configures the FPGA with the Serial Flash
Helper Design.

Memory Map File .map Contains the byte addresses of pages and HEX data stored in the
memory of the selected configuration device. The Map File stores the
start and end addresses of the Main Block Data and Bottom Boot
Data items, and the start and end addresses of pages within the
Main Block Data item.

Partial-Masked SRAM Object Files .pmsf Contains the partial-mask bits for configuration of a PR region.
The .pmsf file contains all the information for creating PR
bitstreams.

Merged Mask Setting File .msf Contains the mask bits for the static region in a PR design.

Programmer Object File .pof A binary file that contains the data for programming non-volatile
MAX 10, MAX V, MAX II, or flash memory devices that can configure
Intel FPGA devices. A Programmer consists of a remote update

continued...

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Programming File Type Extension Description

enabled .pof and additional remote update enabled .sof that you
used to program configuration devices in remote update
configuration mode.

Raw Binary File .rbf Configuration bitstream file for use with a third-party data source,
partial reconfiguration, or HPS data source. Supports Passive Serial
(PS) and Avalon-Streaming (AVST) modes.

Raw Programming Data File .rpd Stores data for configuration with third-party programming
hardware. You generate Raw Programming Data Files from a .pof
or .sof. The .rpd file is a subset of a .pof or .sof that includes
only device-specific binary programming data for Active Serial
configuration scheme with EPCS or EPCQ serial configuration devices
and remote system update. The .rpd file content has one bit
swapped in comparison with the output file.

Tabular Text File .ttf A TTF contains the decimal equivalent of a Raw Binary File (.rbf).

1.2.2.2. Configuration Modes (Convert Programming Files)

Select one of the following Configuration modes in Convert Programming Files
for generation of secondary programming files:

Table 5. Convert Programming Files Configuration Modes

Programming Mode Description

1-Bit/2-Bit/4-Bit/8-Bit Passive
Serial

An external controller passes configuration data to one or more FPGA devices via a
serial data stream. The FPGA device is a slave device with a 5-wire interface to the
external controller. The external controller can be an intelligent host such as a
microcontroller or CPU, or the Quartus Prime Programmer, or an EPC2 or EPC16
configuration device.

Active Parallel Supports configuration devices using commodity 16-bit parallel flash memories to
control the configuration interface.

Active Serial For storing configuration data in a low-cost serial configuration device with non-
volatile memory. Serial configuration devices provide a serial interface to access
the configuration data. During device configuration, the device reads the
configuration data through the serial interface, decompresses the data if
necessary, and configures their SRAM cells.

Active Serial x4

AVST x8/x16/x32 The Avalon streaming configuration mode uses an external host, such as a
microprocessor or MAX 10 device. The external host controls the transfer of
configuration data from an external storage such as flash memory to the FPGA.
The design that controls the configuration process resides in the external host. You
can use the PFL II IP core with an MAX 10 device as the host to read configuration
data from a flash memory device that configures an FPGA.

Passive Parallel Synchronous An external controller, such as a CPU, loads the design data into a device via a
common data bus. Data is latched by the device on the first rising edge of a CPU-
driven clock signal. The next eight falling clock edges serialize this latched data
within the device. The device latches the next 8-bit byte of data on every eighth
rising edge of the clock signal until the device is completely configured.

Passive Parallel Asynchronous An external controller, such as a CPU, loads the design data into a device via a
common data bus. The device accepts a parallel byte of input data. Intelligent
communication between the external controller and the device allows the external
controller to configure the device.

Internal Configuration Uses a .pof file for internal configuration of the MAX 10 device’s Configuration
Flash Memory (CFM) and User Flash Memory (UFM) via a download cable Quartus
Prime Programmer.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.2.3. Debugging the Configuration (Convert Programming Files)

Click the Advanced option in the Convert Programming Files dialog box to debug
the file conversion configuration. Only choose advanced settings that apply to the
design's target Intel FPGA device.

Changes in the Advanced Options dialog box affect .pof, .jic, .rpd, and .rbf
file generation.

The following table describes the Advanced Options settings:

Table 6. Advanced Options Settings

Option Setting Description Values

Disable EPCS/EPCQ ID
check

Directs the FPGA to skips the EPCS/EPCQ silicon ID
verification.
Applies to single and multi device AS configuration modes
on all devices.

Default setting is ON (EPCS/
EPCQ ID check is enabled).

Disable AS mode
CONF_DONE error check

Directs the FPGA to skip the CONF_DONE error check.
Applies to single- and multi-device (AS) configuration
modes on all devices.

Default setting is OFF (AS
mode CONF_DONE error
check is enabled).

Program Length Count
adjustment

Specifies the offset you can apply to the computed PLC of
the entire bitstream.
Applies to single- and multi-device (AS) configuration
modes on all FPGA devices.

Integer (Default = 0)

Post-chain bitstream pad
bytes

Specifies the number of pad bytes appended to the end of
an entire bitstream.

If the bitstream of the last
device is uncompressed,
default value is 0.
Otherwise, default is 2

Post-device bitstream
pad bytes

Specifies the number of pad bytes appended to the end of
the bitstream of a device.
Applies to all single-device configuration modes on all FPGA
devices.

Zero or positive integer.
Default is 0

Bitslice Padding Value Specifies the padding value used to prepare bitslice
configuration bitstreams, such that all bitslice configuration
chains simultaneously receive their final configuration data
bit.
Use only in 2, 4, and 8-bit PS configuration mode, when you
use an EPC device with the decompression feature enabled.
Applies to all FPGA devices that support enhanced
configuration devices.

0 or 1
Default value is 1

The following table lists possible symptoms of a failing configuration, and describes
the advanced options necessary for configuration debugging.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Failure Symptoms Disable EPCS/
EPCQ ID
Check

Disable AS
Mode

CONF_DONE
Error Check

PLC Settings Post-Chain
Bitstream Pad

Bytes

Post-Device
Bitstream Pad

Bytes

Bitslice
Padding Value

Configuration
failure occurs after
a configuration
cycle.

— Yes Yes

Yes (1)

Yes (2) —

Decompression
feature is enabled.

— Yes Yes Yes (1) Yes (2) —

Encryption feature
is enabled.

— Yes Yes Yes (1) Yes (2) —

CONF_DONE stays
low after a
configuration cycle.

— Yes Yes (3) Yes (1) Yes (2) —

CONF_DONE goes
high momentarily
after a
configuration cycle.

— Yes Yes (4) — — —

FPGA does not
enter user mode
even though
CONF_DONE goes
high.

— — — Yes (1) Yes (2) —

Configuration
failure occurs at
the beginning of a
configuration cycle.

Yes — — — — —

EPCS128 Yes — — — — —

Failure in .pof
generation for EPC
device using
Quartus Prime
Convert
Programming File
Utility when the
decompression
feature is enabled.

— — — — — Yes

1.2.3. Generating Secondary Programming Files (Settings: Programming
Files Dialog Box)

Follow these steps to generate .rbf files automatically as part of a standard
compilation from the Quartus Prime GUI.

1. In Quartus Prime, select Assignments ➤ Settings.

2. In the Settings window, select Assembler ➤ Programming Files.

(1) Use only for multi-device chain

(2) Use only for single-device chain

(3) Start with positive offset to the PLC settings

(4) Start with negative offset to the PLC settings

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. In the Programming Files pane, select Generate programming files.

Selecting this check box enables the default command arguments -c .sof .rbf.

4. (Optional) To override the default command arguments, enter your command in
the Command arguments box or click Import Script to upload a script file.

If the Command arguments box is not empty, only the command arguments in
this box are run. The default command arguments are not run.

Each argument line the Command arguments box is subject to the following
conditions:

• Lines must each begin with -c or --convert.

• Lines must each contain at least two argument tokens.

• Lines cannot contain pipes. For lines that contain pipes, only the first
command argument before the first pipe in the command argument is
executed.

For example, -c <project_name>.sof <project_name>.rbf.

If an argument line does not meet these conditions, you might see one of the
following errors:

Figure 11. Error message when command argument lines do not begin with -c or --
convert

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Error message when command argument line does not contain at least two
arguments

Figure 13. Error message when command argument line contains a pipe

5. Click Apply then click OK.

Ensure that the path to the .sof file is correct, otherwise you receive error messages
similar to the following messages:

Error(22528): Programming files generation using command Error (19509):
Cannot locate file output_files/abc.sof. was unsuccessful. Check pfg.log for more
info.

A pfg_commands.txt file is generated and the QSF file is updated with the following
settings:

GENERATE_PROGRAMMING_FILES=ON
CONVERT_PROGRAMMING_FILES_COMMANDS /<user-project-path>/pfg_commands.txt

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3. Enabling Bitstream Security for Stratix 10 and Agilex 7 Devices

Stratix 10 and Agilex 7 devices provide flexible and robust security features to protect
sensitive data, intellectual property, and device hardware from physical and remote
attacks. The Stratix 10 and Agilex 7 device architectures support bitstream
authentication and encryption security features. The Assembler applies bitstream
compression automatically to reduce file size whenever you use authentication or
encryption.

• Bitstream Authentication—verifies that the configuration bitstream and
firmware are from a trusted source. Enable additional co-signing device firmware
authentication to ensure that only signed firmware runs on the HPS or FPGA, and
to authorize HPS JTAG debugging. Enable authentication security by specifying a
first level signature chain file (.qky) for the Quartus Key File option (Device
and Pin Options dialog box), as Enabling Bitstream Authentication (Programming
File Generator) on page 20 describes.(5)

• Bitstream Encryption—protects proprietary or sensitive data from view or
extraction in the configuration bitstream using an Advanced Encryption Standard
(AES) 256-bit or 384-bit security key. Encryption also provides side-channel
protection from non-intrusive attack. You can store the owner AES key in eFuses
or BBRAM. Enable encryption by turning on the Enable programming bitstream
encryption option (Device and Pin Options dialog box), as Enabling Bitstream
Encryption (Programming File Generator) on page 23 describes.

Table 7. Stratix 10 and Agilex 7 Bitstream Authentication Files

Term Description Extension

First Level Signature Chain Key
File

File you generate that specifies the root key (.pem) and one or
more design signing keys (.pem) required to sign the bitstream
and allow access to the FPGA when using authentication or
encryption.

.qky

Root Key File File you generate that anchors the first level signature chain to a
known root key. The FPGA calculates the hash of the root entry and
checks if it matches the expected hash. The Assembler appends
the root key to the programming file and stores the key in eFuses.

.qky

Design Signing Key File File you generate and append to the root key that authenticates
the bitstream in the SDM to allow configuration of the device with
the pending bitstream. Use separate design signing keys for the
FPGA and HPS for highest security.

.pem

Firmware Co-signing Key File Files provided in <install>\devices\programmer\firmware
that includes the owner signature and firmware file that you use to
sign the firmware to run on the FPGA or HPS.

.zip

Signed HPS Certificate File Specifies a secure HPS debug certificate that permits access to the
JTAG interface for HPS debugging. A secure HPS debug certificate
is valid until you power down or reconfigure the device.

.cert

Note: Arria 10 and Cyclone 10 GX devices do not support bitstream authentication.

Related Information

• Stratix 10 Device Security User Guide
For detailed information on generating device security keys.

(5) For Stratix 10 devices, bitstream authentication is available only for devices that include the AS
(Advanced Security) ordering code suffix and all Stratix 10 DX devices.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

19

https://www.intel.com/content/www/us/en/docs/programmable/683642.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Agilex 7 Device Security User Guide
For detailed information on generating device security keys.

1.3.1. Enabling Bitstream Authentication (Programming File Generator)

Bitstream authentication requires that you generate a first level signature chain
(.qky) that includes the root key and one or more design signing keys. The root key
enables the base security features and authenticates the design signing key through
the public signature chain. The root key stores the SHA-256 or SHA-384 hash of the
key in eFuses.

You can also optionally enable firmware co-signature capability to require signing the
version of configuration firmware that runs on your device. The FPGA device then can
load only authenticated firmware.

Note: For step-by-step first level signature chain key generation instructions, refer to one of
the following guides:

• Stratix 10 Device Security User Guide

• Agilex 7 Device Security User Guide

After you specify the .qky in Assembler settings, the Assembler appends the first
level signature chain to the configuration .sof that you generate.

Use the Programming File Generator to generate the signed configuration
bitstream for an .sof file. The JTAG Indirect Configuration File (.jic) and Raw
Programming Data File (.rpd) formats are available for Active Serial (AS)
configuration. The Programmer Object File (.pof) and Raw Binary File (.rbf) are
available for Avalon Streaming configuration.

Follow these steps to enable bitstream authentication:

1. Generate a first level signature chain (.qky) that includes the root key and one or
more design signing keys, as Stratix 10 Device Security User Guide and Agilex 7
Device Security User Guide describe.

2. To add the first level signature chain to a configuration bitstream, click
Assignments ➤ Device ➤ Device and Pin Options ➤ Security, and then
specify the first level signature chain .qky for the Quartus key file option.

3. To enable more physical device security options, click the More Options button
on the Security page. More Security Options Dialog Box on page 63 describes all
options.

Figure 14. Security Tab (Device and Pin Options)

First Level Signature
Chain Enables
Authentication

Physical Security
Options

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

20

https://www.intel.com/content/www/us/en/docs/programmable/683823.html
https://www.intel.com/content/www/us/en/docs/programmable/683642.html
https://www.intel.com/content/www/us/en/docs/programmable/683823.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Generate primary device programing files in the Assembler, as Generating Primary
Device Programming Files on page 5 describes. The primary device programming
file now contains data to enable first level authentication.

5. To optionally enable co-signing device firmware authentication, generate a .jic
or .rbf secondary programming file with the following options, as Generating
Secondary Programming Files on page 6 describes:

a. In Programming File Generator, click the Properties button. The Input
File Properties dialog box appears.

Figure 15. Enabling Co-Signing Device Firmware Authentication (Stratix 10 Devices)

my_key.pem

co_firm.zip

my_key.qek

b. Set Enable signing tool to On.

c. For Private key file, specify a design signing key Privacy Enhanced Mail
Certificates file (.pem) for firmware co-signing. This key can be separate from
the FPGA design signing key.

d. For Co-signed firmware, specify a Quartus Co-Signed Firmware file (.zip).

e. Click OK.

6. Use the Programmer to configure the device with the .jic or .rbf.

Related Information

• Device & Pin Options Dialog Box on page 55

• Specifying Additional Physical Security Settings (Programming File Generator) on
page 22

• Stratix 10 Device Security User Guide
For detailed information on generating device security keys.

• Agilex 7 Device Security User Guide
For detailed information on generating device security keys.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

21

https://www.intel.com/content/www/us/en/docs/programmable/683642.html
https://www.intel.com/content/www/us/en/docs/programmable/683823.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2. Specifying Additional Physical Security Settings (Programming File
Generator)

Stratix 10 and Agilex 7 devices can store security and other configuration settings in
eFuses. You can enable additional physical security settings in eFuses to extend the
level of device security protection.

To specify additional physical device security settings, follow these steps:

1. Click Assignments ➤ Device ➤ Device and Pin Options ➤ Security.

2. On the Security tab, specify the First Level Signature Chain .qky file that
contains the root key and one or more design signing keys for the Quartus key
file setting.

3. Click the More Options button and specify any of the following:

Figure 16. More Security Options Dialog Box

Table 8. More Security Options Dialog Box Settings

Option Description Values

Disable JTAG Disables JTAG command and configuration of the device. Setting
this eliminates JTAG as mode of attack, but also eliminates
boundary scan functionality.

• Off—inactive
• On—active until

wipe of containing
design

• On sticky—active
until next POR

• On check—checks
for corresponding
blown fuse

Force SDM clock to
internal oscillator

Disables an external clock source for the SDM. The SDM must use
the internal oscillator. Using an internal oscillator is more secure
than allowing an external clock source for configuration.

Force encryption key
update

Specifies that the encryption key must update by the frequency
that you specify for the Encryption update ratio option. The
default ration value is 31:1. Encryption supports up to 20
intermediate keys.

Disable virtual eFuses Disables the eFuse virtual programming capability.

Lock security eFuses Causes eFuse failure if the eFuse CRC does not match the
calculated value.

continued...

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description Values

Disable HPS debug Disables debugging through the JTAG interface to access the HPS.

Disable encryption key
in eFuses

Specifies that the device cannot use an AES key stored in eFuses.
Rather, you can provide an extra level of security by storing the
AES key in BBRAM.

Disable encryption key
in BBRAM

Specifies that the device cannot use AES key stored in BBRAM.
Rather, you can provide an extra level of security when you store
the AES key in eFuses.

4. Click OK.

Related Information

Enabling Bitstream Authentication (Programming File Generator) on page 20

1.3.3. Enabling Bitstream Encryption (Programming File Generator)

To enable bitstream encryption, you must first generate a first level signature chain
(.qky) that enables encryption options in the GUI. Next, you generate the encrypted
configuration bitstream in the Assembler. Finally, you generate a secondary
programming file that specifies the AES Encryption Key file (.qek) for bitstream
decryption.

Follow these steps to enable bitstream encryption:

1. Generate a First Level Signature Chain that includes the root key and one or more
design signing keys, as Stratix 10 Device Security User Guide and Agilex 7 Device
Security User Guide describe.

2. Click Assignments ➤ Device ➤ Device and Pin Options ➤ Security.

3. For the Quartus key file setting, specify the first level signature chain .qky that
contains the root key and one or more design signing keys.

4. Turn on Enable programming bitstream encryption, and specify one or more
of the following:

Table 9. Assembler Encryption Security Settings

Option Description

Encryption key storage select Specifies the location that stores the .qek key file. You can select either Battery
Backup RAM or eFuses for storage.

Encryption update ratio Specifies the ratio of configuration bits compared to the number of key updates
required for bitstream decryption. You can select either 31:1 (the key must
change 1 time every 31 bits) or Disabled (no update required). Encryption
supports up to 20 intermediate keys.

Enable scrambling Scrambles the configuration bitstream.

More Options Opens the More Security Options dialog box for specifying additional physical
security options.

5. Generate primary device programing files in the Assembler, as Generating Primary
Device Programming Files on page 5 describes.

6. Generate a .jic or .rbf secondary programming file, as Generating Secondary
Programming Files on page 6 describes:

a. In the Programming File Generator, select the .sof file on the Input Files
tab.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

b. Click the Properties button. The Input File Properties dialog box appears.

Figure 17. Input File Properties

my_key.pem

co_firm.zip

my_key.qek

c. Set Finalize encryption to On.

d. Specify the AES 256-bit or 384-bit Encryption key file (.qek) to decrypt the
bitstream in the SDM prior to device configuration.

7. Click OK.

Related Information

Input Files Tab Settings (Programming File Generator) on page 64

1.4. Enabling Bitstream Encryption or Compression for Arria 10 and
Cyclone 10 GX Devices

You can optionally enable bitstream file encryption that requires a user-defined 256-
bit security key to access the configuration bitstream. Alternatively, you can enable
bitstream compression to reduces the size of your programming file to minimize file
transfer and storage requirements. The compression reduces configuration file size by
30% to 55% (depending on the design). File compression and encryption options are
mutually exclusive for Arria 10 and Cyclone 10 GX devices.

Follow these steps to enable bitstream file compression or encryption for Arria 10 and
Cyclone 10 GX devices:

1. Generate a .jic file for flash programming, as this document describes.

2. In the Convert Programming File dialog box, select the .sof file under Input
files to convert.

3. Click the Properties button. The SOF File Properties: Bitstream Encryption
dialog box appears.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Enabling Bitstream Compression or Encryption (Intel Arria 10 and Intel
Cyclone 10 GX Designs)

4. To enable compression, turn on the Compression option. All encryption options
disable as these options are mutually exclusive.

5. To enable bitstream file encryption:

a. Turn off the Compression option.

b. Turn on the Generate encrypted bitstream option.

c. Specify options for programming file key decryption, and Security Options,
as Compression and Encryption Settings (Convert Programming File) on page
67 describes.

6. Click OK.

Related Information

• Arria 10 Core Fabric and General Purpose I/Os Handbook
For detailed device security configuration steps.

• Cyclone 10 GX Core Fabric and General Purpose I/Os Handbook
For detailed device security configuration steps.

1.5. Generating Programming Files for Partial Reconfiguration

The following sections describe generation of bitstream and other files for partial
reconfiguration.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

25

https://www.intel.com/content/www/us/en/programmable/documentation/sam1403483633377.html
https://www.intel.com/content/www/us/en/programmable/documentation/vua1487061384661.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.1. Generating PR Bitstream Files

For Agilex 7, Agilex 5, and Stratix 10 designs, the Assembler generates a
configuration .rbf automatically at the end of compilation. For Arria 10 and Cyclone
10 GX designs, use any of the following methods to process the PR bitstreams and
generate the Raw Binary File (.rbf) file for reconfiguration.

Generating PR Bitstreams During Compilation

Follow these steps to generate the .rbf file during compilation for Arria 10 and
Cyclone 10 GX designs:

1. Add the following assignments to the revision .qsf to automatically generate the
required PR bitstreams following compilation:

set_global_assignment -name GENERATE_PR_RBF_FILE ON
set_global_assignment -name ON_CHIP_BITSTREAM_DECOMPRESSION OFF

2. To compile the revision and generate the .rbf, click Processing ➤ Start
Compilation.

Generating PR Bitstreams with Programming File Generator

Follow these steps to generate the .rbf for PR programming with the Programming
File Generator:

1. Click File ➤ Programming File Generator. The Programming File Generator
appears.

2. Specify the target Device family and the Configuration mode for partial
reconfiguration.

3. On the Output File tab, specify the Output directory, file name, and enable the
Raw Binary File for Partial Reconfiguration (.rbf) file type.

4. To add the input .pmsf file to convert, click the Input Files tab, click Add
Bitstream, and specify the .pmsf that you generated in the Assembler.

Figure 19. Adding Bitstream File

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. On the Input Files tab, select the bitstream .pmsf file and click Properties.
Specify any of the following options for the .rbf:

• Enable compression—generates compressed PR bitstream files to reduce file
size.

• Enable encryption—generates encrypted independent bitstreams for base
image and PR image. You can encrypt the PR image even if your base image
has no encryption. The PR image can have a separate encryption key file
(.ekp). You can also specify other Security settings.

• If you turn on Enable encryption, you must also acknowledge the Design
Security Feature Disclaimer by checking the box.

Figure 20. Design Security Feature Disclaimer

6. Click OK.

7. In Programming File Generator, click Generate. The PR bitstream files
generate according to your specifications.

Generating PR Bitstreams with Convert Programming Files Dialog Box

Follow these steps to generate the .rbf with the Convert Programming Files dialog
box:

1. Click File ➤ Convert Programming Files. The Convert Programming Files
dialog box appears.

2. Specify the output file name and Programming file type as Raw Binary File
for Partial Reconfiguration (.rbf).

3. To add the input .pmsf file to convert, click Add File.

4. Select the newly added .pmsf file, and click Properties.

5. Enable or disable any of the following options and click OK:

• Compression—enables compression on PR bitstream.

• Enhanced compression—enables enhanced compression on PR bitstream.

• Generate encrypted bitstream—generates encrypted independent
bitstreams for base image and PR image. You can encrypt the PR image even
if your base image has no encryption. The PR image can have a separate
encryption key file (.ekp). If you enable Generate encrypted bitstream,
enable or disable the Enable volatile security key, Use encryption lock
file, and Generate key programming file options.

6. Click Generate. The PR bitstream files generate according to your specifications.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. PMSF File Properties Bitstream Encryption

1.5.2. Partial Reconfiguration Bitstream Compatibility Checking

Partial reconfiguration bitstream compatibility checking verifies the compatibility of the
reconfiguration bitstream to prevent configuration with an incompatible PR bitstream.
The following sections describe PR bitstream compatibility check support.

Figure 22. PR Bitstream Compatibility Checking

Static Region

PR Region
Persona A

PR Bitstream
Persona B
from Same

Design

PR Bitstream
Persona B

from Different
Design

Incompatible PR
Bitstream

Compatible
PR Bitstream

PR
 Bi

tst
re

am
 Co

m
pa

tib
ilit

y C
he

ck

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PR Bitstream Compatibility Checking for Agilex 7, Agilex 5, and Stratix 10
Designs

For Agilex 7, Agilex 5, and Stratix 10 designs, PR bitstream compatibility checking is
automatically enabled in the Compiler and in the Secure Device Manager (SDM)
firmware by default. The following limitations apply to PR designs if PR bitstream
compatibility checking is enabled:

• The firmware allows up to a total of 32 PR regions, irrespective of the number of
hierarchical partial reconfiguration layers.

• Your PR design can have up to six hierarchical partial reconfiguration layers.

• Your PR design, when there is no hierarchy, can have up to 32 regions.

• Your PR design can have up to 15 child PR regions of any parent PR region (if it is
hierarchical). Child PR regions count towards the total limit of 32 PR regions.

The Compiler generates an error if your PR design exceeds these limits when PR
bitstream compatibility checking is enabled.

If you require more PR regions than this limitation allows, or otherwise want to disable
PR bitstream compatibility checking , you can add the following assignment to
the .qsf file:

set_global_assignment -name ENABLE_PR_POF_ID OFF

When you set this assignment to off, the limit of 32 total regions does not apply in the
Compiler.

Note: If you require the PR bitstream authentication feature for your design, you must
enable PR bitstream compatibility checking by setting the global assignment
ENABLE_PR_POF ID to ON. The default setting is ON.

Arria 10 and Cyclone 10 GX PR Bitstream Compatibility Checking

For Arria 10 and Cyclone 10 GX designs, you enable or disable PR bitstream
compatibility checking by turning on the Enable bitstream compatibility check
option when instantiating the Partial Reconfiguration Controller Arria 10/Cyclone 10
FPGA IP from the IP Catalog.

The PR IP verifies the partial reconfiguration PR Bitstream file (.rbf). When you
enable the bitstream compatibility check, the PR .pof ID is encoded as the 71st word
of the PR bitstream. If the PR IP detects an incompatible bitstream, then the PR IP
stops the PR operation, and the status output reports an error.

When you turn on Enable bitstream compatibility check, the PR Controller IP core
creates a PR bitstream ID and displays the bitstream ID in the configuration dialog
box. For bitstream compatibility checking with hierarchical PR designs, refer to
additional steps in AN 806: Hierarchical Partial Reconfiguration Tutorial for Arria 10 GX
FPGA Development Board.

Related Information

AN 806: Hierarchical Partial Reconfiguration Tutorial for Intel Arria 10 GX FPGA
Development Board

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

29

https://www.intel.com/content/www/us/en/programmable/documentation/boq1489969358045.html
https://www.intel.com/content/www/us/en/programmable/documentation/boq1489969358045.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.3. Raw Binary Programming File Byte Sequence Transmission
Examples

The raw binary programming file (.rbf) file contains the device configuration data in
little-endian raw binary format. The following example shows transmitting the .rbf
byte sequence 02 1B EE 01 in x32 mode:

Table 10. Writing to the PR control block or SDM in x32 mode
In x32 mode, the first byte in the file is the least significant byte of the configuration double word, and the
fourth byte is the most significant byte.

Double Word = 01EE1B02

LSB: BYTE0 = 02 BYTE1 = 1B BYTE2 = EE MSB: BYTE3 = 01

D[7..0] D[15..8] D[23..16] D[31..24]

0000 0010 0001 1011 1110 1110 0000 0001

1.5.4. Generating a Merged .pmsf File from Multiple .pmsf Files (Arria 10
and Cyclone 10 GX Designs)

Use a single merged .rbf file to reconfigure two PR regions simultaneously.

Note: This procedure supports only Arria 10 and Cyclone 10 GX devices. Agilex 7, Agilex 5,
and Stratix 10 devices do not support merging .pmsf files.

To merge two or more .pmsf files:

1. Open the Convert Programming Files dialog box.

2. Specify the output file name and programming file type as Merged Partial-Mask
SRAM Object File (.pmsf).

3. In the Input files to convert dialog box, select PMSF Data.

4. To add input files, click Add File. You must specify two or more files for merging.

5. To generate the merged file, click Generate.

Alternatively, to merge two or more .pmsf files from the Quartus Prime shell, type the
following command:

quartus_cpf --merge_pmsf=<number of merged files> <pmsf_input_file_1> \
 <pmsf_input_file_2> <pmsf_input_file_etc> <pmsf_output_file>

For example, to merge two .pmsf files, type the following command:

quartus_cpf --merge_pmsf=2 foo.pmsf bat.pmsf \
 combine.pmsf

After creating the merged .pmsf, generate a .rbf, as Generating PR Bitstream Files
on page 26 describes.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6. Generating Programming Files for Intel FPGA Devices with
Hard Processor Systems

When generating programming files for Intel FPGA devices with a Hard Processor
System (HPS), you must first determine what boot flow you want to use for the
device: HPS Boot First or FPGA Configuration First.

Depending on the boot flow that you want to use, follow the instructions in one of the
following sections:

• Generating Programming Files for HPS Boot First Boot Flows on page 31

• Generating Programming Files for FPGA Configuration First Boot Flows on page
34

1.6.1. Generating Programming Files for HPS Boot First Boot Flows

In HPS Boot First boot flows, the HPS I/O and EMIF are configured and the HPS is
booted before configuring the FPGA I/O and core.

Configuring the HPS I/O for the first time and then loading the HPS FSBL is called
"Phase 1 configuration". The subsequent configuration of FPGA I/O and core by HPS is
called "Phase 2 configuration".

To generate programming files for HPS Boot First boot flows:

1. Generate the primary programming files for your design, as Generating Primary
Device Programming Files on page 5 describes.

2. Click File ➤ Programming File Generator.

3. For Device family, select your target device. The options available in the
Programming File Generator change dynamically, according to your device and
configuration mode selection.

4. For Configuration mode, select an Active Serial mode that your device supports.
Configuration Modes (Programming File Generator) on page 9 describes all modes.

5. On the Output Files tab, select Raw Binary File for HPS Core Configuration
(.rbf), then select the following files:

• JTAG Indirect Configuration File for Periphery Configuration (.jic)

• Raw Programming Data File (.rpd)

Secondary Programming Files (Programming File Generator) on page 10 describes
all output files.

6. On the Output Files tab, select Raw Programming Data File (.rpd) and click
Edit.

7. Optional: Optional: In the RPD Properties dialog box, set Bit swap to On.

Important: This step may or may not be required, depending on the external
programmer that you use.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Specify the Output directory and Name for the file you generate. Output Files
Tab Settings (Programming File Generator) on page 63 describes all options.

9. On the Input Files tab, click Add Bitstream to add your .sof file or files.

10. For each .sof file that you add, edit their properties as follows:

a. Select the .sof file and click Properties.

b. In the Bootloader field of Input File Properties dialog box, add the U-Boot
First State Boot Loader (FSBL) file. Ensure that the file is an Intel-format
hexadecimal (.hex) file.

11. To add other data, such as U-Boot Second Stage Boot Loader (SSBL) file or Phase
2 bitstreams:

a. Click Add Raw Data and specify an Intel-format hexadecimal (.hex) file.

b. Select the file you added and click Properties.

c. In the Input File Properties dialog box, set the Bit swap field to On.

Important: Your Phase 1 and Phase 2 bitstreams are subject to the following
restrictions:

• Your Phase 1 and Phase 2 bitstreams must be generated by the
same version of Quartus Prime, including any applied patches or
updates.

• If your Phase 1 and Phase 2 bitstreams are generated from
different Quartus Prime Pro Edition projects, review the following
Knowledge Base article for additional steps that might be required:

Why does FPGA configuration fail from Linux / u-boot fail on
Stratix 10 10 SX devices when I use phase 2 bitstreams generated
from different Quartus Projects?

12. To specify the .sof file that occupies the flash memory partition, click Add
Partition on the Configuration Device tab. Add Partition Dialog Box
(Programming File Generator) on page 66 describes all options.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

32

https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/embedded/2019/why-does-fpga-configuration-from-linux---u-boot-fail-on-intel--s.html
https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/embedded/2019/why-does-fpga-configuration-from-linux---u-boot-fail-on-intel--s.html
https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/embedded/2019/why-does-fpga-configuration-from-linux---u-boot-fail-on-intel--s.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 23. Add Flash Partition

13. To select a supported flash memory device and predefined programming flow, click
Add Device on the Configuration Device tab. Alternatively, click <<new
device>> to define a new flash memory device and programming flow.
Configuration Device Tab Settings on page 65 describes all settings.

14. Click the Select button for Flash Loader and select the device that controls
loading of the flash memory device. Select Devices (Flash Loader) Dialog Box on
page 69 describes all settings.

15. After you specify all options in Programming File Generator, the Generate
button enables. Click Generate to create the files.

16. Optional: Export your settings to PFG setting file (.pfg) so that you can use
these settings again with the quartus_pfg command line tool.

For details, refer to quartus_pfg Command Line Tool on page 37.

Related Information

• Device Configuration User Guide: Agilex 5 FPGAs and SoCs

• Agilex 7 Configuration User Guide

• Stratix 10 Configuration User Guide

• Agilex 7 SoC FPGA Boot User Guide

• Stratix 10 SoC FPGA Boot User Guide

• Arria 10 SoC FPGA Boot User Guide

• Agilex 7 Hard Processor System Remote System Update User Guide

• Stratix 10 Hard Processor System Remote System Update User Guide

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

33

https://www.intel.com/content/www/us/en/docs/programmable/813773.html
https://www.intel.com/content/www/us/en/docs/programmable/683673.html
https://www.intel.com/content/www/us/en/docs/programmable/683762.html
https://www.intel.com/content/www/us/en/docs/programmable/683389.html
https://www.intel.com/content/www/us/en/docs/programmable/683847.html
https://www.intel.com/content/www/us/en/docs/programmable/683735.html
https://www.intel.com/content/www/us/en/docs/programmable/683184.html
https://www.intel.com/content/www/us/en/docs/programmable/683021.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.2. Generating Programming Files for FPGA Configuration First Boot
Flows

In FPGA Configuration First boot flows, the FPGA core and periphery are configured
first. After that, the HPS can optionally be booted.

To generate programming files for FPGA Configuration First boot flows

1. Generate the primary programming files for your design, as Generating Primary
Device Programming Files on page 5 describes.

2. Click File ➤ Programming File Generator.

3. For Device family, select your target device. The options available in the
Programming File Generator change dynamically, according to your device and
configuration mode selection.

4. For Configuration mode, select an Active Serial mode that your device supports.
Configuration Modes (Programming File Generator) on page 9 describes all modes.

5. On the Output Files tab, select JTAG Indirect Configuration File (.jic), then
select the following files:

• Raw Binary File of Programming Helper Image (.rbf)

• Raw Programming Data File (.rpd)

Secondary Programming Files (Programming File Generator) on page 10 describes
all output files.

6. On the Output Files tab, select Raw Programming Data File (.rpd) and click
Edit.

7. Optional: Optional: In the RPD Properties dialog box, set Bit swap to On.

Important: This step may or may not be required, depending on the external
programmer that you use.

8. Specify the Output directory and Name for the file you generate. Output Files
Tab Settings (Programming File Generator) on page 63 describes all options.

9. On the Input Files tab, click Add Bitstream to add your .sof file and then edit
its properties:

a. Select the .sof file and click Properties.

b. In the Bootloader field of Input File Properties dialog box, add the U-Boot
First State Boot Loader (FSBL) hex file (.hex).

10. To add other data, such as a U-Boot Second Stage Boot Loader (SSBL) file or
Phase 2 bitstreams:

a. Click Add Raw Data and specify an Intel-format hexadecimal (.hex) file.

b. Select the file you added and click Properties.

c. In the Input File Properties dialog box, set the Bit swap field to On.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Important: Your Phase 1 and Phase 2 bitstreams are subject to the following
restrictions:

• Your Phase 1 and Phase 2 bitstreams must be generated by the
same version of Quartus Prime, including any applied patches or
updates.

• If your Phase 1 and Phase 2 bitstreams are generated from
different Quartus Prime Pro Edition projects, review the following
Knowledge Base article for additional steps that might be required:

Why does FPGA configuration fail from Linux / u-boot fail on
Stratix 10 SX devices when I use phase 2 bitstreams generated
from different Quartus Projects?

11. To specify the .sof file that occupies the flash memory partition, click Add
Partition on the Configuration Device tab. Add Partition Dialog Box
(Programming File Generator) on page 66 describes all options.

Figure 24. Add Flash Partition

12. To select a supported flash memory device and predefined programming flow, click
Add Device on the Configuration Device tab. Alternatively, click <<new
device>> to define a new flash memory device and programming flow.
Configuration Device Tab Settings on page 65 describes all settings.

13. Click the Select button for Flash Loader and select the device that controls
loading of the flash memory device. Select Devices (Flash Loader) Dialog Box on
page 69 describes all settings.

14. After you specify all options in Programming File Generator, the Generate
button enables. Click Generate to create the files.

15. Optional: Optional: Export your settings to a PFG setting file (.pfg) so that you
can use these settings again with the quartus_pfg command line tool.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

35

https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/embedded/2019/why-does-fpga-configuration-from-linux---u-boot-fail-on-intel--s.html
https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/embedded/2019/why-does-fpga-configuration-from-linux---u-boot-fail-on-intel--s.html
https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/embedded/2019/why-does-fpga-configuration-from-linux---u-boot-fail-on-intel--s.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For details, refer to quartus_pfg Command Line Tool on page 37.

Related Information

• Device Configuration User Guide: Agilex 5 FPGAs and SoCs

• Agilex 7 Configuration User Guide

• Stratix 10 Configuration User Guide

• Agilex 7 SoC FPGA Boot User Guide

• Stratix 10 SoC FPGA Boot User Guide

• Arria 10 SoC FPGA Boot User Guide

• Agilex 7 Hard Processor System Remote System Update User Guide

• Stratix 10 Hard Processor System Remote System Update User Guide

1.7. Scripting Support

The Quartus Prime software allows generating programming files from the command
line. You can incorporate these commands to scripted flows.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

36

https://www.intel.com/content/www/us/en/docs/programmable/813773.html
https://www.intel.com/content/www/us/en/docs/programmable/683673.html
https://www.intel.com/content/www/us/en/docs/programmable/683762.html
https://www.intel.com/content/www/us/en/docs/programmable/683389.html
https://www.intel.com/content/www/us/en/docs/programmable/683847.html
https://www.intel.com/content/www/us/en/docs/programmable/683735.html
https://www.intel.com/content/www/us/en/docs/programmable/683184.html
https://www.intel.com/content/www/us/en/docs/programmable/683021.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.1. quartus_pfg Command Line Tool

The Programing File Generator is also available as the quartus_pfg executable. You
can specify conversion settings in the command line or through a PFG setting file
(.pfg). This ability is useful for advanced designs that require multiple images or
multiple user data files (HEX/RBF), because you define the settings once in the GUI
and then export for subsequent use in the command line.

By default, quartus_pfg converts files using the AVSTx8 configuration scheme. To
use a different flow, specify the proper operation mode, as the following command
shows:

quartus_pfg -c -o device=MT25QU512 -o mode=ASX4 -o flash_loader=1SG280HN3S3 \
 project.sof project.jic

To export PFG settings to a .pfg file, click File ➤ Save. The Programming File
Generator only saves settings that are consistent.

For more information about the quartus_pfg executable, type the following in the
command line:

quartus_pfg --help

Differences Between GUI and Command Line Tool

The command line tool supports single image conversion only.

1.7.2. quartus_cpf Command Line Tool

The Convert Programming Files tool is also available as the quartus_cpf command
line executable. You can specify conversion settings in the command line or with a
conversion setup file (.cof).

For help with the quartus_cpf executable, type the following at the command line:

quartus_cpf --help

1.7.2.1. Generating a Partial-Mask SRAM Object File using a Mask Settings File
and a SRAM Object File

• To generate a .pmsf file with the quartus_cpf executable, type the following in
the command line:

quartus_cpf -p <pr_revision.msf> <pr_revision.sof> <new_filename.pmsf>

Note: The -p option is available for designs targeting Arria 10 and Cyclone 10 GX device
families.

Related Information

Quartus Prime Pro Edition User Guide: Partial Reconfiguration
In Quartus Prime Pro Edition User Guide: Partial Reconfiguration

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

37

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8. Generating Programming Files Revision History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Added support for Agilex 5 devices.
• Updated the description of map file in Secondary Programming Files

(Programming File Generator).

2023.04.03 23.1 • Updated location of device information directory in Enabling Bitstream
Encryption or Compression for Arria 10 and Cyclone 10 GX Devices.

• Updated product family name to "Intel Agilex 7."

2022.09.26 22.3 • Updated Generating Secondary Programming Files (Programming File
Generator).

• Updated Generating Secondary Programming Files (Settings:
Programming Files Dialog Box).

• Removed footnotes saying that security features are not available for
Agilex 7 devices.
For details about security features for Agilex 7 devices, refer to the
Agilex 7 Device Security User Guide.

2021.10.04 21.3 • Added Generating Secondary Programming Files (Settings:
Programming Files Dialog Box) topic.

2020.12.14 20.4 • Added new Generating Programming Files for the HPS Flash
Programmer section.

2020.10.13 20.3 • Added more details about alternate configuration schemes to
quartus_pfg Command Line Tool topic.

2020.05.08 19.4 • Added note about programming file differences to Generating Primary
Device Programming Files topic.

2019.12.16 19.4 • Added programming file generation support for Agilex 7 devices.
• Noted Agilex 7 security feature limitations.

2019.09.30 19.3 • Added new “Enabling Bitstream Security for Intel Stratix 10 Devices”
topic.

• Added new “Enabling Bitstream Authentication (Programming File
Generator)” topic.

• Added new “Specifying Additional Physical Security Settings
(Programming File Generator)” topic.

• Added new “Enabling Bitstream Encryption (Programming File
Generator)” topic.

• Updated name of “Authentication and Encryption” tab to “Security” tab.
• Added footnote about programming file support for Agilex 7 devices.
• Described new More Security Settings dialog box.

2019.06.10 19.1 • Added links to Generic Flash Programmer User Guide.
• Added flash programming details to "Generating Secondary

Programming Files" and created separate topics for Programming File
Generator and Convert Programming Files dialog box.

• Added new "Enabling Bitstream Encryption or Co-Signing (Programming
File Generator)" topic.

• Added new "Enabling Bitstream Compression or Encryption (Convert
Programming File)" topic.

• Updated screenshots for latest GUI.

2019.04.01 19.1 • Retitled and reorganized topics to improve flow of information.
• Added "Programming File Generator Configuration Modes" topic.
• Added "Convert Programming File Configuration Modes" topic.
• Added "Generating Programming Files for Partial Reconfiguration."
• Added "Generating PR Bitstreams Files."

continued...

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

38

https://www.intel.com/content/www/us/en/docs/programmable/683823.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Added "Partial Reconfiguration Bitstream Compatibility Checking."
• Added "Raw Binary Programming File Byte Sequence Transmission

Examples."
• Added "Generating a Merged .pmsf File from Multiple .pmsf Files."

2018.10.09 18.1 • Added MAX V to the list of devices that the Programming File Generator
tool supports.

• Added table : Device Families that the Convert Programming Files Tool
Supports.

2018.09.24 18.1 • Added topic: quartus_cpf Command Line Tool.
• Stated that the Convert Programming Files dialog box is a legacy tool

that supports file conversion for older device families.
• In topic: Output File Types, specified that the list includes file types

generated by the Converting Programming Files tool.

2018.08.07 18.0 Reverted document title to Programmer User Guide: Intel Quartus Prime
Pro Edition.

2018.06.27 18.0 • Created the new chapter with information from the Programming
Devices chapter.

• Included information about the Programming File Generator tool.

1. Quartus® Prime Programmer User Guide

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Using the Quartus Prime Programmer
Use the Quartus Prime Programmer and connected communication cable to program
or configure Intel CPLD, FPGA, and configuration devices. This chapter describes how
to setup and use the Quartus Prime Programmer.

2.1. Quartus Prime Programmer

Access the integrated Programmer by clicking Tools ➤ Programmer in the Quartus
Prime software.

Figure 25. Quartus Prime Programmer

Specify Programming Hardware Specify Programming Mode Programming Progress

Add Programming Files or Devices Programming Options

Prior to programming or configuration, you generate and specify the primary
programming files, setup the programming hardware, and set the configuration mode
in the Programmer.

683039 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2.2. Programming and Configuration Modes

The current version of the Quartus Prime Programmer supports the following
programming and configuration modes in the Programmer's Mode list. Select a
configuration mode to setup and run that type of programming or configuration.

Table 11. Programming and Configuration Modes

Programming or Configuration Mode Description

JTAG A configuration method that configures one or more devices through the Joint
Test Action Group (JTAG) Boundary-Scan Test (BST) circuitry.

In-Socket Programming Configuration device programming or testing via the Altera Programming Unit
(APU).

Passive Serial An external controller passes configuration data to one or more configuration
devices via a serial data stream. The device is treated as a slave device with a 5-
wire interface to the external controller. The external controller can be an
intelligent host such as a microcontroller or CPU, or the Quartus Prime
Programmer. The external controller can also be a serial configuration device.

Active Serial Programming The active serial memory interface block loads design data into one or more
devices. The active serial memory interface block controls the configuration
process, and configures all of the devices in the chain using the configuration
data stored in an EPCS1, EPCS4, EPCS16, EPCS64, EPCQ, EPCQL, and third-party
QSPI serial configuration devices.

2.3. Basic Device Configuration Steps

Basic FPGA Device Configuration over JTAG involves opening the Quartus Prime
Programmer, connecting to a device on a development kit or board, and loading the
configuration SRAM Object File (.sof) into the SRAM of the FPGA. The following steps
describe the basic JTAG device configuration flow:

1. To run the Assembler to generate primary programming files, click Processing ➤
Start ➤ Start Assembler. The Compiler runs any prerequisite stages and
generates programming files according to your specifications, as Generating
Primary Device Programming Files on page 5 describes.

2. To open the Programmer, click Tools ➤ Programmer.

3. Connect the board cables. For JTAG device configuration, connect the JTAG USB
cable to the board, and connect the power cable attached to the board to a power
source.

4. Turn on power to the board.

5. In the Programmer, select JTAG for the programming Mode, as Programming and
Configuration Modes on page 41 describes.

6. Click Hardware Setup. In the Hardware list, select connected programming
hardware, as Specifying the Programming Hardware Setup on page 43 describes.

Figure 26. Hardware Setup

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. In the Found Devices list, select the device that matches your design and click
OK.

Figure 27. Select Device

8. Right-click the row in the file list, and then click Change File.

Figure 28. Programmer Window

9. Browse to select the .sof file.

10. Enable the Program/Configure option for the row.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. Program/Configure Option

11. Click Start. The progress bar reaches 100% when device configuration is
complete. The device is now fully configured and in operation.

Figure 30. Programming Successful

Note: If device configuration fails, confirm that the device you select for
configuration matches the device you specify during .sof file generation.

2.4. Specifying the Programming Hardware Setup

Before you can program or configure a device, you must specify an appropriate
hardware setup. The Programmer's Hardware Setup dialog box allows you to add
and remove programming hardware or JTAG servers from the current programming
setup. You can specify a hardware setup for device programming or configuration, or
configure a local JTAG server.

A JTAG server allows the Quartus Prime Programmer to access the JTAG programming
hardware connected to a remote computer through the JTAG server of that computer.
The JTAG server allows you to control the programming or configuration of devices
from a single computer through other computers at remote locations. The JTAG server
uses the TCP/IP communications protocol.

Selecting Device Programming Hardware

Follow these steps to select device programming hardware in the Programmer:

1. In the Programmer, click Hardware Setup.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 31. Hardware Setup Dialog Box

2. To add new programming hardware, click Add Hardware on the Hardware
Settings tab. In the Add Hardware dialog box, click Auto Detect to detect your
programming hardware, or specify the properties of your programming hardware.

Figure 32. Add New Hardware

3. On the Hardware Settings tab, select your connected programming hardware in
Currently selected hardware. This list is empty until you connect and add
programming hardware to your system.

4. Enable or disable Auto-adjust frequency at chain scanning to automatically
adjust the Hardware frequency according to the frequency at chain scanning.

5. Click Close. The setup appears as the current hardware setup.

Selecting a JTAG Server for Device Programming

Follow these steps to select a JTAG server for device programming in the Programmer:

1. In the Programmer, click Hardware Setup.

2. On the JTAG Settings tab, click Add Server. In the JTAG Settings dialog box,
specify the Server name and Server password.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 33. JTAG Settings

3. Under JTAG Servers, select the JTAG server that you want to access for
programming.

4. Click Close. The setup appears as the current hardware setup.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1. JTAG Chain Debugger Tool

The JTAG Chain Debugger tool allows you to test the JTAG chain integrity and detect
intermittent failures of the JTAG chain.

Access the tool by clicking Tools ➤ JTAG Chain Debugger in the Quartus Prime
software.

Figure 34. JTAG Chain Debugger (Using an Arria 10 GX Development Kit)

The JTAG Chain Debugger has the following panes:

• JTAG Chain Integrity tab

• JTAG Chain Debugging tab

• Device chain pane

• Tap state pane

• Session log pane

The tool also allows you to shift in JTAG instructions and data through the JTAG
interface, and step through the test access port (TAP) controller state machine for
debugging purposes.

If the JTAG Chain Debugger Tool GUI is disabled when first you open it, enable the tool
by selecting hardware:

1. In the JTAG Chain Debugger Tool GUI, select Edit ➤ Hardware Setup.

2. In the Hardware Settings tab of the Hardware Setup window, select a
hardware device in the Currently selected hardware field.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If no hardware is available to select, add hardware by clicking Add Hardware.

Initially, the Device chain pane is empty. To populate the Device chain pane, right-
click in the pane and select Test JTAG chain, or click Test JTAG Chain on the JTAG
Chain Integrity tab.

When the Device chain pane is populated, you can activate one or all devices in the
chain to run the test on the activated device or devices. To activate a device or all
devices in the Device chain pane, the JTAG Chain Debugging tab must be selected.

Tests are run only on activated devices. Devices that are not activated are bypassed
during testing.

You can save the contents of the Session log pane to repeat the session in the JTAG
Chain Debugging tab, or you can clear the log:

• To save the log to replay later, right-click anywhere in the Session log pane and
select Save Session Log.

• To clear the log, right-click anywhere in the Session log pane and select Clear
Session Log.

Related Information

• Agilex 7 JTAG Boundary-Scan Testing User Guide

• Stratix 10 JTAG Boundary-Scan Testing User Guide

• JTAG Boundary-Scan Testing in Arria 10 Devices

• JTAG Boundary-Scan Testing in Cyclone 10 GX Devices

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

47

https://www.intel.com/content/www/us/en/docs/programmable/683748.html
https://www.intel.com/content/www/us/en/docs/programmable/683207.html
https://www.intel.com/content/www/us/en/docs/programmable/683461.html
https://www.intel.com/content/www/us/en/docs/programmable/683775.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1.1. JTAG Chain Integrity Tab

Use the JTAG Chain Integrity tab to check the JTAG chain for potential failure, which
can be caused by either a short circuit or an open JTAG circuit.

Figure 35. JTAG Chain Integrity Tab

Table 12. JTAG Chain Integrity Tab

Pane Description

JTAG chain integrity test Run the Programmer Auto Detect feature, which detects devices in a chain and
automatically adds supported devices to the Device list in the Programmer. The devices are
added in the order in which they exist in the device chain.
If the Auto Detect feature fails to detect the JTAG chain, click Test JTAG Chain to run a
JTAG chain integrity test to analyze the failure.

IDCODE iteration test Test for chain integrity and intermittent JTAG chain communication failure. This feature is
turned off by default.
• — Run for<number>iterations–specify the number of tests that you want to repeat.

— Run until stopped–cycle the test repeatedly until you click Stop.
The IDCODE iteration test cycles through Reset and Shift DR states to read IDCODEs from
the device chain, and reports the following information:
• When the IDCODEs read in each cycle of the test are the same, the result indicates that

there are no inconsistencies or failures in the device chain.
• When the IDCODEs read in each cycle are inconsistent, an error message is reported

and the test terminates.
Results from the IDCODE iteration test appear in text format in the Session log pane and
in graphic format in the Device chain pane.

2.4.1.2. JTAG Chain Debugging Tab

Use the JTAG Chain Debugging tab to debug your JTAG chain by running commands
to step through the state of the JTAG TAP controller. You can also repeat the
commands from a previous session.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 36. JTAG Chain Debugging Tab

When the JTAG Chain Debugging tab is active, you can use the Device chain pane
to activate either a single device or all available devices:

• To activate a single device, click a device in the Device chain pane to select it
and then right-click the device and select Activate selected device.

• To activate all available devices, right-click the Device chain pane background
and select Activate all devices.

If the Device chain pane is empty, populate the Device chain pane by right-clicking
in the pane and selecting Test JTAG chain. You can also click Test JTAG Chain on
the JTAG Chain Integrity tab.

Table 13. JTAG Chain Debugging Tab

Task Description

Playback the debugging
sequence

Apply the commands from a saved JTAG debugging session log to repeat prior debugging
steps:
• Open JTAG Chain Log–browse to, open, and run a saved JTAG Chain Debugger session

log.
• Stop–stop the running of the commands from the saved session log.

Manually shift the JTAG
sequence

Apply single-step commands:

continued...

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Task Description

• Command–run one of the following commands for debugging the JTAG chain:
— Run test–place the TAP controller in the specified state for a specified number of

clocks.
— Scan Instruction Register–specify a scan pattern that you can apply to the target

instruction registers.
— Scan Data Register–specify a scan pattern that you can apply to the target data

registers.
— Goto State–move the TAP controller from one stable state to another for further

testing. You can also double-click a state in the TAP state pane to run this command.
• TAP state–set the target state for the commands. The selected target state are reflected.
• Clocks–specify the number of clocks to use when running a command.
• TDI–specify the command data that is sent via TDI pins
• TDO–shows command scan results read from TDO pins
• Run–apply the selected Command and Option setting to the JTAG chain.

2.4.2. Editing the Details of an Unknown Device

When the Quartus Prime Programmer automatically detects devices with shared JTAG
IDs, the Programmer prompts you to specify the device in the JTAG chain. If the
Programmer does not prompt you to specify the device, you must manually add each
device in the JTAG chain to the Programmer, and define the instruction register length
of each device.

To edit the details of an unknown device, follow these steps:

1. Double-click the unknown device listed under the device column.

2. Click Edit.

3. Change the device Name.

4. Specify the Instruction register length.

5. Click OK.

6. Save the .cdf file.

2.4.3. Running JTAG Daemon with Linux

The JTAGD daemon is the Linux version of a JTAG server. The JTAGD daemon allows a
remote machine to program or debug boards connected to a Linux host over the
network. The JTAGD daemon also allows programs to share JTAG resources.

Running the JTAGD daemon prevents:

• The JTAGD server from exiting after two minutes of idleness.

• The JTAGD server from not accepting connections from remote machines, which
might lead to an intermittent failure.

To run JTAGD as a daemon:

1. Create an /etc/jtagd directory.

2. Set the permissions of this directory and the files in the directory to allow read/
write access.

3. Execute jtagd (with no arguments) from the quartus/bin directory.

The JTAGD daemon is now running and does not terminate when you log off.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5. Programming with Flash Loaders

Parallel and serial configuration devices do not support the JTAG programming
interface. However, you can use a flash loader to program configuration devices in-
system via the JTAG interface. The flash loader allows an FPGA to function as a bridge
between the JTAG interface and the configuration device. The Quartus Prime software
supports various parallel and serial flash loaders for programming bitstream storage
and configuration via flash memory devices.

Refer to the following documents for step-by-step flash programming instructions.

Related Information

• Generic Serial Flash Interface Intel FPGA IP Core User Guide

• Intel Parallel Flash Loader IP Core User Guide

• Generic Flash Programmer User Guide

• Customizable Flash Programmer User Guide

2.5.1. Specifying Flash Partitions

Flash partitions allow you to store bitstreams or raw data.

Note: The Programming File Generator supports defining flash partitions only for .jic
or .pof programming files.

To create flash partitions in the Configuration Devices tab:

1. Select the device and click Add Partition.

2. In the Add Partition dialog box, define the following parameters, and then click
OK:

Table 14. Add Partition Dialog Box Settings

Setting Description

Name Name that you give to the partition.

Input file Input file to program into the flash partition.

Page Configuration devices can store multiple configuration bitstreams in flash memory,
called pages. CFI configuration devices can store up to eight configuration
bitstreams. Hyperflex® devices can store up to four configuration bitstreams,
including the factory image.
In Hyperflex devices, with the remote system update feature enabled, Page
represents the parity.

Address Mode The options are:
• Auto—automatically allocates a block in the flash device to store the data.
• Block—specify the start and end address of the flash partition.
• Start—specify the start address of the partition. The tool assigns the end

address of the partition based on the input data size.

Start address Specifies the start address of the partition. Only enabled when Address Mode is
Block or Start.

End address Specifies the end address of the partition. Only enabled when Address Mode is
Block.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

51

https://www.intel.com/content/www/us/en/docs/programmable/683419.html
https://www.intel.com/content/www/us/en/docs/programmable/683698.html
https://www.intel.com/content/www/us/en/docs/programmable/683495.html
https://www.intel.com/content/www/us/en/docs/programmable/683271.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The partition associated to the device appears in the device list.

3. If you want to change the parameters of a partition, click the partition and then
click Edit.

4. If you want to remove a partition, click the partition and then click Remove.

5. After specifying the settings for all flash partitions, click Generate.

2.5.2. Full Erase of Flash Memory Sectors

When performing flash memory erase operations via JTAG and a .jic file, the
Quartus Prime Programmer erases only the flash memory sectors that the .jic
specifies.

For example, if you specify a .jic file containing only a 13.6Mbits FPGA image on an
EPCQ64A device, the Programmer erases only the bottom 13.6Mbits, and does not
erase the remaining 50.4Mbits of data.

To erase the entire flash memory device contents, do not specify a .jic file for flash
programming. Rather, manually add the flash device to the associated FPGA device
chain by following these steps:

1. In the Programmer, right-click the target FPGA device, and then click Edit ➤
Attach Flash Device.

2. Select the appropriate flash device from the list. The Factory Default Serial Flash
Loader loads for the FPGA automatically.

3. In the Programmer, enable the Erase checkbox, and click Start to start the erase
operation.

2.6. Verifying the Programming File Source with Project Hash

Quartus Prime programming files support the project hash property, which identifies
the source project from which programming files generate.

During compilation, the Quartus Prime software generates a unique project hash, and
embeds this hash value in the programming files (.sof). You can verify the source of
programming files by matching the project and programming file hash values.

The project hash does not change for different builds of the Quartus Prime software,
or when you install a software update. However, if you upgrade any IP with a different
build or patch, the project hash changes.

2.6.1. Obtaining Project Hash for Arria 10 Devices

To obtain the project hash value of a .sof programming file for a design, use the
quartus_asm command-line executable (quartus_asm.exe in Windows) with the
--project_hash option.

quartus_asm --project_hash <sof-file>

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 1. Output of Project Hash Command:

In this example, the programming file is worm.sof.

Info: ***
Info: Running Quartus Prime Assembler
Info: Version 17.0.0 Build 288 04/12/2017 SJ Pro Edition
Info: Copyright (C) 2017 Intel Corporation. All rights reserved.
Info: Your use of Intel Corporation's design tools, logic functions
Info: and other software and tools, and its AMPP partner logic
Info: functions, and any output files from any of the foregoing
Info: (including device programming or simulation files), and any
Info: associated documentation or information are expressly subject
Info: to the terms and conditions of the Intel Program License
Info: Subscription Agreement, the Intel Quartus Prime License Agreement,
Info: the Intel MegaCore Function License Agreement, or other
Info: applicable license agreement, including, without limitation,
Info: that your use is for the sole purpose of programming logic
Info: devices manufactured by Intel and sold by Intel or its
Info: authorized distributors. Please refer to the applicable
Info: agreement for further details.
Info: Processing started: Fri Apr 14 18:01:47 2017
Info: Command: quartus_asm -t project_hash.tcl worm.sof
Info: Quartus(args): worm.sof
0x1ffdc3f47c57bbe0075f6d4cb2cb9deb
Info (23030): Evaluation of Tcl script project_hash.tcl was successful
Info: Quartus Prime Assembler was successful. 0 errors, 0 warnings
Info: Peak virtual memory: 1451 megabytes
Info: Processing ended: Fri Apr 14 18:01:56 2017
Info: Elapsed time: 00:00:09
Info: Total CPU time (on all processors): 00:00:04

2.7. Using PR Bitstream Security Verification (Stratix 10 Designs)

PR bitstream validation confirms that the persona does not use FPGA resources that
are unauthorized by the .smsf.

Thereafter, the Programmer requires both the .pmsf and .smsf to generate the PR
bitstream (.rbf) for this PR region, ensuring that the PR persona can only change
bits that the persona owns. The Platform Owner can optionally release .smsf files to
third-party Clients as part of the PR region collateral. The Platform Owner uses
the .smsf to generate the PR bitstream from Client's .pmsf for this PR region.

Figure 37. PR Bitstream Security Validation in Programmer

PR RBF

Invalid

Valid

Quartus Programmer, Assembler

PR
Security
Checker

Contention
Device DB

SMSF

Error Message, No RBF Generated
PMSF

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Platform Owner should follow these steps to license, enable, and use PR bitstream
security verification:

1. Obtain the license file to enable generation of .smsf files for PR regions during
base compilation, and to perform PR bitstream security verification during PR
bitstream generation in the Programmer. To obtain the license, login or register for
a My-Intel account, and then submit an Intel Premier Support case requesting the
license key.

2. To add the license file to the Quartus Prime Pro Edition software, click Tools ➤
License Setup and specify the feature License File.

3. To enable PR security validation features, add the following line to the
project .qsf:

set_global_assignment -name PR_SECURITY_VALIDATION on

4. Compile the base revision.

5. Following base compilation, view the Assembler reports to view the
generated .smsf files required for bitstream generation for each PR region.

6. The Client provides the .pmsf to the Platform Owner.

7. The Platform Owner verifies the .pmsf, converts the .pmsf to .rbf, and
configures the FPGA device with the .rbf.

8. The platform owner converts the .pmsf to a PR bitstream. Providing the .smsf
file to quartus_cmf instructs the tool to validate the .pmsf against that .smsf,
and then to generate a bitstream only if the files are compatible.

quartus_cpf -c –-smsf=<smsf_file> <pmsf_file> <output_file>

Related Information

Quartus Prime Pro Edition User Guide: Partial Reconfiguration
In Quartus Prime Pro Edition User Guide: Partial Reconfiguration

2.8. Stand-Alone Programmer

The free Stand-Alone Programmer is available and has the same full functionality as
the Quartus Prime Programmer.

The Stand-Alone Programmer is useful when programming devices on a workstation
that does not have an Quartus Prime software license. The Stand-Alone Programmer
does not require a separate Quartus Prime software license. Download the Stand-
Alone Programmer from the Download Center on the Intel website.

Related Information

Download Center for FPGAs

2.8.1. Stand-Alone Programmer Memory Consumption

The following operations increase memory usage in the Stand-Alone Programmer:

• Auto-detect

• Adding programming files to the flash memory

• Manually attaching the flash in the Programmer

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

54

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/programmable/downloads/download-center.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In Windows systems, the Stand-Alone Programmer has the following memory
limitations:

Table 15. Stand-Alone Programmer Memory Limitations

Application Maximum Flash Device Size Flash Device Operation
Using PFL

64-bit Stand-Alone Programmer Up to 2 Gb Multiple Flash Device

2.9. Programmer Settings Reference

The following topics describe Quartus Prime settings that impact programming and
programming file generation.

2.9.1. Device & Pin Options Dialog Box

The following tables describe Device & Pin Option settings that impact generation of
primary and secondary programming files. To access these settings, click
Assignments ➤ Device ➤ Device & Pin Options.

Table 16. General Device Options
Allow you to specify basic device configuration options that are independent of a specific configuration scheme.
To access these settings, click Assignments ➤ Device ➤ Device and Pin Options ➤ General.

Option Description

Options
Note: Not supported for Agilex 7 or

Stratix 10 devices.

• Auto-restart configuration after error—restarts the configuration process
automatically if a data error is encountered. If this option is turned off, you
must externally direct the device to restart the configuration process if an error
occurs. This option is available for passive serial and active serial configuration
schemes.

• Release clears before tri-states—releases the clear signal on registered
logic cells and I/O cells before releasing the output enable override on tri-state
buffers. If this option is turned off, the output enable signals are released
before the clear overrides are released.

• Enable user-supplied start-up clock (CLKUSR)—uses a user-supplied clock
on the CLKUSR pin for initialization. When turned off, external circuitry is
required to provide the initialization clock on the DCLK pin in the Passive Serial
and Passive Parallel Synchronous configuration schemes; in the Passive Parallel
Asynchronous configuration scheme, the device uses an internal initialization
clock.

• Enable device-wide reset (DEV_CLRn)—enables the DEV_CLRn pin, which
allows all registers of the device to be reset by an external source. If this
option is turned off, the DEV_CLRn pin is disabled when the device operates in
user mode and is available as a user I/O pin.

• Enable device-wide output enable (DEV_OE)—enables the DEV_OE pin
when the device is in user mode. If this option is turned on, all outputs on the
chip operate normally. When the pin is disabled, all outputs are tri-stated. If
this option is turned off, the DEV_OE pin is disabled when the device operates
in user mode and is available as a user I/O pin.

• Enable INIT_DONE output—enables the INIT_DONE pin, which allows you
to externally monitor when initialization is complete and the device is in user
mode. If this option is turned off, the INIT_DONE pin is disabled when the
device operates in user mode and is available as a user I/O pin.

continued...

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

• Enable JTAG Pin Sharing—enables the JTAG pin sharing feature. The JTAGEN
pin is enables and becomes a dedicated input pin in user mode. JTAG pins
(TDO, TCK, TDI, and TMS pins) are available as test pins when the JTAGEN
pin is pull low. JTAG pins are dedicated when the JTAGEN pin is high. If this
option is turned off, the JTAGEN pin is disabled when the device operates in
user mode and is available as a user I/O pin. JTAG pins are retained as
dedicated JTAG pins.

• Enable nCONFIG, nStatus, and CONF_DONE pins—enables the major
configuration pins, nCONFIG, nSTATUS, and CONF_DONE pin in user mode. If
this option is turned off, the nCONFIG, nSTATUS, and CONF_DONE pins are
disabled when the device operates in user mode and are available as user I/O
pins.

• Enable OCT_DONE —enables the OCT_DONE pin, which controls whether the
INIT_DONE pin is gated by OCT_DONE pin. If this option is turned off, the
INIT_DONE pin is not gated by the OCT_DONE pin.

• Enable security bit support—enables the security bit support, which
prevents data in a device from being obtained and used to program another
device. This option is available for supported device (MAX II, and MAX V)
families.

• Set unused TDS pins to GND—sets the unused temperature sensing diode
TSD pins, TEMPDIODEp and TEMPDIODEn to GND in the pin. By default, TSD
pins are available for connection to an external temperature sensing device;
however, you must manually connect the pins to GND if they are not connected.
When turned on, this option updates the information in the .pin file and does
not affect FPGA behavior.

• Enable CONFIG_SEL pin—enables the BOOT_SEL pin in user mode. If this
option is turned off, the BOOT_SEL pin is disabled when the device operates in
user mode and is available as a user I/O pin.

• Enable nCEO pin—enables the nCEO pin. This pin should be connected to the
nCE of the succeeding device when multiple devices are being programmed. If
this option is turned off, the nCEO pin is disabled when the device operates in
user mode and is available as a user I/O pin.

• Enable autonomous PCIe HIP mode—releases the PCIe HIP after periphery
configuration, before device core configuration completes. This option only
takes effect if CvP mode is disabled.

• Enable the HPS early release of HPS IO—releases the HPS shared I/O bank
after the IOCSR programming.

Auto usercode Sets the JTAG user code to match the checksum value of the device programming
file. The programming file is a .pof for non-volatile devices, or an .sof for
SRAM-based devices. If you turn on this option, the JTAG user code option is not
available.

JTAG user code Specifies a hexadecimal number for the device selected for the current Compiler
settings. The JTAG user code is an extension of the option register. This data can
be read with the JTAG USERCODE instruction. If you turn on Auto usercode, this
option is not available.

In-system programming clamp
state

Allows you to specify the state that the pins take during in-system programming
for used pins that do not have an in-system programming clamp state assignment.
Unused pins and dedicated inputs must always be tri-stated for in-system
programming. Used pins are tri-stated by default during in-system programming,
which electrically isolates the device from other devices on the board. At times,
however, in order to prevent system damage you may want to specify the logic
level for used pins during in-system programming. The following settings are
available:

continued...

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

• Tri-state—the pins are tri-stated.
• High—the pins drive VCCIO.
• Low—the pins drive GND.
• Sample and Sustain—the pins drive the level captured during the SAMPLE/

PRELOAD JTAG instruction.

Configuration clock source Specifies the clock source for device initialization (the duration between
CONF_DONE signal went high and before INIT_DONE signal goes high).
For AS x1 or AS x4 configuration mode, you can select either Internal Oscillator
or CLKUSR pin only. The DCLK pin is an illegal option for AS mode. In 14 nm
device families, only Internal Oscillator or OSC_CLK_1 pins are available.

Device initialization clock source Specifies the clock source for device initialization (the duration between
CONF_DONE signal went high and before INIT_DONE signal goes high).
For AS x1 or AS x4 configuration mode, you can select either Internal Oscillator
or CLKUSR pin only. The DCLK pin is an illegal option for AS mode. In 14 nm
device families, only Internal Oscillator or OSC_CLK_1 pins are available.

Table 17. Configuration Options
Allow you to specify the configuration scheme, configuration device and pin options, serial clock source, and
other options for subsequent device configuration with your programming bitstream. To access these settings,
click Assignments ➤ Device ➤ Device and Pin Options ➤ Configuration. Disabled options are unavailable
for the current device or configuration mode.

Option Description

Configuration scheme Specifies the scheme of configuration for generation of appropriate primary and
secondary programming files, such as Active Serial x4. Only options appropriate
for the current Configuration Scheme are available.

Configuration Device Allows you to specify options for an external configuration device that stores and
loads configuration data.
• Configuration device I/O voltage—specifies the VCCIO voltage of the

configuration pins for the current configuration scheme of the target device.
This option is available for supported device families.

• Force VCCIO voltage to be compatible with configuration I/O voltage—
forces the VCCIO voltage of the configuration pins to be the same as the
configuration device I/O voltage. If you turn off this option, the VCCIO voltage
of the configuration pins may vary depending on the I/O standards used in the
I/O banks containing the configuration pins. This option is available for
supported device families.

Configuration Pin Options Enables or disables operation of specific device configuration pins for status
monitoring, SEU error detection, CvP, and other configuration pin options.

Generate compressed bitstreams Generates compressed bitstreams and enables bitstream decompression in the
target device.

Active serial clock source Specifies the configuration clock source for Active Serial programming. Options
range from 12.5 MHz to 100 MHz.

VID Operation Mode Enables Voltage Identification logic in the target device with selected operation
mode. The available options are PMBus Master or PMBus Slave.

HPS/FPGA configuration order For hard processor system (HPS) configuration, specifies the order of configuration
between the HPS and FPGA. The options are HPS First, After INIT_DONE, and
When requested by FPGA.

HPS debug access port • Disabled—the HPS JTAG is not enabled.
• HPS Pins—the HPS JTAG is routed to the HPS dedicated I/O.
• SDM Pins—the HPS JTAG is chained to the FPGA JTAG.

Disable Register Power-Up
Initialization

Specifies whether the Assembler generates a bit stream with register power-up
initialization.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 18. Unused Pin Options
Allow you specify the reserve state of all the unused pins on the device. To access, click Assignments ➤
Device ➤ Device and Pin Options ➤ Unused Pins. Disabled options are unavailable for the current device
or configuration mode.

Option Description

Reserve all unused
pins

• As input tri-stated—the pins reserve as tri-state input pins.
• As output driving ground—the pins reserve as output pins and drive the ground signal.
• As output driving an unspecified signal—the pins reserve as output pins and drive any

signal.
• As input tri-stated with bus-hold circuitry—the pins reserve as tri-state input pins with

bus-hold circuitry.
• As input tri-stated with weak pull-up—the pins reserve as tri-state input pins with weak

pull-up resistors.

Table 19. Dual-Purpose Pin Options
Allow you to specify whether the associated dual-purpose pin is reserved, and the reservation purpose. To
access, click Assignments ➤ Device ➤ Device and Pin Options ➤ Dual-Purpose Pins. Disabled options
are unavailable for the current device or configuration mode.

Option Description

Dual-purpose pins • Use as regular I/O—the dual-purpose pin is not reserved. Rather the I/O pin is in in user
mode.

• Use as programming pin—the nCEO pin is reserved as a dedicated programming pin.
• As input tri-stated—the dual-purpose pin is reserved as an input pin.
• As output driving ground—the dual-purpose pin is reserved as an output pin and drives

the ground signal.
• As output driving an unspecified signal—the dual-purpose pin is reserved as an output

pin and drives any signal.
• Compiler configured—the Compiler automatically selects the best reserve setting for the

dual-purpose pin, considering the current configuration scheme, and whether the pins are
only used for configuration. If your design uses the Active Parallel configuration scheme and
the Programmer does not communicate directly with the parallel flash device in user mode,
you should reserve all dual-purpose pins connected to the parallel flash device as Compiler
configured.

Table 20. Board Trace Model Options
For Cyclone 10 GX designs only, allows you to specify the board trace, termination, and capacitive load
parameters for each I/O standard. The board trace model parameters then apply to all output or bidirectional
pins that you assign with the specified I/O standard. Board trace model parameters do not apply if you assign
them to anything other than an output or bidirectional pin. You can create board trace model assignments for
individual output or bidirectional pins in the Pin Planner. To access, click Assignments ➤ Device ➤ Device
and Pin Options ➤ Board Trace Model. Disabled options are unavailable for the current device or
configuration mode.

Option Description

I/O standard Specifies the supported I/O standard, such as Differential 1.8-V SSTL Class II.

Board trace model Lists the board trace model parameters, with units, and values for the specified I/O standard.
You can change the value of each parameter. The board trace model assignments apply to all
output and bidirectional pins with the specified I/O standard assigned to them.

Table 21. I/O Timing Options
Allow you to specify the node at which output I/O timing terminates. To access, click Assignments ➤ Device
➤ Device and Pin Options ➤ I/O Timing. Disabled options are unavailable for the current device or
configuration mode.

Option Description

Default timing I/O
endpoint

Specify Near end or Far end.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 22. Voltage Options
Allow you to specify the default I/O bank voltage for pins on the target device. Also displays the core voltage of
the device or other internal voltage information. To access, click Assignments ➤ Device ➤ Device and Pin
Options ➤ Voltage. Disabled options are unavailable for the current device or configuration mode.

Option Description

Default I/O standard Specify 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 LVTTL, or 3.0 LVCMOS.

Table 23. Error Detection CRC Options
Allow you to specify whether to use error detection cyclic redundancy check (CRC) and the value by which you
want to divide the error check frequency for the currently selected device. To access, click Assignments ➤
Device ➤ Device and Pin Options ➤ Error Detection CRC. Disabled options are unavailable for the current
device or configuration mode.

Option Description

Enable Error Detection
CRC_ERROR pin

Enables error detection CRC and CRC_ERROR pin usage for the targeted device. This check
determines the validity of the programming data in the device. Any changes in the data while
the device is in operation generates an error.
Note: Not available for Agilex 7 or Stratix 10 devices.

Enable Open Drain on
CRC Error pin

Sets the CRC ERROR pin as an open-drain pin. This action decouples the voltage level of the
CRC ERROR pin from VCCIO voltage. When you turn on this option, you must connect a pull-up
resistor to the CRC ERROR pin.
Note: Not available for Agilex 7 or Stratix 10 devices.

Enable error detection
check

Enables error detection CRC checking to verify the validity of programming data in the device,
and reports any changes in the data while the device is in operation.

Minimum SEU interval Specifies the minimum time interval between two checks of the same bit. Setting to 0 means
check as frequently as possible. Setting to a large value saves power. The unit of interval is
millisecond. The maximum allowed number of intervals is 10000.

Enable internal
scrubbing

Specifies use of internal scrubbing to correct any detected single error or double adjacent error
within the core configuration memory while the device is still running.

Generate SEU
sensitivity map file
(.smh)

Generates a Single Event Upset Sensitivity Map file. This file allows you to enable the Advanced
SEU detection feature.

Allow SEU fault
injection

Allows the injection of fault patterns to test for SEU.

Enable external
scrubbing

Enables the Assembler to provide hashes of configuration RAM (CRAM) content for all sectors
within the SRAM Object File (SOF) option.
Note: Available only for Agilex 5 device.

seu_error_out signal
behavior

Controls the behavior of the seu_error_out signal. Either correctable or uncorrectable and
only uncorrectable are the supported options.
Note: Available only for Agilex 5 device.

Table 24. CvP Settings
Specifies the configuration mode for Configuration via Protocol (CvP). To access, click Assignments ➤ Device
➤ Device and Pin Options ➤ CvP Settings. Disabled options are unavailable for the current device or
configuration mode.

Option Description

Configuration via
protocol

In Initialization and update mode, the periphery image stores in an external configuration
device and loads the image into the FPGA through a conventional configuration scheme. The
core image stores in a host memory and loads into the FPGA through the PCIe link. In Core
initialization mode, the periphery image stores in an external configuration device and loads
into the FPGA through the conventional configuration scheme. The core image is stores in a
host memory and is loads into the FPGA through the PCIe link. In Core update mode, the

continued...

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

FPGA device is initialized after initial system power up by loading the full configuration image
from the external local configuration device to the FPGA. You can use the PCIe link to perform
one or more FPGA core image update through this mode. In the Off mode, CvP is turned off.

Enable
CvP_CONFDONE pin

Indicates that the device finished core programming in Configuration via Protocol mode. If this
option is turned off, the CvP_CONFDONE pin is disabled when the device operates in user mode
and is available as a user I/O pin.
Note: Not available for Agilex 7 or Stratix 10 devices.

Enable open drain on
CvP_CONFDONE pin

Enables the open drain on the CvP_CONFDONE pin.
Note: Not available for Agilex 7 or Stratix 10 devices.

Table 25. Partial Reconfiguration Options
Specifies generation of secondary programming files that partial reconfiguration requires. To access, click
Assignments ➤ Device ➤ Device and Pin Options ➤ Partial Reconfiguration. Disabled options are
unavailable for the current device or configuration mode.

Option Description

Enable partial
reconfiguration pins

Allows you to enable the PR_REQUEST, PR_READY, PR_ERROR, PR_DONE, DCLK, and
DATA[31..0] pins. These pins are needed to support partial reconfiguration (PR) with an
external host. An external host uses the PR_REQUEST pin to request partial reconfiguration,
the PR_READY pin to determine if the device is ready to receive programming data, the
PR_ERROR pin to externally monitor programming errors, and the PR_DONE pin to indicate the
device finished programming. If this option is turned off, these pins are not available as PR pins
when the device operates in user mode and the dual-purpose programming pins are available
as user I/O pins.
Note: Not available for Agilex 7 or Stratix 10 devices.

Enable open drain on
partial reconfiguration
pins

Allows you to specify an open drain on the PR_READY, PR_ERROR, PR_DONE Partial
Reconfiguration pins.
Note: Not available for Agilex 7 or Stratix 10 devices.

Generate Partial-
Masked SOF files

Generates a Partial-Masked SRAM Object file (.pmsf) containing both configuration data and
region definitions that can be used to re-configure a device region. If this option is turned on,
the .pmsf generates instead of a Mask Settings file (.msf).

Generate Partial
Reconfiguration RBF

Generates a Partial Reconfiguration Raw Binary File (.rbf) containing configuration data that
an intelligent external controller can use to reconfigure the portion of target device.

Table 26. Power Management & VID Options
For Stratix 10 and Agilex 7 devices only, specifies options for managing power, such as the bus speed mode
and the address of the voltage regulator when in PMBus Master mode. To access, click Assignments ➤ Device
➤ Device and Pin Options ➤ Power Management & VID Options. Disabled options are unavailable for the
current device or configuration mode.

Option Description

Bus speed mode Specifies the bus speed mode (for example, 100 KHz or 400 KHz) in PMBus Master mode.

Slave device type Specifies the slave device type when the target FPGA device is in PMBus master mode.
Available options are ED8401, EM21XX, EM22XX, ISL82XX, ISL69260, LTM4677, and
Other.

Device address in
PMBus Slave mode

Specifies the starting 00 device address when in PMBus Slave mode.

PMBus device 0 slave
address through PMBus
device 7 slave address

Specifies 7-bit hexadecimal value (without leading prefix 0x). For example, 7F for the slave
address of a voltage regulator when in PMBus Master mode. You must specify a non-zero
address.

Voltage output format Specifies the Auto discovery, Direct format, or Linear format output voltage format when
in PMBus Master mode

continued...

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Direct format
coefficient (m,b,R)

Specifies direct format coefficient m, b, or R when in PMBus Master mode. Signed integer
between -32768 and 32767. Coefficient m is the slope coefficient. Coefficient b is the offset.
Coefficient R is the exponent. Refer to the PMBus device manufacturer product documentation
for these values. You must set this parameter when output voltage format of PMBus device is
Direct format or Auto discovery format. You must specify a non-zero address when the
output voltage format of PMBus device is in Direct format.

Linear format N Specifies linear format N when in PMBus Master mode. Signed integer between -16 and 15.
This is the exponent for the mantissa for the output voltage related command when VOUT
format is set to Linear format. Refer to the PMBus device manufacturer product
documentation for these values. You must specify a non-zero value for Linear format.

Translated voltage
value unit

Specifies the Volts or Millivolts output voltage format when in PMBus Master mode.

Enable PAGE
command

The FPGA PMBus master uses PAGE command to set all output channels on registered regulator
modules to respond to VOUT_COMMAND.

More Options Opens the Advanced Power Management & VID Options dialog box for specifying the
following additional options:
• Enable status_byte for polling—Enables the device to query the voltage regulator status

via STATUS WORD command. If any errors are found, the SEU_ERROR pin is asserted. The
Error Message Queue (EMQ) includes the complete details about the error. For instructions
about retrieving the EMQ, refer to the SEU Mitigation User Guide for your device.

• Disable VID for debug purpose only—Use this option for debug purpose only. When you
enable this option, you must set the device operating voltage to 0.8 V. VID is disabled, and
device performance and functionality are not guaranteed.

• Diagnostic Boot—Performs additional checks of the voltage regulator's configuration and
operation.
Note: This feature adds to the configuration time, so enable this option only during board

bring-up operations.

Table 27. Assembler Security Settings
For Stratix 10 devices, specifies settings for programming bitstream authentication, encryption, scrambling,
and other eFuse enabled security options. To access these settings, click Assignments ➤ Device ➤ Device
and Pin Options ➤ Security. Disabled options are unavailable for the current device or configuration mode.

Option Description

Quartus Key File Specifies the first level signature chain file (.qky) that you generate. This chain
includes the root key (.pem) and one or more design signing keys (.pem) required
to sign the bitstream and allow access to the FPGA when using authentication or
encryption.

Encryption key storage select Specifies the location that stores the .qek key file. You can select either Battery
Backup RAM or eFuses for storage.

Encryption update ratio Specifies the ratio of configuration bits compared to the number of key updates
required for bitstream decryption. You can select either 31:1 (the key must
change 1 time every 31 bits) or Disabled (no update required). Encryption
supports up to 20 intermediate keys.

Enable scrambling Scrambles the configuration bitstream.

More Options Opens the More Security Options dialog box for specifying additional physical
security options.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 28. Configuration PIN Dialog Box
For Stratix 10 devices, allows you to enable or disable specific configuration pins. For example, you can enable
the CvP_CONFDONE pin, which indicates that the device finished core programming in Configuration via
Protocol mode. To access these settings, click Assignments ➤ Device ➤ Device and Pin Options ➤
Configuration Pin Options. Disabled options are unavailable for the current device or configuration mode.

Option Values Description

USE PWRMGT_SCL output SDM_1O0|SDM_IO14 This is a required PMBus interface for the power
management when the VID operation mode is the
PMBus Master or PMBus Slave mode.
Disable this pin for a non-SmartVID device.
Intel recommends using the SDM_IO14 pin for this
function.

Use PWRMGT_SDA output SDM_1O11|SDM_1O12|
SDM_1O16

This is a required PMBus interface for the power
management when the VID operation mode is the
PMBus Master or PMBus Slave mode.
Disable this pin for a non-SmartVID device.
Intel recommends using the SDM_IO11 pin for this
function.

Use PWRMGT_ALERT
output

SDM_1O0|SDM_1O12 This is a required PMBus interface for the power
management that is used only in the PMBus Slave
mode.
Disable this pin for a non-SmartVID device.
Intel recommends using the SDM_IO12 pin for this
function.

USE CONF_DONE output SDM_100, SDM_1010 -
SDM_1016

Implement CONF_DONE using appropriate configuration
pin resource.

USE INIT_DONE output SDM_100, SDM_1010 -
SDM_1016

Enables the INIT_DONE pin, which allows you to
externally monitor when initialization is completed and
the device is in user mode. If this option is turned off,
the INIT_DONE pin is disabled when the device operates
in user mode and is available as a user I/O pin.

USE CVPCONF_DONE
output

SDM_100, SDM_1010 -
SDM_1016

Enables the CVP_CONFDONE pin, which indicates that
the device finished core programming in Configuration
via Protocol mode. If this option is turned off, the
CVP_CONFDONE pin is disabled when the device
operates in user mode and is available as a user I/O pin.

USE SEU_ERROR output SDM_100, SDM_1010 -
SDM_1016

Enables the SEU_ERROR pin for use in single event upset
error detection.

USE UIB CATTRIP output SDM_100, SDM_1010 -
SDM_1016

Enables UIB_CATTRIP output to indicate an extreme
over-temperature conditioning resulted from UIB usage.

USE HPS cold nreset SDM_100, SDM_1010 -
SDM_1016

An optional reset input that cold resets only the HPS and
is configured for bidirectional operation.

Direct to factory image SDM_100, SDM_1010 -
SDM_1016

If this pin asserted then device loads the factory image
as the first image after boot without attempting to load
any application image.

USE DATA LOCK output SDM_100, SDM_1010 -
SDM_1016

Output to indicate DIBs on both die in the same package
is ready for data transfer.

Related Information

Enabling Bitstream Authentication (Programming File Generator) on page 20

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.2. More Security Options Dialog Box

Table 29. More Security Options Dialog Box
For Stratix 10 devices, specifies additional configuration bitstream physical security settings. To access these
settings, click Assignments ➤ Device ➤ Device and Pin Options ➤ Security ➤ More Settings button.
Disabled options are unavailable for the current device or configuration mode.

Option Description Values

Disable JTAG Disables JTAG command and configuration of the device. Setting
this eliminates JTAG as mode of attack, but also eliminates
boundary scan functionality.

• Off—inactive
• On—active until

wipe of containing
design

• On sticky—active
until next POR

• On check—checks
for corresponding
blown fuse

Force SDM clock to
internal oscillator

Disables an external clock source for the SDM. The SDM must use
the internal oscillator. Using an internal oscillator is more secure
than allowing an external clock source for configuration.

Force encryption key
update

Specifies that the encryption key must update by the frequency
that you specify for the Encryption update ratio option. The
default ration value is 31:1. Encryption supports up to 20
intermediate keys.

Disable virtual eFuses Disables the eFuse virtual programming capability.

Lock security eFuses Causes eFuse failure if the eFuse CRC does not match the
calculated value.

Disable HPS debug Disables debugging through the JTAG interface to access the HPS.

Disable encryption key
in eFuses

Specifies that the device cannot use an AES key stored in eFuses.
Rather, you can provides an extra level of security by storing the
AES key in BBRAM.

Disable encryption key
in BBRAM

Specifies that the device cannot use AES key stored in BBRAM.
Rather, you can provides an extra level of security when you store
the AES key in eFuses.

2.9.3. Output Files Tab Settings (Programming File Generator)

The Output Files tab allows you to specify the type of secondary programming file
that you want to generate (output) with the Programming File Generator. The
Programming File Generator converts a primary programming file (for
example, .sof) into a programming file for alternative programming methods (for
example, a .jic for flash programming). The Output Files tab and options change
dynamically according to your selections.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following output file options are available:

Table 30. Output File Options

Setting Description

Device family Specifies the FPGA device family you are targeting for configuration.
Programming File Generator supports only Agilex 7, Stratix 10, MAX 10, and
Cyclone 10 LP devices.

Configuration mode Specifies the method of FPGA configuration, such as Active Serial x4, AVST x8,
AVST x16, or AVST x32. Generic Flash Programmer supports only Active Serial
x4.

Output directory and Name Specifies the name and location of the file you generate. By default, this location is
in the top-level project directory.

File Types Allows you to enable the type of secondary programming file that you want to
generate. Generic Flash Programmer supports only JTAG Indirect Configuration
File (.jic). The available options include:
• JTAG Indirect Configuration File (.jic)
• Programmer Object File (.pof)
• Raw Binary File for CvP Core Configuration (.rbf)
• Raw Binary File for HPS Core Configuration (.rbf)
• Raw Binary File for Partial Reconfiguration (.rbf)
• Raw Programming Data File (.rpd)

2.9.4. Input Files Tab Settings (Programming File Generator)

The Input Files tab allows you to specify the .sof, .pmsf, or .rbf file that contains
the configuration bitstream data required to generate one or more secondary
programming files. The Input Files tab and options change dynamically, according to
your Output Files tab selections.

The following input file settings are available:

Table 31. Input File Settings

Setting Description

Add Bitstream Click this button to specify a .sof, .pmsf, or .rbf as input for generation of the
secondary programming file you select in Output Files. Depending on the target
device, the Quartus Prime software may allow you to add multiple SOF files.

Add Raw Data Click this button to specify a .hex or .bin file that contains raw programming
data as input for generation of the secondary programming file you select in
Output Files.

Remove Removes the file you select from the Input Files tab.

Properties Displays the properties of the item you select in the Input Files tab.

Related Information

Enabling Bitstream Encryption (Programming File Generator) on page 23

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.5. Bitstream Co-Signing Security Settings (Programming File
Generator)

Table 32. Input File Properties Dialog Box (Programming File Generator)
Allows you to specify options for bitstream authentication, co-signing, and encryption security. To access, select
an .sof or .rbf in the Input files tab in the Programming File Generator, and click Properties.

Option Description

Bootloader Specifies an ASCII text file in Intel hexadecimal format that contains configuration data for
programming a parallel data source, such as a configuration device or a mass storage device.
The parallel data source in turn configures an SRAM-based Intel device

Enable signing tool Enables the signing tool that checks for a required Privacy Enhanced Mail Certificates file
(.pem) for the Private key file, and a Quartus Co-Signed Firmware file (.zip) for the Co-
signed firmware option.

Private key file Specifies the private .pem file required to sign the configuration bitstream when using the
signing tool. If your .pem is password-protected, you are prompted to enter the password.

Co-signed firmware Specifies the firmware source (.zip) required to include the signed firmware in the
configuration bitstream.

Finalize encryption Finalizes the configuration bitstream encryption.

Encryption key file Specifies the Encryption Key File (.qek) required to decrypt the configuration bitstream file.

2.9.6. Configuration Device Tab Settings

The Configuration Device tab allows you to specify the properties of an existing or
new flash memory device that you want to program. Click Add Device to select a
programming template for a predefined flash memory, or to click <<new device>>
and then define a new flash memory device.

The following settings are available:

Table 33. Configuration Device Tab Settings

Option Description

Device name Specify a unique name for the flash not already listed in the Name column. The
Name must not contain any empty string (space) or special characters (except
"_").

Device ID Specify the 3-byte ID that the Programmer Auto-Detect operation uses to detect
the flash programming device, such as 0x20 0xBB 0x21.

Device I/O voltage Specify 1.8V or 3.0/3.3V to match your memory device specification.

Device density Select the total density that corresponds with your flash memory device size.

Total device die Specify the total number of die for a stacked device (where applicable).

Single I/O mode dummy clock Specify the Fast Read dummy clock cycle for flash device in single I/O protocol.
The programming file generation uses this setting to determine if the configuration
requires bit shifting to compensate for the actual dummy clock cycle during Active
Serial configuration.

Quad I/O mode dummy clock Specify the Fast Read dummy clock cycle for flash device in Quad I/O protocol. The
programming file generation uses this setting to determine if the configuration
requires bit shifting to compensate for the actual dummy clock cycle during Active
Serial configuration.

Custom database directory Specifies the location of the .xml file that preserves a flash memory device
definition.

continued...

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Note: When you specify a non-default folder for the Custom database
directory location, place the .sof and .jic files in the same folder as
the .xml file to avoid missing a defined flash database or corruption of
the .jic file.

2.9.7. Add Partition Dialog Box (Programming File Generator)

To open in the Programming File Generator, click the Configuration Device tab,
select a device from the list, and click Add Partition.

Allows you to specify the attributes of a new partition. The following settings are
available:

Table 34. Add Partition Dialog Box Settings

Setting Description

Name Name that you give to the partition.

Input file Input file to program into the flash partition.

Page Configuration devices can store multiple configuration bitstreams in flash memory,
called pages. CFI configuration devices can store up to eight configuration
bitstreams. Hyperflex devices can store up to four configuration bitstreams,
including the factory image.
In Hyperflex devices, with the remote system update feature enabled, Page
represents the parity.

Address Mode The options are:
• Auto—automatically allocates a block in the flash device to store the data.
• Block—specify the start and end address of the flash partition.
• Start—specify the start address of the partition. The tool assigns the end

address of the partition based on the input data size.

Start address Specifies the start address of the partition. Only enabled when Address Mode is
Block or Start.

End address Specifies the end address of the partition. Only enabled when Address Mode is
Block.

2.9.8. Add Filesystem Dialog Box (Programming File Generator)

To open in the Programming File Generator, click the Configuration Device tab,
select a device from the list, and click Add Filesystem.

Allows you to specify the attributes of a new file system partition. The following
settings are available:

Table 35. Add Filesystem Dialog Box Settings

Setting Description

Name Name given to the file system. This value is fixed and set to LITTLEFS.
You cannot change this value.

Input file Input ZIP file that contains files to write to the file system partition.

Address Mode The options are as follows:

continued...

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description

• Highest
Allocate the start address of the file system partition at the highest address of
the flash memory device.

• Start
Allocate the start address of the file system partition at the start address
specified in the Start address field.

• Auto
Allocate the start address for the file system partition automatically.

Start address Specifies the start address of the file system.
Enabled only when Address Mode is Start.

Size (MB) Specifies the size of the file system partition in MB. The default file system size is
1 MB.
Enabled only when Address Mode is Highest or Start.

2.9.9. Convert Programming File Dialog Box

Allows you to convert or combine one or more secondary programming files that
support alternative device configuration schemes, such as flash programming, partial
reconfiguration, or remote system update.

Table 36. Convert Programming File Dialog Box Settings

Setting Description

Programming file type Allows you to specify a secondary programming file format for conversion of a
primary programming file. The Generic Flash Programmer supports only the .jic
file type.

Configuration device Allows you to select a predefined or define a new configuration device. Click the
(…) button to define a new device and programming flow.

Mode Allows you to select the method of device configuration. The Generic Flash
Programmer supports only the Active Serial or Active Serial x4 modes.

Output file Specifies the location of the files that Convert Programming File generates. By
default this location is the top-level project directory.

Input files to convert Specifies one or more primary programming files for conversion or combination
into one or more secondary programming files for alternative programming
methods.

2.9.10. Compression and Encryption Settings (Convert Programming File)

The compression and encryption settings allow you to specify options for compression
and encryption key security for the device configuration SRAM Object File (.sof). To
access these settings, select the .sof in the Input files to convert list in the
Convert Programming File dialog box, and click Properties.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 37. SOF File Properties: Bitstream Encryption Dialog Box (Convert Programming
Files)
Allows you to specify options for compression and encryption key security for the device configuration SRAM
Object File (.sof). To access, select an .sof in the Input files to convert list in the Convert Programming
Files dialog box, and click Properties.

Option Description

Compression Applies compression to the bitstream to reduce the size of your programming file. The Quartus
Prime Assembler can generate a compressed bitstream image that reduces configuration file
size by 30% to 55% (depending on the design). The FPGA device receives the compressed
configuration bitstream, and then can decompress the data in real-time during configuration.
This option is unavailable whenever Generate encrypted bitstream is enabled.

Enable decompression
during partial
reconfiguration

Enables the option bit for bitstream decompression during Partial Reconfiguration.

Generate encrypted
bitstream

Generates an encrypted bitstream configuration image. You then generate and specify an
encryption key file (.ekp) for device configuration. This option is unavailable whenever
Compression is enabled.

Enable volatile
security key

Allows you to encrypt the .sof file with volatile (enabled) or non-volatile (disabled) security
key.

Generate encryption
lock file

Specifies the name of the encryption lock file (.elk) that Convert Programming Files
generates.

Generate key
programming file

Specifies the name of the key programming file (.key) that Convert Programming Files
generates.

Use key file • Key 1 file—specifies the name of Key 1 .key file.
• Key 2 file—specifies the name of Key 2 .key file.

Key entry Specifies the keys for bitstream decryption.

Security options The following options allow you to enable or disable features that impact device security for the
configuration bitstream.
• Disable partial reconfiguration—disables use of partial reconfiguration for the bitstream.
• Disable key-related JTAG instructions—disables use of key-related JTAG instructions for

the bitstream.
• Disable other extended JTAG instructions—disables use of other JTAG instructions for

the bitstream.
• Force the external JTAG pins into BYPASS mode—forces the external JTAG pins into

BYPASS mode.
You can specify Off, Turns On Until the Next Full Configuration, Turns on until the next
Power-On-Reset event, Turns on by blowing the corresponding fuses,

Design Security
Feature Disclaimer

Acknowledges required acceptance of Design Security Disclaimer.

2.9.11. SOF Data Properties Dialog Box (Convert Programming File)

Allows you to define flash memory pages that store configuration data. To access from
the Convert Programming File dialog box, click the SOF Data item and click the
Properties button.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following settings are available:

Table 38. SOF Data Properties Dialog Box Settings

Setting Description

Pages Configuration devices can store multiple configuration bitstreams in flash memory,
called pages. CFI configuration devices can store up to eight configuration
bitstreams. Some Intel FPGA devices can store multiple configuration bitstreams,
including the factory image.

Address mode for selected pages The options are:
• Auto—automatically allocates a block in the flash device to store the data.
• Block—specify the start and end address of the flash partition.
• Start—specify the start address of the partition. The tool assigns the end

address of the partition based on the input data size.

Start address Specifies the start address of the partition. Only enabled when Address Mode is
Block or Start.

End address Specifies the end address of the partition. Only enabled when Address Mode is
Block.

2.9.12. Select Devices (Flash Loader) Dialog Box

Allows you to select the device that controls loading of configuration data into a flash
memory device. To access from the Programming File Generator, click the Select
button for Flash loader in the Configuration Device tab. To access from the
Convert Programming File dialog box, select the Flash Loader item and click Add
Device.

The following settings are available:

Table 39. Flash Loader (Select Devices Dialog Box)

Option Description

Device family Specifies the family of the flash loader device.

Device name Specifies the name of the flash loader device.

2.10. Scripting Support

In addition to the Quartus Prime Programmer GUI, you can access programmer
functionality from the command line and from scripts with the Quartus Prime
command-line executable quartus_pgm.exe (or quartus_pgm in Linux).

The following command programs a device from a Microsoft* Windows* command
line:

quartus_pgm –c usbblasterII –m jtag –o bpv;design.pof

Where:

-c usbblasterII specifies the Intel FPGA Download Cable II

-m jtag specifies the JTAG programming mode

-o bpv represents the blank-check, program, and verify operations

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

design.pof represents the .pof containing the design logic

The Programmer automatically executes the erase operation before programming the
device.

In a Linux* terminal terminal window, use:

quartus_pgm –c usbblasterII –m jtag –o bpv\;design.pof

The following examples shows how to erase flash memory that is connected to the
FPGA through an active serial interface from a Microsoft Windows command line:

quartus_pgm -c usbblasterII -m jtag -o ri;design.jic@1

Where:

-c usbblasterII specifies the Intel FPGA Download Cable II

-m jtag specifies the JTAG programming mode

-o ri represents the serial flash loader program and erase operations

design.jic represents the JTAG indirect configuration file (.jic)

@1 specifies the device number in the JTAG chain on which these
operations are performed

In a Linux terminal terminal window, use:

quartus_pgm -c usbblasterII -m jtag -o ri\;design.jic@1

Related Information

Quartus Prime Scripting
In Quartus Prime Help

2.10.1. The jtagconfig Debugging Tool

You can use the jtagconfig command-line utility to check the devices in a JTAG
chain and the user-defined devices. The jtagconfig command-line utility is similar
to the auto detect operation in the Quartus Prime Programmer.

For more information about the jtagconfig utility, use the help available at the
command prompt:

jtagconfig [–h | --help]

Note: The help switch does not reference the -n switch. The jtagconfig -n command
shows each node for each JTAG device.

Related Information

Command Line Scripting
In Quartus Prime Pro Edition User Guide: Scripting

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

70

http://quartushelp.altera.com/current/reference/scripting/tcl_view_using_tcl_scripts.htm
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.11. Using the Quartus Prime Programmer Revision History

Table 40. Document Revision History

Date Quartus
Prime

Version

Changes

2024.04.01 24.1 • Made the following changes in Device & Pin Options Dialog Box:
— Added ISL69260 to the list of slave device types and additional options to the

Power Management & VID Options table.
— Added Agilex 5 device-related options to the Error Detection CRC Options table.

2023.04.03 23.1 • Updated product family name to "Intel Agilex 7."

2022.09.26 22.3 • Added "Add Filesystem Dialog Box".
• Removed footnotes saying that security features are not available for Agilex 7

devices.
For details about security features for Agilex 7 devices, refer to the Agilex 7 Device
Security User Guide.

2021.07.21 21.2 • Updated "JTAG Chain Debugger Tool".
• Added "JTAG Chain Integrity".
• Added "JTAG Chain Debugging".

2021.06.21 21.2 • Updated "Scripting Support" with an additional example.

2020.05.26 19.4.0 • Corrected descriptions of "Bus Speed Mode" and "Slave Device Type" power
options.

2019.09.30 19.3.0 • Updated "Device & pin Options" topic to reflect new Security settings tab.
• Updated "Configuration Device Tab" topic to reflect Custom database directory

option.
• Referenced compilation support for Agilex 7 devices.
• Added "More Security Options Dialog Box" topic.
• Added new “Bitstream Co-Signing Security Settings” topic.
• Updated "SOF File Properties: Bitstream Encryption Dialog Box" topic.
• Added new steps to “Full Erase of Flash Memory Sectors” topic.

2019.06.10 19.1.0 • Updated "Programming with Flash Loaders" topic to reflect new Generic Flash
Programmer.

• Removed references to obsolete 32-bit stand-alone Programmer.
• Added "Erasing Flash Memory Sectors" topic describing complete erase of flash

memory.
• Added new "Programmer Settings Reference" section containing the following new

GUI reference topics:
— "Device & Pin Options Dialog Box"
— "Input Files Tab Settings (Programming File Generator)"
— "Output Files Tab Settings (Programming File Generator)"
— "Configuration Device Tab Settings (Programming File Generator)"
— "Add Partition Dialog Box (Programming File Generator)"
— "Bitstream Compression, Authentication, and Encryption Settings (Programming

File Generator)"
— "Convert Programming Files Dialog Box"
— "Bitstream Compression and Encryption Settings (Convert Programming File)"
— "SOF Data Properties Dialog Box"
— "Select Devices (Flash Loader) Dialog Box"

2019.04.01 19.1.0 • Added new "Using PR Bitstream Security Verification" topic.
• Added new "Basic Device Configuration Steps" topic.
• Added new "Programming and Configuration Modes" topic.

continued...

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

71

https://www.intel.com/content/www/us/en/docs/programmable/683823.html
https://www.intel.com/content/www/us/en/docs/programmable/683823.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Quartus
Prime

Version

Changes

• Retitled and reorganized topics to improve flow of information.
• Added enhanced diagram of Programmer to "Quartus Prime Programmer" topic.
• Updated screenshots.

2018.10.09 18.1.0 • Created topic: Stand-Alone Programmer Memory Limitations from content in topic:
Stand-Alone Programmer.

• Removed outdated support information.

2018.08.07 18.0.0 Reverted document title to Programmer User Guide: Quartus Prime Pro Edition.

2018.06.27 18.0.0 • Moved information about programming file generator to new chapter: Generating
Programming Files.

2018.05.07 18.0.0 • First release as part of the stand-alone Programmer User Guide

2017.05.08 17.0.0 • Added Project Hash feature.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime software.

2015.05.04 15.0.0 Added Conversion Setup File (.cof) description and example.

December 2014 14.1.0 Updated the Scripting Support section to include a Linux command to program a
device.

June 2014 14.0.0 • Added Running JTAG Daemon.
• Removed Cyclone III and Stratix III devices references.
• Removed MegaWizard Plug-In Manager references.
• Updated Secondary Programming Files section to add notes about the Quartus II

Programmer support for .rbf files.

November 2013 13.1.0 • Converted to DITA format.
• Added JTAG Debug Mode for Partial Reconfiguration and Configuring Partial

Reconfiguration Bitstream in JTAG Debug Mode sections.

November 2012 12.1.0 • Updated Table 18–3 on page 18–6, and Table 18–4 on page 18–8.
• Added “Converting Programming Files for Partial Reconfiguration” on page 18–10,

“Generating .pmsf using a .msf and a .sof” on page 18–10, “Generating .rbf for
Partial Reconfiguration Using a .pmsf” on page 18–12, “Enable Decompression
during Partial Reconfiguration Option” on page 18–14

• Updated “Scripting Support” on page 18–15.

June 2012 12.0.0 • Updated Table 18–5 on page 18–8.
• Updated “Quartus II Programmer GUI” on page 18–3.

November 2011 11.1.0 • Updated “Configuration Modes” on page 18–5.
• Added “Optional Programming or Configuration Files” on page 18–6.
• Updated Table 18–2 on page 18–5.

May 2011 11.0.0 • Added links to Quartus II Help.
• Updated “Hardware Setup” on page 21–4 and “JTAG Chain Debugger Tool” on page

21–4.

December 2010 10.1.0 • Changed to new document template.
• Updated “JTAG Chain Debugger Example” on page 20–4.
• Added links to Quartus II Help.
• Reorganized chapter.

continued...

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Quartus
Prime

Version

Changes

July 2010 10.0.0 • Added links to Quartus II Help.
• Deleted screen shots.

November 2009 9.1.0 No change to content.

March 2009 9.0.0 • Added a row to Table 21–4.
• Changed references from “JTAG Chain Debug” to “JTAG Chain Debugger”.
• Updated figures.

2. Using the Quartus Prime Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Using the HPS Flash Programmer
The Quartus Prime software and Quartus Prime Programmer include the hard
processor system (HPS) flash programmer. Hardware designs, such as HPS,
incorporate flash memory on the board to store FPGA configuration data or HPS
program data. The HPS flash programmer programs the data into a flash memory
device connected to an Intel FPGA SoC. The programmer sends file contents over a
download cable, such as the Intel FPGA Download Cable II, to the HPS and instructs
the HPS to write the data to the flash memory.

The HPS flash programmer programs the following content types to flash memory:

• HPS software executable files — Many systems use flash memory to store non-
volatile program code or firmware. HPS systems can boot from flash memory.

Note: The HPS Flash Programmer is mainly intended to be used for programming
the Preloader image to QSPI or NAND flash. Because of the low speed of
operation, it is not recommended to be used for programming large files.

• FPGA configuration data — At system power-up, the FPGA configuration controller
on the board or HPS read FPGA configuration data from the flash memory to
program the FPGA. The configuration controller or HPS may be able to choose
between multiple FPGA configuration files stored in flash memory.

• Other arbitrary data files — The HPS flash programmer programs a binary file to
any location in a flash memory for any purpose. For example, a HPS program can
use this data as a coefficient table or a sine lookup table.

The HPS flash programmer programs the following memory types:

• Quad serial peripheral interface (QSPI) Flash

• Open NAND Flash Interface (ONFI) compliant NAND Flash

3.1. Supported Devices

Table 41. HPS Flash Programmer-supported Devices

Cyclone V SoC,
Arria V SoC

Arria 10 SoC Stratix 10 SoC,
Agilex 7 F-Series/I-
Series/M-Series SoC

Agilex 5 E-Series/D-
Series SoC

HPS Flash
Programmer

Supported Supported Not Supported * Not Supported *

Note: For Stratix 10 SoC, Agilex 7 SoC, or Agilex 5 SoC devices, you must program the flash
connected to HPS. You have the following options:

683039 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Use a bus switch to route the QSPI signals to an external master that does the
programming.

• Use software running on HPS to do the programming. For example, you can load
U-Boot with an Arm* debugger or System Console, and then use it to program the
flash.

Note: On Stratix 10 SoC, Agilex 7 SoC, or Agilex 5 SoC devices, the HPS can access the
QSPI flash memory connected to SDM. This flash is programmed using the Quartus
Prime Programmer tool that is part of the Quartus Prime Pro Edition software. For
additional information about the use of the Quartus Prime Programmer, refer to your
device's boot user guides.

Related Information

• Hard Processor System Booting User Guide: Agilex 5 SoCs

• Agilex 7 SoC FPGA Boot User Guide

• Stratix 10 SoC FPGA Boot User Guide

• Arria 10 SoC FPGA Boot User Guide

• HPS SoC Boot Guide - Cyclone V SoC Development Kit

3.2. HPS Flash Programmer Command-Line Utility

Run the HPS flash programmer from the command line. The HPS flash programmer is
located in the <Quartus Prime installation directory>/quartus/bin
directory.

3.3. How the HPS Flash Programmer Works

The HPS flash programmer is divided into a host and a target. The host portion runs
on your computer and sends flash programming files and programming instructions
over a download cable to the target. The target portion is the HPS in the SoC. The
target accepts the programming data flash content and required information about the
target flash memory device sent by the host. The target writes the data to the flash
memory device.

Figure 38. HPS Flash Programmer

3. Using the HPS Flash Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

75

https://www.intel.com/content/www/us/en/docs/programmable/813762.html
https://www.intel.com/content/www/us/en/docs/programmable/683389.html
https://www.intel.com/content/www/us/en/docs/programmable/683847.html
https://www.intel.com/content/www/us/en/docs/programmable/683735.html
https://www.intel.com/content/www/us/en/docs/programmable/683735.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The HPS flash programmer determines the type of flash to program by sampling the
boot select (BSEL) pins during cold reset; you do not need to specify the type of flash
to program.

3.4. Using the Flash Programmer from the Command Line

3.4.1. HPS Flash Programmer

The HPS flash programmer utility can erase, blank-check, program, verify, and
examine the flash. The utility accepts a Binary File with a required ".bin" extension.

The HPS flash programmer command-line syntax is:

quartus_hps <options> <file.bin>

Note: The HPS flash programmer uses byte addressing.

Table 42. HPS Flash Programmer Parameters

Option Short Option Required Description

--addr -a Yes (if the start
address is not 0)

This option specifies the start address of the operation to
be performed.

--cable -c Yes This option specifies what download cable to use.
To obtain the list of programming cables, run the
command "jtagconfig". It lists the available cables, like in
the following example:
jtagconfig

• Intel FPGA Download Cable [USB-0]
• Intel FPGA Download Cable [USB-1]
• Intel FPGA Download Cable [USB-2]
The "-c" parameter can be the number of the
programming cable, or its name. The following are valid
examples for the above case:
• -c 1
• -c "Intel FPGA Download Cable [USB-2]"

--device -d Yes (if there are
multiple HPS devices
in the chain)

This option specifies the index of the HPS device. The tool
automatically detects the chain and determine the position
of the HPS device; however, if there are multiple HPS
devices in the chain, the targeted device index must be
specified.

--boot N/A Yes Option to reconfigure the HPS IOCSR and PINMUX before
starting flash programming.
For the Quartus Prime HPS Flash Programmer options:
• Warm/cold reset HPS (BootROM) so that BootROM can

reconfigure the setting.
FPGA (for Arria 10) is nconfig.

• Explicitly configure dedicated I/O and PINMUX
Available options:
• 1 - Set Breakpoint to halt CPU, warm reset HPS [not

recommended](6)

• 2 - Set Watchpoint to halt CPU, warm reset HPS(7)

continued...

(6) Warm reset HPS for BootROM to configure dedicated IO and PINMUX, and use a breakpoint to
halt CPU.

3. Using the HPS Flash Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Short Option Required Description

• 3 - Explicitly configure dedicated IO and PINMUX(8)

• 16 - Cold reset HPS(9)

Cyclone V and Arria 10 support values: 1, 2 and 16.
Arria 10 supports values: 2, 3 and 16
Note: For the first three options, add up integer of 16, so

that the HPS cold reset is performed
Available options for a cold reset before the flow:
• 17 - Cold reset HPS + breakpoint(10)

• 18 - Cold reset HPS + watchpoint(11)

• 19 - Cold reset HPS + configure dedicated IO and
PINMUX(12)

--exit_xip N/A Yes (if the QSPI flash
device has been put
into XIP mode)

This option exits the QSPI flash device from XIP mode. A
non-zero value has to be specified for the argument. For
example, quartus_hps -c <cable> -o <operation>
--exit_xip=0x80.

--operation -o Yes This option specifies the operation to be performed. The
following operations are supported:
• I—Read IDCODE of SOC device and discover Access

Port
• S—Read Silicon ID of the flash
• E—Erase flash
• B—Blank-check flash
• P—Program flash
• V—Verify flash
• EB—Erase and blank-check flash
• BP—Program <BlankCheck> flash
• PV—Program and verify flash
• BPV—Program (blank-check) and verify flash
• X—Examine flash
Note: The program begins with erasing the flash

operation before programming the flash by default.

--size -s No This option specifies the number of bytes of data to be
performed by the operation. size is optional.

continued...

(7) Warm reset HPS for BootROM to configure dedicated IO and PINMUX, and use a watchpoint to
halt CPU.

(8) Explicitly configure dedicated IO and PINMUX.

(9) Bit-wise on top of the flow, if you set the bit, the tool will perform cold reset first

(10) Cold reset HPS for BootROM to configure dedicated IO and PINMUX, and use a breakpoint to
halt CPU.

(11) Cold reset HPS for BootROM to configure dedicated IO and PINMUX, and use a watchpoint to
halt CPU.

(12) Cold reset HPS, then explicitly configure dedicated IO and PINMUX.

3. Using the HPS Flash Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Short Option Required Description

Note: The following options: repeat and interval must be used together and are optional.
The HPS BOOT flow supports up to four images where each image is identical. These options duplicate the operation data;
therefore you do not need embedded software to create a large file containing duplicate images.

--repeat -t No repeat—specifies the number of duplicate images for the
operation to perform.

--interval -i No interval—specifies the repeated address. The default
value is 64 kilobytes (KB).

3.4.2. HPS Flash Programmer Command Line Examples

Type quartus_hps --help to obtain information about usage. You can also type
quartus_hps --help=<option> to obtain more details about each option. For
example "quartus_hps --help=o".

Example 2. Program File to Address 0 of Flash
quartus_hps –c 1 –o P input.bin programs the input file (input.bin) into the
flash, starting at flash address 0 using a cable 1.

Example 3. Program First 500 Bytes of File to Flash (Decimal)
quartus_hps –c 1 –o PV –a 1024 –s 500 input.bin programs the first 500
bytes of the input file (input.bin) into the flash, starting at flash address 1024,
followed by a verification using a cable 1.

Note: Without the prefix "0x" for the flash address, the tool assumes it is decimal.

Example 4. Program First 500 Bytes of File to Flash (Hexadecimal)
quartus_hps –c 1 –o PV –a 0x400 –s 500 input.bin programs the first 500
bytes of the input file (input.bin) into the flash, starting at flash address 1024,
followed by a verification using a cable 1.

Note: With the prefix 0x, the tool assumes it is hexadecimal.

Example 5. Program File to Flash Repeating Twice at Every 1 MB
quartus_hps –c 1 –o BPV –t 2 –i 0x100000 input.bin programs the input
file (input.bin) into the flash, using a cable 1. The operation repeats itself twice at
every 1 megabyte (MB) of the flash address. Before the program operation, the tool
ensures the flash is blank. After the program operation, the tool verifies the data
programmed.

Example 6. Erase Flash on the Flash Addresses
quartus_hps –c 1 –o EB input.bin erases the flash on the flash addresses
where the input file (input.bin) resides, followed by a blank-check using a cable 1.

Example 7. Erase Full Chip
quartus_hps –c 1 –o E erases the full chip, using a cable 1. When no input file
(input.bin) is specified, it erases all the flash contents.

3. Using the HPS Flash Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 8. Erase Specified Memory Contents of Flash
quartus_hps –c 1 –o E –a 0x100000 –s 0x400000 erases specified memory
contents of the flash. For example, 4 MB worth of memory content residing in the
flash address, starting at 1 MB, are erased using a cable 1.

Example 9. Examine Data from Flash
quartus_hps –c 1 –o X –a 0x98679 –s 56789 output.bin examines 56789
bytes of data from the flash with a 0x98679 flash start address, using a cable 1.

3.5. Supported Memory Devices

Table 43. QSPI Flash

Flash Device Manufacturer Device ID DIE # Density (Mb) Voltage

M25P40 Micron 0x132020 1 4 3.3

N25Q064 Micron 0x17BA20 1 64 3.3

N25Q128 Micron 0x18BA20 1 128 3.3

N25Q128 Micron 0x18BB20 1 128 1.8

N25Q256 Micron 0x19BA20 1 256 3.3

N25Q256 Micron 0x19BB20 1 256 1.8

MT25QL512 Micron 0x20BA20 1 512 3.3

N25Q512 Micron 0x20BA20 2 512 3.3

MT25QU512 Micron 0x20BB20 1 512 1.8

N25Q512A Micron 0x20BB20 2 512 1.8

N25Q00AA Micron 0x21BA20 4 1024 3.3

MT25QU01G Micron 0x21BB20 2 1024 1.8

N25Q00AA Micron 0x21BB20 4 1024 1.8

MT25QL02G Micron 0x22BA20 4 2048 3.3

MT25QU02G Micron 0x22BB20 4 2048 1.8

S25FL128S Cypress 0x182001 1 128 (64KB
Sectors)

3.3

S25FL128S Cypress 0x182001 1 128 (256KB
Sectors)

3.3

S25FL256S Cypress 0x190201 1 256 (64KB
Sectors)

3.3

S25FL256S Cypress 0x190201 1 256 (256KB
Sectors)

3.3

S25FL512S Cypress 0x200201 1 512 3.3

MX25L12835E Macronix 0x1820C2 1 128 3.3

MX25L25635 Macronix 0x1920C2 1 256 3.3

MX66L51235F Macronix 0x1A20C2 1 512 3.3

continued...

3. Using the HPS Flash Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Flash Device Manufacturer Device ID DIE # Density (Mb) Voltage

MX66L1G45 Macronix 0x1B20C2 1 1024 3.3

MX66U51235 Macronix 0x3A25C2 1 512 1.8

GD25Q127C GigaDevice 0x1840C8 1 128 3.3

Table 44. ONFI Compliant NAND Flash

Manufacturer MFC ID Device ID Density (Gb)

Micron 0x2C 0x68 32

Micron 0x2C 0x48 16

Micron 0x2C 0xA1 8

Micron 0x2C 0xF1 8

Note: The above table contains just examples of supported devices. The HPS Flash
Programmer supports all ONFI compliant NAND flash devices that are supported by
the HPS QSPI Flash Controller.

Note: The HPS Flash Programmer supports Arria 10 devices. For more information, refer to
the "Supported Flash Devices for Arria 10" web page.

Related Information

Supported Flash Devices for Arria 10 SoCs

3.6. HPS Flash Programmer User Guide Revision History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Added Supported Devices topic.

2023.04.03 23.1 • Updated product family name to "Intel Agilex 7."

2020.12.14 20.4 Moved HPS Flash Programmer User Guide from Intel SoC FPGA Embedded
Development Suite User Guide to Intel Quartus Prime Pro Edition User
Guide: Programmer.

Document Version Changes

2020.08.07 Maintenance release

2020.05.29 Added descriptions for the bit-wise values not displayed in help output

2019.12.20 Supported with Quartus Prime Standard Edition version 19.1 and Quartus Prime
Pro Edition version 19.3
• Maintenance release

2019.05.16 HPS Flash Programmer: Documented --boot=18 for QSPI programming

2018.09.24 Added supported memory devices in the "QSPI Flash" table; and updated
voltages for several flash devices.

2018.06.18 • Updated chapter to include support for Stratix 10
• Updated chapter to include support for Quartus Prime Pro Edition

2017.05.08 • Intel FPGA rebranding
• Rebranded paths and tools for the Standard and Professional versions

continued...

3. Using the HPS Flash Programmer

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

80

https://www.intel.com/content/www/us/en/programmable/support/support-resources/supported-flash-devices-for-arria-10-soc.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Changes

2016.11.07 Maintenance release

2016.05.27 Maintenance release

2016.02.17 Added QSPI Flash part number to the QSPI Flash table in the "Supported
Memory Devices" chapter

2015.08.06 Added Arria 10 support

3. Using the HPS Flash Programmer

683039 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Programmer

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Quartus Prime Pro Edition User Guide: Programmer
Document Archive

For the latest and previous versions of this user guide, refer to Quartus Prime Pro
Edition User Guide: Programmer. If a software version is not listed, the reference
manual for the previous software version applies.

683039 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

B. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel FPGA devices, and program CPLD and configuration
devices, via connection with an Intel FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683039 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys* that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys*. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

B. Quartus Prime Pro Edition User Guides

683039 | 2024.04.01

Quartus Prime Pro Edition User Guide: Programmer Send Feedback

84

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Programmer%20(683039%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Pro Edition
User Guide
Block-Based Design

Updated for Intel® Quartus® Prime Design Suite: 23.3

This document is part of a collection - Intel® Quartus® Prime Pro Edition User Guides - Combined
PDF link

Answers to Top FAQs:
Q What is block-based design?
A Block-Based Design Flows on page 3

Q What is a design partition?
A Block-Based Design Terminology on page 3

Q What are the block-based design techniques?
A Design Methodologies Overview on page 8

Q How do I partition the design?
A Design Partitioning on page 10

Q How do I reuse core partitions?
A Reusing Core Partitions on page 16

Q How do I reuse root partitions?
A Reusing Root Partitions on page 19

Q How do I perform design abstraction?
A Design Abstraction on page 25

Online Version

Send Feedback UG-20135

683247

2023.11.07

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Block-Based Design Flows.. 3
1.1. Block-Based Design Terminology..3
1.2. Block-Based Design Overview..4

1.2.1. Design Block Reuse Overview..4
1.2.2. Incremental Block-Based Compilation Overview... 7

1.3. Design Methodologies Overview...8
1.3.1. Top-Down Design Methodology Overview.. 8
1.3.2. Bottom-Up Design Methodology Overview... 8
1.3.3. Team-Based Design Methodology Overview... 9

1.4. Design Partitioning...10
1.4.1. Planning Partitions for Periphery IP, Clocks, and PLLs.................................... 12
1.4.2. Creating Design Partitions... 13
1.4.3. Design Partition Guidelines..15

1.5. Design Block Reuse Flows... 15
1.5.1. Reusing Core Partitions...16
1.5.2. Reusing Root Partitions... 19
1.5.3. Reserved Core Entity Re-Binding.. 22
1.5.4. Viewing Quartus Database File Information... 23

1.6. Incremental Block-Based Compilation Flow..25
1.6.1. Design Abstraction... 25

1.7. Setting-Up Team-Based Designs.. 26
1.7.1. Creating a Top-Level Project for a Team-Based Design.................................. 26

1.8. Bottom-Up Design Considerations.. 28
1.9. Debugging Block-Based Designs with the Signal Tap Logic Analyzer............................ 28
1.10. Block-Based Design Flows Revision History.. 29
1.11. Intel Quartus Prime Pro Edition User Guide: Block-Based Design Document Archive.... 30

A. Intel Quartus Prime Pro Edition User Guides.. 31

Contents

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Block-Based Design Flows
The Intel® Quartus® Prime Pro Edition software supports block-based design flows,
also known as modular or hierarchical design flows.

You can designate a design block as a design partition in order to reuse the block. A
design partition is a logical, named, hierarchical boundary assignment that you can
apply to a design instance. Block-based design flows enable the following:

• Design block reuse—export and reuse of design blocks in other projects

You can reuse design blocks with the same periphery configuration, share a
synthesized design block with another designer, or replicate placed and routed IP in
another project. Design, implement, and verify core or periphery blocks once, and
then reuse those blocks multiple times across different projects that use the same
device.

1.1. Block-Based Design Terminology

This document refers to the following terms to explain block-based design methods:

Table 1. Block-Based Design Terminology

Term Description

Black Box File RTL source file that contains only port and module or entity definitions,
without any logic. Include parameters or generics passed to the module or
entity to ensure that the configuration matches the implementation in the
Consumer project.

Block Logic that comprises a hierarchical design instance, typically represented by a
Verilog module or VHDL entity. You designate a design block as a design
partition to empty or export the block.

Consumer A Consumer can reuse a design partition that a Developer exports as a
Partition Database File (.qdb) from another project.

Core Partition A design partition that contains only FPGA resources for the implementation
of core logic, such as LUTs, registers, M20K memory blocks, and DSPs. A core
partition cannot include periphery resources.

Design Partition A logical, named, hierarchical boundary assignment that you can apply to a
design instance. Creating a partition creates a logical boundary and prevents
logic optimization and merging with parent or child partitions. Design
partitions facilitate incremental block-based compilation and design block
reuse by logically separating instances.

Developer A Developer creates and exports a design partition as a .qdb for use in a
Consumer project.

Floorplanning Planning the physical layout of FPGA device resources. The manual process of
assigning the logical design hierarchy and periphery to physical regions in the
device and I/O.

continued...

683247 | 2023.11.07

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Term Description

Logic Lock Region Constraints Constrains the placement and routing of logic to a specific region in the target
device. Specify the region origin, height, width, and any of the following
options:
• Reserved—prevents the Fitter from placing non-member logic within the

region.
• Core-Only—applies the constraint only to core logic in the region, and

does not include periphery logic in the region.
• Routing Region—restricts the routing of connections between region

members to the specified area. The routing region is non-exclusive. Other
resources in the parent or sibling hierarchy levels can use that routing
area. You can restrict the routing region to areas equal to or larger than
the Logic Lock region, up to the entire chip. The default routing region is
the entire chip.

• Size/State—fixes the size and locks the state of the region. The Fixed/
Locked option defines a region of fixed size and locked location. The
Auto/Floating option defines a region with a floating location that
automatically sizes to the logic.

Project The Intel Quartus Prime software organizes the source files, settings, and
constraints within a project of one or more revisions. The Intel Quartus Prime
Project File (.qpf) stores the project name and references each project
revision that you create.

Root Partition The Intel Quartus Prime software automatically creates a top-level
"root_partition" with a hierarchy path of |for each project revision. The root
partition includes all device periphery resources (such as I/O, HSSIO,
memory interfaces, and PCIe*) and associated core resources. You can export
and reuse periphery resources by exporting the root partition and reserving a
region for subsequent development (the reserved core) by a Consumer.

Snapshot A snapshot is a view of the design after a compilation stage. The Intel
Quartus Prime Compiler generates a snapshot of the compilation database
after each compilation stage. You can export a specific snapshot for
incremental block-based compilation, design block reuse, and team based
designs.

1.2. Block-Based Design Overview

This section provides an overview of design block reuse and incremental block-based
compilation flows. Design Block Reuse Flows on page 15 and Incremental Block-
Based Compilation Flow on page 25 describe the step-by-step details of these block-
based flows.

1.2.1. Design Block Reuse Overview

In design block reuse flows, you export a core or root partition for reuse in another
project that targets the same Intel FPGA device family. You can share one of the
following compilation snapshots for a partition across projects or with other designers:

• Synthesized snapshot

• Final snapshot

Core partition reuse enables preservation and export of compilation results for a core
partition. Reuse of the core partition allows an IP developer to create and optimize an
IP once and share it across multiple projects.

Root partition reuse enables preservation and export of compilation results for a top-
level (or root) partition that describes the device periphery, along with associated core
logic. Reuse of the periphery allows a board developer to create and optimize a
platform design with device periphery logic once, and then share that root partition

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

with other board users who create custom core logic. The periphery resources include
all the hardened IP in the device periphery, such as general purpose I/O, PLLs, high-
speed transceivers, PCIe, and external memory interfaces.

Team members can work on different partitions separately, and then bring them
together later, facilitating a team-based design environment. A team lead integrates
the partitions in the system and provides guidance to ensure that each partition uses
the appropriate device resource and achieves design requirements during the full
design integration. A Developer initially creates and exports a block as a partition in
one Intel Quartus Prime project. Subsequently, a Consumer reuses the partition in a
different project.(1) To avoid resource conflicts, floorplanning is essential when reusing
final snapshot partitions.

Related Information

Design Block Reuse Flows on page 15

1.2.1.1. Design Block Reuse Examples

Core Partition Reuse Example

In a typical core partition reuse example, a Developer exports a core partition that
already meets design requirements. The Developer optimizes and exports the block,
and then the Consumer can simply reuse the block without requiring re-optimization
in the Consumer project that targets the same device family.

Figure 1. Core Partition Reuse Example

Core Partition

Developer Design

Reused
Core Partition

Consumer Design

Export Core
Partition

You can export a core block with unique characteristics that you want to retain, and
then replicate that functionality or physical implementation in other projects. In the
following figure, a Developer reuses the red-colored partition in the floorplan in
another project shown in green in the floorplan on the right.

(1) For brevity, this document uses Developer to indicate the person or project that originates a
reusable block, and uses Consumer to indicate the person or project that consumes a reusable
block.

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. IP Replication and Physical Implementation

Root Partition Reuse Example

In a typical root partition reuse example, a Developer defines a root partition that
includes periphery and core resources that are appropriate for reuse in other projects.
An example of this scenario is reuse of the periphery for a development kit that can be
reused by multiple Developers and projects.

Figure 3. Root Partition Reuse Example

Reserved Core
Partition
(shell)

Root
Partition

Consumer Project

Export
Root

Partition

Reused
Root

Partition

Developer Project

Reserved Core
Partition

(Consumer Logic)

In root partition reuse, each project must target the same Intel FPGA device, must
have the same interfaces, and use the same version of the Intel Quartus Prime Pro
Edition software. The following example shows reuse of an optimized root partition
that contains various periphery interfaces. Only the reserved core partition that
contains custom logic changes between Consumer projects.

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. Root Partition Reuse Example

Reserved Core
Partition

Nios II

10G
Ethernet

10G
Ethernet

Packet
Buffer

Interlaken Interlaken

PCIe DMA

Device Periphery
(root partition)

You can reuse the root partition with multiple other boards. The root partition
Developer creates a design that meets expected design requirements with all the
required resources, while also reserving a region (the reserved core) for Consumer
development. The Developer then exports the root partition as a .qdb file and passes
the .qdb to the Consumers of the partition.

The Consumer reuses the root partition, and adds their own RTL for the reserved core.
This flow allows for development on several different boards with a common root
partition. Reusing the root partition saves the Consumer development time, because
the root partition is pre-optimized by the Developer.

1.2.2. Incremental Block-Based Compilation Overview

You can use incremental block-based compilation to reduce overall compile time
through design abstraction with empty design partitions.

You can specify a design partition as Empty to represent parts of your design that are
incomplete or missing. Setting a partition to Empty can reduce the total compilation
time if the Compiler does not process design logic associated with the empty partition.

Empty partitions allow you to:

• Set aside incomplete portions of the design, mark them as Empty, and complete
the design incrementally.

• Designate complete portions of the design as Empty to focus all subsequent
Compiler efforts on uncompleted portions of the design

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3. Design Methodologies Overview

Block-based design flows support top-down, bottom-up, and team-based design
methodologies. The following sections describe these methods.

1.3.1. Top-Down Design Methodology Overview

In a top-down design methodology, you plan the design at the top level, and then split
the design into lower-level design blocks. Different developers or IP providers can
create and verify HDL code for the lower-level design blocks separately, but one team
lead manages the implementation project for the entire design.

In the top-down methodology, you can use core block reuse to preserve the core logic
by exporting the .qdb file. Another developer working on the same project can then
reuse the core logic .qdb file.

You can similarly preserve the root partition by exporting the root .qdb file, using the
root partition reuse flow, and then reusing that root partition in the same project.

1.3.2. Bottom-Up Design Methodology Overview

In a bottom-up design methodology, you create lower-level design blocks
independently of one another, and then integrate the blocks at the top-level.

To implement a bottom-up design, individual developers or IP providers can complete
the placement and routing optimization of their design in separate projects, and then
reuse lower-level blocks in the top-level project. This methodology can be useful for
team-based design flows with developers in other locations, or when third-parties
create design blocks.

However, when developing design blocks independently in a bottom-up design flow,
individual developers may not have all the information about the overall design, or
understand how their block connects with other blocks. The absence of this
information can lead to problems during system integration, such as difficulties with
timing closure, or resource conflicts. To reduce such difficulties, plan the design at the
top level, whether optimizing within a single project, or optimizing blocks
independently in separate projects, for subsequent top-level integration.

Teams that use a bottom-up design method can optimize placement and routing of
design partitions independently. However, the following drawbacks can occur when
optimizing the design partitions in separate projects:

• Achieving timing closure for the full design may be more difficult if you compile
partitions independently without information about other partitions in the design.
Avoiding this problem requires careful timing budgeting and observance of design
rules, such as always registering the ports at the module boundaries.

• The design requires resource planning and allocation to avoid resource conflicts
and overuse. Floorplanning with Logic Lock regions can help you avoid resource
conflicts while developing each part independently in a separate Intel Quartus
Prime project.

• Maintaining consistency of assignments and timing constraints is more difficult if
you use separate Intel Quartus Prime projects. The team lead must ensure that
the assignments and constraints of the top-level design, and those developers
define in the separate projects and reuse at the top-level, are consistent.

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Partitions that you develop independently all must share a common set of resources.
To minimize issues that can arise when sharing a common set of resources between
different partitions, create the partitions within in a single project, or in copies of the
top-level project, with full design-level constraints, to ensure that resources do not
overlap. Correct use of partitions and Logic Lock regions can help to minimize issues
that can arise when integrating into the top-level design.

If a developer has no information about the top-level design, the team lead must at
least provide a specific Intel FPGA device part number, along with any required
physical timing constraints. The developer can then create and export the partition
from a separate project. When a developer lacks information, the developer should
overconstrain or create additional timing margin on the critical paths. The technique
helps to reduce the chance of timing problems when integrating the partitions with
other blocks.

You can use the bottom-up design methodology in conjunction with the core partition
reuse flow to independently develop and export a core partition .qdb for reuse by a
the team lead.

Related Information

Bottom-Up Design Considerations on page 28

1.3.3. Team-Based Design Methodology Overview

In a team-based design methodology, a team lead sets up the top-level project and
constraints (including the top-level clock, I/O, and inter-partition constraints), and
determines which portions of the design that other team members develop.

Team-based design combines a top-down methodology (where all developers must be
aware of the top-level project structure and constraints), with elements of bottom-up
flows (where developers work separately on lower-level blocks and integrate them into
the top-level). In the top-down methodology, you can preserve the partitions and
provides a .qdb file to other team members working on the same project.

The project lead must ensure that the top-level project contains all the interfaces for
the design blocks that other team leaders add later. Each team member then develops
their portion of the design, and may specify other constraints specific to their design
partition. The team members implement the individual design blocks in the context of
the top-level design, to avoid integration issues later. As the project nears completion,
the team lead then integrates partitions from team members into the top-level
project, accounting for any new constraints for the imported partitions.

Individual team members can optionally work on a copy of the same top-level project.
The team member creates a partition for their respective design block, compiles the
design, and then exports the partition. The team lead then integrates each design
partition into the top-level design.

To simplify full design optimization, allow full-chip placement and routing of the
partition at the top-level. Export and reuse only the synthesized snapshot, unless the
top-level design requires optimized post-fit results.

Related Information

Setting-Up Team-Based Designs on page 26

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4. Design Partitioning

To use block-based design flows, you must first create design partitions from your
design’s hierarchical instances. The Compiler then treats the design partitions
separately to allow the block-based functionality.

The Intel Quartus Prime software automatically creates a top-level (|) "root_partition"
for each project revision. The root partition contains all the periphery resources, and
may also include core resources. When you export the root partition for reuse, the
exported partition excludes all logic in reserved core partitions. To export and reuse
periphery elements, you export the root partition.

When you create partitions, every hierarchy within that partition becomes part of the
parent partition. The partition creates a logical boundary that prevents merging or
optimizing between partitions. The following Design Partitions in Design Hierarchy
diagram illustrates design partition relationships and boundaries.

Figure 5. Design Partitions in Design Hierarchy

A

B C

D E F

Root Partition

Partition B Partition F

Note: • Instances B and F are design partitions.

• Partition B includes sub-instances D and E.

• The root partition contains the top-level instance A and instance C, because C is
unassigned to any partition.

Design partitions facilitate incremental block-based compilation and design block reuse
by logically separating instances. This logical separation allows the Compiler to
synthesize and optimize each partition separately from the other parts of the design.
The logical separation also prevents Compiler optimizations across partition
boundaries.

Block-based design requires that you plan and structure the source code and design
hierarchy to ensure proper logic grouping for optimization. Implementing the correct
logic grouping is easiest early in the design cycle.

Creating or removing a design partition changes the synthesis and subsequent
physical implementation and quality of results. When planning the design hierarchy, be
aware of the size and scope of each partition, and the possibility of different parts of
the design changing during development. Separate logic that changes frequently from
the fixed parts of the design.

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Group design blocks in your design hierarchy so that highly-connected blocks have a
shared level of design hierarchy for assignment to one partition. Structuring your
design hierarchy appropriately reduces the required number of partition boundaries,
and allows maximum optimization within the partition.

The Design Partition Planner (Tools ➤ Design Partition Planner) helps you to
visualize and refine a design's partitioning scheme by showing timing information,
relative connectivity densities, and the physical placement of partitions. You can locate
partitions in other viewers, or modify or delete partitions in the Design Partition
Planner.

Figure 6. Design Partition Planner

Consider creating each design entity that represents a partition instance in a separate
source file. This approach helps you correlate which partitions require recompilation
when you make source code changes. As you make design changes, you can
designate partitions as empty or preserved (using the .qdb file) to instruct the
Compiler which partitions to recompile from source code, as Design Abstraction on
page 25 describes.

If your design has timing-critical partitions that are changing through the design flow,
or partitions exported from another project, use design floorplan assignments to
constrain the placement of the affected partitions. A properly partitioned and floor-
planned design enables partitions to meet top-level design requirements when you
integrate the partitions with the rest of your design. Poorly planned partitions or
floorplan assignments negatively impact design area utilization and performance,
thereby increasing the difficulty of timing closure.

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following design partition guidelines help ensure the most effective and efficient
results. Block-based design flows add steps and requirements to the design process,
but can provide significant benefits in design productivity.

Related Information

Step 1: Developer: Create a Design Partition on page 16

1.4.1. Planning Partitions for Periphery IP, Clocks, and PLLs

Use the following guidelines to plan partitions for periphery IP, clocks, and PLLs:

Planning Partitions for Periphery IP

• Plan the design periphery to segregate and implement periphery resources in the
root partition. Ensure that IP blocks that utilize both core and periphery resources
(such as transceiver and external memory interface Intel FPGA IP) are part of the
root partition.

• When creating design partitions for an existing design, remove all periphery
resources from any entity you want to designate as a core partition. Also, tunnel
any periphery resource ports to the top level of the design. Implement the
periphery resource in the root partition.

• You cannot designate instances that use periphery resources as separate
partitions. In addition, you cannot split an Intel FPGA IP core into more than one
partition.

• The Intel Quartus Prime software generates an error if you include periphery
interface Intel FPGA IP cores in any partition other than the top-level root
partition.

• You must include Intel FPGA IP cores for the Hybrid Memory Cube (HBM) or Hard
Processor System (HPS) in the root partition.

Planning Partitions for Clocks and PLLs

• Plan clocking structures to retain all PLLs and corresponding clocking logic in the
root partition. This technique allows the Compiler to control PLLs in the root
partition, if necessary.

• Consider creating a design block for all clocking logic that you instantiate in the
top-level of the design. This technique ensures that the Compiler groups clocking
logic together, and that the Compiler treats clocking logic as part of the root
partition. Clock routing resources belong to the root partition, but the Compiler
does not preserve routing resources with a partition.

• Include any signal that you want to drive globally in the root partition, rather than
the core partition. Signals (such as clocks or resets) that you generate inside core
partitions cannot drive to global networks without a clock buffer in the root
partition.

• To support existing Intel Arria® 10 designs, the Compiler allows I/O PLLs in core
partitions. However, creating a partition boundary prevents such PLLs from
merging with other PLLs. The design may use more PLLs without this merging,
and may have suboptimal clocking architecture.

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.2. Creating Design Partitions

Follow these steps to create and modify design partitions:

1. Click Processing ➤ Start ➤ Start Analysis & Elaboration.

2. In the Project Navigator, right-click an instance in the Hierarchy tab, point to
Design Partition, and click a design partition Type. A design partition icon
appears next to each instance you assign.

Figure 7. Creating a Design Partition from the Project Hierarchy

This setting corresponds to the following assignment in the .qsf:

set_instance_assignment -name PARTITION <name> \
 -to <partition hierarchical path>

3. To view and edit all design partitions in the project, click Assignments ➤ Design
Partitions Window.

Figure 8. Design Partitions Window

4. Specify the properties of the design partition in the Design Partitions Window. The
following settings are available:

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 2. Design Partition Settings

Option Description

Partition Name Specifies the partition name. Each partition name must be unique and consist of only
alphanumeric characters. The Intel Quartus Prime software automatically creates a top-level
(|) "root_partition" for each project revision.

Hierarchy Path Specifies the hierarchy path of the entity instance that you assign to the partition. You specify
this value in the Create New Partition dialog box. The root partition hierarchy path is |.

Type Double-click to specify one of the following partition types that control how the Compiler
processes and implements the partition:
• Default—Identifies a standard partition. The Compiler processes the partition using the

associated design source files.
• Reconfigurable—Identifies a reconfigurable partition in a partial reconfiguration flow.

Specify the Reconfigurable type to preserve synthesis results, while allowing refit of the
partition in the PR flow.

• Reserved Core—Identifies a partition in a block-based design flow that is reserved for
core development by a Consumer reusing the device periphery.

Empty Specifies an empty partition that the Compiler skips. This setting is incompatible with the
Reserved Core and Partition Database File settings for the same partition.

Partition Database File Specifies a Partition Database File (.qdb) that the Compiler uses during compilation of the
partition. You export the .qdb for the stage of compilation that you want to reuse
(synthesized or final). Assign the .qdb to a partition to reuse those results in another context.

Entity Re-binding • PR Flow—specifies the entity that replaces the default persona in each implementation
revision.

• Root Partition Reuse Flow —specifies the entity that replaces the reserved core logic in the
consumer project.

Color Specifies the color-coding of the partition in the Chip Planner and Design Partition Planner
displays.

Post Synthesis Export
File

Automatically exports post-synthesis compilation results for the partition to the specified .qdb
file each time Analysis & Synthesis runs. You can automatically export any design partition
that does not have a preserved parent partition, including the root_partition.

Post Final Export File Automatically exports post-final compilation results for the partition to the specified .qdb file
each time the final stage of the Fitter runs. You can automatically export any design partition
that does not have a preserved parent partition, including the root_partition.

Following compilation, you can view details about design partition implementation in
the Compilation View tab of the Design Partitions Window. The synthesis and Fitter
reports provide additional information about .qdb file assignments.

Figure 9. Design Partition Window Compilation View Tab

Note: You can only preserve paths inside a partition, and cannot preserve the paths crossing
from one partition to another. Although you cannot merge partitions together, you can
create a RTL wrapper to wrap modules that you want to group into a partition, and
then assign a design partition to the RTL wrapper.

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.3. Design Partition Guidelines

Creating a design partition creates a logical hierarchical boundary around that
instance. This partition boundary can limit the Compiler's ability to merge the
partition's logic with other parts of the design. A partition boundary can also prevent
optimization that reduces cell and interconnect delay, thereby reducing design
performance. To minimize these effects, follow these general design partition
guidelines:

• Register partition boundary ports. This practice can reduce unnecessary long
delays by confining register-to-register timing paths to a single partition for
optimization. This technique also minimizes the effect of the physical placement
for boundary logic that the Compiler might place without knowledge of other
partitions.

• Minimize the timing-critical paths passing in or out of design partitions. For timing
critical-paths that cross partition boundaries, rework the partition boundaries to
avoid these paths. Isolate timing-critical logic inside a single partition, so the
Compiler can effectively optimize each partition independently.

• Avoid creating a large number of small partitions throughout the design. Excessive
partitioning can impact performance by preventing design optimizations.

• Avoid grouping unrelated logic into a large partition. If you are working to
optimize an independent block of your design, assigning that block as a small
partition provides you more flexibility during optimization.

1.5. Design Block Reuse Flows

Design block reuse allows you to preserve a design partition as an exported .qdb file,
and reuse this partition in another project. Reuse of core or root partitions involves
partitioning and constraining the block prior to compilation, and then exporting the
block for reuse in another project. Effective design block reuse requires planning to
ensure that the source code and design hierarchy support the physical partitioning of
device resources that these flows require.

• Core partition reuse—allows reuse of synthesized or final snapshots of a core
partition. A core partition can include only core resources (LUTs, registers, M20K
memory blocks, and DSPs).

• Root partition reuse—allows reuse of a synthesized or final snapshot of a root
partition. A root partition includes periphery resources (including I/O, HSSIO,
PCIe, PLLs), as well as any associated core resources, while leaving a core
partition open for subsequent development.

At a high level, the core and root partition reuse flows are similar. Both flows preserve
and reuse a design partition as a .qdb file. The Developer defines, compiles, and
preserves the block in the Developer project, and the Consumer reuses the block in
one or more Consumer projects.

The following sections describe the core and root partition reuse flows in detail.

Related Information

• Design Block Reuse Overview on page 4

• AN 839: Design Block Reuse Tutorial for Intel Arria 10 FPGA Development Board

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

15

https://www.intel.com/content/www/us/en/docs/programmable/683783/current/an-839-design-block-reuse-tutorial-for.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.1. Reusing Core Partitions

Reusing core partitions involves exporting the core partition from the Developer
project as a .qdb, and then reusing the .qdb in a Consumer project.

The Consumer assigns the .qdb to an instance in the Consumer project. In the
Consumer project, the Compiler runs stages not already exported with the partition.

Figure 10. Core Partition Reuse Flow

Partition
.qdb

2. Compile and Export Core Partition

4. Add the Core Partition and Compile:
 a. Add Black Box File to Project
 b. Run Analysis & Elaboration
 c. Create Design Partition for Black Box File
 d. Assign .qdb to Black Box Partition
 e. Compile Consumer Design

Developer Project Consumer Project

Core Partition Export Core Partition Reuse

1. Create a Core Partition

3. Create a Black Box File

The following steps describe the core partition reuse flow in detail.

1.5.1.1. Step 1: Developer: Create a Design Partition

Define design partitions to create logical boundaries in the design hierarchy. Confine
each core instance for export within a design partition. You can define partition
instances from the Project Navigator or in the Design Partitions Window.

To define a core design partition:

1. Review the project to determine design elements suitable for reuse, and the
appropriate snapshot for export.

2. Refer to Creating Design Partitions on page 13 to define a core partition. Select
Default for the partition Type.

Related Information

Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration

1.5.1.2. Step 2: Developer: Compile and Export the Core Partition

This step describes generating and exporting a final snapshot of the core partition. You
can manually export the core partition as a .qdb after compilation, or you can specify
settings to automate export each time you compile. You can then reuse the core
partition in the same project or in another project, starting the partition's compilation
at the stage following the snapshot.

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

16

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Manual Partition Export

To compile and manually export a core partition:

1. To run all compilation stages through Fitter (Finalize) and generate the final
snapshot, click Processing ➤ Start ➤ Start Fitter.

2. To export the core partition, click Project ➤ Export Design Partition. Select the
Design Partition name and the compilation Snapshot for export.

3. To include any entity-bound .sdc files in the exported .qdb, turn on Include
entity-bound SDC files for the selected partition. By default, all Intel FPGA IP
targeting Intel Stratix® 10 devices use entity-bound .sdc files.

Note: Intel FPGA IP targeting Intel Arria 10 devices do not use entity-bound .sdc
files by default. To use this option for Intel Arria 10 devices, you must first
bind the .sdc file to the entity in the .qsf. Refer to "Using Entity-bound
SDC Files," in Intel Quartus Prime Pro Edition User Guide: Timing Analyzer.

4. Confirm the File name for the Partition Database File, and then click OK.

Figure 11. Export Design Partition

The following command corresponds to partition export in the GUI:

quartus_cdb <project name> -c <revision name> \
 --export_partition "<name>" --snapshot synthesized \
 --file <name>.qdb –-include_sdc_entity_in_partition

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Automated Design Partition Export

Follow these steps in the Design Partitions Window to automatically export one or
more design partitions following each compilation:

1. To automatically export a partition with synthesis results after each time you run
synthesis, specify the a .qdb export path and file name for the Post Synthesis
Export File option for that partition. If you specify only a file name without path,
the file exports to the project directory after compilation.

2. To automatically export a partition with final snapshot results each time you run
the Fitter, specify a .qdb file name for the Post Final Export File option for that
partition.

Figure 12. Specifying Export File in Design Partitions Window

.qsf assignment syntax:

set_instance_assignment -name EXPORT_PARTITION_SNAPSHOT_SYNTHESIZED \
 <qdb file name> -to <hierarchy path> -entity <entity name>

Related Information

"Using Entity-bound SDC Files," Intel Quartus Prime Pro Edition User Guide: Timing
Analyzer

1.5.1.3. Step 3: Developer: Create a Black Box File

Reusing a core partition .qdb file also requires that you add a supporting black box
file to the Consumer project. A black box file is an RTL source file that only contains
port and module or entity definitions, but does not contain any logic. The black box file
defines the ports and port interface types for synthesis in the Consumer project.
Follow these steps to create a block box port definitions file for the partition.

The Compiler analyzes and elaborates any RTL that you include in the black box file.
Edits to the RTL do not affect a partition that uses a .qdb file.

1. Create an HDL file (.v, .vhd, .sv) that contains only the port definitions for the
exported core partition. Include parameters or generics passed to the module or
entity. For example:

module bus_shift #(
 parameter DEPTH=256,
 parameter WIDTH=8
)(

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

18

https://www.intel.com/content/www/us/en/docs/programmable/683243/current/using-entity-bound-sdc-files.html
https://www.intel.com/content/www/us/en/docs/programmable/683243/current/using-entity-bound-sdc-files.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 input clk,
 input enable,
 input reset,
 input [WIDTH-1:0] sr_in,
 output [WIDTH-1:0] sr_out
);
endmodule

2. Provide the black box file and exported core partition .qdb file to the Consumer.

1.5.1.4. Step 4: Consumer: Add the Core Partition and Compile

To add the core partition, the Consumer adds the black box as a source file in the
Consumer project. After design elaboration, the Consumer defines a core partition and
assigns the exported .qdb file to an instance in the Design Partitions Window.
Because the exported .qdb includes compiled netlist information, the Consumer
project must target the same FPGA device family, and use the same Intel Quartus
Prime software version, as the Developer project. The Consumer must supply a clock
and any other constraints required for the interface to the core partition.

To add the core partition and compile the Consumer project:

1. Create or open the Intel Quartus Prime project that you want to reuse the core
partition.

2. To add one or more black box files to the consumer project, click Project ➤ Add/
Remove Files in Project and select the black box file.

3. Follow the steps in Creating Design Partitions on page 13 to elaborate the design
and define a core partition for the black box file. When defining the design
partition, click the Partition Database File option and select the exported .qdb
file for the core partition.

4. To run all compilation stages through Fitter (Finalize) and generate the final
snapshot, click Processing ➤ Start ➤ Start Fitter.

1.5.2. Reusing Root Partitions

The root partition contains all the periphery resources, and may also include some
core resources. To export and reuse periphery elements, you export the root partition.
Reuse of root partitions allows you to design an FPGA-to-board interface and
associated logic once, and then replicate that interface in other projects.

Note: When reusing the root partition across different devices within the same family, you
can only reuse the Synthesized snapshot, and you must ensure that any Fitter
constraints (such as Logic Lock regions) from the Developer project do not conflict
with constraints in the Consumer project.

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Root Partition Reuse Flow

root_partition
.qdb

3. Compile and Export root_partition

4. Add Root Partition and Compile:
 a. Assign .qdb File as Root Partition
 b. Add Reserved Core RTL to Project
 c. Compile the Design

Developer Project Consumer Project

Root Partition Export Root Partition Reuse

1. Create Reserved Core Partition

2. Define a Logic Lock Region

1.5.2.1. Step 1: Developer: Create a Reserved Core Partition

To export and reuse the root partition, the Developer creates a reserved core partition
for later core logic development in the Consumer project. The Compiler preserves
post-fit results for the partition and reuses the post-fit netlist, if the netlist is available
from previous compilation, and you make no partition changes requiring re-synthesis.
Otherwise, the Compiler reuses the post-synthesis netlist if available, or resynthesizes
the partition from source files.

To create a reserved core partition:

1. Adapt the steps in Step 1: Developer: Create a Design Partition on page 16 to
create a reserved core partition.

2. When defining the design partition, select Reserved Core for the partition Type.
Ensure that all other partition options are set to the default values.

1.5.2.2. Step 2: Developer: Define a Logic Lock Region

To reserve core resources in a Consumer project for the reserved core partition, the
Developer defines a fixed size and location, core-only, reserved Logic Lock region with
a defined routing region. The Consumer uses this same region in their project for core
development. This region can contain only core logic. Ensure that the reserved
placement region is large enough to contain all core logic that the Consumer plans to
develop. For projects with multiple core partitions, constrain each partition in a non-
overlapping Logic Lock routing region.

Note: When reusing the root partition across different devices within the same family, you
can only reuse the Synthesized snapshot, and you must ensure that any Fitter
constraints (such as Logic Lock regions) from the Developer project do not conflict
with constraints in the Consumer project.

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to define a Logic Lock region for core development in the Developer
project:

1. Right-click the design instance in the Project Navigator and click Logic Lock
Region ➤ Create New Logic Lock Region. The region appears in the Logic Lock
Regions Window. You can also verify the region in the Chip Planner (Locate Node
➤ Locate in Chip Planner).

2. Specify the placement region co-ordinates in the Origin column.

3. Enable the Reserved and Core-Only options.

4. For Size/State, select Fixed/Locked.

5. Click the Routing Region cell. The Logic Lock Routing Region Settings dialog
box appears.

Figure 14. Logic Lock Regions Window

6. Specify Fixed with expansion with Expansion Length of 1 for the Routing
Type. For this flow you can select any value other than Unconstrained

7. Click OK.

8. Click File ➤ Save Project.

1.5.2.3. Step 3: Developer: Compile and Export the Root Partition

After compilation, the Developer exports the root partition at the synthesized or final
stage. The Developer supplies any Synopsys* Design Constraints (.sdc) file for the
partition. The Developer uses the .sdc files to drive placement and routing. The
Consumer uses .sdc files for evaluation of partitions that reuse .qdb files, and to
drive placement in the Fitter for non-reused or non-preserved partitions.

1. To run all compilation stages through Fitter (Finalize), click Processing ➤ Start ➤
Start Fitter.

2. To export the root partition to a .qdb file, click Project ➤ Export Design
Partition. Select the root_partition and the synthesized or final snapshot.

3. To include any entity-bound .sdc files in the exported .qdb, turn on Include
entity-bound SDC files for the selected partition. By default, all Intel FPGA IP
targeting Intel Stratix 10 devices use entity-bound .sdc files.

The following command corresponds to the root partition export in the GUI:

quartus_cdb <project name> -c <revision name> \
 --export_partition "root_partition" --snapshot final \
 --file root_partition.qdb --include_sdc_entity_in_partition

4. The Developer provides the exported .qdb file and .sdc files for the reserved
core to the Consumer.

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.2.4. Step 4: Consumer: Add the Root Partition and Compile

To reuse the root partition in another project, the Consumer assigns the exported root
partition .qdb in the Consumer project settings. The root partition .qdb includes all
Logic Lock region and partition information for the reserved core from the Developer
project. There is no need to recreate these constraints in the Consumer project. After
assigning the .qdb, the Consumer project includes all additional information from the
Developer project compilation snapshot. The Consumer then adds RTL for the
reserved core partition.

Follow these steps to reuse the root partition in a Consumer project:

1. The Consumer obtains the exported root partition .qdb file from the Developer.

2. Open the project that you want to reuse the exported root partition.

3. In the Design Partitions Window, specify a .qdb in Partition Database File to
replace the root_partition logic.

Figure 15. Partition Database File Option in Design Partitions Window

4. The Consumer adds RTL and any .sdc constraints for the reserved core partition.

5. To enable the Fast Preserve option that simplifies the logic of the preserved
partition to only interface logic(2) during compilation, click Assignments ➤
Settings ➤ Compiler Settings ➤ Incremental Compile ➤ Fast Preserve.

6. To run all compilation stages, click Processing ➤ Start Compilation. The
Compiler implements the reused root partition and constraints.

Note: To use the Entity Re-binding option, you add the .qdb to the project by
specifying a .qdb for the Partition Database File option in the Design
Partitions Window. Refer to Reserved Core Entity Re-Binding on page 22
for more information.

1.5.3. Reserved Core Entity Re-Binding

Entity re-binding allows the Consumer in a root partition reuse flow to use an entity
name that is different from the Developer's reserved core partition name in the
root_partition.qdb.

Entity Re-binding Example

The following example illustrates application of Entity Re-binding. You specify a
value for the Entity Re-binding option in the Design Partitions Window to identify the
entity bound to a reserved core partition.

(2) Interface logic is logic at the partition boundary that interfaces with the rest of the design.

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16. Entity Rebinding Option in Design Partitions Window

In a root partition reuse example, the Developer's project includes the shell with entity
name blinking_led, and the u_blinking_led instance. The Developer exports
the root_partition.qdb that includes the root partition, and a reserved core
region defined by a Logic Lock placement constraint. The reserved region is associated
with the u_blinking_led instance.

The Consumer reuses the root_partition.qdb in their project. However, the entity
that replaces the reserved core has a different name (blinking_led_fast) than the
reserved core name (u_blinking_led) in the Developer project.

If the Consumer simply adds the u_blinking_led entity to the project without
entity re-binding, an error occurs.

Rather, the Consumer can re-bind the new entity name to the reserved core partition
name by setting the Entity Re-binding option to blinking_led_fast.

1.5.4. Viewing Quartus Database File Information

Although you cannot directly read a .qdb file, you can view helpful attributes about
the file to quickly identify its contents and suitability for use.

The Intel Quartus Prime software automatically stores metadata about the project of
origin when you export a Quartus Database File (.qdb). You can then use the Quartus
Database File Viewer to display the attributes of any of these .qdb files.
Follow these steps to view the attributes of a .qdb file:

1. In the Intel Quartus Prime software, click File ➤ Open, select Design Files for
Files of Type, and select a .qdb file.

2. Click Open. The Quartus Database File Viewer displays project and resource
utilization attributes of the .qdb.

Alternatively, run the following command-line equivalent:

quartus_cdb --extract_metadata --file <archive_name.qdb> \
 --type quartus --dir <extraction_directory> \
 [--overwrite]

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. Quartus Database File Viewer

1.5.4.1. QDB File Attribute Types

The Quartus Database Viewer can display the following attributes of a .qdb file:

Table 3. QDB File Attributes

QDB Attribute Types Attribute Example

Project Information Contents Partition

Date Thu Jan 23 10:56:23 2018

Device 10AX016C3U19E2LG

Entity (if Partition) Counter

Family Arria 10

Partition Name root_partition

Revision Name Top

Revision Type PR_BASE

Snapshot synthesized

Version 18.1.0 Pro Edition

Version-Compatible Yes

Resource Utilization (exported
for partition QDB only)

For synthesized snapshot partition
lists data from the Synthesis
Resource Usage Summary
report.

Average fan-out.16

Dedicated logic registers:14

Estimate of Logic utilization:1

continued...

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I/O pins:35

Maximum fan-out:2

Maximum fan-out node:counter[23]

Total DSP Blocks:0

Total fan-out:6

...

For the final snapshot partition,
lists data from the Fitter Partition
Statistics report.

Average fan-out:.16

Combinational ALUTs: 16

I/O Registers

M20Ks

...

1.6. Incremental Block-Based Compilation Flow

The incremental block-based compilation flow allows you to perform design abstraction
by emptying a partition.

1.6.1. Design Abstraction

Empty partitions are useful to account for undefined partitions developed
independently or later in the design cycle. The Compiler uses an empty placeholder
netlist for the partition, ties the partition output ports to ground, and removes the
input ports. The Compiler removes any existing synthesis, placement, and routing
information for an empty partition.

If you remove the Empty setting from a partition, the Compiler re-implements the
partition from the source. Setting a partition to Empty can reduce design compilation
time because the top-level design netlist does not include the logic for the empty
partition. The Compiler does not run full synthesis and fitting algorithms on the empty
partition logic.

Note: To avoid resource conflicts when using empty partitions, floorplan any empty partitions
that you intend to subsequently replace with a .qdb.

Follow these steps to define an empty partition:

1. Create a design partition, as Step 1: Developer: Create a Design Partition on page
16 describes. Set the partition Type to Default. Any other setting is incompatible
with empty partitions.

2. For the Empty option, select Yes. This setting corresponds to the following
assignment in the .qsf.

set_instance_assignment -name EMPTY ON -to \
 <hierarchal path of partition> -entity <name>

1.6.1.1. Empty Partition Clock Source Preservation

Empty partitions preserve clock sources that the Intel Quartus Prime software
recognizes.

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Intel Quartus Prime software recognizes and preserves the following as clock
sources for a partition:

• Signals from a PLL.

• Feeds from internal clock inputs on flip-flops, memories, HSSIO, I/O registers, or
PLLs outside the partition that you empty.

The Intel Quartus Prime software does not recognize the following as clock sources for
a partition:

• Nets with sources external to the FPGA that do not feed a clock input inside the
FPGA.

• Nets that connect only to combinatorial logic.

• Nets that connect only to an output pin.

• Nets that feed only logic within an empty partition.

1.7. Setting-Up Team-Based Designs

Use the following procedures to setup a project for a team-based design methodology.

1.7.1. Creating a Top-Level Project for a Team-Based Design

In team-based designs that reuse design blocks, all team members ideally work within
the same top-level project framework. Using copies of the same project among team
members ensures that everyone has the same settings and constraints that their
partition requires.

This method helps the team to integrate the partitions into the top-level design. If
some Developers do not have access to the top-level project framework, the team
lead must provide information about the project and constraints to those Developers.

The following steps describe preparing a top-level project that enables other
Developers to provide optimized lower-level design partitions. The top-level project
specifies the top-level entity, and then instantiates other design entities that other
Developers optimize in a separate Intel Quartus Prime project.

1. Set up the top-level project and add source files. You can represent incomplete
sections of the design by adding black box files, as Step 3: Developer: Create a
Black Box File on page 18 describes.

2. Define design partitions for any instance that you want to maintain as a separate
Intel Quartus Prime project, as Creating Design Partitions on page 13 describes.

3. Define an empty partition for each design partition with unknown or incomplete
definition.

4. Create a Logic Lock region constraint for each design block that you plan to
integrate as a separate Intel Quartus Prime project. This physical partitioning of
the device allows multiple team members to design independently without
placement conflicts, as Step 2: Developer: Define a Logic Lock Region on page 20
describes.

5. To run full compilation, click Processing ➤ Start Compilation.

6. Use one of the following methods to provide the top-level project information to
design Developers:

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If Developers have access to the top-level project framework, the team lead
includes all settings and constraints. This framework may include clocks, PLLs,
and other periphery interface logic that the Developer requires to develop
their partition. If Developers are part of the same design environment, they
can check out a copy of the project files they require from the same source
control system. This is the best method for sharing a set of project files.
Otherwise, the team lead provides a copy of the top-level project (the design
and corresponding .qsf assignments), so that each Developer creates their
partition within the same project framework.

• If Developers do not have access to the top-level project framework, the team
lead provides a Tcl script or other specifications to create a separate Intel
Quartus Prime project that matches the top-level. The team lead also adds
logic around the design block for export, so that the partition is consistent
with the key characteristics of the top-level design environment. For example,
the team lead can include a top-level PLL in the project, outside of the
partition for export, so that Developers can optimize the design with
information about the clocks and PLL parameters. This technique provides
more accurate timing requirements. Export the partition for the top-level
design, without exporting any auxiliary components that you instantiate
outside the partition you are exporting.

1.7.1.1. Prepare a Design Partition for Project Integration

Follow these steps to prepare a lower-level design partition for integration with the
top-level project:

1. Obtain a copy of the top-level project, or create a new project with the same
assignments and constraints as the top-level project. Ensure that your partition
uses only the resources that the team lead allocates.

2. For each design partition that is incomplete in the top-level project, set the Empty
option to Yes in the Design Partitions Window. This setting creates an empty
partition for later development. For the Compiler to elaborate this partition, you
must provide at least the port definitions and any parameters or generics passed
to the RTL.

3. When the lower-level design partition is complete, follow the procedure in Step 2:
Developer: Compile and Export the Core Partition on page 16. The project lead
can now reuse the partition in the top-level project.

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8. Bottom-Up Design Considerations

Consider the following when using bottom-up design methodology:

Table 4. Bottom-Up Design Recommendations and Limitations

Recommendation/
Limitation

Description

Recommendation 1 Define Logic Lock constraints that are Reserved, Core-Only, Fixed/Locked, with a
specified Routing Region. While exporting partitions from a different project with a
different top-level, generate the partitions with non-overlapping Logic Lock routing
regions by setting the routing region to Fixed with expansion of 0.

Limitation 1 If you compile two partitions, in two different projects, with top_level_1.sv and
top_level_2.sv, and reuse the partitions in a third project with top_level_3.sv, the
Compiler cannot support two partitions with overlapping row clock regions. Apply Logic
Lock region constraints in the Developer project to avoid two partitions occupying the
same row clock region in the Consumer project. For example:
1. From the Consumer project, determine the approximate placement of the two

partitions. Choose the Logic Lock constraints for the two partitions such that there is
no overlap of the row clock region.

2. In the Developer project with top_level_1.sv, apply Logic Lock region constraints
that the Consumer identifies for the first partition, followed by compilation and export
of the partition at final snapshot.

3. In the Developer project with top_level_2.sv, apply Logic Lock region constraints
that the Consumer identifies for the second partition, followed by compilation and
export of the partition at final snapshot.

4. When reusing the exported partitions in the consumer project with top_level_3.sv,
the partitions maintain the placement defined in the Developer projects using non-
overlapping Logic Lock constraints.

Limitation 2 System-level design errors may not become apparent until late in the design cycle, which
can require additional design iterations to resolve.

Related Information

Bottom-Up Design Methodology Overview on page 8

1.9. Debugging Block-Based Designs with the Signal Tap Logic
Analyzer

The Intel Quartus Prime Pro Edition software supports debugging of block-based
designs with the Signal Tap logic analyzer.

Signal Tap debugging of block-based designs requires specific preparation. For step-
by-step details on debugging block-based designs with Signal Tap, refer to "Debugging
Block-Based Designs with the Signal Tap Logic Analyzer" in Intel Quartus Prime Pro
Edition User Guide: Debug Tools.

Related Information

"Debugging Block-Based Designs with the Signal Tap Logic Analyzer," Intel Quartus
Prime Pro Edition User Guide: Debug Tools

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

28

https://www.intel.com/content/www/us/en/docs/programmable/683819/current/debugging-block-based-designs-with.html
https://www.intel.com/content/www/us/en/docs/programmable/683819/current/debugging-block-based-designs-with.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10. Block-Based Design Flows Revision History

Document Version Intel Quartus
Prime Version

Changes

2023.11.07 23.3 • Added Top FAQs navigation to the document cover.
• Removed references to design block preservation as new DNI

infrastructure does not support the "preserve" assignment.

2019.12.16 19.4.0 • Updated for cross-device snapshot reuse support and limits throughout.

2019.11.11 19.2.0 • Described Fast Preserve option in "Block-Based Design Terminology"
and "Step 4: Add the Root Partition and Compile."

2019.07.15 19.2.0 • Changed default file export location from output_files to project
directory.

• Updated description of partition type GUI.
• Updated Support for "Combined Incremental Block-Based Compilation

and Design Block Reuse" table for latest supported combinations.
• Added note about merging partitions to "Creating Design Partitions."

2018.10.01 18.1.0 • Removed reference to Placed snapshot from "Step 3: Compile and
Export the Root Partition." Only Synthesized and Final snapshots are
supported for design block reuse.

2018.09.24 18.1.0 • Reorganized order of topics in chapter.
• Added the following new topics:

— Viewing Quartus Database File Information
— Reserved Core Entity Re-Binding
— Incremental Block-Based Compilation Examples
— Design Methodologies
— Top-Down Design Methodology Overview
— Bottom-Up Design Methodology Overview
— Bottom-Up Design Recommendations and Limitations
— Team-Based Design Methodology Overview
— Incremental Timing Closure
— Incremental Timing Closure Recommendations and Limitations
— Design Abstraction

• Replaced references to "periphery reuse core" with "reserved core" to
reflect latest GUI.

• Added description of | as root partition hierarchy path in Design
Partitions Window.

• Replaced details in "Debugging Block-Based Designs with the Signal Tap
Logic Analyzer" section with link to AN 847: Signal Tap Tutorial with
Design Block Reuse for Intel Arria 10 FPGA Development Board.

• Minor wording and graphic updates throughout.
• Removed references to unsupported Planned snapshot.

2018.05.07 18.0.0 • First release of chapter as part of stand-alone Block-Based Design User
Guide.

• Added footnote and links to known issues.
• Updated all design flow steps to match current GUI.
• Updated description of Include entity-bound SDC files option.
• Updated statement defining parent to child partition attribute

inheritance.
• Added Design Partition Settings topic.
• Added Block-Based Design Terminology topic.
• Added Preservation and Reuse with Compiler Snapshots topic.
• Added Empty Partition Clock Source Preservation topic.

continued...

1. Block-Based Design Flows

683247 | 2023.11.07

Send Feedback Intel Quartus Prime Pro Edition User Guide: Block-Based Design

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Added Design Partitions Properties table.
• Added Combining Incremental Block-Based Compilation and Design

Block Reuse topic.
• Updated Debugging Block-Based Designs topic and linked to new

Application Note.

2017.11.06 17.1.0 • Reorganization of introduction and Incremental Block-Based
Compilation.

• Added Design Partitioning section.
• Added Debugging Block-Based Designs section.
• Added Use Empty Partitions to Reduce Compilation Time topic.
• Removed requirement to add .psmf, .msf, and .sof to Consumer

project.
• Added Intel Stratix 10 support, including information about bundling

of .sdc with exported partitions for Intel Stratix 10 designs.
• Documented changes to Design Partitions window, Export Design

Partition dialog box, and Logic Lock Regions window.
• Added reference to new Design Partition Planner.
• Updated references to corresponding .qsf assignments.
• Changed references from periphery reuse to root partition reuse.
• Rebranded for latest Intel standards.

2017.05.08 17.0.0 • First public release.

1.11. Intel Quartus Prime Pro Edition User Guide: Block-Based
Design Document Archive

For the latest and previous versions of this user guide, refer to Intel Quartus Prime Pro
Edition User Guide: Block-Based Design. If an IP or software version is not listed, the
user guide for the previous IP or software version applies.

1. Block-Based Design Flows

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

30

https://www.intel.com/content/www/us/en/docs/programmable/683247.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Pro Edition FPGA design flow.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Pro Edition software, including managing Intel Quartus Prime Pro Edition
projects and IP, initial design planning considerations, and project migration
from previous software versions.

• Intel Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Pro Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Pro Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Pro Edition Compiler. The Compiler synthesizes, places, and routes your
design before generating a device programming file.

• Intel Quartus Prime Pro Edition User Guide: Design Optimization
Describes Intel Quartus Prime Pro Edition settings, tools, and techniques that
you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Intel Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Pro Edition Programmer, which
allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683247 | 2023.11.07

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Intel Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence
Checking Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Intel Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Pro Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, system
debugging toolkits, In-System Memory Content Editor, and In-System Sources
and Probes Editor.

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Intel Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Pro Edition software and to perform a wide range of functions, such as
managing projects, specifying constraints, running compilation or timing
analysis, or generating reports.

A. Intel Quartus Prime Pro Edition User Guides

683247 | 2023.11.07

Intel Quartus Prime Pro Edition User Guide: Block-Based Design Send Feedback

32

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Block-Based%20Design%20(683247%202023.11.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Pro Edition User
Guide
Partial Reconfiguration

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q What is partial reconfiguration (PR)?
A Creating a PR Design on page 5

Q What's new in this version?
A What's New In This Version on page 6

Q How do I create a PR design?
A Partial Reconfiguration Design Flow on page 11

Q What can be reconfigured?
A Identify PR Resources on page 12

Q What factors impact reconfiguration time?
A Floorplan the Design on page 14

Q What IP do I need for PR?
A PR Solutions IP User Guide on page 74

Q How do I recover from a PR error?
A PR Error Recovery on page 82

Q What are the PR known issues and limitations?
A Intel FPGA Support Forums: PR

Q Do you have training on PR?
A Intel FPGA Technical Training Catalog

Online Version

Send Feedback UG-20136

683834

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://community.intel.com/t5/forums/searchpage/tab/message?q=Partial%20Reconfiguration&noSynonym=false&collapse_discussion=true
https://www.intel.com/content/www/us/en/programmable/support/training/catalog.html
https://www.intel.com/content/www/us/en/docs/programmable/683834.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Creating a Partial Reconfiguration Design...5
1.1. What's New In This Version...6
1.2. Partial Reconfiguration Terminology..6
1.3. Partial Reconfiguration Process Sequence..7
1.4. Internal Host Partial Reconfiguration.. 8
1.5. External Host Partial Reconfiguration..9
1.6. Partial Reconfiguration Design Flow.. 11

1.6.1. Step 1: Identify Partial Reconfiguration Resources.. 12
1.6.2. Step 2: Create Design Partitions.. 12
1.6.3. Step 3: Floorplan the Design... 14
1.6.4. Step 4: Add the Partial Reconfiguration Controller Intel FPGA IP..................... 17
1.6.5. Step 5: Define Personas..19
1.6.6. Step 6: Create Revisions for Personas...19
1.6.7. Step 7: Compile the Base Revision and Export the Static Region.....................21
1.6.8. Step 8: Setup PR Implementation Revisions.. 25
1.6.9. Step 9: Program the FPGA Device.. 26

1.7. Partial Reconfiguration Design Considerations.. 33
1.7.1. Partial Reconfiguration Design Guidelines.. 35
1.7.2. PR Design Timing Closure Best Practices... 36
1.7.3. PR File Management...38
1.7.4. Evaluating PR Region Initial Conditions... 41
1.7.5. Creating Wrapper Logic for PR Regions..41
1.7.6. Creating Freeze Logic for PR Regions.. 42
1.7.7. Resetting the PR Region Registers.. 44
1.7.8. Promoting Global Signals in a PR Region... 44
1.7.9. Planning Clocks and other Global Routing..46
1.7.10. Implementing Clock Enable for On-Chip Memories...................................... 46

1.8. Hierarchical Partial Reconfiguration...49
1.8.1. Using Parent QDB Files from Different Compiles... 50

1.9. Partial Reconfiguration Design Timing Analysis...51
1.9.1. Running Timing Analysis on Aggregate Revisions..51

1.10. Partial Reconfiguration Design Simulation.. 52
1.10.1. Partial Reconfiguration Simulation Flow... 53
1.10.2. Simulating PR Persona Replacement... 53

1.11. Partial Reconfiguration Design Debugging..57
1.11.1. Debugging PR Designs with the Signal Tap Logic Analyzer............................58
1.11.2. Instantiating the Intel Configuration Reset Release Endpoint to Debug

Logic IP.. 58
1.12. Partial Reconfiguration Security (Stratix 10 Designs)...59

1.12.1. PR Bitstream Security Validation (Stratix 10 Designs)..................................59
1.12.2. PR Bitstream Authentication (Stratix 10 Designs)....................................... 61
1.12.3. PR Bitstream Encryption (Stratix 10 Designs)...61

1.13. PR Bitstream Compression and Encryption (Arria 10 and Cyclone 10 GX Designs)....... 62
1.13.1. Generating an Encrypted PR Bitstream (Arria 10 or Cyclone 10 GX Designs)...63
1.13.2. Clock-to-Data Ratio for Bitstream Encryption and Compression (Arria 10

or Cyclone 10 GX Designs).. 64
1.13.3. Data Compression Comparison...65

Contents

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.14. Avoiding PR Programming Errors.. 65
1.15. Exporting a Version-Compatible Compilation Database for PR Designs....................... 67

1.15.1. Version-Compatible Database Flow for PR Designs...................................... 68
1.15.2. Generating a Version-Compatible Compilation Database for PR Designs......... 69

1.16. Creating a Partial Reconfiguration Design Revision History....................................... 70

2. Partial Reconfiguration Solutions IP User Guide... 74
2.1. Internal and External PR Host Configurations...74
2.2. Partial Reconfiguration Controller Intel FPGA IP..77

2.2.1. Memory Map... 77
2.2.2. Parameters... 78
2.2.3. Ports.. 79
2.2.4. Timing Specifications..82
2.2.5. PR Error Recovery..82
2.2.6. Secure Device Manager Firmware Error Reporting.. 86

2.3. Partial Reconfiguration Controller Intel Arria® 10/Cyclone® 10 FPGA IP....................... 90
2.3.1. Agent Interface... 90
2.3.2. Reconfiguration Sequence... 91
2.3.3. Interrupt Interface... 92
2.3.4. Parameters... 92
2.3.5. Ports.. 95
2.3.6. Timing Specifications..99
2.3.7. PR Control Block and CRC Block Verilog HDL Manual Instantiation.................100
2.3.8. PR Control Block and CRC Block VHDL Manual Instantiation......................... 100
2.3.9. PR Control Block Signals... 102
2.3.10. Configuring an External Host for Arria 10 or Cyclone 10 GX Designs............ 105

2.4. Partial Reconfiguration External Configuration Controller Intel FPGA IP...................... 108
2.4.1. Parameters..109
2.4.2. Ports.. 109
2.4.3. Partial Reconfiguration External Controller Intel FPGA IP Timing

Specifications ... 110
2.4.4. Configuring an External Host for Agilex 7, Agilex 5, and Stratix 10 Designs.... 110

2.5. Partial Reconfiguration Region Controller Intel FPGA IP..111
2.5.1. Registers...112
2.5.2. Parameters..115
2.5.3. Ports.. 116

2.6. Avalon Memory-Mapped Partial Reconfiguration Freeze Bridge IP.............................. 119
2.6.1. Parameters..120
2.6.2. Interface Ports...122

2.7. Avalon Streaming Partial Reconfiguration Freeze Bridge IP.......................................127
2.7.1. Parameters..129
2.7.2. Ports ... 130

2.8. Generating and Simulating Intel FPGA IP...133
2.8.1. Specifying the IP Core Parameters and Options (Quartus Prime Pro Edition)... 133
2.8.2. Running the Freeze Bridge Update script... 135
2.8.3. IP Core Generation Output (Quartus Prime Pro Edition)............................... 136
2.8.4. Arria 10 and Cyclone 10 GX PR Control Block Simulation Model.................... 138
2.8.5. Generating the PR Persona Simulation Model... 140
2.8.6. Secure Device Manager Partial Reconfiguration Simulation Model143

2.9. Quartus Prime Pro Edition User Guide: Partial Reconfiguration Archive.......................146
2.10. Partial Reconfiguration Solutions IP User Guide Revision History............................. 146

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Quartus Prime Pro Edition User Guides...148

Contents

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Creating a Partial Reconfiguration Design
Partial reconfiguration (PR) allows you to reconfigure a portion of the FPGA
dynamically, while the remaining FPGA design continues to function. You can define
multiple personas for a particular region in your design, without impacting operation in
areas outside this region. This methodology is effective in systems with multiple
functions that time-share the same FPGA device resources. PR enables the
implementation of more complex FPGA systems.

The Quartus® Prime Pro Edition software supports the PR feature for the Stratix® 10,
Agilex™ 7, Agilex 5, Arria® 10, and Cyclone® 10 GX device families.

Figure 1. Partial Reconfiguration Design

Static
Region

chip_top

PR Region A

PR Region B

PR Persona A1

PR Persona A2

PR Persona B1

PR Persona B2

PR provides the following advancements over a flat design:

• Allows run-time design reconfiguration

• Increases scalability of the design through time-multiplexing

• Lowers cost and power consumption through efficient use of board space

• Supports dynamic time-multiplexing functions in the design

• Improves initial programming time through smaller bitstreams

• Reduces system down-time through line upgrades

• Enables easy system update by allowing remote hardware change

• A simplified compilation flow for partial reconfiguration

Hierarchical Partial Reconfiguration

Quartus Prime Pro Edition software also supports hierarchical partial reconfiguration
(HPR), with multiple parent and child design partitions, or multiple levels of partitions
in a design. In HPR designs, a static region instantiates a parent PR region, and a
parent PR region instantiates a child PR region. The same PR region reprogramming is
possible for the child and parent partitions. Refer to Hierarchical Partial
Reconfiguration on page 49.

683834 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Static Update Partial Reconfiguration

Static update partial reconfiguration (SUPR) allows you to define and modify a
specialized static region, without requiring recompilation of all personas. This
technique is useful for a portion of a design that you may possibly want to change for
risk mitigation, but that never requires runtime reconfiguration. In PR without a SUPR
partition, you must recompile all personas for any change to the static region. Refer to
the Partial Reconfiguration Tutorials for detailed SUPR instructions.

Partial Reconfiguration Design Simulation

The Quartus Prime Pro Edition software supports simulation of PR persona transitions
through the use of simulation multiplexers. You use the simulation multiplexers to
change which persona drives logic inside the PR region during simulation. This
simulation allows you to observe the resulting change and the intermediate effect in a
reconfigurable partition. Refer to Partial Reconfiguration Design Simulation on page
52 for details.

Related Information

Partial Reconfiguration Tutorials

1.1. What's New In This Version

• Referenced support for Agilex 5 devices and applied initial Altera rebranding.

• For change details, refer to the Creating a Partial Reconfiguration Design Revision
History on page 70 and Partial Reconfiguration Solutions IP User Guide Revision
History on page 146.

1.2. Partial Reconfiguration Terminology

This document refers to the following terms to explain partial reconfiguration:

Table 1. Partial Reconfiguration Terminology

Term Description

Floorplan The layout of physical resources on the device. Creating a design floorplan, or
floorplanning, is the process of mapping the logical design hierarchy to
physical regions in the device. PR requires floorplanning.

Hierarchical Partial Reconfiguration Partial reconfiguration that includes multiple parent and child design
partitions, or nesting of partitions in the same design.

PR control block A dedicated block in Arria 10 and Cyclone 10 GX FPGAs. The PR control block
processes the PR requests, handshake protocols, and verifies the cyclic
redundancy check (CRC).

PR host The system for coordinating PR. The PR host communicates with the PR
control block (Arria 10 and Cyclone 10 GX designs) or Secure Device Manager
(Stratix 10, Agilex 7, and Agilex 5 designs). Implement the PR host within the
FPGA (internal PR host) or in a chip or microprocessor.

PR partition Design partition that you designate as Reconfigurable. A PR project can
contain one or more PR partitions.

PR Solutions Intel® FPGA IP Suite of Intel FPGA IP that simplify implementation of PR handshaking and
freeze logic, as Partial Reconfiguration Solutions IP User Guide on page 74
describes.

continued...

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

6

https://github.com/alterasoftware/design-flows/tree/master/partial_reconfig
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Term Description

PR region A physical portion of an FPGA device that you designate for partial
reconfiguration. You define a PR region in the base configuration design. A
device can contain more than one PR region. A PR region must be core-only,
containing only core resources like LABs, RAM blocks, and DSP blocks. The PR
region bitstream configures this region.

PR persona A specific PR partition implementation in a PR region. A PR region can contain
multiple personas. Static regions contain only one persona.

Revision A collection of settings and constraints for one version of your project. An
Quartus Prime Settings File (.qsf) preserves each revision of your project.
Your Quartus Prime project can contain several revisions. Revisions allow you
to organize several versions of your design within a single project.

Secure Device Manager (SDM) A triple-redundant processor-based block in Agilex 7, Agilex 5, and Stratix 10
devices that performs authentication, decryption, and decompression on the
configuration data the block receives, before sending the data over to the
configurable nodes through the configuration network.

Snapshot The output of a Compiler stage. You can export the synthesis or final
compilation results snapshot.

Static region All areas not occupied by PR regions in your project. You associate the static
region with the top-level partition of the design. The static region contains
both the core and periphery locations of the device. The static region
bitstream configures this region.

Static update partial reconfiguration A static region that you can change, without requiring the recompilation of all
personas. This technique is useful for a portion of a design that you may
possibly want to change for risk mitigation, but that never requires runtime
reconfiguration.

1.3. Partial Reconfiguration Process Sequence

Your partial reconfiguration design must initiate the PR operation and deliver the
configuration file to the PR control block (Arria 10 and Cyclone 10 GX designs) or SDM
(Agilex 7, Agilex 5, and Stratix 10 designs). Before partial reconfiguration, you must
ensure that the FPGA device is in user mode, and in a functional state. The following
steps describe the partial reconfiguration sequence:

1. Send the stop_req signal to the PR region from the sequential PR control logic to
prepare for the PR operation. Upon receiving this signal, the PR regions complete
any pending transactions and stop accepting new transactions.

2. Wait for the stop_ack signal to indicate that the PR region is ready for partial
reconfiguration.

3. Use PR control logic to freeze all necessary outputs of the PR regions. Additionally,
drive the clock enable for any initialized RAMs to a disabled state.

4. Send the PR bitstream to the PR control block (Arria 10 and Cyclone 10 GX
designs) or SDM (Agilex 7, Agilex 5, and Stratix 10 designs) to initiate the PR
process for the PR region. When using any of the Partial Reconfiguration Controller
Intel FPGA IP, the Avalon® memory-mapped or Avalon streaming interface on the
IP core provides this functionality. When directly instantiating the PR control block
for Arria 10 designs, refer to PR Control Block Signal Timing Diagrams on page
103

5. On successful completion of the PR operation, reset the PR region.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Signal the start of PR operation by asserting the start_req signal, and
deasserting the freeze signal.

7. Wait for the start_ack signal to indicate that the PR region is ready for
operation.

8. Resume operation of the FPGA with the newly reconfigured PR region.

Figure 2. PR Process Sequence Timing Diagram

stop_req

stop_ack

freeze

region_reset

start_req

start_ack

Unbounded time between
stop_req and stop_ack

stop_req is deasserted
when stop_ack is asserted

start_req is asserted
when freeze is deasserted

Partial
Reconfiguration

region_reset is fully
user controlled

Unbounded time between
start_req and start_ck

start_req is deasserted
when start_ack is asserted

1.4. Internal Host Partial Reconfiguration

With internal host control, an internal controller, a Nios® II processor, or an interface
such as PCI Express* (PCIe*) or Ethernet, communicates directly with the Arria 10 or
Cyclone 10 GX PR control block, or with the SDM in Agilex 7, Agilex 5, and Stratix 10
devices.

To transfer the PR bitstream into the PR control block or SDM, you use the Avalon
memory-mapped interface on the Partial Reconfiguration Controller IP core. When the
device enters user mode, you initiate partial reconfiguration through the FPGA core
fabric using the PR internal host.

Note: If you create your own control logic for the PR host, the logic must meet the PR
interface requirements.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Internal Host PR

 PR
Region

 PR Controller
IP Core

PR Bitstream File
(.rbf)

 In External Memory

FPGA

TOP

When performing partial reconfiguration with an internal host, use the dedicated PR
pins (PR_REQUEST, PR_READY, PR_DONE, and PR_ERROR) as regular I/Os. Implement
your static region logic to retrieve the PR programming bitstreams from an external
memory, for processing by the internal host.

Figure 4. Arria 10 FPGA System Using an Internal PR Host Example

 User

PR
Control Logic

 PR Controller
 IP Core

nSTATUS
CONF_DONE
nCONFIG
nCE

MSEL[4:0]

Partial Reconfiguration Data Received
 Through PCI Express* Link

Arria 10® Device

For example, send the programming bitstreams for partial reconfiguration through the
PCI Express link. Then, you process the bitstreams with your PR control logic and send
the bitstreams to the PR IP core for programming. nCONFIG moves the device out of
the user mode into the device configuration mode.(1)

1.5. External Host Partial Reconfiguration

In external host control, an external FPGA or CPU controls the PR configuration using
external dedicated PR pins on the target device. When using an external host, you
must implement the control logic for transmission of the bitstream to the hard FPGA
programming pins.

(1) nCONFIG can lock the device and force a power-cycle. PR programming may corrupt the static
logic, due to improper use, causing disconnection of the core clock input to configuration block
and unresponsive configuration. You must reset the PR IP before toggling nCONFIG.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. PR System Using an External Host (Arria 10 Example)

PR Control
 Block (CB)

PR Region

External
 Host

PR Bitstream File
(.rbf) In External
 Memory

top

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6. Partial Reconfiguration Design Flow

The PR design flow requires initial planning. This planning involves setting up one or
more design partitions, and then determining the placement assignments in the
floorplan. Well-planned PR partitions improve design area utilization and performance.
The Quartus Prime software also allows you to create nested PR regions as part of an
HPR flow.

Figure 6. Partial Reconfiguration Design Flow

Plan the PR System

Identify PR Resources

Code the Design

Simulate the Design

Functionality
Verified?

No

Timing Met ?

Yes

Specify All Core-Only Place
 Regions as Exclusive 1

Yes

 Create Routing Region for Each
 Place Region 1

Specify All Partitions as
 Reconfigurable Partitions 1

Create Design Partition(s) 1

Assign All PR Partition(s) to
 Core-only Logic Lock Regions1

Yes

Yes

Yes
Yes

Yes

Generate Configuration Files

Program the Device

Timing Met
for Each Revision?

Create Revisions and Compile the
Design for Each Revision

Yes

 (1) Recommended to compile the base revision before verifying timing closure

Timing Met ?

Timing Met ?

Timing Met ?

Timing Met ?

Timing Met ?

The PR design flow uses the project revisions feature in the Quartus Prime software.
Your initial design is the base revision, where you define the static region boundaries
and reconfigurable regions on the FPGA. From the base revision, you create multiple

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

revisions. These revisions contain the different implementations for the PR regions.
However, all PR implementation revisions use the same top-level placement and
routing results from the base revision.

The PR design flow includes the following steps:

• Step 1: Identify Partial Reconfiguration Resources on page 12

• Step 2: Create Design Partitions on page 12

• Step 3: Floorplan the Design on page 14

• Step 4: Add the Partial Reconfiguration Controller Intel FPGA IP on page 17

• Step 5: Define Personas on page 19

• Step 6: Create Revisions for Personas on page 19

• Step 7: Compile the Base Revision and Export the Static Region on page 21

• Step 8: Setup PR Implementation Revisions on page 25

• Step 9: Program the FPGA Device on page 26

1.6.1. Step 1: Identify Partial Reconfiguration Resources

When designing for partial reconfiguration, you must first determine the logical
hierarchy boundaries that you can define as reconfigurable partitions. Reconfigurable
partitions must contain only core resources, such as LABs, embedded memory blocks
(M20Ks and MLABs), and DSP blocks in the FPGA.

All periphery resources, such as transceivers, external memory interfaces, GPIOs, I/O
receivers, and the hard processor system (HPS), must be in the static region. Partial
reconfiguration of global network buffers for clocks and resets is not possible.

Table 2. Supported Reconfiguration Methods

Hardware Resource Block Reconfiguration Method

Logic Block Partial reconfiguration

Digital Signal Processing Partial reconfiguration

Memory Block Partial reconfiguration

Core Routing Partial reconfiguration

Transceivers/PLL Dynamic reconfiguration

I/O Blocks Not supported

Clock Control Blocks Not supported

After identifying the resources for PR, set up the design hierarchy and source code to
support this partitioning. Refer to Partial Reconfiguration Design Considerations on
page 33.

1.6.2. Step 2: Create Design Partitions

Create design partitions for each PR region that you want to partially reconfigure.
Create any number of independent partitions or PR regions in your design. Create
design partitions for partial reconfiguration from the Project Navigator, or the Design
Partitions Window.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A design partition is only a logical partitioning of the design, and does not specify a
physical area on the device. You associate a partition with a specific area of the FPGA
using Logic Lock Region assignments. To avoid partitions obstructing design
optimization, group the logic together within the same partition. If your design
includes a hierarchical PR flow with parent and child partitions, you can define multiple
parent or child partitions in your design, and multiple levels of PR partitions.

When you create a Reconfigurable partition, the Compiler preserves post-synthesis
results for the partition and reuses the post-synthesis netlist, if you make no partition
changes requiring re-synthesis. Otherwise, the Compiler resynthesizes the partition
from source files. The Compiler adds wire LUTs for each interface of a
Reconfigurable partition, and performs checks for PR compatibility.

Figure 7. Creating a Design Partition

Follow these steps to create design partitions:

1. Click Processing ➤ Start ➤ Start Analysis & Elaboration.

2. In the Project Navigator, right-click an instance in the Hierarchy tab, click Design
Partition ➤ Set as Design Partition. A design partition icon appears next to
each partition you create.

3. To view and edit all design partitions in the project, click Assignments ➤ Design
Partitions Window.

4. Specify Reconfigurable as the partition Type for each PR partition. The
Reconfigurable type preserves synthesis results, while allowing refit of the
partition in the PR flow.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Design Partitions Window

1.6.3. Step 3: Floorplan the Design

Use Logic Lock floorplan constraints in your PR design to physically partition the
device. Each PR partition in your design must have a corresponding, exclusive physical
partition. You create Logic Lock regions to define the physical partition for your PR
region. This partitioning ensures that the resources available to the PR region are the
same for any persona that you implement.

Figure 9. PR Region Floorplan

Logic Lock Region (Fabric)
Available to the PR Region

Your PR region must include only core logic, such as LABs, RAMs, ROMs, and DSPs in a
PR region. Agilex 7, Agilex 5, and Stratix 10 designs can also include Hyper-Registers
in the PR partition. Instantiate all periphery design elements, such as transceivers,

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

external memory interfaces, and clock networks in the static region of the design. The
Logic Lock regions you create can cross periphery locations, such as the I/O columns
and the HPS, because the constraint is core-only.

There are two region types:

• Place regions—use these regions to constrain logic to a specific area of the
device. The Fitter places the logic in the region you specify. The Fitter can also
place other logic in the region unless you designate the region as Reserved.

• Route regions—use these regions to constrain routing to a specific area. The
routing region must fully enclose the placement region. Additionally, the routing
regions for the PR regions cannot overlap.

Figure 10. Floorplanning your PR Design

Static
Region

PR Region

Static Logic

Route region

Place Region

Follow these guidelines when floorplanning your PR design:

• Complete the periphery and clock floorplan before core floorplanning. You can use
Interface Planner (Tools ➤ Interface Planner) to create periphery floorplan
assignments for your design.

• Define a routing region that is at least 1 unit larger than the placement region in
all directions. In defining this region, avoid any overlapping routing regions
between the static and PR regions.

• Do not overlap the routing regions of multiple PR regions.

• Select the PR region row-wise for least bitstream overhead. In Arria 10 and
Cyclone 10 GX devices, short, wider regions generate smaller bitstreams than tall,
narrower regions. Configuration occurs on sectors for Agilex 7, Agilex 5, and
Stratix 10 devices. For the least bitstream overhead, ensure that you align the PR
region to sector boundaries. Refer to "Analyzing and Optimizing the Design
Floorplan," in Quartus Prime Pro Edition User Guide: Design Optimization.

• For Arria 10 and Cyclone 10 GX devices, the height of your PR region affects the
reconfiguration time. A PR region larger in the Y direction takes longer to
reconfigure. This condition does not apply to Agilex 7 or Stratix 10 devices
because they configure according to sectors. The reconfiguration time of Agilex 7,
Agilex 5, and Stratix 10 devices depends on the number of sectors the PR region
covers. This reconfiguration time can also be affected by other factors, such as
interleaving or the presence of other Logic Lock regions.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To reduce programming files size for Agilex 7, Agilex 5, and Stratix 10 devices,
target only the necessary number of sectors for PR. Also, ensure that the routing
region of your PR region is 1 block (1 LAB row/column) inset from the edges of the
clock sector boundaries.

• Define sub Logic Lock regions within PR regions to improve timing closure.

• If your design includes HPR parent and child partitions, the placement region of
the parent region must fully enclose the routing and placement region of its child
region. Also, the parent wire LUTs must be in an area outside the child PR region.
This requirement is because the child PR region is exclusive to all other logic,
which includes the parent and the static region.

• The base revision .qdb provides the only effective pin assignments for the
implementation revision. Even if you subsequently change the pin assignments to
the implementation revisions, those changes do not take effect.

Related Information

• Quartus Prime Pro Edition User Guide: Design Optimization

• Quartus Prime Pro Edition User Guide: Design Constraints

1.6.3.1. Applying Floorplan Constraints Incrementally

PR implementation requires additional constraints that identify the reconfigurable
partitions of the design and device. These constraints significantly impact the
Compiler's timing closure ability. You can avoid and more easily correct timing closure
issues by incrementally implementing each constraint, running the Compiler, then
verifying timing closure.

Note: PR designs require a more constrained floorplan, compared to a flat design. The
overall density and performance of a PR design may be lower than an equivalent flat
design.

The following steps describe incrementally developing the requirements for your PR
design:

1. Implement the base revision using the most complex persona for each PR
partition. This initial implementation must include the complete design with all
periphery constraints, and top-level .sdc timing constraints. Do not include any
Logic Lock region constraints for the PR regions with this implementation.

2. Create partitions by setting the region Type option to Default in the Design
Partitions Window, for all the PR partitions.

3. Register the boundaries of each partition to ensure adequate timing margin.

4. Verify successful timing closure using the Timing Analyzer.

5. Ensure that all the desired signals are driven on global networks. Disable the Auto
Global Clock option in the Fitter (Assignments ➤ Settings ➤ Compiler
Settings ➤ Advanced Settings (Fitter)), to avoid promoting non-global signals.

6. Create Logic Lock core-only placement regions for each of the partitions.

7. Recompile the base revision with the Logic Lock constraints, and then verify timing
closure.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

16

https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Enable the Reserved option for each Logic Lock region to ensure the exclusive
placement of the PR partitions within the placement regions. Enabling the
Reserved option avoids placing the static region logic in the placement region of
the PR partition.

9. Recompile the base revision with the Reserved constraint, and then verify timing
closure.

10. In the Design Partitions Window, specify the Type for each of the PR partitions as
Reconfigurable. This assignment ensures that the Compiler adds wire LUTs for
each interface of the PR partition, and performs additional compilation checks for
partial reconfiguration.

11. Recompile the base revision with the Reconfigurable constraint, and then verify
timing closure. You can now export the top-level partition for reuse in the PR
implementation compilation of the different personas.

1.6.4. Step 4: Add the Partial Reconfiguration Controller Intel FPGA IP

Depending on the target device family, you can add the Partial Reconfiguration
Controller Arria 10/Cyclone 10 FPGA IP or the Partial Reconfiguration Controller Intel
FPGA IP to your design to send the partial reconfiguration bitstream to the PR control
block or SDM in an internal host configuration.

1.6.4.1. Adding the Partial Reconfiguration Controller Intel FPGA IP

You can customize and instantiate the Partial Reconfiguration Controller Intel FPGA IP
from the IP Catalog (Tools ➤ IP Catalog).

The Partial Reconfiguration Controller Intel FPGA IP interfaces with the Secure Device
Manager (SDM) to manage the bitstream source. The SDM performs authentication
and decompression on the configuration data. You can use this IP core in an Agilex 7,
Agilex 5, or Stratix 10 design when performing partial reconfiguration with an internal
PR host, Nios II processor, PCI Express, or Ethernet interface.

Figure 11. Partial Reconfiguration Controller (Avalon Streaming Interface)
(2)

PR Data
 Interface

Secure
Device

Manager
Interface

Partial Reconfiguration Controller Intel FPGA IP

avst_sink_data[31:0]
avst_sink_valid

Secure Device
Manager

avst_sink_ready
pr_start

status[2:0]

clk
reset

PR Flow
Handler

Data Source
 Controller

FPGA
Mailbox
Driver

User Input/Output

(2) Avalon memory-mapped interface variant also available.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software supports PR over the core interface using the PR
Controller IP core, or PR over the JTAG device pins. PR over JTAG pins does not
require instantiation of the Partial Reconfiguration Controller Intel FPGA IP.

1.6.4.2. Adding the Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA
IP

The Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP interfaces with the
Arria 10 or Cyclone 10 GX PR control block to manage the bitstream source.

Use this IP core in Arria 10 or Cyclone 10 GX designs when performing partial
reconfiguration with an internal PR host, Nios II processor, PCI Express, or Ethernet
interface.

During partial reconfiguration, you send a PR bitstream stored outside the FPGA to the
PR control block inside the FPGA. This communication enables the control block to
update the CRAM bits necessary for reconfiguring the PR region in the FPGA. The PR
bitstream contains the instructions (opcodes) and the configuration bits necessary for
reconfiguring a specific PR region.

Figure 12. Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP

CRC BLOCK PR BLOCK

CB Interface Controller

JTAG Debug
Interface

PR Data
Interface

FPGA Control
Block (CB)
Interface Module

Main Controller
Module

PR Data Source
Interface Module

Data Source Controller

Bitstream Decoder

Instantiate the IP core from the Quartus Prime IP Catalog (Tools ➤ IP Catalog) to
automatically connect the IP to the Arria 10 or Cyclone 10 GX PR control block.

If you create your own custom logic to perform the function of the IP core, manually
instantiate the control block to communicate with the FPGA system.

Related Information

• Partial Reconfiguration Controller Intel Arria® 10/Cyclone® 10 FPGA IP on page
90

• PR Control Block and CRC Block Verilog HDL Manual Instantiation on page 100

• PR Control Block and CRC Block VHDL Manual Instantiation on page 100

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.5. Step 5: Define Personas

Your partial reconfiguration design can have multiple PR partitions, each with multiple
personas. You define the unique function of each persona in separate Verilog HDL,
SystemVerilog HDL, or VHDL design files in the project directory. All the PR personas
must use the same set of signals to interact with the static region.

Ensure that the signals interacting with the static region are a super-set of all the
signals in all the personas. A PR design requires an identical I/O interface for each
persona in the PR region. If all personas for your design do not have identical
interfaces, you must also create wrapper logic to interface with the static region.

Note: If using the Quartus Prime Text Editor, disable Add file to current project when
saving the files. These persona source files should not be part of the Quartus Prime
project or compilations.

1.6.6. Step 6: Create Revisions for Personas

Create a base revision for the design, as well as PR implementation revisions for each
of the personas. When you define revisions in the GUI or at the command line, the
Quartus Prime software automatically adds these assignments required for PR
implementation:

• Entity Rebinding assignment (ENTITY_REBINDING)—for each PR partition, the
software adds an entity rebinding assignment with a place holder for the entity
name. Your design may not require all of the entity rebinding assignments of each
PR partition, based on the design and the implementation revision. For example,
in HPR designs that use the default persona for the parent partition, you add
the .qdb file for the PR parent, and then use entity rebinding only for the child.

• QDB File Partition assignment (QDB_FILE_PARTITION)—the software adds this
assignment for the static region, if you specify a .qdb file name.

• Revision Type Assignment (REVISION_TYPE)

To create the PR implementation revisions:

1. Click Project ➤ Revisions.

2. To create a new revision, double-click <<new revision>>.

3. Specify a unique Revision name.

4. Select an existing revision for the Based on revision option.

5. For the Revision type, select Partial Reconfiguration - Base for the base
revision or Partial Reconfiguration - Persona Implementation for an
implementation revision.

6. Click Apply and OK.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Creating Revisions

The following assignments in the respective revision's .qsf file correspond to
specifying the revision type from the Settings dialog box:

Base Revision Assignment:

set_global_assignment -name REVISION_TYPE PR_BASE

Implementation Revision Assignment:

set_global_assignment -name REVISION_TYPE PR_IMPL

For each PR partition, the Quartus Prime software also adds the entity rebinding
assignment to the .qsf:

set_instance_assignment -name ENTITY_REBINDING <entity_name> -to
<hierarchical_path>

If you base a new implementation revision on an existing .qdb file, The Quartus
Prime software also adds the .qdb file partition assignment, with a place holder
for the file name:

set_instance_assignment -name QDB_FILE_PARTITION <QDB file name>

As an example, to create a new implementation revision that uses a .qdb file
from a base revision, use the following command:

create_revision impl_new -based_on <base_revision> \
 -new_rev_type impl -root_partition_qdb_file base_static.qdb

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• impl_new—specifies the name of a new implementation revision.

• -based_on <based_on_revision> — specifies the PR base revision that
the new impl revision is based on. Some global assignments from the
based_on revision are copied over to the impl revision. Placeholder entity
rebinding assignments are created in the impl revision for each PR partition in
the base.

• -new_rev_type <rev_type>— only useful rev-type is impl.

• root_partition_qdb_file <qdb_file>—creates a
QDB_FILE_PARTITION assignment in impl revision with the specified .qdb
file.

Figure 14. Partial Reconfiguration Compilation Flow

Compile the Base Revision with the Most
 Complex Persona for Each PR Region

Export the root_partition at the “final”
 Snapshot of the Base Revision

Create Revisions to Implement Each
 PR Persona

For each implementation revision:
1. Add the .qdb file of the base revision root partition
2. Specify the entity bound to the PR region
3. Compile the implementation revision

 Analyze Timing on Each
PR Implementation Revision

1.6.7. Step 7: Compile the Base Revision and Export the Static Region

After defining and floorplanning PR partitions and revisions, you compile the base
revision and export the static region. You can export individual design partitions
manually, or you can export one or more partitions automatically each time you run
the Compiler.

Follow these steps to compile and export the base and static region:

1. To specify the current revision, click Project ➤ Revisions, and then set the base
revision as current, or select the base revision from the main toolbar drop-down
list.

2. For Arria 10 and Cyclone 10 GX designs, you can optionally add the following
assignments to the .qsf to automatically generate the required PR bitstreams
following compilation. This step is not required for Agilex 7, Agilex 5, or Stratix 10
designs.

set_global_assignment -name GENERATE_PR_RBF_FILE ON
set_global_assignment -name ON_CHIP_BITSTREAM_DECOMPRESSION OFF

3. To compile the base revision, click Processing ➤ Start Compilation.

4. To export the static region, click Project ➤ Export Design Partition and specify
options for the partition export:

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15. Export Design Partition

Table 3. Design Partition Options

Option Setting

Partition name Select root_partition.

Partition database file Specify a descriptive file name.

Include entity-bound SDC
files

Enable to include entity bound .sdc files with the partition export.
Note: You must enable this option when exporting the base revision (root partition),

so that the implementation compiles inherit the timing constraints defined in
entity-bound .sdc files.

Snapshot Select final snapshot.

5. Alternatively, follow these steps to automatically export one or more design
partitions after each compilation. You can automatically export any design
partition that does not have a preserved parent partition, including the
root_partition.

a. To open the Design Partitions Window, click Assignments ➤ Design
Partitions Window.

b. To automatically export a partition with final snapshot results any time you run
the Fitter, specify a .qdb file name for the Post Final Export File option for
that partition.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16. Specifying Export File in Design Partitions Window

QSF File Equivalent:

set_instance_assignment -name \
 EXPORT_PARTITION_SNAPSHOT_<FINAL|SYNTHESIZED> \
 <hierarchy_path> -to <file_name>.qdb

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.7.1. Understanding PR Logic Utilization Reports

After running the Fitter compilation stage, you can view reports about the logic
utilization of your PR design in the Compilation Report. The Partial Reconfiguration and
Periphery Reuse Statistics report provides data about the boundary ports, ALMs, and
other resources that the PR region requires.

This report may show an increase in the implementation revision ALM logic utilization
compared with the base revision utilization. Specifically, the value of '[C] estimate
of the ALMs unavailable' can be significantly higher in the implementation
revision compared to the base revision, as the following figures illustrate.

Figure 17. Partial Reconfiguration and Periphery Reuse Statistics Report (Base
Revision)

Figure 18. Partial Reconfiguration and Periphery Reuse Statistics Report
(Implementation Revision)

This increase in ALM usage appears because the base revision compilation report
reflects logic utilization that is based only on the base revision RTL file. However, for
the implementation revision, the static region is imported from the base revision .qdb
file that also includes all of the logic (used and unused) of the static region. This
additional base revision logic causes the increase in [C]. In this case, [C] includes
every ALM of the static region .qdb file. In contrast, [A] is the actual number of used
ALMs in the design after placement. For the Total Logic Utilization of PR designs, you
must review the [A]ALMs used in final placement.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.8. Step 8: Setup PR Implementation Revisions

You must prepare the PR implementation revisions before you can generate the PR
bitstream for device programming. This setup includes adding the static region .qdb
file as the source file for each implementation revision. In addition, you must specify
the corresponding entity of the PR region.

Note: The base revision .qdb provides the only effective pin assignments for the
implementation revision. Even if you subsequently change the pin assignments in the
implementation revision .qsf, those changes do not take effect.

Follow these steps to setup the PR implementation revisions:

1. Set an implementation revision as the Current Revision.

2. To specify the .qdb file as the source for root_partition, click Assignments
➤ Design Partitions Window. Double-click the Partition Database File cell
and specify the appropriate .qdb file.

3. For each PR implementation revision, specify the name of the entity that you want
to partially reconfigure in the Entity Re-binding cell. This entity name comes
from the design file for the persona you want to implement in this implementation
revision.

Figure 19. Design Partitions Window

4. To compile the design, click Processing ➤ Start Compilation.

5. Repeat steps 1 through 4 to setup and compile each implementation revision.
Alternatively, use a simple Tcl script to compile all implementation revisions:

set_current_revision <implementation1 revision name>
execute_flow -compile
set_current_revision <implementation2 revision name>
execute_flow -compile
.
.
.

Note: When you generate a static .qdb for import into a PR implementation
compile, make sure to preserve the entity-bound .sdc files for the static
partition. Also, for the implementation revision to properly process the .sdc
files, the order of assignments in the implementation file .qsf is very
important. Verify the order of the .sdc files in the implementation revision.
The implementation revision includes the entity-bound .sdc constraints
pulled in by the static region .qdb. The implementation revision also
includes the .sdc files for the implementation revision. If you require
the .sdc files pulled in by the static region .qdb before the implementation
revision .sdc files, ensure that the QDB_FILE_PARTITION assignment
appears before any other .sdc file assignment.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.9. Step 9: Program the FPGA Device

The Quartus Prime Assembler generates the PR bitstreams for your design personas.
For Arria 10 and Cyclone 10 GX designs, you send the bitstreams to the PR control
block. For Agilex 7, Agilex 5, and Stratix 10 designs, you send the PR bitstreams to
the SDM. You must compile the PR project, including the base revision, and at least
one implementation revision, before generating the PR bitstreams.

For Agilex 7, Agilex 5, and Stratix 10 designs, the Assembler generates a
configuration .rbf automatically at the end of compilation. For Arria 10 and Cyclone
10 GX designs, you can add the GENERATE_PR_RBF_FILE assignment to the .qsf or
use the Convert Programming Files dialog box to convert the Partial-Masked SRAM
Object Files (.pmsf) to an .rbf file, as Generating PR Bitstream Files on page 28
describes.

Figure 20. Programming File Generation

Base
Revision with

Persona A

Revision B

Revision C

pr_region.pmsf
static.msf
base.sof

B.sof
B.pmsf

C.sof
C.pmsf

Partial
Reconfiguration

Design

Base revision persona A
PR revision persona B
PR revision persona C

Table 4. PR Programming Files

Programming File Description

<rev>.<pr_region>.pmsf Contains the partial-mask bits for the PR region. The .pmsf
file contains all the information for creating PR bitstreams.
Note: The default file name corresponds to the partition

name.

<rev>.<static_region>.msf Contains the mask bits for the static region.

<rev>.sof Contains configuration information for the entire device.

Related Information

• Partial Reconfiguration Security (Stratix 10 Designs) on page 59

• Agilex 7 Configuration User Guide

• Stratix 10 Configuration User Guide

• Arria 10 Configuration User Guide

• Cyclone 10 GX Core Fabric and General Purpose I/Os Handbook

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

26

https://www.intel.com/content/www/us/en/docs/programmable/683673.html
https://www.intel.com/content/www/us/en/docs/programmable/683762.html
https://www.intel.com/content/www/us/en/docs/programmable/683775.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.9.1. Generating PR Bitstream Files

For Agilex 7, Agilex 5, and Stratix 10 designs, the Assembler generates a
configuration .rbf automatically at the end of compilation. For Arria 10 and Cyclone
10 GX designs, use any of the following methods to process the PR bitstreams and
generate the Raw Binary File (.rbf) file for reconfiguration.

Note: The Assembler generates a configuration .rbf automatically at the end of compilation
for Agilex 7, Agilex 5, and Stratix 10 designs. You do not need to separately generate
these files when targeting these devices.

Generating PR Bitstreams During Compilation (Arria 10 and Cyclone 10 GX
Designs)

Follow these steps to generate the .rbf file during compilation for Arria 10 and
Cyclone 10 GX designs:

1. Add the following assignments to the revision .qsf to automatically generate the
required PR bitstreams following compilation:

set_global_assignment -name GENERATE_PR_RBF_FILE ON
set_global_assignment -name ON_CHIP_BITSTREAM_DECOMPRESSION OFF

2. To compile the revision and generate the .rbf, click Processing ➤ Start
Compilation.

Generating PR Bitstreams with Convert Programming Files Dialog Box (Arria
10 and Cyclone 10 GX Designs)

Follow these steps to generate the .rbf with the Convert Programming Files dialog
box:

1. Click File ➤ Convert Programming Files. The Convert Programming Files
dialog box appears.

2. Specify the output file name and Programming file type as Raw Binary File
for Partial Reconfiguration (.rbf).

3. To add the input .pmsf file to convert, click Add File.

4. Select the newly added .pmsf file, and click Properties.

5. Enable or disable any of the following options and click OK:

• Compression—enables compression on PR bitstream.

• Enhanced compression—enables enhanced compression on PR bitstream.

• Generate encrypted bitstream—generates encrypted independent
bitstreams for base image and PR image. You can encrypt the PR image even
if your base image has no encryption. The PR image can have a separate
encryption key file (.ekp). If you enable Generate encrypted bitstream,
enable or disable the Enable volatile security key, Use encryption lock
file, and Generate key programming file options.

6. Click Generate. The PR bitstream files generate according to your specifications.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. PMSF File Properties Bitstream Encryption

1.6.9.2. Generating PR Bitstream Files

For Agilex 7, Agilex 5, and Stratix 10 designs, the Assembler generates a
configuration .rbf automatically at the end of compilation. For Arria 10 and Cyclone
10 GX designs, use any of the following methods to process the PR bitstreams and
generate the Raw Binary File (.rbf) file for reconfiguration.

Generating PR Bitstreams During Compilation

Follow these steps to generate the .rbf file during compilation for Arria 10 and
Cyclone 10 GX designs:

1. Add the following assignments to the revision .qsf to automatically generate the
required PR bitstreams following compilation:

set_global_assignment -name GENERATE_PR_RBF_FILE ON
set_global_assignment -name ON_CHIP_BITSTREAM_DECOMPRESSION OFF

2. To compile the revision and generate the .rbf, click Processing ➤ Start
Compilation.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating PR Bitstreams with Programming File Generator

Follow these steps to generate the .rbf for PR programming with the Programming
File Generator:

1. Click File ➤ Programming File Generator. The Programming File Generator
appears.

2. Specify the target Device family and the Configuration mode for partial
reconfiguration.

3. On the Output File tab, specify the Output directory, file name, and enable the
Raw Binary File for Partial Reconfiguration (.rbf) file type.

4. To add the input .pmsf file to convert, click the Input Files tab, click Add
Bitstream, and specify the .pmsf that you generated in the Assembler.

Figure 22. Adding Bitstream File

5. On the Input Files tab, select the bitstream .pmsf file and click Properties.
Specify any of the following options for the .rbf:

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Enable compression—generates compressed PR bitstream files to reduce file
size.

• Enable encryption—generates encrypted independent bitstreams for base
image and PR image. You can encrypt the PR image even if your base image
has no encryption. The PR image can have a separate encryption key file
(.ekp). You can also specify other Security settings.

• If you turn on Enable encryption, you must also acknowledge the Design
Security Feature Disclaimer by checking the box.

Figure 23. Design Security Feature Disclaimer

6. Click OK.

7. In Programming File Generator, click Generate. The PR bitstream files
generate according to your specifications.

Generating PR Bitstreams with Convert Programming Files Dialog Box

Follow these steps to generate the .rbf with the Convert Programming Files dialog
box:

1. Click File ➤ Convert Programming Files. The Convert Programming Files
dialog box appears.

2. Specify the output file name and Programming file type as Raw Binary File
for Partial Reconfiguration (.rbf).

3. To add the input .pmsf file to convert, click Add File.

4. Select the newly added .pmsf file, and click Properties.

5. Enable or disable any of the following options and click OK:

• Compression—enables compression on PR bitstream.

• Enhanced compression—enables enhanced compression on PR bitstream.

• Generate encrypted bitstream—generates encrypted independent
bitstreams for base image and PR image. You can encrypt the PR image even
if your base image has no encryption. The PR image can have a separate
encryption key file (.ekp). If you enable Generate encrypted bitstream,
enable or disable the Enable volatile security key, Use encryption lock
file, and Generate key programming file options.

6. Click Generate. The PR bitstream files generate according to your specifications.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. PMSF File Properties Bitstream Encryption

1.6.9.3. Partial Reconfiguration Bitstream Compatibility Checking

Partial reconfiguration bitstream compatibility checking verifies the compatibility of the
reconfiguration bitstream to prevent configuration with an incompatible PR bitstream.
The following sections describe PR bitstream compatibility check support.

Figure 25. PR Bitstream Compatibility Checking

Static Region

PR Region
Persona A

PR Bitstream
Persona B
from Same

Design

PR Bitstream
Persona B

from Different
Design

Incompatible PR
Bitstream

Compatible
PR Bitstream

PR
 Bi

tst
re

am
 Co

m
pa

tib
ilit

y C
he

ck

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PR Bitstream Compatibility Checking for Agilex 7, Agilex 5, and Stratix 10
Designs

For Agilex 7, Agilex 5, and Stratix 10 designs, PR bitstream compatibility checking is
automatically enabled in the Compiler and in the Secure Device Manager (SDM)
firmware by default. The following limitations apply to PR designs if PR bitstream
compatibility checking is enabled:

• The firmware allows up to a total of 32 PR regions, irrespective of the number of
hierarchical partial reconfiguration layers.

• Your PR design can have up to six hierarchical partial reconfiguration layers.

• Your PR design, when there is no hierarchy, can have up to 32 regions.

• Your PR design can have up to 15 child PR regions of any parent PR region (if it is
hierarchical). Child PR regions count towards the total limit of 32 PR regions.

The Compiler generates an error if your PR design exceeds these limits when PR
bitstream compatibility checking is enabled.

If you require more PR regions than this limitation allows, or otherwise want to disable
PR bitstream compatibility checking , you can add the following assignment to
the .qsf file:

set_global_assignment -name ENABLE_PR_POF_ID OFF

When you set this assignment to off, the limit of 32 total regions does not apply in the
Compiler.

Note: If you require the PR bitstream authentication feature for your design, you must
enable PR bitstream compatibility checking by setting the global assignment
ENABLE_PR_POF ID to ON. The default setting is ON.

Arria 10 and Cyclone 10 GX PR Bitstream Compatibility Checking

For Arria 10 and Cyclone 10 GX designs, you enable or disable PR bitstream
compatibility checking by turning on the Enable bitstream compatibility check
option when instantiating the Partial Reconfiguration Controller Arria 10/Cyclone 10
FPGA IP from the IP Catalog.

The PR IP verifies the partial reconfiguration PR Bitstream file (.rbf). When you
enable the bitstream compatibility check, the PR .pof ID is encoded as the 71st word
of the PR bitstream. If the PR IP detects an incompatible bitstream, then the PR IP
stops the PR operation, and the status output reports an error.

When you turn on Enable bitstream compatibility check, the PR Controller IP core
creates a PR bitstream ID and displays the bitstream ID in the configuration dialog
box. For bitstream compatibility checking with hierarchical PR designs, refer to
additional steps in AN 806: Hierarchical Partial Reconfiguration Tutorial for Arria 10 GX
FPGA Development Board.

Related Information

AN 806: Hierarchical Partial Reconfiguration Tutorial for Intel Arria 10 GX FPGA
Development Board

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

32

https://www.intel.com/content/www/us/en/programmable/documentation/boq1489969358045.html
https://www.intel.com/content/www/us/en/programmable/documentation/boq1489969358045.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.9.4. Raw Binary Programming File Byte Sequence Transmission Examples

The raw binary programming file (.rbf) file contains the device configuration data in
little-endian raw binary format. The following example shows transmitting the .rbf
byte sequence 02 1B EE 01 in x32 mode:

Table 5. Writing to the PR control block or SDM in x32 mode
In x32 mode, the first byte in the file is the least significant byte of the configuration double word, and the
fourth byte is the most significant byte.

Double Word = 01EE1B02

LSB: BYTE0 = 02 BYTE1 = 1B BYTE2 = EE MSB: BYTE3 = 01

D[7..0] D[15..8] D[23..16] D[31..24]

0000 0010 0001 1011 1110 1110 0000 0001

1.6.9.5. Generating a Merged .pmsf File from Multiple .pmsf Files (Arria 10 and
Cyclone 10 GX Designs)

Use a single merged .rbf file to reconfigure two PR regions simultaneously.

Note: This procedure supports only Arria 10 and Cyclone 10 GX devices. Agilex 7, Agilex 5,
and Stratix 10 devices do not support merging .pmsf files.

To merge two or more .pmsf files:

1. Open the Convert Programming Files dialog box.

2. Specify the output file name and programming file type as Merged Partial-Mask
SRAM Object File (.pmsf).

3. In the Input files to convert dialog box, select PMSF Data.

4. To add input files, click Add File. You must specify two or more files for merging.

5. To generate the merged file, click Generate.

Alternatively, to merge two or more .pmsf files from the Quartus Prime shell, type the
following command:

quartus_cpf --merge_pmsf=<number of merged files> <pmsf_input_file_1> \
 <pmsf_input_file_2> <pmsf_input_file_etc> <pmsf_output_file>

For example, to merge two .pmsf files, type the following command:

quartus_cpf --merge_pmsf=2 foo.pmsf bat.pmsf \
 combine.pmsf

After creating the merged .pmsf, generate a .rbf, as Generating PR Bitstream Files
on page 28 describes.

1.7. Partial Reconfiguration Design Considerations

Partial reconfiguration is an advanced design flow in the Quartus Prime Pro Edition
software. Creating a partial reconfiguration design requires an understanding of how
the PR design guidelines apply to your design. When designing for partial
reconfiguration, you must consider the entire system-level behavior initial conditions
to maintain the integrity and correctness of the static region operation.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, during PR programming, you must ensure that other parts of the system
do not read or write to the PR region. You must also freeze the write enable output
from the PR region into the static region, to avoid interference with static region
operation. If all personas for your design do not have identical top-level interfaces,
you must create the wrapper logic to ensure that all the personas appear similar to
the static region. Upon partial reconfiguration of a PR region, you must bring the
registers in the PR region to a known state by applying a reset sequence. There are
specific guidelines for global signals and on-chip memories. The following sections
provide design considerations and guidelines to help you create design files for a PR
design.

FPGA Device and Software Considerations

• All Agilex 7, Agilex 5, Stratix 10, Arria 10, and Cyclone 10 GX devices support
partial reconfiguration.

• Use the nominal VCC of 0.9V or 0.95V as per the datasheet, including VID enabled
devices.

• To minimize Arria 10 and Cyclone 10 GX programming files size, ensure that the
PR regions are short and wide. For Agilex 7, Agilex 5, and Stratix 10 designs, use
sector-aligned PR regions.

• The Quartus Prime Standard Edition software does not support partial
reconfiguration for Arria 10 devices, nor provide any support for Agilex 7, Agilex 5,
or Stratix 10 devices.

• The current version of the Quartus Prime Pro Edition software supports only one
Signal Tap File (.stp) per revision.

Design Partition Considerations

• Reconfigurable partitions can only contain core resources, such as LABs, RAMs,
and DSPs. All periphery resources, such as the transceivers, external memory
interface, HPS, and clocks must be in the static portion of the design.

• To physically partition the device between static and individual PR regions,
floorplan each PR region into exclusive, core-only, placement regions, with
associated routing regions.

• A reconfiguration partition must contain the super-set of all ports that you use
across all PR personas.

Clocking, Reset, and Freeze Signal Considerations

• The maximum number of clocks or other global signals for any Arria 10 or Cyclone
10 GX PR region is 33. The maximum number of clocks or other global signals for
any Agilex 7, Agilex 5, and Stratix 10 PR region is 32. In the current version of the
Quartus Prime Pro Edition software, no two PR regions can share a row-clock.

• PR regions do not require any input freeze logic. However, you must freeze all the
outputs of each PR region to a known constant value to avoid unknown data
during partial reconfiguration.

• Increase the reset length by 1 cycle to account for register duplication in the
Fitter.

• Ensure that all low-skew global signals (clocks and resets) driving into PR regions
in base revision compilations have destinations.

• In Agilex 7 and Agilex 5 devices, you must use global clock resources to clock
M20K RAMs in PR regions. The Fitter issues an error if an M20K in a PR region is
driven by a clock port from a locally routed clock.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.1. Partial Reconfiguration Design Guidelines

The following table lists important design guidelines at various steps in the PR design
flow:

Table 6. Partial Reconfiguration Design Guidelines

PR Design Step Guideline Reason

Designing for partial
reconfiguration

Do not assume initial states in registers
inside PR region. After PR is complete,
reset all the control path registers to a
known state. Unless required for your
scenario, you can omit the data path
registers from the reset.

Registers inside the PR region contain
undefined values after reconfiguration.
Omitting data path registers reduces
congestion on reset signals. However,
resetting the data registers is required in
some cases.(3)

You cannot define synchronous reset as a
global signal for Arria 10 or Cyclone 10 GX
partial reconfiguration.

PR regions do not support synchronous reset
of registers as a global signal, because the
Arria 10 and Cyclone 10 GX LAB does not
support synchronous clear (sclr) signal on a
global buffer. The LAB supports the
asynchronous clear (aclr) signal driven
from a local input, or from a global network
row clock. As a result, only the aclr can be
a global signal, feeding registers in a PR
region.

The PRESERVE_FANOUT_FREE_NODE
assignment cannot preserve a fanout-free
register that has no fanout inside the
Verilog HDL or VHDL module in which you
define it. To preserve these fanout-free
registers, implement the noprune pragma
in the source file:

(*noprune*)reg r;

If there are multiple instances of this
module, with only some instances
requiring preservation of the fanout-free
register, set a dummy pragma on the
register in the HDL and also set the
PRESERVE_FANOUT_FREE_NODE
assignment. This dummy pragma allows
the register synthesis to implement the
assignment. For example, set the
following dummy pragma for a register r
in Verilog HDL:

(*dummy*)reg r;

Then set this instance assignment:

set_instance_assignment -name \
 PRESERVE_FANOUT_FREE_NODE ON \
 -to r;

The PRESERVE_FANOUT_FREE_NODE
assignment does not apply when a register is
not used in the Verilog HDL or VHDL module
in which it is defined.

Partitioning the design Register all the inputs and outputs for
your PR region.

Improves timing closure and time budgeting.

continued...

(3) For example, there are occurrences where registers are being duplicated while simultaneously
the register value is undefined after PR. The duplicated registers can result in a mismatch
between the parity bit and the data written to the MLAB after PR. Hence, a different value is
used to compute the parity bit compared with the actual data written to the MLAB, requiring
reset of the data register, or re-write of the value to the register after PR.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PR Design Step Guideline Reason

Reduce the number of signals interfacing
the PR region with the static region in
your design.

Reduces the wire LUT count.

Create a wrapper for your PR region. The wrapper creates a common footprint to
the static region.

Drive all the PR region output ports to
inactive state when the PR region is held
in reset and the freeze bit is asserted for
the PR region.

Prevents the static region logic from
receiving random data during the partial
reconfiguration operation.

PR boundary I/O interface must be a
superset of all the PR persona I/O
interfaces.

Ensures that each PR partition implements
the same ports.

Preparing for partial
reconfiguration

Complete all pending transactions. Ensures that the static region is not in a wait
state.

Maintaining a partially
working system during partial
reconfiguration

Hold all outputs to known constant values. Ensures that the undefined values the PR
region receives during and after the
reconfiguration do not affect the PR control
logic.

Initializing after partial
reconfiguration

Initialize after reset. Retrieves state from memory or other device
resources.

Debugging the design using
Signal Tap Logic Analyzer

Store all the tapped signals from a
persona in one .stp file.

The current version of the Quartus Prime
software supports only one .stp (Signal Tap
file) per revision. This limitation requires you
to select partitions, one at a time, to tap.

Do not tap across regions in the
same .stp file.

Ensures consistent interface (boundary)
across all personas.

Tap only the pre-synthesis signals. In the
Node Finder, filter for Signal Tap: pre-
synthesis.

Ensures that the signal tapping of PR
personas start from synthesis.

1.7.2. PR Design Timing Closure Best Practices

The use of partition boundary ports for PR regions can make timing closure more
challenging because the Compiler cannot optimize the logic across a partition
boundary. The use of Logic Lock regions can also limit placement and routing
flexibility. You must register all PR region boundary ports. Even when taking these
steps, you may still find timing criticalities.

Each persona of a PR region can have different bits or input and output buses in use.
Therefore, it is important to preserve the registers that do not have fan-out in a given
persona, or that are driven by constants. You must ensure that the Compiler does not
optimize away such registers during the compilation of a persona.

If the base compile does not use some bits of a bus, and the Compiler removes the
corresponding registers for those bits, the logic may be untimed, resulting in
unfavorable placement and routing. If you use those unregistered paths in other
persona logic, you can have difficulty meeting timing on those paths. Preserving the
unused port registers in the base compile ensures that the paths are timed in the base
compile, and eases timing closure during persona compiles.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these guidelines for effective register preservation in PR designs:

• Only the registers within PR regions require preservation.

• Only the PR base compilation requires register preservation.

• In a persona compile, the Compiler can safely remove fan-out free and constant-
driven registers.

• For hierarchical PR compilations, only the base compile of the hierarchy requires
register preservation.

• Preserve fan-out free nodes for input registers.

• Preserve constant-driven nodes for output registers.

• Only assign the attributes for the PR base compile. Remove the attributes for the
persona compile (for example, via parameter or generic).

• You can set top-level parameters in the .qsf, which in turn pass down to lower
hierarchies.

Use any of the following synthesis attributes to preserve registers:

• To preserve constant-driven or fan-out free registers, use the noprune attribute.
noprune also disables all physical optimizations:

Verilog: (* noprune *) reg reg1;
VHDL: signal reg1: std_logic;
 attribute noprune: boolean;
 attribute noprune of reg1: signal is true;

• To preserve fan-out free registers while allowing retiming on bits that have fan-
outs, assign PRESERVE_FANOUT_FREE_NODE ON as altera_attribute:

Verilog: (* altera_attribute = "-name PRESERVE_FANOUT_FREE_NODE ON" *) \
 reg reg1;
VHDL: signal reg1: stdlogic;
 attribute altera_attribute : string;
 attribute altera_attribute of reg1: signal is "-name \
 PRESERVE_FANOUT_FREE_NODE ON";

• Alternatively, use the dummy attribute with the PRESERVE_FANOUT_FREE_NODE
ON assignment in the .qsf:

Verilog: (* dummy *) reg reg1;
VHDL: signal reg1: std_logic;
 attribute dummy: boolean;
 attribute dummy of reg1: signal is true;

.qsf Assignment:

set_instance_assignment -name PRESERVE_FANOUT_FREE_NODE ON \
 -to <hierarchical path to reg1>

• To preserve constant-driven registers while allowing retiming on bits that have
drivers, use the preserve_syn_only attribute:

Verilog: (* preserve_syn_only *) reg reg1;
VHDL: signal reg1: std_logic;
 attribute preserve_syn_only : boolean;
 attribute preserve_syn_only of reg1: signal is true;

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example shows how to assign attributes in PR base compile using a
parameter in System Verilog and in VHDL. The example contains a parameter called
base_compile, which is set to true for the PR base compile only.

System Verilog:
localparam ON_OFF_STRING = base_compile ? "ON": "OFF";
(* altera_attribute = {"-name PRESERVE_FANOUT_FREE_NODE ", ON_OFF_STRING} *)
logic [WIDTH-1:0] pr_input_register;
(* altera_attribute = {"-name PRESERVE_REGISTER_SYN_ONLY ", ON_OFF_STRING} *)
logic [WIDTH-1:0] pr_output_regsiter;

VHDL:
attribute altera_attribute : string;
type attributeStr_type is array(boolean) of string(1 to 35);
constant attributeStr : attributeStr_type := (true => "-name
PRESERVE_FANOUT_FREE_NODE ON \
 ", false => "-name PRESERVE_FANOUT_FREE_NODE OFF");
attribute altera_attribute of <PR input registers> : signal is
attributeStr(base_compile);
attribute preserve_syn_only : boolean;
attribute preserve_syn_only of <PR output registers> : signal is base_compile;

Related Information

AN 899: Reducing Compile Time with Fast Preservation

1.7.3. PR File Management

You can simplify the management of PR personas and their corresponding source files
by observing one of the following PR project file management methods.

To illustrate these methods, consider a design that includes two PR regions, each with
the possible apple, orange, and banana personas.

Figure 26. Example Design with Two PR Regions and Three Personas

Static
Region

design_top

PR Region A

PR Region B

PR Persona apple

PR Persona orange

PR Persona banana

PR Persona apple

PR Persona orange

PR Persona banana

• Method 1 (Preferred): Specify Unique Entity and File Names for Each Persona on
page 39

• Method 2: Set QSF Assignment for a Parameterized PR Persona on page 40

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

38

https://www.intel.com/content/www/us/en/programmable/documentation/lyx1569936504360.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.3.1. Method 1 (Preferred): Specify Unique Entity and File Names for Each
Persona

In PR file management method 1, you specify unique entity and file name pairs for
each persona in the project. For example:

• Define the apple persona in the apple.sv file

• Define the orange persona in the orange.sv file

• Define the banana persona in the banana.sv file

Note: For successful compilation and PR operation, all personas must have the exact same
port names and widths defined in each .sv file.

In the base PR revision RTL, you specify "apple" as the PR persona for both PR
regions:

Figure 27. Setting the Base PR Persona to "apple"

When you set the base persona to [apple, apple] by setting u_fruit_0 and
u_fruit_1 as the PR partition and regions, you can easily change the persona
occupying the PR region using the Entity Rebinding (ENTITY_REBINDING) option in
the Design Partitions Window, or by editing the .qsf directly, as the following
examples show:

To specify the orange persona for a PR implementation (impl) revision:

set_instance_assignment -name ENTITY_REBINDING orange -to u_fruit_0
set_instance_assignment -name ENTITY_REBINDING orange -to u_fruit_1

To specify the banana persona for another PR implementation (impl) revision:

set_instance_assignment -name ENTITY_REBINDING banana -to u_fruit_0
set_instance_assignment -name ENTITY_REBINDING banana -to u_fruit_1

To specify different personas for each PR region in an implementation revision:

set_instance_assignment -name ENTITY_REBINDING orange -to u_fruit_0
set_instance_assignment -name ENTITY_REBINDING banana -to u_fruit_1

For each implementation revision, you must ensure that you include the corresponding
source file in the project (Project ➤ Add/Remove Files in Project).

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.3.2. Method 2: Set QSF Assignment for a Parameterized PR Persona

In PR file management method 2, you specify an assignment in the .qsf file that sets
a parameter or generic to a targeted PR region. The following apply to this method:

• The parameter change applies to the top-level instance of a PR partition.

• Supports application to multiple PR partitions.

• Supports both VHDL and Verilog HDL.

For example, consider the design that Method 1 (Preferred): Specify Unique Entity and
File Names for Each Persona on page 39 describes, with two PR regions, each with
three possible personas for each PR region.

In the following example, u_fruit_0 and u_fruit_1 are set as the PR partitions
and regions in the base compile. The FRUIT_TYPE parameter of 0 generates the
apple entity for the PR personas.

Figure 28. Setting the PR Partitions and Regions in the Base Compile

You can then change the parameter values to change the personas.

For example, to set orange as the persona for both PR regions, specify the following
in the PR implementation revision’s .qsf file:

1. Add the following lines to set the FRUIT_TYPE parameter to 1:

set_instance_assignment -name RTL_PARAMETER "FRUIT_TYPE=1" -to u_fruit_0
set_instance_assignment -name RTL_PARAMETER "FRUIT_TYPE=1" -to u_fruit_1

2. Specify the entity rebinding assignment to associate the fruit entity with instances
of u_fruit_0 and u_fruit_1:

set_instance_assignment -name ENTITY_REBINDING fruit -to u_fruit_0
set_instance_assignment -name ENTITY_REBINDING fruit -to u_fruit_1

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following additional example sets orange as the persona for the first PR region,
and banana as the persona for the second PR region. Similarly, specify the following
in the PR implementation revision’s .qsf file:

1. Add the following lines to set the FRUIT_TYPE parameter to 1 for the first PR
region, u_fruit_0 and 2 for the second PR region, u_fruit_1:

set_instance_assignment -name RTL_PARAMETER "FRUIT_TYPE=1" -to u_fruit_0
set_instance_assignment -name RTL_PARAMETER "FRUIT_TYPE=2" -to u_fruit_1

2. Specify the entity rebinding assignment to associate the fruit entity with instances
of u_fruit_0 and u_fruit_1:

set_instance_assignment -name ENTITY_REBINDING fruit -to u_fruit_0
set_instance_assignment -name ENTITY_REBINDING fruit -to u_fruit_1

1.7.4. Evaluating PR Region Initial Conditions

Unintended initial conditions in a PR region can lead to errors during partial
reconfiguration. Your design may include unintended initial conditions, especially if you
port a design not originally intended for partial reconfiguration. The Quartus Prime Pro
Edition software reports any initial conditions in the PR partitions for your evaluation
following synthesis.

After compiling the base revision that defines the partition, you can view the Registers
with Explicit Power-Up Settings report for the partition to identify, locate, and correct
any unintended initial conditions. For a specific PR partition, you can view the power-
up initial values after synthesizing the base revision in the Synthesis report. The
Synthesis report includes power-up initial values in the Partition Statistics section.

Figure 29. Partition Statistics in Synthesis Report

The Messages window also generates a warning or error message about any initial
conditions during synthesis processing. After evaluating the initial condition, you can
determine whether the condition is correct for design functionality, or change the
design to remove dependence on an initial condition that is incompatible with partial
reconfiguration.

1.7.5. Creating Wrapper Logic for PR Regions

If all personas for your design do not have identical top-level interfaces, you must
create the wrapper logic to ensure that all the personas appear similar to the static
region. Define a wrapper for each persona, and instantiate the persona logic within the

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

wrapper. If all personas have identical top-level interfaces, the personas do not require
wrapper logic. In this wrapper, you can create dummy ports to ensure that all the
personas of a PR region have the same connection to the static region.

During the PR compilation, the Compiler converts each of the non-global ports on
interfaces of the PR region into boundary port wire LUTS. The naming convention for
boundary port wire LUTs are <input_port>~IPORT for input ports, and
<output_port>~OPORT for output ports. For example, the instance name of the wire
LUT for an input port with the name my_input, on a PR region with the name
my_region, is my_region|my_input~IPORT.

1. Manually floorplan the boundary ports using Logic Lock region assignments, or
place the boundary ports automatically using the Fitter. The Fitter places the
boundary ports during the base revision compile. The boundary LUTs are invariant
locations the Fitter derives from the persona you compile. These LUTs represent
the boundaries between the static region and the PR routing and logic. The
placement remains stationary regardless of the underlying persona, because the
routing from the static logic does not vary with a different persona
implementation.

2. To constrain all boundary ports within a given region, use a wildcard assignment.
For example:

set_instance_assignment -name PLACE_REGION "65 59 65 85" -to \
 u_my_top|design_inst|pr_inst|pr_inputs.data_in*~IPORT

This assignment constrains all the wire LUTS corresponding to the IPORTS that
you specify within the place region, between the coordinates (65 59) and (65 85).

Figure 30. Wire-LUTs at the PR Region Boundary

 PR Region Static Region

Optionally, floorplan the boundary ports down to the LAB level, or individual LUT
level. To floorplan to the LAB level, create a 1x1 Logic Lock PLACE_REGION
constraint (single LAB tall and a single LAB wide). Optionally, specify a range
constraint by creating a Logic Lock placement region that spans the range. For
more information about floorplan assignments, refer to Floorplan the Partial
Reconfiguration Design.

Related Information

Step 3: Floorplan the Design on page 14
For more information on floorplanning your design.

1.7.6. Creating Freeze Logic for PR Regions

When partially reconfiguring a design, freeze all the outputs of each PR region to a
known constant value. This freezing prevents the signal receivers in the static region
from receiving undefined signals during the partial reconfiguration process.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The PR region cannot drive valid data until the partial reconfiguration process is
complete, and the PR region is reset. Freezing is important for control signals that you
drive from the PR region.

The freeze technique that you choose is optional, depending on the particular
characteristics of your design. The freeze logic must reside in the static region of your
design. A common freeze technique is to instantiate 2-to-1 multiplexers on each
output of the PR region, to hold the output constant during partial reconfiguration.

Note: There is no requirement to freeze the global and non-global inputs of a PR region.

Figure 31. Freeze Technique #1

PR Logic

Known
 Value

0

1Inputs

Freeze

Outputs

Static Region

An alternative freeze technique is to register all outputs of the PR region in the static
region. Then, use an enable signal to hold the output of these registers constant
during partial reconfiguration.

Figure 32. Freeze Technique #2

PR Region

En

Static Region

 Freeze
Generation

The Partial Reconfiguration Region Controller IP core includes a freeze port for the
region that it controls. Include this IP component with your system-level control logic
to freeze the PR region output. For designs with multiple PR regions, instantiate one
PR Region Controller IP core for each PR region in the design. The Quartus Prime

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

software includes the Avalon Memory-Mapped Freeze Bridge and Avalon Streaming
Freeze Bridge Intel FPGA IP cores. You can use these IP cores to implement freeze
logic, or design your own freeze logic for these standard interface types.

The static region logic must be independent of all the outputs from the PR regions for
a continuous operation. Control the outputs of the PR regions by adding the
appropriate freeze logic for your design.

1.7.7. Resetting the PR Region Registers

Upon partial reconfiguration of a PR region, the status of the PR region registers
become indeterminate. Bring the registers in the PR region to a known state by
applying a reset sequence for the PR region. This reset ensures that the system
behaves to your specifications. Simply reset the control path of the PR region, if the
datapath eventually flushes out within a finite number of cycles. Use active-high local
reset instead of active-low, wherever applicable. This technique allows you to
automatically hold the PR region in reset, by virtue of the boundary port wire LUT.

Table 7. Supported PR Reset Implementation Guideline

PR Reset Type Active-High Synchronous
Reset

Active-High
Asynchronous

Reset

Active-Low Synchronous
Reset

Active-Low
Asynchronous

Reset

On local signal Yes Yes Yes Yes

On global signal • No (Arria 10)
• No (Cyclone 10 GX)
• Yes (Stratix 10)
• Yes (Agilex 7)
• Yes (Agilex 5)

Yes • No (Arria 10)
• No (Cyclone 10 GX)
• Yes (Stratix 10)
• Yes (Agilex 7)
• Yes (Agilex 5)

Yes

1.7.8. Promoting Global Signals in a PR Region

In non-PR designs, the Quartus Prime software automatically promotes high fan-out
signals onto dedicated global networks. The global promotion occurs in the Plan stage
of design compilation.

In PR designs, the Compiler disables global promotion for signals originating within the
logic of a PR region. Instantiate the clock control blocks only in the static region,
because the clock floorplan and the clock buffers must be a part of the static region of
the design. Manually instantiating a clock control block in a PR region, or assigning a
signal in a PR region with the GLOBAL_SIGNAL assignment, results in compilation
error. To drive a signal originating from the PR region onto a global network:

1. Expose the signal from the PR region.

2. Drive the signal onto the global network from the static region.

3. Drive the signal back into the PR region.

You can drive a maximum of 33 clocks (for Arria 10 and Cyclone 10 GX devices), or 32
clocks (for Agilex 7, Agilex 5, and Stratix 10 devices) into any PR region. You cannot
share a row clock between two PR regions.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Compiler allows only certain signals to be global inside a PR region. Use only
global signals to route secondary signals into a PR region, as the following table
describes:

Table 8. Supported Signal Types for Driving Clock Networks in a PR Region

Block Type Supported Global Network Signals

LAB, MLAB Clock, ACLR, SCLR(4)

RAM, ROM (M20K) Clock, ACLR, Write Enable (WE), Read Enable (RE), SCLR

DSP Clock, ACLR, SCLR

1.7.8.1. Viewing Row Clock Region Boundaries

You can use the Chip Planner to visualize the row clock region boundaries, and to
ensure that no two PR regions share a row clock region.

1. Right-click a PR partition name in the Design Partitions Window and click Locate
Node ➤ Locate in Chip Planner.

Figure 33. Row Clock Region Boundaries in Chip Planner
The green borders in the following floorplan figure indicate clock sectors. A row clock region is one half of a
clock sector wide, and one LAB row tall, as indicated by the red box.

Row Clock Region

2. In Chip Planner, click the Layers tab and select the Basic layer. The Chip Planner
overlays the row clock region boundaries. Adjust the Basic layer settings to
display specific items.

(4) Only Agilex 7, Agilex 5, and Stratix 10 designs support global SCLR.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.9. Planning Clocks and other Global Routing

There are special PR considerations for the planning for clocks and other global
routing. For Agilex 7, Agilex 5, and Stratix 10 designs, you can use the low skew
networks (globals) for clocks or resets.

During the base revision compile, you must route any global signal that any PR
persona requires into a destination in the PR region. For clock signals, this destination
is a register or other synchronous element and the signal entering the clock input. For
a reset, the destination should be fed into the appropriate input.

This requirement occurs because PR only reconfigures the last part of the low skew
network. If you do not route the root and middle sections of the network during the
base compile, you cannot use that revision for the PR.

Consider an example with a super-set of signals for a PR region that consists of:

• Three clocks—clk_1, clk_2, and clk_3.

• Two resets—rst_1 and rst_2.

• Base PR persona—uses clk_1, clk_2, and rst_1 only.

• Other personas—use clk_3 and rst_2 only.

In this example, the base persona must have a proper destination for the "unused"
clk_3 and rst_2. You can accomplish this by driving a single register with a (*no
prune*) directive inside the base PR persona, with clk_3 and reset using rst_2.

Omitting these destinations results in an error during compilation of the PR
implementation second persona.

1.7.10. Implementing Clock Enable for On-Chip Memories

Follow these guidelines to implement clock enable for on-chip memories:

1. To avoid spurious writes during PR programming for memories, implement the
clock enable circuit in the same PR region as the M20K or MLAB RAM. This circuit
depends on an active-high clear signal from the static region.

2. Before you begin the PR programming, assert this signal to disable the memory’s
clock enable. Your system PR controller must deassert the clear signal on PR
programming completion. You can use the freeze signal for this purpose.

3. Use the Quartus Prime IP Catalog or Platform Designer to instantiate the On-Chip
Memory and RAM Intel FPGA IP cores that include an option to automatically add
this circuitry.

Note: If you turn on the Implement clock-enable circuitry for use in a partial
reconfiguration region option when parameterizing RAM Intel FPGA IP
from the IP catalog, the Quartus Prime software adds a freeze port to the
RAM IP for use in the PR region.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 34. Clock-Enable Circuitry Option in RAM 1 Port Intel FPGA IP Parameter Editor

Figure 35. RAM Clock Enable Circuit for PR Region

M20K/LUTRAM

D

D

CLR

CLRCLR

1

Global Clock

Clear Signal
To Safely
Exit PR

Clock Enable
Logic

CEQ

Q Q

Q
–

Q
–

Q
–

Example 1. Verilog RTL for Clock Enable

module mem_enable_verilog (
 input clock,
 input freeze,
 input clken_in,
 output wire ram_wrclocken
);
 reg ce_reg;
 reg [1:0] ce_delay;

 always @(posedge clock, posedge freeze) begin
 if (freeze) begin
 ce_delay <= 2'b0;
 end
 else begin
 ce_delay <= {ce_delay[0], 1'b1};
 end
 end

 always @(posedge clock, negedge ce_delay[1]) begin

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 if (~ce_delay[1]) begin
 ce_reg <= 1'b0;
 end
 else begin
 ce_reg <= clken_in;
 end
 end

 assign ram_wrclocken = ce_reg;
endmodule

Example 2. VHDL RTL for Clock Enable

ENTITY mem_enable_vhd IS PORT(
 clock : in std_logic;
 freeze : in std_logic;
 clken_in : in std_logic;
 ram_wrclocken : out std_logic);
END mem_enable_vhd;

ARCHITECTURE behave OF mem_enable_vhd is
 SIGNAL ce_reg: std_logic;
 SIGNAL ce_delay: std_logic_vector(1 downto 0);
BEGIN
PROCESS (clock, freeze)
BEGIN
 IF ((clock'EVENT AND clock = '1') or (freeze'EVENT AND freeze = '1')) THEN
 IF (freeze = '1') THEN
 ce_delay <= "00";
 ELSE
 ce_delay <= ce_delay(0) & '1';
 END IF;
 END IF;

END PROCESS;

PROCESS (clock, ce_delay(1))
BEGIN
 IF ((clock'EVENT AND clock = '1') or (ce_delay(1)'EVENT AND ce_delay(1) =
'0')) THEN
 IF (ce_delay(1) = '0') THEN
 ce_reg <= '0';
 ELSE
 ce_reg <= clken_in;
 END IF;
 END IF;

END PROCESS;

ram_wrclocken <= ce_reg;

END ARCHITECTURE behave;

Related Information

Embedded Memory User Guide

1.7.10.1. Clock Gating

An alternate method to avoid spurious writes of initialized content memories is to
implement clock gating circuitry in the PR static region, and feed the clock gating
circuitry to the PR region in which the initialized memories are implemented.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

48

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 36. Global Clock Control Block

PLL Counter Outputs

CLKSELECT [1..0]
 (1)

GCLK
Internal Logic

CLKp Pin

CLKn Pin

Internal Logic

Static Clock Select
 (2)

Enable/
Disable

2

2
2

This Multiplexer Supports
User-Controlled Dynamic
Switching

Implement the gating circuitry in the static region, and feed it to the PR region in
which the initialized memories are being implemented. Clock gating is logically
equivalent to using clock enable on the memories. This method provides the following
benefits:

• Uses the enable port of the global clock buffers to disable the clock before starting
the partial reconfiguration operation. Also enables the clock on PR completion.

• Ensures that the clock does not switch during reconfiguration, and requires no
additional logic to avoid spurious writes.

Related Information

Clock Control Block (ALTCLKCTRL) Intel FPGA IP User Guide

1.8. Hierarchical Partial Reconfiguration

Hierarchical partial reconfiguration (HPR) is an extension of partial reconfiguration
(PR), where you contain one PR region within another PR region. You can create
multiple personas for both the child and parent partitions. You nest the child partitions
within their parent partitions. Reconfiguring a parent partition does not impact the
operation in the static region, but replaces the child partitions of the parent region
with default child partition personas.

The HPR design flow includes the following steps:

1. Create a base revision for the design and export the static region, as Step 7:
Compile the Base Revision and Export the Static Region on page 21 describes.

2. Create the implementation revision for each persona, as Step 8: Setup PR
Implementation Revisions on page 25 describes, and export the parent partitions.

3. Specify the .qdb file partition for the static and parent regions.

4. Specify the corresponding entity for the parent or child.

When compiling the implementation revision for an HPR design, you must fully
floorplan the child partition, similar to planning the PR region of a base revision. Refer
to Using Parent QDB Files from Different Compiles on page 50.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

49

https://www.altera.com/en_US/pdfs/literature/ug/ug_altclock.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Hierarchical PR (HPR) designs do not support PR bitstream security verification.

Related Information

AN826: Hierarchical Partial Reconfiguration Tutorial for Intel Stratix 10 GX FPGA
Development Board

for step-by-step HPR instructions

1.8.1. Using Parent QDB Files from Different Compiles

For HPR designs, you can use the parent .qdb file from the same or different
implementation compiles. The following examples illustrate two possible HPR
compilation flows, with respect to the following design example block diagram:

Figure 37. Example HPR Design with Parent QDB Files from Different Compiles

Static Region

PR Parent (blue_1)

PR Child
(yellow_1_1)

PR Parent (orange_1)

PR Child
(green_1_1)

Example HPR Design with Parent QDB Files from Different Compiles shows an HPR
design hierarchy with the following characteristics:

• The blue and orange regions represent the HPR parent regions.

• The yellow and green boxes represent the child PR regions.

• The blue HPR parent has two personas, blue_1 and blue_2.

• For the yellow child region, the default persona that is compiled with parent
blue_1 is yellow_1_1.

• The second child persona that can be compiled by blue_1 is yellow_2_1.

• The orange HPR parent has the same characteristics as the blue HPR parent.

Considering these HPR design characteristics, the following describes one possible HPR
compilation flow:

HPR Compilation Flow A:

1. Blue_1, yellow_1_1, orange_1, green_1_1.

2. Blue_1.qdb, yellow_1_2, orange_1.qdb, green_1_2

3. Blue_2, yellow_2_1, orange_2, green_2_1

4. Blue_2.qdb, yellow_2_2, orange_2.qdb, green_2_2

In Flow A, in steps 2 and 4, the parent region .qdb files come from the same
implementation compile. Step 2 uses blue_1.qdb and orange_1.qdb that step 1
generates in the same implementation compile.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

50

https://www.intel.com/content/www/us/en/docs/programmable/683327.html
https://www.intel.com/content/www/us/en/docs/programmable/683327.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HPR also supports import of the parent and child PR partitions from different
implementation compiles:

HPR Compilation Flow B:

1. Blue_1, yellow_1_1, orange_1, green_1_1.

2. Blue_2, yellow_2_1, orange_2, green_2_1

3. Blue_1.qdb, yellow_1_2, orange_2.qdb, green_2_2

4. Blue_2.qdb, yellow_2_2, orange_1.qdb, green_1_2

In Flow B, blue_1.qdb and orange_2.qdb come from two different implementation
compiles. Step 1 generates blue_1.qdb. Step 2 implementation compile generates
orange_2.qdb.

1.9. Partial Reconfiguration Design Timing Analysis

The interface between partial and static partitions remains the same for each PR
implementation revision. Perform timing analysis on each PR implementation revision
to ensure that there are no timing violations. To ensure timing closure of a design with
multiple PR regions, you can create aggregate revisions for all possible PR region
combinations for timing analysis.

Note: Logic Lock regions impose placement constraints that affect the performance and
resource utilization of your PR design. Ensure that the design has additional timing
allowance and available device resources. Selecting the largest and most timing-
critical persona as your base persona optimizes the timing closure. In addition, if you
compile the base design with time borrowing enabled, compile the implementation
designs with time borrowing enabled. Otherwise, time borrowing amounts in the base
design are reset to zero, and the design may not pass timing. If this condition occurs,
you can use the update_timing_netlist –recompute_borrow command to
restore time borrowing amounts throughout the design for timing analysis.

Related Information

Quartus Prime Pro Edition User Guide: Timing Analyzer

1.9.1. Running Timing Analysis on Aggregate Revisions

To ensure timing closure of a design with multiple PR regions, you create aggregate
revisions for all possible PR region combinations and run timing analysis.

1. To open the Revisions dialog box, click Project ➤ Revisions.

2. To create a new revision, double-click <<new revision>>.

3. Specify the Revision name and select the base revision for Based on Revision.

4. To export the post-fit database from the base compile (static partition), type the
following command in the Quartus Prime shell:

quartus_cdb <project name> <base revision> --export_block \
 "root_partition" --snapshot final --file \
 "<base revision name>.qdb"

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

51

https://www.intel.com/content/www/us/en/docs/programmable/683243.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Ensure that you include all the .sdc and .ip files for the static and PR
regions. To detect the clocks, ensure that the .sdc file for the PR Controller
IP follows the entry of any .sdc file that creates the clocks that the IP core
uses. You facilitate this order by ensuring the .ip file for the PR Controller
IP comes after any .ip or .sdc files that you use to create these clocks in
the .qsf file for the project revision. Refer to Partial Reconfiguration
Solutions IP User Guide on page 74 for more information.

5. To export the post-fit database from multiple personas (for the PR implementation
revisions), type the following commands in the Quartus Prime shell:

quartus_cdb <project name> -c <PR1 revision> --export_block \
 <PR1 Partition name> --snapshot final --file "pr1.qdb"
quartus_cdb <project name> -c <PR2 revision> --export_block \
 <PR2 Partition name> --snapshot final --file "pr2.qdb"

6. To import the post-fit databases of the static region as an aggregate revision, type
the following commands in the Quartus Prime shell:

quartus_cdb <project name> -c <aggr_rev> --import_block \
 "root_partition" --file "<base revision name>.qdb"
quartus_cdb <project name> -c <aggr_rev> --import_block \
 <PR1 partition name> --file "pr1.qdb"
quartus_cdb <project name> -c <aggr_rev> --import_block \
 <PR2 Partition name> --file "pr2.qdb"

7. To integrate post-fit database of all the partitions, type the following command in
the Quartus Prime shell:

quartus_fit <project name> -c <aggr_rev>

Note: The Fitter verifies the legality of the post-fit database, and combines the
netlist for timing analysis. The Fitter does not reroute the design.

8. To perform timing analysis on the aggregate revision, type the following command
in the Quartus Prime shell:

quartus_sta <proj name> -c <aggr_rev>

9. Run timing analysis on aggregate revision for all possible PR persona
combinations. If a specific persona fails timing closure, recompile the persona and
perform timing analysis again.

1.10. Partial Reconfiguration Design Simulation

Simulation verifies the behavior of your design before device programming. The
Quartus Prime Pro Edition software supports simulating the delivery of a partial
reconfiguration bitstream to the PR region. This simulation allows you to observe the
resulting change and the intermediate effect in a reconfigurable partition.

The Quartus Prime Pro Edition software supports simulation of PR persona transitions
through the use of simulation multiplexers. You use the simulation multiplexers to
change which persona drives logic inside the PR region during simulation. This
simulation allows you to observe the resulting change and the intermediate effect in a
reconfigurable partition.

Similar to non-PR design simulations, preparing for a PR simulation involves setting up
your simulator working environment, compiling simulation model libraries, and
running your simulation.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software provides simulation components to help simulate a PR
design, and can generate the gate-level PR simulation models for each persona. Use
either the behavioral RTL or the gate-level PR simulation model for simulation of the
PR personas. The gate-level PR simulation model allows for accurate simulation of
registers in your design and reset sequence verification. These technology-mapped
registers do not assume initial conditions.

You can use the PR mode of the EDA netlist writer to generate the gate level netlist of
a PR region. Refer to the "EDA Netlist Writer and Gate Level-Netlists" section of the
Quartus Prime Pro Edition User Guide: Third Party Simulation.

Related Information

• Generating and Simulating Intel FPGA IP on page 133

• Quartus Prime Pro Edition User Guide: Third Party Simulation

1.10.1. Partial Reconfiguration Simulation Flow

At a high-level, a PR operation consists of the following steps:

1. System-level preparation for a PR event.

2. Retrieval of the partial bitstream from memory.

3. Transmission of the partial bitstream to the PR control block or SDM.

4. Resulting change in the design as a new persona becomes active.

5. Post-PR system coordination.

6. Use of the new persona in the system.

You can simulate each of these process steps in isolation, or as a larger sequence
depending on your verification type requirement.

Related Information

• Arria 10 and Cyclone 10 GX PR Control Block Simulation Model on page 138

• Generating the PR Persona Simulation Model on page 140

• Secure Device Manager Partial Reconfiguration Simulation Model on page 143

1.10.2. Simulating PR Persona Replacement

The logical operation of the PR partition changes when a new persona loads during the
partial reconfiguration process. Simulate the replacement of personas using
multiplexers on the input and output of the persona under simulation.

Create RTL wrapper logic to represent the top-level of the persona. The wrapper
instantiates the default persona during compilation. During simulation, the wrapper
allows the replacement of the active persona with another persona. Instantiate each
persona as the behavioral RTL in the PR simulation model the Quartus Prime EDA
Netlist Writer generates.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

53

https://www.intel.com/content/www/us/en/docs/programmable/683870.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software includes simulation modules to interface with your
simulation testbench:

• altera_pr_wrapper_mux_in

• altera_pr_wrapper_mux_out

• altera_pr_persona_if (SystemVerilog interface allows you to connect the
wrapper multiplexers to a testbench driver)

Figure 38. Simulation of PR Persona Switching

Persona 1
(.vo or RTL)

Inputs

PR Activate
PR Logic Wrapper

PR Sel
PR Region IF

Persona 2
(.vo or RTL)

Persona 3
(.vo or RTL)

m
ux

_i
n

m
ux

_o
ut

Persona 1
.vo or RTL

Inputs Outputs

PR Activate

PR Simulation Wrapper

PR
 In

pu
t M

ux

PR
 O

ut
pu

t M
ux

Top-Level Module
Testbench

PR Input Mux Control

PR Output Mux Control

Persona 2
.vo or RTL

Persona 3
.vo or RTL

Example 3. RTL Wrapper for PR Persona Switching Simulation

The pr_activate input of the altera_pr_wrapper_mux_out module enables the
MUX to output X. This functionality allows the simulation of unknown outputs from the
PR persona, and also verifies the normal operation of the design’s freeze logic. The
following code corresponds to the simulation of PR persona switching, shown in the
above figure:

module pr_core_wrapper
(
 input wire a,
 input wire b,
 output wire o
);

localparam ENABLE_PERSONA_1 = 1;
localparam ENABLE_PERSONA_2 = 1;
localparam ENABLE_PERSONA_3 = 1;
localparam NUM_PERSONA = 3;

logic pr_activate;
int persona_select;

altera_pr_persona_if persona_bfm();
assign pr_activate = persona_bfm.pr_activate;
assign persona_select = persona_bfm.persona_select;

wire a_mux [NUM_PERSONA-1:0];

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

wire b_mux [NUM_PERSONA-1:0];
wire o_mux [NUM_PERSONA-1:0];

generate
 if (ENABLE_PERSONA_1) begin
 localparam persona_id = 0;

 `ifdef ALTERA_ENABLE_PR_MODEL
 assign u_persona_0.altera_sim_pr_activate = pr_activate;
 `endif

 pr_and u_persona_0
 (
 .a(a_mux[persona_id]),
 .b(b_mux[persona_id]),
 .o(o_mux[persona_id])
);
 end
endgenerate

generate
 if (ENABLE_PERSONA_2) begin
 localparam persona_id = 1;

 `ifdef ALTERA_ENABLE_PR_MODEL
 assign u_persona_1.altera_sim_pr_activate = pr_activate;
 `endif

 pr_or u_persona_1
 (
 .a(a_mux[persona_id]),
 .b(b_mux[persona_id]),
 .o(o_mux[persona_id])
);

 end
endgenerate

generate
 if (ENABLE_PERSONA_3) begin
 localparam persona_id = 2;

 `ifdef ALTERA ENABLE PR MODEL
 assign u_persona_2.altera_sim_pr_activate = pr_activate;
 `endif

 pr_empty u_persona_2
 (
 .a(a_mux[persona_id]),
 .b(b_mux[persona_id]),
 .o(o_mux[persona_id])
);

 end
endgenerate

altera_pr_wrapper_mux_in #(.NUM_PERSONA(NUM_PERSONA), .WIDTH(1)) \
 u_a_mux(.sel(persona_select), .mux_in(a), .mux_out(a_mux));

altera_pr_wrapper_mux_in #(.NUM_PERSONA(NUM_PERSONA), .WIDTH(1)) \
 u_b_mux(.sel(persona_select), .mux_in(b), .mux_out(b_mux));

altera_pr_wrapper_mux_out #(.NUM_PERSONA(NUM_PERSONA), .WIDTH(1)) \
 u_o_mux(.sel(persona_select), .mux_in(o_mux), .mux_out(o), .pr_activate \
 (pr_activate));

endmodule

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10.2.1. altera_pr_persona_if Module

Instantiate the altera_pr_persona_if SystemVerilog interface in a PR region
simulation wrapper to connect to all the wrapper multiplexers. Optionally, connect
pr_activate to the PR simulation model.

Connect the interface’s persona_select to the sel port of all input and output
multiplexers. Connect the pr_activate to the pr_activate of all the output
multiplexers. Optionally, connect the report events to the report event ports of the PR
simulation model. Then, the PR region driver testbench component can drive the
interface.

interface altera_pr_persona_if;
 logic pr_activate;
 int persona_select;

 event report_storage_if_x_event;
 event report_storage_if_1_event;
 event report_storage_if_0_event;
 event report_storage_event;

 initial begin
 pr_activate <= 1'b0;
 end
endinterface : altera_pr_persona_if

The <QUARTUS_INSTALL_DIR>/eda/sim_lib/altera_lnsim.sv file defines the
altera_pr_persona_if component.

1.10.2.2. altera_pr_wrapper_mux_out Module

The altera_pr_wrapper_mux_out module allows you to multiplex the outputs of all
PR personas to the outputs of the PR region wrapper.

Instantiate one multiplexer per output port. Specify the active persona using the sel
port of the multiplexer. The pr_activate port allows you to drive the multiplexer
output to “x”, to emulate the unknown value of PR region outputs during a PR
operation. Parameterize the component to specify the number of persona inputs, the
multiplexer width, and the MUX output value when pr_activate asserts.

module altera_pr_wrapper_mux_out #(
 parameter NUM_PERSONA = 1,
 parameter WIDTH = 1,
 parameter [0:0] DISABLED_OUTPUT_VAL = 1'bx
) (
 input int sel,
 input wire [WIDTH-1 : 0] mux_in [NUM_PERSONA-1:0],
 output reg [WIDTH-1:0] mux_out,
 input wire pr_activate
);

 always_comb begin
 if ((sel < NUM_PERSONA) && (!pr_activate))
 mux_out = mux_in[sel];
 else
 mux_out = {WIDTH{DISABLED_OUTPUT_VAL}};
 end

endmodule : altera_pr_wrapper_mux_out

The <QUARTUS_INSTALL_DIR>/eda/sim_lib/altera_lnsim.sv file defines the
altera_pr_wrapper_mux_out component.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10.2.3. altera_pr_wrapper_mux_in Module

The altera_pr_wrapper_mux_in module allows you to de-multiplex inputs to a PR
partition wrapper for all PR personas.

Instantiate one multiplexer per input port. Specify the active persona using the sel
port of the multiplexer. Parameterize the component to specify the number of persona
outputs, the multiplexer width, and the MUX output for any disabled output. When
using the altera_pr_wrapper_mux_in to mux a clock input, use the
DISABLED_OUTPUT_VAL of 0, to ensure there are no simulation clock events of the
disabled personas.

module altera_pr_wrapper_mux_in#(
 parameter NUM_PERSONA = 1,
 parameter WIDTH = 1,
 parameter [0:0] DISABLED_OUTPUT_VAL = 1'bx
) (

 input int sel,
 input wire [WIDTH-1:0] mux_in,
 output reg [WIDTH-1 : 0] mux_out [NUM_PERSONA-1:0]
);
 always_comb begin
 for (int i = 0; i < NUM_PERSONA; i++)
 if (i == sel)
 mux_out[i] = mux_in;
 else
 mux_out[i] = {WIDTH{DISABLED_OUTPUT_VAL}};
 end

endmodule : altera_pr_wrapper_mux_in

The <QUARTUS_INSTALL_DIR>/eda/sim_lib/altera_lnsim.sv file defines the
altera_pr_wrapper_mux_in component.

1.11. Partial Reconfiguration Design Debugging

The following Intel FPGA IP cores support system-level debugging in the static region
of a PR design:

• In-System Memory Content Editor

• In-System Sources and Probes Editor

• Virtual JTAG

• Nios II JTAG Debug Module

• Signal Tap Logic Analyzer

In addition, the Signal Tap logic analyzer allows you to debug the static or partial
reconfiguration (PR) regions of the design. If you only want to debug the static region,
you can use the In-System Sources and Probes Editor, In-System Memory Content
Editor, or System Console with a JTAG Avalon bridge.

Related Information

• System Debugging Tools Overview

• AN 841: Signal Tap Tutorial for Intel Stratix 10 Partial Reconfiguration Design

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

57

https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683875.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.11.1. Debugging PR Designs with the Signal Tap Logic Analyzer

To use the Signal Tap logic analyzer to debug PR designs, you must create a debug
bridge to extend Signal Tap debugging into the PR partition. You can then use Signal
Tap to debug by connecting to the debug bridge. To use the debug bridge, you
instantiate the SLD JTAG Bridge Agent Intel FPGA IP, SLD JTAG Bridge Host Intel FPGA
IP, and Intel Configuration Reset Release Endpoint to Debug Logic IP for each PR
region in your design.

You must instantiate the following IP in your design to ensure you can use Signal Tap
to debug your PR region:

1. Instantiate the SLD JTAG Bridge Agent IP in the static region.

2. Instantiate the SLD JTAG Bridge Host IP and the Intel Configuration Reset Release
Endpoint to Debug Logic IP in the PR region of the default persona.

3. Instantiate the SLD JTAG Bridge Host IP and the Intel Configuration Reset Release
Endpoint to Debug Logic IP, for each of the personas, whenever creating revisions
for the personas.

The Signal Tap logic analyzer uses the hierarchical debug capabilities provided by the
Quartus Prime software to tap signals in the static and PR regions simultaneously.

You can debug multiple personas present in your PR region, as well as multiple PR
regions. For complete information on the debug infrastructure using hierarchical hubs,
refer to Quartus Prime Pro Edition User Guide: Debug Tools.

1.11.2. Instantiating the Intel Configuration Reset Release Endpoint to
Debug Logic IP

You must instantiate the Intel Configuration Reset Release Endpoint to Debug Logic IP
in each PR region if multiple PR regions are present in the design. This IP ensures
proper function by providing a reset signal to debug logic, such as Signal Tap logic,
after partial reconfiguration. This reset signal must be high during configuration, and
then this reset signal must go low once partial reconfiguration is complete. You must
not release this reset signal after releasing the PR logic reset. The time of this reset
release affects the Signal Tap power-up trigger feature. The reset signal must stay low
until the next reconfiguration.

Note: Do not assert this reset input while the device is in the user operational mode.
Asserting this reset input while the device is in the user operational mode results in
incorrect operation in Signal Tap and other debugging tools.

If you omit the Intel Configuration Reset Release Endpoint to Debug Logic IP from
your PR design, The Compiler issues the following error message:

Error(11176): Alt_sld_fab_1.alt_sld_fab_1.alt_sld_fab_1: The Intel Configuration
Reset Release
Endpoint to Debug Logic IP must be instantiated to provide the reset signal to
the debug logic,
such as Signal Tap, etc. after the partial configuration is performed.

Refer to the Intel FPGA Knowledge Database and search for Error 11176 for more
information.

Related Information

Intel FPGA Knowledge Database

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

58

https://www.intel.com/content/www/us/en/programmable/support/support-resources/knowledge-base/kdb-filter.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.12. Partial Reconfiguration Security (Stratix 10 Designs)

Stratix 10 devices support the following optional PR security features to help confirm
that a PR region persona is protected, contains no threats to platform integrity or
confidentiality, and cannot access unauthorized areas of the FPGA device before
loading a persona into the FPGA.

• PR Bitstream Security Validation—confirms that the persona does not use FPGA
resources that are unauthorized by validating a .pmsf against a Secure Mask
Settings File (.smsf), as PR Bitstream Security Validation (Stratix 10 Designs) on
page 59 describes.

• PR Bitstream Authentication—ensures that the firmware and PR bitstream are
from a trusted source by provisioning the FPGA device with the owner public root
key, as PR Bitstream Authentication (Stratix 10 Designs) on page 61 describes.

• PR Bitstream Encryption—protects the bitstream contents by encrypting the static
region and all associated bitstreams using the same AES root key, as PR Bitstream
Encryption (Stratix 10 Designs) on page 61 describes.

1.12.1. PR Bitstream Security Validation (Stratix 10 Designs)

PR bitstream security validation confirms that the persona does not access FPGA
resources that are unauthorized by the platform owner.

Note: PR bitstream security validation only supports Stratix 10 devices. Hierarchical PR
(HPR) designs do not support PR bitstream security verification.

PR bitstream security validation enables multi-tenant FPGA usage. For example, a
platform owner partitions a single device to host multiple third-party clients. The
platform owner may not trust the clients, and the clients may not trust each other, but
the clients trust the platform owner. PR bitstream security validation provides the
platform owner and clients protection from any party corrupting the proprietary
server, the client configurations, or from initiating a peek or poke attack by a
subsequent partial reconfiguration.

PR bitstream validation allows the platform owner to determine whether the client has
modified their .pmsf file in an attempt to damage the FPGA, or has attempted
connection to signals without access. To be effective, the platform owner must accept
only .pmsf files (not .rbf) from the client, and the platform owner must validate all
client .pmsf files. Thereafter, the Programmer requires both the .pmsf and .smsf to
generate the PR bitstream (.rbf) for this PR region, ensuring that the PR persona can
only change bits that the persona owns. The Platform Owner can optionally
release .smsf files to third-party Clients as part of the PR region collateral.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 39. PR Bitstream Security Validation in Programmer

PR RBF

Invalid

Valid

Quartus Programmer, Assembler

PR
Security
Checker

Contention
Device DB

SMSF

Error Message, No RBF Generated
PMSF

For PR bitstream validation, the platform owner generates the .smsf file themselves,
to ensure that the platform owner can trust the .smsf. The bitstream validation check
compares the client supplied .pmsf against the trusted .smsf. The comparison fails if
the .pmsf is invalid for deliberate or accidental reasons.

The Platform Owner should follow these steps to license, enable, and use PR bitstream
security validation:

1. Obtain the license file to enable generation of .smsf files for PR regions during
base compilation, and to perform PR bitstream security validation during PR
bitstream generation in the Programmer. To obtain the license, login or register for
a My Intel account, and then submit an Intel Premier Support case quoting
reference number 22013030316 to request a license key.

2. To add the license file to the Quartus Prime Pro Edition software, click Tools ➤
License Setup and specify the feature License File.

3. To enable PR security validation features, add the following line to the
project .qsf:

set_global_assignment -name PR_SECURITY_VALIDATION on

4. Compile the base revision.

5. Following base compilation, view the Assembler reports to view the
generated .smsf files required for bitstream generation for each PR region.

6. The Client provides the .pmsf to the Platform Owner.

7. The Platform Owner validates the .pmsf, converts the .pmsf to .rbf, and
configures the FPGA device with the .rbf. The Platform Owner converts
the .pmsf to a PR bitstream. Provide the .smsf file to quartus_pfg to instruct
the tool to validate the .pmsf against that .smsf. Then generate a bitstream only
if the files are compatible.

quartus_pfg -c -o smsf_file=<smsf_file> <pmsf_file> <output_rbf_file>

Related Information

Stratix 10 Device Security User Guide

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

60

https://www.intel.com/content/www/us/en/docs/programmable/683642.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.12.2. PR Bitstream Authentication (Stratix 10 Designs)

PR bitstream authentication helps to ensure that the firmware and the PR bitstream
are from a trusted source, by provisioning the FPGA device with the owner public root
key. Authentication is a basic component of device security and bitstream protection.

In PR bitstream authentication, the signed base bitstream must first be configured to
the device. Then, the signed PR bitstream is used to configure one or more partial
reconfiguration regions of the FPGA device. The signed PR bitstream must match the
configured static region.

The following use cases summarize successful and unsuccessful PR bitstream
authentication:

PR Authentication Success Use Case:

• Partial Reconfiguration with Authenticated PR Bitstream—in a successful PR
authentication use case, the designer performs full chip configuration using an
authenticated .sof file. The designer can only configure the partially
reconfigurable regions of the FPGA that are signed with the design signature
private key, and that match the currently configured static region. The PR
bitstreams are authenticated to ensure that only authorized users can provide the
PR bitstream.

PR Authentication Failure Scenarios

The following are some PR authentication failure scenarios:

• PR Bitstream Is Unsigned—when the target FPGA device determines that the
PR bitstream is unsigned, then the PR operation halts and PR bitstream security
displays a PR error message.

• PR Bitstream Is Signed with Expired or Invalid Signature—when the target
FPGA device determines that the PR bitstream is signed with an expired or invalid
signature, then the PR operation halts and PR bitstream security displays a PR
error message.

• PR Success after PR Failure from Expired or Invalid Signature—when PR of
the target FPGA device fails with an error caused by an expired or invalid
signature, you can provide a bitstream signed with a valid key to perform the PR
operation successfully.

Related Information

Stratix 10 Device Security User Guide

1.12.3. PR Bitstream Encryption (Stratix 10 Designs)

PR bitstream encryption helps protect the bitstream. You can configure each PR region
with multiple PR bitstream files. Any of these files may contain sensitive or valuable
data that encryption can protect. PR bitstream encryption allows you to encrypt the
static region and all associated bitstreams using the same AES root key.

Note: PR bitstream authentication is a prerequisite of PR bitstream encryption use. You must
enable PR bitstream authentication before using PR bitstream encryption.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

61

https://www.intel.com/content/www/us/en/programmable/documentation/ndq1483601370898.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In PR bitstream encryption, you must first configure the device with the encrypted
base bitstream. Next, you configure one or more partial reconfiguration regions with
the encrypted PR bitstream. The encrypted PR bitstream must match the configured
static region.

You also can configure the signed PR bitstream after the first encrypted base bitstream
configuration. For all subsequent partial reconfigurations, both the signed and
encrypted PR bitstreams are supported.

PR bitstream encryption requires the following prerequisite conditions:

• The Base and PR designs must share the same authentication key.

• The Base and PR designs must share the same encryption key.

• All PR regions must be encrypted or none. A combination of encrypted and non-
encrypted designs is unsupported.

• When you enable authentication, both the base and the PR design must be
authenticated. This requirement ensures that only authorized users can provide
the full or PR bitstream to the owned FPGA device.

• When you enable authentication or encryption, the Quartus Prime Assembler skips
the auto-generation of .rbf files for PR designs, and only generates the .pmsf
file.

Note: For bitstream encryption details, refer to the Stratix 10 Device Security User Guide.

Related Information

Stratix 10 Device Security User Guide

1.13. PR Bitstream Compression and Encryption (Arria 10 and
Cyclone 10 GX Designs)

You can compress and encrypt the base bitstream and the PR bitstream for your Arria
10 and Cyclone 10 GX PR project using options available in the Quartus Prime
software.

Compress the base and PR programming bitstreams independently, based on your
design requirements. When encrypting only the base image, specify whether or not to
encrypt the PR images. The following guidelines apply to PR bitstream compression
and encryption:

• You can encrypt the base and PR image independently. You can use a non-volatile
encryption key for the base image, and a volatile encryption key for the PR image.

• Refer to Clock-To-Data Ratio for Bitstream Encryption and Compression to ensure
the correct Clock-to-Data (CD) ratio setting for encryption or compression.

Enable enhanced decompression by turning on the Enable enhanced
decompression option when specifying the parameters in the IP Catalog or Platform
Designer parameter editors.

Note: You cannot use enhanced decompression together with encryption simultaneously.
Enhanced decompression is only available with the Partial Reconfiguration Controller
Arria 10/Cyclone 10 FPGA IP.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

62

https://www.intel.com/content/www/us/en/programmable/documentation/ndq1483601370898.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.13.1. Generating an Encrypted PR Bitstream (Arria 10 or Cyclone 10 GX
Designs)

To partially reconfigure your Arria 10 or Cyclone 10 GX device with an encrypted
bitstream:

1. Create a 256-bit key file (.key).

2. To generate the key programming file (.ekp) from the Quartus Prime shell, type
the following command:

quartus_cpf --key <keyfile>:<keyid> \
 <base_sof_file> <output_ekp_file>

For example:

quartus_cpf --key my_key.key:key1 base.sof key.ekp

3. To generate the encrypted PR bitstream (.rbf), run the following command:

quartus_cpf -c <pr_pmsf_file> <pr_rbf_file>
qcrypt -e --keyfile=<keyfile> --keyname=<keyid> –lockto=\
 <qlk file> --keystore=<battery|OTP> \
 <pr_rbf_file> <pr_encrypted_rbf_file>

• lockto—specifies the encryption lock.

• keystore—specifies the volatile key (battery) or the non-volatile key (OTP).

For example:

quartus_cpf -c top_v1.pr_region.pmsf top_v1.pr_region.rbf \
 qcrypt -e --keyfile=my_key.key --keyname=key1 --keystore=battery \
 top_v1.pr_region.rbf top_v1_encrypted.rbf

4. To program the key file as volatile key (default) into the device, type the following
command:

quartus_pgm -m jtag -o P;<output_ekp_file>

For example:

quartus_pgm -m jtag -o P;key.ekp

5. To program the base image into the device, type the following command:

quartus_pgm -m jtag -o P;<base_sof_file>

For example:

quartus_pgm -m jtag -o P;base.sof

6. To partially reconfigure the device with the encrypted bitstream, type the following
command:

quartus_pgm -m jtag --pr <output_encrypted_rbf_file>

For example:

quartus_pgm -m jtag --pr top_v1_encrypted.rbf

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: qcrypt generates an error if the Enable bitstream compatibility check parameter
is enabled for an instance of the Partial Reconfiguration Controller Arria 10/Cyclone 10
FPGA IP. Use one of the following methods to avoid this error:

• Use the Convert Programming Files dialog box, rather than qcrypt, to
generate the encrypted PR bitstream, as Generating PR Bitstream Files describes.

• If you want use qcrypt with Arria 10 or Cyclone 10 GX designs, regenerate the
Partial Reconfiguration Controller IP without the Enable bitstream compatibility
check option enabled, and with the Enable hierarchical PR support option
enabled, as Adding the Partial Reconfiguration Controller Arria 10/Cyclone 10
FPGA IP describes. Recompile the design before regenerating the PR bitstream.

Related Information

• AN 556: Using the Design Security Features in Intel FPGAs

• Generating PR Bitstream Files

• Adding the Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP

1.13.2. Clock-to-Data Ratio for Bitstream Encryption and Compression
(Arria 10 or Cyclone 10 GX Designs)

The following table lists the valid combinations of bitstream encryption and
compression. The Clock-to-Data (CD) ratio is defined as the number of clock cycles
that each cycle of data must remain valid before the next clock cycle. For example, a
CD ratio of 4 means that the data must remain valid for 4 clock cycles before the next
cycle. Enhanced decompression uses the same CD ratio as plain bitstreams (that is,
with both encryption and compression off). When enhanced compression is enabled,
always refer to x16 data width. If you use compression and enhanced compression
together, the CD ratio follows the compression bitstream - 4. If you use plain and
enhanced compression together, the CD ratio follows the plain bitstream - 1.

Table 9. Valid Combinations and CD Ratio for Bitstream Encryption and Compression

Configuration Data Width AES Encryption Basic Compression CD Ratio

x8 Off Off 1

Off On 2

On Off 1

x16 Off Off 1

Off On 4

On Off 2

x32 Off Off 1

Off On 8

On Off 4

Use the exact CD ratio that the Valid combinations and CD Ratio for Bitstream
Encryption and Compression table specifies for different bitstream types. The CD ratio
for plain .rbf must be 1. The CD ratio for compressed .rbf must be 2, 4 or 8,
depending on the width. Do not specify the CD ratio as the necessary minimum to
support different bitstream types.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

64

https://www.intel.com/content/www/us/en/programmable/documentation/bhc1410500804155.html#bhc1410500731946
https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html#rli1468460409505
https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html#ngc1519921622977
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.13.3. Data Compression Comparison

Standard compression results in a 30-45% decrease in .rbf size. Use of the
enhanced data compression algorithm results in 55-75% decrease in .rbf size. The
algorithm increases the compression at the expense of additional core area required to
implement the compression algorithm.

The following figure shows the compression ratio comparison across PR designs with
varying degrees of Logic Element (LE):

Figure 40. Compression Ratio Comparison between Standard Compression and
Enhanced Compression

Co
m

pr
es

sio
n R

at
io

(%
)

LE Utilization (%)

 Standard Compression Enhanced Compression

1.14. Avoiding PR Programming Errors

You can use the following guidelines to avoid or resolve common PR programming
errors.

Table 10. PR Programming Guidelines

PR Programming Guideline Description

Device in project must match
device on board

Confirm the target FPGA device that you specify for the project matches the device on
the development kit you target. These two devices must be the same. Click
Assignments ➤ Device to view the target device.

Programmer versions must
match

When using the Quartus Prime Programmer for PR programming, confirm that the
Programmer version matches the Quartus Prime version that you use for compilation.
A mismatch between the Programmer and Quartus Prime software version can occur if
you compile on one machine, and then program on a different machine with a different
Quartus Prime version. The software version match is especially critical for Agilex 7,
Agilex 5, and Stratix 10 designs because the PR configuration hardware has
dependencies inside the Programmer.

Specify a lower JTAG clock
frequency

Lower the JTAG clock frequency to 6MHz:
1. In the Programmer window, click Hardware Setup, and then select Intel FPGA

Download Cable II as the programming hardware.
2. For the Hardware frequency, specify a value from 24000000 (24MHz) to 6000000

(6MHz).

continued...

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PR Programming Guideline Description

Close timing for all revisions Confirm that each project revision closes timing after design compilation:
1. In the Compilation Report, expand the Timing Analyzer ➤ Slow 900mV 100C

Model folders, and then view the Setup Summary, Hold Summary, Recovery
Summary, Removal Summary, and Minimum Pulse Width Summary reports. In each
report, verify that there are no timing violations indicated by a negative Slack
value in the report.

2. Repeat step 1 to verify timing closure in the Slow 900mV 0C Model, the Fast
900mV 100C Model, and the Fast 900mV 0C Model. The design closes timing
when there are no negative Slack values for any clock in the report.

Negative slack indicates
timing violation

3. Repeat steps 1 and 2 for each project revision in the PR design.

Note: If an error occurs during PR operation for an Agilex 7, Agilex 5, or Stratix 10 design
using SEU detection, the PR region is frozen, becomes non-functional, and SEU
detection is disabled for all sectors within the PR region and certain sectors adjacent
to PR region. To resolve this error and restore SEU detection on affected areas,
perform a full chip configuration.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.15. Exporting a Version-Compatible Compilation Database for PR
Designs

Using version-compatible databases, you can import the base revision of a PR design
to a later version of the Quartus Prime software, and then compile the PR revisions in
the later version of software, without recompiling the static region.

This technique is helpful when you want to compile and generate bitstreams for the PR
implementation revisions with a later version of the Quartus Prime software.
Configuration bitstreams are not version-compatible, and you must generate all
bitstreams from the same version of the Quartus Prime software.

After migrating the base revision to a later version of the Quartus Prime software, the
bitstream you generate is only compatible with bitstreams from PR implementation
compilations using that same Quartus Prime software version. Such a bitstream is
incompatible with the PR bitstreams from an earlier version of the Quartus Prime
software.

The Quartus Prime Pro Edition software supports version-compatible databases for PR
designs for the following software versions and devices:

Table 11. Version-Compatible Compilation Database Support
The first table column indicates the first version to support version-compatible compilation database export for
the specified devices.

Note: • Database import supports two major versions back. For example, a database that you
export from version 19.3, you can then import using version 19.3, 20.1, and 20.3.
However, you cannot import version 19.3 to 21.1.

• You can export from any version that follows a supported version, if the version still
supports the devices.

First Version with 'Export
Design' Support

Stratix 10 and Devices Arria 10 and Cyclone 10 GX Devices

18.0 No Support. Supports all devices.

18.1 • 1SG250L
• 1SG280H_S2
• 1SG280L
• 1SG280L_S3
• 1SX250L
• 1SX280L
• 1SX280L_S3

Supports all devices.

19.1 • 1SM16BH
• 1SM21BH
• 1SM16CH
• 1SM21CH
• 1SM21KH
• 1SM16KH
• 1SM21LH
• 1SM16LH

Supports all devices.

19.3 • 1SG10MH_U1
• 1SG10MH_U2
• 1ST250E
• 1ST280E

Supports all devices.

continued...

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

First Version with 'Export
Design' Support

Stratix 10 and Devices Arria 10 and Cyclone 10 GX Devices

• 1SM16E
• 1SM21E
• 1ST165E
• 1ST210E
• 1SG166H
• 1SG211H

20.1 • 1SD280P
• 1ST040E
• 1ST085E
• 1ST110E

Supports all devices.

20.3 • 1SD21BP
• 1SG040H
• 1SX040H

Supports all devices.

20.4 • 1SN21BH
• 1SN21CE

Supports all devices.

The following topics describe the version-compatible database generation flow and
steps.

Version-Compatible Database Flow for PR Designs on page 68

Generating a Version-Compatible Compilation Database for PR Designs on page 69

Related Information

Quartus Prime Pro Edition User Guide: Getting Started
For more information on version-compatible compilation database file generation.

1.15.1. Version-Compatible Database Flow for PR Designs

Migrating a design with a single PR region involves the following high-level steps:

1. Perform initial compilation of the base revision in the Quartus Prime software
version N.

2. Export a version-compatible database for the entire design in the Quartus Prime
software version N.

3. Import the version-compatible database into the Quartus Prime software version
M (M>N).

4. Generate the base revision .sof file and bitstreams with the Quartus Prime
Assembler version M.

5. Export the static region .qdb in the Quartus Prime software version M.

6. Perform a PR implementation compile in the Quartus Prime software version M.

Note: You must generate all of the PR bitstreams that you use with the Quartus Prime
software version (M), including the full-chip configuration bitstream and the PR
bitstream .rbf.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

68

https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986956763.html#clm1516143295650
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 41. Static Region Migration (Single PR Region Compiled in Later Version)

Static
Region
(RTL)

chip_top Version N

Static
Region
(.qdb)

chip_top Version N

PR Region A
Version M

PR Region A
Version N

Export Design

1.15.2. Generating a Version-Compatible Compilation Database for PR
Designs

Follow these steps to generate a version-compatible compilation database for PR
designs:

1. Export the entire compiled design from the Quartus Prime software version N by
clicking Project ➤ Export Design, or by command line:

quartus_cdb <project> -c <base_revision> --export_design --snapshot final \
 --file <base_revision>.qdb

2. Import the compiled design to the Quartus Prime software version M by clicking
Project ➤ Import Design, or by command line:

quartus_cdb <project> -c <base_revision_import> --import_design --file \
 <base_revision>.qdb

Note: Whenever possible, import the design into a different working directory than
the directory that you use to compile the base design. If you must use the
same directory for import and for compiling the base design, make a backup
copy of your compiled design by archiving that design with qdb/* included,
or make a copy of the entire directory and subdirectories elsewhere. You
must also remove the old database directory qdb/* and all the bitstream
related files (*.sof, *.msf, *.pmsf).

3. Rerun the finalize stage of the Fitter in the Quartus Prime Pro Edition software
version M by clicking Processing ➤ Start ➤ Start Fitter (Finalize), or by
command line:

quartus_fit <project> -c <base_revision_import> --finalize

4. Run the Assembler in the Quartus Prime Pro Edition software version M to
regenerate the static region bitstream by clicking Processing ➤ Start ➤ Start
Assembler, or by command line:

quartus_asm <project> -c <base_revision_import>

5. Export the static region .qdb in the Quartus Prime Pro Edition software version M
by clicking Project ➤ Export Design Partition, or by command line:

quartus_cdb <project> -c <base_revision_import> --export_block \
root_partition --snapshot final --file --include_sdc_entity_in_partition
static.qdb

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: When exporting the base revision and the static partition, you must include
any .sdc files that apply to the partition, by using the
include_sdc_entity_in_partition option.

6. Compile each implementation revision in the Quartus Prime Pro Edition software
version M, using the static revision .qdb that you exported in the previous step.

quartus_sh –flow compile <project> –c <impl_rev>

1.16. Creating a Partial Reconfiguration Design Revision History

Document Version Quartus Prime
Version

Changes

2023.04.01 24.1 • Applied initial Altera rebranding throughout.
• Updated throughout to reflect support for Agilex 5 devices.

2023.07.31 23.2 • Added Understanding PR Logic Utilization Reports topic to describe
interpretation of logic utilization values.

2023.06.30 23.2 • Updated What's New In This Version topic for current changes that
impact this document.

• Noted requirement that you must use global clock resources to clock
M20K RAMs in PR regions for Agilex 7 devices in Partial Reconfiguration
Design Considerations topic.

2023.06.26 23.2 • Updated What's New In This Version topic for current changes that
impact this document.

• Removed obsolete Partial Reconfiguration M20K Protection Methodology
for Intel Agilex 7 Devices appendix.

2023.04.03 23.1 • Updated What's New In This Version topic for current changes that
impact this document.

• Updated product family name to "Intel Agilex 7."

2022.08.05 22.2 • Updated What's New In This Version topic to note speed grade,
compression, and encryption limitation removal. All speed grades
support PR. Compression is always enabled for Intel Agilex devices and
Intel Stratix 10 devices. Encryption is supported as part of the
bitstream security feature for these devices.

• Added note about avoiding overlapping routing regions to Step 3:
Floorplan the Design topic.

• Removed speed grade limitations from Partial Reconfiguration Design
Considerations topic.

• Added footnote to Partial Reconfiguration Design Guidelines topic
clarifying need to sometimes reset data registers.

• Corrected figure highlight in Viewing Row Clock Region Boundaries
topic.

• Revised statement about need to install specific IP for debugging the
PR region in Debugging PR Regions with the Signal Tap Logic Analyzer
topic.

• Revised Implementing Clock Enable for On-Chip Memories with
Initialized Contents for requirement to gate appropriately the Clock
Enable signal in some cases.

• Removed note stating no support for PR bitstream encryption and
compression for Intel Agilex devices nor Intel Stratix 10 devices.
Compression is always enabled by default for Intel Agilex devices and
Intel Stratix 10 devices. Encryption is supported as part of the security
feature.

2022.01.11 21.4 • Add Top FAQs navigation to the cover page.
• Minor wording changes to Partial Reconfiguration Terminology table.
• Added What's New in this Version topic.

continued...

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Added clarifying notes to image in Viewing Row Clock Region
Boundaries topic.

• Added note about pin assignments deriving from only from the base
revision to Step 3: Floorplan the Design and Step 8: Setup
Implementation Revisions Viewing Row Clock Region Boundaries topic.

• Added notes about the relationship between sector coverage and
reconfiguration time to Step 3: Floorplan the Design topic.

• Removed Post Synthesis Export File substep from Step 7: Compile the
Base Revision and Export the Static Region topic.

• Corrected typo and added note to Step 8: Setup PR Implementation
Revisions topic.

• Revised Generating PR Bitstream Files topic to refer to Convert
Programming Files dialog box.

• Corrected steps in Generating a Version-Compatible Compilation
Database for PR Designs topic.

2021.10.04 21.3 • Updated PR Bitstream Security Validation topic to refer to Programming
File Generator and revise figure.

• Updated PR File Management topic for new QSF assignment method.
• Clarified device support and corrected code example in Generating a

Merged .pmsf File from Multiple .pmsf Files topic.
• Revised Version-Compatible Database Flow for PR Designs topic

equation and figure.
• Updated non-inclusive terms with "host" and "agent" for Avalon

Memory Mapped interface references throughout.

2021.08.02 21.2 • Updated Register States and Programming Model diagram.
• Updated Avoiding PR Programming Errors topic SEU note.

2021.06.21 21.2 • Updated Version-Compatible Compilation Database Support table.

2021.05.06 21.1 • Indicated support for Agilex 7 design PR bitstream generation, and
removed PR bitstream generation limitation notes.

• Revised Partial Reconfiguration Design Debugging topic.
• Revised Debugging PR Designs with the Signal Tap Logic Analyzer

topic.
• Added new Instantiating the Intel Configuration Reset Release Endpoint

to Debug Logic topic.
• Updated Partial Reconfiguration Security topic for latest information.
• Updated PR Bitstream Security Validation topic license statement and

to remove outdated references.
• Revised PR Authentication topic use cases.
• Revised PR Authentication topic use cases.
• Revised PR Bitstream Encryption topic use case and prerequisites.

2020.12.11 20.3 • Corrected typo in PMSF file definition in "Using PR Bitstream Security
Verification"

2020.09.28 20.3 • Added note about preserving SDC files to "Step 8: Setup PR
Implementation Revisions" topic.

• Added new "Using Parent QDB Files from Different Compiles" topic.
• Added "PR Design Timing Closure Best Practices" topic.
• Replaced references to Avalon-MM and Avalon-ST with Avalon memory-

mapped and Avalon streaming for legal compliance.

continued...

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2020.08.07 20.2 • Added screenshot and details about Synthesis report to "Evaluating PR
Region Initial Conditions" topic.

• Added details about Include entity-bound SDC files option requirements
to "Step 7: Compile the Base Revision and Export the Static Region"
topic.

• Removed stated support for "PR Bitstream Security Verification" for
Agilex 7 devices. This feature is not yet supported for Agilex 7 devices.

• Added details about Include entity-bound SDC files option requirements
to "Generating a Version-Compatible Compilation Database" for PR
Designs topic.

• Added reference to "EDA Netlist Writer and Gate Level-Netlists" section
of the Quartus Prime Pro Edition User Guide: Third Party Simulation to
the "Partial Reconfiguration Design Simulation" section.

2020.06.22 20.2 • Added PR simulation support for Agilex 7 designs.

2020.05.11 20.1 • Revised description of PR bitstream compatibility checking steps for
Cyclone 10 GX and Arria 10 devices.

2020.04.13 20.1 • Updated requirements in "Partial Reconfiguration Bitstream
Compatibility Checking" topic.

• Added note about time borrowing to "Partial Reconfiguration Design
Timing Analysis" topic.

• Added note indicating HPR designs do not support PR security bitstream
verification.

2019.11.18 19.3.0 • Changed title of "Migrating PR Regions to a Later Software Version" to
"Exporting a Version-Compatible Compilation Database for a PR
Design," generalized examples, and removed INI requirement.

2019.09.30 19.3.0 • Added compilation support for Cyclone 10 GX and Agilex 7 PR designs.
• Updated IP name from "Partial Reconfiguration Controller Intel Stratix

10 FPGA IP" to "Partial Reconfiguration Controller Intel FPGA IP" to
encompass Agilex 7 designs.

• Updated wording of "Clock Gating" topic for clarity.
• Added note to Partial Reconfiguration Controller Arria 10/Cyclone 10

FPGA IP "Parameters" topic about support for enhanced decompression.

2019.06.10 19.1.0 • Added details about synthesis of PRESERVE_FANOUT_FREE_NODE to
"Partial Reconfiguration Design Guidelines."

2019.04.22 19.1.0 • Indicated support for POF generation support for Intel Cyclone GX
devices.

• Corrected code example in "PR Migration Flow" topic.

2019.04.01 19.1.0 • Described migration of the static region of a PR design to a later
version of the Quartus Prime software.

• Described new "PR Bitstream Security Validation" feature.
• Described new location of auto export from output_files to project

directory.

2018.12.30 18.1.1 • Described "Partial Reconfiguration Bitstream Compatibility Check" and
PR region limitations.

2018.10.24 18.1.0 • Added "PR File Management" topic.
• Updated first guideline in "Partial Reconfiguration Design Guidelines."

2018.09.24 18.1.0 • Described automated .qdb partition export in "Exporting a Design
Partition."

• Added details about required assignments to "Step 6: Create Revisions
for Personas."

• Removed references to placed snapshot. Only synthesized and final
snapshots are supported.

continued...

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Corrected description of Entity Re-binding option in Design Partition
Settings table.

• Added command line instructions for creating a revision.
• Stated PR compilation flow support for Cyclone 10 GX devices.
• Updated Partial Reconfiguration Controller Arria 10 FPGA IP name to

Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP.
• Added "Viewing Row Clock Region Boundaries."
• Added "Planning Clocks and other Global Routing."

2018.07.18 18.0.0 • Corrected signals in Simulation of PR Persona Switching diagram.

2018.06.18 18.0.0 • Corrected syntax errors and added note in Running Timing Analysis on
Aggregate Revisions.

2018.05.29 18.0.0 • Added description of "|" that identifies the root partition hierarchy path
in Design Partitions Window.

• Clarified .qsf assignment in Running Timing Analysis on Aggregate
Revisions.

2018.05.07 18.0.0 • Added description of new Partial Reconfiguration External Configuration
Controller Stratix 10 FPGA IP.

• Removed descriptions of obsolete synthesis-only revisions and
corresponding personas. Replaced with latest simplified flow
instructions.

• Updated names of Partial Reconfiguration Controller Arria 10 FPGA IP
and Partial Reconfiguration Controller Stratix 10 FPGA IP.

• Added Design Partition Settings topic.
• Added Evaluating PR Partition Initial Conditions topic.
• Added Avoiding PR Programming Errors topic.
• Described qcrypt incompatibility with Enable bitstream compatibility

check and workaround.
• Added as chapter in new Partial Reconfiguration User Guide.
• Updated command-line syntax in Running Timing Analysis on

Aggregate Revisions topic.
• Removed obsolete HPR flow script information and linked to AN826:

Hierarchical Partial Reconfiguration Tutorial for Intel Stratix 10 GX
FPGA Development Board

• Added note about recovery after PR error when using SEU detection in
Stratix 10 designs.

2017.11.06 17.1.0 • Added partial reconfiguration support for Stratix 10 devices.
• Added descriptions of Stratix 10 Partial Reconfiguration Controller IP,

SUPR, HPR, and SDM to terms list.
• Updated for latest Intel branding and software user interface.

2017.05.08 17.0.0 • Added information about Hierarchical Partial Reconfiguration.
• Added new topic Partial Reconfiguration Simulation and Verification.
• Added new topic 'Run Timing Analysis on a Design with Multiple PR

Partitions'.
• Updated Freeze Logic for PR Regions.
• Added new topic Debugging Using Signal Tap Logic Analyzer.
• Other minor updates.

10.31.2016 16.1.0 • Initial release.

1. Creating a Partial Reconfiguration Design

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Partial Reconfiguration Solutions IP User Guide
The Quartus Prime Pro Edition software includes the following Intel FPGA IP cores that
simplify partial reconfiguration implementation.

Instantiate one or more of these IP cores to implement handshake and freeze logic for
PR functionality in your design. Alternatively, create your own PR handshake and
freeze logic that interfaces with the PR region.

Table 12. Partial Reconfiguration IP Cores

Intel FPGA IP Description Usage

Partial Reconfiguration
Controller Intel FPGA IP

Dedicated IP component that sends the partial
reconfiguration bitstream for the Agilex 7, Agilex 5, or
Stratix 10 FPGA. The PR bitstream performs
reconfiguration by adjusting CRAM bits in the FPGA.

One instance per
Stratix 10, Agilex 5, or
Agilex 7 FPGA

Partial Reconfiguration External
Configuration Controller Intel
FPGA IP

IP component that supports Stratix 10 and Agilex 7
FPGA partial reconfiguration via an external source over
dedicated PR pins.

One instance per
Stratix 10, Agilex 5, or
Agilex 7 FPGA for
external configuration

Partial Reconfiguration
Controller Arria 10/Cyclone 10
FPGA IP

Dedicated IP component that sends the partial
reconfiguration bitstream to the Arria 10 or Cyclone 10
GX FPGA. The PR bitstream performs reconfiguration by
adjusting CRAM bits in the FPGA.

One instance per Arria
10 or Cyclone 10 GX
FPGA, internal or
external configuration.

Partial Reconfiguration Region
Controller Intel FPGA IP

Provides a standard Avalon memory-mapped interface to
the block that controls handshaking with the PR region.
Ensures that PR region stops, resets, and restarts,
according to the PR handshake.

One instance per PR
region.

Avalon Memory-Mapped Partial
Reconfiguration Freeze Bridge
Intel FPGA IP

Provides freeze capabilities to the PR region for Avalon
memory-mapped interfaces.

One instance for each
interface in each PR
region.

Avalon Streaming Partial
Reconfiguration Freeze Bridge
Intel FPGA IP

Provides freeze capabilities to the PR region for Avalon
streaming interfaces.

One instance for each
interface in each PR
region.

2.1. Internal and External PR Host Configurations

You perform PR with either an internal host residing in the core resources, or with an
external host via dedicated device pins. Use of an internal host stores all PR host logic
on the FPGA device, rather than on an external device. The PR host interfaces with the
control block through simple handshaking and data transfer.

683834 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 42. Arria 10 and Cyclone 10 GX Partial Reconfiguration IP Components (Internal
Host)

MM
Host

PR Control Logic
(Host)

MM
Host

Freeze Control and
 Status RegisterMM

Agent

PR Region Controller IP

Freeze Control
Block

Conduit
Splitter

Conduit
Merger

Static
Region

Intel Arria 10 PR
Controller IP

MM
Agent

PR Control
Block (hard)

Freeze Bridge IP_0

Freeze Bridge IP_1

PR
Region

start_req
start_ack
stop_req

region_reset
stop_ack

freeze

reset_n

clk

Arria® 10 FPGA

illegal_request

Figure 43. Agilex 7, Agilex 5, and Stratix 10 Partial Reconfiguration IP Components for
(Internal Host)

MM Host
or

ST Source

PR Control Logic
(Host)

MM
Host

Freeze Control and
 Status Register

MM
Agent

PR Region Controller IP

Freeze Control
Block

Conduit
Splitter

Conduit
Merger

Static
Region

Intel Stratix 10 PR
Controller IP

MM Agent
or ST Sink

SDM

Freeze Bridge IP_0

Freeze Bridge IP_1

PR
Region

start_req
start_ack
stop_req

region_reset
stop_ack

freeze

reset_n

clk

Stratix® 10 FPGA

illegal_request

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 44. Partial Reconfiguration with Microcontroller External Host (Arria 10 or
Cyclone 10 GX device)

Microcontroller
(Host)

PR Region Controller IP

Freeze Control
Block

Conduit
Splitter

Conduit
Merger

Static
Region

Arria 10
PR Controller IP

MM
Slave

PR Control
Block (hard)

Freeze Bridge IP_0

Freeze Bridge IP_1

PR
Region

freeze

reset_n clk

pr_request
pr_ready
pr_error
pr_done

pr_data[31:0]

freeze_req
freeze_status

reset_req
unfreeze_status
illegal_request

start_req
start_ack
stop_req

region_reset
stop_ack

Arria 10 FPGA

illegal_request[n:0]

Figure 45. Partial Reconfiguration with HPS Internal Host (Arria 10 or Cyclone 10 GX
device)

FPGA
Manager

HPS
(Host)

H2F AXI
Manager

Freeze Control and
Status Register

MM
Agent

PR Region Controller IP

Freeze Control
Block

Conduit
Splitter

Conduit
Merger

Static
Region

PR Control
Block (hard)

Freeze Bridge IP_0

Freeze Bridge IP_1

PR
Region

start_req
start_ack
stop_req

region_reset
stop_ack

freeze illegal_request[n:0]

reset_n

clk

Arria 10 FPGA

illegal_request

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2. Partial Reconfiguration Controller Intel FPGA IP

The Partial Reconfiguration Controller Intel FPGA IP provides partial reconfiguration
functionality for Stratix 10 and Agilex 7 designs. The IP core provides a standard
interface to the FPGA secure device manager (SDM), and has a maximum clock
frequency of 200 MHz.

Figure 46. Partial Reconfiguration Controller Avalon Streaming Interface (Agilex 7,
Agilex 5, and Stratix 10 Designs)
(5)

PR Data
 Interface

Secure
Device

Manager
Interface

Partial Reconfiguration Controller Intel FPGA IP

avst_sink_data[31:0]
avst_sink_valid

Secure Device
Manager

avst_sink_ready
pr_start

status[2:0]

clk
reset

PR Flow
Handler

Data Source
 Controller

FPGA
Mailbox
Driver

User Input/Output

Note: If an error occurs during PR operation for an Agilex 7, Agilex 5, or Stratix 10 design
using SEU detection, the PR region is frozen, becomes non-functional, and SEU
detection is disabled for all sectors within the PR region and certain sectors adjacent
to PR region. To resolve this error and restore SEU detection on affected areas,
perform a full chip configuration.

2.2.1. Memory Map

The Partial Reconfiguration Controller Intel FPGA IP has the following memory map.

Table 13. Avalon Memory-Mapped Slave Memory Map

Name Address
Offset

Width Access Description

PR_DATA 0x00 32 Write Every data write to this address indicates
this bitstream is sending to the IP core.
Width is set by the Input data width
parameter.

PR_CSR 0x01 32 Read or
Write

Control and status registers with the
following offset bits:

continued...

(5) Avalon memory mapped interface variant also available.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Address
Offset

Width Access Description

• 31 - 7: Reserved.
• 6: Protocol violation. This bit is asserted

when the Avalon memory-mapped or
Avalon streaming protocol is violated.

• 5: Read/Write for irq signal mask bit.
Write 1 to this bit enable irq signal and
0 to disable the irq signal.

• 4: Read/Clear for irq signal. The irq
signal asserts if an error occurs. The
Master must read the status signal and
clear the interrupt by writing 1 to this bit.

• 3 - 1: Read-only for status signal.
• 0: Read/Write for pr_start signal. To

streamline the flow, the IP core
automatically de-asserts to value 0, one
clock cycle after the signal asserts.

PR_SW_VER 0x02 32 Read Read-only SW version register. Register is
currently 0xBA500000.

PR_FW_HANDSHAKE 0x03 32 Read Current location of mailbox handshake
between the PR IP and the SDM in the PR
operation with the following offset bits:
• 31 - 8: Reserved.
• 7 - 0: Current location of the mailbox

handshake between the PR IP and the
SDM.

PR_FW_RESPONSE 0x04 32 Read SDM mailbox response. You must use this in
conjunction with PR_FW_HANDSHAKE. If
PR_FW_HANDSHAKE is 0x2 or 0x6, the
following offset bits apply:
• 31 - 11: Reserved.
• 10 - 0: Response header of the response

payload.
If PR_FW_HANDSHAKE is 0x4, the following
offset bit applies:
• 31 - 0: First response word of response

payload.

Note: For IP core instantiation guidelines, refer to the appropriate device configuration user
guide.

Related Information

• Stratix 10 Configuration User Guide

• Agilex 7 Configuration User Guide

2.2.2. Parameters

The Partial Reconfiguration Controller Intel FPGA IP supports customization of the
following parameters.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

78

https://www.intel.com/content/www/us/en/programmable/documentation/sss1439972793861.html#yrh154991287801
https://www.intel.com/content/www/us/en/programmable/documentation/oex1546548090650.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 14. Partial Reconfiguration Controller Intel FPGA IP Parameter Settings

Parameter Value Description

Enable Avalon-ST
sink or Avalon-
MM slave
interface

Avalon-ST/Avalon-
MM

Enables the controller's Avalon streaming sink or Avalon memory-mapped
agent interface.

Input data width <bits> Specifies the size of the controller's data conduit interface in bits. The IP
supports device widths of 32 and 64. The Avalon memory-mapped slave
interface supports 32-bits only.

Enable interrupt
interface

Yes/No Enables interrupt assertion for detection of incompatible bitstream,
CRC_ERROR, PR_ERROR, or successful partial reconfiguration. Upon
interrupt, query PR_CSR[3:1] for status. Write a 1 to PR_CSR[4] to clear
the interrupt. Use only together with the Avalon memory-mapped agent
interface.

Enable Protocol
Checker

Yes/No Reads out the error bit from the CSR register (PR_CSR[6]).

Enable SDM FW
Error Reporting

Yes/No Enables the SDM firmware error reporting ports and CSR. Enables the
additional pr_fw_handshake and pr_fw_response ports in Avalon
streaming mode, and can be read out from the CSR register (base address
offsets 3 and 4) in Avalon memory-mapped mode.
Note: This parameter is only supported for Agilex 7 and Agilex 5 devices.

Figure 47. Parameter Editor

2.2.3. Ports

The Partial Reconfiguration Controller Intel FPGA IP includes the following interface
ports.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 48. Avalon Streaming Sink Interface Ports

Figure 49. Avalon Memory-Mapped Agent Interface Ports
(6)

(6) The terms host and agent now replace non-inclusive terms in the Avalon Memory Mapped
specification.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 15. Clock/Reset Ports

Port Name Width Direction Function

reset 1 Input Asynchronous reset for the PR Controller IP core. Resetting
the PR Controller IP core during a partial reconfiguration
operation can cause the device to lock up.

clk 1 Input Input clock to the PR Controller IP core.
The input clock must be free-running. The IP core has a
maximum clock frequency of 200 MHz.

Table 16. Avalon Streaming Sink interface Ports
These ports are available when you enable the Avalon Streaming sink interface.

Port Name Width Direction Function

pr_start 1 Input A signal arriving at this port asserted high initiates
a PR event. You must assert this signal high for a
minimum of one clock cycle, and de-assert it low,
prior to the end of the PR operation.

avst_sink_data[] 32|64 Input Avalon streaming data signal that is synchronous
with the rising edge of the clk signal. The Input
data width parameter specifies this port width.

avst_sink_valid 1 Input Avalon streaming data valid signal that indicates
the avst_sink_data port contains valid data.

avst_sink_ready 1 Output Avalon streaming ready signal that indicates the
device is ready to read the streaming data on the
avst_sink_data port whenever the
avst_sink_valid signal asserts high. Stop
sending valid data when this port is low.

status[2:0] 3 Output A 3-bit error output that indicates the status of a
PR event. Once the outputs latch high as follow,
you can only reset the outputs at the beginning of
the next PR event:
3’b000 – power-up nreset asserted

3’b001 – configuration system is busy

3’b010 – PR operation is in progress

3’b011 – PR operation successful

3’b100 – PR_ERROR is triggered

3’b101 – Reserved

3'b110 – Incompatible bitstream error

3'b111 – Reserved

protocol_error 1 Output Reads out the error bit from the CSR register.

pr_fw_handshake 8 Output Indicates the current state of the mailbox
handshake between the PR IP and the SDM
firmware in the PR operation.

pr_fw_response 32 Output SDM firmware mailbox response.

Table 17. Avalon Memory-Mapped Agent Interface Ports
These ports are available when you enable the Avalon memory-mapped agent interface.

Port Name Width Direction Function

avmm_slave_address 4 Input Avalon memory-mapped address bus in the unit of
Word addressing.

avmm_slave_read 1 Input Avalon memory-mapped read control.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Name Width Direction Function

avmm_slave_readdata 32 Output Avalon memory-mapped read data bus.

avmm_slave_write 1 Input Avalon memory-mapped write control.

avmm_slave_writedata 32 Input Avalon memory-mapped write data bus.

avmm_slave_waitrequest 1 Output Upon assertion, indicates that the IP is busy and the
IP is unable to respond to a read or write request.

irq 1 Output Interrupt signal when you enable the Enable
interrupt interface parameter.

2.2.4. Timing Specifications

The following timing diagram illustrates a successful PR operation with the Partial
Reconfiguration Controller Intel FPGA IP. The status[2:0] output signal indicates
whether the operation passes or fails. The PR operation initiates upon assertion of the
pr_start signal. Monitor the status[] signal to detect the end of the PR operation.

Figure 50. Timing Specifications

clk

reset

pr_start

avst_sink_data[31:0]

avst_sink_valid

avst_sink_ready

status[2:0]

00000000 12345678 . . 78123456 FFFFFFFF

0 2 3

x5 5

Power-Up Reset PR Operation Begins PR Operation End

2.2.5. PR Error Recovery

The Partial Reconfiguration Controller Intel FPGA IP supports error recovery during
partial reconfiguration.

Note: PR error recovery is only supported for Agilex 7 and Agilex 5 devices.

When PR_ERROR triggers, the PR Controller IP initiates the error recovery mechanism
by de-asserting the avst_sink_ready signal to flush out any remaining corrupted
PR bitstream that remains in the Avalon streaming pipeline.

Note: You must ensure that the remaining corrupted PR bitstream is fully flushed from the
Avalon streaming pipeline before initiating another PR operation, or before performing
a PR controller IP reset.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For PR Controller IP designs that have an Avalon memory-mapped interface, when
PR_ERROR is triggered, continue to write (by asserting both avmm_slave_write and
avmm_slave_writedata) until the PR bitstream in the Avalon memory-mapped host
depletes.

To prevent inadvertent flushing of the new bitstream, do not provide a new,
uncorrupted PR bitstream to the PR Controller IP until flushing is complete. Once
flushing is complete, you can send a new, uncorrupted PR bitstream to the PR
controller IP when pr_start is asserted and after the reset is de-asserted.

Note: Once the PR process initiates, you cannot alter nor replace the PR bitstream provided
in the Avalon streaming pipeline. For example, if the PR Controller IP reflects a status
of configuration is busy (3’b001), you must re-initiate PR with the PR bitstream that
is already present, without replacing the bitstream. The existing PR bitstream must
undergo the whole PR process until the PR operation completes with status of either
success (3’b011) or fail (PR_ERROR is triggered: 3’b100, or incompatible bitstream
error: 3’b110) with the error recovery mechanism to clear the Avalon streaming
pipeline.

After one of the statuses occurs, you can send the PR bitstream to the PR Controller IP
when initiating another PR operation, or after performing a PR Controller IP reset.

This PR error recovery feature is available only for the Partial Reconfiguration
Controller Intel FPGA IP, which controls Avalon streaming and Avalon memory-mapped
paths where the data comes in.

The Partial Reconfiguration Controller Intel FPGA IP only acts as a block that reports
the handshaking of the external user host and the SDM of the FPGA. There is no
interaction between the streaming path and the IP. You connect directly to the Avalon
streaming pins in the SDM I/O. These SDM I/O pins are exactly the same as the
Avalon Streaming pins that you use for full device configuration. The PR IP cannot
control the SDM I/O pins.

2.2.5.1. PR Error Recovery Timing Specifications

The following describes the timing specifications for PR error recovery.

Timing Diagram: PR Operation with PR_ERROR Triggered - PR Controller Intel FPGA IP
(Avalon Streaming), and Timing Diagram: PR Operation with PR_ERROR Triggered - PR
Controller Intel FPGA IP (Avalon Memory-Mapped) describe a PR operation that
encounters PR_ERROR. When PR_ERROR is triggered, the FPGA SDM operation de-
asserts the avst_sink_ready signal to backpressure any remaining corrupted PR
bitstream. Next, the error recovery mechanism initiates by re-asserting the
avst_sink_ready signal to flush out any remaining corrupted PR bitstream in the
Avalon streaming pipeline.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 51. Timing Diagram: PR Operation with PR_ERROR Triggered - PR Controller Intel
FPGA IP (Avalon Streaming)

PR Operation Begins
PR IP Status

Indicates PR Error Error Recovery

For PR Controller IP designs that have the Avalon memory-mapped interface, when
PR_ERROR triggers, continue to write (by asserting both avmm_slave_write and
avmm_slave_writedata) until the PR bitstream in the Avalon memory-mapped host
depletes, as Timing Diagram: PR Operation with PR_ERROR Triggered - PR Controller
Intel FPGA IP (Avalon Memory-Mapped) shows.

Figure 52. Timing Diagram: PR Operation with PR_ERROR Triggered - PR Controller Intel
FPGA IP (Avalon Memory-Mapped)

PR Operation Begins PR_ERROR
Triggers

Error Recovery

The error recovery mechanism continues until you initiate a PR Controller IP reset or
another PR operation, as the following illustrations show. Then, you can send a new,
uncorrupted PR bitstream to the PR Controller IP.

Note: Do not provide the new, uncorrupted PR bitstream to the PR Controller IP before reset
or pr_start to prevent flushing the new bitstream during error recovery.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 53. Timing Diagram: Error Recovery Until Reset Assert - PR Controller Intel FPGA
IP (Avalon Streaming)

Error Recovery

Reset PR Operation Begins PR Operation Successful

Figure 54. Timing Diagram: Error Recovery Until Reset Assert - PR Controller Intel FPGA
IP (Avalon Memory-Mapped)

Error Recovery

Reset PR Operation Begins PR Operation Successful

Figure 55. Timing Diagram: Error Recovery Until PR Operation Initiates - PR Controller
Intel FPGA IP (Avalon Streaming)

Error Recovery

PR Operation Begins PR Operation
Successful

Note: In a scenario where you provide a new, uncorrupted PR bitstream to
avst_sink_data at the same clock cycle that PR operation initiates, the internal
register captures the first beat of data (0x1) because of error recovery.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 56. Timing Diagram: Error Recovery Until PR Operation Initiates - PR Controller
Intel FPGA IP (Avalon Memory-Mapped)

Error Recovery

PR Operation Begins PR Operation
Successful

2.2.6. Secure Device Manager Firmware Error Reporting

The Partial Reconfiguration Controller Intel FPGA IP notifies you of a non-specific error
in PR operation by updating the 3-bit status CSR port to a generic PR_ERROR or
"Incompatible bitstream error” in the PR controller IP. However, this error notification
does not include specific details about the nature of the error.

As the secure device manager (SDM) firmware processes the PR bitstream, the SDM
firmware error reporting can provide details about the error, such as the PR stage
where the error occurs. You can use this information to identify and resolve any issue
before re-attempting another PR operation on the PR region that remains isolated
from an initial, failed PR attempt. If the SDM firmware reports no error, then the PR
error is outside of the SDM firmware.

Note: SDM firmware error reporting is only supported for Agilex 7 and Agilex 5 devices.

PR IP in Avalon Streaming Mode with SDM Firmware Error Reporting Enabled shows
the IP in Avalon streaming mode with SDM firmware error reporting enabled. Enabling
this parameter adds the pr_fw_handshake[7:0] and pr_fw_response[31:0]
ports to the IP.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 57. PR IP in Avalon Streaming Mode with SDM Firmware Error Reporting Enabled

Similarly, PR IP in Avalon Memory-Mapped Mode with SDM Firmware Error Reporting
Enabled shows the IP in Avalon memory-mapped mode with SDM firmware error
reporting enabled by the PR_FW_HANDSHAKE[0x3] and PR_FW_RESPONSE[0x4] CSR
registers of the Avalon memory-mapped register map. Enabling this parameter adds
no additional ports.

Figure 58. PR IP in Avalon Memory-Mapped Mode with SDM Firmware Error Reporting
Enabled

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.6.1. SDM Firmware Error Reporting Timing Specification

Timing Diagram: PR Operation with SDM Firmware Error Reporting Signals - PR
Controller Intel FPGA IP (Avalon Streaming) shows the timing diagram of PR operation
with the SDM firmware error reporting signal usage in Avalon-ST mode of the PR
Controller IP. During PR operation, you can read the pr_fw_handshake and
pr_fw_response signals after a PR error to learn more about the error. For example,
once you detect the PR operation has ended with the status[2:0], you can continue
by reading the pr_fw_handshake and pr_fw_response signals.

In this example, the PR operation ends with PR_ERROR, as indicated by the
status[2:0] = 3’b100. For error details, you can read the pr_fw_handshake to
determine in which stage the PR operation fails. You can read pr_fw_response to
determine the error code that the SDM returns.

Figure 59. Timing Diagram: PR Operation with SDM Firmware Error Reporting Signals -
PR Controller Intel FPGA IP (Avalon Streaming)

To learn error PR stage and error code,
read pr_fw_handshake[7:0] and
pr_fw_response[31:0]

status[2:0] Shows 3'b100 = PR_ERROR
Indicating Error Occured During PR
Operation

PR Operation Begins
PR_ERROR Detected

from SDM Error Recovery Reset

The following steps correspond to the sequence in the timing diagram:

1. Assert pr_start to begin the PR operation.

2. Stream the PR bitstream on avst_sink_ready and avst_sink_valid ports.

3. The SDM detects a PR_ERROR causing avst_sink_ready to be de-asserted to
backpressure incoming PR bitstream.

4. You detect that status[2:0] is updated to 0x4 (3’b100) to indicate that
‘PR_ERROR is triggered’. From this status information, you can determine that an
error occurred during the PR operation.

5. To learn more about the PR operation failure, read the pr_fw_handshake[7:0]
and pr_fw_response[31:0] signals to determine the error code and PR stage
of the failure.

Timing Diagram: PR Operation with SDM Firmware Error Reporting Signals - PR
Controller Intel FPGA IP (Avalon Memory-Mapped) shows the PR operation timing
diagram with the SDM firmware error reporting signal usage in Avalon memory-
mapped mode of the PR Controller Intel FPGA IP. During a PR operation, you can read
the CSR registers (0x3 for PR_FW_HANDSHAKE, and 0x4 for PR_FW_RESPONSE) after
a PR error to learn more about the error. For example, once you detect that the PR

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

operation ends with an error by IRQ assertion, and after reading CSR register 0x1
(PR_CSR) that holds the PR status[2:0] value, you can continue by reading the
CSR registers 0x3 and 0x4, as .

Figure 60. Timing Diagram: PR Operation with SDM Firmware Error Reporting Signals -
PR Controller Intel FPGA IP (Avalon Memory-Mapped)

status[2:0] Shows 3'b100 = PR_ERROR
Indicating Error During PR Operation To learn PR stage and error code, read CSR address

0x3 and 0x4 to obtain pr_fw_handshake[7:0] and
pr_fw_response[31:0]

PR Operation Begins
PR_ERROR Detected

 from SDM Reset

The following steps correspond to the sequence in the timing diagram:

1. Start the PR operation by writing to CSR address 0x1 (PR_CSR) with 0x21.This
action enables the use of the irq signal and sets the pr_start to begin the PR
operation. After 1 clock cycle, status[2:0] updates to 0x2 (3’b010) to
indicate ‘PR operation is in progress'.

2. Read the CSR address 0x1 (PR_CSR) to obtain the status[2:0] of the PR
operation. The value read back is 0x24, which translates to status[2:0] =
3’b010, indicating 'PR operation is in progress'.

3. Start writing the PR bitstream in CSR address 0x0 (PR_DATA).

4. You read PR_CSR and observe that irq was asserted and that PR_ERROR is the
status.

The pr_fw_handshake register holds the current location of the mailbox handshake
between the PR IP and the SDM. If the PR IP is interrupted during PR, the
pr_fw_handshake register indicates the last position of the mailbox handshake. The
pr_fw_handshake register also enables you to associate the value held in
pr_fw_response to a specific mailbox command.

Table 18. pr_fw_handshake Register Values

Register Value Description

0 The PR IP has not yet sent any mailbox command to the SDM to initiate the partial reconfiguration
operation.

1 The PR IP has sent the mailbox command to the SDM to initiate the partial reconfiguration operation
and is awaiting a response.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register Value Description

2 PR IP has received the mailbox response from the SDM on the partial reconfiguration operation
initiation.

3 The PR IP has sent the mailbox command to the SDM to query the last partial reconfiguration status
and is awaiting a response.

4 The PR IP has received the mailbox response from the SDM on the last partial reconfiguration status.

5 The PR IP has sent the mailbox command to the SDM to initiate the partial reconfiguration operation
from the data source selected by MSEL and is awaiting a response.

6 The PR IP has received the mailbox response from the SDM on the partial reconfiguration operation
from the data source selected by MSEL.

7 Reserved.

2.3. Partial Reconfiguration Controller Intel Arria® 10/Cyclone® 10
FPGA IP

The Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP provides a standard
interface to the partial reconfiguration functionality in the PR control block. Use this IP
core to avoid manually instantiating a PR control block interface. The Partial
Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP supports Arria 10 and Cyclone
10 GX PR designs with a maximum clock frequency of 100MHz.

Figure 61. Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP

CRC BLOCK PR BLOCK

CB Interface Controller

JTAG Debug
Interface

PR Data
Interface

FPGA Control
Block (CB)
Interface Module

Main Controller
Module

PR Data Source
Interface Module

Data Source Controller

Bitstream Decoder

2.3.1. Agent Interface

The Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP provides an Avalon
memory-mapped agent interface to read and write to PR configuration registers.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 19. Data/CSR Memory Map Format

Name Address Offset Access Description

PR_DATA 0x00 Write Every data write to this address indicates this bitstream is
sent to the IP core.
Performing a read on this address returns all 0's.

PR_CSR 0x01 Read or Write Control and status registers.

Version
Register

0x02 Read-Only Read-only SW version register. Register is currently
0xAA500003

PR Bitstream ID 0x03 Read-Only Read-only PR POF ID register

Table 20. PR_CSR Control and Status Bits

Bit Offset Description

0 Read and write control register for pr_start signal. Refer to Ports on page 95 for details
on the pr_start signal.
pr_start = PR_CSR[0]

The IP core deasserts PR_CSR[0] to value 0 automatically, one clock cycle after the
PR_CSR[0] asserts. This streamlines the flow to avoid manual assertion and de-assertion
of this register to control pr_start signal.

1 Reserved.

2-4 Read-only status register for status[2:0] signal.
PR_CSR[4:2] = status[2:0]

Refer to Ports on page 95 for details on the status signals.

5 Read and clear bit for interrupt.
If you enable the interrupt interface, reading this bit returns the value of the irq signal.
Writing a 1 clears the interrupt.
If you disable the interrupt interface, reading this bit always returns a value of 0.

6-31 Reserved bits. Depends on the Avalon memory-mapped data bus width.

2.3.2. Reconfiguration Sequence

Partial reconfiguration occurs through the Avalon memory-mapped agent interface in
the following sequence:

1. Avalon memory-mapped host component writes 0x01 to IP address offset 0x1 to
trigger PR operation.

2. Optionally poll the status register until PR Operation in Progress. Not polling
results in waitrequest on first word.

3. Avalon memory-mapped host component writes PR bitstream to IP address offset
0x0, until all the PR bitstream writes complete. When enhanced decompression is
on, waitrequest activates throughout the PR operation. Ensure that your host
can handle waitrequest from the agent interface.

4. Avalon memory-mapped host component reads the data from IP address offset
0x1 to check the status[2:0] value. Optionally, the Avalon memory-mapped
host component reads the status[2:0] of this IP during a PR operation to detect
any early failure, for example, PR_ERROR.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.3. Interrupt Interface

If you enable the Avalon Memory Mapped agent interface, you can use the optional
interrupt interface of the Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA
IP.

The IP core asserts irq during the following events:

Table 21. Interrupt Interface Events

Status Code Event

3'b001 PR_ERROR occurred.

3'b010 CRC_ERROR occurred.

3'b011 The IP core detects an incompatible bitstream.

3'b101 The result of a successful PR operation.

After irq asserts, the host performs one or more of the following:

• Query for the status of the PR IP core; PR_CSR[4:2].

• Carry out some action, such as error reporting.

• Once the interrupt is serviced, clear the interrupt by writing a "1" to PR_CSR[5].

2.3.4. Parameters

The Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP supports
customization of the following parameters.

Table 22. Parameter Settings

Parameter Value Description

Use as partial
reconfiguration
internal host

On|Off Enables the controller for use as an internal host. Enabling this option auto-
instantiates prblock and crcblock WYSIWYG as part of your design.
Disable this option to use the controller as an external host. Connect
additional interface signals to the dedicated partial reconfiguration pins.

Enable JTAG debug
mode

On|Off Enables access to the controller by the Quartus Prime Programmer for partial
reconfiguration over a JTAG interface.

Enable Avalon-MM
slave interface

On|Off Enables the controller's Avalon memory-mapped agent interface. When this
setting is Off, the IP controller enables the conduit interface.

Enable interrupt
interface

On|Off Enables interrupt assertion for detection of incompatible bitstream,
CRC_ERROR, PR_ERROR, or successful partial reconfiguration. Upon
interrupt, query PR_CSR[4:2] for status. Write a 1 to PR_CSR[5] to clear
the interrupt. Use only together with the Avalon memory-mapped agent
interface.

Enable freeze
interface

On|Off Enables the controller's single-bit freeze interface. This interface identifies
whether any region in the design is active or frozen for partial
reconfiguration operations. Leave this interface off, and use the freeze
interface from the Partial Reconfiguration Region Controller IP instead.

Enable bitstream
compatibility check

On|Off Enables bitstream compatibility checks during partial reconfiguration
operation from the external host. Bitstream compatibility check
automatically enables when you use partial reconfiguration by internal host.
Specify the partial reconfiguration bitstream ID value if you enable this
option for partial reconfiguration by external host.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Value Description

PR bitstream ID <32-bit
integer>

Specifies a signed, 32-bit integer value of the partial reconfiguration
bitstream ID for the external host. This value must match the partial
reconfiguration bitstream ID that the Compiler generates for the target
partial reconfiguration design. Locate the partial reconfiguration bitstream ID
of the target partial reconfiguration design in the Assembler report
(.asm.rpt).

Input data width 1|8|16|32 Specifies the size of the controller's data conduit interface in bits. Refer to
Error Detection CRC Requirements on page 94.

Clock-to-data ratio 1|4|8 Specifies the clock-to-data ratio that corresponds with the partial
reconfiguration bitstream data type. Refer to the Valid combinations and CD
Ratio for Bitstream Encryption and Compression Table.

Divide error detection
frequency by

1..256 Specifies the divide value of the internal clock. This value determines the
frequency of the error detection CRC. The divide value must be a power of
two. Refer to device documentation to determine the frequency of the
internal clock for the device you select. Refer to Error Detection CRC
Requirements on page 94.

Enable enhanced
decompression

On|Off Enable enhanced decompression of partial reconfiguration bitstreams.
Note: You cannot use enhanced decompression together with encryption

simultaneously. Enhanced decompression is only available with the
Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP.

Table 23. Advanced Settings

Parameter Value Description

Auto-instantiate
partial
reconfiguration
control block

On|Off Automatically includes the partial reconfiguration control block in the
controller. When using the controller as an internal host, disable this option
to share the partial reconfiguration block with other IP cores. Rather,
manually instantiate the partial reconfiguration control block, and connect
the relevant signals to the controller.

Auto-instantiate CRC
block

On|Off Automatically includes the CRC block within the controller. Leave this option
enabled unless you plan to use single event upset (SEU) IP in the same PR
design. If you disable this option, IP generation exports the crc_error_pin
for manual connection to an external CRC block that you manually
instantiate. If you disable this option and then subsequently leave the
exported crc_error_pin floating, the PR operation is undetermined due to
unexpected crc_error_pin.

Generate timing
constraints file

On|Off Automatically generates an appropriate Synopsys Design Constraints (.sdc)
file to constrain the timing of the controller. Disable this option when
providing timing constraints in another file.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 62. Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP Parameter
Editor

2.3.4.1. Error Detection CRC Requirements

The following describes requirements for enabling the error detection CRC option with
various PR configuration method and parameter combinations. Click Assignments ➤
Device ➤ Device & Pin Options ➤ Error Detection CRC ➤ Enable Error
Detection Check to enable EDCRC prior to PR bitstream generation.

Note: When using the Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP with a
32-bit Input data width, and with Passive Parallel x1, x8, or x16 configuration, you
must turn on the Enable Error Detection Check option, and specify a Divide error
detection frequency by value of 2 or 4.

Note: When using the Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP with a
32-bit Input data width and Passive Parallel x32 configuration, PR supports Enable
Error Detection Check on or off. If Enable Error Detection Check is on, PR
supports all values for Divide error detection frequency by.

Note: When using the Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP with 1,
8, or 16-bit Input data width, and with Passive Parallel x1, x8, x16, or x32
configuration, PR supports Enable Error Detection Check turned on or off. If Enable
Error Detection Check is on, PR supports all values for Divide error detection
frequency by.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 24. Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP Error
Detection CRC (EDCRC) Requirements Summary

PR IP Input Data
Width

Configuration Mode Enable Error
Detection Check

PR Support

1, 8, 16 Passive Parallel x1, x8, x16 Off Yes

1, 8, 16 Passive Parallel x1, x8, x16 On Yes, for all Divide error
detection frequency by
values

32 Passive Parallel x1, x8, x16 Off No support

32 Passive Parallel x1, x8, x16 On Yes, for only Divide error
detection frequency by
value 2 or 4

1, 8, 16, 32 Passive Parallel x32 Off Yes

1, 8, 16, 32 Passive Parallel x32 On Yes, for all Divide error
detection frequency by
values

2.3.5. Ports

The Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP includes the
following interface ports.

Figure 63. Partial Reconfiguration Controller Interface Ports (Internal Host)

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 64. Partial Reconfiguration Controller Interface Ports (External Host)

Table 25. Clock/Reset Ports

Port Name Width Direction Function

nreset 1 Input Asynchronous reset for the PR Controller IP core. Resetting
the PR Controller IP core during a partial reconfiguration
operation initiates the withdrawal sequence.

clk 1 Input User input clock to the PR Controller IP core. The IP core
has a maximum clock frequency of 100MHz.
The IP core ignores this signal during JTAG debug
operations.

Table 26. Freeze Interface Port

Port Name Width Direction Function

freeze 1 Output Active high signal that freezes the PR interface signals of
any region undergoing partial reconfiguration. De-assertion
of this signal indicates the end of PR operation.
Use the Partial Reconfiguration Region Controller IP for this
operation rather than the Partial Reconfiguration Controller
IP freeze signal.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 27. Conduit Interface Ports
These ports are available when Enable Avalon Memory-Mapped agent interface is Off.

Port Name Width Direction Function

pr_start 1 Input A 0 to 1 transition on this port initiates a PR event. You
must assert this signal high for a minimum of one clock
cycle, and de-assert the signal low prior to the end of the
PR operation. This operation ensures the PR Controller IP
core is ready to accept the next pr_start trigger event
when the freeze signal is low.
The PR Controller IP core ignores this signal during JTAG
debug operations.

data[] 1, 8, 16, or 32 Input Selectable input PR data bus width, either x1, x8, x16, or
x32.
Once a PR event triggers, the PR event is synchronous with
the rising edge of the clk signal, whenever the
data_valid signal is high, and the data_ready signal is
high.
The PR Controller IP core ignores this signal during JTAG
debug operations.

data_valid 1 Input A 0 to 1 transition on this port indicates the data[] port
contains valid data.
The PR Controller IP core ignores this signal during JTAG
debug operations.

data_ready 1 Output A 0 to 1 transition on this port indicates the PR Controller IP
core is ready to read the valid data on the data[] port,
whenever the data_valid signal asserts high. The data
sender must stop sending valid data if this port is low.
This signal deasserts low during JTAG debug operations.

status[2:0] 1 Output A 3-bit output that indicates the status of PR events. When
the IP detects an error (PR_ERROR, CRC_ERROR, or
incompatible bitstream error), this signal latches high. This
signal only resets at the beginning of the next PR event,
when pr_start is high, and freeze is low. For example:
3’b000 – power-up or nreset asserts

3’b001 – PR_ERROR triggers

3’b010 – CRC_ERROR triggers

3’b011 – Incompatible bitstream error
detection

3’b100 – PR operation in progress

3’b101 – PR operation passes

3'b110 – Reserved bit

3'b111 – Reserved bit

Table 28. Avalon Memory-Mapped Slave Interface Ports
These signals are available when Enable Avalon memory-mapped slave interface is On.

Port Name Width Direction Function

avmm_slave_address 4 Input Avalon memory-mapped address bus. The address bus
is in the unit of Word addressing.
The PR Controller IP core ignores this signal during
JTAG debug operations.

avmm_slave_read 1 Input Avalon memory-mapped read control.
The PR Controller IP core ignores this signal during
JTAG debug operations.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Name Width Direction Function

avmm_slave_readdata 32 Output Avalon memory-mapped read data bus.
The PR Controller IP core ignores this signal during
JTAG debug operations.

avmm_slave_write 1 Input Avalon memory-mapped write control.
The PR Controller IP core ignores this signal during
JTAG debug operations.

avmm_slave_writedata 32 Input Avalon memory-mapped write data bus.
The PR Controller IP core ignores this signal during
JTAG debug operations.

avmm_slave_waitrequest 1 Output Indicates that the IP is busy. Also indicates that the IP
core is unable to respond to a read or write request.
The IP core pulls this signal high during JTAG debug
operations.

Table 29. Interrupt Interface Ports
These ports are available when Enable interrupt interface is On.

Port Name Width Direction Function

irq 1 Output The interrupt signal.

Table 30. CRC BLOCK Interface
These ports are available when Use as Partial Reconfiguration Internal Host is Off, or when you
instantiate the CRCBLOCK manually for an internal host.

Port Name Width Direction Function

crc_error_pin 1 Input Available when you use the PR Controller IP core as an
External Host. Connect this port to the dedicated
CRC_ERROR pin of the FPGA undergoing partial
reconfiguration.

Table 31. PR Block Interface
These options are available when Use as Partial Reconfiguration Internal Host is Off, or when you
instantiate the PRBLOCK manually for an internal host.

Port Name Width Direction Function

pr_ready_pin 1 Input Connect this port to the dedicated PR_READY pin of the
FPGA undergoing partial reconfiguration.

pr_error_pin 1 Input Connect this port to the dedicated PR_ERROR pin of the
FPGA undergoing partial reconfiguration.

pr_done_pin 1 Input Connect this port to the dedicated PR_DONE pin of the
FPGA undergoing partial reconfiguration.

pr_request_pin 1 Output Connect this port to the dedicated PR_REQUEST pin of
the FPGA undergoing partial reconfiguration.

pr_clk_pin 1 Output Connect this port to the dedicated DCLK of the FPGA
undergoing partial reconfiguration.

pr_data_pin[31..0] 16|32 Output Connect this port to the dedicated DATA[31..0] pins of
the FPGA undergoing partial reconfiguration.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.6. Timing Specifications

The following timing diagram illustrates a successful PR operation with Partial
Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP. The status[2:0] output
signal indicates whether the operations passes or fails. The PR operation initiates upon
assertion of the pr_start signal. Monitor the status[] signal to detect the end of
the PR operation.

Figure 65. Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP Timing
Specifications

clk

pr_start

status[2:0]

data[]

data_valid

data_ready

D1 (First Data) D2 D3 D6 (Last Data) Dummy DataD4 D5

(1)

(2) (3)

(4) (5)

(6) (7)

The following notes correspond to locations (1) through (7) in the timing diagram:

1. Assert pr_start signal high for a minimum of one clock cycle to initiate PR.
Deassert pr_start before sending the last data.

2. status[] signal updates after pr_start is acknowledged. This signal changes
during a PR operation if CRC_ERROR, PR_ERROR, or bitstream incompatibility error
occurs.

3. status[] signal changes after a PR operation if CRC_ERROR asserts and no error
occurs during the previous PR operation.

4. There is no requirement to assert the data_valid signal at the same time as the
pr_start signal. Provide the data[], and assert data_valid, when
appropriate.

5. Either drive the data_valid signal low after sending the last data, or continue to
assert data_valid high with dummy data on data[] until the IP reads the end
of PR from status[].

6. data[] transfers only when data_valid and data_ready assert on the same
cycle. Do not drive new data on the data bus, when both data_valid and
data_ready are not high.

7. The data_ready signal drives low after the PR IP Controller core receives the last
data, or when the PR IP Controller cannot accept data.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.7. PR Control Block and CRC Block Verilog HDL Manual Instantiation

The Partial Reconfiguration Controller Arria 10/Cyclone 10 IP includes the PR control
block. However, if you create your own custom logic to perform the function of the IP
core, you can manually instantiate the control block to communicate with the FPGA
system.

The following example instantiates a PR control block inside a top-level Arria 10 PR
project, Chip_Top, in Verilog HDL:

Chip_Top:
module Chip_Top (
 //User I/O signals (excluding PR related signals)
..
..
//PR interface and configuration signals declaration
 wire pr_request;
 wire pr_ready;
 wire pr_done;
 wire crc_error;
 wire dclk;
 wire [31:0] pr_data;

twentynm_prblock m_pr
 (
 .clk (dclk),
 .corectl (1'b1),
 .prrequest(pr_request),
 .data (pr_data),
 .error (pr_error),
 .ready (pr_ready),
 .done (pr_done)
);

twentynm_crcblock m_crc
 (
 .clk (clk),
 .shiftnld (1'b1),
 .crcerror (crc_error)
);
endmodule

For more information about port connectivity for reading the Error Message Register
(EMR), refer to the AN539: Test Methodology of Error Detection and Recovery using
CRC.

Related Information

AN539: Test Methodology of Error Detection and Recovery using CRC in Intel FPGA
Devices

2.3.8. PR Control Block and CRC Block VHDL Manual Instantiation

The following example shows manual instantiation of a PR control block inside your
top-level Arria 10 project, Chip_Top, in VHDL:

module Chip_Top is port (
 --User I/O signals (excluding signals that relate to PR)
 ..
 ..
)
-- Following shows the connectivity within the Chip_Top module
Core_Top : Core_Top

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

100

https://www.intel.com/content/www/us/en/docs/programmable/683075.html
https://www.intel.com/content/www/us/en/docs/programmable/683075.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 port_map (
 ..
 ..
);
m_pr : twentynm_prblock
 port map(
clk => dclk,
 corectl =>'1', --1 - when using PR from inside
 --0 - for PR from pins; You must also enable
 -- the appropriate option in Quartus Prime settings
 prrequest => pr_request,
 data => pr_data,
 error => pr_error,
 ready => pr_ready,
 done => pr_done
);
m_crc : twentynm_crcblock
 port map(
 shiftnld => '1', --If you want to read the EMR register when
 clk => dummy_clk, --error occurrs, refer to AN539 for the
 --connectivity for this signal. If you only want
 --to detect CRC errors, but plan to take no
 --further action, you can tie the shiftnld
 --signal to logical high.
 crcerror => crc_error
);

Note: You are not required to connect a real clock source to dummy_clk, but you must
connect dummy_clk to an I/O pin to avoid removal of this signal.

2.3.8.1. PR Control Block and CRC Block VHDL Component Declaration

The following example shows manual instantiation of the PR control block and the CRC
block in your Arria 10 PR design:

1. Use the code sample below, containing the component declaration in VHDL. This
code performs the PR function from within the core (code block within Core_Top).

module Chip_Top is port (
 --User I/O signals (excluding signals that relate to PR)
 ..
 ..
)
-- Following shows the connectivity within the Chip_Top module
Core_Top : Core_Top
port_map (
 ..
 ..
);

m_pr : twentynm_prblock
port map(
 clk => dclk,
 corectl =>'1', --1 - when using PR from inside
 --0 - for PR from pins; You must also enable
 -- the appropriate option in Quartus Prime settings
 prrequest => pr_request,
 data => pr_data,
 error => pr_error,
 ready => pr_ready,
 done => pr_done
);

m_crc : twentynm_crcblock
port map(
 shiftnld => '1', --If you want to read the EMR register when
 clk => dummy_clk, --error occurrs, refer to AN539 for the
 --connectivity forthis signal. If you only want

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 --to detect CRC errors, but plan to take no
 --further action, you can tie the shiftnld
 --signal to logical high.
 crcerror => crc_error
);

Note: This VHDL example is adaptable for Verilog HDL instantiation.

2. Add additional ports to Core_Top to connect to both components.

3. Follow these rules when connecting the PR control block to the rest of your design:

• Set the corectl signal to ‘1’ (when using partial reconfiguration from core) or
to ‘0’ (when using partial reconfiguration from pins).

• The corectl signal must match the Enable PR pins option setting in the
Device and Pin Options dialog box (Assignments ➤ Device ➤ Device and
Pin Options).

• When performing partial reconfiguration from pins, the Fitter automatically
assigns the PR unassigned pins. Assign all the dedicated PR pins using Pin
Planner (Assignments ➤ Pin Planner) or Assignment Editor (Assignments
➤ Assignment Editor).

• When performing partial reconfiguration from the core logic, connect the
prblock signals to either core logic or I/O pins, excluding the dedicated
programming pin, such as DCLK.

2.3.9. PR Control Block Signals

The following table lists the partial reconfiguration control block interface signals for
the Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP:

Table 32. PR Control Block Interface Signals

Signal Width Direction Description

pr_data [31:0] Input Carries the configuration
bitstream.

pr_done 1 Output Indicates that the PR
process is complete.

pr_ready 1 Output Indicates that the control
block is ready to accept PR
data from the control logic.

pr_error 1 Output Indicates a partial
reconfiguration error.

pr_request 1 Input Indicates that the PR
process is ready to begin.

corectl 1 Input Determines whether you are
performing the partial
reconfiguration internally, or
through pins.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: • You can specify a configuration width of 8, 16, or 32 bits, but the interface always
uses 32 pins.

• All the inputs and outputs are asynchronous to the PR clock (clk), except data
signal. data signal is synchronous to clk signal.

• PR clock must be free-running.

• data signal must be 0 while waiting for ready signal.

2.3.9.1. PR Control Block Signal Timing Diagrams

2.3.9.1.1. Successful PR Session (Arria 10 Example)

The following flow describes a successful Arria 10 PR session:

1. Assert PR_REQUEST and wait for PR_READY; drive PR_DATA to 0.

2. The PR control block asserts PR_READY, asynchronous to clk.

3. Start sending Raw Binary File (.rbf) to the PR control block, with 1 valid word per
clock cycle. On .rbf file transfer completion, drive PR_DATA to 0. The PR control
block asynchronously asserts PR_DONE when the control block completes the
reconfiguration operation. The PR control block deasserts PR_READY on
configuration completion.

4. Deassert PR_REQUEST. The PR control block acknowledges the end of
PR_REQUEST, and deasserts PR_DONE. The host can now initiate another PR
session.

Figure 66. Timing Diagram for Successful Arria 10 PR Session

S0 S1

S2

S3

S4

S5 S6

PR_REQUEST

PR_CLK

PR_READY

PR_DONE

New PR Session

 First Data Last Data

Minimum Width Requirement of 6 cycles on
PR_REQUEST to Initiate a PR Session

PR_DATA [x:0]

Related Information

Raw Binary Programming File Byte Sequence Transmission Examples on page 33

2.3.9.1.2. Unsuccessful PR Session with Configuration Frame Readback Error (Arria 10
Example)

The following flow describes an Arria 10 PR session with error in the EDCRC
verification of a configuration frame readback:

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. The PR control block internally detects a CRC error.

2. The CRC control block then asserts CRC_ERROR.

3. The PR control block asserts the PR_ERROR.

4. The PR control block deasserts PR_READY, so that the host can withdraw the
PR_REQUEST.

5. The PR control block deasserts CRC_ERROR and clears the internal CRC_ERROR
signal to get ready for a new PR session. The host can now initiate another PR
session.

Figure 67. Timing Diagram for Unsuccessful Arria 10 PR Session with Configuration
Frame Readback Error

PR_REQUEST

S0S0 S1S1

S2S2

S3S3

S4S4

S5S5

S6S6

S7S7

PR_CLK

PR_DATA [x:0]

PR_READY

Internal CRC_ERROR

CRC_ERROR

PR_ERROR

Error Occurs

New PR Session

2.3.9.1.3. Unsuccessful PR Session with PR_ERROR (Arria 10 Example)

The following flow describes an Arria 10 PR session with transmission error or
configuration CRC error:

1. The PR control block asserts PR_ERROR.

2. The PR control block deasserts PR_READY, so that the host can withdraw
PR_REQUEST.

3. The PR control block deasserts PR_ERROR to get ready for a new PR session. The
host can now initiate another PR session.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 68. Timing Diagram for Unsuccessful Arria 10 PR Session with PR_ERROR

S0 S1

S2

S3

S4

S5

S6

PR_REQUEST

PR_CLK

PR_DATA [x:0]

PR_READY

PR_ERROR

New PR Session

Error Occurs

2.3.9.1.4. Late Withdrawal PR Session (Arria 10 Example)

The following flow describes a late withdrawal Arria 10 PR session:

1. The PR host can withdraw the request after the PR control block asserts
PR_READY.

2. The PR control block deasserts PR_READY. The host can now initiate another PR
session.

Figure 69. Timing Diagram for Late Withdrawal Arria 10 PR Session

S0 S1

S2

S3 S4

PR_REQUEST
PR_CLK

PR_DATA [x:0]

PR_READY
PR_ERROR

New PR SessionWithdrawal
Minimum = 1 PR_CLK

Note: The PR host can withdraw the request any time before the PR controller asserts
PR_READY. Therefore, the PR host must not return until the PR control block asserts
PR_READY. Provide at least 10 PR_CLK cycles after deassertion of PR_REQUEST,
before requesting a new PR session.

2.3.10. Configuring an External Host for Arria 10 or Cyclone 10 GX
Designs

When using external host configuration, the external host initiates partial
reconfiguration, and monitors the PR status using the external PR dedicated pins
during user mode. In this mode, the external host must respond appropriately to the
handshake signals for successful partial reconfiguration. The external host writes the
partial bitstream data from external memory into the Arria 10 or Cyclone 10 GX
device. Co-ordinate system-level partial reconfiguration by ensuring that you prepare
the correct PR region for partial reconfiguration. After reconfiguration, return the PR
region into operating state.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To use an external host for your design:

1. Click Assignments ➤ Device ➤ Device & Pin Options.

2. Select the Enable PR Pins option in the Device & Pin Options dialog box. This
option automatically creates the special partial reconfiguration pins, and defines
the pins in the device pin-out. This option also automatically connects the pins to
PR control block internal path.

Note: If you do not select this option, you must use an internal or HPS host. You
do not need to define pins in your design top-level entity.

3. Connect these top-level pins to the specific ports in the PR control block.

The following table lists the PR pins that automatically constrain when you turn on
Enable PR Pins, and the specific PR control block port connection to the pin:

Table 33. Partial Reconfiguration Dedicated Pins

Pin Name Type PR Control Block Port
Name

Description

PR_REQUEST Input prrequest Logic high on this pin
indicates that the PR host is
requesting partial
reconfiguration.

PR_READY Output ready Logic high on this pin
indicates that the PR control
block is ready to begin
partial reconfiguration.

PR_DONE Output done Logic high on this pin
indicates that the partial
reconfiguration is complete.

PR_ERROR Output error Logic high on this pin
indicates an error in the
device during partial
reconfiguration.

DATA[31:0] Input data These pins provide
connectivity for PR_DATA to
transfer the PR bitstream to
the PR controller.

DCLK Input clk Receives synchronous
PR_DATA.

Note: 1. PR_DATA can be 8, 16, or 32-bits in width.

2. Ensure that you connect the corectl port of the PR control block to 0.

Example 4. Verilog RTL for External Host PR

module top(
 // PR control block signals
 input logic pr_clk,
 input logic pr_request,
 input logic [31:0] pr_data,
 output logic pr_error,
 output logic pr_ready,
 output logic pr_done,

 // User signals
 input logic i1_main,
 input logic i2_main,
 output logic o1

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

);

// Instantiate the PR control block
twentynm_prblock m_prblock
(
 .clk(pr_clk),
 .corectl(1'b0),
 .prrequest(pr_request),
 .data(pr_data),
 .error(pr_error),
 .ready(pr_ready),
 .done(pr_done)
);

// PR Interface partition
pr_v1 pr_inst(
 .i1(i1_main),
 .i2(i2_main),
 .o1(o1)
);

endmodule

Example 5. VHDL RTL for External Host PR

library ieee;
use ieee.std_logic_1164.all;

entity top is
port(
 -- PR control block signals
 pr_clk: in std_logic;
 pr_request: in std_logic;
 pr_data: in std_logic_vector(31 downto 0);

 pr_error: out std_logic;
 pr_ready: out std_logic;
 pr_done: out std_logic;

 -- User signals
 i1_main: in std_logic;
 i2_main: in std_logic;
 o1: out std_logic
);
end top;

architecture behav of top is

component twentynm_prblock is
port(
 clk: in std_logic;
 corectl: in std_logic;
 prrequest: in std_logic;
 data: in std_logic_vector(31 downto 0);
 error: out std_logic;
 ready: out std_logic;
 done: out std_logic
);
end component;

component pr_v1 is
port(
 i1: in std_logic;
 i2: in std_logic;
 o1: out std_logic
);
end component;

signal pr_gnd : std_logic;

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

begin

pr_gnd <= '0';

-- Instantiate the PR control block
m_prblock: twentynm_prblock port map
(
 pr_clk,
 pr_gnd,
 pr_request,
 pr_data,
 pr_error,
 pr_ready,
 pr_done
);

-- PR Interface partition
pr_inst : pr_v1 port map
(
 i1_main,
 i2_main,
 o1
);

end behav;

2.4. Partial Reconfiguration External Configuration Controller Intel
FPGA IP

The Partial Reconfiguration External Configuration Controller Intel FPGA IP supports
partial reconfiguration via an external source.

When using external configuration, you must connect all the top-level ports of the
Partial Reconfiguration External Configuration Controller Intel FPGA IP to the
pr_request and status pins. These connections allow the handshaking of the host
with the SDM from the Agilex 7, Agilex 5, or Stratix 10 device core. The SDM
determines which types of configuration pins to use, according your MSEL setting.

Figure 70. Partial Reconfiguration External Configuration Controller Intel FPGA IP

Partial Reconfiguration External
Configuration Controller

Intel FPGA IP

reset
out_clk

busy

pr_request
pr_error
pr_done

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1. Parameters

The Partial Reconfiguration External Configuration Controller Intel FPGA IP supports
customization of the following parameters.

Table 34. Partial Reconfiguration External Configuration Controller Parameter Settings

Parameter Value Description

Enable Busy Interface On/Off Allows you to Enable or Disable the Busy interface, which asserts a signal to
indicate that PR processing is in progress during external configuration.
Default setting is Off.

Figure 71. Parameter Editor

2.4.2. Ports

The Partial Reconfiguration External Configuration Controller Intel FPGA IP includes the
following interface ports.

Table 35. Ports

Port Name Width Direction Function

pr_request 1 Input Indicates that the PR process is ready to begin. The signal is
a conduit not synchronous to any clock signal.

pr_error 2 Output Indicates a partial reconfiguration error.:
• 2'b01—general PR error
• 2'b11—incompatible bitstream error
These signals are conduits not synchronous to any clock
source.

pr_done 1 Output Indicates that the PR process is complete. The signal is a
conduit not synchronous to any clock signal.

start_addr 1 Input Specifies the start address of PR data in Active Serial Flash.
You enable this signal by selecting either Avalon-ST or
Active Serial for the Enable Avalon-ST Pins or Active
Serial Pins parameter. The signal is a conduit not
synchronous to any clock signal.

reset 1 Input Active high, synchronous reset signal.

out_clock 1 Output Clock source that generates from an internal oscillator.

busy 1 Output The IP asserts this signal to indicate PR data transfer in
progress. You enable this signal by selecting Enable for the
Enable busy interface parameter.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.3. Partial Reconfiguration External Controller Intel FPGA IP Timing
Specifications

Timing Specifications: Partial Reconfiguration External Controller Intel FPGA IP
illustrates a successful PR operation with the Partial Reconfiguration External
Controller Intel FPGA IP. The PR operation initiates upon assertion of the pr_request
signal. The avst_ready output signal indicates whether the SDM is ready to accept
data from an external host.

Figure 72. Timing Specifications: Partial Reconfiguration External Controller Intel FPGA
IP

2.4.4. Configuring an External Host for Agilex 7, Agilex 5, and Stratix 10
Designs

You can optionally use an external host to write the partial bitstream data from
external memory into the Agilex 7, Agilex 5, or Stratix 10 device. When using external
host configuration, the external host initiates partial reconfiguration by asserting the
pr_request signal. The external host monitors the PR status through the pr_done
and pr_error signals.

The external host must respond appropriately to the handshake signals for successful
partial reconfiguration. Co-ordinate system-level partial reconfiguration by ensuring
that you prepare the correct PR region for partial reconfiguration. After
reconfiguration, return the PR region into operating state.

To configure an external host, follow these steps:

1. Parameterize and generate the Partial Reconfiguration External Configuration
Controller Intel FPGA IP, as Specifying the IP Core Parameters and Options
(Quartus Prime Pro Edition) on page 133 describes.

2. Connect the Partial Reconfiguration External Configuration Controller
pr_request, pr_done, and pr_error signals to top-level pins for control and
monitor by the external host. You can assign the pin location by clicking
Assignments ➤ Pin Planner.

3. Click Assignments ➤ Device, and then click the Device & Pin Options button.

4. In the Category list, click Configuration.

5. For the Configuration scheme, select the scheme that matches with your full
device configuration. For example, if your full device configuration uses the
AVSTx32 scheme, the PR configuration must use AVSTx32.This option
automatically reserves dedicated Avalon streaming configuration pins for partial
reconfiguration during user mode. The pins are exactly same as the Avalon
streaming pins that you use for full device configuration.

The following table describes the PR pins that the external host uses. The PR
streaming to Avalon streaming pins must conform to the Avalon streaming
specification for data transfer with backpressure.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 36. Partial Reconfiguration External Configuration Pins

Pin Name Type Description

pr_request Input User-assigned port connected to Partial Reconfiguration External
Configuration Controller IP. Logic high on this pin indicates that
the PR host is requesting partial reconfiguration.

pr_done Output User-assigned port connected to Partial Reconfiguration External
Configuration Controller IP. Logic high on this pin indicates that
the partial reconfiguration is complete.

pr_error Output User-assigned port connected to Partial Reconfiguration External
Configuration Controller IP. Logic high on this pin indicates an
error in the device during partial reconfiguration.

avst_data:
avstx8 - [7:0]
avstx16 - [15:0]
avstx32 - [31:0]

Input These pins provide connectivity for the external host to transfer
the PR bitstream to the SDM. The avstx8 data pins are part of
the SDM I/O. avstx16 and avstx32 data pins are from I/O 48
bank 3A.

avst_clk Input Clocks the Avalon streaming interfaces. avst_data and
avst_valid are synchronous with avst_clk. The avstx8 clk
pin is part of the SDM I/O. avstx16 and avstx32 are from I/O
48 bank 3A.

avst_valid Input Logic high on this pin indicates the data in avst_data is valid
data. The avstx8 data pins are part of the SDM I/O. avstx16
and avstx32 data pins are from I/O 48 bank 3A.

avst_ready Output Logic high on this pin indicates the SDM is ready to accept data
from an external host. This output is part of the SDM I/O.

2.5. Partial Reconfiguration Region Controller Intel FPGA IP

The Partial Reconfiguration Region Controller Intel FPGA IP provides a standard
interface through the Freeze Control block that controls handshaking with the PR
region. The PR handshake ensures that PR region transactions complete before freeze
of the interface.

Table 37. PR Region Controller Sections

IP Component Description

Freeze Control and Status
Register

Freeze status register that generates the freeze output signal.

Freeze Control Block Performs PR handshaking and resets the PR region.

Conduit Splitter Connects the controller's freeze signal to one or more Freeze Bridge components.
Receives the freeze signal from the Freeze Control Block, and assigns the freeze
input signal to one or more freeze output signals.

Conduit Merger Connects the illegal_request signal from one or more Freeze Bridge
components to the PR Region Controller.
The illegal_request is a single-bit output signal from the Freeze Bridge. Conduit
Merger concatenates the single-bit signal from multiple Freeze Bridges into a multi-
bit bus. The Conduit Merger then connects the bus to the Freeze Control Block.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 73. Partial Reconfiguration Region Controller IP Core

illegal_request

freeze_req

freeze_status
reset_req

unfreeze_status

illegal_request

Freeze Control
and Status Register

Avalon
Slave

PR Region Controller IP

Freeze Control
Block

Conduit
Splitter

Conduit
Merger

start_req

start_ack
stop_req

region_reset

stop_ack

freeze

reset_n

clk

2.5.1. Registers

The Partial Reconfiguration Region Controller IP core performs the following operations
in a partial reconfiguration:

Figure 74. Freeze Control Block PR Handshake Timing

stop_req

stop_ack

freeze

region_reset

start_req

start_ack

Unbounded time between
stop_req and stop_ack

stop_req is deasserted
when stop_ack is asserted

start_req is asserted
when freeze is deasserted

Partial
Reconfiguration

region_reset is fully
user controlled

Unbounded time between
start_req and start_ck

start_req is deasserted
when start_ack is asserted

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 75. Register States and Programming Model

No

Yes

Controller detects “1” on
freeze_csr_ctrl register freeze_req

Controller asserts stop_req to stop
 executing current PR region content

PR region asserts
 stop_ack?

Controller deasserts stop_req and
asserts freeze to freeze the bridges

and other region outputs

Controller asserts freeze_csr_status
register freeze_status bit

No

Is unfreeze_req bit 1?

Yes

Controller asserts start_req
to start new persona

No
start_ack asserted

by PR region?

Yes

Controller deasserts start_req and
asserts freeze_csr_status register

unfreeze_status bit

Freeze Controller States Software Programming Flow

No

Yes

Confirm all freeze_csr_status
register bits read ‘0’

Write ‘1’ to freeze_csr_ctrl
freeze_req bit

freeze_csr_status
freeze_status bit ‘1’?

Write ‘1’ to reset_req bit of
freeze_csr_ctrl to assert PR reset

Do Partial Reconfiguration thru HPS
 FPGA manager or PR Controller IP

Wait X cycles before writing ‘0’ to
freeze_csr_ctrl reset_req bit to

deassert PR region reset

No

Yes

freeze_csr_status
unfreeze_status bit ‘1’?

Partial Reconfiguration
operation complete

Partial Reconfiguration Occurs

Controller asserts region_reset to
place PR Region in reset state

Controller de-asserts region_reset
 to release the PR Region

from reset state

Write ‘1’ to unfreeze_req bit
(of freeze_csr_ctrl)

Controller de-asserts freeze signal to
unfreeze bridges and region outputs

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 38. Register Map

Name Address
Offset

Access Description

freeze_csr_status 0x00 Read-Only Freeze status register.

csr_ctrl 0x01 Read or Write Control register to enable and disable freeze.

freeze_illegal_req 0x02 Read or Write High on any bit indicates an illegal request
during the freeze state.

freeze_reg_version 0x03 Read-Only Read-only version register. This register is
currently 0xAD000003.

Table 39. freeze_csr_status

Bit Fields Access Default
Value

Description

31:2 Reserved N/A 0x0 Reserved bits. Reading these bits always returns
zeros.

1 unfreeze_status R 0 Hardware sets this bit to 1 after the PR region
returns start_ack to indicate successful start
of the persona.
Hardware clears this bit to 0 when the
unfreeze_req bit is low.
This bit is 1 when bridges and other PR region
outputs release from reset.

0 freeze_status R 0 Hardware sets this bit to 1 after the PR region
returns the stop_ack signal to indicate that the
PR region is ready to enter the frozen state
Hardware clears this bit to 0 when the
freeze_req bit is low.
This bit is 0 when bridges and other PR region
outputs release from reset.

Table 40. freeze_csr_ctrl

Bit Fields Access Default
Value

Description

31:3 Reserved N/A 0x0 Reserved bits. Reading these bits always returns
zeros.

2 unfreeze_req R/W 0 Write 1 to this bit to request unfreezing the PR
region interfaces.
Hardware clears this bit after
unfreeze_status is high.
Write 0 to this bit to terminate the unfreeze
request.
Do not assert this bit and the freeze_req bit
at the same time. If both freeze_req and
unfreeze_req assert at the same time, it is an
invalid operation.

1 reset_req R/W 0 Write 1 to start resetting the PR persona.
Write 0 to stop resetting the PR persona.

0 freeze_req R/W 0 Write 1 to this bit to start freezing the PR region
interfaces.

Hardware clears this bit after freeze_status
is high.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields Access Default
Value

Description

Write 0 to this bit to terminate the freeze
request if the PR region never returns
stop_ack after this bit asserts.

Do not assert this bit and the unfreeze_req
bit at the same time. Asserting freeze_req
and unfreeze_req simultaneously is an invalid
operation.

Table 41. freeze_illegal_request

Bit Fields Access Default
Value

Description

31:n Reserved N/A 0x0 Reserved bits. Reading these bits always returns
zeros.

n-1:0 illegal_request R/W 0 High on any bit of this bus indicates a read or
write issue by a static region master when an
Avalon memory-mapped slave freeze bridge is
in the freeze state. Identify which freeze bridge
has an illegal request by checking each bit on
the bus.
For example, when illegal_request bit 2 is
high, an illegal request occurred in the freeze
bridge that connects to interface
freeze_conduit_in2

This bus triggers the interrupt signal. Write 1 to
clear this bit. n is the number of bridges.

Table 42. freeze_reg_version

Bit Fields Access Default
Value

Description

31:0 Version Register Read-Only AD000003 This register bit indicates the CSR register
version number. Currently the CSR register is
version 0xAD000003.

2.5.2. Parameters

The Partial Reconfiguration Region Controller IP core supports customization of the
following parameters.

Table 43. Partial Reconfiguration Region Controller Parameter Settings

Parameter Value Default Description

Enable Avalon-MM CSR
register

On/Off On Enables Avalon memory-mapped CSR registers in the PR region
controller.
Disable this option to expose a conduit interface and not
instantiate the CSR block.

Enable interrupt port
for illegal request

On/Off On Enables the interrupt port for illegal operations in the PR region
controller.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Value Default Description

Number of freeze
interfaces

number Specifies the number of freeze interfaces for freeze operations.
You can connect each freeze interface to a freeze bridge or you
can use the interface to control other freeze logic.

Enable freeze interface
without illegal request
port

On/Off Off Enables creation of additional freeze interface, without the illegal
request port.

Specify the number of
freeze interfaces
without illegal request
port

number Specifies the number of freeze interfaces without an illegal
request port for freeze operations. Only available when you turn
on Enable freeze interface without illegal request port.

Figure 76. Partial Reconfiguration Region Controller Parameter Editor

2.5.3. Ports

The Partial Reconfiguration Region Controller IP has the following ports.

Table 44. Freeze CSR Block Ports
These ports are available when Enable Avalon Memory-Mapped CSR Register is On.

Port Width Direction Description

clock_clk 1 Input IP core input clock.

Reset

reset_reset 1 Input Synchronous reset.

avl_csr_addr 2 Input Avalon memory-mapped address bus. The address bus is in word
addressing.

avl_csr_read 1 Input Avalon memory-mapped read control to CSR block.

avl_csr_write 1 Input Avalon memory-mapped write control to CSR.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Width Direction Description

avl_csr_writedata 32 Input Avalon memory-mapped write data bus to CSR.

avl_csr_readdata 32 Output Avalon memory-mapped read data bus from CSR.

interrupt_sender_irq 1 output Trigger by illegal read or illegal write.

Table 45. Freeze Control Block Ports

Port Width Direction Description

pr_handshake_stop_req 1 Output An assertion on this output requests that the PR persona
stop executing.

pr_handshake_stop_ack 1 Input A value of 1 on this input acknowledges that the executing
PR persona stops executing and a new persona can replace
it.

pr_handshake_start_req 1 Output An assertion on this output requests that the new PR
persona starts executing.

pr_handshake_start_ack 1 Input A value of 1 on this input acknowledges that the new PR
persona starts executing and can stop executing on a
pr_handshake_stop_req.

conduit_control_freeze_req 1 Input Write 1 on this bit to start freezing the PR region interfaces.

conduit_control_unfreeze_req 1 Input Write 1 on this bit to stop freezing the PR region interfaces.

conduit_control_freeze_status 1 Output High on this bit indicates that the PR region is successfully
goes into freezing state.

conduit_control_reset 1 Input Write 1 on this bit to reset the PR region.

conduit_control_unfreeze_status 1 Output High on this bit indicates that the PR region successfully
leaves freezing state.

conduit_control_illegal_req n Output High on this bit indicates illegal data transactions occurring
through a Freeze Bridge IP when freeze is active.

Table 46. Conduit Splitter and Merger Interface Ports

Signal Width Direction Description

bridge_freeze0_freeze 1 Output This output connects to the freeze input signal of a freeze
bridge IP or to control other freeze logic. (Multiple interfaces
generate according to the number of freeze interfaces)

bridge_freeze0_illegal_request 1 Input This input connects to the illegal_request output signal
from an instance of the Freeze Bridge IP.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 77. Partial Reconfiguration Region Controller Interface Ports (Control and Status
Register Block Enabled)

Figure 78. Partial Reconfiguration Region Controller Interface Ports (Control and Status
Register Block Disabled)

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6. Avalon Memory-Mapped Partial Reconfiguration Freeze Bridge
IP

The Avalon Memory-Mapped Partial Reconfiguration Freeze Bridge Intel FPGA IP
freezes a PR region Avalon memory-mapped interface when the freeze input signal is
high. It is recommended that each Avalon memory-mapped interface to a PR region
use an instance of the Freeze Bridge IP.

Figure 79. Avalon Memory-Mapped Partial Reconfiguration Freeze Bridge IP

Freeze Bridge
IP

Freeze Conduit

Avalon Memory-
Mapped

freeze illegal_request

PR Region Static Region

Avalon Memory-
Mapped Host/Agent Host/Agent

Host/Agent Host/Agent

Table 47. Read and Write Request to PR Region Avalon Memory-Mapped Agent
Interface
The Freeze Bridge handles read and write transactions differently for each of the following possible interface
configurations. The Freeze Bridge is in the freeze state until the PR region or PR region controller asserts the
freeze signal.

Interface Connection Behavior

Read request to Avalon memory-
mapped slave interface in PR region

1. During the freeze state, any read transaction responds with bogus data
<h'DEADBEEF>. The corresponding freeze_illegal_request register
bit sets.

2. During the freeze state, readrequest, writerequest,
waitrequest, beginbursttransfer, lock, and debugaccess signals
in the PR region interface tie low.

3. The Avalon memory-mapped agent response signal constantly returns
2’b10, to indicate an unsuccessful transaction from an endpoint agent.

4. If you disable Enable Freeze port from PR region, the IP generates no
responses.

Write request to slave interface in PR
region

1. The Freeze Bridge ignores any write transactions during the freeze
state. The Freeze Bridge pulls the waitrequest,
beginbursttransfer, lock and debugaccess signals low. The IP sets
the corresponding freeze_illegal_request register bit.

2. The Avalon memory-mapped agent response signal updates with 2’b10 to
indicate an unsuccessful transaction from an endpoint agent.

3. If you disable Enable Freeze port from PR region, the IP generates no
responses.

Table 48. Read and Write Request from PR Region Avalon Memory Mapped Host
Interface

Interface Connection Behavior

Read/Write request from Avalon-MM
master interface in PR region (old or
new persona)

1. During the freeze state, the IP ignores the read and write signals from
the PR region.

2. The read and write signals to the static region deassert.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 49. Avalon-MM Partial Reconfiguration Freeze Bridge Signal Behavior
The table below summarizes the Avalon interface output signal behavior when the Freeze Bridge is in a frozen
state. When not frozen, all signals are just pass-through.

Signal Agent Bridge Host Bridge

write ‘b0 (tie low) ‘b0 (tie low)

read ‘b0 (tie low) ‘b0 (tie low)

address Pass through Pass through

writedata Pass through Pass through

readdata Return <h’DEADBEEF> always Pass through

byteenable Pass through Pass through

burstcount Pass through Pass through

beginbursttransfer ‘b0 (tie low) ‘b0 (tie low)

debugaccess ‘b0 (tie low) ‘b0 (tie low)

readdatavalid Return ‘b1 when there is a request, else ‘b0 Pass through

waitrequest Return ‘b1 when there is a request, else ‘b0 ‘b0 (tie low)

response Return ‘b10 always Pass through

lock ‘b0 (tie low) ‘b0 (tie low)

writeresponsevalid Return ‘b1 when there is a request, else ‘b0 Pass through

2.6.1. Parameters

The Avalon Memory-Mapped Partial Reconfiguration Freeze Bridge IP core supports
customization of the following parameters.

Table 50. Parameters

Parameter Values Description

PR region interface Type Avalon-MM Slave/Avalon-
MM Master

Specifies the interface type for interfacing the PR
region with the Freeze Bridge.

Enable Freeze port from PR
region

On/Off Enables the freeze port that freezes all the
outputs of each PR region to a known constant
value. Freezing prevents the signal receivers in the
static region from receiving undefined signals
during the partial reconfiguration process. The
freeze of a bridge is the logical OR of this signal
from the PR region, and the freeze from the PR
region controller.

Enable the bridge to track
unfinished transaction

On/Off Enables the bridge to track unfinished transactions
before freezing the Avalon interface. Turn on this
option when there is no custom logic to stop the
Avalon transaction between the PR region and the
static region. If you do not need this feature,
disable this option to reduce the size of the IP.

Enabled Avalon Interface Signal Yes/No Enable (Yes) or disable (No) specific optional
Freeze Bridge interface ports.

Address width <1-64> Address width in bits.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Values Description

Symbol width <number> Data symbol width in bits. The symbol width should
be 8 for byte-oriented interfaces.

Number of symbols <number> Number of symbols per word.

Burstcount width <number> The width of the burst count in bits.

Linewrap burst On/Off When On, the address for bursts wraps instead of
incrementing. With a wrapping burst, when the
address reaches a burst boundary, the address
wraps back to the previous burst boundary.
Consequently, the IP uses only the low order bits
for addressing.

Constant burst behavior On/Off When On, memory bursts are constant.

Burst on burst boundaries only On/Off When On, memory bursts are aligned to the
address size.

Maximum pending reads <number> The maximum number of pending reads that the
slave can queue.

Maximum pending writes <number> The maximum number of pending writes that the
slave can queue.

Fixed read latency (cycles) <number> Sets the read latency for fixed-latency slaves. Not
useful on interfaces that include the
readdatavalid signal.

Fixed read wait time (cycles) <number> For master interfaces that do not use the
waitrequest signal. The read wait time indicates
the number of cycles before the master responds to
a read. The timing is as if the master asserted
waitrequest for this number of cycles.

Fixed write wait time (cycles) <number> For master interfaces that do not use the
waitrequest signal. The write wait time indicates
the number of cycles before the master accepts a
write.

Address type WORDS/SYMBOLS Sets slave interface address type to symbols or
words.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 80. Parameter Editor

2.6.2. Interface Ports

The Avalon Memory-Mapped Partial Reconfiguration Freeze Bridge IP core has the
following interface ports.

Table 51. Interface Ports

Port Width Direction Description

clock 1 Input Input clock for the IP.

reset_n 1 Input Synchronous reset for the IP.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Width Direction Description

freeze_conduit_freeze 1 Input When this signal is high, the bridge handles
any current transaction properly then
freezes the Avalon memory-mapped PR
interfaces.

freeze_conduit_illegal_request 1 Output High on this bus indicates that an illegal
request was issued to the bridge during the
freeze state.

pr_freeze_pr_freeze 1 Input Enabled freeze port coming from the PR
region.

Table 52. Avalon Memory-Mapped Agent to PR Region Host Interface Ports

Port Width Direction Description

slv_bridge_to_pr_read 1 Output Optional Avalon memory-mapped agent
bridge to PR region read port.

slv_bridge_to_pr_waitrequest 1 Input Optional Avalon memory-mapped agent
bridge to PR region waitrequest port.

slv_bridge_to_pr_write 1 Output Optional Avalon memory-mapped agent
bridge to PR region write port.

slv_bridge_to_pr_address 32 Output Optional Avalon memory-mapped agent
bridge to PR region address port.

slv_bridge_to_pr_byteenable 4 Output Optional Avalon memory-mapped agent
bridge to PR region byteenable port.

slv_bridge_to_pr_writedata 32 Output Optional Avalon memory-mapped agent
bridge to PR region writedata port.

slv_bridge_to_pr_readdata 32 Input Optional Avalon memory-mapped agent
bridge to PR region readdata port.

slv_bridge_to_pr_burstcount 3 Output Optional Avalon memory-mapped agent
bridge to PR region burstcount port.

slv_bridge_to_pr_readdatavalid 1 Input Optional Avalon memory-mapped agent
bridge to PR region readdatavalid port.

slv_bridge_to_pr_beginbursttransfer 1 Output Optional Avalon-MM agent bridge to PR
region beginbursttransfer port.

slv_bridge_to_pr_debugaccess 1 Output Optional Avalon memory-mapped agent
bridge to PR region debugaccess port.

slv_bridge_to_pr_response 2 Input Optional Avalon memory-mapped agent
bridge to PR region response port.

slv_bridge_to_pr_lock 1 Output Optional Avalon-MM agent bridge to PR
region lock port.

slv_bridge_to_pr_writeresponsevalid 1 Input Optional Avalon memory-mapped agent
bridge to PR region writeresponsevalid
port.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 53. Avalon Memory-Mapped Agent to Static Region Master Interface Ports

Note: Same setting as Avalon memory-mapped master to PR region agent interface.

Port Width Direction Description

slv_bridge_to_sr_read 1 Input Avalon memory-mapped agent bridge to
static region read port.

slv_bridge_to_sr_waitrequest 1 Output Avalon memory-mapped agent bridge to
static region waitrequest port.

slv_bridge_to_sr_write 1 Input Avalon memory-mapped agent bridge to
static region write port.

slv_bridge_to_sr_address 32 Input Avalon memory-mapped agent bridge to
static region address port.

slv_bridge_to_sr_byteenable 4 Input Avalon memory-mapped agent bridge to
static region byteenable port.

slv_bridge_to_sr_writedata 32 Input Avalon memory-mapped agent bridge to
static region writedata port.

slv_bridge_to_sr_readdata 32 Output Avalon memory-mapped agent bridge to
static region readdata port.

slv_bridge_to_sr_burstcount 3 Input Avalon memory-mapped agent bridge to
static region burstcount port.

slv_bridge_to_sr_beginbursttransfer 1 Input Avalon memory-mapped agent bridge to
static region beginbursttransfer port.

slv_bridge_to_sr_debugaccess 1 Input Avalon-MM agent bridge to static region
debugaccess port.

slv_bridge_to_sr_response 2 Output Avalon memory-mapped agent bridge to
static region response port.

slv_bridge_to_sr_lock 1 Input Avalon memory-mapped agent bridge to
static region lock port.

slv_bridge_to_sr_writeresponsevalid 1 Output Avalon memory-mapped agent bridge to
static region writereponsevalid port.

Table 54. Avalon Memory-Mapped Master to PR Region Agent Interface Ports

Port Width Direction Description

mst_bridge_to_pr_read 1 Input Optional Avalon memory-mapped master
bridge to PR region read port.

mst_bridge_to_pr_waitrequest 1 Output Optional Avalon memory-mapped master
bridge to PR region waitrequest port.

mst_bridge_to_pr_write 1 Input Optional Avalon memory-mapped master
bridge to PR region write port.

mst_bridge_to_pr_address 32 Input Optional Avalon memory-mapped master
bridge to PR region address port.

mst_bridge_to_pr_byteenable 4 Input Optional Avalon-MM master bridge to PR
region byteenable port.

mst_bridge_to_pr_writedata 32 Input Optional Avalon-MM master bridge to PR
region writedata port.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Width Direction Description

mst_bridge_to_pr_readdata 32 Output Optional Avalon memory-mapped master
bridge to PR region readdata port.

mst_bridge_to_pr_burstcount 3 Input Optional Avalon memory-mapped master
bridge to PR region burstcount port.

mst_bridge_to_pr_readdatavalid 1 Output Optional Avalon memory-mapped master
bridge to PR region readdatavalid port.

mst_bridge_to_pr_beginbursttransfer 1 Input Optional Avalon memory-mapped master
bridge to PR region beginbursttransfer
port.

mst_bridge_to_pr_debugaccess 1 Input Optional Avalon memory-mapped master
bridge to PR region debugaccess port.

mst_bridge_to_pr_response 2 Output Optional Avalon memory-mapped master
bridge to PR region response port.

mst_bridge_to_pr_lock 1 Input Optional Avalon memory-mapped master
bridge to PR region lock port.

mst_bridge_to_pr_writeresponsevalid 1 Output Optional Avalon memory-mapped master
bridge to PR region writeresponsevalid
port.

Table 55. Avalon Memory-Mapped Master to Static Region Agent Interface Ports
Same setting as Avalon Memory-Mapped agent to PR region master interface.

Port Width Direction Description

mst_bridge_to_sr_read 1 Output Avalon memory-mapped master bridge to
static region read port.

mst_bridge_to_sr_waitrequest 1 Input Avalon memory-mapped bridge to static
region waitrequest port.

mst_bridge_to_sr_write 1 Output Avalon memory-mapped master bridge to
static region write port.

mst_bridge_to_sr_address 32 Output Avalon memory-mapped master bridge to
static region address port.

mst_bridge_to_sr_byteenable 4 Output Avalon memory-mapped master bridge to
static region byteenable port.

mst_bridge_to_sr_writedata 32 Output Avalon memory-mapped master bridge to
static region writedata port.

mst_bridge_to_sr_readdata 32 Input Avalon memory-mapped master bridge to
static region readdata port.

mst_bridge_to_sr_burstcount 3 Output Avalon memory-mapped master bridge to
static region burstcount port.

mst_bridge_to_sr_readdatavalid 1 Input Avalon memory-mapped master bridge to
static region readdatavalid port.

mst_bridge_to_sr_beginbursttransfer 1 Output Avalon memory-mapped master bridge to
static region beginbursttransfer port.

mst_bridge_to_sr_debugaccess 1 Output Avalon memory-mapped master bridge to
static region debugaccess port.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Width Direction Description

mst_bridge_to_sr_response 2 Input Avalon memory-mapped master bridge to
static region response port.

mst_bridge_to_sr_lock 1 Output Avalon memory-mapped master bridge to
static region lock port.

mst_bridge_to_sr_writeresponsevalid 1 Input Avalon memory-mapped master bridge to
static region writeresponsevalid port.

Figure 81. Avalon Memory-Mapped Host Interface Ports

Figure 82. Avalon Memory-Mapped Agent Interface Ports

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7. Avalon Streaming Partial Reconfiguration Freeze Bridge IP

The Avalon Streaming Partial Reconfiguration Freeze Bridge Intel FPGA IP freezes a PR
region Avalon streaming interface when the freeze input signal is high. The Avalon
Streaming Partial Reconfiguration Freeze Bridge IP ensures that any transaction is
complete before freezing the connected interface. It is recommended that each Avalon
streaming interface to a PR region use an instance of the Freeze Bridge IP.

Figure 83. Avalon Streaming Partial Reconfiguration Freeze Bridge

Freeze Bridge
IP

Freeze Conduit

Avalon-Streaming
Source/Sink

freeze illegal_request

PR Region
Sink/Source

Static Region
Sink/Source

Avalon-Streaming
Source/Sink

Table 56. Avalon Streaming Source Freeze Bridge Interface Behavior

Interface Type Behavior

Source interface in the PR region with
packet transfer (old or new persona)

1. When the freeze signal goes high, the Freeze Bridge handles the
startofpacket, endofpacket, and empty bits and does not send
transactions to the static region.

2. When the Freeze Bridge detects a startofpacket transaction without a
corresponding endofpacket during the frozen state, this indicates an
unfinished transaction.

3. The bridge then completes the transaction by asserting valid and
endofpacket high to the static region for one clock cycle.

4. The channel signal remains constant, while data bits are set to
'hDEADBEEF and error bit is set to 1’b1.

5. The illegal_request output signal triggers update of the CSR register
in the Partial Reconfiguration Region Controller.

Source interface in the PR region
without packet transfer (old or new
persona)

When the freeze signal is high, the Freeze Bridge does not send
transactions to the static region. The Freeze Bridge remains idle until the
bridge leaves the frozen state.

Source interface in the PR region with
max_channel > 1 (old or new
persona)

When multiple channels transfer unfinished transactions, the Freeze Bridge
tracks the channel values to ensure that all packet transactions from
different channels end by asserting the endofpacket bit during the frozen
state.

Source interface in the PR region with
ready_latency > 0 (old or new
persona)

When the Freeze Bridge drives endofpacket, valid, or channel outputs
to the static region, the Freeze Bridge reads the ready_latency value. The
ready_latency value defines the actual clock cycle when the sink
component is ready for data.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 84. Source Bridge Handling of Unfinished Packet Transaction During Freeze

clk

freeze

valid
data

ready
channel

error

startofpacket

endofpacket

empty

illegal_request

‘h0

‘h1

Figure 85. PR Freeze Bridge Asserting valid Signal to End Packet Transactions

clk

freeze

valid
data

ready
channel

error

startofpacket

endofpacket
empty

illegal_request

hA1 hB1 hC1 hDEADBEEF

h1 h2 h3 h2 h1

h1h0

h0

Table 57. Avalon Streaming Sink Freeze Bridge Interface Behavior

Interface Type Behavior

Sink interface in PR region For transactions that includes packet transfers, when the freeze signal goes
high, the Freeze Bridge holds the ready signal high to the static region
source until any unfinished transaction completes.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface Type Behavior

For transactions that do not include packet transfers, when the freeze
signal goes high, the Freeze Bridge holds the ready signal low during the
freeze period.
The illegal_request signal asserts high to indicate that the current
transaction is an error. Configure the design to stop sending transactions to
the PR region after the illegal_request signal is high.

Sink interface in PR region with
ready_latency > 0

When the Freeze Bridge drives endofpacket, valid, or channel outputs
to the PR region, the Freeze Bridge must observe the ready_latency
value. The ready_latency value defines the actual clock cycle when the
sink component is ready for data.

2.7.1. Parameters

The Avalon Streaming Partial Reconfiguration Freeze Bridge IP core supports
customization of the following parameters:

Figure 86. Parameter Editor

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 58. Parameters

Parameter Values Description

PR region Interface Type Avalon-ST Source/Avalon-
ST Sink

Specifies the interface type for interfacing the PR
region with the freeze bridge.

Enable Freeze port from PR
region

On/Off Enables the freeze port to freeze all the outputs of
each PR region to a known constant value. Freezing
prevents the signal receivers in the static region
from receiving undefined signals during the partial
reconfiguration process.

Select Yes or No to enable or
disable interface ports

Yes/No Enables or disables specific optional freeze bridge
interface ports.

Channel width <1-128> Specifies the width of the channel signal.

Error width <1-256> Specifies the width of the error signal.

Data bits per symbol <1-512> Specifies the number of bits per symbol.

Symbols per beat <1-512> Specifies the number of symbols that transfer on
every valid clock cycle.

Error descriptors <text> Specifies one or more strings to describe the error
condition for each bit of the error port on the sink
interface connected to the source interface. Click
the plus or minus buttons to add or remove
descriptors.

Max channel number <0-255> Specifies the maximum number of output channels.

Ready latency <0-8> Specifies what ready latency to expect from the
source interface connected to the sink interface.
The ready latency is the number of cycles from the
time ready asserts until valid data is driven.

2.7.2. Ports

The Avalon Streaming Partial Reconfiguration Freeze Bridge IP has the following ports:

Figure 87. Avalon Streaming Sink Interface Ports

Source for the PR region sinkSink from the static
region source

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 88. Avalon Streaming Source Interface Ports

Source for the PR region sink Sink from the static region source

Table 59. Avalon Streaming Interface Ports

Port Width Direction Description

clock 1 Input Input clock for the IP.

freeze_conduit_freeze 1 Input When this signal is high, the bridge handles
any current transaction properly then
freezes the PR interfaces.

freeze_conduit_illegal_request 1 Output High on this bus indicates that an illegal
request was issued to the bridge during the
freeze state.
n – number of freeze bridge

pr_freeze_pr_freeze 1 Input Enabled freeze port from the PR region.

reset_n 1 Input Synchronous reset for the IP.

Table 60. Avalon Streaming Sink to Static Region Interface Ports
Same setting as Avalon streaming sink to PR region interface.

Port Width Direction Description

sink_bridge_to_sr_channel 1 Input Avalon streaming sink bridge to static region
channel port.

sink_bridge_to_sr_data 32 Input Avalon streaming sink bridge to static region
data port.

sink_bridge_to_sr_empty 2 Input Avalon streaming sink bridge to static region
empty port.

sink_bridge_to_sr_error 1 Input Avalon streaming sink bridge to static region
error port.

sink_bridge_to_sr_ready 1 Output Avalon streaming sink bridge to static region
ready port.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Width Direction Description

sink_bridge_to_sr_valid 1 Input Avalon streaming sink bridge to static region
valid port.

sink_bridge_to_sr_endofpacket 1 Input Avalon streaming sink bridge to static region
endofpacket port.

sink_bridge_to_sr_startofpacket 1 Input Avalon streaming sink bridge to static region
startofpacket port.

Table 61. Avalon-Streaming Sink to PR Region Interface Ports

Port Width Direction Description

sink_bridge_to_pr_channel 1 Output Optional Avalon streaming sink bridge to PR
region channel port.

sink_bridge_to_pr_data 32 Output Optional Avalon streaming sink bridge to PR
region data port.

sink_bridge_to_pr_empty 2 Output Optional Avalon streaming sink bridge to PR
region empty port.

sink_bridge_to_pr_error 1 Output Optional Avalon streaming sink bridge to PR
region error port.

sink_bridge_to_pr_ready 1 Input Optional Avalon-ST sink bridge to PR region
ready port.

sink_bridge_to_pr_valid 1 Output Optional Avalon streaming sink bridge to PR
region valid port.

sink_bridge_to_pr_endofpacket 1 Output Optional Avalon streaming sink bridge to PR
region endofpacket port.

sink_bridge_to_pr_startofpacket 1 Output Optional Avalon streaming sink bridge to PR
region startofpacket port.

Table 62. Avalon Streaming Source to Static Region Interface Ports
Same setting as Avalon streaming source to PR region interface.

Port Width Direction Description

source_bridge_to_sr_channel 1 Output Avalon streaming source bridge to static
region channel port.

source_bridge_to_sr_data 32 Output Avalon streaming source bridge to static
region data port.

source_bridge_to_sr_empty 2 Output Avalon streaming source bridge to static
region empty port.

source_bridge_to_sr_error 1 Output Avalon streaming source bridge to static
region error port.

source_bridge_to_sr_ready 1 Input Avalon streaming source bridge to static
region ready port.

source_bridge_to_sr_valid 1 Output Avalon streaming source bridge to static
region valid port.

source_bridge_to_sr_endofpacket 1 Output Avalon streaming source bridge to static
region endofpacket port.

source_bridge_to_sr_startofpacket 1 Output Avalon streaming source bridge to static
region startofpacket port.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 63. Avalon Streaming Source to PR Region Interface Ports

Port Width Direction Description

source_bridge_to_pr_channel 1 Input Optional Avalon streaming source bridge to
PR region channel port.

source_bridge_to_pr_data 32 Input Optional Avalon streaming source bridge to
PR region data port.

source_bridge_to_pr_empty 2 Input Optional Avalon streaming source bridge to
PR region empty port.

source_bridge_to_pr_error 1 Input Optional Avalon-ST source bridge to PR
region error port.

source_bridge_to_pr_ready 1 Output Optional Avalon streaming source bridge to
PR region ready port.

source_bridge_to_pr_valid 1 Input Optional Avalon streaming source bridge to
PR region valid port.

source_bridge_to_pr_endofpacket 1 Input Optional Avalon streaming source bridge to
PR region endofpacket port.

source_bridge_to_pr_startofpacket 1 Input Optional Avalon streaming source bridge to
PR region startofpacket port.

2.8. Generating and Simulating Intel FPGA IP

Use the following information to generate and simulate an IP core variation.

2.8.1. Specifying the IP Core Parameters and Options (Quartus Prime Pro
Edition)

Quickly configure Intel FPGA IP cores in the Quartus Prime parameter editor. Double-
click any component in the IP Catalog to launch the parameter editor. The parameter
editor allows you to define a custom variation of the IP core. The parameter editor
generates the IP variation synthesis and optional simulation files, and adds the .ip
file representing the variation to your project automatically.

Follow these steps to locate, instantiate, and customize an IP core in the parameter
editor:

1. Create or open an Quartus Prime project (.qpf) to contain the instantiated IP
variation.

2. In the IP Catalog (Tools ➤ IP Catalog), locate and double-click the name of the
IP core to customize. To locate a specific component, type some or all of the
component’s name in the IP Catalog search box. The New IP Variation window
appears.

3. Specify a top-level name for your custom IP variation. Do not include spaces in IP
variation names or paths. The parameter editor saves the IP variation settings in a
file named <your_ip>.ip. Click OK. The parameter editor appears.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 89. IP Parameter Editor (Quartus Prime Pro Edition)

4. Set the parameter values in the parameter editor and view the block diagram for
the component. The Parameterization Messages tab at the bottom displays any
errors in IP parameters:

• Optionally, select preset parameter values if provided for your IP core. Presets
specify initial parameter values for specific applications.

• Specify parameters defining the IP core functionality, port configurations, and
device-specific features.

• Specify options for processing the IP core files in other EDA tools.

Note: Refer to your IP core user guide for information about specific IP core
parameters.

5. Click Generate HDL. The Generation dialog box appears.

6. Specify output file generation options, and then click Generate. The synthesis and
simulation files generate according to your specifications.

7. To generate a simulation testbench, click Generate ➤ Generate Testbench
System. Specify testbench generation options, and then click Generate.

8. To generate an HDL instantiation template that you can copy and paste into your
text editor, click Generate ➤ Show Instantiation Template.

9. Click Finish. Click Yes if prompted to add files representing the IP variation to
your project.

10. After generating and instantiating your IP variation, make appropriate pin
assignments to connect ports.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Some IP cores generate different HDL implementations according to the IP
core parameters. The underlying RTL of these IP cores contains a unique
hash code that prevents module name collisions between different variations
of the IP core. This unique code remains consistent, given the same IP
settings and software version during IP generation. This unique code can
change if you edit the IP core's parameters or upgrade the IP core version.
To avoid dependency on these unique codes in your simulation environment,
refer to Generating a Combined Simulator Setup Script.

Related Information

Introduction to Intel FPGA IP Cores

2.8.2. Running the Freeze Bridge Update script

When instantiating the Freeze Bridge as a Platform Designer system component, the
interface connections between the Freeze Bridge and the PR region must match, so
that Platform Designer inserts no extra interconnect during system generation. Rather
than manually matching the Avalon interface properties individually in the parameter
editor, you can run the provided Update Freeze Bridge Parameters script to update
Freeze Bridge Avalon interface properties automatically.

Running this script updates the host and agent interfaces or the sink and source
interfaces of the Freeze Bridge, according to the Avalon property settings of the
connecting PR region component.

To run the Update Freeze Bridge Parameters script:

1. Open a Platform Designer system containing one or more instances of the Freeze
Bridge component.

2. In Platform Designer, click View ➤ System Scripting. The System Scripting
tab displays Platform Designer Built-in Scripts.

3. To update all freeze bridges in your Platform Designer system, set
update_all_freeze_bridges to 1 in the Additional Commands section of the
script. To update only a single freeze bridge, click the freeze bridge instance.

4. Click Run Script. The script runs and updates the freeze bridge parameters.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

135

https://www.intel.com/content/www/us/en/docs/programmable/683102.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 90. Platform Designer System Scripting Tab

2.8.3. IP Core Generation Output (Quartus Prime Pro Edition)

The Quartus Prime software generates the following output file structure for individual
IP cores that are not part of a Platform Designer system.

Table 64. Output Files of Intel FPGA IP Generation

File Name Description

<your_ip>.ip Top-level IP variation file that contains the parameterization of an IP core in
your project. If the IP variation is part of a Platform Designer system, the
parameter editor also generates a .qsys file.

<your_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that contains local
generic and port definitions that you use in VHDL design files.

<your_ip>_generation.rpt IP or Platform Designer generation log file. Displays a summary of the
messages during IP generation.

<your_ip>.qgsimc (Platform Designer
systems only)

Simulation caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_ip>.qgsynth (Platform
Designer systems only)

Synthesis caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_ip>.csv Contains information about the upgrade status of the IP component.

<your_ip>.bsf A symbol representation of the IP variation for use in Block Diagram Files
(.bdf).

<your_ip>.spd Input file that ip-make-simscript requires to generate simulation scripts.
The .spd file contains a list of files you generate for simulation, along with
information about memories that you initialize.

<your_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for IP
components you create for use with the Pin Planner.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Description

<your_ip>_bb.v Use the Verilog blackbox (_bb.v) file as an empty module declaration for use
as a blackbox.

<your_ip>_inst.v or _inst.vhd HDL example instantiation template. Copy and paste the contents of this file
into your HDL file to instantiate the IP variation.

<your_ip>.regmap If the IP contains register information, the Quartus Prime software generates
the .regmap file. The .regmap file describes the register map information of
host and agent interfaces. This file complements the .sopcinfo file by
providing more detailed register information about the system. This file enables
register display views and user customizable statistics in System Console.

<your_ip>.svd Allows HPS System Debug tools to view the register maps of peripherals that
connect to HPS within a Platform Designer system.
During synthesis, the Quartus Prime software stores the .svd files for agent
interface visible to the System Console hosts in the .sof file in the debug
session. System Console reads this section, which Platform Designer queries
for register map information. For system agents, Platform Designer accesses
the registers by name.

<your_ip>.v

<your_ip>.vhd

HDL files that instantiate each submodule or child IP core for synthesis or
simulation.

mentor/ Contains a msim_setup.tcl script to set up and run a simulation with a
supported Siemens EDA simulator, such as the QuestaSim simulator.

aldec/ Contains a Riviera-PRO* script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS* simulation.
Contains a shell script vcsmx_setup.sh and synopsys_sim.setup file to
set up and run a VCS MX simulation.

/xcelium Contains an Xcelium* Parallel simulator shell script xcelium_setup.sh and
other setup files to set up and run a simulation.

/submodules Contains HDL files for the IP core submodule.

<IP submodule>/ Platform Designer generates /synth and /sim sub-directories for each IP
submodule directory that Platform Designer generates.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 91. Individual IP Core Generation Output (Quartus Prime Pro Edition)

<Project Directory>

<your_ip>_inst.v or .vhd - Lists file for IP core synthesis

<your_ip>.qip - Lists files for IP core synthesis

synth - IP synthesis files

<IP Submodule>_<version> - IP Submodule Library

sim

<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.ip - Top-level IP variation file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Simulation startup scripts

*

<your_ip>.cmp - VHDL component declaration

<your_ip>.v or vhd - Top-level simulation file

synth

 - IP submodule 1 simulation files

 - IP submodule 1 synthesis files

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<HDL files>

<HDL files>

<your_ip>_tb - IP testbench system *

<your_testbench>_tb.qsys - testbench system file
<your_ip>_tb - IP testbench files

your_testbench> _tb.csv or .spd - testbench file

sim - IP testbench simulation files
 * If supported and enabled for your IP core variation.

<your_ip>.qgsimc - Simulation caching file (Platform Designer)

<your_ip>.qgsynthc - Synthesis caching file (Platform Designer)

2.8.4. Arria 10 and Cyclone 10 GX PR Control Block Simulation Model

The Quartus Prime Pro Edition software supports simulating the delivery of a partial
reconfiguration bitstream to the PR control block. This simulation allows you to
observe the resulting change and the intermediate effect in a reconfigurable partition.

The Arria 10 and Cyclone 10 GX PR control blocks support PR simulation. Sending a
simulation RBF (PR bitstream) allows the PR control block to behave accordingly, to PR
simulation success or PR simulation failure. To activate simulation of a specific PR
persona in your PR region simulation wrapper, use a PR ID encoded in the simulation
RBF, in conjunction with the PR control block. Simulate the PR control block either as
standalone, or as part of the simulation file set for the Partial Reconfiguration
Controller IP core.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 92. PR Control Block Simulation Model

FSM

PR Control Block ready

error

done
request

data

sim_state

sim_pr_id

The PR control block simulation model contains two additional simulation-only ports—
sim_state and sim_pr_id. Connect these simulation ports, and the other ports, to
the twentynm_prblock_if SystemVerilog interface. This connection allows
monitoring of the PR control block using your testbench’s PR control block monitor.
The Quartus Prime software automatically instantiates the twentynm_prblock_if
interface when generating the simulation file set of the Partial Reconfiguration IP core.
Obtain a reference to the twentynm_prblock_if that the IP instantiates by using
the alt_pr_test_pkg::twentynm_prblock_if_mgr singleton, as shown in the
following example:

virtual twentynm_prblock_if prblock_if;

alt_pr_test_pkg::twentynm_prblock_if_mgr cb_mgr;

// Get the PR control block from the prblock manager
cb_mgr = alt_pr_test_pkg::twentynm_prblock_if_mgr::get();
prblock_if = cb_mgr.if_ref;

The code for the twentynm_prblock_if interface is as follows:

interface twentynm_prblock_if(input logic pr_clk, input logic clk);

 logic prrequest;
 logic [31:0] data;
 wire error;
 wire ready;
 wire done;
 logic [31:0] sim_only_state;
 wire [31:0] sim_only_pr_id;

 // All signals are async except data
 clocking cb1 @(posedge pr_clk);
 output data;
 endclocking

endinterface : twentynm_prblock_if

For more information on the twentynm_prblock_if interface, refer to the
<installation directory>/eda/sim_lib/altera_lnsim.sv file.

The simulation state of the PR control block simulation model represents the
PR_EVENT_TYPE enumeration state of the control block. The
twentynm_prblock_test_pkg SystemVerilog package defines these enumerations.
These states represent the different allowed states for the control block. The defined
control block enumerations are:

package twentynm_prblock_test_pkg;
 typedef enum logic [31:0] {
 NONE,
 IDLE,

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

139

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 PR_REQUEST,
 PR_IN_PROGRESS,
 PR_COMPLETE_SUCCESS,
 PR_COMPLETE_ERROR,
 PR_INCOMPLETE_EARLY_WITHDRAWL,
 PR_INCOMPLETE_LATE_WITHDRAWL
 } PR_EVENT_TYPE;

When the simulation state is PR_IN_PROGRESS, the affected PR region must have its
simulation output multiplexes driven to X, by asserting the pr_activate signal. This
action simulates the unknown outputs of the PR region during partial reconfiguration.
In addition, you must assert the pr_activate signal in the PR simulation model to
load all registers in the PR model with the PR activation value.

Once the simulation state reaches PR_COMPLETE_SUCCESS, activate the appropriate
PR persona using the appropriate PR region simulation wrapper mux sel signals. You
can decode the region, as well as the specific select signal from the sim_only_pr_id
signal of the PR control block. This ID corresponds to the encoded ID in the simulation
RBF.

Table 65. Required Sequence of Words in Simulation RBF
Step 1 writes zero or more of the following words. All other steps write only 1 word.

1 zero padding blocks 0x00000000

2 PR_HEADER_WORD 0x0000A65C

3 PR_ID 32-bit user ID

4 PRDATA_COUNT_0 0x01234567

5 PRDATA_COUNT_1 0x89ABCDEF

6 PRDATA_COUNT_2 0x02468ACE

7 PRDATA_COUNT_3 0x13579BDF

Note: The PR_ID word is output on the sim_only_pr_id word, starting at
PRDATA_COUNT_0. Using a different value for the header or data count results in PR
simulation errors.

Related Information

Simulating PR Persona Replacement on page 53

2.8.5. Generating the PR Persona Simulation Model

Use the Quartus Prime EDA Netlist Writer to create the simulation model for a PR
persona. The simulation model represents the post-synthesis, gate-level netlist for the
persona.

When using the PR simulation model for the persona, the netlist includes a new
altera_sim_pr_activate top-level signal for the model. You can asynchronously
drive this signal to load all registers in the model with X. This feature allows you to
verify the reset sequence of the new persona on PR event completion. Verify the reset
sequence through inspection, using SystemVerilog assertions, or using other checkers.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, the PR simulation model asynchronously loads X into the register’s storage
element on pr_activate signal assertion. You can parameterize this behavior on a
per register basis, or on a simulation-wide default basis. The simulation model
supports four built-in modes:

• load X

• load 1

• load 0

• load rand

Specify these modes using the SystemVerilog classes:

• dffeas_pr_load_x

• dffeas_load_1

• dffeas_load_0

• dffeas_load_rand

Optionally, you can create your own PR activation class, where your class must define
the pr_load variable to specify the PR activation value.

Follow these steps to generate the simulation model for a PR design:

1. Open the base revision of a PR project in Quartus Prime Pro Edition, and then click
Processing ➤ Start ➤ Start Analysis & Synthesis. Alternatively, run this
command-line equivalent:

quartus_syn <project name> -c <base revision name>

2. After synthesis is complete, click Project ➤ Export Design Partition, and then
select the root partition for the Partition name, and select synthesized for the
Snapshot. Click OK. Alternatively, run this command-line equivalent:

quartus_cdb <project name> -c <base revision name> \
 "--export_block root_partition --snapshot synthesized \
 --file <static qdb name>

3. Click Project ➤ Revisions and switch the current revision to that of the persona
you want to export.

4. Click Processing ➤ Start ➤ Start Analysis & Synthesis. Alternatively, run this
command-line equivalent:

quartus_syn <project name> -c <persona revision name>

5. After synthesis of the persona revision completes, execute the following at the
command line to generate the PR simulation model:

quartus_eda <project name> –c <persona revision name> "--pr --simulation \
 --tool=modelsim --format=verilog --partition=<pr partition name> \
 --module=<partition name>=<persona module name>

6. Repeat steps 3 through 5 for all personas that you want to simulate.

Example 6. Complete PR Simulation Model Generation Script

quartus_syn <project name> -c <base revision name>
quartus_cdb <project name> -c <base revision name> \
 "--export_block root_partition --snapshot synthesized \

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 --file <static qdb name>
quartus_syn <project name> -c <persona revision name>
quartus_eda <project name> –c <persona revision name> \
 "--pr --simulation --tool=modelsim --format=verilog \
 --partition=<pr partition name> --module=<partition name>=\
 <persona module name>

You can use the PR mode of the EDA netlist writer to generate the gate level netlist of
a PR region. Refer to the "EDA Netlist Writer and Gate Level-Netlists" section of the
Quartus Prime Pro Edition User Guide: Third Party Simulation.

Related Information

Quartus Prime Pro Edition User Guide: Third Party Simulation

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

142

https://www.intel.com/content/www/us/en/docs/programmable/683870.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.6. Secure Device Manager Partial Reconfiguration Simulation Model

The Quartus Prime Pro Edition software supports simulating the delivery of a partial
reconfiguration bitstream to the Agilex 7, Agilex 5, and Stratix 10 FPGA's secure
device manager (SDM).

The SDM is a self-contained system-on-chip that securely manages the boot and
configuration process, provides secure key storage, enforces security policies, and
provides security services during runtime for Agilex 7, Agilex 5, and Stratix 10
devices. Simulation with the SDM allows you to observe the resulting change and the
intermediate effect in a reconfigurable partition.

When you send a simulation RBF (PR bitstream) to the SDM, the SDM can respond
with a PR simulation success or PR simulation failure message.

To activate simulation of a specific PR persona in your PR region simulation wrapper,
you use a PR ID encoded in the simulation RBF, in conjunction with the SDM.

You simulate the SDM as part of the simulation file set for the Partial Reconfiguration
Controller Intel FPGA IP and the Partial Reconfiguration External Configuration
Controller IP that is available for Agilex 7, Agilex 5, and Stratix 10 devices.

2.8.6.1. Monitoring the SDM

The SDM simulation model exposes the following additional simulation-only ports
through the altera_config_stream_endpoint module:

• sim_only_state

• sim_only_pr_id

Figure 93. SDM Partial Reconfiguration Simulation Model -
altera_config_stream_endpoint Module

Config Stream Endpoint
(altera_config_stream_endpoint)

sop
eop

valid
ready

sop
eop

valid
ready

data

data

active

ready
validvalid
data

clk

reset

Clock
Com

m
and

Avalon
Response

Avalon
Stream

Stream
ing

Stream
ing

Status
Stream

ing
Avalon
Stream

reset

sim_only_state

sim_only_pr_id

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You connect these simulation ports to the config_stream_endpoint_pr_if
SystemVerilog interface. This connection allows monitoring of the SDM using your
testbench’s SDM monitor.

The Quartus Prime software automatically instantiates the
config_stream_endpoint_pr_if interface when generating the simulation file set
of the Partial Reconfiguration Controller and the Partial Reconfiguration External
Configuration Controller IP.

You can obtain a reference to the config_stream_endpoint_pr_if that the IP
instantiates by using the following singleton:

intel_pr_mailbox_test_pkg::config_stream_endpoint_pr_if_mgr

The following example shows this reference:

virtual config_stream_endpoint_pr_if pr_mailbox_if

intel_pr_mailbox_test_pkg::config_stream_endpoint_pr_if_mgr pr_mbox_mgr;

// Get the PR Config Stream Endpoint from the pr_mbox manager
pr_mbox_mgr = intel_pr_mailbox_test_pkg::config_stream_endpoint_pr_if_mgr\
 ::get();
pr_mailbox_if = pr_mbox_mgr.if_ref;

The following is the code for the config_stream_endpoint_pr_if interface:

interface config_stream_endpoint_pr_if (input logic clk);
 wire [31:0] sim_only_state;
 wire [31:0] sim_only_pr_id;
endinterface : config_stream_endpoint_pr_if

Refer to the following file for more information on the
config_stream_endpoint_pr_if interface:

<installation directory>/eda/sim_lib/altera_lnsim.sv

The simulation state of the SDM simulation model represents the PR_EVENT_TYPE
enumeration state of the SDM. The config_stream_endpoint_pr_test_pkg
SystemVerilog package defines these enumerations. These states represent the
different allowed states for the SDM. The following are SDM enumeration definitions:

package config_stream_endpoint_pr_test_pkg;
 typedef enum logic [31:0] {
 NONE,
 IDLE,
 PR_REQUEST,
 PR_IN_PROGRESS,
 PR_COMPLETE_SUCCESS,
 PR_COMPLETE_ERROR,
 PR_INCOMPLETE_SYS_BUSY,
 PR_INCOMPLETE_BAD_DATA
 } PR_EVENT_TYPE;

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.6.2. Simulating Unknown Outputs and Persona Activation

To simulate the unknown outputs and persona activation that occurs during the partial
reconfiguration process, follow these steps:

1. Ensure that the affected PR region has the simulation output multiplexes driven to
X by asserting the pr_activate signal when the simulation state is
PR_IN_PROGRESS.

2. In addition, you must assert the pr_activate signal in the PR simulation model
to load all registers in the PR model with the PR activation value.

3. Once the simulation state reaches PR_COMPLETE_SUCCESS, activate the
appropriate PR persona using the appropriate PR region simulation wrapper mux
sel signals.

4. Decode the region, as well as the specific select signal from the sim_only_pr_id
signal of the SDM. This PR ID corresponds to the encoded ID in the simulation
RBF.

The SDM simulation model checks encoded instructions in the following simulation RBF
locations:

• 1st (0x97566593)

• 2nd (0x4422XXXX)

• 3rd (0x5056XXXX)

If any encoded instructions do not stream into the model in the specified location, the
simulation model triggers a PR error, and the error state is reflected in the Partial
Reconfiguration Controller Intel FPGA IP or in the Partial Reconfiguration External
Configuration Controller Intel FPGA IP.

If the exact number of dummy data that NNNN specifies does not stream into the
simulation model, the model outputs an info message (PR warning: Exceed
expected length of data!) to indicate the mismatch number of data sent. No PR
error triggers in this case.

2.8.6.3. Simulation RBF Required Word Sequence

The simulation RBF requires the following sequence of words:

RBF Location RBF Instruction OpCode Description

1st Start of RBF 97566593 Identifier word indicates the start of the RBF.

2nd Expected length (N) of
data in RBF

4422NNNN Specifies the length of dummy data NNNN.

3th PR region ID (R) to
activate

5056RRRR Specifies the PR region ID RRRR, which reflects in the
sim_only_pr_id signal.
The PR region ID must be unique, design wide, across all PR
partitions.

4th till 4th + NNNN Dummy data XXXXXXXX Streams NNNN number of dummy data into the simulation
model. NNNN is specified in the 2nd location of the RBF.

4th + NNNN + 1 End of RBF 00001011 Identifier word that indicates the end of the RBF.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The PR region ID word outputs on the sim_only_pr_id word, starting after the first
data word. Using a different value for the header or data count results in PR
simulation errors.

2.9. Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Archive

For the latest and previous versions of this user guide, refer to Quartus Prime Pro
Edition User Guide: Partial Reconfiguration. If an IP or software version is not listed,
the user guide for the previous IP or software version applies.

2.10. Partial Reconfiguration Solutions IP User Guide Revision
History

Document Version Quartus Prime
Version

Changes

2023.04.01 24.1 • Applied initial Altera rebranding throughout.
• Updated throughout to reflect support for Agilex 5 devices.

2023.04.03 23.1 • Updated product family name to "Intel Agilex 7."
• Added note to PR Error Recovery topic about device family support.

2022.01.11 21.4 • Revised Partial Reconfiguration Controller Intel FPGA IP section to
reflect the new error recovery mechanism that flushes out any
remaining corrupted PR bitstream that might be left in user logic
pipeline after sending a corrupted bitstream.

• Revised Partial Reconfiguration Controller Intel FPGA IP Parameters
topic for new Enable Protocol Checker and Enable SDM FW Error
Reporting parameters that report additional error handshake status and
response for detailed error analysis in PR Controller FPGA IP for internal
host and debug SDM JTAG command for external host.

• Added new PR Error Recovery topic.
• Added new PR Error Recovery Timing Specifications topic.
• Added new Secure Device Manager Firmware Error Reporting topic.
• Added new SDM Firmware Error Reporting Timing Specifications topic.
• Added new Partial Reconfiguration External Controller Intel FPGA IP

Timing Specifications topic.
• Added new Secure Device Manager Partial Reconfiguration Simulation

Model section.
• Corrected typo in Agent Interface topic.

2021.10.04 21.3 • Updated Partial Reconfiguration External Configuration Controller Intel
FPGA IP Ports topic status bit information.

• Updated Partial Reconfiguration Controller Intel FPGA IP Ports topic
status bit information.

• Updated non-inclusive terms with "host" and "agent" for Avalon
Memory Mapped interface references throughout.

2021.08.02 21.2 • Updated Partial Reconfiguration Controller Intel FPGA IP topic SEU
note.

• Revised Register States and Programming Model figure to correct
sequence.

2020.09.28 20.3 • Replaced references to Avalon-MM and Avalon-ST with Avalon memory-
mapped and Avalon streaming for legal compliance.

2020.08.07 20.2 • Corrected signal name typos in "Interface Ports" topic for Avalon-MM
Partial Reconfiguration Freeze Bridge Intel FPGA IP.

2019.12.16 19.4.0 • Added "Error Detection CRC Requirements" topic.

continued...

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Quartus Prime Pro Edition User Guide: Partial Reconfiguration Send Feedback

146

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683834.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2019.09.30 19.3.0 • Updated the name of "Intel Stratix 10 Partial Reconfiguration Controller
FPGA IP" to "Partial Reconfiguration Controller Intel FPGA IP" to
encompass support for Agilex 7 devices.

• Added note about connection of dummy_clk in "PR Control Block and
CRC Block VHDL Module."

• Added note to "PR Bitstream Compression and Encryption" topic about
support for enhanced decompression.

2019.06.07 19.1.0 • Added note and reference to Stratix 10 Configuration User Guide.

2019.04.22 19.1.0 • Indicated support for POF generation support for Intel Cyclone GX
devices.

2019.01.04 18.1.0 • Clarified statement about configuration width in "Control Block Signals"
topic.

2018.12.07 18.1.0 • Corrected typographical error in "Partial Reconfiguration IP Cores"
table.

• Corrected typographical error in "Avalon-MM Slave to PR Region Master
Interface Ports" table.

2018.09.24 18.1.0 • Updated specification for Partial Reconfiguration Controller Stratix 10
FPGA IP from 250 MHz to 200 MHz.

• Stated PR compilation flow support for Cyclone 10 GX devices.
• Updated Partial Reconfiguration Controller Arria 10 FPGA IP name to

Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP.

2018.06.27 18.0.0 Updated freeze_status signal description in Registers: Partial
Reconfiguration Region Controller.

2018.06.18 18.0.0 • Corrected syntax error in Generating the PR Persona Simulation Model.

2018.05.07 18.0.0 • Added description of new Partial Reconfiguration External Configuration
Controller Stratix 10 FPGA IP.

• Updated names of Partial Reconfiguration Controller Arria 10 FPGA IP
and Partial Reconfiguration Controller Stratix 10 FPGA IP.

• Enhanced explanation of Auto-instantiate CRC block Partial
Reconfiguration Controller Arria 10 parameter.

• Added as chapter in new Partial Reconfiguration User Guide.
• Added note about recovery after PR error when using SEU detection in

Stratix 10 designs.

2017.11.06 17.1.0 • Added support for Stratix 10 Partial Reconfiguration Controller IP core.
• Updated for latest Intel product naming conventions.

2017.05.08 17.0.0 Initial public release.

2. Partial Reconfiguration Solutions IP User Guide

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel FPGA devices, and program CPLD and configuration
devices, via connection with an Intel FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683834 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys* that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys*. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

A. Quartus Prime Pro Edition User Guides

683834 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Partial Reconfiguration

149

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683834%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Pro Edition User
Guide
Third-party Simulation

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q What do I need for simulation?
A Simulation Essential Elements on page 4

Q What simulators do you support?
A Supported Simulators on page 19

Q What are the simulation stages?
A Overview of Simulation Tool Flow on page 6

Q What are logical libraries?
A Specifying Logical Libraries on page 9

Q How do I compile into libraries?
A Compiling Files Into Library Directories on page 9

Q What is the simulation workflow?
A Generic Simulation Workflow on page 16

Q How do I automate simulation runs?
A Automating Simulation on page 20

Q What are the known issues and limitations?
A Intel FPGA Support Forums: Simulation

Q Do you have training on simulation?
A Intel FPGA Simulation Training

Online Version

Send Feedback UG-20137

683870

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://community.intel.com/t5/forums/searchpage/tab/message?advanced=false&allow_punctuation=false&filter=location&location=forum-board:quartus-prime-software&q=simulation
https://www.intel.com/content/www/us/en/programmable/support/training/catalog.html?keywords=simulation
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. FPGA Simulation Basics.. 4
1.1. FPGA Simulation Essential Elements...4
1.2. Overview of Simulation Tool Flow...6

1.2.1. Compilation Stage... 6
1.2.2. Elaboration Stage.. 7
1.2.3. Simulation Stage... 8

1.3. Simulation Tool Flow.. 8
1.3.1. Specifying Logical Libraries... 9
1.3.2. Compiling Files Into Library Directories...9
1.3.3. The Quartus Prime Simulation Library...11
1.3.4. Understanding Elaboration.. 14
1.3.5. Commands To Configure and Run Simulation... 15
1.3.6. FPGA Simulation Generic Workflow...16

1.4. Supported Simulation Flows.. 17
1.5. Supported Hardware Description Languages.. 17
1.6. Supported Simulation Types.. 18
1.7. Supported Simulators...19
1.8. Post-Fit Simulation Support by FPGA Family...20
1.9. Automating Simulation with the Run Simulation Feature..20

1.9.1. Setting Up the Run Simulation Feature..20
1.9.2. Run RTL Simulation using Run Simulation in Batch Mode (Command-Line).......25

1.10. Intel FPGA Simulation Basics Revision History.. 29

2. Siemens EDA QuestaSim Simulator Support ...31
2.1. Quick Start Example (QuestaSim with Verilog)...31
2.2. QuestaSim Simulator Guidelines.. 32

2.2.1. Passing Parameter Information from Verilog HDL to VHDL............................. 32
2.2.2. Viewing Simulation Messages.. 32
2.2.3. Generating Signal Activity Data for Power Analysis....................................... 33
2.2.4. Viewing Simulation Waveforms.. 34

2.3. Using the Qrun Flow...34
2.3.1. Specifying Simulation File Generation Settings... 34
2.3.2. Generating the Simulation Model and Setup Scripts...................................... 35
2.3.3. Generating the Testbench System.. 36
2.3.4. Generating Example Design Simulation Files..37
2.3.5. Recommendations for Using Qrun.. 37

2.4. QuestaSim Simulation Setup Script Example... 38
2.5. Sourcing QuestaSim Simulator Setup Scripts... 38
2.6. Unsupported Features.. 39
2.7. Siemens EDA QuestaSim Simulator Support Revision History..................................... 40

3. Synopsys VCS and VCS MX Support...41
3.1. Quick Start Example (VCS with Verilog).. 41
3.2. VCS and VCS MX Guidelines.. 41
3.3. VCS Simulation Setup Script Example...42
3.4. Sourcing Synopsys VCS MX Simulator Setup Scripts... 42
3.5. Sourcing Synopsys VCS Simulator Setup Scripts.. 43
3.6. Synopsys VCS and VCS MX Support Revision History.. 45

Contents

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Aldec Active-HDL and Riviera-PRO Support...46
4.1. Quick Start Example (Active-HDL VHDL)... 46
4.2. Aldec Active-HDL and Riviera-PRO Guidelines.. 47
4.3. Using Simulation Setup Scripts.. 47
4.4. Sourcing Aldec ActiveHDL* or Riviera Pro* Simulator Setup Scripts............................ 47
4.5. Aldec Active-HDL and Riviera-PRO * Support Revision History....................................50

5. Cadence Xcelium Parallel Simulator Support...51
5.1. Using the Command-Line Interface.. 51
5.2. Generating Simulator Setup Script Templates.. 51
5.3. Sourcing Cadence Xcelium Simulator Setup Scripts.. 52
5.4. Cadence Xcelium Parallel Simulator Support Revision History..................................... 55

6. Quartus Prime Pro Edition User Guide Third-party Simulation Archive..........................56

A. Quartus Prime Pro Edition User Guides...57

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. FPGA Simulation Basics
This chapter is a high-level explanation of FPGA simulation basic concepts and
workflows for all simulators that the Quartus® Prime software supports. An
understanding of these basic concepts provides a foundation for performing simulation
using your supported simulator of choice.

While the details of using a particular simulator vary, the basic foundational concepts
and tasks of FPGA design simulation are common to all supported simulators.

Related Information

Supported Simulators on page 19

1.1. FPGA Simulation Essential Elements

The following describes the essential elements required for FPGA design simulation.

Design

An Quartus Prime design typically consists of a top-level design module containing a
hierarchy of module instances, defined in one or more HDL files. The design that you
intend to simulate is known as the Design Under Test (DUT).

Testbench

To simulate the DUT (that is, a design), you must also provide a separate HDL module
(referred to as the testbench module) that instantiates the DUT and additional logic to
stimulate the DUT and to capture the output from the DUT. The testbench module can
include a hierarchy of module instances related to the testbench, but that are not part
of the design. You define the testbench modules in one or more HDL files.

Top-Level Testbench

A top level testbench module is the testbench module that instantiates all other design
and testbench related modules. This is the module you simulate.

HDL Design and Testbench Files

Simulating a design requires HDL design files, and one or more HDL testbench files.
Quartus Prime designs typically consist of several modules that you define in multiple
HDL files. These files can include HDL files generated by Quartus Prime tool, such as
Quartus Prime Platform Designer.

Some of the modules instantiated in the design may be common to many designs.
Examples of some common modules are low-level primitives, like AND and OR gates,
and more complex blocks, such as multipliers and FIFOs.

683870 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The low level modules common to many designs are known as simulation library
modules, and the files defining those modules are known as simulation library files.
The Quartus Prime software installation provides various simulation library files, as
The Quartus Prime Simulation Library describes.

The combination of design and testbench files includes all the modules that are
instantiated in the top-level testbench module hierarchy, including all of the modules
for the design, because the design is instantiated within the testbench hierarchy.

Executable Simulation Model

In order to simulate a design you must first generate an executable simulation model
of the top-level testbench by running a set of simulator specific commands. You must
then run the executable model to perform simulation. Running the executable model
may require simulator specific commands. The executable model is typically a set of
binary files specific to a simulator.

Simulator Commands

You must run one or more simulator commands to generate the executable simulation
model and then to run the executable simulation model. The commands require the
following inputs to generate an executable model of the top-level testbench module
that you can simulate, as the Inputs and Commands to Generate and Run the
Executable Model figure shows:

• The name of the top-level testbench module.

• The HDL design files, including files generated by tools such as Platform Designer,
simulation library files, and testbench files.

Figure 1. Inputs and Commands to Generate and Run the Executable Simulation Model

One or More
Simulator Commands

Executable
Simulation

Model

Command to
Run Simulation

my_design.sv
my_testbench.sv

library1.sv
library2.sv

my_top
Top-Level Testbench

Module Name

Simulation
Running

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Since you must run several commands to create and run the executable model to
perform simulation, you can place the calls to the commands into one or more
simulation scripts for convenience. These scripts can be Linux shell scripts, Tcl scripts,
Perl, or Python scripts.

1.2. Overview of Simulation Tool Flow

The various simulator commands that you use to generate and run the executable
model are all part of the simulation tool flow. A simulation tool flow consists of
executing the following three stages of the simulation, in that order:

1. Compilation

2. Elaboration

3. Simulation

You run simulator specific commands at each stage in the flow.

1.2.1. Compilation Stage

In the first stage of simulation you run compilation commands.

Inputs to a Compilation Command

The compilation command takes as input one or more design files, testbench files, and
simulation library files.

What Does a Compilation Command Do?

A compilation command does the following:

1. Reads the files that you specify as arguments to the command.

2. Analyzes the content of the files, which includes checking for syntax errors and
other issues.

3. Stores the analyzed content (such as the module definitions) in a directory in a
simulator specific proprietary format. The directory is known as a library directory.
You can also specify the directory as an input argument.

This step of storing the analyzed content of HDL files in a library directory is
known as compiling the files into a library directory, or simply compiling a file.

Compiling a file is similar to running Quartus Prime Analysis & Synthesis, in that the
analyzed file content is stored in design database directory. The compilation is also
loosely analogous to compiling a C/C++ file into an object file, where the object file is
stored in a separate directory.

The library directory contains the definitions of all modules that are defined in the files
that you compiled into the library. You use these module definitions in the elaboration
stage. You may need to run multiple compilation commands to compile all the files
into library directories.

Compilation Command Example

Consider a design example that has two design files, foo.sv and bar.sv, and one
testbench file, my_testbench.sv.

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To compile these files, you first create a new directory, for example my_work. Next,
you run the simulator specific compilation command that takes in the file names and
directory name as inputs, as the File and Directory Name Input to Simulator Specific
Compilation Command figure shows. Once the command runs successfully, one or
more files appear in the my_work library directory. The directory contains the
definitions of all modules the three HDL files define, in a proprietary format that only
the simulator understands.

Figure 2. File and Directory Name Input to Simulator Specific Compilation Command

Compilation
Command

my_work_directory

foo.sv

/usr/design/bar.sv

../../my_testbench.sv

“my_work_directory”

1.2.2. Elaboration Stage

The elaboration stage follows the compilation stage. In the elaboration stage you
typically run just one elaboration command. This elaboration command can take
several inputs. At the minimum, elaboration requires as input the top-level testbench
module name, and the list of library directories that the compilation stage creates.

Figure 3. Elaboration Stage Inputs and Output

Elaboration
Command

Executable
Simulation

Model

“/usr/design/my_design_lib_directory”

“my_testbench_lib_dir”
“common_library_directory”

“my_top_tb”

The output of the elaboration command is the executable simulation model for the
top-level testbench. The executable simulation model comprises one or more
simulator-specific files and directories. For more details about the elaboration stage,
refer to Understanding Elaboration.

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.3. Simulation Stage

The commands that apply to the simulation stage actually run the simulation. The
input to simulation stage commands is the executable simulation model that you
generate during the elaboration stage, along with other inputs, such as how long to
simulate, and which signals to capture for waveform viewing and dumping.

As the Files and Directories for Executable Model of my_top_tb figure shows, the
output of the simulation stage is simply the output from a simulation run, which can
include messages issued by HDL modules, files written out by the simulator such as
waveform dumps, and any GUI display of simulation in progress.

Figure 4. Files and Directories for Executable Model of my_top_tb

Simulation
Command

Output of
Simulation

Run

Executable
Simulation

Model

1.3. Simulation Tool Flow

The simulation tool flow begins with the compilation stage that compiles files into
logical libraries using simulator specific compilation commands.

The next stage is elaboration, where you run the elaboration command to generate an
executable simulation model. In the final stage, you run the executable simulation
model to run the simulation.

The following topics describe these simulation tool flow concepts in more detail:

1. Specifying Logical Libraries

2. Compiling Files into Library Directories

3. Understanding Elaboration

4. Commands to Configure and Run Simulation

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.1. Specifying Logical Libraries

Some simulator commands for compilation and elaboration require you to specify a
logical library name as input.

A Logical library is simply a name (typically short and readable) that represents a
physical library directory. For example, logical library name foo can represent physical
directory /users/jsmith/design1/bar. The simulator commands translate the
logical library name to a physical directory name by reading in a library mapping file.
The simulator commands require only the physical directory names.

The mapping of logical library names to physical directory names is known as library
mapping, which you must define. You typically store the library mapping in a separate
text file in a proprietary text format, with each line containing a single logical library
name and the corresponding library directory path. You can either update the file
manually, or by using a simulator specific command (if available). This library mapping
file often has a fixed simulator specific name and a fixed location. Therefore, you do
not generally specify the library mapping file as an argument to simulator commands,
even though the file is read by the commands.

A logical library name is an optional argument to many simulator commands. If you do
not specify a logical library name for such commands, the default value is work.
Therefore, you must map the logical library name work to a physical directory name.
Some simulators add a default library mapping for the work library if you do not
specify a mapping in a library mapping file. It is legal to map multiple logical library
names to a single library directory.

Example library mapping file with logical library names foo_lib and
common_sim_lib:

foo_lib : /users/john/designs/foo_dir
common_sim_lib : /usr/sim/common/libraries

Note: syntax of library mapping file varies with simulator

1.3.1.1. Why Do We Need Logical Library Names?

Using logical library names instead of physical directory names in command
invocations and in HDL files (especially VHDL files) simplifies some aspects of
simulation. Use of logical library names makes it easier to port simulation scripts when
moving the scripts across machines and disks because you only need to update the
library mapping to reflect any new library directory paths in the new environment.

For example, Intel recommends compiling Quartus Prime simulation library files into
fixed logical library names. You can then map the logical library names to appropriate
library directory paths.

1.3.2. Compiling Files Into Library Directories

Many simulators include commands to compile one or more files, specified in some
order, into a single library directory. You specify the library directory by specifying its
logical library name. Some simulators have one command for compiling Verilog HDL or
SystemVerilog files, and a different command for compiling VHDL files.

The following section describes the various commands for compiling files into library
directories.

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2.1. Inputs to Compilation Commands

Compilation commands accept the following inputs:

• An ordered list of one or more HDL file names, usually file names separated by
spaces.

Note: The file order is important in some cases, as Order of Files for Compilation
Commands explains.

• (Optional) Command line options to configure the compilation behavior, as
Compilation Command-Line Options describes.

• (Optional) The name of the logical library or a library directory name. When not
specified, the logical library default value is the work library, as Specifying Logical
Libraries describes.

Note: 1. You can compile two or more files using a single compilation command if you can
compile them into the same library, and they require the same compilation
options. The compilation command can take a list of HDL files as input.

2. You can compile files defining modules that are not part of the design or
testbench. The elaboration stage ignores such modules. In fact, in practice, you
typically compile many more modules than are required to simulate the top-level
testbench module.

The compilation command generates outputs, as Compilation Stage describes.

1.3.2.2. Order of Files for Compilation Commands

The order of files that you specify to compilation commands is irrelevant for Verilog
and SystemVerilog files in many instances. The main exception is when there are files
defining SystemVerilog packages, or other files that import or otherwise refer to those
SystemVerilog packages.

Important: You must compile the files defining the SystemVerilog packages before compiling the
files that import or refer to those packages. Otherwise, the compilation command
errors out when compiling files that import or refer to those SystemVerilog packages.

For example, suppose file multp_pkg.sv defines the SystemVerilog package multp,
and the file my_design.sv imports package multp:

• If you compile both multp_pkg.sv and my_design.sv with a single compilation
command, you must ensure that multp_pkg.sv occurs before my_design.sv.

• If you compile multp_pkg.sv and my_design.sv using separate compilation
commands, you must ensure that you run the command that is compiling
multp_pkg.sv first.

VHDL has stricter requirements for ordering the files. For example, when a VHDL file
foo.vhd refers to a logical library name lib1, you must compile the files into lib1
first, before compiling foo.vhd into another library.

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2.3. Compilation Command Line Options

Some of the optional command-line arguments for the compilation command (not
including HDL file names and library names) include:

• The type of file for compilation (Verilog HDL, SystemVerilog, or VHDL).

• The values of the Verilog macros to pass in.

• The directories containing Verilog "include" files. These are files included in a
Verilog HDL file using the `include construct.

• Simulator-specific optimization switches.

1.3.2.4. Module Definitions in Library Directories

A library directory can contain one or more module definitions, as well as other
elements, such as SystemVerilog package definitions.

A library directory can store only one module definition per module. For example, if
the adder.sv and adder_fast.sv files define the same module adder, but have
different implementations (perhaps adder_fast.sv implements a fast adder), then
compiling both files into the same library directory with a single compilation command
results in a compilation error. However, you can compile the adder.sv and
adder_fast.sv files into different library directories.

You can also replace an existing module definition in a library with another module
definition with the same module name. For example, if a library directory already
includes a module definition for adder (from compiling file adder.sv), and you
compile the adder_fast.sv file into that library directory, the existing module
definition in the library directory is replaced with the module definition from
adder_fast.sv.

1.3.3. The Quartus Prime Simulation Library

The Quartus Prime software includes the Quartus Prime simulation library. This library
is comprised of Verilog HDL and VHDL files in the following directory:

<quartus_installation>/quartus/eda/sim_lib

This library includes simulation models for all low-level blocks that you instantiate in
your design. The library includes the following different types of low level blocks:

Table 1. Low Level Blocks in Simulation Library

Low-Level Blocks Description

Gate-Level Primitives Gate-level primitives include simple, non-parameterized modules, such as AND gates and flip-
flops. altera_primitives.v and altera_primitives.vhd define the gate-level primitives.
These primitives are only used in RTL designs. Post-synthesis and post-fit netlists do not include
these primitives. Rather, these netlists include ATOMs.

Basic IP Function
Blocks

Previously known as "megafuctions," these are basic parameterized blocks for functions such as
FIFOs and multipliers. Only RTL designs use these blocks. Post-synthesis and post-fit netlists do
not include these blocks.

ATOMs Also known as WYSIWYGs, ATOMs are the lowest level primitives in an Quartus Prime design.
There are different ATOM primitives, all of them parameterized modules with varying complexity.
They represent the hardware blocks on the FPGA. For example there are ATOM modules that
represent the I/O pins and buffers, FPGA lookup tables, DSP blocks, RAM blocks, and periphery

continued...

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Low-Level Blocks Description

blocks, such as high speed transceivers and hardened Ethernet and PCIe blocks. You are not
expected to instantiate ATOMs directly in your RTL. Rather, the ATOMs are instantiated in the RTL
files that the Quartus Prime software generates. Since the Quartus Prime synthesis maps the
design to ATOMs, the post-synthesis and post-fit netlists are netlists of ATOMs, known as ATOM
netlists. The Fitter places and routes the ATOM netlist.

HDL Library Files You compile the HDL library files into fixed logical locations, as Compiling Files into Library
Directories describes. You must not compile the libraries for Questa* Intel® FPGA Edition. Instead
use the included precompiled libraries.

1.3.3.1. The Quartus Prime Simulation Library Compiler

The Quartus Prime Simulation Library Compiler is an Quartus Prime software GUI and
command-line tool that generates simulation scripts. You can use these scripts to
automatically compile the Quartus Prime software simulation libraries for a given
simulator, device family, and hardware description language (Verilog HDL or VHDL).

Note: For Questa Intel FPGA Edition, do not use the Simulation Library Compiler to compile
the libraries in Questa Intel FPGA Edition. Instead, you must use the Questa Intel
FPGA Edition precompiled libraries included with this simulator.

Related Information

Questa Intel FPGA Edition Simulation User Guide

1.3.3.2. Running the Simulation Library Compiler in a Terminal

You can run the Quartus Prime Simulation Library Compiler in a terminal without
launching the Quartus Prime software GUI.

The following example command generates the Questasim compile.do simulation
script that compiles all Verilog HDL simulation files for the specified Agilex™ 7 device
family.

quartus_sh –simlib_comp -family agilex7 -tool questasim \
 -language verilog -gen_only -cmd_file compile.do

To view all available command-line options, you can run the following command:

quartus_sh --help=simlib_comp

1.3.3.3. Running the Simulation Library Compiler in the GUI

To automatically compile all required simulation model libraries for your design in your
supported simulator using the Simulation Library Compiler GUI, follow these steps:

1. In the Quartus Prime software, click Tools ➤ Launch Simulation Library
Compiler.

2. Specify options for your simulation tool, language, target device family, and output
location, and then click OK. Simulation model compilation may require up to an
hour, depending on your system. Although the compilation messages may appear
paused or incomplete, compilation is still running correctly.

3. Use the compiled simulation model libraries to simulate your design. For
information about running simulation, refer to your supported EDA simulator's
documentation.

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

12

https://www.intel.com/content/www/us/en/docs/programmable/730191.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Simulation Library Compiler GUI

1.3.3.4. Finding Logical Library Names in Simulation Library Compiler Output

After you generate the simulation script using the Simulation Library Compiler, you
may need to inspect the script to identify the logical library names for use with your
elaboration command (vsim).

To identify the logical library names for Quartus Prime simulation libraries in the
generated script, search for all of the lines that begin with vmap, such as the following
line:

vmap altera_ver "./verilog_libs/altera_ver"

The first argument to vmap is the logical library name (altera_ver). The second
argument is the physical directory where the library content is stored. This second
argument is irrelevant for Questa Intel FPGA Edition because you do not run the
command.

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.4. Understanding Elaboration

Simulator elaboration is analogous to the linking step in C/C++ programming that
produces an executable binary file.

You can run elaboration with a single command that accepts the following inputs and
generates an executable model for the top-level testbench module name:

• An ordered list of logical library names. You can specify the ordered list of logical
library names either explicitly on the elaboration command line, or by ordering
them in the library mapping file. If reading from the library mapping file, the
simulator uses the order of logical libraries in the library mapping file.

• (Optional) Elaboration options.

• Top-level testbench module name.

• (Optional) The name of the logical library containing the top-level testbench
module definition. If omitted, the top-level testbench module defaults to the work
library.

The elaboration command does not read any HDL files. The elaboration command only
reads the library directories containing the module definitions.

An important part of elaboration is to find the module definitions for all the module
instances in the top-level testbench module hierarchy. This identification is described
as binding the module instances to their module definitions, or linking the module
instances to their module definitions. Understanding the binding process during
elaboration is important when debugging common elaboration errors, as Elaboration
Binding Phase describes.

1.3.4.1. Elaboration Binding Phase

Elaboration works in a top-down manner to bind module instances in the following
order:

1. Elaboration finds the top-level testbench module definition, given the module
name and the library that contains the module definition as input. Typically, you
compile the top-level testbench module into the work library. For example,
specifying the top-level testbench module as foo with no library name, is
equivalent to specifying the top-level testbench module as work.foo.

2. Elaboration reads the module definition, and identifies all the module instances in
the top-level testbench module.

3. Elaboration attempts to find the module definitions for all instances in the top-
level testbench, one instance at a time.

For example, for an instance inst1 of module foo in the top-level testbench
module tb, elaboration attempts to find the definition of module foo by searching
for foo in the first library in the ordered list of library directories. If elaboration
cannot find the module definition in the first library directory, it searches in the
second library directory, and so on.

Once elaboration finds the definition of foo in a library directory, it stops
searching for the definition. Therefore, if foo is defined in multiple library
directories, elaboration uses only the first instance, and ignores any other
instances. In this way, elaboration binds inst1 to foo.

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Elaboration attempts to find all of the module instances within foo, and then to
find the module definitions for those instances using the same process that
elaboration followed for binding foo.

5. Elaboration recursively attempts to bind all the module instances within the foo
module's hierarchy before processing other instances in the top-level testbench
tb.

6. The elaboration stage ends in one of the following ways:

• All instances in the top-level testbench hierarchy are bound to modules, and
elaboration succeeds.

• An error is generated because elaboration cannot bind one or more instances
in the top-level testbench module hierarchy to modules.

1.3.4.2. Elaboration Checks

The elaboration command performs several checks. For example, elaboration verifies
that the module definitions are consistent with their instantiations. This check
confirms that a module’s ports and parameter definitions match the corresponding
module instances.

1.3.4.3. Elaboration Options

There are many simulator specific elaboration options that you can specify. One
common elaboration option preserves specific signal names so that their waveforms (a
record of how the signals change with time) can be recorded during simulation. The
rationale behind this option is explained below.

The elaboration stage generally includes an optimization step. The optimization step
attempts to build an optimized executable simulation model that can run faster or
consume less memory during simulation.

There are many signals (defined as wire, reg, or logic variables) in a typical design
and testbench hierarchy. At the end of a simulation, any signal can produce a
simulation waveform.

The optimization step may be unable to fully optimize the executable simulation model
if most of the signals in the testbench hierarchy are preserved. Therefore, it is best to
limit the signals that you preserve to those that require waveforms during simulation.
You can specify the signals to preserve at varying level of granularity. For example,
you can specify specific signal names, or all signals within a module instance.

1.3.5. Commands To Configure and Run Simulation

Once you generate the executable simulation model during elaboration, you can run
the executable simulation model to simulate the top-level testbench module.

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There are several different methods to configure and run simulation. The following are
some of the typical simulator commands and options that you can use for simulation:

• You can specify which signals that you want the simulator to record during
simulation. You must ensure that those signals are preserved during the
elaboration stage, as Elaboration Options explains.

The simulator writes the waveforms of these signals to a simulator proprietary
database during simulation. You can view the waveforms in a GUI after simulation.

Note: You cannot record or display signals in encrypted HDL files with the
simulator.

• You can specify the amount of simulation time to simulate the top-level testbench
module. For example, you can specify a simulation time of 1 milliseconds.

• You can specify an option to wait for simulation licenses. This option is applicable
when using floating simulation licenses. Some simulators exit immediately if there
are no available floating licenses for simulation.

1.3.6. FPGA Simulation Generic Workflow

The following describes the high level workflow for simulation of any Quartus Prime
design using any supported simulator:

Figure 6. Generic FPGA Simulation Workflow

Identify Files & Testbench Compile Into Libraries

File
HDL

.v, .vhd, .ip
.qsys

“top”
Test

Bench

Sim
Library
Files Lib A

work

Lib B

Assemble Simulation Script

1

5

2

3

4

Elaborate Top-Level
 Testbench

Simulation
Run

1. Identify all of the HDL simulation files, including design files, simulation library
files, and HDL testbench files.

2. Identify the top-level test bench module for simulation.

3. For each HDL simulation file, determine the logical library for compilation, and any
compilation options for compiling the file.(1)

4. Determine any simulator-specific elaboration options required for elaborating the
top- level testbench module, as Understanding Elaboration describes.

5. Use the information gathered in previous steps to assemble a simulation script to
compile, elaborate, and simulate the design. This script must include commands to
perform the following:

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Compile the simulation files into libraries, as Compiling Files into Library
Directories describes.

• Elaborate the Top-Level testbench, as Understanding Elaboration describes.

• Run the executable simulation model to simulate the testbench and the
design, using the appropriate commands for your simulator to configure and
run simulation.

The Quartus Prime software can generate simulator-specific simulation scripts to
automate some of the simulation processing in your preferred simulation environment.

The Quartus Prime software can generate a simulator specific simulation script for an
IP core, or a Platform Designer system, for use in RTL simulation. The script includes
commands to compile all the IP RTL files, as well as an elaboration command with any
simulator specific options.

The Quartus Prime software can generate a simulation library compilation script for a
given simulator, device family, and language. This script includes commands to
compile the simulation library files for the specified simulator, device family, and
language. You can use this script for RTL simulation and gate-level simulation.

1.4. Supported Simulation Flows

The Quartus Prime software supports scripted and specialized simulation flows.

Table 2. Simulation Flows

Simulation Flow Description

Scripted Simulation
Flows

Scripted simulation supports custom control of all aspects of simulation, such as custom
compilation commands, or multipass simulation flows. Use a version-independent top-level
simulation script that sources Quartus Prime-generated IP simulation setup scripts. The Quartus
Prime software can generate a combined simulator setup script for all IP cores, for each supported
simulator.

Run Simulation You can use the Run Simulation feature in the Quartus Prime Pro Edition software to integrate
your supported third-party EDA simulator and automate generation of simulator-specific files and
setup scripts, compilation of simulation libraries, and launch of your simulation.

Qrun Flow The Qrun flow optionally creates simulation files, including the functional simulation model, and
any testbench (or example design) for the QuestaSim* and Questa Intel FPGA Edition simulators
only. The Qrun flow can automatically combine the compile, optimize, and simulate functions into
a single step.

Specialized Simulation
Flows

Specialized simulation flows support various design scenarios:
• For simulation of example designs, refer to the example design pr IP documentation.
• For simulation of Platform Designer designs, refer to Simulating Platform Designer Systems in

Quartus Prime Standard Edition User Guide: Platform Designer.
• For simulation of the Nios® V processor, refer to the Nios V Embedded Processor Design

Handbook.

1.5. Supported Hardware Description Languages

The Quartus Prime software provides the following hardware description language
(HDL) support for EDA simulators.

(1) In general, you can compile most HDL simulation files into the default work library.

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3. HDL Support

Language Support Description

VHDL • For VHDL simulation, you compile design files, testbench files, and Platform designer generated
RTL files using simulator commands.

• For all supported simulators other than Questa Intel FPGA Edition, you must also compile
simulation models from the Quartus Prime simulation libraries.

• Many of the Quartus Prime simulation models and IP RTL files are implemented in Verilog or
SystemVerilog only. Therefore, you may require a simulator that is capable of VHDL and Verilog
HDL mixed language simulation.

Verilog /
SystemVerilog

• For Verilog or SystemVerilog simulation, you compile design files, testbench files, and Platform
Designer generated RTL files using simulator commands.

• For all supported simulators other than Questa Intel FPGA Edition, you must also compile
simulation models from the Quartus Prime simulation libraries.

• There are some IP RTL files that are implemented in VHDL only. Therefore, you may require a
simulator that is capable of VHDL and Verilog HDL mixed language simulation.

Mixed HDL • If your design is a mix of VHDL, Verilog HDL, and SystemVerilog files, you must use a mixed
language simulator.

• The Questa Intel FPGA Edition software supports native, mixed-language (VHDL/Verilog HDL/
SystemVerilog) simulation.
If you have a VHDL-only simulator and need to simulate Verilog HDL modules and IP cores, you
can either acquire a mixed-language simulator license from the simulator vendor, or use the
Questa Intel FPGA Edition simulator.

Schematic • You cannot simulate a schematic in any of the simulators that the Quartus Prime software
supports.

• To perform RTL simulation of the schematic, you must convert the schematic to HDL format and
run RTL simulation on the HDL. The Quartus Prime Pro Edition software cannot perform schematic
conversion.

• To perform post-synthesis or post-fit simulation, you must first compile the schematic based
design in the Quartus Prime software, generate a gate-level Verilog HDL or VHDL simulation
netlist, and perform simulation on the gate-level netlist.

1.6. Supported Simulation Types

You can run different types of simulation, depending on the stage of the Quartus
Prime design flow:

Table 4. Supported Simulation Types

Simulation Type Description Occurs

RTL Simulation of an RTL design consisting of one or more RTL files that you
provide as input to the Quartus Prime software. These RTL files typically
also include the files that the Quartus Prime Platform Designer generates
for Intel FPGA IP and systems. You can only simulate HDL RTL files.(2).
The RTL files can instantiate low level blocks, such as primitives, basic IP
functions, and ATOMs, as Intel Quartus Prime Simulation Library
describes.

Can perform before
Quartus Prime
Synthesis

Post-Synthesis
Simulation (Gate-
Level)

The Quartus Prime software can generate a Verilog HDL or VHDL gate-
level netlist after the synthesis stage completes, but before the Fitter
stage runs. The resulting netlist is the post-synthesis netlist. The

Must perform after
Quartus Prime
synthesis

continued...

(2) You must first convert the non-HDL files to HDL files prior to simulation

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulation Type Description Occurs

Quartus Prime EDA Netlist Writer tool generates the post-synthesis
netlist. The post-synthesis netlist is a netlist of low level blocks called
ATOMs. The post-synthesis netlist is a purely functional netlist.

Post-Fit Simulation
(Gate-Level)

The Quartus Prime EDA Netlist Writer can generate a Verilog HDL or
VHDL gate-level netlist after the Fitter stage completes. The resulting
netlist is the post-fit netlist. The post-fit netlist is a netlist of ATOMs that
the Fitter placed and routed on the FPGA device. The post-fit netlist is a
purely functional netlist.
Note: The post-fit netlist includes chip locations of ATOM instances in

commented lines. The post-synthesis netlist does not include this
data.

Must perform after
Quartus Prime Fitter

Note: the Quartus Prime software supports post-fit functional simulation, but does not
support post-fit timing simulation.

1.7. Supported Simulators

The Quartus Prime software supports the following EDA simulator versions for RTL and
gate-level simulation.

Table 5. Quartus Prime Pro Edition Supported Simulators

Vendor Simulator Version Platform Supports
Siemens EDA

Verification IP

Aldec Active-HDL* 14.0 Windows* 64-bit No

Aldec Riviera-PRO* 2023.10 Windows, Linux, 64-bit No

Cadence Xcelium* Parallel Simulator 23.09.004 Linux 64-bit Yes

Altera Questa Intel FPGA Edition 2023.4 Windows, Linux, 64-bit Yes

Siemens EDA QuestaSim Simulator(3) 2023.4 Windows, Linux, 64-bit Yes

Synopsys* VCS*, VCS MX U-2023.03-
SP2-1

Linux 64-bit Yes

Table 6. Quartus Prime Standard Edition Supported Simulators

Vendor Simulator Version Platform

Aldec Active-HDL 14.0 Windows

Aldec Riviera-PRO 2023.04 Windows, Linux

Cadence Xcelium 23.03.003 Linux

Altera Questa Intel FPGA Edition 2023.3 Windows, Linux

Siemens EDA QuestaSim 2023.2 Windows, Linux

Synopsys VCS
VCS MX

U/2023.03-1 Linux

(3) QuestaSim is the generic name for Questa Core and Questa Prime simulators from Siemens
EDA.

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Questa Intel FPGA Edition Simulation User Guide

• IBIS Models for Intel FPGA Devices

1.8. Post-Fit Simulation Support by FPGA Family

The current version of the Quartus Prime Pro Edition software provides the following
post-fit functional simulation support per FPGA family. In the table, Core fabric is the
main FPGA die that includes lookup tables, M20K memories, and DSP blocks. Basic
I/Os do not include complex interfaces, such as transceivers or external memory
interfaces.

Table 7. Post-Fit Simulation Support by FPGA Family

FPGA Family Post-Fit Simulation Support Level

Agilex 7 F-Series FPGAs Limited support for designs that contain only core fabric logic and basic I/Os.

Agilex 7 M-Series FPGAs Limited support for designs that contain only core fabric logic and basic I/Os.

Agilex 7 I-Series FPGAs Limited support for designs that contain only core fabric logic and basic I/Os.

Stratix® 10 FPGAs Limited support for designs that contain only core fabric logic and basic I/Os.

Cyclone® 10 GX FPGAs Limited support for designs that contain only core fabric logic and basic I/Os.

Arria® 10 FPGAs Limited support for designs that contain only core fabric logic and basic I/Os.

Note: For more information, refer to the specific FPGA device user guide.

1.9. Automating Simulation with the Run Simulation Feature

You can use the Run Simulation feature in the Quartus Prime Pro Edition software to
integrate your supported third-party EDA simulator and automate the following steps
of the simulation flow:

• Automatic generation of simulator-specific files and setup scripts.

• Automatic compilation of simulation libraries.

• Automatic launch of your simulator after running Quartus Prime Analysis &
Elaboration.

You can use the simulation scripts that Run Simulation generates as a starting point to
create more custom simulation scripts that may be required for large or complex FPGA
designs.

Note: The current version of the Quartus Prime Pro Edition software supports the Run
Simulation feature for only RTL simulation, not gate-level simulation.

1.9.1. Setting Up the Run Simulation Feature

You must first setup the Run Simulation feature before using it to automate portions of
the simulation flow.

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

20

https://www.intel.com/content/www/us/en/docs/programmable/730191.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html?wapkw=IBIS%20Models
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To setup the Run Simulation feature by specifying the settings that identify your
simulator, output path, and other options, follow these steps:

1. Open a project in the Quartus Prime software.

2. Click Tools ➤ Options ➤ EDA Tool Options and specify the location of your
simulator executable file, as Execution Paths for Supported EDA Simulators
describes in detail.

Figure 7. Specifying Simulator Install Path

<drive letter>:\<simulator install path>\

3. To enable automated generation of the IP simulation models whenever you
generate HDL for IP in Platform Designer, click Tools ➤ Options ➤ Board and IP
Settings ➤ IP Simulation. Make sure Generate IP simulation model when
generating IP option is turned on, as Simulation Options describes in detail.

Figure 8. Specifying Automated IP Simulation Model Generation

4. Click Assignments ➤ Settings ➤ EDA Tool Settings ➤ Simulation and specify
the following simulation settings:

a. For Testbench Specification, click the New button and enter the testbench
information, including the Top level module in testbench, Simulation
period, and Testbench and simulation files options.

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Defining Testbench Specification

b. Click the Simulation Flow Settings button to specify additional options for
the automated simulation flow, as Simulation Flow Settings describes in detail.

Figure 10. Simulation Flow Settings

1.9.1.1. Installation Paths for Supported EDA Simulators (EDA Tool Options
Page)

The following are execution paths for supported EDA simulators. Click Tools ➤
Options ➤ EDA Tool Options to specify the execution path to automatically launch
your simulator.

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8. Installation Directory Paths for Supported EDA Simulators

Simulator Path

Questa Intel FPGA Edition Windows: <drive letter>:\<simulator install path>\
Linux: <simulator install path>/

Siemens EDA QuestaSim Windows: <drive letter>:\<simulator install path>\
Linux: <simulator install path>/

Synopsys VCS/VCS MX(4) Linux: <simulator install path>/bin

Aldec Active-HDL Windows: <drive letter>:\<simulator install path>\bin

Aldec Riviera-PRO Windows: <drive letter>:\<simulator install path>\bin
Linux: <simulator install path>/bin

Cadence Xcelium(4) Linux: <simulator install path>/tools/bin/64bit

1.9.1.2. Simulation Options (Board and IP Settings Page)

The following options impact automated IP simulation model generation. Click Tools
➤ Options ➤ Board and IP Settings ➤ IP Simulation to specify the whether to
always generate IP simulation models when generating IP for one or more simulator..

Table 9. Simulation Options (Board and IP Settings Page) Options Dialog Box

Option Allowed Values Description

Tool name <None>(5)

Active-HDL(6)

Riviera-PRO
QuestaSim
Questa Intel FPGA Edition
VCS/VCS MX(4)

Custom(6)

Xcelium(4)

Specifies the supported simulator to automatically run.

Format for output
netlist

Verilog HDL
VHDL

Specifies Verilog or VHDL as the format for the output
netlist. The setting does not apply to RTL simulation.

Output directory Any valid path Specifies the directory to store all output files for
simulation. Default is simulation/<simulator>.

Map illegal HDL
characters

Disabled (Default)
Enabled

When enabled, directs the EDA Netlist Writer to map
illegal characters for VHDL or Verilog HDL. The setting
does not apply to RTL simulation.
If you select VHDL for Format for output netlist, the
EDA Netlist writer maps non-alphanumeric characters,
including brackets ([]), parentheses, (()), angle
brackets (<>), and braces ({}) to (_a) in VHDL Output
Files. This option generates VHDL 1987 compatible
names.

continued...

(4) Only supported for Linux OS.

(5) Not supported by Run Simulation

(6) Only supported for Windows OS.

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Allowed Values Description

If you select Verilog HDL for Format for output
netlist, the EDA Netlist writer maps the vertical bar (|),
tilde (~), and colon (:) characters in hierarchical node
names to the legal Verilog HDL characters z, x, and
underscore (_) in Verilog Output Files. This option also
maps other illegal non-alphanumeric characters,
including brackets ([]), parentheses, (()), angle
brackets (<>), and braces ({}) to underscore (_).

1.9.1.3. Simulation Flow Settings (EDA Tool Settings Page)

The simulation flow settings allow you to specify additional options for the automated
simulation flow. Click Assignments ➤ Settings ➤ EDA Tool Settings ➤ Simulation
➤ Simulation Flow Settings to specify any of the following additional options.

Table 10. Simulation Flow Settings (EDA Tool Settings Page) Settings Dialog Box

Name Setting Description

Additional custom
simulation elaboration
options

Allows you to specify additional custom simulation elaboration
options for one or more simulators. For example:
questa=-suppress 2732 -suppress 14408 -suppress
16154

vcs=+define+IP7521SERDES_ UX_SIMSPEED

Clean the previous
simulation compile
directory if exists

Off
On (Default)

Allows you to clean (On) or retain (Off) the simulation
directory created by the previous simulation run.

Generate third-party
EDA tool command
scripts

Off
On (Default)

Allows you to generate only the command scripts for the
third-party EDA tool without launching the simulator itself.
Select Off to launch the simulator using the Run Simulation
feature.

Launch third-party
EDA-tool in command-
line mode

Off (Default)
On

Allows you to launch a third-party EDA tool in command-line
mode (On) rather than opening the GUI (Off).

1.9.1.4. More EDA Netlist Writer Settings (EDA Tool Settings Page)

The More EDA Netlist Writer Settings dialog box allows you to specify settings that
control how the Compiler generates and formats the gate-level netlist for gate-level
simulation. These setting do not apply to RTL simulation.

Click Assignments ➤ Settings ➤ EDA Tool Settings ➤ Simulation ➤ More EDA
Netlist Writer Settings to specify any of the following additional options.

Table 11. More EDA Netlist Writer Settings (EDA Tool Settings Page)

Name Setting Description

Architecture name in
VHDL output netlist

structure Specify the name of the architecture in the generated VHDL
simulation netlist.

Bring out device-wide
set/reset signals as
ports

Off (Default)
On

Add the devpor, devclrn, and devoe signals in the
design as input ports in the top-level design hierarchy in
the Verilog or VHDL simulation netlist for the project.

Do not write top level
VHDL entity

Off (Default)
On

Do not write top-level entity in VHDL Output File (.vho).

continued...

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Setting Description

Flatten busses into
individual nodes

Off (Default)
On

Flattens all busses when creating the VHDL Output File
(.vho). Turn on this option if your third-party EDA
environment does not support buses.

Force Gate Level
Simulation Registers to
initialize to X (don’t
care) and propagate X

Off (Default)
On

Modifies output gate level simulation netlist to force all
registers to initialize to X (don’t care) and propagate X.

Generate Power
Estimate Scripts

Off (Default)
On

Write scripts for simulation tool to generate .vcd file for
outputs for power estimation.

Truncate long
hierarchy paths

Off (Default)
On

Truncate hierarchical node names to 80 characters.

1.9.2. Run RTL Simulation using Run Simulation in Batch Mode
(Command-Line)

You can run RTL simulation using the Run Simulation feature in batch mode by using
any of the following methods:

• By entering Tcl commands in the Quartus Prime Tcl Console.

• By entering global settings directly in the Quartus Prime Settings File (.qsf) (for
simulation environment setup only).

• By entering commands in the Quartus Prime command-line shell:

quartus_sh -t <script file> \
[<script args>]

Note: Cadence Xcelium only supports Run Simulation in batch mode. Aldec Active-HDL only
supports Run Simulation in the GUI mode.

1.9.2.1. Specifying Required Simulation Settings for Run Simulation (Batch
Mode)

There are both required and optional setting for use of Run Simulation in batch mode.

The following steps describe specifying the required simulation settings for use of Run
Simulation in batch mode:

1. Set the compatible EDA Simulator executable path. For example:

set_user_option -name EDA_TOOL_PATH_ QUESTA_INTEL /<simulator install
 path>/questa_fe_tag/24.1/92/linux64/linux_x86_64

set_user_option -name EDA_TOOL_PATH_ QUESTASIM /<simulator install
 path>/eda/mentor/questasim/2023.4/linux64/linux_x86_64

set_user_option -name EDA_TOOL_PATH_ VCS /<simulator install
 path>/eda/synopsys/vcsmx/U-2023.03-1/linux64/suse/bin

set_user_option -name EDA_TOOL_PATH_ VCS_MX /<simulator install
 path>/eda/synopsys/vcsmx/U-2023.03-1/linux64/suse/bin

set_user_option -name EDA_TOOL_PATH_ACTIVEHDL <drive letter>:\<simulator
install
 path>\eda\aldec\activehdl\13.0\windows64\bin

set_user_option -name EDA_TOOL_PATH_RIVIERAPRO /<simulator install
path>/eda/aldec/riviera/2023.04.082/linux64/bin

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_user_option -name EDA_TOOL_PATH_ XCELIUM /<simulator install
 path>/eda/cadence/xcelium/23.03.003/linux64/suse/tools.lnx86/bin

2. Specify your supported EDA Simulator and HDL:

set_global_assignment -name EDA_SIMULATION_TOOL
"<simulator> (HDL)"

If not set, the following is the default setting:

set_global_assignment -name EDA_SIMULATION_TOOL
"Questa Intel FPGA (Verilog)"

Table 12. Settings for EDA Simulator and HDL

Simulator Verilog VHDL

Questa Intel FPGA
Edition

Questa Intel FPGA (Verilog) Questa Intel FPGA (VHDL)

QuestaSim QuestaSim (Verilog) QuestaSim (VHDL)

VCS VCS N/A

VCS MX VCS MX (Verilog) VCS MX (VHDL)

Active-HDL Active-HDL (Verilog) Active-HDL (VHDL)

Riviera-PRO Riviera-PRO (Verilog) Riviera-PRO (VHDL)

Xcelium Xcelium (Verilog) Xcelium (VHDL)

3. Set the testbench and simulation file (if any) names, as well as the section ID
(arbitrary). This is a multi-value assignment. The following shows an example with
the testbench file 1 as the top-level testbench file:

set_global_assignment -name EDA_TEST_BENCH_FILE <testbench file 1>
-section_id testbenchSet
set_global_assignment -name EDA_TEST_BENCH_FILE <testbench file 2>
-section_id testbenchSet
set_global_assignment -name EDA_TEST_BENCH_FILE <testbench file 3>
-section_id testbenchSet

4. Set the top-level module name in the top testbench file.

set_global_assignment -name EDA_TEST_BENCH_TOP_MODULE <testbench top module
name>
 -section_id testbenchSet

1.9.2.2. Optional Simulation Settings for Run Simulation (Batch Mode)

There are both required and optional setting for use of Run Simulation in batch mode.

The following examples show how to specify optional simulation settings for use of
Run Simulation in batch mode:

Optional Setting To Run Simulation for Specific Time Interval

set_global_assignment -name EDA_TEST_BENCH_RUN_SIM_FOR “1 ns” \
-section_id testbenchSet

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optional Setting for Custom Wave File

set_global_assignment -name EDA_SIMULATION_WAVE_FILE_QUESTA_INTEL wave.do \
-section_id testbenchSet

Optional Setting for Elaboration Options

For Questa Intel FPGA Edition or QuestaSim:

set_global_assignment -name EDA_EXTRA_ELAB_OPTION
"questa=-suppress 2732 -suppress 14408 -suppress 16154" -section_id
eda_simulation

For VCS (Linux-only):

set_global_assignment -name EDA_EXTRA_ELAB_OPTION
"vcs=+define+IP7521SERDES_UX_SIMSPEED\ " -section_id eda_simulation

For VCS MX (Linux-only):

set_global_assignment -name EDA_EXTRA_ELAB_OPTION
"vcsmx=+define+IP7521SERDES_UX_SIMSPEED\ " -section_id eda_simulation

For Active-HDL (Windows* only):

set_global_assignment -name EDA_EXTRA_ELAB_OPTION
"activehdl=<third-party elab options>" -section_id eda_simulation

For Riviera-PRO:

set_global_assignment -name EDA_EXTRA_ELAB_OPTION
"rivierapro=<third-party elab option(s)>" -section_id eda_simulation

For Xcelium (Linux-only):

set_global_assignment -name EDA_EXTRA_ELAB_OPTION
"xcelium=<third-party elab option(s)>" -section_id eda_simulation

Simulator GUI or Batch Mode Operation Optional Setting

The default mode of this option is GUI mode. For simulator batch mode:

set_global_assignment -name EDA_LAUNCH_CMD_LINE_TOOL ON
-section_id eda_simulation

1.9.2.3. Launching Simulation with the Run Simulation Feature

After providing all the required and optional simulation settings, you can launch
simulation with the Run Simulation feature in the GUI (simulator window launched) or
batch (simulator window not launched) mode.

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To run RTL simulation in GUI mode (simulator window launched):

set_global_assignment -name EDA_LAUNCH_CMD_LINE_TOOL OFF -section_id
eda_simulation
execute_flow -simulation

• To run RTL simulation in batch mode (simulator window not launched):

set_global_assignment -name EDA_LAUNCH_CMD_LINE_TOOL ON -section_id
eda_simulation
execute_flow -simulation

• To generate top-level simulation and .do scripts only and not run simulation:

set_global_assignment -name EDA_SIMULATION_GENERATE_SCRIPT_ONLY ON -
section_id eda_simulation
execute_flow -simulation

1.9.2.4. Running RTL Simulation using Run Simulation

To run RTL Simulation using the Run Simulation feature, follow these steps:

1. Set up the Run Simulation feature, as Setting Up the Run Simulation Feature
describes.

2. If your design includes Intel FPGA IP, you generate the simulation model and
setup scripts for IP components and Platform Designer systems when generating
HDL for these IP. Click the Generate HDL button and specify Simulation options
for model generation. For system and IP generation details, refer to Quartus Prime
Pro Edition User Guide: Platform Designer.

3. Click Processing ➤ Start ➤ Start Analysis & Elaboration. The Compilation
Dashboard indicates when Analysis & Elaboration completes successfully.

4. In Quartus Prime Tcl Console, type the following command:

execute_flow -simulation

The Run Simulation feature compiles the simulation libraries and runs your
simulator automatically, according to your settings when Setting Up the Run
Simulation Feature. While the simulator is open, you are unable to make changes
in the Quartus Prime software. This prevents changes to the simulation settings
during simulation. The Quartus Prime software displays simulation output
messages from the EDA simulator in the Messages window.

5. Analyze the simulation results in your simulator. Correct any functional errors in
your design, testbench, or simulation script files. If necessary, re-simulate your
design to verify correct behavior.

Related Information

Quartus Prime Pro Edition User Guide: Platform Designer

1.9.2.5. Output Directories and Files for Run Simulation

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

28

https://www.intel.com/content/www/us/en/docs/programmable/683609.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Run Simulation generates subdirectories and files inside the following output
directories, according to your specifications in the Simulation Options.

./simulation/<simulator/arbitrary>/rtlsim/
 <project>_run_msim_rtl_<hdl>.do
 A .do file containing the simulator settings
 run_sim_command.sh (or .bat for Windows)
 A .sh/.bat file to rerun the simulation only (standalone, i.e., without
 rerunning Quartus Prime compilation and elaboration)
 <simulator/arbitrary>_transcript.log
 A simulator transcript file

./simulation/<simulator or arbitrary>/rtlsim/<project>_iputf_input
 ./aldec
 rivierapro_setup.tcl
 ./common
 modelsim_files.tcl
 riviera_files.tcl
 vcs_files.tcl
 vcsmx_files.tcl
 xcelium_files.tcl
 ./mentor
 msim_setup.tcl
 ./synopsys
 ./vcs
 vcs_setup.sh
 ./vcsmx
 synopsys_sim.setup
 vcsmx_setup.sh
 ./xcelium
 cds.lib
 hdl.var
 xcelium_setup.sh
 ./cds_libs
 Project library files

1.10. Intel FPGA Simulation Basics Revision History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Updated simulator versions supported in Supported Simulators topic.
• Revised Supported Simulation Flows topic to include the Run Simulation

feature.
• Added new Automating Simulation with the Run Simulation Feature

section.
• Applied phase I rebranding throughout.

2023.12.07 23.4 • Added new Post-Fit Simulation by Intel FPGA Family topic.
• Updated simulator versions supported in Supported Simulators topic.

2022.12.21 22.4 • Replaced all content in chapter with newly developed content more
suitable for basic understanding of FPGA design simulation.

• Updated chapter to reflect end of support for ModelSim and relocation
of Questa Intel FPGA Edition information to new Questa Intel FPGA
Edition Simulation User Guide.

2022.04.13 22.1 • Updated simulator versions supported in Simulator Support topic.
• Added note about longer compilation times to Compiling Simulation

Module Libraries topic.

continued...

1. FPGA Simulation Basics

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2021.10.05 21.3 • Updated simulator versions supported in Simulator Support topic.
• Revised name of Questa Intel FPGA Edition and QuestaSim for latest

guidelines throughout.
• Updated default output directory name to questa in Using the EDA

Netlist Writer topic.

2021.10.04 21.3 • Revised Generating IP Simulation Files steps to include generation of all
IP in the design at once.

2021.06.21 21.2 • Changed chapter title to FPGA Simulation Basics from Simulating Intel
FPGA Designs.

• Added support for Questa Intel FPGA Edition simulator throughout.
• Removed support for ModelSim - Intel FPGA Edition simulator

throughout.
• Updated simulator versions supported in Simulator Support topic.
• Added precompiled libraries footnote to Supported Hardware

Description Languages and Compiling Simulation Model Libraries topics.
• Revised Running a Simulation (Custom Flow) topic to add missing EDA

Netlist Writer step and related links.
• Replaced "Mentor Graphics" with "Siemens EDA" to reflect current

company name.
• Updated Supported Hardware Description Languages for note on

schematic conversion.
• Revised Scripting IP Simulation to correct typo in step 1.
• Added links to Incorporating Simulator Setup Scripts from the

Generated Template topic.

2021.03.29 21.1 • Added note about X propagation limit of the Quartus Prime-provided
clock divider simulation model to the Compiling Simulation Model
Libraries topic.

2020.10.10 20.1 • Revised Generating IP Simulation Files topic for new simulation file
output options.

• Updated supported simulator versions and removed support for
Cadence Incisive Enterprise* in Simulator Support topic.

1. FPGA Simulation Basics

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Siemens EDA QuestaSim Simulator Support
This chapter provides guidelines for simulation of Quartus Prime designs with the
supported Siemens EDA QuestaSim simulators.

Note: Intel also provides the Questa Intel FPGA Edition simulator, a version of the Questa
Advanced simulator targeted for Intel FPGA devices. The Questa Intel FPGA Edition
simulator supports the Intel FPGA gate-level simulation libraries, and includes
behavioral simulation, HDL test benches, and Tcl scripting support. Refer to the Questa
Intel FPGA Edition Simulation User Guide for complete information.

Related Information

Questa Intel FPGA Edition Simulation User Guide

2.1. Quick Start Example (QuestaSim with Verilog)

You can adapt the following RTL simulation example to get started quickly with
QuestaSim:

1. To specify your EDA simulator and executable path, type the following Tcl package
command in the Quartus Prime tcl shell window:

set_user_option -name EDA_TOOL_PATH_QUESTASIM <questasim
executable path>

set_global_assignment -name EDA_SIMULATION_TOOL "QuestaSim
(Verilog)"

2. Compile simulation model libraries using one of the following methods:

• To automatically compile all required simulation model libraries for your design
in your supported simulator, click Tools ➤ Launch Simulation Library
Compiler. Specify options for your simulation tool, language, target device
family, and output location, and then click OK.

• Type the following commands to create and map Intel FPGA simulation
libraries manually, and then compile the models manually:

vlib <lib1>_ver
vmap <lib1>_ver <lib1>_ver
vlog -work <lib1> <lib1>

Use the compiled simulation model libraries during simulation of your design.
Refer to your EDA simulator's documentation for information about running
simulation.

3. Compile your design and testbench files:

vlog -work work <design or testbench name>.v

683870 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/730191.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4. Load the design:

vsim -L work -L <lib1>_ver -L <lib2>_ver work.<testbench name>

2.2. QuestaSim Simulator Guidelines

The following guidelines apply to simulation of Quartus Prime designs with QuestaSim.

2.2.1. Passing Parameter Information from Verilog HDL to VHDL

You must use in-line parameters to pass values from Verilog HDL to VHDL.

By default, the x_on_violation_option logic option is enabled for all design
registers, resulting in an output of “X” at timing violation. To disable “X” propagation
at timing violations on a specific register, disable the x_on_violation_option logic
option for the specific register, as shown in the following example from the Quartus
Prime Settings File (.qsf).

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \
<register_name>

Example 1. In-line Parameter Passing Example

lpm_add_sub#(.lpm_width(12), .lpm_direction("Add"),
.lpm_type("LPM_ADD_SUB"),
.lpm_hint("ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO"))

lpm_add_sub_component (
 .dataa (dataa),
 .datab (datab),
 .result (sub_wire0)
);

Note: The sequence of the parameters depends on the sequence of the GENERIC in the
VHDL component declaration.

2.2.2. Viewing Simulation Messages

QuestaSim simulator error and warning messages are tagged with a vsim or vcom
code. To determine the cause and resolution for a vsim or vcom error or warning, use
the verror command.

For example, QuestaSim may return the following error:

** Error: C:/altera_trn/DUALPORT_TRY/simulation/questa/DUALPORT_TRY.vho(31):
 (vcom-1136) Unknown identifier "stratixiv"

In this case, type the following command:

verror 1136
The following description appears:

vcom Message # 1136:
The specified name was referenced but was not found. This indicates
that either the name specified does not exist or is not visible at
this point in the code.

2. Siemens EDA QuestaSim Simulator Support

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.3. Generating Signal Activity Data for Power Analysis

To generate and use simulation signal activity data for power analysis:

1. To run full compilation on your design, click Processing ➤ Start Compilation.

2. To specify settings for simulation output, click Assignments ➤ Settings ➤ EDA
Tool Settings ➤ Simulation. Select your simulator in Tool name and the
Format for output netlist and Output directory.

Figure 11. EDA Tool Settings for Simulation

3. Turn on Map illegal HDL characters. This setting directs the EDA Netlist Writer
to map illegal characters for VHDL or Verilog HDL, and results in more accurate
data for power analysis.

4. Click the Power Analyzer Settings page.

5. Under Input file, turn on Use input files to initialize toggle rates and static
probabilities during power analysis.

Figure 12. Specifying Power Analysis Input Files

6. To specify a .vcd for power analysis, click Add and specify the File name,
Entity, and Simulation period for the .vcd, and click OK.

7. To enable glitch filtering during power analysis with the .vcd you generate, turn
on Perform glitch filtering on VCD files.

8. To run the power analysis, click Start on the Power Analysis step in the
Compilation Dashboard. View the toggle rates in the power analysis results.

2. Siemens EDA QuestaSim Simulator Support

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.4. Viewing Simulation Waveforms

QuestaSim automatically generates a Wave Log Format File (.wlf) following
simulation. You can use the .wlf to generate a waveform view.

To view a waveform from a .wlf through QuestaSim, perform the following steps:

1. Type vsim at the command line. The QuestaSim dialog box appears.

2. Click File ➤ Datasets. The Datasets Browser dialog box appears.

3. Click Open and select your .wlf.

4. Click Done.

5. In the Object browser, select the signals that you want to observe.

6. Click Add ➤ Wave, and then click Selected Signals.
You must first convert the .vcd to a .wlf before you can view a waveform in
QuestaSim.

7. To convert the .vcd to a .wlf, type the following at the command-line:

vcd2wlf <example>.vcd <example>.wlf

8. After conversion, view the .wlf waveform in QuestaSim.

2.3. Using the Qrun Flow

The Quartus Prime Pro Edition software now supports a new Qrun flow for IP
generation. The Qrun flow optionally creates simulation files, including the functional
simulation model, and any testbench (or example design).

The Qrun flow, for use with only the QuestaSim and Questa Intel FPGA Edition
simulators, is an enhancement over the traditional flow that can automatically
combine the compile, optimize, and simulate functions into a single step.

This section describes how to specify the Qrun settings, generate the system or
component simulation model and simulator setup scripts, and generate the testbench
and example design.

2.3.1. Specifying Simulation File Generation Settings

Before generating simulation files using the Qrun flow, you specify your supported
simulator and other options for simulation file generation. These setting impact the
generation of simulation files when generating HDL for IP in your project.

To specify simulation file generation settings, follow these steps:

1. In the Quartus Prime Pro Edition software, click Assignments ➤ Settings ➤
Board and IP Settings. The Board and IP Settings dialog box appears.

2. Under IP Simulation, turn on Generate IP simulation model when
generating IP. Turning on this option enables the remaining settings.

3. For Select simulator specific simulation flow, make sure Qrun is selected to
enable the Qrun flow. The alternative setting runs the Traditional flow.

2. Siemens EDA QuestaSim Simulator Support

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Board and IP Settings Page of Settings Dialog Box

4. To specify one or more specific simulators for which to generate simulation files,
enable the checkbox for those simulators. To enable generation for all supported
simulators, leave all checkboxes disabled (default setting).

To generate the simulation model and simulator setup scripts for your Platform
Designer system or IP component in batch mode, use this command:

ip-make-simscript [args] --modelsim_flow=QRUN

Type ip-make-simscript -help for all available arguments ([args]).

2.3.2. Generating the Simulation Model and Setup Scripts

You generate the simulation model and setup scripts for IP components and Platform
Designer systems when generating HDL for these IP in your project.

Platform Designer generates the simulation model and setup scripts according to your
specifications in Specifying Simulation File Generation Settings.

To generate the simulation model and simulator setup scripts for your Platform
Designer system or IP component, follow these steps:

1. In the Quartus Prime Pro Edition software, click Tools ➤ Platform Designer and
open or create an IP variant or Platform Designer system.

2. After specifying any IP component or system parameters in the parameter editor,
click the Generate HDL button. The Generation dialog box appears.

3. Under Simulation, select either Verilog or VHDL for Create Simulation Model.
Selecting one of these options makes the Modelsim flow selection setting
editable.

4. For Modelsim flow selection, make sure Qrun is selected to enable the Qrun
flow. The alternative setting runs the Traditional flow.

2. Siemens EDA QuestaSim Simulator Support

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. Generation Dialog Box Settings

5. To specify one or more specific simulators for which to generate simulation files,
enable the checkbox for those simulators. To enable generation for all supported
simulators, leave all checkboxes disabled (default setting).

6. Click Generate. Platform Designer generates the simulation models and setup
scripts for your system or IP component in the <project>/<IP name>/sim/
<vendor> directory.

To generate the simulation model and simulator setup scripts for your Platform
Designer system or IP component in batch mode, use this command:

qsys-generate <file> [args] --modelsim_flow=QRUN

2.3.3. Generating the Testbench System

You can optionally generate a testbench system that instantiates the original system,
adding bus functional models to drive the top-level interfaces. Once generated, the
bus functional models can interact with the system or IP in the simulator.

Platform Designer generates the simulation model and setup scripts according to your
specifications in Specifying Simulation File Generation Settings.

To generate the testbench system for a Platform Designer system or IP component,
follow these steps:

2. Siemens EDA QuestaSim Simulator Support

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the Quartus Prime Pro Edition software, click Tools ➤ Platform Designer and
open or create an IP variant or Platform Designer system.

2. After specifying any IP component or system parameters in the parameter editor,
click the Generate ➤ Generate Testbench System button. The Generation
dialog box appears.

3. Under Testbench System, select either Verilog or VHDL for Create testbench
simulation model. Selecting one of these options makes the Modelsim flow
selection setting editable.

4. For Modelsim flow selection, make sure Qrun is selected to enable the Qrun
flow. The alternative setting runs the Traditional flow.

Figure 15. Generation Dialog Box Settings

5. Click Generate. Platform Designer generates the simulation models and setup
scripts for your system or IP component under the specified Output Directory.

2.3.4. Generating Example Design Simulation Files

When you run Generate ➤ Generate Example Design, Platform Designer
automatically generates the simulator setup script msim_setup.tcl containing qrun
commands.

2.3.5. Recommendations for Using Qrun

• Mixing of traditional and Qrun generated simulation scripts is not supported.

• Although mixing of vlog and vcom and qrun commands is allowed, you can write
testbench scripts using vlog and vcom and generated scripts with qrun or vice
versa.

2. Siemens EDA QuestaSim Simulator Support

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4. QuestaSim Simulation Setup Script Example

The Quartus Prime software can generate a msim_setup.tcl simulation setup script
for IP cores in your design. The script compiles the required device library models,
compiles the design files, and elaborates the design with or without simulator
optimization. To run the script, type source msim_setup.tcl in the simulator
Transcript window.

Alternatively, if you are using the simulator at the command line, you can type the
following command:

vsim -c -do msim_setup.tcl

In this example the top-level-simulate.do custom top-level simulation script
sets the hierarchy variable TOP_LEVEL_NAME to top_testbench for the design, and
sets the variable QSYS_SIMDIR to the location of the generated simulation files.

Set hierarchy variables used in the IP-generated files
set TOP_LEVEL_NAME "top_testbench"
set QSYS_SIMDIR "./ip_top_sim"
Source generated simulation script which defines aliases used below
source $QSYS_SIMDIR/mentor/msim_setup.tcl
dev_com alias compiles simulation libraries for device library files
dev_com
com alias compiles IP simulation or Platform Designer model files and/or
Platform Designer model files in the correct order
com
Compile top level testbench that instantiates your IP
vlog -sv ./top_testbench.sv
elab alias elaborates the top-level design and testbench
elab
Run the full simulation
run - all

In this example, the top-level simulation files are stored in the same directory as the
original IP core, so this variable is set to the IP-generated directory structure. The
QSYS_SIMDIR variable provides the relative hierarchy path for the generated IP
simulation files. The script calls the generated msim_setup.tcl script and uses the
alias commands from the script to compile and elaborate the IP files required for
simulation along with the top-level simulation testbench. You can specify additional
simulator elaboration command options when you run the elab command, for
example, elab +nowarnTFMPC. The last command run in the example starts the
simulation.

2.5. Sourcing QuestaSim Simulator Setup Scripts

Follow these steps to incorporate the generated or QuestaSim IP simulation scripts
into a top-level project simulation script.

1. The generated simulation script contains the following template lines. Cut and
paste these lines into a new file. For example, sim_top.do.

Start of template
If the copied and modified template file is "mentor.do", run it
as: vsim -c -do mentor.do

Source the generated sim script
source msim_setup.tcl
Compile eda/sim_lib contents first
dev_com

2. Siemens EDA QuestaSim Simulator Support

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the top-level
vlog -sv ../../top.sv
Elaborate the design.
elab
Run the simulation
run -a
Report success to the shell
exit -code 0
End of template

2. Delete the first two characters of each line (comment and space):

Start of template
If the copied and modified template file is "mentor.do", run it
as: vsim -c -do mentor.do

Source the generated sim script
source msim_setup.tcl
Compile eda/sim_lib contents first
dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the top-level
vlog -sv ../../top.sv
Elaborate the design.
elab
Run the simulation
run -a
Report success to the shell
exit -code 0
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the location of the simulation's top-level file. For example:

set TOP_LEVEL_NAME sim_top vlog -sv ../../sim_top.sv

4. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

5. Run the resulting top-level script from the generated simulation directory:

vsim –c –do <path to sim_top>.tcl

2.6. Unsupported Features

The Quartus Prime software does not support the following simulation features:

• Some versions of QuestaSim support SystemVerilog, PSL assertions, SystemC,
and more. For more information about specific feature support, refer to Siemens
EDA software documentation.

2. Siemens EDA QuestaSim Simulator Support

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7. Siemens EDA QuestaSim Simulator Support Revision History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Added new Using the Qrun Flow in Platform Designer section.

2023.10.02 23.3 • Updated chapter to reflect end of support for ModelSim.
• Referenced new Questa Intel FPGA Edition information to new Questa

Intel FPGA Edition Simulation User Guide.
• Removed obsolete Generating Standard Delay Output for Power

Analysis topic. Generation of SDO files is no longer supported in the
Quartus Prime Pro Edition software.

2022.04.13 22.1 • Revised name of Questa Intel FPGA Edition and QuestaSim for latest
guidelines throughout.

2021.10.04 21.3 • Added support for Questa Intel FPGA Edition simulator.
• Removed support for ModelSim - Intel FPGA Edition simulator.
• Updated directory names in Using Questa Intel FPGA Edition

Precompiled Libraries topic.
• Removed note about Maintain Hierarchy limit in Viewing Simulation

Messages topic.
• Replaced "Mentor Graphics" with "Siemens EDA" to reflect current

company name.

2021.03.29 21.1 Updated Generating Signal Activity Data for Power Analysis topic for latest
behavior.

2019.06.19 19.1.0 • Added footnote about ModelSim Remote Desktop limits to
"Unsupported Features" topic.

2019.04.01 19.1.0 • Described new support for generation of SDO for use in power analysis.

2017.11.06 17.1.0 • Changed title to ModelSim - Intel FPGA Edition, ModelSim*, and
QuestaSim Support*

• Removed Simulating Transport Delays and Disabling Timing Violations
on Registers topics. Quartus Prime Pro Edition does not support timing
simulation.

• Added Simulation Library Compiler details and another step to Quick
Start Example

2. Siemens EDA QuestaSim Simulator Support

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Synopsys VCS and VCS MX Support
You can include your supported EDA simulator in the Quartus Prime design flow. This
document provides guidelines for simulation of Quartus Prime designs with the
Synopsys VCS or VCS MX software.

3.1. Quick Start Example (VCS with Verilog)

You can adapt the following RTL simulation example to get started quickly with VCS:

1. To specify your EDA simulator and executable path, type the following Tcl package
command in the Quartus Prime tcl shell window:

set_user_option -name EDA_TOOL_PATH_VCS <VCS executable path>

set_global_assignment -name EDA_SIMULATION_TOOL "VCS"

2. Compile simulation model libraries using the following method:

• To automatically compile all required simulation model libraries for your design
in your supported simulator, click Tools ➤ Launch Simulation Library
Compiler. Specify options for your simulation tool, language, target device
family, and output location, and then click OK.

Use the compiled simulation model libraries during simulation of your design.
Refer to your EDA simulator's documentation for information about running
simulation.

3. Modify the simlib_comp.vcs file to specify your design and testbench files.

4. Type the following to run the VCS simulator:

vcs -R -file simlib_comp.vcs

3.2. VCS and VCS MX Guidelines

The following guidelines apply to simulation of Intel FPGA designs in the VCS or VCS
MX software:

• Do not specify the -v option for altera_lnsim.sv because it defines a
systemverilog package.

• Add -verilog and +verilog2001ext+.v options to make sure all .v files are
compiled as verilog 2001 files, and all other files are compiled as systemverilog
files.

• Add the -lca option for Stratix V and later families because they include IEEE-
encrypted simulation files for VCS and VCS MX.

• Add -timescale=1ps/1ps to ensure picosecond resolution.

683870 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3.3. VCS Simulation Setup Script Example

The Quartus Prime software can generate a simulation setup script for IP cores in your
design. The scripts contain shell commands that compile the required simulation
models in the correct order, elaborate the top-level design, and run the simulation for
100 time units by default. You can run these scripts from a Linux command shell.

The scripts for VCS and VCS MX are vcs_setup.sh (for Verilog HDL or
SystemVerilog) and vcsmx_setup.sh (combined Verilog HDL and SystemVerilog with
VHDL). Read the generated .sh script to see the variables that are available for
override when sourcing the script or redefining directly if you edit the script. To set up
the simulation for a design, use the command-line to pass variable values to the shell
script.

Example 2. Using Command-line to Pass Simulation Variables

sh vcsmx_setup.sh\
USER_DEFINED_ELAB_OPTIONS=+rad\
USER_DEFINED_SIM_OPTIONS=+vcs+lic+wait

Example 3. Example Top-Level Simulation Shell Script for VCS-MX

Run generated script to compile libraries and IP simulation files
Skip elaboration and simulation of the IP variation
sh ./ip_top_sim/synopsys/vcsmx/vcsmx_setup.sh SKIP_ELAB=1 SKIP_SIM=1
QSYS_SIMDIR="./ip_top_sim"
#Compile top-level testbench that instantiates IP
vlogan -sverilog ./top_testbench.sv
#Elaborate and simulate the top-level design
vcs –lca –t ps <elaboration control options> top_testbench
simv <simulation control options>

Example 4. Example Top-Level Simulation Shell Script for VCS

Run script to compile libraries and IP simulation files
sh ./ip_top_sim/synopsys/vcs/vcs_setup.sh TOP_LEVEL_NAME=”top_testbench”\
Pass VCS elaboration options to compile files and elaborate top-level
 passed to the script as the TOP_LEVEL_NAME
USER_DEFINED_ELAB_OPTIONS="top_testbench.sv"\
Pass in simulation options and run the simulation for specified amount of time.
USER_DEFINED_SIM_OPTIONS=”<simulation control options>

3.4. Sourcing Synopsys VCS MX Simulator Setup Scripts

Follow these steps to incorporate the generated Synopsys VCS MX simulation scripts
for use in top-level project simulation scripts.

1. The generated simulation script contains these template lines. Cut and paste the
lines preceding the “helper file” into a new executable file. For example,
vcsmx.sh.

Start of template
If the copied and modified template file is "vcsmx_sim.sh", run
it as: ./vcsmx_sim.sh

Do the file copy, dev_com and com steps
source vcsmx_setup.sh
SKIP_ELAB=1

SKIP_SIM=1

Compile the top level module

3. Synopsys VCS and VCS MX Support

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

vlogan +v2k
 +systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the sim options, so the simulation runs
forever (until $finish()).
source vcsmx_setup.sh
SKIP_FILE_COPY=1
SKIP_DEV_COM=1
SKIP_COM=1
TOP_LEVEL_NAME="'-top top'"
USER_DEFINED_SIM_OPTIONS=""
End of template

2. Delete the first two characters of each line (comment and space), as shown
below:

Start of template
If the copied and modified template file is "vcsmx_sim.sh", run
it as: ./vcsmx_sim.sh

Do the file copy, dev_com and com steps
source vcsmx_setup.sh
SKIP_ELAB=1
SKIP_SIM=1

Compile the top level module
vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the sim options, so the simulation runs
forever (until $finish()).
source vcsmx_setup.sh
SKIP_FILE_COPY=1
SKIP_DEV_COM=1
SKIP_COM=1
TOP_LEVEL_NAME="'-top top'"
USER_DEFINED_SIM_OPTIONS=""
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

TOP_LEVEL_NAME=”'-top sim_top'”

4. Make the appropriate changes to the compilation of your top-level file, for
example:

vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../sim_top.sv"

5. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

6. Run the resulting top-level script from the generated simulation directory by
specifying the path to vcsmx_sim.sh.

3.5. Sourcing Synopsys VCS Simulator Setup Scripts

Follow these steps to incorporate the generated Synopsys VCS simulation scripts into
a top-level project simulation script.

3. Synopsys VCS and VCS MX Support

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. The generated simulation script contains these template lines. Cut and paste the
lines preceding the “helper file” into a new executable file. For example,
synopsys_vcs.f.

Start of template
If the copied and modified template file is "vcs_sim.sh", run it
as: ./vcs_sim.sh

Override the top-level name
specify a command file containing elaboration options
(system verilog extension, and compile the top-level).
Override the sim options, so the simulation
runs forever (until $finish()).
source vcs_setup.sh
TOP_LEVEL_NAME=top
USER_DEFINED_ELAB_OPTIONS="'-f ../../../synopsys_vcs.f'"
USER_DEFINED_SIM_OPTIONS=""

helper file: synopsys_vcs.f
+systemverilogext+.sv
../../../top.sv
End of template

2. Delete the first two characters of each line (comment and space) for the vcs.sh
file, as shown below:

Start of template
If the copied and modified template file is "vcs_sim.sh", run it
as: ./vcs_sim.sh

Override the top-level name
specify a command file containing elaboration options
(system verilog extension, and compile the top-level).
Override the sim options, so the simulation
runs forever (until $finish()).
source vcs_setup.sh
TOP_LEVEL_NAME=top
USER_DEFINED_ELAB_OPTIONS="'-f ../../../synopsys_vcs.f'"
USER_DEFINED_SIM_OPTIONS=""

3. Delete the first two characters of each line (comment and space) for the
synopsys_vcs.f file, as shown below:

helper file: synopsys_vcs.f
 +systemverilogext+.sv
 ../../../top.sv
End of template

4. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

TOP_LEVEL_NAME=sim_top

5. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

6. Run the resulting top-level script from the generated simulation directory by
specifying the path to vcs_sim.sh.

3. Synopsys VCS and VCS MX Support

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.6. Synopsys VCS and VCS MX Support Revision History

Document Version Quartus Prime
Version

Changes

2022.04.13 22.1 • Revised name of Questa Intel FPGA Edition and QuestaSim for latest
guidelines throughout.

2017.11.06 17.1 • Removed Simulating Transport Delays and Disabling Timing Violations
on Registers topics. Quartus Prime Pro Edition does not support timing
simulation.

• Added Simulation Library Compiler details and another step to Quick
Start Example

3. Synopsys VCS and VCS MX Support

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Aldec Active-HDL and Riviera-PRO Support
You can include your supported EDA simulator in the Quartus Prime design flow. This
chapter provides specific guidelines for simulation of Quartus Prime designs with the
Aldec Active-HDL or Riviera-PRO software.

4.1. Quick Start Example (Active-HDL VHDL)

You can adapt the following RTL simulation example to get started quickly with Active-
HDL:

1. To specify your EDA simulator and executable path, type the following Tcl package
command in the Quartus Prime Tcl shell window:

set_user_option -name EDA_TOOL_PATH_ACTIVEHDL <Active HDL
executable path>

set_global_assignment -name EDA_SIMULATION_TOOL "Active-HDL
(VHDL)"

2. Compile simulation model libraries using one of the following methods:

• To automatically compile all required simulation model libraries for your design
in your supported simulator, click Tools ➤ Launch Simulation Library
Compiler. Specify options for your simulation tool, language, target device
family, and output location, and then click OK.

• Compile Intel FPGA simulation models manually:

vlib <library1> <altera_library1>
vcom -strict93 -dbg -work <library1> <lib1_component/pack.vhd> \
 <lib1.vhd>

Use the compiled simulation model libraries during simulation of your design.
Refer to your EDA simulator's documentation for information about running
simulation.

3. Open the Active-HDL simulator.

4. Create and open the workspace:

createdesign <workspace name> <workspace path>
opendesign -a <workspace name>.adf

5. Create the work library and compile the netlist and testbench files:

vlib work
vcom -strict93 -dbg -work work <output netlist> <testbench file>

6. Load the design:

vsim +access+r -t 1ps +transport_int_delays +transport_path_delays \
-L work -L <lib1> -L <lib2> work.<testbench module name>

683870 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

7. Run the simulation in the Active-HDL simulator.

4.2. Aldec Active-HDL and Riviera-PRO Guidelines

The following guidelines apply to simulating Intel FPGA designs in the Active-HDL or
Riviera-PRO software.

Compiling SystemVerilog Files

If your design includes multiple SystemVerilog files, you must compile the
SystemVerilog files together with a single alog command.

If you have Verilog files and SystemVerilog files in your design, you must first compile
the Verilog files, and then compile only the SystemVerilog files in the single alog
command.

4.3. Using Simulation Setup Scripts

The Quartus Prime software can generate the rivierapro_setup.tcl simulation
setup script for Intel FPGA IP cores in your design. The use and content of the script
file is similar to the msim_setup.tcl file that the Quartus Prime software generates
for use with the QuestaSim simulator.

4.4. Sourcing Aldec ActiveHDL* or Riviera Pro* Simulator Setup
Scripts

Follow these steps to incorporate the generated ActiveHDL* or Riviera Pro* simulation
scripts into a top-level project simulation script.

1. The generated simulation script contains the following template lines. Cut and
paste these lines into a new file. For example, sim_top.tcl.

TOP-LEVEL TEMPLATE - BEGIN
#
QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
construct paths to the files required to simulate the IP in your Quartus
project. By default, the IP script assumes that you are launching the
simulator from the IP script location. If launching from another
location, set QSYS_SIMDIR to the output directory you specified when you
generated the IP script, relative to the directory from which you launch
the simulator.
#
set QSYS_SIMDIR <script generation output directory>
#
Source the generated IP simulation script.
source $QSYS_SIMDIR/aldec/rivierapro_setup.tcl
#
Set any compilation options you require (this is unusual).
set USER_DEFINED_COMPILE_OPTIONS <compilation options>
set USER_DEFINED_VHDL_COMPILE_OPTIONS <compilation options for VHDL>
set USER_DEFINED_VERILOG_COMPILE_OPTIONS <compilation options for Verilog>
#
Call command to compile the Quartus EDA simulation library.
dev_com
#
Call command to compile the Quartus-generated IP simulation files.
com
#
Add commands to compile all design files and testbench files, including
the top level. (These are all the files required for simulation other

4. Aldec Active-HDL and Riviera-PRO Support

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

than the files compiled by the Quartus-generated IP simulation script)
#
vlog -sv2k5 <your compilation options> <design and testbench files>
#
Set the top-level simulation or testbench module/entity name, which is
used by the elab command to elaborate the top level.
#
set TOP_LEVEL_NAME <simulation top>
#
Set any elaboration options you require.
set USER_DEFINED_ELAB_OPTIONS <elaboration options>
#
Call command to elaborate your design and testbench.
elab
#
Run the simulation.
run
#
Report success to the shell.
exit -code 0
#
TOP-LEVEL TEMPLATE - END

2. Delete the first two characters of each line (comment and space):

 # TOP-LEVEL TEMPLATE - BEGIN
 #
 # QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
 # construct paths to the files required to simulate the IP in your Quartus
 # project. By default, the IP script assumes that you are launching the
 # simulator from the IP script location. If launching from another
 # location, set QSYS_SIMDIR to the output directory you specified when you
 # generated the IP script, relative to the directory from which you launch
 # the simulator.
 #
 set QSYS_SIMDIR <script generation output directory>
 #
 # Source the generated IP simulation script.
 source $QSYS_SIMDIR/aldec/rivierapro_setup.tcl
 #
 # Set any compilation options you require (this is unusual).
 set USER_DEFINED_COMPILE_OPTIONS <compilation options>
 set USER_DEFINED_VHDL_COMPILE_OPTIONS <compilation options for VHDL>
 set USER_DEFINED_VERILOG_COMPILE_OPTIONS <compilation options for Verilog>
 #
 # Call command to compile the Quartus EDA simulation library.
 dev_com
 #
 # Call command to compile the Quartus-generated IP simulation files.
 com
 #
 # Add commands to compile all design files and testbench files, including
 # the top level. (These are all the files required for simulation other
 # than the files compiled by the Quartus-generated IP simulation script)
 #
 vlog -sv2k5 <your compilation options> <design and testbench files>
 #
 # Set the top-level simulation or testbench module/entity name, which is
 # used by the elab command to elaborate the top level.
 #
 set TOP_LEVEL_NAME <simulation top>
 #
 # Set any elaboration options you require.
 set USER_DEFINED_ELAB_OPTIONS <elaboration options>
 #
 # Call command to elaborate your design and testbench.
 elab
 #
 # Run the simulation.
 run

4. Aldec Active-HDL and Riviera-PRO Support

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 #
 # Report success to the shell.
 exit -code 0
 #
 # TOP-LEVEL TEMPLATE - END

3. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes that you require to match
your design simulation requirements. The scripts offer variables to set compilation
or simulation options. Refer to the generated script for details.

4. Refer to the following sim_top.tcl example content, where this file is in the
same aldec/ sub-folder as the rivierapro_setup.tcl file.

TOP-LEVEL TEMPLATE - BEGIN
#
QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
construct paths to the files required to simulate the IP in your Quartus
project. By default, the IP script assumes that you are launching the
simulator from the IP script location. If launching from another
location, set QSYS_SIMDIR to the output directory you specified when you
generated the IP script, relative to the directory from which you launch
the simulator.
#
set QSYS_SIMDIR ../
#
Source the generated IP simulation script.
 source $QSYS_SIMDIR/aldec/rivierapro_setup.tcl
 #
 # Set any compilation options you require (this is unusual).
set USER_DEFINED_COMPILE_OPTIONS ""
set USER_DEFINED_VHDL_COMPILE_OPTIONS ""
set USER_DEFINED_VERILOG_COMPILE_OPTIONS ""
#
 # Call command to compile the Quartus EDA simulation library.
dev_com
 #
 # Call command to compile the Quartus-generated IP simulation files.
com
 #
 # Add commands to compile all design files and testbench files, including
 # the top level. (These are all the files required for simulation other
 # than the files compiled by the Quartus-generated IP simulation script)
 #
vlog -sv2k5 $QSYS_SIMDIR/PLL_RAM.v
vlog -sv2k5 $QSYS_SIMDIR/testbench_1.v
 #
 # Set the top-level simulation or testbench module/entity name, which is
 # used by the elab command to elaborate the top level.
 #
set TOP_LEVEL_NAME tb
 #
 # Set any elaboration options you require.
 set USER_DEFINED_ELAB_OPTIONS ""
 #
 # Call command to elaborate your design and testbench.
 elab
 #
 # Run the simulation.
run -all
 #
 # Report success to the shell.
 exit -code 0
 #
 # TOP-LEVEL TEMPLATE - END

4. Aldec Active-HDL and Riviera-PRO Support

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. To view all available options, invoke the Active-HDL or Riviera-PRO license and
launch the simulator by typing vsim in command-line mode. After the simulator
launches, type help in the simulator Console panel. To view options related to a
specific command, for example the vsim simulation command, type help vsim
in the simulator Console panel.

6. Run the new top-level script from the generated simulation directory in command-
line mode. To run the simulation in GUI mode, type the following:

vsim -gui -l log.txt +access +r -lib dsn tb -do sim_top.tcl

To run the simulation in command-line mode, type the following:

vsim –c –do sim_top.tcl

4.5. Aldec Active-HDL and Riviera-PRO * Support Revision History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Updated script content in Sourcing Aldec ActiveHDL or Riviera Pro*
Simulator Setup Scripts topic.

2023.10.02 23.3 • Updated chapter to reflect end of support for generation of ModelSim
files in favor of QuestaSim.

2022.04.13 22.1 • Revised name of Questa Intel FPGA Edition and QuestaSim for latest
guidelines throughout.

2017.11.06 17.1 • Removed Simulating Transport Delays and Disabling Timing Violations
on Registers topics. Quartus Prime Pro Edition does not support timing
simulation.

• Added Simulation Library Compiler details and another step to Quick
Start Example

4. Aldec Active-HDL and Riviera-PRO Support

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Cadence Xcelium Parallel Simulator Support
You can include your supported EDA simulator in the Quartus Prime Pro Edition design
flow. This chapter provides specific guidelines for simulation of Quartus Prime Pro
Edition designs with the Cadence Xcelium Parallel Simulator software.

5.1. Using the Command-Line Interface

The Quartus Prime Pro Edition software provides command-line support for the
Xcelium Parallel Simulator.

The following Xcelium simulation executables are available:

Table 13. Xcelium Simulation Executables

Program Function

xrun xrun compiles and runs your design based on the compilation and run options you define.

xmvlog xmvlog compiles your Verilog HDL code and performs syntax and static semantics checks.

xmvhdl xmvhdl compiles your VHDL code and performs syntax and static semantics checks.

xmelab Elaborates the design hierarchy and determines signal connectivity.

xmsim Runs mixed-language simulation. This program is the simulation kernel that performs
event scheduling and executes the simulation code.

5.2. Generating Simulator Setup Script Templates

You can use simulator setup scripts to help you readily simulate IP cores in your
design.

Follow these steps to generate the vendor-specific simulator setup script templates for
the IP modules in your design. You can then customize these templates for your
specific simulation goals.

1. To compile your design, click Processing ➤ Start Compilation. The Messages
window indicates when compilation is complete.

2. Click Tools ➤ Generate Simulator Setup Script for IP.

3. Retain the default settings for the Output directory and also the Use relative
paths whenever possible option.

4. To generate the setup script templates and vendor-specific sub-folders, including
xcelium/ and common/ in the specified output directory, click OK.

683870 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 16. Generate Simulator Setup Script for IP Dialog Box

5.3. Sourcing Cadence Xcelium Simulator Setup Scripts

1. The generated xcelium/xmsim_setup.sh simulation script contains the
following template lines. Cut and paste these lines into a new top-level script, for
example xmsim.sh. This new top-level script calls the generated simulation
script, xmsim_setup.sh.

TOP-LEVEL TEMPLATE - BEGIN
#
QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
construct paths to the files required to simulate the IP in your Quartus
project. By default, the IP script assumes that you are launching the
simulator from the IP script location. If launching from another
location, set QSYS_SIMDIR to the output directory you specified when you
generated the IP script, relative to the directory from which you launch
the simulator. In this case, you must also copy the generated files
"cds.lib" and "hdl.var" - plus the directory "cds_libs" if generated -
into the location from which you launch the simulator, or incorporate
into any existing library setup.
#
Run Quartus-generated IP simulation script once to compile Quartus EDA
simulation libraries and Quartus-generated IP simulation files, and copy
any ROM/RAM initialization files to the simulation directory.
- If necessary, specify any compilation options:
USER_DEFINED_COMPILE_OPTIONS
USER_DEFINED_VHDL_COMPILE_OPTIONS applied to vhdl compiler
USER_DEFINED_VERILOG_COMPILE_OPTIONS applied to verilog compiler
#
source <script generation output directory>/xcelium/xcelium_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1 \
USER_DEFINED_COMPILE_OPTIONS=<compilation options for your design> \
USER_DEFINED_VHDL_COMPILE_OPTIONS=<VHDL compilation options for your
design> \
USER_DEFINED_VERILOG_COMPILE_OPTIONS=<Verilog compilation options for your
design> \
QSYS_SIMDIR=<script generation output directory>
#
Compile all design files and testbench files, including the top level.
(These are all the files required for simulation other than the files
compiled by the IP script)
#
xmvlog <compilation options> <design and testbench files>
#
TOP_LEVEL_NAME is used in this script to set the top-level simulation or
testbench module/entity name.
#
Run the IP script again to elaborate and simulate the top level:
- Specify TOP_LEVEL_NAME and USER_DEFINED_ELAB_OPTIONS.
- Override the default USER_DEFINED_SIM_OPTIONS. For example, to run
until $finish(), set to an empty string: USER_DEFINED_SIM_OPTIONS="".
#

5. Cadence Xcelium Parallel Simulator Support

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

source <script generation output directory>/xcelium/xcelium_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME=<simulation top> \
USER_DEFINED_ELAB_OPTIONS=<elaboration options for your design> \
USER_DEFINED_SIM_OPTIONS=<simulation options for your design>
#
TOP-LEVEL TEMPLATE - END

2. Delete the first two characters of each line (comment and space):

 # TOP-LEVEL TEMPLATE - BEGIN
 #
 # QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
 # construct paths to the files required to simulate the IP in your Quartus
 # project. By default, the IP script assumes that you are launching the
 # simulator from the IP script location. If launching from another
 # location, set QSYS_SIMDIR to the output directory you specified when you
 # generated the IP script, relative to the directory from which you launch
 # the simulator. In this case, you must also copy the generated files
 # "cds.lib" and "hdl.var" - plus the directory "cds_libs" if generated -
 # into the location from which you launch the simulator, or incorporate
 # into any existing library setup.
 #
 # Run Quartus-generated IP simulation script once to compile Quartus EDA
 # simulation libraries and Quartus-generated IP simulation files, and copy
 # any ROM/RAM initialization files to the simulation directory.
 # - If necessary, specify any compilation options:
 # USER_DEFINED_COMPILE_OPTIONS
 # USER_DEFINED_VHDL_COMPILE_OPTIONS applied to vhdl compiler
 # USER_DEFINED_VERILOG_COMPILE_OPTIONS applied to verilog compiler
 #
 source <script generation output directory>/xcelium/xcelium_setup.sh \
 SKIP_ELAB=1 \
 SKIP_SIM=1 \
 USER_DEFINED_COMPILE_OPTIONS=<compilation options for your design> \
 USER_DEFINED_VHDL_COMPILE_OPTIONS=<VHDL compilation options for your
design> \
 USER_DEFINED_VERILOG_COMPILE_OPTIONS=<Verilog compilation options for your
design> \
 QSYS_SIMDIR=<script generation output directory>
 #
 # Compile all design files and testbench files, including the top level.
 # (These are all the files required for simulation other than the files
 # compiled by the IP script)
 #
 xmvlog <compilation options> <design and testbench files>
 #
 # TOP_LEVEL_NAME is used in this script to set the top-level simulation or
 # testbench module/entity name.
 #
 # Run the IP script again to elaborate and simulate the top level:
 # - Specify TOP_LEVEL_NAME and USER_DEFINED_ELAB_OPTIONS.
 # - Override the default USER_DEFINED_SIM_OPTIONS. For example, to run
 # until $finish(), set to an empty string: USER_DEFINED_SIM_OPTIONS="".
 #
 source <script generation output directory>/xcelium/xcelium_setup.sh \
 SKIP_FILE_COPY=1 \
 SKIP_DEV_COM=1 \
 SKIP_COM=1 \
 TOP_LEVEL_NAME=<simulation top> \
 USER_DEFINED_ELAB_OPTIONS=<elaboration options for your design> \
 USER_DEFINED_SIM_OPTIONS=<simulation options for your design>
 #
 # TOP-LEVEL TEMPLATE - END

5. Cadence Xcelium Parallel Simulator Support

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes that you require to match
your design simulation requirements. The scripts offer variables to set compilation
or simulation options. Refer to the generated script for details.

4. Refer to the following xmsim.sh example content, where this file is in the same /
xcelium sub-folder as the xmsim_setup.sh file.

TOP-LEVEL TEMPLATE - BEGIN
#
QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
construct paths to the files required to simulate the IP in your Quartus
project. By default, the IP script assumes that you are launching the
simulator from the IP script location. If launching from another
location, set QSYS_SIMDIR to the output directory you specified when you
generated the IP script, relative to the directory from which you launch
the simulator. In this case, you must also copy the generated files
"cds.lib" and "hdl.var" - plus the directory "cds_libs" if generated -
into the location from which you launch the simulator, or incorporate
into any existing library setup.
#
Run Quartus-generated IP simulation script once to compile Quartus EDA
simulation libraries and Quartus-generated IP simulation files, and copy
any ROM/RAM initialization files to the simulation directory.
- If necessary, specify any compilation options:
USER_DEFINED_COMPILE_OPTIONS
USER_DEFINED_VHDL_COMPILE_OPTIONS applied to vhdl compiler
USER_DEFINED_VERILOG_COMPILE_OPTIONS applied to verilog compiler
#
source ./xcelium_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1 \
USER_DEFINED_COMPILE_OPTIONS="" \
USER_DEFINED_VHDL_COMPILE_OPTIONS="" \
USER_DEFINED_VERILOG_COMPILE_OPTIONS="" \
QSYS_SIMDIR=./../
#
Compile all design files and testbench files, including the top level.
(These are all the files required for simulation other than the files
compiled by the IP script)
#
xmvlog $QSYS_SIMDIR/PLL_RAM.v
xmvlog $QSYS_SIMDIR/UP_COUNTER_IP/UP_COUNTER_IP.v
xmvlog $QSYS_SIMDIR/DOWN_COUNTER_IP/DOWN_COUNTER_IP.v
xmvlog $QSYS_SIMDIR/ClockPLL/ClockPLL.v
xmvlog $QSYS_SIMDIR/RAMhub/RAMhub.v
xmvlog $QSYS_SIMDIR/testbench_1.v
#
TOP_LEVEL_NAME is used in this script to set the top-level simulation or
testbench module/entity name.
#
Run the IP script again to elaborate and simulate the top level:
- Specify TOP_LEVEL_NAME and USER_DEFINED_ELAB_OPTIONS.
- Override the default USER_DEFINED_SIM_OPTIONS. For example, to run
until $finish(), set to an empty string: USER_DEFINED_SIM_OPTIONS="".
#
 source ./xcelium_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME="tb" \
USER_DEFINED_ELAB_OPTIONS="-timescale\ 1ns/1ps\ -NOWARN\ CSINFI" \
USER_DEFINED_SIM_OPTIONS="-GUI"
#
TOP-LEVEL TEMPLATE - END

5. Cadence Xcelium Parallel Simulator Support

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Run the resulting top-level script by typing the following at the command-line:

sh xmsim.sh

Specify the path to this file if you run it from a different directory.

5.4. Cadence Xcelium Parallel Simulator Support Revision History

Document Version Quartus Prime
Version

Changes

2023.12.07 23.4 • Updated Using the Command-Line Interface topic to include xrun
executable.

• Added Generating Simulator Setup Script Templates topic.
• Updated script content and steps in Sourcing Cadence Xcelium

Simulator Setup Scripts topic.
• Removed obsolete Sourcing Cadence Incisive Simulator Setup Scripts

topic.

2022.04.13 22.1 • Revised name of Questa Intel FPGA Edition and QuestaSim for latest
guidelines throughout.

2021.03.29 21.1 • Removed support for Cadence Incisive Enterprise* and removed
document section.

2018.05.07 18.0 • Renamed chapter for Xcelium Parallel Simulator support.
• Added Xcelium command-line support.
• Updated commands in the Quick Start Example.

5. Cadence Xcelium Parallel Simulator Support

683870 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Third-party Simulation

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Quartus Prime Pro Edition User Guide Third-party
Simulation Archive

For the latest and previous versions of this user guide, refer to Quartus Prime Pro
Edition User Guide: Third-party Simulation. If an IP or software version is not listed,
the user guide for the previous IP or software version applies.

683870 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel FPGA devices, and program CPLD and configuration
devices, via connection with an Intel FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683870 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

A. Quartus Prime Pro Edition User Guides

683870 | 2024.04.01

Quartus Prime Pro Edition User Guide: Third-party Simulation Send Feedback

58

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Simulation%20(683870%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Pro Edition
User Guide
Third-party Synthesis

Updated for Intel® Quartus® Prime Design Suite: 23.4

This document is part of a collection - Intel® Quartus® Prime Pro Edition User Guides - Combined
PDF link

Answers to Top FAQs:
Q How do I integrate Precision RTL in the design flow?
A Precision RTL Integration Flow on page 4

Q What files are generated for Precision RTL?
A Files Generated for Precision RTL on page 5

Q How do I map a design with Precision RTL?
A Mapping a Design with Precision RTL on page 6

Q How do I evaluate Precision RTL Results?
A Evaluating Precision RTL Synthesis Results on page 9

Q How do I integrate Synplify in the design flow?
A Synplify Integration Flow on page 18

Q How to I setup Synplify?
A Synplify Tool Setup on page 20

Q What files are generated for Synplify?
A Synplify Generated Files on page 20

Q What are the top Synplify optimization strategies?
A Synplify Optimization Strategies on page 23

Online Version

Send Feedback UG-20138

683122

2023.12.12

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Siemens EDA Precision* RTL Synthesis Support... 4
1.1. About Precision RTL Synthesis Support... 4
1.2. Precision RTL Integration Flow...4

1.2.1. Timing Optimization...5
1.3. Intel Device Family Support.. 5
1.4. Precision RTL Generated Files..5
1.5. Creating and Compiling a Project in the Precision Synthesis Software........................... 6
1.6. Mapping the Design with Precision RTL... 6

1.6.1. Setting Timing Constraints..7
1.6.2. Setting Mapping Constraints..7
1.6.3. Assigning Pin Numbers and I/O Settings... 7
1.6.4. Assigning I/O Registers.. 8
1.6.5. Disabling I/O Pad Insertion... 8
1.6.6. Controlling Fan-Out on Data Nets...9

1.7. Synthesizing the Design and Evaluating the Results..9
1.7.1. Obtaining Accurate Logic Utilization and Timing Analysis Reports....................10

1.8. Guidelines for Intel FPGA IP Cores and Architecture-Specific Features......................... 10
1.8.1. Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files.................10
1.8.2. Instantiating IP Cores With IP Catalog-Generated VHDL Files......................... 11
1.8.3. Instantiating Intellectual Property With the IP Catalog and Parameter Editor.... 11
1.8.4. Instantiating Black Box IP Functions With Generated Verilog HDL Files............ 12
1.8.5. Instantiating Black Box IP Functions With Generated VHDL Files.....................12
1.8.6. Inferring Intel FPGA IP Cores from HDL Code...13

1.9. Siemens EDA Precision* RTL Synthesis Support Revision History................................ 17

2. Synopsys Synplify* Support..18
2.1. About Synplify Support...18
2.2. Synplify Software Integration Flow... 18
2.3. Hardware Description Language Support...20
2.4. Intel Device Family Support...20
2.5. Tool Setup.. 20

2.5.1. Specifying the Intel Quartus Prime Software Version.....................................20
2.6. Synplify Software Generated Files.. 20
2.7. Design Constraints Support...21

2.7.1. Running the Intel Quartus Prime Software Manually With the Synplify-
Generated Tcl Script... 22

2.7.2. Passing Timing Analyzer SDC Timing Constraints to the Intel Quartus
Prime Software..22

2.8. Simulation and Formal Verification... 23
2.9. Synplify Optimization Strategies.. 23

2.9.1. Using Synplify Premier to Optimize Your Design... 24
2.9.2. Using Implementations in Synplify Pro or Premier...24
2.9.3. Timing-Driven Synthesis Settings...24
2.9.4. FSM Compiler..26
2.9.5. Optimization Attributes and Options... 27
2.9.6. Intel-Specific Attributes.. 29

2.10. Guidelines for Intel FPGA IP Cores and Architecture-Specific Features........................30
2.10.1. Instantiating Intel FPGA IP Cores with the IP Catalog.................................. 31

Contents

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.2. Including Files for Intel Quartus Prime Placement and Routing Only.............. 35
2.10.3. Inferring Intel FPGA IP Cores from HDL Code... 35

2.11. Synopsys Synplify* Support Revision History... 40
2.12. Intel Quartus Prime Pro Edition User Guide: Third-Party Synthesis Archives............... 40

A. Intel Quartus Prime Pro Edition User Guides.. 41

Contents

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Siemens EDA Precision* RTL Synthesis Support

1.1. About Precision RTL Synthesis Support

This section describes Intel® Quartus® Prime software support for integration with the
Siemens EDA Precision RTL Synthesis and Precision RTL Plus Synthesis software. This
description includes the key design flows, methodologies, and techniques for
improving your results for Intel devices by integrating Precision RTL Synthesis. This
document assumes that you have appropriate installation and licensing of the
Precision RTL software and the Intel Quartus Prime Pro Edition software.

To obtain and license the Precision Synthesis software and documentation, refer to the
Siemens EDA website.

Related Information

Siemens EDA Precision RTL website

1.2. Precision RTL Integration Flow

The following steps describe a basic Intel Quartus Prime design flow integrating the
Precision RTL synthesis software:

1. Create Verilog HDL or VHDL design files.

2. Create a project in the Precision RTL software that contains the HDL files for your
design, select your target device, and set global constraints.

3. Compile the project in the Precision RTL software.

4. Add specific timing constraints, optimization attributes, and compiler directives to
optimize the design during synthesis. With the design analysis and cross-probing
capabilities of the Precision RTL software, you can identify and improve circuit area
and performance issues using prelayout timing estimates.

Note: For best results, Siemens EDA recommends specifying constraints that are
as close as possible to actual operating requirements. Properly setting clock
and I/O constraints, assigning clock domains, and indicating false and
multicycle paths guide the synthesis algorithms more accurately toward a
suitable solution in the shortest synthesis time.

5. Synthesize the project in the Precision RTL software.

6. Create an Intel Quartus Prime project and import the following files generated by
the Precision RTL software into the Intel Quartus Prime project:

683122 | 2023.12.12

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://eda.sw.siemens.com/en-US/ic/precision/rtl/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• The Verilog Quartus Mapping File (.vqm) netlist

• Synopsys Design Constraints File (.sdc) for Timing Analyzer constraints

• Tcl Script Files (.tcl) to set up your Intel Quartus Prime project and pass
constraints

7. After obtaining place-and-route results that meet your requirements, configure or
program the Intel device.

1.2.1. Timing Optimization

If your area or timing requirements are not met, you can change the constraints and
resynthesize the design in the Precision RTL software, or you can change the
constraints to optimize the design during place-and-route in the Intel Quartus Prime
software. Repeat the process until the area and timing requirements are met.

You can use other options and techniques in the Intel Quartus Prime software to meet
area and timing requirements. For example, the WYSIWYG Primitive Resynthesis
option can perform optimizations on your EDIF netlist in the Intel Quartus Prime
software.

While simulation and analysis can be performed at various points in the design
process, final timing analysis should be performed after placement and routing is
complete.

Related Information

• Netlist Optimizations and Physical Synthesis

• Timing Closure and Optimization

1.3. Intel Device Family Support

The Precision RTL software supports all FPGA device families available in the current
version of the Intel Quartus Prime Pro Edition software. Support for newly released
device families may require an overlay.

1.4. Precision RTL Generated Files

During synthesis, the Precision RTL software produces several intermediate and output
files.

Table 1. Precision RTL Software Intermediate and Output Files

File Extension File Description

.psp Precision RTL Project File.

.xdb Design Database File.

.rep(1) Synthesis Area and Timing Report File.

continued...

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

5

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/netlist-optimizations-and-physical-synthesis-29493.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/timing-closure-and-optimization.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Extension File Description

.vqm(2) Technology-specific netlist in .vqm file format.

.tcl Forward-annotated Tcl assignments and constraints file. The <project name>.tcl file is
generated for all devices. The .tcl file acts as the Intel Quartus Prime Project Configuration
file and is used to make basic project and placement assignments, and to create and compile
a Intel Quartus Prime project.

.sdc Intel Quartus Prime timing constraints file in Synopsys Design Constraints format.
This file is generated automatically if the device uses the Timing Analyzer by default in the
Intel Quartus Prime software, and has the naming convention <project
name>_pnr_constraints .sdc.

Related Information

Synthesizing the Design and Evaluating the Results on page 9

1.5. Creating and Compiling a Project in the Precision Synthesis
Software

After creating your design files, create a project in the Precision RTL software that
contains the basic settings for compiling the design.

1.6. Mapping the Design with Precision RTL

In the next steps, you set constraints and map the design to technology-specific cells.
The Precision RTL software maps the design by default to the fastest possible
implementation that meets your timing constraints. To accomplish this, you must
specify timing requirements for the automatically determined clock sources. With this
information, the Precision RTL software performs static timing analysis to determine
the location of the critical timing paths. The Precision RTL software achieves the best
results for your design when you set as many realistic constraints as possible. Be sure
to set constraints for timing, mapping, false paths, multicycle paths, and other factors
that control the structure of the implemented design.

Siemens EDA recommends creating an .sdc file and adding this file to the Constraint
Files section of the Project Files list. You can create this file with a text editor, by
issuing command-line constraint parameters, or by directing the Precision RTL
software to generate the file automatically the first time you synthesize your design.
By default, the Precision RTL software saves all timing constraints and attributes in
two files: precision_rtl.sdc and precision_tech.sdc. The

(1) The timing report file includes performance estimates that are based on pre-place-and-route
information. Use the fMAX reported by the Intel Quartus Prime software after place-and-route
for accurate post-place-and-route timing information. The area report file includes post-
synthesis device resource utilization statistics that can differ from the resource usage after
place-and-route due to black boxes or further optimizations performed during placement and
routing. Use the device utilization reported by the Intel Quartus Prime software after place-
and-route for final resource utilization results.

(2) The Precision RTL software-generated VQM file is supported by the Intel Quartus Prime
software version 10.1 and later.

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

precision_rtl.sdc file contains constraints set on the RTL-level database (post-
compilation) and the precision_tech.sdc file contains constraints set on the gate-
level database (post- synthesis) located in the current implementation directory.

You can also enter constraints at the command line. After adding constraints at the
command line, update the .sdc file with the update constraint file command.
You can add constraints that change infrequently directly to the HDL source files with
HDL attributes or pragmas.

Note: The Precision RTL .sdc file contains all the constraints for the Precision RTL project.
For the Intel Quartus Prime software, placement constraints are written in a .tcl file
and timing constraints for the Timing Analyzer are written in the Intel Quartus
Prime.sdc file.

1.6.1. Setting Timing Constraints

The Precision RTL software uses timing constraints, based on the industry-
standard .sdc file format, to deliver optimal results. Missing timing constraints can
result in incomplete timing analysis and might prevent timing errors from being
detected. The Precision RTL software provides constraint analysis prior to synthesis to
ensure that designs are fully and accurately constrained. The
<project name>_pnr_constraints.sdc file, which contains timing constraints
in .sdc format, is generated by the Intel Quartus Prime software.

Note: Because the .sdc file format requires that timing constraints be set relative to defined
clocks, you must specify your clock constraints before applying any other timing
constraints.

You also can use multicycle path and false path assignments to relax requirements or
exclude nodes from timing requirements, which can improve area utilization and allow
the software optimizations to focus on the most critical parts of the design.

For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual.

1.6.2. Setting Mapping Constraints

Mapping constraints affect how your design is mapped into the target Intel device. You
can set mapping constraints in the user interface, in HDL code, or with the
set_attribute command in the constraint file.

1.6.3. Assigning Pin Numbers and I/O Settings

The Precision RTL software supports assigning device pin numbers, I/O standards,
drive strengths, and slew rate settings to top-level ports of the design. You can set
these timing constraints with the set_attribute command, with the GUI, or by
specifying synthesis attributes in your HDL code. These constraints are
forward-annotated in the <project name>.tcl file that is read by the Intel Quartus
Prime software during place-and-route and do not affect synthesis.

You can use the set_attribute command in the Precision RTL software .sdc file to
specify pin number constraints, I/O standards, drive strengths, and slow slew-rate
settings. The table below describes the format to use for entries in the Precision RTL
software constraint file.

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 2. Constraint File Settings

Constraint Entry Format for Precision Constraint File

Pin number set_attribute -name PIN_NUMBER -value "<pin number>" -port <port name>

I/O standard set_attribute -name IOSTANDARD -value "<I/O Standard>" -port <port name>

Drive strength set_attribute -name DRIVE -value "<drive strength in mA>" -port <port name>

Slew rate set_attribute -name SLEW -value "TRUE | FALSE" -port <port name>

You also can use synthesis attributes or pragmas in your HDL code to make these
assignments.

Example 1. Verilog HDL Pin Assignment

//pragma attribute clk pin_number P10;

Example 2. VHDL Pin Assignment

attribute pin_number : string
attribute pin_number of clk : signal is "P10";

You can use the same syntax to assign the I/O standard using the IOSTANDARD
attribute, drive strength using the attribute DRIVE, and slew rate using the SLEW
attribute.

For more details about attributes and how to set these attributes in your HDL code,
refer to the Precision RTL Reference Manual.

1.6.4. Assigning I/O Registers

The Precision RTL software performs timing-driven I/O register mapping by default.
You can force a register to the device IO element (IOE) using the Complex I/O
constraint. This option does not apply if you turn off I/O pad insertion.

Note: You also can make the assignment by right-clicking on the pin in the Schematic
Viewer.

1.6.5. Disabling I/O Pad Insertion

The Precision RTL software assigns I/O pad atoms (device primitives used to represent
the I/O pins and I/O registers) to all ports in the top-level of a design by default. In
certain situations, you might not want Precision RTL to add I/O pads to all I/O pins in
the design. The Intel Quartus Prime software can compile a design without I/O pads;
however, including I/O pads provides the Precision RTL software with more information
about the top-level pins in the design.

1.6.5.1. Preventing the Precision RTL Software from Adding I/O Pads

If you are compiling a subdesign as a separate project, I/O pins cannot be primary
inputs or outputs of the device; therefore, the I/O pins should not have an I/O pad
associated with them.

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To prevent the Precision RTL software from adding I/O pads:

• You can use the Precision RTL GUI or add the following command to the project
file:

setup_design -addio=false

1.6.5.2. Preventing the Precision RTL Software from Adding an I/O Pad on an
Individual Pin

To prevent I/O pad insertion on an individual pin when you are using a black box, such
as DDR or a phase-locked loop (PLL), at the external ports of the design, perform the
following steps:

1. Compile your design.

2. Use the Precision RTL GUI to select the individual pin and turn off I/O pad
insertion.

Note: You also can make this assignment by attaching the nopad attribute to the port in the
HDL source code.

1.6.6. Controlling Fan-Out on Data Nets

Fan-out is defined as the number of nodes driven by an instance or top-level port.
High fan-out nets can cause significant delays that result in an unroutable net. On a
critical path, high fan-out nets can cause longer delays in a single net segment that
result in the timing constraints not being met. To prevent this behavior, each device
family has a global fan-out value set in the Precision RTL software library. In addition,
the Intel Quartus Prime software automatically routes high fan-out signals on global
routing lines in the Intel device whenever possible.

To eliminate routability and timing issues associated with high fan-out nets, the
Precision RTL software also allows you to override the library default value on a global
or individual net basis. You can override the library value by setting a max_fanout
attribute on the net.

1.7. Synthesizing the Design and Evaluating the Results

During synthesis, the Precision RTL software optimizes the compiled design, and then
writes out netlists and reports to the implementation subdirectory of your working
directory after the implementation is saved, using the following naming convention:

<project name>_impl_<number>

After synthesis is complete, you can evaluate the results for area and timing. The
Precision RTL Synthesis User’s Manual describes different results that can be evaluated
in the software.

There are several schematic viewers available in the Precision RTL software: RTL
schematic, Technology-mapped schematic, and Critical Path schematic. These analysis
tools allow you to quickly and easily isolate the source of timing or area issues, and to
make additional constraint or code changes to optimize the design.

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.1. Obtaining Accurate Logic Utilization and Timing Analysis Reports

Historically, designers have relied on post-synthesis logic utilization and timing reports
to determine the amount of logic their design requires, the size of the device required,
and how fast the design runs. However, today’s FPGA devices provide a wide variety of
advanced features in addition to basic registers and look-up tables (LUTs). The Intel
Quartus Prime software has advanced algorithms to take advantage of these features,
as well as optimization techniques to increase performance and reduce the amount of
logic required for a given design. In addition, designs can contain black boxes and
functions that take advantage of specific device features. Because of these advances,
synthesis tool reports provide post-synthesis area and timing estimates, but you
should use the place-and-route software to obtain final logic utilization and timing
reports.

1.8. Guidelines for Intel FPGA IP Cores and Architecture-Specific
Features

Intel provides parameterizable IP cores, including the LPMs, and device-specific Intel
FPGA IP, and IP available through third-party partners. You can use IP cores by
instantiating them in your HDL code or by inferring certain functions from generic HDL
code.

If you want to instantiate an IP core such as a PLL in your HDL code, you can
instantiate and parameterize the function using the port and parameter definitions, or
you can customize a function with the parameter editor. Intel recommends using the
IP Catalog and parameter editor, which provides a graphical interface within the Intel
Quartus Prime software for customizing and parameterizing any available IP core for
the design.

The Precision RTL software automatically recognizes certain types of HDL code and
infers the appropriate IP core.

Related Information

• Inferring Intel FPGA IP Cores from HDL Code on page 13

• Recommended HDL Coding Styles, Design Recommendations User Guide

1.8.1. Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files

The IP Catalog generates a Verilog HDL instantiation template file <output
file>_inst.v and a hollow-body black box module declaration <output file>_bb.v for
use in your Precision RTL design. Incorporate the instantiation template file, <output
file>_inst.v, into your top-level design to instantiate the IP core wrapper file,
<output file>.v.

Include the hollow-body black box module declaration <output file>_bb.v in your
Precision RTL project to describe the port connections of the black box. Adding the IP
core wrapper file <output file>.v in your Precision RTL project is optional, but you
must add it to your Intel Quartus Prime project along with the Precision RTL generated
EDIF or VQM netlist.

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

10

https://www.intel.com/content/www/us/en/docs/programmable/683082/current/recommended-hdl-coding-styles.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Alternatively, you can include the IP core wrapper file <output file>.v in your Precision
RTL project and turn on the Exclude file from Compile Phase option in the Precision
RTL software to exclude the file from compilation and to copy the file to the
appropriate directory for use by the Intel Quartus Prime software during place-and-
route.

1.8.2. Instantiating IP Cores With IP Catalog-Generated VHDL Files

The IP Catalog generates a VHDL component declaration file <output file>.cmp and a
VHDL instantiation template file <output file>_inst.vhd for use in your Precision RTL
design. Incorporate the component declaration and instantiation template into your
top-level design to instantiate the IP core wrapper file, <output file>.vhd.

Adding the IP core wrapper file <output file>.vhd in your Precision RTL project is
optional, but you must add the file to your Intel Quartus Prime project along with the
Precision RTL-generated EDIF or VQM netlist.

Alternatively, you can include the IP core wrapper file <output file>.v in your Precision
RTL project and turn on the Exclude file from Compile Phase option in the Precision
RTL software to exclude the file from compilation and to copy the file to the
appropriate directory for use by the Intel Quartus Prime software during place-and-
route.

1.8.3. Instantiating Intellectual Property With the IP Catalog and
Parameter Editor

Many Intel FPGA IP functions include a resource and timing estimation netlist that the
Precision RTL software can use to synthesize and optimize logic around the IP
efficiently. As a result, the Precision RTL software provides better timing correlation,
area estimates, and Quality of Results (QoR) than a black box approach.

To create this netlist file, perform the following steps:

1. Select the IP function in the IP Catalog.

2. Click Next to open the Parameter Editor.

3. Click Set Up Simulation, which sets up all the EDA options.

4. Turn on the Generate netlist option to generate a netlist for resource and timing
estimation and click OK.

5. Click Generate to generate the netlist file.

The Intel Quartus Prime software generates a file <output file>_syn.v. This netlist
contains the “gray box” information for resource and timing estimation, but does not
contain the actual implementation. Include this netlist file into your Precision RTL
project as an input file. Then include the IP core wrapper file <output file>.v|vhd in
the Intel Quartus Prime project along with your EDIF or VQM output netlist.

The generated “gray box” netlist file, <output file>_syn.v , is always in Verilog HDL
format, even if you select VHDL as the output file format.

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.4. Instantiating Black Box IP Functions With Generated Verilog HDL
Files

You can use the syn_black_box or black_box compiler directives to declare a
module as a black box. The top-level design files must contain the IP port mapping
and a hollow-body module declaration. You can apply the directive to the module
declaration in the top-level file or a separate file included in the project so that the
Precision RTL software recognizes the module is a black box.

Note: The syn_black_box and black_box directives are supported only on module or
entity definitions.

The example below shows a sample top-level file that instantiates my_verilogIP.v,
which is a simplified customized variation generated by the IP Catalog and Parameter
Editor.

Example 3. Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output[7:0] count;

 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule

// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;
 output[7:0] q;
endmodule

1.8.5. Instantiating Black Box IP Functions With Generated VHDL Files

You can use the syn_black_box or black_box compiler directives to declare a
component as a black box. The top-level design files must contain the IP core
variation component declaration and port mapping. Apply the directive to the
component declaration in the top-level file.

Note: The syn_black_box and black_box directives are supported only on module or
entity definitions.

The example below shows a sample top-level file that instantiates my_vhdlIP.vhd,
which is a simplified customized variation generated by the IP Catalog and Parameter
Editor.

Example 4. Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
 COMPONENT my_vhdlIP

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
 end COMPONENT;
 attribute syn_black_box : boolean;
 attribute syn_black_box of my_vhdlIP: component is true;
 BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;

1.8.6. Inferring Intel FPGA IP Cores from HDL Code

The Precision RTL software automatically recognizes certain types of HDL code and
maps arithmetical operators, relational operators, and memory (RAM and ROM), to
technology-specific implementations. This functionality allows technology-specific
resources to implement these structures by inferring the appropriate Intel function to
provide optimal results. In some cases, the Precision RTL software has options that
you can use to disable or control inference.

For coding style recommendations and examples for inferring technology-specific
architecture in Intel devices, refer to the Precision RTL Synthesis Style Guide.

Related Information

Recommended HDL Coding Styles, Design Recommendations User Guide

1.8.6.1. Multipliers

The Precision RTL software detects multipliers in HDL code and maps them directly to
device atoms to implement the multiplier in the appropriate type of logic. The
Precision RTL software also allows you to control the device resources that are used to
implement individual multipliers.

1.8.6.1.1. Controlling DSP Block Inference for Multipliers

By default, the Precision RTL software uses DSP blocks available in devices to
implement multipliers. The default setting is AUTO, which allows the Precision RTL
software to map to logic look-up tables (LUTs) or DSP blocks, depending on the size of
the multiplier. You can use the Precision RTL GUI or HDL attributes for direct mapping
to only logic elements or to only DSP blocks.

Table 3. Options for dedicated_mult Parameter to Control Multiplier Implementation
in Precision RTL

Value Description

ON Use only DSP blocks to implement multipliers, regardless of the size of the multiplier.

OFF Use only logic (LUTs) to implement multipliers, regardless of the size of the multiplier.

AUTO Use logic (LUTs) or DSP blocks to implement multipliers, depending on the size of the multipliers.

1.8.6.2. Setting the Use Dedicated Multiplier Option

To set the Use Dedicated Multiplier option in the Precision RTL GUI, compile the
design, and then in the Design Hierarchy browser, right-click the operator for the
desired multiplier and click Use Dedicated Multiplier.

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

13

https://www.intel.com/content/www/us/en/docs/programmable/683082/current/recommended-hdl-coding-styles.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.6.3. Setting the dedicated_mult Attribute

To control the implementation of a multiplier in your HDL code, use the
dedicated_mult attribute with the appropriate value as shown in the examples
below.

Example 5. Setting the dedicated_mult Attribute in Verilog HDL

//synthesis attribute <signal name> dedicated_mult <value>

Example 6. Setting the dedicated_mult Attribute in VHDL

ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE dedicated_mult OF <signal name>: SIGNAL IS <value>;

The dedicated_mult attribute can be applied to signals and wires; it does not work
when applied to a register. This attribute can be applied only to simple multiplier code,
such as a = b * c.

Some signals for which the dedicated_mult attribute is set can be removed during
synthesis by the Precision RTL software for design optimization. In such cases, if you
want to force the implementation, you should preserve the signal by setting the
preserve_signal attribute to TRUE.

Example 7. Setting the preserve_signal Attribute in Verilog HDL

//synthesis attribute <signal name> preserve_signal TRUE

Example 8. Setting the preserve_signal Attribute in VHDL

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE preserve_signal OF <signal name>: SIGNAL IS TRUE;

Example 9. Verilog HDL Multiplier Implemented in Logic

module unsigned_mult (result, a, b);
 output [15:0] result;
 input [7:0] a;
 input [7:0} b;
 assign result = a * b;
 //synthesis attribute result dedicated_mult OFF
endmodule

Example 10. VHDL Multiplier Implemented in Logic

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
 PORT(
 a: IN std_logic_vector (7 DOWNTO 0);
 b: IN std_logic_vector (7 DOWNTO 0);
 result: OUT std_logic_vector (15 DOWNTO 0));
ATTRIBUTE dedicated_mult: STRING;
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
 SIGNAL a_int, b_int: UNSIGNED (7 downto 0);
 SIGNAL pdt_int: UNSIGNED (15 downto 0);
ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF;

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

BEGIN
 a_int <= UNSIGNED (a);
 b_int <= UNSIGNED (b);
 pdt_int <= a_int * b_int;
 result <= std_logic_vector(pdt_int);
END rtl;

1.8.6.4. Inferring Multiplier-Accumulators and Multiplier-Adders

The Precision RTL software also allows you to control the device resources used to
implement multiply-accumulators or multiply-adders in your project or in a particular
module.

The Precision RTL software detects multiply-accumulators or multiply-adders in HDL
code and infers an ALTMULT_ACCUM or ALTMULT_ADD IP cores so that the logic can
be placed in DSP blocks, or the software maps these functions directly to device atoms
to implement the multiplier in the appropriate type of logic.

Note: The Precision RTL software supports inference for these functions only if the target
device family has dedicated DSP blocks.

For more information about DSP blocks in Intel devices, refer to the appropriate Intel
FPGA device family documentation.

For more information about inferring multiply-accumulator and multiply-adder IP cores
in HDL code, refer to the Intel Recommended HDL Coding Styles and the Siemens EDA
Precision RTL Synthesis Style Guide.

Related Information

Intel Quartus Prime Pro Edition User Guide: Design Recommendations

1.8.6.5. Controlling DSP Block Inference

By default, the Precision RTL software infers the ALTMULT_ADD or ALTMULT_ACCUM IP
cores appropriately in your design. These IP cores allow the Intel Quartus Prime
software to select either logic or DSP blocks, depending on the device utilization and
the size of the function.

You can use the extract_mac attribute to prevent inference of an ALTMULT_ADD or
ALTMULT_ACCUM IP cores in a certain module or entity.

Table 4. Options for extract_mac Attribute Controlling DSP Implementation

Value Description

TRUE The ALTMULT_ADD or ALTMULT_ACCUM IP core is inferred.

FALSE The ALTMULT_ADD or ALTMULT_ACCUM IP core is not inferred.

To control inference, use the extract_mac attribute with the appropriate value from
the examples below in your HDL code.

Example 11. Setting the extract_mac Attribute in Verilog HDL

//synthesis attribute <module name> extract_mac <value>

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

15

https://www.intel.com/content/www/us/en/docs/programmable/683082/current/recommended-hdl-coding-styles.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 12. Setting the extract_mac Attribute in VHDL

ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;

To control the implementation of the multiplier portion of a multiply-accumulator or
multiply-adder, you must use the dedicated_mult attribute.

You can use the extract_mac, dedicated_mult, and preserve_signal attributes
(in Verilog HDL and VHDL) to implement the given DSP function in logic in the Intel
Quartus Prime software.

Example 13. Using extract_mac, dedicated_mult, and preserve_signal in Verilog HDL

module unsig_altmult_accuml (dataout, dataa, datab, clk, aclr, clken);
 input [7:0} dataa, datab;
 input clk, aclr, clken;
 output [31:0] dataout;

 reg [31:0] dataout;
 wire [15:0] multa;
 wire [31:0] adder_out;

 assign multa = dataa * datab;

 //synthesis attribute multa preserve_signal TRUE
 //synthesis attribute multa dedicated_mult OFF
 assign adder_out = multa + dataout;

 always @ (posedge clk or posedge aclr)
 begin
 if (aclr)
 dataout <= 0;
 else if (clken)
 dataout <= adder_out;
 end

 //synthesis attribute unsig_altmult_accuml extract_mac FALSE
endmodule

Example 14. Using extract_mac, dedicated_mult, and preserve_signal in VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;
ENTITY signedmult_add IS
 PORT(
 a, b, c, d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0));
 ATTRIBUTE preserve_signal: BOOLEANS;
 ATTRIBUTE dedicated_mult: STRING;
 ATTRIBUTE extract_mac: BOOLEAN;
 ATTRIBUTE extract_mac OF signedmult_add: ENTITY IS FALSE;
END signedmult_add;
ARCHITECTURE rtl OF signedmult_add IS
 SIGNAL a_int, b_int, c_int, d_int : signed (7 DOWNTO 0);
 SIGNAL pdt_int, pdt2_int : signed (15 DOWNTO 0);
 SIGNAL result_int: signed (15 DOWNTO 0);
 ATTRIBUTE preserve_signal OF pdt_int: SIGNAL IS TRUE;
 ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
 ATTRIBUTE preserve_signal OF pdt2_int: SIGNAL IS TRUE;
 ATTRIBUTE dedicated_mult OF pdt2_int: SIGNAL IS "OFF";
BEGIN
 a_int <= signed (a);
 b_int <= signed (b);

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 c_int <= signed (c);
 d_int <= signed (d);
 pdt_int <= a_int * b_int;
 pdt2_int <= c_int * d_int;
 result_int <= pdt_int + pdt2_int;
 result <= STD_LOGIC_VECTOR(result_int);
END rtl;

1.8.6.6. Inferring RAM and ROM

The Precision RTL software detects memory structures in HDL code and converts them
to an operator that infers an ALTSYNCRAM or LPM_RAM_DP IP cores, depending on
the device family. The Intel Quartus Prime software then places these functions in
memory blocks.

The Precision RTL software supports inference for these functions only if the target
Intel FPGA device family has dedicated memory blocks.

For more information about inferring RAM and ROM IP cores in HDL code, refer to the
Precision RTL Synthesis Style Guide.

Related Information

Intel Quartus Prime Pro Edition User Guide: Design Recommendations

1.9. Siemens EDA Precision* RTL Synthesis Support Revision
History

Document Version Intel Quartus
Prime Version

Changes

2023.12.12 23.4 • Added Top FAQs navigation to document cover.
• Updated vendor and software product names throughout.
• Removed obsolete Intel Quartus Prime Standard Edition and Altera

references.

2022.03.28 18.1 Revised linking to documentation archives.

2018.09.24 18.1 Removed reference to obsolete .edf file from "Design Flow" diagram.

2018.05.07 18.0 Corrected trademark symbols on tool names.

2016.10.31 16.1 • Implemented Intel rebranding.

1. Siemens EDA Precision* RTL Synthesis Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

17

https://www.intel.com/content/www/us/en/docs/programmable/683082/current/recommended-hdl-coding-styles.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Synopsys Synplify* Support

2.1. About Synplify Support

the Intel Quartus Prime software supports use of the Synopsys Synplify software
design flows, methodologies, and techniques for achieving optimal results in Intel
devices. Synplify support applies to Synplify, Synplify Pro, and Synplify Premier
software. This document assumes proper set up, licensing, and basic familiarity with
the Synplify software.

This document covers the following information:

• General design flow with the Synplify and Intel Quartus Prime software.

• Synplify software optimization strategies, including timing-driven compilation
settings, optimization options, and other attributes.

• Guidelines for use of Quartus Prime IP cores, including guidelines for HDL
inference of IP cores.

Related Information

• Synplify Synthesis Techniques with the Intel Quartus Prime Software online
training

• Synplify Pro Tips and Tricks online training

2.2. Synplify Software Integration Flow

The following steps describe a basic Intel Quartus Prime software flow integrating the
Synplify software:

1. Create Verilog HDL (.v) or VHDL (.vhd) design files.

2. Set up a project in the Synplify software and add the HDL design files for
synthesis.

3. Select a target device and add timing constraints and compiler directives in the
Synplify software to help optimize the design during synthesis.

4. Synthesize the project in the Synplify software.

5. Create an Intel Quartus Prime project and import the following files generated by
the Synplify software into the Intel Quartus Prime software. Use the following files
for placement and routing, and for performance evaluation:

683122 | 2023.12.12

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/education/training/courses/OSYN1150
http://www.altera.com/education/training/courses/OSYN1150
http://www.altera.com/education/training/courses/OSYN1100
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Verilog Quartus Mapping File (.vqm) netlist.

• The Synopsys Constraints Format (.scf) file for Timing Analyzer constraints.

• The .tcl file to set up your Intel Quartus Prime project and pass constraints.

Note: Alternatively, you can run the Intel Quartus Prime software from within
the Synplify software.

6. After obtaining place-and-route results that meet your requirements, configure or
program the Intel device.

Figure 1. Recommended Design Flow

VHDL
(.vhd)

Verilog
HDL
(.v)

System
Verilog

(.v)

Synplify Software

Synopsys Constraints
format (.scf) File

Timing & Area
Requirements

Satisfied?

Functional/RTL
Simulation

Gate-Level
Functional
Simulation

Constraints & Settings

Constraints & Settings

Program/Configure Device

Forward-Annotated
Project Constraints
(.tcl/.acf)

Configuation/Programming
Files (.sof/.pof)

Technology-
Specific Netlist

(.vqm)

Post-Place-and-Route
Simulation Files

(.vho/.vo)
Quartus Prime Software

Yes

No

Related Information

• Synplify Software Generated Files on page 20

• Design Constraints Support on page 21

2. Synopsys Synplify* Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3. Hardware Description Language Support

The Synplify software supports VHDL, Verilog HDL, and SystemVerilog source files.
However, only the Synplify Pro and Premier software support mixed synthesis,
allowing a combination of VHDL and Verilog HDL or SystemVerilog format source files.

The HDL Analyst that is included in the Synplify software is a graphical tool for
generating schematic views of the technology-independent RTL view netlist (.srs)
and technology-view netlist (.srm) files. You can use the Synplify HDL Analyst to
analyze and debug your design visually. The HDL Analyst supports cross-probing
between the RTL and Technology views, the HDL source code, the Finite State Machine
(FSM) viewer, and between the technology view and the timing report file in the Intel
Quartus Prime software. A separate license file is required to enable the HDL Analyst
in the Synplify software. The Synplify Pro and Premier software include the HDL
Analyst.

Related Information

Guidelines for Intel FPGA IP Cores and Architecture-Specific Features on page 30

2.4. Intel Device Family Support

Support for newly released device families may require an overlay. Contact Synopsys
for more information.

Related Information

Synopsys Website

2.5. Tool Setup

2.5.1. Specifying the Intel Quartus Prime Software Version

You can specify your version of the Intel Quartus Prime software in Implementation
Options in the Synplify software. This option ensures that the netlist is compatible
with the software version and supports the newest features. Intel recommends using
the latest version of the Intel Quartus Prime software whenever possible. If your Intel
Quartus Prime software version is newer than the versions available in the Quartus
Version list, check if there is a newer version of the Synplify software available that
supports the current Intel Quartus Prime software version. Otherwise, select the latest
version in the list for the best compatibility.

Note: The Quartus Version list is available only after selecting an Intel device.

Example 15. Specifying Intel Quartus Prime Software Version at the Command Line

set_option -quartus_version <version number>

2.6. Synplify Software Generated Files

During synthesis, the Synplify software produces several intermediate and output files.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

20

http://www.synopsys.com
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 5. Synplify Intermediate and Output Files

File Extensions File Description

.vqm Technology-specific netlist in .vqm file format.
A .vqm file is created for all Intel device families supported by the Intel Quartus Prime
software.

.scf Synopsys Constraint Format file containing timing constraints for the Timing Analyzer.

.tcl Forward-annotated constraints file containing constraints and assignments.
A .tcl file for the Intel Quartus Prime software is created for all devices. The .tcl file
contains the appropriate Tcl commands to create and set up an Intel Quartus Prime project
and pass placement constraints.

.srs Technology-independent RTL netlist file that can be read only by the Synplify software.

.srm Technology view netlist file.

.acf Assignment and Configurations file for backward compatibility with the MAX+PLUS II
software. For devices supported by the MAX+PLUS II software, the MAX+PLUS II
assignments are imported from the MAX+PLUS II .acf file.

.srr(3) Synthesis Report file.

Related Information

Synplify Software Integration Flow on page 18

2.7. Design Constraints Support

You can specify timing constraints and attributes by using the SCOPE window of the
Synplify software, by editing the .sdc file, or by defining the compiler directives in the
HDL source file. The Synplify software forward-annotates many of these constraints to
the Intel Quartus Prime software.

After synthesis is complete, do the following steps:

1. Import the .vqm netlist to the Intel Quartus Prime software for place-and-route.

2. Use the .tcl file generated by the Synplify software to forward-annotate your
project constraints including device selection. The .tcl file calls the
generated .scf to forward-annotate Timing Analyzer timing constraints.

Related Information

• Synplify Software Integration Flow on page 18

• Synplify Optimization Strategies on page 23

(3) This report file includes performance estimates that are often based on pre-place-and-route
information. Use the fMAX reported by the Intel Quartus Prime software after place-and-route
—it is the only reliable source of timing information. This report file includes post-synthesis
device resource utilization statistics that might inaccurately predict resource usage after
place-and-route. The Synplify software does not account for black box functions nor for logic
usage reduction achieved through register packing performed by the Intel Quartus Prime
software. Register packing combines a single register and look-up table (LUT) into a single
logic cell, reducing logic cell utilization below the Synplify software estimate. Use the device
utilization reported by the Intel Quartus Prime software after place-and-route.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7.1. Running the Intel Quartus Prime Software Manually With the
Synplify-Generated Tcl Script

You can run the Intel Quartus Prime software with a Synplify-generated Tcl script.

To run the Tcl script to set up your project assignments, perform the following steps:

1. Ensure the .vqm, .scf, and .tcl files are located in the same directory.

2. In the Intel Quartus Prime software, on the View menu, point to and click Tcl
Console. The Intel Quartus Prime Tcl Console opens.

3. At the Tcl Console command prompt, type the following:

source <path>/<project name>_cons.tcl

2.7.2. Passing Timing Analyzer SDC Timing Constraints to the Intel
Quartus Prime Software

The Timing Analyzer is a powerful ASIC-style timing analysis tool that validates the
timing performance of all logic in your design using an industry standard constraints
format, Synopsys Design Constraints (.sdc).

The Synplify-generated .tcl file contains constraints for the Intel Quartus Prime
software, such as the device specification and any location constraints. Timing
constraints are forward-annotated in the Synopsys Constraints Format (.scf) file.

Note: Synopsys recommends that you modify constraints using the SCOPE constraint editor
window, rather than using the generated .sdc, .scf, or .tcl file.

The following list of Synplify constraints are converted to the equivalent Intel Quartus
Prime SDC commands and are forward-annotated to the Intel Quartus Prime software
in the .scf file:

• define_clock

• define_input_delay

• define_output_delay

• define_multicycle_path

• define_false_path

All Synplify constraints described above are mapped to SDC commands for the Timing
Analyzer.

For syntax and arguments for these commands, refer to the applicable topic in this
manual or refer to Synplify Help. For a list of corresponding commands in the Intel
Quartus Prime software, refer to the Intel Quartus Prime Help.

Related Information

Timing-Driven Synthesis Settings on page 24

2. Synopsys Synplify* Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7.2.1. Individual Clocks and Frequencies

Specify clock frequencies for individual clocks in the Synplify software with the
define_clock command. This command is passed to the Intel Quartus Prime
software with the create_clock command.

2.7.2.2. Input and Output Delay

Specify input delay and output delay constraints in the Synplify software with the
define_input_delay and define_output_delay commands, respectively. These
commands are passed to the Intel Quartus Prime software with the
set_input_delay and set_output_delay commands.

2.7.2.3. Multicycle Path

Specify a multicycle path constraint in the Synplify software with the
define_multicycle_path command. This command is passed to the Intel Quartus
Prime software with the set_multicycle_path command.

2.7.2.4. False Path

Specify a false path constraint in the Synplify software with the define_false_path
command. This command is passed to the Intel Quartus Prime software with the
set_false_path command.

2.8. Simulation and Formal Verification

You can perform simulation and formal verification at various stages in the design
process. You can perform final timing analysis after placement and routing is
complete.

If area and timing requirements are satisfied, use the files generated by the Intel
Quartus Prime software to program or configure the Intel device. If your area or
timing requirements are not met, you can change the constraints in the Synplify
software or the Intel Quartus Prime software and rerun synthesis. Intel recommends
that you provide timing constraints in the Synplify software and any placement
constraints in the Intel Quartus Prime software. Repeat the process until area and
timing requirements are met.

You can also use other options and techniques in the Intel Quartus Prime software to
meet area and timing requirements, such as WYSIWYG Primitive Resynthesis, which
can perform optimizations on your .vqm netlist within the Intel Quartus Prime
software.

Note: In some cases, you might be required to modify the source code if the area and timing
requirements cannot be met using options in the Synplify and Intel Quartus Prime
software.

2.9. Synplify Optimization Strategies

Combining Synplify software constraints with VHDL and Verilog HDL coding techniques
and Intel Quartus Prime software options can help you obtain the results that you
require.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about applying attributes, refer to the Synopsys FPGA Synthesis
Reference Manual.

Related Information

Design Constraints Support on page 21

2.9.1. Using Synplify Premier to Optimize Your Design

Compared to other Synplify products, the Synplify Premier software offers additional
physical synthesis optimizations. After typical logic synthesis, the Synplify Premier
software places and routes the design and attempts to restructure the netlist based on
the physical location of the logic in the Intel device. The Synplify Premier software
forward-annotates the design netlist to the Intel Quartus Prime software to perform
the final placement and routing. In the default flow, the Synplify Premier software also
forward-annotates placement information for the critical path(s) in the design, which
can improve the compilation time in the Intel Quartus Prime software.

The physical location annotation file is called <design name>_plc.tcl. If you open
the Intel Quartus Prime software from the Synplify Premier software user interface,
the Intel Quartus Prime software automatically uses this file for the placement
information.

The Physical Analyst allows you to examine the placed netlist from the Synplify
Premier software, which is similar to the HDL Analyst for a logical netlist. You can use
this display to analyze and diagnose potential problems.

2.9.2. Using Implementations in Synplify Pro or Premier

You can create different synthesis results without overwriting the existing results, in
the Synplify Pro or Premier software, by creating a new implementation from the
Project menu. For each implementation, specify the target device, synthesis options,
and constraint files. Each implementation generates its own subdirectory that contains
all the resulting files, including .vqm, .scf, and .tcl files, from a compilation of the
particular implementation. You can then compare the results of the different
implementations to find the optimal set of synthesis options and constraints for a
design.

2.9.3. Timing-Driven Synthesis Settings

The Synplify software supports timing-driven synthesis with user-assigned timing
constraints to optimize the performance of the design.

The Intel Quartus Prime NativeLink feature allows timing constraints that are applied
in the Synplify software to be forward-annotated for the Intel Quartus Prime software
with an .scf file for timing-driven place and route.

The Synplify Synthesis Report File (.srr) contains timing reports of estimated
place-and-route delays. The Intel Quartus Prime software can perform further
optimizations on a post-synthesis netlist from third-party synthesis tools. In addition,
designs might contain black boxes or intellectual property (IP) functions that have not
been optimized by the third-party synthesis software. Actual timing results are
obtained only after the design has been fully placed and routed in the Intel Quartus
Prime software. For these reasons, the Intel Quartus Prime post place-and-route
timing reports provide a more accurate representation of the design. Use the statistics
in these reports to evaluate design performance.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Passing Timing Analyzer SDC Timing Constraints to the Intel Quartus Prime Software
on page 22

2.9.3.1. Clock Frequencies

For single-clock designs, you can specify a global frequency when using the
push-button flow. While this flow is simple and provides good results, it often does not
meet the performance requirements for more advanced designs. You can use timing
constraints, compiler directives, and other attributes to help optimize the performance
of a design. You can enter these attributes and directives directly in the HDL code.
Alternatively, you can enter attributes (not directives) into an .sdc file with the
SCOPE window in the Synplify software.

Use the SCOPE window to set global frequency requirements for the entire design and
individual clock settings. Use the Clocks tab in the SCOPE window to specify
frequency (or period), rise times, fall times, duty cycle, and other settings. Assigning
individual clock settings, rather than over-constraining the global frequency, helps the
Intel Quartus Prime software and the Synplify software achieve the fastest clock
frequency for the overall design. The define_clock attribute assigns clock
constraints.

2.9.3.2. Multiple Clock Domains

The Synplify software can perform timing analysis on unrelated clock domains. Each
clock group is a different clock domain and is treated as unrelated to the clocks in all
other clock groups. All clocks in a single clock group are assumed to be related, and
the Synplify software automatically calculates the relationship between the clocks. You
can assign clocks to a new clock group or put related clocks in the same clock group
with the Clocks tab in the SCOPE window, or with the define_clock attribute.

2.9.3.3. Input and Output Delays

Specify the input and output delays for the ports of a design in the Input/Output tab
of the SCOPE window, or with the define_input_delay and
define_output_delay attributes. The Synplify software does not allow you to
assign the tCO and tSU values directly to inputs and outputs. However, a tCO value can
be inferred by setting an external output delay; a tSU value can be inferred by setting
an external input delay.

Relationship Between tCO and the Output Delay

tCO = clock period – external output delay

Relationship Between tSU and the Input Delay

tSU = clock period – external input delay

When the syn_forward_io_constraints attribute is set to 1, the Synplify
software passes the external input and output delays to the Intel Quartus Prime
software using NativeLink integration. The Intel Quartus Prime software then uses the
external delays to calculate the maximum system frequency.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.3.4. Multicycle Paths

A multicycle path is a path that requires more than one clock cycle to propagate.
Specify any multicycle paths in the design in the Multi-Cycle Paths tab of the SCOPE
window, or with the define_multicycle_path attribute. You should specify which
paths are multicycle to prevent the Intel Quartus Prime and the Synplify compilers
from working excessively on a non-critical path. Not specifying these paths can also
result in an inaccurate critical path reported during timing analysis.

2.9.3.5. False Paths

False paths are paths that should be ignored during timing analysis, or should be
assigned low (or no) priority during optimization. Some examples of false paths
include slow asynchronous resets, and test logic that has been added to the design.
Set these paths in the False Paths tab of the SCOPE window, or use the
define_false_path attribute.

2.9.4. FSM Compiler

If the FSM Compiler is turned on, the compiler automatically detects state machines in
a design, which are then extracted and optimized. The FSM Compiler analyzes state
machines and implements sequential, gray, or one-hot encoding, based on the number
of states. The compiler also performs unused-state analysis, optimization of
unreachable states, and minimization of transition logic. Implementation is based on
the number of states, regardless of the coding style in the HDL code.

If the FSM Compiler is turned off, the compiler does not optimize logic as state
machines. The state machines are implemented as HDL code. Thus, if the coding style
for a state machine is sequential, the implementation is also sequential.

Use the syn_state_machine compiler directive to specify or prevent a state
machine from being extracted and optimized. To override the default encoding of the
FSM Compiler, use the syn_encoding directive.

Table 6. syn_encoding Directive Values

Value Description

Sequential Generates state machines with the fewest possible flipflops. Sequential, also called binary, state
machines are useful for area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flipflop changes during each transition. Gray-encoded state
machines tend to be glitches.

One-hot Generates state machines containing one flipflop for each state. One-hot state machines typically
provide the best performance and shortest clock-to-output delays. However, one-hot implementations
are usually larger than sequential implementations.

Safe Generates extra control logic to force the state machine to the reset state if an invalid state is reached.
You can use the safe value in conjunction with any of the other three values, which results in the state
machine being implemented with the requested encoding scheme and the generation of the reset logic.

Example 16. Sample VHDL Code for Applying syn_encoding Directive

SIGNAL current_state : STD_LOGIC_VECTOR (7 DOWNTO 0);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF current_state : SIGNAL IS "sequential";

2. Synopsys Synplify* Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, the state machine logic is optimized for speed and area, which may be
potentially undesirable for critical systems. The safe value generates extra control
logic to force the state machine to the reset state if an invalid state is reached.

2.9.4.1. FSM Explorer in Synplify Pro and Premier

The Synplify Pro and Premier software use the FSM Explorer to explore different
encoding styles for a state machine automatically, and then implement the best
encoding based on the overall design constraints. The FSM Explorer uses the FSM
Compiler to identify and extract state machines from a design. However, unlike the
FSM Compiler, which chooses the encoding style based on the number of states, the
FSM Explorer attempts several different encoding styles before choosing a specific
one. The trade-off is that the compilation requires more time to analyze the state
machine, but finds an optimal encoding scheme for the state machine.

2.9.5. Optimization Attributes and Options

2.9.5.1. Retiming in Synplify Pro and Premier

The Synplify Pro and Premier software can retime a design, which can improve the
timing performance of sequential circuits by moving registers (register balancing)
across combinational elements. Be aware that retimed registers incur name changes.
You can retime your design from Implementation Options or you can use the
syn_allow_retiming attribute.

2.9.5.2. Maximum Fan-Out

When your design has critical path nets with high fan-out, use the syn_maxfan
attribute to control the fan-out of the net. Setting this attribute for a specific net
results in the replication of the driver of the net to reduce overall fan-out. The
syn_maxfan attribute takes an integer value and applies it to inputs or registers. The
syn_maxfan attribute cannot be used to duplicate control signals. The minimum
allowed value of the attribute is 4. Using this attribute might result in increased logic
resource utilization, thus straining routing resources, which can lead to long
compilation times and difficult fitting.

If you must duplicate an output register or an output enable register, you can create a
register for each output pin by using the syn_useioff attribute.

2.9.5.3. Preserving Nets

During synthesis, the compiler maintains ports, registers, and instantiated
components. However, some nets cannot be maintained to create an optimized circuit.
Applying the syn_keep directive overrides the optimization of the compiler and
preserves the net during synthesis. The syn_keep directive is a Boolean data type
value and can be applied to wires (Verilog HDL) and signals (VHDL). Setting the value
to true preserves the net through synthesis.

2.9.5.4. Register Packing

Intel devices allow register packing into I/O cells. Intel recommends allowing the Intel
Quartus Prime software to make the I/O register assignments. However, you can
control register packing with the syn_useioff attribute. The syn_useioff attribute
is a Boolean data type value that can be applied to ports or entire modules. Setting

2. Synopsys Synplify* Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the value to 1 instructs the compiler to pack the register into an I/O cell. Setting the
value to 0 prevents register packing in both the Synplify and Intel Quartus Prime
software.

2.9.5.5. Resource Sharing

The Synplify software uses resource sharing techniques during synthesis, by default,
to reduce area. Turning off the Resource Sharing option on the Options tab of the
Implementation Options dialog box improves performance results for some
designs. You can also turn off the option for a specific module with the syn_sharing
attribute. If you turn off this option, be sure to check the results to verify
improvement in timing performance. If there is no improvement, turn on Resource
Sharing.

2.9.5.6. Preserving Hierarchy

The Synplify software performs cross-boundary optimization by default, which causes
the design to flatten to allow optimization. You can use the syn_hier attribute to
override the default compiler settings. The syn_hier attribute applies a string value
to modules, architectures, or both. Setting the value to hard maintains the
boundaries of a module, architecture, or both, but allows constant propagation.
Setting the value to locked prevents all cross-boundary optimizations. Use the
locked setting with the partition setting to create separate design blocks and multiple
output netlists.

By default, the Synplify software generates a hierarchical .vqm file. To flatten the file,
set the syn_netlist_hierarchy attribute to 0.

2.9.5.7. Register Input and Output Delays

Two advanced options, define_reg_input_delay and
define_reg_output_delay, can speed up paths feeding a register, or coming from
a register, by a specific number of nanoseconds. The Synplify software attempts to
meet the global clock frequency goals for a design as well as the individual clock
frequency goals (set with the define_clock attribute). You can use these attributes
to add a delay to paths feeding into or out of registers to further constrain critical
paths. You can slow down a path that is too highly optimized by setting this attributes
to a negative number.

The define_reg_input_delay and define_reg_output_delay options are
useful to close timing if your design does not meet timing goals, because the routing
delay after placement and routing exceeds the delay predicted by the Synplify
software. Rerun synthesis using these options, specifying the actual routing delay
(from place-and-route results) so that the tool can meet the required clock frequency.
Synopsys recommends that for best results, do not make these assignments too
aggressively. For example, you can increase the routing delay value, but do not also
use the full routing delay from the last compilation.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the SCOPE constraint window, the registers panel contains the following options:

• Register—Specifies the name of the register. If you have initialized a compiled
design, select the name from the list.

• Type—Specifies whether the delay is an input or output delay.

• Route—Shrinks the effective period for the constrained registers by the specified
value without affecting the clock period that is forward-annotated to the Intel
Quartus Prime software.

Use the following Tcl command syntax to specify an input or output register delay in
nanoseconds.

Example 17. Input and Output Register Delay

define_reg_input_delay {<register>} -route <delay in ns>
define_reg_output_delay {<register>} -route <delay in ns>

2.9.5.8. syn_direct_enable

This attribute controls the assignment of a clock-enable net to the dedicated enable
pin of a register. With this attribute, you can direct the Synplify mapper to use a
particular net as the only clock enable when the design has multiple clock enable
candidates.

To use this attribute as a compiler directive to infer registers with clock enables, enter
the syn_direct_enable directive in your source code, instead of the SCOPE
spreadsheet.

The syn_direct_enable data type is Boolean. A value of 1 or true enables net
assignment to the clock-enable pin. The following is the syntax for Verilog HDL:

object /* synthesis syn_direct_enable = 1 */ ;

2.9.5.9. I/O Standard

For certain Intel devices, specify the I/O standard type for an I/O pad in the design
with the I/O Standard panel in the Synplify SCOPE window.

The Synplify SDC syntax for the define_io_standard constraint, in which the
delay_type must be either input_delay or output_delay.

Example 18. define_io_standard Constraint

define_io_standard [–disable|–enable] {<objectName>} -delay_type \
[input_delay|output_delay] <columnTclName>{<value>} [<columnTclName>{<value>}...]

For details about supported I/O standards, refer to the Synopsys FPGA Synthesis
Reference Manual.

2.9.6. Intel-Specific Attributes

You can use the altera_chip_pin_lc, altera_io_powerup, and
altera_io_opendrain attributes with specific Intel device features, which are
forward-annotated to the Intel Quartus Prime project, and are used during place-and-
route.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.1. altera_chip_pin_lc

Use the altera_chip_pin_lc attribute to make pin assignments. This attribute
applies a string value to inputs and outputs. Use the attribute only on the ports of the
top-level entity in the design. Do not use this attribute to assign pin locations from
entities at lower levels of the design hierarchy.

Note: The altera_chip_pin_lc attribute is not supported for any MAX series device.

In the SCOPE window, set the value of the altera_chip_pin_lc attribute to a pin
number or a list of pin numbers.

You can use VHDL code for making location assignments for supported Intel devices.
Pin location assignments for these devices are written to the output .tcl file.

Note: The data_out signal is a 4-bit signal; data_out[3] is assigned to pin 14 and
data_out[0] is assigned to pin 15.

Example 19. Making Location Assignments in VHDL

ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "14, 5, 16, 15";

2.9.6.2. altera_io_powerup

Use the altera_io_powerup attribute to define the power-up value of an I/O
register that has no set or reset. This attribute applies a string value (high|low) to
ports with I/O registers. By default, the power-up value of the I/O register is set to
low.

2.9.6.3. altera_io_opendrain

Use the altera_io_opendrain attribute to specify open-drain mode I/O ports. This
attribute applies a boolean data type value to outputs or bidirectional ports for devices
that support open-drain mode.

2.10. Guidelines for Intel FPGA IP Cores and Architecture-Specific
Features

Intel provides parameterizable IP cores, including LPMs, device-specific Intel FPGA IP
cores, and IP available through the Intel FPGA IP Partners Program (AMPPSM). You can
use IP cores by instantiating them in your HDL code, or by inferring certain IP cores
from generic HDL code.

You can instantiate an IP core in your HDL code with the IP Catalog and configure the
IP core with the Parameter Editor, or instantiate the IP core using the port and
parameter definition. The IP Catalog and Parameter Editor provide a graphical
interface within the Intel Quartus Prime software to customize any available Intel
FPGA IP core for the design.

The Synplify software also automatically recognizes certain types of HDL code, and
infers the appropriate Intel FPGA IP core when an IP core provides optimal results.
The Synplify software provides options to control inference of certain types of IP cores.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Hardware Description Language Support on page 20

• Recommended HDL Coding Styles, Design Recommendations User Guide

• About the IP Catalog Online Help

2.10.1. Instantiating Intel FPGA IP Cores with the IP Catalog

When you use the IP Catalog and Parameter Editor to set up and configure an IP core,
the IP Catalog creates a VHDL or Verilog HDL wrapper file <output file>.v|vhd that
instantiates the IP core.

The Synplify software uses the Intel Quartus Prime timing and resource estimation
netlist feature to report more accurate resource utilization and timing performance
estimates, and uses timing-driven optimization, instead of treating the IP core as a
“black box.” Including the generated IP core variation wrapper file in your Synplify
project, gives the Synplify software complete information about the IP core.

Note: There is an option in the Parameter Editor to generate a netlist for resource and timing
estimation. This option is not recommended for the Synplify software because the
software automatically generates this information in the background without a
separate netlist. If you do create a separate netlist <output file>_syn.v and use that
file in your synthesis project, you must also include the <output file>.v|vhd file in
your Intel Quartus Prime project.

Verify that the correct Intel Quartus Prime version is specified in the Synplify software
before compiling the generated file to ensure that the software uses the correct library
definitions for the IP core. The Quartus Version setting must match the version of
the Intel Quartus Prime software used to generate the customized IP core.

In addition, ensure that the QUARTUS_ROOTDIR environment variable specifies the
installation directory location of the correct Intel Quartus Prime version. The Synplify
software uses this information to launch the Intel Quartus Prime software in the
background. The environment variable setting must match the version of the Intel
Quartus Prime software used to generate the customized IP core.

Related Information

Specifying the Intel Quartus Prime Software Version on page 20

2.10.1.1. Instantiating Intel FPGA IP Cores with IP Catalog Generated Verilog
HDL Files

If you turn on the <output file>_inst.v option on the Parameter Editor, the IP
Catalog generates a Verilog HDL instantiation template file for use in your Synplify
design. The instantiation template file, <output file>_inst.v, helps to instantiate the
IP core variation wrapper file, <output file>.v, in your top-level design. Include the IP
core variation wrapper file <output file>.v in your Synplify project. The Synplify
software includes the IP core information in the output .vqm netlist file. You do not
need to include the generated IP core variation wrapper file in your Intel Quartus
Prime project.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

31

https://www.intel.com/content/www/us/en/docs/programmable/683082/current/recommended-hdl-coding-styles.html
http://quartushelp.altera.com/current/hdl/mega/mega_view_megawiz.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.1.2. Instantiating Intel FPGA IP Cores with IP Catalog Generated VHDL Files

If you turn on the <output file>.cmp and <output file>_inst.vhd options on the
parameter editor, the IP Catalog generates a VHDL component declaration file and a
VHDL instantiation template file for use in your Synplify design. These files can help
you instantiate the IP core variation wrapper file, <output file>.vhd, in your top-level
design. Include the <output file>.vhd in your Synplify project. The Synplify software
includes the IP core information in the output .vqm netlist file. You do not need to
include the generated IP core variation wrapper file in your Intel Quartus Prime
project.

2.10.1.3. Changing Synplify’s Default Behavior for Instantiated Intel FPGA IP
Cores

By default, the Synplify software automatically opens the Intel Quartus Prime software
in the background to generate a resource and timing estimation netlist for IP cores.

You might want to change this behavior to reduce run times in the Synplify software,
because generating the netlist files can take several minutes for large designs, or if
the Synplify software cannot access your Intel Quartus Prime software installation to
generate the files. Changing this behavior might speed up the compilation time in the
Synplify software, but the Quality of Results (QoR) might be reduced.

The Synplify software directs the Intel Quartus Prime software to generate information
in two ways:

• Some IP cores provide a “clear box” model—the Synplify software fully synthesizes
this model and includes the device architecture-specific primitives in the
output .vqm netlist file.

• Other IP cores provide a “gray box” model—the Synplify software reads the
resource information, but the netlist does not contain all the logic functionality.

Note: You need to turn on Generate netlist when using the gray box model. For
more information, see the Intel Quartus Prime online help.

For these IP cores, the Synplify software uses the logic information for resource and
timing estimation and optimization, and then instantiates the IP core in the
output .vqm netlist file so the Intel Quartus Prime software can implement the
appropriate device primitives. By default, the Synplify software uses the clear box
model when available, and otherwise uses the gray box model.

Note: Generation of a timing and area estimation (gray box) netlist is available only for
individual Intel FPGA IP, and not for Platform Designer systems.

Related Information

• Including Files for Intel Quartus Prime Placement and Routing Only on page 35

• Synplify Synthesis Techniques with the Intel Quartus Prime Software online
training

Includes more information about design flows using clear box model and gray
box model.

• Generating a Netlist for 3rd Party Synthesis Tools online help

2. Synopsys Synplify* Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

32

http://www.altera.com/education/training/courses/OSYN1150
http://www.altera.com/education/training/courses/OSYN1150
http://quartushelp.altera.com/current/index.htm#hdl/mega/mega_netlist.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.1.4. Instantiating Intellectual Property with the IP Catalog and Parameter
Editor

Many Intel FPGA IP cores include a resource and timing estimation netlist that the
Synplify software uses to report more accurate resource utilization and timing
performance estimates, and uses timing-driven optimization rather than a black box
function.

To create this netlist file, perform the following steps:

1. Select the IP core in the IP Catalog.

2. Click Next to open the Parameter Editor.

3. Click Set Up Simulation, which sets up all the EDA options.

4. Turn on the Generate netlist option to generate a netlist for resource and timing
estimation and click OK.

5. Click Generate to generate the netlist file.

The Intel Quartus Prime software generates a file <output file>_syn.v. This netlist
contains the gray box information for resource and timing estimation, but does not
contain the actual implementation. Include this netlist file in your Synplify project.
Next, include the IP core variation wrapper file <output file>.v|vhd in the Intel
Quartus Prime project along with your Synplify .vqm output netlist.

If your IP core does not include a resource and timing estimation netlist, the Synplify
software must treat the IP core as a black box.

Related Information

Including Files for Intel Quartus Prime Placement and Routing Only on page 35

2.10.1.5. Instantiating Black Box IP Cores with Generated Verilog HDL Files

Use the syn_black_box compiler directive to declare a module as a black box. The
top-level design files must contain the IP port-mapping and a hollow-body module
declaration. Apply the syn_black_box directive to the module declaration in the top-
level file or a separate file included in the project so that the Synplify software
recognizes the module is a black box. The software compiles successfully without this
directive, but reports an additional warning message. Using this directive allows you to
add other directives.

The example shows a top-level file that instantiates my_verilogIP.v, which is a
simple customized variation generated by the IP Catalog.

Example 20. Sample Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output [7:0] count;
 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule
// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;
 output [7:0] q;
endmodule

2. Synopsys Synplify* Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.1.6. Instantiating Black Box IP Cores with Generated VHDL Files

Use the syn_black_box compiler directive to declare a component as a black box.
The top-level design files must contain the IP core variation component declaration
and port-mapping. Apply the syn_black_box directive to the component declaration
in the top-level file. The software compiles successfully without this directive, but
reports an additional warning message. Using this directive allows you to add other
directives.

The example shows a top-level file that instantiates my_vhdlIP.vhd, which is a
simplified customized variation generated by the IP Catalog.

Example 21. Sample Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
COMPONENT my_vhdlIP
 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
end COMPONENT;
attribute syn_black_box : boolean;
attribute syn_black_box of my_vhdlIP: component is true;
BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;

2.10.1.7. Other Synplify Software Attributes for Creating Black Boxes

Instantiating IP as a black box does not provide visibility into the IP for the synthesis
tool. Thus, it does not take full advantage of the synthesis tool's timing-driven
optimization. For better timing optimization, especially if the black box does not have
registered inputs and outputs, add timing models to black boxes by adding the
syn_tpd, syn_tsu, and syn_tco attributes.

Example 22. Adding Timing Models to Black Boxes in Verilog HDL

module ram32x4(z,d,addr,we,clk);
 /* synthesis syn_black_box syn_tcol="clk->z[3:0]=4.0"
 syn_tpd1="addr[3:0]->[3:0]=8.0"
 syn_tsu1="addr[3:0]->clk=2.0"
 syn_tsu2="we->clk=3.0" */
 output [3:0]z;
 input[3:0]d;
 input[3:0]addr;
 input we
 input clk
endmodule

2. Synopsys Synplify* Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following additional attributes are supported by the Synplify software to
communicate details about the characteristics of the black box module within the HDL
code:

• syn_resources—Specifies the resources used in a particular black box.

• black_box_pad_pin—Prevents mapping to I/O cells.

• black_box_tri_pin—Indicates a tri-stated signal.

For more information about applying these attributes, refer to the Synopsys FPGA
Synthesis Reference Manual.

2.10.2. Including Files for Intel Quartus Prime Placement and Routing
Only

In the Synplify software, you can add files to your project that are used only during
placement and routing in the Intel Quartus Prime software. This can be useful if you
have gray or black boxes for Synplify synthesis that require the full design files to be
compiled in the Intel Quartus Prime software.

You can also set the option in a script using the -job_owner par option.

The example shows how to define files for a Synplify project that includes a top-level
design file, a gray box netlist file, an IP wrapper file, and an encrypted IP file. With
these files, the Synplify software writes an empty instantiation of “core” in the .vqm
file and uses the gray box netlist for resource and timing estimation. The files core.v
and core_enc8b10b.v are not compiled by the Synplify software, but are copied into
the place-and-route directory. The Intel Quartus Prime software compiles these files to
implement the “core” IP block.

Example 23. Commands to Define Files for a Synplify Project

add_file -verilog -job_owner par "core_enc8b10b.v"
add_file -verilog -job_owner par "core.v"
add_file -verilog "core_gb.v"
add_file -verilog "top.v"

Note: Generation of a timing and area estimation (gray box) netlist is available only for
individual Intel FPGA IP, and not for Platform Designer systems.

2.10.3. Inferring Intel FPGA IP Cores from HDL Code

The Synplify software uses Behavior Extraction Synthesis Technology (BEST)
algorithms to infer high-level structures such as RAMs, ROMs, operators, FSMs, and
DSP multiplication operations. Then, the Synplify software keeps the structures
abstract for as long as possible in the synthesis process. This allows the use of
technology-specific resources to implement these structures by inferring the
appropriate Intel FPGA IP core when an IP core provides optimal results.

Related Information

Recommended HDL Coding Styles, Design Recommendations User Guide

2. Synopsys Synplify* Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

35

https://www.intel.com/content/www/us/en/docs/programmable/683082/current/recommended-hdl-coding-styles.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.3.1. Inferring Multipliers

The figure shows the HDL Analyst view of an unsigned 8 × 8 multiplier with two
pipeline stages after synthesis in the Synplify software. This multiplier is converted
into an ALTMULT_ADD or ALTMULT_ACCUM IP core. For devices with DSP blocks, the
software might implement the function in a DSP block instead of regular logic,
depending on device utilization. For some devices, the software maps directly to DSP
block device primitives instead of instantiating an IP core in the .vqm file.

Figure 2. HDL Analyst View of LPM_MULT IP Core (Unsigned 8x8 Multiplier with
Pipeline=2)

2.10.3.1.1. Resource Balancing

While mapping multipliers to DSP blocks, the Synplify software performs resource
balancing for optimum performance.

Intel devices have a fixed number of DSP blocks, which includes a fixed number of
embedded multipliers. If the design uses more multipliers than are available, the
Synplify software automatically maps the extra multipliers to logic elements (LEs), or
adaptive logic modules (ALMs).

If a design uses more multipliers than are available in the DSP blocks, the Synplify
software maps the multipliers in the critical paths to DSP blocks. Next, any wide
multipliers, which might or might not be in the critical paths, are mapped to DSP
blocks. Smaller multipliers and multipliers that are not in the critical paths might then
be implemented in the logic (LEs or ALMs). This ensures that the design fits
successfully in the device.

2.10.3.1.2. Controlling the DSP Block Inference

You can implement multipliers in DSP blocks or in logic in Intel devices that contain
DSP blocks. You can control this implementation through attribute settings in the
Synplify software.

2.10.3.1.3. Signal Level Attribute

You can control the implementation of individual multipliers by using the
syn_multstyle attribute as shown in the following Verilog HDL code (where
<signal_name> is the name of the signal):

<signal_name> /* synthesis syn_multstyle = "logic" */;

The syn_multstyle attribute applies to wires only; it cannot be applied to registers.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 7. DSP Block Attribute Setting in the Synplify Software

Attribute Name Value Description

syn_multstyle lpm_mult LPM function inferred and multipliers
implemented in DSP blocks.

logic LPM function not inferred and
multipliers implemented as LEs by the
Synplify software.

block_mult DSP IP core is inferred and multipliers
are mapped directly to DSP block
device primitives (for supported
devices).

Example 24. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code

module mult(a,b,c,r,en);
 input [7:0] a,b;
 output [15:0] r;
 input [15:0] c;
 input en;
 wire [15:0] temp /* synthesis syn_multstyle="logic" */;

 assign temp = a*b;
 assign r = en ? temp : c;
endmodule

Example 25. Signal Attributes for Controlling DSP Block Inference in VHDL Code

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity onereg is port (
 r : out std_logic_vector (15 downto 0);
 en : in std_logic;
 a : in std_logic_vector (7 downto 0);
 b : in std_logic_vector (7 downto 0);
 c : in std_logic_vector (15 downto 0);
);
end onereg;

architecture beh of onereg is
signal temp : std_logic_vector (15 downto 0);
attribute syn_multstyle : string;
attribute syn_multstyle of temp : signal is "logic";

begin
 temp <= a * b;
 r <= temp when en='1' else c;
end beh;

2.10.3.2. Inferring RAM

When a RAM block is inferred from an HDL design, the Synplify software uses an Intel
FPGA IP core to target the device memory architecture. For some devices, the Synplify
software maps directly to memory block device primitives instead of instantiating an
IP core in the .vqm file.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these guidelines for the Synplify software to successfully infer RAM in a design:

• The address line must be at least two bits wide.

• Resets on the memory are not supported. Refer to the device family
documentation for information about whether read and write ports must be
synchronous.

• Some Verilog HDL statements with blocking assignments might not be mapped to
RAM blocks, so avoid blocking statements when modeling RAMs in Verilog HDL.

For some device families, the syn_ramstyle attribute specifies the implementation
to use for an inferred RAM. You can apply the syn_ramstyle attribute globally to a
module or a RAM instance, to specify registers or block_ram values. To turn off
RAM inference, set the attribute value to registers.

When inferring RAM for some Intel device families, the Synplify software generates
additional bypass logic. This logic is generated to resolve a half-cycle read/write
behavior difference between the RTL and post-synthesis simulations. The RTL
simulation shows the memory being updated on the positive edge of the clock; the
post-synthesis simulation shows the memory being updated on the negative edge of
the clock. To eliminate bypass logic, the output of the RAM must be registered. By
adding this register, the output of the RAM is seen after a full clock cycle, by which
time the update has occurred, thus eliminating the need for bypass logic.

For devices with TriMatrix memory blocks, disable the creation of glue logic by setting
the syn_ramstyle value to no_rw_check. Set syn_ramstyle to no_rw_check to
disable the creation of glue logic in dual-port mode.

Example 26. VHDL Code for Inferred Dual-Port RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 data_in: IN STD_LOGIC_VECTOR (7 DOWNTO 0)
 wr_addr, rd_addr: IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 we: IN STD_LOGIC);
 clk: IN STD_LOGIC);
END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECOR (7 DOWNTO 0);
SIGNAL mem; Mem_Type;
SIGNAL addr_reg: STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN
 data_out <= mem (CONV_INTEGER(rd_addr));
 PROCESS (clk, we, data_in) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (we='1') THEN
 mem(CONV_INTEGER(wr_addr)) <= data_in;
 END IF;
 END IF;
 END PROCESS;
END ram_infer;

Example 27. VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

2. Synopsys Synplify* Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 data_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 wr_addr, rd_addr : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 we : IN STD_LOGIC;
 clk : IN STD_LOGIC);
END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem : Mem_Type;
SIGNAL addr_reg : STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL tmp_out : STD_LOGIC_VECTOR (7 DOWNTO 0); --output register

BEGIN
 tmp_out <= mem (CONV_INTEGER (rd_addr));
 PROCESS (clk, we, data_in) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (we='1') THEN
 mem(CONV_INTEGER(wr_addr)) <= data_in;
 END IF;
 data_out <= tmp_out; --registers output preventing
 -- bypass logic generation
 END IF;
 END PROCESS;
END ram_infer;

2.10.3.3. RAM Initialization

Use the Verilog HDL $readmemb or $readmemh system tasks in your HDL code to
initialize RAM memories. The Synplify compiler forward-annotates the initialization
values in the .srs (technology-independent RTL netlist) file and the mapper
generates the corresponding hexadecimal memory initialization (.hex) file. One .hex
file is created for each of the altsyncram IP cores that are inferred in the design.
The .hex file is associated with the altsyncram instance in the .vqm file using the
init_file attribute.

The examples show how RAM can be initialized through HDL code, and how the
corresponding .hex file is generated using Verilog HDL.

Example 28. Using $readmemb System Task to Initialize an Inferred RAM in Verilog HDL
Code

initial
begin
 $readmemb("mem.ini", mem);
end
always @(posedge clk)
begin
 raddr_reg <= raddr;
 if(we)
 mem[waddr] <= data;
end

Example 29. Sample of .vqm Instance Containing Memory Initialization File

altsyncram mem_hex(.wren_a(we),.wren_b(GND),...);

defparam mem_hex.lpm_type = "altsyncram";
defparam mem_hex.operation_mode = "Dual_Port";
...
defparam mem_hex.init_file = "mem_hex.hex";

2. Synopsys Synplify* Support

683122 | 2023.12.12

Send Feedback Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.3.4. Inferring ROM

When a ROM block is inferred from an HDL design, the Synplify software uses an Intel
FPGA IP core to target the device memory architecture. For some devices, the Synplify
software maps directly to memory block device atoms instead of instantiating an IP
core in the .vqm file.

Follow these guidelines for the Synplify software to successfully infer ROM in a design:

• The address line must be at least two bits wide.

• The ROM must be at least half full.

• A CASE or IF statement must make 16 or more assignments using constant values
of the same width.

2.10.3.5. Inferring Shift Registers

The Synplify software infers shift registers for sequential shift components so that
they can be placed in dedicated memory blocks in supported device architectures
using the ALTSHIFT_TAPS IP core.

If necessary, set the implementation style with the syn_srlstyle attribute. If you do
not want the components automatically mapped to shift registers, set the value to
registers. You can set the value globally, or on individual modules or registers.

For some designs, turning off shift register inference improves the design
performance.

2.11. Synopsys Synplify* Support Revision History

Document Version Intel Quartus
Prime Version

Changes

2022.03.28 18.1 Revised linking to documentation archives.

2018.09.24 18.1 Removed reference to obsolete .edf file from "Design Flow" diagram.

2018.05.07 18.0 Corrected trademark symbols on tool names.

2016.10.31 16.1 • Implemented Intel rebranding.

2.12. Intel Quartus Prime Pro Edition User Guide: Third-Party
Synthesis Archives

For the latest and previous versions of this user guide, refer to Intel Quartus Prime Pro
Edition User Guide: Third-party Synthesis. If an IP or software version is not listed,
the user guide for the previous IP or software version applies.

2. Synopsys Synplify* Support

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

40

https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Pro Edition FPGA design flow.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Pro Edition software, including managing Intel Quartus Prime Pro Edition
projects and IP, initial design planning considerations, and project migration
from previous software versions.

• Intel Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Pro Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Pro Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Pro Edition Compiler. The Compiler synthesizes, places, and routes your
design before generating a device programming file.

• Intel Quartus Prime Pro Edition User Guide: Design Optimization
Describes Intel Quartus Prime Pro Edition settings, tools, and techniques that
you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Intel Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Pro Edition Programmer, which
allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683122 | 2023.12.12

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Intel Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys* that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys*. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence
Checking Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Intel Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Pro Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, system
debugging toolkits, In-System Memory Content Editor, and In-System Sources
and Probes Editor.

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Intel Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Pro Edition software and to perform a wide range of functions, such as
managing projects, specifying constraints, running compilation or timing
analysis, or generating reports.

A. Intel Quartus Prime Pro Edition User Guides

683122 | 2023.12.12

Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis Send Feedback

42

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683122%202023.12.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Pro Edition
User Guide
Third-party Logic Equivalence Checking Tools

Updated for Intel® Quartus® Prime Design Suite: 18.0

This document is part of a collection - Intel® Quartus® Prime Pro Edition User Guides - Combined
PDF link

Online Version

Send Feedback UG-20189

683881

2019.08.30

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Logic%20Equivalence%20Checking%20Tools%20(683881%202019.08.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. OneSpin 360 EC-FPGA* Software Support...3

2. OneSpin 360 EC-FPGA Software Support Revision History.. 4

A. Intel Quartus Prime Pro Edition User Guides.. 5

Contents

Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence
Checking Tools

Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Logic%20Equivalence%20Checking%20Tools%20(683881%202019.08.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. OneSpin 360 EC-FPGA* Software Support
You can optionally use the third-party OneSpin 360 EC-FPGA* sequential equivalence
checking tool to verify logic equivalence between specific netlists. For more
information about 360 EC-FPGA, contact OneSpin.

683881 | 2019.08.30

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.onespin.com/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Logic%20Equivalence%20Checking%20Tools%20(683881%202019.08.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2. OneSpin 360 EC-FPGA Software Support Revision
History

This document has the following revision history.

Document Version Intel® Quartus®

Prime Version
Changes

2019.08.30 18.0.0 Replaced all content with reference to OneSpin documentation.

2019.04.26 18.0.0 • Updated the title of this guide for latest title naming convention.
• Removed set_global_assignment -name

EDA_GENERATE_FUNCTIONAL_NETLIST ON -section_id
eda_simulation assignment from Verifying Post-Route Retiming with
OneSpin 360 EC-FPGA Software topic since the assignment is obsolete.

2018.06.28 18.0.0 Initial release of document.

683881 | 2019.08.30

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Logic%20Equivalence%20Checking%20Tools%20(683881%202019.08.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Intel Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Pro Edition FPGA design flow.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Pro Edition software, including managing Intel Quartus Prime Pro Edition
projects and IP, initial design planning considerations, and project migration
from previous software versions.

• Intel Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Pro Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Pro Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Pro Edition Compiler. The Compiler synthesizes, places, and routes your
design before generating a device programming file.

• Intel Quartus Prime Pro Edition User Guide: Design Optimization
Describes Intel Quartus Prime Pro Edition settings, tools, and techniques that
you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Intel Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Pro Edition Programmer, which
allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683881 | 2019.08.30

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986956763.html
https://www.intel.com/content/www/us/en/programmable/documentation/zcn1513987282935.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
https://www.intel.com/content/www/us/en/programmable/documentation/ftt1513991830769.html
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Logic%20Equivalence%20Checking%20Tools%20(683881%202019.08.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Intel Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys* that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys*. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence
Checking Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Intel Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Pro Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Intel Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Pro Edition software and to perform a wide range of functions, such as
managing projects, specifying constraints, running compilation or timing
analysis, or generating reports.

A. Intel Quartus Prime Pro Edition User Guides

683881 | 2019.08.30

Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence
Checking Tools

Send Feedback

6

https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html
https://www.intel.com/content/www/us/en/programmable/documentation/gft1513990268888.html
https://www.intel.com/content/www/us/en/programmable/documentation/hjy1513988789394.html
https://www.intel.com/content/www/us/en/programmable/documentation/sth1529938337105.html
https://www.intel.com/content/www/us/en/programmable/documentation/sth1529938337105.html
https://www.intel.com/content/www/us/en/programmable/documentation/nfc1513989909783.html
https://www.intel.com/content/www/us/en/programmable/documentation/psq1513989797346.html
https://www.intel.com/content/www/us/en/programmable/documentation/osq1513989409475.html
https://www.intel.com/content/www/us/en/programmable/documentation/iqe1513988936192.html
https://www.intel.com/content/www/us/en/programmable/documentation/fnf1513989100686.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbv1513989262284.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Third-party%20Logic%20Equivalence%20Checking%20Tools%20(683881%202019.08.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Pro Edition
User Guide
Debug Tools

Updated for Intel® Quartus® Prime Design Suite: 23.4

This document is part of a collection - Intel® Quartus® Prime Pro Edition User Guides - Combined
PDF link

Answers to Top FAQs:
Q What system debug tools are available?
A System Debugging Tools Portfolio on page 6

Q How do I monitor RTL nodes?
A Tools for Monitoring RTL Nodes on page 9

Q How do I preserve signals for debug?
A Preserving Signals for Debug on page 21

Q Can I view real-time signal behavior?
A Design Debugging with Signal Tap on page 29

Q When should I add Signal Tap?
A Signal Tap Debugging Flow on page 32

Q How do debug tools affect timing?
A Timing Preservation on page 84

Q How do I update memory contents at runtime?
A In-System Memory Content Editor on page 137

Q What hardware debug tools are provided?
A Using System Console on page 159

Q How do I access IP debug toolkits?
A Launching a Toolkit In System Console on page 174

Online Version

Send Feedback UG-20139

683819

2023.12.04

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. System Debugging Tools Overview... 6
1.1. System Debugging Tools Portfolio.. 6

1.1.1. System Debugging Tools Comparison... 6
1.1.2. Suggested Tools for Common Debugging Requirements.................................. 7
1.1.3. Debugging Ecosystem.. 8

1.2. Tools for Monitoring RTL Nodes..9
1.2.1. Resource Usage...9
1.2.2. Pin Usage... 11
1.2.3. Usability Enhancements.. 11

1.3. Stimulus-Capable Tools...12
1.3.1. In-System Sources and Probes.. 12
1.3.2. In-System Memory Content Editor..13
1.3.3. System Console...13

1.4. Virtual JTAG Interface Intel FPGA IP... 14
1.5. System-Level Debug Fabric... 14
1.6. SLD JTAG Bridge..14

1.6.1. SLD JTAG Bridge Index... 15
1.6.2. Instantiating the SLD JTAG Bridge Agent...17
1.6.3. Instantiating the SLD JTAG Bridge Host...18

1.7. Partial Reconfiguration Design Debugging..20
1.7.1. Debug Fabric for Partial Reconfiguration Designs.. 20

1.8. Preserving Signals for Debugging...21
1.8.1. Preserve for Debug Overview...21
1.8.2. Marking Signals for Debug.. 22

1.9. System Debugging Tools Overview Revision History..27

2. Design Debugging with the Signal Tap Logic Analyzer.. 29
2.1. Signal Tap Logic Analyzer Introduction..29

2.1.1. Signal Tap Hardware and Software Requirements... 31
2.2. Signal Tap Debugging Flow..32
2.3. Step 1: Add the Signal Tap Logic Analyzer to the Project... 34

2.3.1. Creating a Signal Tap Instance with the Signal Tap GUI................................. 34
2.3.2. Creating a Signal Tap Instance by HDL Instantiation..................................... 35

2.4. Step 2: Configure the Signal Tap Logic Analyzer...39
2.4.1. Preserving Signals for Monitoring and Debugging... 40
2.4.2. Preventing Changes that Require Full Recompilation..................................... 42
2.4.3. Specifying the Clock, Sample Depth, and RAM Type......................................42
2.4.4. Specifying the Buffer Acquisition Mode..43
2.4.5. Adding Signals to the Signal Tap Logic Analyzer... 45
2.4.6. Defining Trigger Conditions..52
2.4.7. Specifying Pipeline Settings...75
2.4.8. Filtering Relevant Samples.. 75

2.5. Step 3: Compile the Design and Signal Tap Instances... 82
2.5.1. Recompiling Only Signal Tap Changes... 82
2.5.2. Timing Preservation... 84
2.5.3. Performance and Resource Considerations...84

2.6. Step 4: Program the Target Hardware...85

Contents

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.1. Ensure Compatibility Between .stp and .sof Files.. 85
2.7. Step 5: Run the Signal Tap Logic Analyzer...86

2.7.1. Changing the Post-Fit Signal Tap Target Nodes... 86
2.7.2. Runtime Reconfigurable Options...89
2.7.3. Signal Tap Status Messages...92

2.8. Step 6: Analyze Signal Tap Captured Data...92
2.8.1. Viewing Capture Data Using Segmented Buffers...93
2.8.2. Viewing Data with Different Acquisition Modes... 94
2.8.3. Creating Mnemonics for Bit Patterns... 95
2.8.4. Locating a Node in the Design... 96
2.8.5. Saving Captured Signal Tap Data... 97
2.8.6. Exporting Captured Signal Tap Data..97
2.8.7. Creating a Signal Tap List File.. 97

2.9. Other Signal Tap Debugging Flows... 98
2.9.1. Signal Tap and Simulator Integration.. 98
2.9.2. Managing Multiple Signal Tap Configurations.. 101
2.9.3. Debugging Partial Reconfiguration Designs with Signal Tap...........................103
2.9.4. Debugging Block-Based Designs with Signal Tap...105
2.9.5. Debugging Devices that use Configuration Bitstream Security...................... 112
2.9.6. Signal Tap Data Capture with the MATLAB MEX Function..............................112

2.10. Signal Tap Logic Analyzer Design Examples..114
2.11. Custom State-Based Triggering Flow Examples...114

2.11.1. Trigger Example 1: Custom Trigger Position... 114
2.11.2. Trigger Example 2: Trigger When triggercond1 Occurs Ten Times

between triggercond2 and triggercond3.. 115
2.12. Signal Tap File Templates...116
2.13. Running the Stand-Alone Version of Signal Tap...118
2.14. Signal Tap Scripting Support.. 118

2.14.1. Signal Tap Command-Line Options..119
2.14.2. Data Capture from the Command Line...119

2.15. Signal Tap File Version Compatibility... 120
2.16. Design Debugging with the Signal Tap Logic Analyzer Revision History.....................120

3. Quick Design Verification with Signal Probe... 124
3.1. Signal Probe Debugging Flow ..124

3.1.1. Step 1: Reserve Signal Probe Pins.. 125
3.1.2. Step 2: Assign Nodes to Signal Probe Pins... 125
3.1.3. Step 3: Connect the Signal Probe Pin to an Output Pin................................ 125
3.1.4. Step 4: Compile the Design... 126
3.1.5. (Optional) Step 5: Modify the Signal Probe Pins Assignments....................... 126
3.1.6. Step 6: Run Fitter-Only Compilation... 126
3.1.7. Step 7: Check Connection Table in Fitter Report... 127

3.2. Quick Design Verification with Signal Probe Revision History.................................... 128

4. In-System Debugging Using External Logic Analyzers.. 129
4.1. About the Intel Quartus Prime Logic Analyzer Interface... 129
4.2. Choosing a Logic Analyzer...129

4.2.1. Required Components...130
4.3. Flow for Using the LAI...131

4.3.1. Defining Parameters for the Logic Analyzer Interface...................................131
4.3.2. Mapping the LAI File Pins to Available I/O Pins... 132
4.3.3. Mapping Internal Signals to the LAI Banks...133

Contents

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.4. Compiling Your Intel Quartus Prime Project..133
4.3.5. Programming Your Intel-Supported Device Using the LAI............................. 134

4.4. Controlling the Active Bank During Runtime...134
4.4.1. Acquiring Data on Your Logic Analyzer.. 134

4.5. LAI Core Parameters...135
4.6. In-System Debugging Using External Logic Analyzers Revision History...................... 135

5. In-System Modification of Memory and Constants.. 137
5.1. IP Cores Supporting In System Memory Content Editor... 137
5.2. Debug Flow with the In-System Memory Content Editor.. 138
5.3. Enabling Runtime Modification of Instances in the Design.. 138
5.4. Programming the Device with the In-System Memory Content Editor........................ 139
5.5. Loading Memory Instances to the ISMCE...139
5.6. Monitoring Locations in Memory... 140
5.7. Editing Memory Contents with the Hex Editor Pane... 141
5.8. Importing and Exporting Memory Files.. 142
5.9. Access Two or More Devices.. 143
5.10. Scripting Support... 143

5.10.1. The insystem_memory_edit Tcl Package.. 143
5.11. In-System Modification of Memory and Constants Revision History..........................144

6. Design Debugging Using In-System Sources and Probes.. 145
6.1. Hardware and Software Requirements.. 147
6.2. Design Flow Using the In-System Sources and Probes Editor....................................147

6.2.1. Instantiating the In-System Sources and Probes IP Core............................. 148
6.2.2. In-System Sources and Probes IP Core Parameters.....................................149

6.3. Compiling the Design..149
6.4. Running the In-System Sources and Probes Editor..149

6.4.1. In-System Sources and Probes Editor GUI... 150
6.4.2. Programming Your Device With JTAG Chain Configuration............................ 150
6.4.3. Instance Manager...150
6.4.4. In-System Sources and Probes Editor Pane..151

6.5. Tcl interface for the In-System Sources and Probes Editor..152
6.6. Design Example: Dynamic PLL Reconfiguration...155
6.7. Design Debugging Using In-System Sources and Probes Revision History.................. 157

7. Analyzing and Debugging Designs with System Console... 159
7.1. Introduction to System Console... 159

7.1.1. IP Cores that Interact with System Console... 160
7.1.2. Services Provided through Debug Agents...160
7.1.3. System Console Debugging Flow.. 161

7.2. Starting System Console... 162
7.2.1. Customizing System Console Startup.. 162

7.3. System Console GUI...162
7.3.1. System Console Views.. 164
7.3.2. Toolkit Explorer Pane.. 171
7.3.3. System Explorer Pane...171
7.3.4. Customizing, Saving, and Resetting the System Console Layout................... 173

7.4. Launching a Toolkit in System Console.. 174
7.4.1. Available System Debugging Toolkits...175
7.4.2. Creating Collections from the Toolkit Explorer.. 177
7.4.3. Filtering and Searching Interactive Instances... 177

Contents

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.5. Using System Console Services..178
7.5.1. Locating Available Services..178
7.5.2. Opening and Closing Services.. 180
7.5.3. Using the SLD Service...181
7.5.4. Using the In-System Sources and Probes Service....................................... 182
7.5.5. Using the Monitor Service..183
7.5.6. Using the Device Service...186
7.5.7. Using the Design Service...187
7.5.8. Using the Bytestream Service.. 188
7.5.9. Using the JTAG Debug Service... 189

7.6. On-Board Intel FPGA Download Cable II Support.. 190
7.7. MATLAB and Simulink* in a System Verification Flow ..190

7.7.1. Supported MATLAB API Commands...191
7.7.2. High Level Flow..191

7.8. System Console Examples and Tutorials.. 191
7.8.1. Nios II Processor Example... 192

7.9. Running System Console in Command-Line Mode... 193
7.10. Using System Console Commands.. 194
7.11. Using Toolkit Tcl Commands...194
7.12. Analyzing and Debugging Designs with the System Console Revision History............ 195

8. Intel Quartus Prime Pro Edition User Guide Debug Tools Archives..............................198

A. Intel Quartus Prime Pro Edition User Guides.. 199

Contents

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. System Debugging Tools Overview
This chapter provides a quick overview of the tools available in the Intel® Quartus®

Prime system debugging suite and discusses the criteria for selecting the best tool for
your debug requirements.

1.1. System Debugging Tools Portfolio

The Intel Quartus Prime software provides a portfolio of system debugging tools for
real-time verification of your design.

System debugging tools provide visibility by routing (or “tapping”) signals in your
design to debugging logic. The Compiler includes the debugging logic in your design
and generates programming files that you download into the FPGA or CPLD for
analysis.

Each tool in the system debugging portfolio uses a combination of available memory,
logic, and routing resources to assist in the debugging process. Because different
designs have different constraints and requirements, you can choose the tool that
matches the specific requirements for your design, such as the number of spare pins
available or the amount of logic or memory resources remaining in the physical
device.

1.1.1. System Debugging Tools Comparison

Table 1. System Debugging Tools Portfolio

Tool Description Typical Usage

System Console and
Debugging Toolkits

• Provides real-time in-system debugging
capabilities using available debugging
toolkits.

• Allows you to read from and write to
memory mapped components in a system
without a processor or additional software.

• Communicates with hardware modules in
a design through a Tcl interpreter.

• Allows you to take advantage of all the
features of the Tcl scripting language.

• Supports JTAG and TCP/IP connectivity.

• Perform system-level debugging.
• Debug or optimize signal integrity of a board

layout even before finishing the design.
• Debug external memory interfaces.
• Debug an Ethernet Intel FPGA IP interface in

real time.
• Debug a PCI Express* link at the Physical,

Data Link, and Transaction layers.
• Debug and optimize high-speed serial links in

your board design.

Signal Tap logic
analyzer

• Uses FPGA resources.
• Captures data continuously from the

signals you specify while the logic analyzer
is running. To capture and store only
specific signal data, you specify conditions
that trigger the start or stop of data
capture. A trigger activates when the
trigger conditions are met, stopping
analysis and displaying the data

You have spare on-chip memory and you want
functional verification of a design running in
hardware.

continued...

683819 | 2023.12.04

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Tool Description Typical Usage

Signal Probe Incrementally routes internal signals to I/O
pins while preserving results from the last
place-and-routed design.

You have spare I/O pins and you want to check
the operation of a small set of control pins using
either an external logic analyzer or an
oscilloscope.

Logic Analyzer
Interface (LAI)

• Multiplexes a larger set of signals to a
smaller number of spare I/O pins.

• Allows you to select which signals switch
onto the I/O pins over a JTAG connection.

You have limited on-chip memory and a large set
of internal data buses to verify using an external
logic analyzer. Logic analyzer vendors, such as
Tektronics* and Agilent*, provide integration
with the tool to improve usability.

In-System Sources
and Probes

Provides an easy way to drive and sample
logic values to and from internal nodes using
the JTAG interface. Provides real-time slow
sampling capability.

You want to prototype the FPGA design using a
front panel with virtual buttons.

In-System Memory
Content Editor

Displays and allows you to edit on-chip
memory.

You want to view and edit the contents of on-
chip memory that is not connected to a Nios® II
processor.
You can also use the tool when you do not want
to have a Nios II debug core in your system.

Virtual JTAG
Interface

Allows you to communicate with the JTAG
interface so that you can develop custom
applications.

You want to communicate with custom signals in
your design.

Refer to the following for more information about launching and using the available
debugging toolkits:

• Launching a Toolkit in System Console on page 174

• Available System Debugging Toolkits on page 175

1.1.2. Suggested Tools for Common Debugging Requirements

Table 2. Tools for Common Debugging Requirements(1)

Requirement Signal
Probe

Logic
Analyzer
Interface

(LAI)

Signal
Tap Logic
Analyzer

Description

More Data Storage N/A X — An external logic analyzer with the LAI tool allows you to
store more captured data than the Signal Tap logic analyzer,
because the external logic analyzer can provide access to a
bigger buffer.
The Signal Probe tool does not capture or store data.

Faster Debugging X X — You can use the LAI or the Signal Probe tool with external
equipment, such as oscilloscopes and mixed signal
oscilloscopes (MSOs). This ability provides access to timing
mode, which allows you to debug combined streams of
data.

Minimal Effect on
Logic Design

X X(2) X(2) The Signal Probe tool incrementally routes nodes to pins,
with no effect on the design logic.
The LAI adds minimal logic to a design, requiring fewer
device resources.
The Signal Tap logic analyzer has little effect on the design,
because the Compiler considers the debug logic as a
separate design partition.

Short Compile and
Recompile Time

X X(2) X(2) Signal Probe uses incremental routing to attach signals to
previously reserved pins. This feature allows you to quickly
recompile when you change the selection of source signals.

continued...

1. System Debugging Tools Overview

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Requirement Signal
Probe

Logic
Analyzer
Interface

(LAI)

Signal
Tap Logic
Analyzer

Description

The Signal Tap logic analyzer and the LAI can refit their own
design partitions to decrease recompilation time.

Sophisticated
Triggering
Capability

N/A N/A X The triggering capabilities of the Signal Tap logic analyzer
are comparable to commercial logic analyzers.

Low I/O Usage — — X The Signal Tap logic analyzer does not require additional
output pins.
Both the LAI and Signal Probe require I/O pin assignments.

Fast Data
Acquisition

N/A — X The Signal Tap logic analyzer can acquire data at speeds of
over 200 MHz.
Signal integrity issues limit acquisition speed for external
logic analyzers that use the LAI.

No JTAG Connection
Required

X — — Signal Probe does not require a host for debugging
purposes.
The Signal Tap logic analyzer and the LAI require an active
JTAG connection to a host running the Intel Quartus Prime
software.

No External
Equipment Required

— — X The Signal Tap logic analyzer only requires a JTAG
connection from a host running the Intel Quartus Prime
software or the stand-alone Signal Tap logic analyzer.
Signal Probe and the LAI require the use of external
debugging equipment, such as multimeters, oscilloscopes,
or logic analyzers.

Notes to Table:
1. • X indicates the recommended tools for the feature.

• — indicates that while the tool is available for that feature, that tool might not give the best results.
• N/A indicates that the feature is not applicable for the selected tool.

1.1.3. Debugging Ecosystem

The Intel Quartus Prime software allows you to use the debugging tools in tandem to
exercise and analyze the logic under test and maximize closure.

A very important distinction in the system debugging tools is how they interact with
the design. All debugging tools in the Intel Quartus Prime software allow you to read
the information from the design node, but only a subset allow you to input data at
runtime:

Table 3. Classification of System Debugging Tools

Debugging Tool Read Data
from Design

Input Values
into the
Design

Comments

Signal Tap logic analyzer, Yes No General purpose troubleshooting tools
optimized for probing signals in a register
transfer level (RTL) netlistLogic Analyzer Interface

Signal Probe

In-System Sources and Probes Yes Yes These tools allow to:

Virtual JTAG Interface

continued...

1. System Debugging Tools Overview

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Debugging Tool Read Data
from Design

Input Values
into the
Design

Comments

System Console • Read data from breakpoints that you
define

• Input values into your design during
runtime

Debugging Toolkits

In-System Memory Content Editor

Taken together, the set of on-chip debugging tools form a debugging ecosystem. The
set of tools can generate a stimulus to and solicit a response from the logic under test,
providing a complete solution.

Figure 1. Debugging Ecosystem at Runtime

JTAG

FPGA

Intel Quartus Prime
Software

Design Under Test

Virtual JTAG Interface
Debugging Toolkits

System Console
In-System Sources and Probes

In-System Memory Content Editor

Signal Tap
Logic Analyzer Interface

Signal Probe

1.2. Tools for Monitoring RTL Nodes

The Signal Tap logic analyzer, Signal Probe, and LAI tools are useful for probing and
debugging RTL signals at system speed. These general-purpose analysis tools enable
you to tap and analyze any routable node from the FPGA.

• In cases when the design has spare logic and memory resources, the Signal Tap
logic analyzer can provide fast functional verification of the design running on
actual hardware.

• Conversely, if logic and memory resources are tight and you require the large
sample depths associated with external logic analyzers, both the LAI and the
Signal Probe tools simplify monitoring internal design signals using external
equipment.

Related Information

• Quick Design Verification with Signal Probe on page 124

• Design Debugging with the Signal Tap Logic Analyzer on page 29

• In-System Debugging Using External Logic Analyzers on page 129

1.2.1. Resource Usage

The most important selection criteria for these three tools are the remaining resources
on the device after implementing the design and the number of spare pins.

1. System Debugging Tools Overview

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Evaluate debugging options early on in the design planning process to ensure that you
support the appropriate options in the board, Intel Quartus Prime project, and design.
Planning early can reduce debugging time, and eliminates last minute changes to
accommodate debug methodologies.

Figure 2. Resource Usage per Debugging Tool

Signal
Probe

Lo
gic

 A
na

lyz
er

 In
te

rfa
ce

Signal Tap

Lo
gic

Memory

1.2.1.1. Overhead Logic

Any debugging tool that requires a JTAG connection requires SLD infrastructure logic
for communication with the JTAG interface and arbitration between instantiated
debugging modules. This overhead logic uses around 200 logic elements (LEs), a small
fraction of the resources available in any of the supported devices. All available
debugging modules in your design share the overhead logic. Both the Signal Tap logic
analyzer and the LAI use a JTAG connection.

1.2.1.1.1. For Signal Tap Logic Analyzer

The Signal Tap logic analyzer requires both logic and memory resources. The number
of logic resources used depends on the number of signals tapped and the complexity
of the trigger logic. However, the amount of logic resources that the Signal Tap logic
analyzer uses is typically a small percentage of most designs.

A baseline configuration consisting of the SLD arbitration logic and a single node with
basic triggering logic contains approximately 300 to 400 Logic Elements (LEs). Each
additional node you add to the baseline configuration adds about 11 LEs. Compared
with logic resources, memory resources are a more important factor to consider for
your design. Memory usage can be significant and depends on how you configure your
Signal Tap logic analyzer instance to capture data and the sample depth that your
design requires for debugging. For the Signal Tap logic analyzer, there is the added
benefit of requiring no external equipment, as all of the triggering logic and storage is
on the chip.

1.2.1.1.2. For Signal Probe

The resource usage of Signal Probe is minimal. Because Signal Probe does not require
a JTAG connection, logic and memory resources are not necessary. Signal Probe only
requires resources to route internal signals to a debugging test point.

1. System Debugging Tools Overview

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.1.1.3. For Logic Analyzer Interface

The LAI requires a small amount of logic to implement the multiplexing function
between the signals under test, in addition to the SLD infrastructure logic. Because no
data samples are stored on the chip, the LAI uses no memory resources.

1.2.2. Pin Usage

1.2.2.1. For Signal Tap Logic Analyzer

Other than the JTAG test pins, the Signal Tap logic analyzer uses no additional pins. All
data is buffered using on-chip memory and communicated to the Signal Tap logic
analyzer GUI via the JTAG test port.

1.2.2.2. For Signal Probe

The ratio of the number of pins used to the number of signals tapped for the Signal
Probe feature is one-to-one. Because this feature can consume free pins quickly, a
typical application for this feature is routing control signals to spare pins for
debugging.

1.2.2.3. For Logic Analyzer Interface

The LAI can map up to 256 signals to each debugging pin, depending on available
routing resources. The JTAG port controls the active signals mapped to the spare I/O
pins. With these characteristics, the LAI is ideal for routing data buses to a set of test
pins for analysis.

1.2.3. Usability Enhancements

The Signal Tap logic analyzer, Signal Probe, and LAI tools can be added to your
existing design with minimal effects. With the node finder, you can find signals to
route to a debugging module without making any changes to your HDL files. Signal
Probe inserts signals directly from your post-fit database. The Signal Tap logic
analyzer and LAI support inserting signals from both pre-synthesis and post-fit
netlists.

1.2.3.1. Incremental Routing

Signal Probe uses the incremental routing feature. The incremental routing feature
runs only the Fitter stage of the compilation. This leaves your compiled design
untouched, except for the newly routed node or nodes. With Signal Probe, you can
save as much as 90% compile time of a full compilation.

1.2.3.2. Automation Via Scripting

As another productivity enhancement, all tools in the on-chip debugging tool set
support scripting via the quartus_stp Tcl package. For the Signal Tap logic analyzer
and the LAI, scripting enables user-defined automation for data collection while
debugging in the lab. The System Console includes a full Tcl interpreter for scripting.

1. System Debugging Tools Overview

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3. Stimulus-Capable Tools

The In-System Memory Content Editor, In-System Sources and Probes, and Virtual
JTAG interface enable you to use the JTAG interface as a general-purpose
communication port.

Though you can use all three tools to achieve the same results, there are some
considerations that make one tool easier to use in certain applications:

• The In-System Sources and Probes is ideal for toggling control signals.

• The In-System Memory Content Editor is useful for inputting large sets of test
data.

• Finally, the Virtual JTAG interface is well suited for advanced users who want to
develop custom JTAG solutions.

System Console provides system-level debugging at a transaction level, such as with
Avalon®-MM slave or Avalon-ST interfaces. You can communicate to a chip through
JTAG and TCP/IP protocols. System Console uses a Tcl interpreter to communicate
with hardware modules that you instantiate into your design.

1.3.1. In-System Sources and Probes

In-System Sources and Probes allow you to read and write to a design by accessing
JTAG resources.

You instantiate an Intel FPGA IP into your HDL code. This Intel FPGA IP core contains
source ports and probe ports that you connect to signals in your design, and abstracts
the JTAG interface's transaction details.

In addition, In-System Sources and Probes provide a GUI that displays source and
probe ports by instance, and allows you to read from probe ports and drive to source
ports. These features make this tool ideal for toggling a set of control signals during
the debugging process.

Related Information

Design Debugging Using In-System Sources and Probes on page 145

1.3.1.1. Push Button Functionality

During the development phase of a project, you can debug your design using the In-
System Sources and Probes GUI instead of push buttons and LEDs. Furthermore, In-
System Sources and Probes supports a set of scripting commands for reading and
writing using the Signal Tap logic analyzer. You can also build your own Tk graphical
interfaces using the Toolkit API. This feature is ideal for building a virtual front panel
during the prototyping phase of the design.

Related Information

Signal Tap Scripting Support on page 118

1. System Debugging Tools Overview

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2. In-System Memory Content Editor

The In-System Memory Content Editor allows you to quickly view and modify memory
content either through a GUI interface or through Tcl scripting commands. The In-
System Memory Content Editor works by turning single-port RAM blocks into dual-port
RAM blocks. One port is connected to your clock domain and data signals, and the
other port is connected to the JTAG clock and data signals for editing or viewing.

Related Information

In-System Modification of Memory and Constants on page 137

1.3.2.1. Generate Test Vectors

Because you can modify a large set of data easily, a useful application for the
In-System Memory Content Editor is to generate test vectors for your design. For
example, you can instantiate a free memory block, connect the output ports to the
logic under test (using the same clock as your logic under test on the system side),
and create the glue logic for the address generation and control of the memory. At
runtime, you can modify the contents of the memory using either a script or the
In-System Memory Content Editor GUI and perform a burst transaction of the data
contents in the modified RAM block synchronous to the logic being tested.

1.3.3. System Console

System Console is a framework that you can launch from the Intel Quartus Prime
software to start services for performing various debugging tasks. System Console
provides you with Tcl scripts and a GUI to access the Platform Designer system
integration tool to perform low-level hardware debugging of your design, as well as
identify a module by its path, and open and close a connection to a Platform Designer
module. You can access your design at a system level for purposes of loading,
unloading, and transferring designs to multiple devices. Also, System Console
supports the Tk toolkit for building graphical interfaces.

Related Information

Analyzing and Debugging Designs with System Console on page 159

1.3.3.1. Test Signal Integrity

System Console also allows you to access commands that allow you to control how
you generate test patterns, as well as verify the accuracy of data generated by test
patterns. You can use JTAG debug commands in System Console to verify the
functionality and signal integrity of your JTAG chain. You can test clock and reset
signals.

1.3.3.2. Board Bring-Up and Verification

You can use System Console to access programmable logic devices on your
development board, perform board bring-up, and perform verification. You can also
access software running on a Nios II or Intel FPGA SoC processor, as well as access
modules that produce or consume a stream of bytes.

1. System Debugging Tools Overview

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.3.3. Debug with Available Toolkits

System Console provides the hardware debugging infrastructure to run the debugging
toolkits that you can enable by the use of debug-enabled Intel FPGA IP. The
debugging toolkits can help you to debug external memory interfaces, Ethernet
interfaces, PCI Express links, Serial Lite IV links, and high-speed serial links by
providing real-time monitoring and debugging of the design running on a board.

Refer to the following for more information about launching and using the available
debugging toolkits:

• Launching a Toolkit in System Console on page 174

• Available System Debugging Toolkits on page 175

1.4. Virtual JTAG Interface Intel FPGA IP

The Virtual JTAG Interface Intel FPGA IP provides the finest level of granularity for
manipulating the JTAG resource. This Intel FPGA IP allows you to build your own JTAG
scan chain by exposing all of the JTAG control signals and configuring your JTAG
Instruction Registers (IRs) and JTAG Data Registers (DRs). During runtime, you
control the IR/DR chain through a Tcl API, or with System Console. This feature is
meant for users who have a thorough understanding of the JTAG interface and want
precise control over the number and type of resources used.

Related Information

• Virtual JTAG (altera_virtual_jtag) IP Core User Guide

• Virtual JTAG Interface (VJI) Intel FPGA IP
In Intel Quartus Prime Help

1.5. System-Level Debug Fabric

During compilation, the Intel Quartus Prime generates the JTAG Hub to allow multiple
instances of debugging tools in a design.

Most Intel FPGA on-chip debugging tools use the JTAG port to control and read-back
data from debugging logic and signals under test. The JTAG Hub manages the sharing
of JTAG resources.

Note: For System Console, you explicitly insert debug IP cores into the design to enable
debugging.

The JTAG Hub appears in the project's design hierarchy as a partition named
auto_fab_<number>.

1.6. SLD JTAG Bridge

The SLD JTAG Bridge extends the debug fabric across partitions, allowing a higher-
level partition (static region or root partition) to access debug signals in a lower-level
partition (partial reconfiguration region or core partition).

1. System Debugging Tools Overview

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

14

https://www.intel.com/content/www/us/en/docs/programmable/683705.html
http://quartushelp.altera.com/current/#hdl/mega/mega_file_sld_virtual_jtag.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This bridge consists of two IP components:

• SLD JTAG Bridge Agent Intel FPGA IP—Resides in the higher-level partition.

Extends the JTAG debug fabric from a higher-level partition to a lower-lever
partition containing the SLD JTAG Bridge Host IP. You instantiate the SLD JTAG
Bridge Agent IP in the higher-level partition.

• SLD JTAG Bridge Host Intel FPGA IP—resides in the lower-level partition.
Connects to the PR JTAG hub on one end, and to the SLD JTAG Bridge Agent on
the higher-level partition.

Connects the JTAG debug fabric in a lower-level to a higher-level partition
containing the SLD JTAG Bridge Agent IP. You instantiate the SLD JTAG Bridge
Host IP in the lower-level partition.

Figure 3. Signals in a SLD JTAG Bridge

SLD JTAG Bridge Agent

Higher-level partition Lower-level partition

SLD JTAG Bridge Host

ena

tdo

vir_tdi

tdi

tms

tck SLD HOST INTERFACE
SLD HOST INTERFACE

SLD AGENT INTERFACE
Manual Instantiation Automatic InstantiationAutomatic Instantiation

Debug Logic
HUB

auto_fab_0
HUB

auto_fab_n

For each PR region or reserved core partition you debug, you must instantiate one SLD
JTAG Bridge Agent in the higher-level partition and one SLD JTAG Bridge Host in the
lower-level partition.

1.6.1. SLD JTAG Bridge Index

The SLD JTAG Bridge Index uniquely identifies instances of the SLD JTAG Bridge
present in a design. You can find information regarding the Bridge Index in the
synthesis report.

The Intel Quartus Prime software supports multiple instances of the SLD JTAG Bridge
in designs. The Compiler assigns an index number to distinguish each instance. The
bridge index for the root partition is always None.

When configuring the Signal Tap logic analyzer for the root partition, set the Bridge
Index value to None in the JTAG Chain Configuration window.

1. System Debugging Tools Overview

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. JTAG Chain Configuration Bridge Index

Figure 5. Design with Multiple SLD JTAG Bridges

SLD JTAG
Bridge Agent

Bridge
Index 1

SLD JTAG
Bridge Host

SLD JTAG
Bridge Agent

SLD JTAG
Bridge Agent

Bridge
Index 0

SLD JTAG
Bridge Host

SLD JTAG
Bridge Agent

SLD JTAG
Bridge Agent

Bridge
Index 0-0

Signal
Tap

Bridge
None

Automatic Signal Tap Connections

User Made Connections

Signal
Tap

SLD JTAG
Bridge Host

Bridge
Index 0-1 Signal

Tap

SLD JTAG
Bridge Host

Signal
Tap

Bridge
Index 1-0 Signal

Tap

SLD JTAG
Bridge Host

Bridge Index Information in the Compilation Report

Following design synthesis, the Compilation Report lists the index numbers for the SLD
JTAG Bridge Agents in the design. Open the Synthesis ➤ In-System Debugging ➤
JTAG Bridge Instance Agent Information report for details about how the bridge
indexes are enumerated. The reports shows the hierarchy path and the associated
index.

In the synthesis report (<base revision>.syn.rpt), this information appears in
the table JTAG Bridge Agent Instance Information.

1. System Debugging Tools Overview

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. JTAG Bridge Agent Instance Information

1.6.2. Instantiating the SLD JTAG Bridge Agent

To generate and instantiate the SLD JTAG Bridge Agent Intel FPGA IP:

1. On the IP Catalog (Tools ➤ IP Catalog), type SLD JTAG Bridge Agent.

Figure 7. Find in IP Catalog

2. Double click SLD JTAG Bridge Agent Intel FPGA IP.

3. In the Create IP Variant dialog box, type a file name, and then click Create.

1. System Debugging Tools Overview

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Create IP Variant Dialog Box

The IP Parameter Editor Pro window shows the IP parameters. In most cases,
you do not need to change the default values.

Figure 9. SLD JTAG Bridge Agent Intel FPGA IP Parameters

4. Click Generate HDL.

5. When the generation completes successfully, click Close.

6. If you want an instantiation template, click Generate ➤ Show Instantiation
Template in the IP Parameter Editor Pro.

1.6.3. Instantiating the SLD JTAG Bridge Host

To generate and instantiate the SLD JTAG Bridge Host Intel FPGA IP:

1. On the IP Catalog (Tools ➤ IP Catalog), type SLD JTAG Bridge Host.

1. System Debugging Tools Overview

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. Find in IP Catalog

2. Double click SLD JTAG Bridge Host Intel FPGA IP.

3. In the Create IP Variant dialog box, type a file name, and then click Create.

Figure 11. Create IP Variant Dialog Box

The IP Parameter Editor Pro window shows the IP parameters. In most cases,
you do not need to change the default values.

Figure 12. SLD JTAG Bridge Host Intel FPGA IP Parameters

1. System Debugging Tools Overview

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Click Generate HDL.

5. When the generation completes successfully, click Close.

6. If you want an instantiation template, click Generate ➤ Show Instantiation
Template in the IP Parameter Editor Pro.

1.7. Partial Reconfiguration Design Debugging

The following Intel FPGA IP cores support system-level debugging in the static region
of a PR design:

• In-System Memory Content Editor

• In-System Sources and Probes Editor

• Virtual JTAG

• Nios II JTAG Debug Module

• Signal Tap Logic Analyzer

In addition, the Signal Tap logic analyzer allows you to debug the static or partial
reconfiguration (PR) regions of the design. If you only want to debug the static region,
you can use the In-System Sources and Probes Editor, In-System Memory Content
Editor, or System Console with a JTAG Avalon bridge.

Related Information

Debugging Partial Reconfiguration Designs with Signal Tap on page 103

1.7.1. Debug Fabric for Partial Reconfiguration Designs

You must prepare the design for PR debug during the early planning stage, to ensure
that you can debug the static as well as PR region.

On designs with Partial Reconfiguration, the Compiler generates centralized debug
managers—or hubs—for each region (static and PR) that contains system level debug
agents. Each hub handles the debug agents in its partition. In the design hierarchy,
the hub corresponding to the static region is auto_fab_0.

To connect the hubs on parent and child partitions, you must instantiate one SLD JTAG
Bridge for each PR region that you want to debug.

Related Information

• PR Design Setup for Signal Tap Debug on page 104

• Debugging Partial Reconfiguration Designs with Signal Tap on page 103

1. System Debugging Tools Overview

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.1.1. Generation of PR Debug Infrastructure

During compilation, the synthesis engine performs the following functions:

• Generates a main JTAG hub in the static region.

• If the static region contains Signal Tap instances, connects those instances to the
main JTAG hub.

• Detects bridge agent and bridge host instances.

• Connects the SLD JTAG bridge agent instances to the main JTAG hub.

• For each bridge host instance in a PR region that contains a Signal Tap instance:

— Generates a PR JTAG hub in the PR region.

— Connects all Signal Tap instances in the PR region to the PR JTAG hub.

— Detects instance of the SLD JTAG bridge host.

— Connects the PR JTAG hub to the JTAG bridge host.

1.8. Preserving Signals for Debugging

The Intel Quartus Prime Pro Edition software allows you to mark and preserve specific
signals through the compilation process, which enables visibility of any node within
the available system debugging tools.

To ensure that specific nodes in your RTL are available for debugging after the
Compiler's synthesis and place-and-route stages, you can apply the
preserve_for_debug attribute to the signals of interest in your RTL, and also apply
the Enable preserve for debug assignments project-level .qsf assignment.

This section refers to the following terms to explain use of the preserve for debug
feature:

Table 4. Debug Signal Preservation Terminology

Term Description

node A signal name present in your design RTL and possibly in the compilation netlist for the
current project. Typically, the node name refers to the output of a logical unit, such as
gate, register, LUT, embedded memory, DSP, or others.
The Intel Quartus Prime GUI can display this node name in various locations, such as the
Node Finder, when debugging the signals in your design. You can search for this node
name to apply constraints and use in debugging operations.

hpath The Intel Quartus Prime-style hierarchical path, with instance names separated by "|",
for example:foo|boo|node

1.8.1. Preserve for Debug Overview

The preserve for debug feature allows you to designate nodes in your design for full
debugging visibility. In this context, full visibility means that you can ensure that the
node name remains in the post-fit netlist generated by Place and Route, with the same
name and functionality the design files define.

After you apply preserve for debug, you can easily access these nodes through the
Node Finder filters available in the Intel Quartus Prime debugging tools.

1. System Debugging Tools Overview

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Typically, you lose some visibility into the design when you debug using a post-fit
netlist. This loss occurs because in the post-fit netlist, the design is already mapped to
the device architecture, optimized, and retimed. The Place and Route stage often
changes or removes the original signal names. Furthermore, there can be slight
changes in the behavior in the post-fit netlist because of inverter push back, or
because the visible signal shows only partial behavior due to logic duplication.

Preserve for Debug Use Cases

Preserve for debug is primarily for debugging purposes, and is particularly useful in
the Signal Tap debugging flow, as Preserving Signals for Monitoring and Debugging on
page 40 describes.

In addition, use of preserve for debug can also be helpful in any of the available
system debugging tools, or within any instrumentation logic that you use in your
design.

Preserve for Debug Hardware Implementation

Applying the preserve for debug feature has the following effects on hardware
implementation:

• Prevents the Compiler from optimizing the specified node.

• Results in LCELL module instantiation for the specified node, impacting the overall
timing on the node path.

Application of preserve for debug is the hardware equivalent of using all of the
following HDL pragmas on the specified node:

Table 5. Combined Attributes

HDL Pragma Compiler Setting Description

preserve PRESERVE_REGISTER Prevents the Compiler from optimizing away or retiming a register.

keep HDL only Prevents the Compiler from minimizing or removing a particular
signal net during combinational logic optimization.

noprune HDL only Prevents the Compiler from removing or optimizing a fan-out free
register.

dont_merge HDL only Prevents the Compiler from merging a register with a duplicate
register.

dont_replicate HDL only Prevents the Compiler from merging a register with a duplicate
register.

1.8.2. Marking Signals for Debug

You can mark (designate) a node for preservation by use of an RTL pragma in your
design file, or by specifying an assignment in the project revision .qsf.

You can enable or disable preserve for debug at the entity level or globally, so there is
no need to individually disable marked signals when ready to compile a production
stage design.

1. System Debugging Tools Overview

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Preserve for Debug Flow

2. Implement Preserve Assignments

Preserve for Debug Flow

1. Enable Preserve for Debug

3. Locate and Report Preserved Nodes

Design
Synthesis

• Step 1: Enabling Preserve for Debug on page 23

• Step 2: Implement Preserve for Debug Assignments on page 24

• Step 3: Locate and Report Preserve for Debug Nodes on page 25

1.8.2.1. Step 1: Enabling Preserve for Debug

To ensure that the Compiler correctly processes the signals that you mark for
preservation, and that the Intel Quartus Prime software Node Finders and filters
correctly display these names, you must first turn on the Enable preserve for debug
assignments setting in the GUI or project revision .qsf, as the following methods
describe.

Note: The instance-level preserve for debug assignment takes precedence over the global
preserve for debug assignment if the two assignments are in opposition to each other
(that is, one assignment type is set to On, the other assignment type is set to Off).

Enabling Preserve for Debug In Project Settings on page 23

Enabling Preserve for Debug at Instance Level on page 24

1.8.2.1.1. Enabling Preserve for Debug In Project Settings

To enable preserve for debug in the project settings:

1. In the Intel Quartus Prime software, click Assignments ➤ Settings ➤ Signal
Tap Logic Analyzer.

2. On the Signal Tap Logic Analyzer settings page, turn on the Enable preserve
for debug assignments option. Preserve for debug enables project-wide.

1. System Debugging Tools Overview

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. Signal Tap Logic Analyzer Settings

As an alternative to the GUI setting, you can enable or disable project-wide preserve
for debug by adding or modifying the following assignment in the project
revision .qsf:

set_global_assignment -name PRESERVE_FOR_DEBUG_ENABLE <ON|OFF>

1.8.2.1.2. Enabling Preserve for Debug at Instance Level

You can enable preserve for debug in certain design blocks, and leave the feature
disabled in other design blocks.

To enable the assignment at the instance level, you must specify the instance name to
enable or disable for preserve for debug, as the following assignment shows:

set_instance_assignment -name PRESERVE_FOR_DEBUG_ENABLE ON -to \
 <instance hpath>

1.8.2.2. Step 2: Implement Preserve for Debug Assignments

Implement preserve for debug assignments through HDL pragmas in the design files
(recommended), or by specifying assignments in the Assignment Editor or
project .qsf file directly. The following topics provide more details:

HDL Implementation on page 24

Intel Quartus Prime Settings Implementation on page 25

1.8.2.2.1. HDL Implementation

The recommended method of preserving nodes for debug is to add HDL pragmas or
attributes to the design files.

Preserve for Debug Pragma defines the preserve for debug pragma and .qsf
assignment setting.

Table 6. Preserve for Debug Pragma

Term Equivalent (.qsf)
Setting

Description

preserve_for_debug PRESERVE_FOR_DEBUG Prevents the Fitter from optimizing away a register or combinational
signal. The pragma also prevents any retiming, merging, and
duplication optimization. This optimization prevention applies when
the setting, PRESERVE_FOR_DEBUG_ENABLE is ON.

1. System Debugging Tools Overview

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Add HDL pragmas to Verilog HDL design files in the following way:

(* preserve_for_debug *) reg my_reg;

Add HDL attributes to VHDL design files in the following way:

signal keep_wire : std_logic;
attribute keep: boolean;
attribute keep of keep_wire: signal is true;

1.8.2.2.2. Intel Quartus Prime Settings Implementation

As an alternative to HDL pragmas, you can specify the following assignment to apply
the Preserve for Debug assignment through the .qsf settings file directly, or with
Assignment Editor.

set_instance_assignment -name PRESERVE_FOR_DEBUG ON -to \
 <node hpath>

Note: This assignment supports the use of wildcards (*).

Specifying Preserve Signal for Debug in the Assignment Editor

If you prefer to specify assignments in the Intel Quartus Prime software GUI, rather
than in the .qsf directly, you can specify the Preserve signal for debug assignment
in Assignment Editor (Assignments menu).

Figure 15. Specifying the Preserve Signal for Debug in the Assignment Editor

1.8.2.3. Step 3: Locate and Report Preserve for Debug Nodes

After running design synthesis, you can locate preserve for debug nodes using the
Node Finder in the system debugging tools. In addition, you can view data about the
preserve for debug nodes in the Compilation Report. The following topics describe
locating and reporting on preserve for debug nodes:

Locating Preserve for Debug Nodes on page 25

Reporting Preserve for Debug Nodes on page 26

1.8.2.3.1. Locating Preserve for Debug Nodes

The Node Finder includes the following filters that simplify the process of locating the
preserve for debug nodes in your project database:

1. System Debugging Tools Overview

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Signal Tap: pre-synthesis preserved for debug filter—shows preserved nodes
from the pre-synthesis netlist that generates during Analysis & Elaboration.

• Signal Tap: post-fitting preserved for debug filter—shows preserved nodes
from the post-fit netlist.

Figure 16. Node Finder with Preserve for Debug Filter

1.8.2.3.2. Reporting Preserve for Debug Nodes

You can view data about preserve for debug nodes in the Compilation Report
Preserve for Debug folder following Analysis & Synthesis.

The Preserve for Debug Assignments for Partition report is located in Tools ➤
Compilation Report ➤ Synthesis ➤ Partition <name> ➤ Preserve for Debug.

1. System Debugging Tools Overview

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Preserve for Debug Assignments for Partition Report

1.9. System Debugging Tools Overview Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2023.10.02 23.3 • Updated the Node Finder image in Locating Preserve for Debug Nodes.

2021.10.04 21.3 • Added new Preserving Signals for Debugging section.
• Removed obsolete Remote Debugging topic. This feature is not

supported in the Intel Quartus Prime Pro Edition software.
• Removed obsolete Remote Debugging chapter 8. This feature is not

supported in the Intel Quartus Prime Pro Edition software.

2020.09.28 20.3 • Revised "System Debugging Tools Comparison" to reflect replacement
of Transceiver Toolkit with the available debugging toolkits.

• Revised "Debugging Ecosystem" to reflect replacement of Transceiver
Toolkit with the available debugging toolkits.

2019.09.30 19.3 • Clarified meaning of PR and static regions in "Partial Reconfiguration
Design Debugging" topic.

• Removed references to Application Notes 693.

2018.09.24 18.1 • Added figures about SLD JTAG Bridge.
• Added information about block-based design.

2018.05.07 18.0 • Moved here information about debug fabric on PR designs from the
Design Debugging with the Signal Tap Logic Analyzer chapter.

2017.05.08 17.0 • Combined Altera JTAG Interface and Required Arbitration Logic topics
into a new updated topic named System-Level Debugging
Infrastructure.

• Added topic: Debug the Partial Reconfiguration Design with System
Level Debugging Tools.

2016.10.31 16.1 • Implemented Intel rebranding.

2015.11.02 15.1 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0 Added information that System Console supports the Tk toolkit.

November 2013 13.1 Dita conversion. Added link to Remote Debugging over TCP/IP for Altera
SoC Application Note.

June 2012 12.0 Maintenance release.

continued...

1. System Debugging Tools Overview

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

November 2011 10.0 Maintenance release. Changed to new document template.

December 2010 10.0 Maintenance release. Changed to new document template.

July 2010 10.0 Initial release

1. System Debugging Tools Overview

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Design Debugging with the Signal Tap Logic Analyzer

2.1. Signal Tap Logic Analyzer Introduction

The Signal Tap logic analyzer, available in the Intel Quartus Prime software, captures
and displays the real-time signal behavior in an Intel FPGA design. Use the Signal Tap
logic analyzer to probe and debug the behavior of internal signals during normal
device operation, without requiring extra I/O pins or external lab equipment.

By default, the Signal Tap logic analyzer captures data continuously from the signals
you specify while the logic analyzer is running. To capture and store only specific
signal data, you specify conditions that trigger the start or stop of data capture. A
trigger activates when the trigger conditions are met, stopping analysis and displaying
the data. You can save the captured data in device memory for later analysis, and
filter data that is not relevant.

Signal Tap Logic Analyzer Instance

You enable the logic analyzer functionality by defining one or more instances of the
Signal Tap logic analyzer in your project. You can define the properties of the Signal
Tap instance in the Signal Tap logic analyzer GUI, or by HDL instantiation of the Signal
Tap Logic Analyzer Intel FPGA IP. After design compilation, you configure the target
device with your design (including any Signal Tap instances), which enables data
capture and communication with the Signal Tap logic analyzer GUI over a JTAG
connection.

Figure 19. Signal Tap Logic Analyzer Block Diagram

Design Logic

1 2 30

1 2 30

Signal Tap
Instances

Intel FPGA
Programming Cable

Signal Tap Logic Analyzer GUI

Buffers (Device Memory)

FPGA Device

JTAG
Hub

683819 | 2023.12.04

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Signal Tap Logic Analyzer GUI

The Signal Tap logic analyzer GUI helps you to rapidly define and modify Signal Tap
signal configuration and JTAG connection settings, displays the captured signals during
analysis, starts and stops analysis, and displays and records signal data. When you
configure a Signal Tap instance in the GUI, Signal Tap preserves the instance settings
in a Signal Tap Logic Analyzer file (.stp) for reuse.

Figure 20. Signal Tap Logic Analyzer GUI

Signal Configuration

Signal Tap Instances JTAG Connection Setup

Trigger Conditions

Signal Tap Logic Analyzer and Simulator Integration

You can integrate the Signal Tap logic analyzer with your supported simulator
environment. Signal Tap can readily generate a list of "simulator-aware" nodes to tap
for any design hierarchy. Tapping this set of nodes then provides full visibility into the
entire design hierarchy for direct observation of all internal signal states in your RTL
simulator.

Signal Tap also supports automatic RTL simulation testbench creation, allowing you to
export acquired Signal Tap hardware data directly into your RTL simulator and observe
signals beyond those that you specify for tapping in Signal Tap. You can produce
simulation events using the live data traffic to replicate in your simulator.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Tap Logic Analyzer Capabilities

The Signal Tap logic analyzer supports a high number of channels, a large sample
depth, fast clock speeds, and other features described in the Key Signal Tap Logic
Analyzer Capabilities table.

Table 7. Key Signal Tap Logic Analyzer Capabilities

Capability Benefit

Multiple logic analyzers in a single
device, or in multiple devices in a
single chain

Capture data from multiple clock domains and from multiple devices at the same
time.

Up to 10 trigger conditions for each
analyzer instance

Send complex data capture commands to the logic analyzer for greater accuracy
and problem isolation.

Power-up trigger Capture signal data for triggers that occur after device programming, but before
manually starting the logic analyzer.

Custom trigger HDL object Define a custom trigger in Verilog HDL or VHDL and tap specific instances of
modules across the design hierarchy, without manual routing of all the necessary
connections.

State-based triggering flow Organize triggering conditions to precisely define data capture.

Flexible buffer acquisition modes Precise control of data written into the acquisition buffer. Discard data samples
that are not relevant to the debugging of your design.

MATLAB* integration with MEX
function

Collect Signal Tap capture data into a MATLAB integer matrix.

RTL simulator integration Easily create a set of nodes to tap for the design hierarchy, and observe all
internal signal states in your RTL simulator. Automatic testbench creation allows
you to inject acquired Signal Tap data directly into your RTL simulator.

Up to 4,096 channels per logic
analyzer instance

Samples many signals and wide bus structures.

Up to 128K samples per instance Captures a large sample set for each channel.

Fast clock frequencies Synchronous sampling of data nodes using the same clock tree driving the logic
under test.

Compatible with other debugging
utilities

Use the Signal Tap logic analyzer in tandem with any JTAG-based on-chip
debugging tool, such as an In-System Memory Content editor, to change signal
values in real-time.

Floating-Point Display Format • Single-precision floating-point format IEEE754 Single (32-bit).
• Double-precision floating-point format IEEE754 Double (64-bit).

2.1.1. Signal Tap Hardware and Software Requirements

All editions of the Intel Quartus Prime design software include the Signal Tap logic
analyzer GUI and Signal Tap Logic Analyzer Intel FPGA IP. The Signal Tap logic
analyzer is also available as a stand-alone application.

During data acquisition, the memory blocks in the FPGA device store the captured
data, and then transfer the data to the Signal Tap logic analyzer over a JTAG
communication cable, such as Intel FPGA Ethernet Cable or Intel FPGA Download
Cable.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Signal Tap logic analyzer requires the following hardware and software to perform
logic analysis:

• The Signal Tap logic analyzer included with the Intel Quartus Prime software, or
the Signal Tap logic analyzer standalone software and standalone Programmer
software.

• An Intel FPGA download or communications cable.

• An Intel development kit, or your own design board with a JTAG connection to the
device under test.

Related Information

Running the Stand-Alone Version of Signal Tap on page 118

2.2. Signal Tap Debugging Flow

To use the Signal Tap logic analyzer to debug your design, you compile your design
that includes one or more Signal Tap instances that you define, configure the target
device, and then run the logic analyzer to capture and analyze signal data.

When Should I Add Signal Tap to the Design?

It is best to add the Signal Tap logic analyzer to your design early in the design flow to
help prevent later difficulty in fitting the Signal Tap logic into the target device. If you
add Signal Tap late in the design cycle, you may have difficulty with fitting if the
device is already at 90-95% full. However, you can use the ECO compilation feature to
add Signal Tap as soon as you initially create the design, even before adding nodes or
running synthesis. This technique allows you to more easily make the ECO connections
later if needed. Refer to Using the ECO Compilation Flow in Intel Quartus Prime Pro
Edition User Guide: Design Optimization.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. Signal Tap Debugging Flow

Debugging Complete

Yes

NoFunctionality
Satisfied or Bug

Fixed?

Add Signal Tap
Instance(s) to Design

Configure Signal Tap and
Define Trigger Conditions

Program the Target
Device or Devices

Analyze Signal Tap
Captured Data

Run Signal Tap
Logic Analyzer GUI

Adjust Options,
Triggers, or Both

Recompilation
Necessary?

Yes

NoCompile the Design
Including Signal Tap

No

1

112

116

113

114

115

The following steps describe the Signal Tap debugging flow in detail:

• Step 1: Add the Signal Tap Logic Analyzer to the Project on page 34

• Step 2: Configure the Signal Tap Logic Analyzer on page 39

• Step 3: Compile the Design and Signal Tap Instances on page 82

• Step 4: Program the Target Hardware on page 85

• Step 5: Run the Signal Tap Logic Analyzer on page 86

• Step 6: Analyze Signal Tap Captured Data on page 92

Related Information

Using the ECO Compilation Flow in Intel Quartus Prime Pro Edition User Guide: Design
Optimization

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

33

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3. Step 1: Add the Signal Tap Logic Analyzer to the Project

To debug a design using the Signal Tap logic analyzer, you must first define one or
more Signal Tap instances and add them to your project. You then compile the Signal
Tap instances, along with your design. You can define a Signal Tap instance in the
Signal Tap logic analyzer GUI or by HDL instantiation.

To help you get started quickly, the Signal Tap logic analyzer GUI includes
preconfigured templates for various trigger conditions and applications. You can then
modify the settings the template applies and adjust trigger conditions in the Signal
Tap logic analyzer GUI.

Alternatively, you can define a Signal Tap instance by parameterizing an instance of
the Signal Tap Logic Analyzer Intel FPGA IP, and then instantiating the Signal Tap
entity or module in an HDL design file.

If you want to monitor multiple clock domains simultaneously, you can add additional
instances of the logic analyzer to your design, limited only by the available resources
in your device.

2.3.1. Creating a Signal Tap Instance with the Signal Tap GUI

When you define one or more Signal Tap instances in the GUI, Signal Tap stores the
trigger and signal configuration settings in a Signal Tap Logic Analyzer File (.stp).
You can open a .stp to reload that Signal Tap configuration.

1. Open a project and run Analysis & Synthesis on the Compilation Dashboard.

2. To create a Signal Tap instance with the Signal Tap logic analyzer GUI, perform
one of the following:

• Click Tools ➤ Signal Tap Logic Analyzer.

• Click File ➤ New ➤ Signal Tap Logic Analyzer File.

Figure 22. Signal Tap file Templates

3. Select a Signal Tap file template. The Preview describes the setup and Signal
Configuration the template applies. Refer to Signal Tap File Templates on page
116.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Click Create. The Signal Tap logic analyzer GUI opens with the template options
preset for the Signal Tap instance.

5. Under Signal Configuration, specify the acquisition Clock and optionally modify
other settings, as Step 2: Configure the Signal Tap Logic Analyzer on page 39
describes.

6. When you save or close the Signal Tap instance, click Yes when prompted to add
the Signal Tap instance to the project.

2.3.1.1. Managing Signal Tap Instances

You can manage the properties of different Signal Tap instances in the Instance
Manager pane. You can enable or disable one or more instances to specify whether
your project includes the instance the next time you run compilation. If you enable or
disable instances, you must recompile the design to implement the changes.

The Instance Manager toolbar allows you to Run Analysis and Stop Analysis, or
start Autorun Analysis, which starts the Signal Tap logic analyzer in a repetitive
acquisition mode, providing continuous display update.

Figure 23. Enable and Disable Signal Tap Instances in Instance Manager

2.3.2. Creating a Signal Tap Instance by HDL Instantiation

You can create a Signal Tap Instance by HDL instantiation, rather than using the
Signal Tap logic analyzer GUI. When you use HDL instantiation, you first parameterize
and instantiate the Signal Tap Logic Analyzer Intel FPGA IP in your RTL. Next, you
compile the design and IP, and run a Signal Tap analysis using the generated .stp
file. Follow these steps to create a Signal Tap instance by HDL instantiation:

Figure 24. Signal Tap Logic Analyzer Intel FPGA IP

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. From the Intel Quartus Prime IP Catalog (View ➤ IP Catalog), locate and
double-click the Signal Tap Logic Analyzer Intel FPGA IP.

2. In the New IP Variant dialog box, specify the File Name for your Signal Tap
instance, and then click Create. The IP parameter editor displays the available
parameter settings for the Signal Tap instance.

3. In the parameter editor, specify the Data, Segmented Acquisition, Storage
Qualifier, Trigger, and Pipelining parameters, as Signal Tap Intel FPGA IP
Parameters on page 37 describes.

4. Click Generate HDL. The parameter editor generates the HDL implementation of
the Signal Tap instance according to your specifications.

Figure 25. IP Parameter Editor

5. To instantiate the Signal Tap instance in your RTL, click Generate ➤ Show
Instantiation Template in the parameter editor. Copy the Instantiation
Template contents into your RTL.

Figure 26. Signal Tap Logic Analyzer Intel FPGA IP Instantiation Template

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Run at least the Analysis & Synthesis stage of the Compiler to synthesize the RTL
(including Signal Tap instance) by clicking Processing ➤ Start ➤ Start Analysis
& Synthesis. Alternatively, you can run full compilation and the Assembler at this
point if ready.

7. When the Compiler completes, click Create/Update ➤ Create Signal Tap File
from Design Instance to create a .stp file for analysis in the Signal Tap logic
analyzer GUI.

Figure 27. Create Signal Tap File from Design Instances Dialog Box

Note: If your project contains partial reconfiguration partitions, the PR partitions
display in a tree view. Select a partition from the view, and click Create
Signal Tap file. The resulting .stp file that generates contains all HDL
instances in the corresponding PR partition. The resulting .stp file does not
include the instances in any nested partial reconfiguration partition.

8. To analyze the Signal Tap instance, click File ➤ Open and select the .stp file.
The Signal Tap instance opens in the Signal Tap logic analyzer GUI for analysis. All
the fields are read-only, except runtime-configurable trigger conditions.

9. Modify any runtime-configurable trigger conditions, as Runtime Reconfigurable
Options on page 89 describes.

2.3.2.1. Signal Tap Intel FPGA IP Parameters

The Signal Tap Intel FPGA IP has the following parameters:

Table 8. Signal Tap Intel FPGA IP Parameters

Parameter Groups Parameter Descriptions

Data • Data Input Port Width—from 1 to 4096. Default is 1.
• Sample Depth—number of samples to collect from 0-128K. Default is 128.
• RAM type—memory type for sample collection and storage. The Auto

(default), M20K/M10K/M9K, MLAB/LUTRAM, and M144K options are
available.

Segmented Acquisition Specifies options for organizing the captured data buffer:

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Groups Parameter Descriptions

• Segmented—the memory space is split into separate buffers. Each buffer acts
as a separate FIFO with its own set of trigger conditions, and behaves as a non-
segmented buffer. Only a single buffer is active during an acquisition. Default is
off.

• Number of Segments—specifies the number of segments in each memory
space. Default is 2.

• Samples per Segments—the number of samples Signal Tap captures per
segment. Default is 64.

Storage Qualifier Specifies the Continuous or Input Port method, and whether to Record data
discontinuities.

Trigger • Trigger Input Port Width—from 1 to 4096. Default is 1.
• Trigger Conditions—number of trigger conditions or levels you are

implementing 1-10. Default is 1.
• Trigger In—enables and creates a port for the Trigger In.
• Trigger Out—enables and creates a port for the Trigger Out.

Pipelining The Pipeline Factor specifies the levels of pipelining added for potential fMAX
improvement from 0 to 5. Default is 0.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4. Step 2: Configure the Signal Tap Logic Analyzer

You must configure the Signal Tap logic analyzer before you can capture and analyze
data. You can configure instances of the Signal Tap logic analyzer by specifying options
in the Signal Tap Signal Configuration pane.

When you use the available Signal Tap templates to create a new Signal Tap instance,
the template specifies many of the initial option values automatically.

Figure 28. Signal Tap Logic Analyzer Signal Configuration Pane

Signal Configuration Pane

Basic configuration of the Signal Tap logic analyzer includes specifying values for the
following options:

• Preserving Signals for Monitoring and Debugging on page 40

• Specifying the Clock, Sample Depth, and RAM Type on page 42

• Specifying the Buffer Acquisition Mode on page 43

• Adding Signals to the Signal Tap Logic Analyzer on page 45

• Defining Trigger Conditions on page 52

• Specifying Pipeline Settings on page 75

• Filtering Relevant Samples on page 75

• Managing Multiple Signal Tap Configurations on page 101

Related Information

Preventing Changes that Require Full Recompilation on page 42

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1. Preserving Signals for Monitoring and Debugging

The Compiler optimizes the RTL signals during synthesis and place-and-route. Unless
preserved, the signal names in your RTL may not exist in the post-fit netlist after
signal optimizations. For example, the compilation process can merge duplicate
registers, or add tildes (~) to net names that fan-out from a node.

To ensure that specific nodes in your RTL are available for Signal Tap debugging after
synthesis and place-and-route, you can apply the preserve_for_debug attribute to
the signals of interest in your RTL, and also specify the Enable preserve for debug
assignments project .qsf setting. Refer to .qsf syntax in Debug Signal
Preservation Methods.

When you preserve signals using this technique, the Compiler generates the Preserve
for Debug Assignments report following synthesis that shows the status and name of
all nodes with the preserve_for_debug attribute in your RTL.

Follow these steps to preserve signals for monitoring and debugging:

1. In your design RTL, mark signals that you want to preserve with the
preserve_for_debug attribute:

Figure 29. preserve_for_debug Attribute

2. Open the project containing Signal Tap in the Intel Quartus Prime software and
perform one of the following:

• To enable preservation and reporting for specific instances, click Assignments
➤ Assignment Editor, and then specify the Enable preserve for debug
assignments assignment To any instance of interest.

Or

• To enable preservation and reporting project-wide, in Assignments ➤
Settings ➤ Signal Tap Logic Analyzer, turn on Enable preserve for
debug assignments.(1)

3. To synthesize the design, on the Compilation Dashboard, click Analysis &
Synthesis. The Compilation Report appears when synthesis is complete.

4. To view the results of signal preservation, open the Preserve for Debug
Assignments report located in the Synthesis ➤ Partition <name> ➤ Preserve
for Debug report folder.

(1) The global project setting has a more limited impact and does not preserve signals that would
otherwise be optimized away in their local context.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. Preserve for Debug Assignments Report

5. Run full compilation to perform place and route of the design and Signal Tap
instance, as Step 3: Compile the Design and Signal Tap Instances on page 82
describes. The debug signals that you preserve in step 2 persist through the Fitter
into the finalized compilation database.

6. Optionally, make some incremental changes to the Signal Tap configuration
without running full recompilation, as Changing the Post-Fit Signal Tap Target
Nodes on page 86 describes.

Table 9. Debug Signal Preservation Methods

Method Description Example

preserve_for_debug_en
able

Set this assignment to On to preserve any
nodes or hierarchies marked with
preserve_for_debug. If set to Off or not
used, any preserve_for_debug assignments
are ignored. Use this as a quick way to disable
all debug node preservation when optimizing a
completed design. The Compiler reports these
nodes in the Preserve for Debug Assignments
report following compilation.

set_instance_assignment -name
PRESERVE_FOR_DEBUG_ENABLE ON

preserve_for_debug

(Enable preserve for
debug assignments in
the Assignment Editor)

Instance-specific .qsf assignment that
overrides the global assignment and enables
preservation of all types of nodes through
synthesis post-synthesis or post-fit debugging
purposes. When On, this assignment enables
preservation for the hierarchy that you specify.
You can enable or disable this with the
Preserve signal for debug assignment in the
Assignment Editor. The Compiler reports these
nodes in the Preserve for Debug Assignments
report following compilation.

set_instance_assignment -name
PRESERVE_FOR_DEBUG ON -to <node
hpath>

Note: For more information about preserving signals, refer to Preserving Registers During
Synthesis, in the Intel Hyperflex™ Architecture High-Performance Design Handbook
and Preserving a System Module, Interface, or Port for Debugging in the Intel Quartus
Prime Pro Edition User Guide: Platform Designer.

Related Information

• Intel Hyperflex Architecture High-Performance Design Handbook

• Changing the Post-Fit Signal Tap Target Nodes on page 86

• Preserving Signals for Debugging on page 21

• Preserving a System Module, Interface, or Port for Debugging, Intel Quartus Prime
Pro Edition User Guide: Platform Designer

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

41

https://www.intel.com/content/www/us/en/docs/programmable/683353/current/preserving-registers-during-synthesis.html
https://www.intel.com/content/www/us/en/docs/programmable/683609/current/preserving-system-elements-for-debug.html
https://www.intel.com/content/www/us/en/docs/programmable/683609/current/preserving-system-elements-for-debug.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.2. Preventing Changes that Require Full Recompilation

Making some types of changes to the Signal Tap configuration require full
recompilation to implement. If you want to ensure that you make no changes to the
Signal Tap configuration that require full recompilation, select Allow trigger
condition changes only for the Lock mode. Alternatively, you can enable Allow all
changes, including those changes that require full compilation or recompilation to
implement.

Figure 31. Allow Trigger Conditions Change Only

Related Information

Recompiling Only Signal Tap Changes on page 82

2.4.3. Specifying the Clock, Sample Depth, and RAM Type

You must specify options for the acquisition clock, sample depth, and data storage on
the Signal Configuration pane before using Signal Tap.

Note: The Signal Tap file templates automatically specify appropriate initial values for some
of these options.

Figure 32. Clock, Sample Depth, and Data Storage Options

Storage RAM Type

Buffer Acquisition Mode

Number of SamplesAcquisition Clock

Search Signals

Specifying the Acquisition Clock

Signal Tap samples data on each positive (rising) edge of the acquisition clock.
Therefore, Signal Tap requires a clock signal from your design to control the logic
analyzer data acquisition. For best data acquisition, specify a global, non-gated clock
that is synchronous to the signals under test. Refer to the Timing Analysis section of
the Compilation Report for the maximum frequency of the logic analyzer clock.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To specify the acquisition clock signal, enter a signal name from your design for
the Clock setting in Single Configuration.

Note: Consider the following when specifying the acquisition clock:

• If you do not assign an acquisition clock, Signal Tap automatically creates clock
pin auto_stp_external_clk. You must then make a pin assignment to this
signal, and ensure that a clock signal in your design drives the acquisition clock.

• Using a transceiver recovered clock as the acquisition clock can cause incorrect or
unexpected behavior, particularly when the transceiver recovered clock is the
acquisition clock with the power-up trigger feature.

• Specifying a gated acquisition clock can result in unexpected data that does not
accurately reflect the behavior of your design.

• Signal Tap does not support sampling on the negative (falling) clock edge.

Specifying Sample Depth

The sample depth determines the number of samples the logic analyzer captures and
stores in the data buffer, for each signal. In cases with limited device memory
resources, you can reduce the sample depth to reduce resource usage.

• To specify the sample depth, select the number of samples from the Sample
depth list under Single Configuration. Available sample depth range is from
0 to 128K.

Specifying the RAM Type

You can specify the RAM type and buffer acquisition mode for storage of Signal Tap
logic analyzer acquisition data. When you allocate the Signal Tap logic analyzer buffer
to a particular RAM block, the entire RAM block becomes a dedicated resource for the
logic analyzer.

• To specify the RAM type, select a Ram type under Single Configuration.
Available settings are Auto, MLAB, or M20K RAM.

Use RAM selection to preserve a specific memory block for your design, and allocate
another portion of memory for Signal Tap data acquisition. For example, if your design
has an application that requires a large block of memory resources, such as a large
instruction or data cache, use MLAB blocks for data acquisition and leave M20k blocks
for your design.

Related Information

• Adding Nios II Processor Signals with a Plug-In on page 50

• Managing Device I/O Pins, Intel Quartus Prime Pro Edition User Guide: Design
Constraints

2.4.4. Specifying the Buffer Acquisition Mode

You can specify how Signal Tap organizes the data capture buffer to potentially reduce
the amount of memory that Signal Tap requires for data acquisition.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

43

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Signal Tap logic analyzer supports either a non-segmented (or circular) buffer and
a segmented buffer.

• Non-segmented buffer—the Signal Tap logic analyzer treats the entire memory
space as a single FIFO, continuously filling the buffer until the logic analyzer
reaches the trigger conditions that you specify.

• Segmented buffer—the memory space is split into separate buffers. Each buffer
acts as a separate FIFO with its own set of trigger conditions, and behaves as a
non-segmented buffer. Only a single buffer is active during an acquisition. The
Signal Tap logic analyzer advances to the next segment after the trigger condition
or conditions for the active segment has been reached.

When using a non-segmented buffer, you can use the storage qualification feature to
determine which samples are written into the acquisition buffer. Both the segmented
buffers and the non-segmented buffer with the storage qualification feature help you
maximize the use of the available memory space.

Figure 33. Buffer Type Comparison in the Signal Tap Logic Analyzer
The figure illustrates the differences between the two buffer types.

Newly
Captured
Data

Oldest Data
 Removed

Post-Trigger Pre-Trigger Center Trigger

1 1

All
Trigger Level

Segment 1 Segment 2 Segment 3 Segment 4

Segment
Trigger Level

1 1 ... 0 1 1 0 ... 0 1 1 1 ... 0 1 1 0 ... 0 1

0 0 1 0 0 1 0 1

Segment
Trigger Level

Segment
Trigger Level

1

(b) Segmented Buffer

(a) Non-segmented Buffer

Both non-segmented and segmented buffers can use a preset trigger position (Pre-
Trigger, Center Trigger, Post-Trigger). Alternatively, you can define a custom trigger
position using the State-Based Triggering tab, as Specify Trigger Position on page
61 describes.

2.4.4.1. Non-Segmented Buffer

The non-segmented buffer is the default buffer type in the Signal Tap logic analyzer.

At runtime, the logic analyzer stores data in the buffer until the buffer fills up. From
that point on, new data overwrites the oldest data, until a specific trigger event
occurs. The amount of data the buffer captures after the trigger event depends on the
Trigger position setting:

• To capture more data from before the trigger occurs, select Post trigger position
from the list.

• To capture all data from after the trigger occurs, select Pre trigger position.

• To center the trigger position in the data, select Center trigger position.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Alternatively, use the custom State-based triggering flow to define a custom trigger
position within the capture buffer.

2.4.4.2. Segmented Buffer

In a segmented buffer, the acquisition memory is split into segments of even size, and
you define a set of trigger conditions for all segments. Each segment acts as a non-
segmented buffer. A segmented buffer allows you to debug systems that contain
relatively infrequent recurring events.

If you want to have separate trigger conditions for each of the buffer segments, you
must use the state-based trigger flow. The figure shows an example of a segmented
buffer system.

Figure 34. System that Generates Recurring Events
In the following example, to ensure that the correct data is written to the SRAM controller, monitor the RDATA
port whenever the address H'0F0F0F0F is sent into the RADDR port.

QDR SRAM
Controller

WADDR[17..0]
RADDR[17..0]
WDATA[35..0]
RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]
Q[17..0]
D[17..0]
BWSn[1..0]
RPSn
WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Intel FPGA Device

Pipeline
Registers

(Optional)

K_FB_OUT
K_FB_IN

C, Cn

SRAM Interface Signals

The buffer acquisition feature allows you to monitor multiple read transactions from
the SRAM device without running the Signal Tap logic analyzer again. You can split the
memory to capture the same event multiple times, without wasting allocated memory.
The buffer captures as many cycles as the number of segments you define under the
Data settings in the Signal Configuration pane.

To enable and configure buffer acquisition, select Segmented in the Signal Tap logic
analyzer Editor and choose the number of segments to use. In the example in the
figure, selecting 64-sample segments allows you to capture 64 read cycles.

Related Information

Viewing Capture Data Using Segmented Buffers on page 93

2.4.5. Adding Signals to the Signal Tap Logic Analyzer

You add the signals that you want to monitor to the node list in the Signal Tap logic
analyzer. You can then select a signals in the node list to define the triggers for the
signal.

Adding Pre-Synthesis Signals

You can add expected signals to Signal Tap for monitoring without running synthesis.
Pre-synthesis signal names are those names present after Analysis & Elaboration, but
before any synthesis optimizations. When you add pre-synthesis signals to Signal Tap

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

for monitoring, you must make all connections to the Signal Tap logic analyzer before
running synthesis. The Compiler then automatically allocates the logic and routing
resources to make these connections. For signals driving to and from IOEs, pre-
synthesis signal names coincide with the pin's signal names.

Refer to Adding Pre-Synthesis or Post-Fit Nodes on page 46.

Adding Simulator-Aware Signals

You can easily generate a list of simulator-aware, pre-synthesis signals to tap for an
entire design hierarchy, and then observe all internal signal states in your RTL
simulator. This set of simulator-aware nodes can provide full visibility into other
untapped nodes in the design hierarchy. You can then export captured Signal Tap
signal data directly into your RTL simulator to observe signal states beyond Signal Tap
observability.

Refer to Adding Simulator-Aware Signal Tap Nodes on page 48.

Adding Post-Fit Signals

You can add post-fit signals to Signal Tap for monitoring. Post-fit signal names are
those names present in the netlist after physical synthesis optimizations and place-
and-route. When you add post-fit signals to Signal Tap for monitoring, you are
connecting to actual atoms in the post-fit netlist. You can only monitor signals that
exist in the post-fit netlist, and existing routing resources must be available.

In the case of post-fit output signals, monitor the COMBOUT or REGOUT signal that
drives the IOE block. For post-fit input signals, signals driving into the core logic
coincide with the pin's signal name.

Note: Because NOT-gate push back applies to any register that you monitor, the signal from
the atom may be inverted. You can verify the inversion by locating to the signal with
the Locate Node ➤ Locate in Resource Property Editor or the Locate Node ➤
Locate in Technology Map Viewer commands. You can also view post-fit node
names in the Resource Property Editor.

Related Information

Signal Tap and Simulator Integration on page 98

2.4.5.1. Adding Pre-Synthesis or Post-Fit Nodes

To add one or more pre-synthesis or post-fit signals to the Signal Tap Node list for
monitoring:

1. Click either of the following commands to generate the pre-synthesis or post-fit
design netlist:

• Processing ➤ Start ➤ Start Analysis & Elaboration (generates pre-
synthesis netlist)

• Processing ➤ Start ➤ Start Fitter (generates post-fit netlist)

2. In the Signal Tap logic analyzer, Click Edit ➤ Add Nodes. The Node Finder
appears, allowing you to find and add the signals in your design. The following
Filter options are available for finding the nodes you want:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Signal Tap: pre-synthesis—finds signal names present after design
elaboration, but before any synthesis optimizations are done. Signal Tap:
pre-synthesis preserved for debug finds presynthesis signals that you
mark with the preserve_for_debug pragma, as Preserving Signals for
Monitoring and Debugging on page 40 describes.

• Signal Tap: post-fitting—finds signal names present after physical synthesis
optimizations and place-and-route. Signal Tap: post-fitting preserved for
debug finds post-fit signals that you mark with the preserve_for_debug
pragma.

3. In the Node Finder, select one or more nodes that you want to add, and then click
the Copy all to Selected Nodes list button.

4. Click Insert. The nodes are added to the Setup tab signal list in the Signal Tap
logic analyzer GUI.

5. Specify how the logic analyzer uses the signal by enabling or disabling the Data
Enable, Trigger Enable, or Storage Enable option for the signal:

• Trigger Enable—disabling prevents a signal from triggering the analysis,
while still showing the signal's captured data.

• Data Enable—disabling prevent capture of data, while still allowing the signal
to trigger.

Figure 35. Signal Tap Node List Options for Data Enable and Trigger Enable

6. Define trigger conditions for the Signal Tap nodes, as Defining Trigger Conditions
on page 52 describes.

The number of channels available in the Signal Tap window waveform display is
directly proportional to the number of logic elements (LEs) or adaptive logic modules
(ALMs) in the device. Therefore, there is a physical restriction on the number of
channels that are available for monitoring. Signals shown in blue text are post-fit node
names. Signals shown in black text are pre-synthesis node names.

After successful Analysis and Elaboration, invalid signals appear in red. Unless you are
certain that these signals are valid, remove them from the .stp file for correct
operation. The Signal Tap Status Indicator also indicates if an invalid node name exists
in the .stp file.

You can monitor signals only if a routing resource (row or column interconnects) exists
to route the connection to the Signal Tap instance. For example, you cannot monitor
signals that exist in the I/O element (IOE), because there are no direct routing
resources from the signal in an IOE to a core logic element. For input pins, you can
monitor the signal that is driving a logic array block (LAB) from an IOE, or, for output
pins, you can monitor the signal from the LAB that is driving an IOE.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Intel Quartus Prime Pro Edition software uses only the instance name, and not the
entity name, in the form of:

a|b|c

not a_entity:a|b_entity:b|c_entity:c

2.4.5.2. Adding Simulator-Aware Signal Tap Nodes

Note: This version of the Signal Tap simulator integration feature is a beta release. The
following known limitations apply to this beta release:

• Supports only Verilog HDL simulation.

• Supports testbench generation only within the current project directory.

To automatically generate and add a list of simulator-aware signals to the Signal Tap
Node list for Signal Tap and simulator monitoring, follow these steps:

1. To generate the pre-synthesis design netlist, click Processing ➤ Start ➤ Start
Analysis & Elaboration.

2. In the Signal Tap logic analyzer, click Edit ➤ Add Simulator Aware Nodes. The
Simulator Aware Node Finder opens, allowing you to specify the following
options to find and add the minimum set of nodes to tap to for full visibility into
the selected hierarchy's cone of logic:

a. Click the Select Hierarchies button, select one or more design hierarchies
that you want to tap, and then click OK. The clock domains in the hierarchy
appear in the Clock Domains list.

b. Under Clock Domains, enable only the domains of interest. If you select
multiple clock domains, Signal Tap creates an instance for each domain.

c. Click the Search button. All nodes required to provide full visibility into the
selected hierarchy automatically appear enabled in the Total nodes to tap
list. Disabling any of the simulator-aware nodes may reduce simulation
visibility.

d. Click the Insert button. The enabled signals in the Total nodes to tap list
are copied to the Signal Tap Node list, and the acquisition clock updates
according to the simulator-aware signal data. Refer to Add Simulator-Aware
Node Finder Settings on page 50.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 36. Simulator Aware Node Finder

Select Hierarchy
 to Tap

Disable clocks

Finds Simulator-
 Aware Nodes

Simulator-Aware
Nodes Found

Add Nodes To
Signal Tap

Figure 37. Simulator-Aware Nodes Copied to Signal Tap Window

3. Modify trigger conditions for the Signal Tap nodes, as Defining Trigger Conditions
on page 52 describes.

4. Compile the design and Signal Tap instance, Step 3: Compile the Design and
Signal Tap Instances on page 82 describes.

5. Program the target hardware, as Step 4: Program the Target Hardware on page
85 describes.

6. Run the Signal Tap logic analyzer, as Step 5: Run the Signal Tap Logic Analyzer on
page 86 describes.

7. Generate a simulation testbench from Signal Tap capture data, as Generating a
Simulation Testbench from Signal Tap Data on page 98 describes.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.5.2.1. Add Simulator-Aware Node Finder Settings

The following options are available for searching and adding simulator aware nodes to
Signal Tap for the purpose of generating an RTL simulation testbench from Signal Tap
data. The default values derive from Signal Tap signal data and are set correctly for
most scenarios.

Table 10. Add Simulator Aware Node Finder Settings (Signal Tap Logic Analyzer)

Name Description

Select Hierarchies Specifies the design hierarchy from which to extract simulator-aware nodes.
Select one or more design hierarchies that you want to tap. The clock domains of
the hierarchy appear in the Clock Domains list. Only nodes from the hierarchy
you specify are added.

Clock Domains Specifies the clock domains to include in the simulator-aware node finder. Turn
on only the domains that you want to include.

Search button Starts the search for simulator-aware nodes according to the specifications in
this dialog box. Search results appear in the Total nodes to tap list.

Total nodes to tap Displays the results of the simulator-aware node name search, showing all of the
names in the hierarchy enabled by default. Turn the node names on to include or
off to exclude from the list of nodes added to Signal Tap. Disabling any of the
simulator-aware nodes may reduce simulation visibility.

Insert Button Copies the enabled signals in the Total nodes to tap list to the Signal Tap Node
list, and the acquisition clock updates according to the simulator-aware signal
data.

2.4.5.3. Adding Nios II Processor Signals with a Plug-In

You can use a plug-in to automatically add relevant signals for the Nios II processor
for monitoring, rather than adding the signals manually with the Node Finder. The
plug-in provides preset mnemonic tables for trigger creation and viewing, as well as
the ability to disassemble code in captured data.

Note: This feature does not yet support the Nios V embedded processor.

The Nios II plug-in creates one mnemonic table in the Setup tab and two tables in the
Data tab:

• Nios II Instruction (Setup tab)—capture all the required signals for triggering
on a selected instruction address.

• Nios II Instance Address (Data tab)—display address of executed instructions
in hexadecimal format or as a programming symbol name if defined in an optional
Executable and Linking Format (.elf) file.

• Nios II Disassembly (Data tab)—display disassembled code from the
corresponding address.

To add Nios II IP signals to the logic analyzer using a plug-in, perform the following
steps after running Analysis and Elaboration on your design:

1. In the Signal Tap logic analyzer, right-click the node list, and then click Add
Nodes with Plug-In ➤ Nios II.

2. Select the IP that contains the signals you want to monitor with the plug-in, and
click OK.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

— If all the signals in the plug-in are available, a dialog box might appear,
depending on the plug-in, where you can specify options for the plug-in.

3. With the Nios II plug-in, you can optionally select an .elf containing program
symbols from your Nios II Integrated Development Environment (IDE) software
design. Specify options for the selected plug-in, and click OK.

2.4.5.4. Signals Unavailable for Signal Tap Debugging

Some post-fit signals in your design are unavailable for Signal Tap debugging. The
Node Finder's Signal Tap: post-fitting filter does not return nodes that are
unavailable for Signal Tap debugging.

The following signal types are unavailable for Signal Tap debugging:

• Post-fit output pins—You cannot monitor a post-fit output or bidirectional pin
directly. To make an output signal visible, monitor the register or buffer that drives
the output pin.

• Carry chain signals—You cannot monitor the carry out (cout0 or cout1) signal
of a logic element. Due to architectural restrictions, the carry out signal can only
feed the carry in of another LE.

• JTAG signals—You cannot monitor the JTAG control (TCK, TDI, TDO, or TMS)
signals.

• LVDS—You cannot monitor the data output from a serializer/deserializer
(SERDES) block.

• DQ, DQS signals—You cannot directly monitor the DQ or DQS signals in a DDR or
DDRII design.

2.4.5.5. Organizing Signals in the Signal Tap Logic Analyzer

Use dividers in the node list to separate and categorize your signals into groups to
make reviewing the node table easier. You can move and rename dividers in the node
table at any time.

Figure 38. Example Signal Tap Logic Analyzer node table that shows a lists of nodes and
dividers

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To add a divider, right-click a node in the node table and select Add Divider.

The new divider is added immediately above the selected node. The divider is
assigned a name that you can change at any time.

• To rename a divider, right-click the divider that you want to rename and select
Rename.

• To move a divider, drag-and-drop the divider to its new location.

• To delete a divider, right-click the divider and select Delete.

2.4.6. Defining Trigger Conditions

By default, the Signal Tap logic analyzer captures data continuously from the signals
you specify while the logic analyzer is running. To capture and store only specific
signal data, you can specify conditions that trigger the start or stop of data capture. A
trigger activates—that is, the logic analyzer stops and displays the data—when the
signals you specify reach the trigger conditions that you define.

The Signal Tap logic analyzer allows you to define trigger conditions that range from
very simple, such as the rising edge of a single signal, to very complex, involving
groups of signals, extra logic, and multiple conditions. Additionally, you can specify
Power-Up Triggers to capture data from trigger events occurring immediately after the
device enters user-mode after configuration.

2.4.6.1. Basic Trigger Conditions

If you select the Basic AND or Basic OR trigger type, you must specify the trigger
pattern for each signal that you add.

To specify the trigger pattern, right-click the Trigger Conditions column and click
Don’t Care, Low, High, Falling Edge , Rising Edge, or Either Edge.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For buses, type a pattern in binary, or right-click and select Insert Value to enter the
pattern in other number formats. Note that you can enter X to specify a set of “don’t
care” values in either your hexadecimal or your binary string. For signals in the .stp
file that have an associated mnemonic table, you can right-click and select an entry
from the table to specify pre-defined conditions for the trigger.

When you add signals through plug-ins, you can create basic triggers using predefined
mnemonic table entries. For example, with the Nios II plug-in, if you specify an .elf
file from your Nios II IDE design, you can type the name of a function from your Nios
II code. The logic analyzer triggers when the Nios II instruction address matches the
address of the code function name that you specify.

Data capture stops and the logic analyzer stores the data in the buffer when the
logical AND of all the signals for a given trigger condition evaluates to TRUE.

2.4.6.2. Nested Trigger Conditions

When you specify a set of signals as a nested group (group of groups) with the Basic
OR trigger type, the logic analyzer generates an advanced trigger condition. This
condition sorts the signals within groups to minimize the need to recompile your
design. If you always retain the parent-child relationship of nodes, the advanced
trigger condition does not change. You can modify the sibling relationships of nodes,
without requiring recompilation.

The evaluation precedence of a nested trigger condition starts at the bottom-level with
the leaf-groups. The logic analyzer uses the resulting logic value to compute the
parent group’s logic value. If you manually set the value of a group, the logic value of
the group's members doesn't influence the result of the group trigger.

To create a nested trigger condition:

1. Select Basic OR under Trigger Conditions.

2. In the Setup tab, select several nodes. Include groups in your selection.

3. Right-click the Setup tab and select Group.

4. Select the nested group and right-click to set a group trigger condition that applies
the reduction AND, OR, NAND, NOR, XOR, XNOR, or logical TRUE or FALSE.

Note: You can only select OR and AND group trigger conditions for bottom-level
groups (groups with no groups as children).

Figure 39. Applying Trigger Condition to Nested Group

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.6.3. Comparison Trigger Conditions

The Comparison trigger allows you to compare multiple grouped bits of a bus to an
expected integer value by specifying simple comparison conditions on the bus node.
The Comparison trigger preserves all the trigger conditions that the Basic OR trigger
includes. You can use the Comparison trigger in combination with other triggers. You
can also switch between Basic OR trigger and Comparison trigger at run-time,
without the need for recompilation.

Signal Tap logic analyzer supports the following types of Comparison trigger
conditions:

• Single-value comparison—compares a bus node’s value to a numeric value that
you specify. Use one of these operands for comparison: >, >=, ==, <=, <, !=.
Returns 1 when the bus node matches the specified numeric value.

• Interval check—verifies whether a bus node’s value confines to an interval that
you define. Returns 1 when the bus node's value lies within the specified bounded
interval.

Follow these rules when using the Comparison trigger condition:

• Apply the Comparison trigger only to bus nodes consisting of leaf nodes.

• Do not form sub-groups within a bus node.

• Do not enable or disable individual trigger nodes within a bus node.

• Do not specify comparison values (in case of single-value comparison) or
boundary values (in case of interval check) exceeding the selected node’s bus-
width.

2.4.6.3.1. Specifying the Comparison Trigger Conditions

Follow these steps to specify the Comparison trigger conditions:

1. From the Setup tab, select Comparison under Trigger Conditions.

2. Right-click the node in the trigger editor, and select Compare.

3. Select the Comparison type from the Compare window.

— If you choose Single-value comparison as your comparison type, specify
the operand and value.

— If you choose Interval check as your comparison type, provide the lower and
upper bound values for the interval.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40. Selecting the Comparison Trigger Condition

Select Comparison Right-click node
and select Compare

You can also specify if you want to include or exclude the boundary values.

Figure 41. Specifying the Comparison Values

Compares the Bus Node’s Value to
a Specific Numeric Value

Verifies Bus Node’s Value
Confines to a Specified Bounded Interval

Specify Inclusion or Exclusion
 of Boundary Values

4. Click OK. The trigger editor displays the resulting comparison expression in the
group node condition text box.

Figure 42. Resulting Comparison Condition in Text Box

Displays Resulting
Comparison Expression

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.6.4. Advanced Trigger Conditions

To capture data for a given combination of conditions, build an advanced trigger. The
Signal Tap logic analyzer provides the Advanced Trigger tab, which helps you build a
complex trigger expression using a GUI. Open the Advanced Trigger tab by selecting
Advanced in the Trigger Conditions list.

Figure 43. Accessing the Advanced Trigger Condition Tab

Figure 44. Advanced Trigger Condition Tab

Node List Pane

Object Library Pane

Advanced Trigger Condition Editor Window

To build a complex trigger condition in an expression tree, drag-and-drop operators
from the Object Library pane and the Node List pane into the Advanced Trigger
Configuration Editor window.

To configure the operators’ settings, double-click or right-click the operators that you
placed and click Properties.

Table 11. Advanced Triggering Operators

Category Name

Signal Detection Edge and Level Detector

Input Objects Bit
Bit Value
Bus

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Category Name

Bus Value

Comparison Less Than
Less Than or Equal To
Equality
Inequality
Greater Than or Equal To
Greater Than

Bitwise Bitwise Complement
Bitwise AND
Bitwise OR
Bitwise XOR

Logical Logical NOT
Logical AND
Logical OR
Logical XOR

Reduction Reduction AND
Reduction OR
Reduction XOR

Shift Left Shift
Right Shift

Custom Trigger HDL

Adding many objects to the Advanced Trigger Condition Editor can make the work
space cluttered and difficult to read. To keep objects organized while you build your
advanced trigger condition, use the shortcut menu and select Arrange All Objects.
Alternatively, use the Zoom-Out command to fit more objects into the Advanced
Trigger Condition Editor window.

2.4.6.4.1. Examples of Advanced Triggering Expressions

The following examples show how to use advanced triggering:

Figure 45. Bus outa Is Greater Than or Equal to Bus outb
Trigger when bus outa is greater than or equal to outb.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 46. Enable Signal Has a Rising Edge
Trigger when bus outa is greater than or equal to bus outb, and when the enable signal has a rising edge.

Figure 47. Bitwise AND Operation
Trigger when bus outa is greater than or equal to bus outb, or when the enable signal has a rising edge. Or,
when a bitwise AND operation has been performed between bus outc and bus outd, and all bits of the result
of that operation are equal to 1.

2.4.6.5. Custom Trigger HDL Object

The Signal Tap logic analyzer supports use of your own HDL module to define a
custom trigger condition. You can use the Custom Trigger HDL object to simulate your
triggering logic and ensure that the logic itself is not faulty. Additionally, you can
monitor instances of modules anywhere in the hierarchy of your design, without
having to manually route all the necessary connections.

The Custom Trigger HDL object appears in the Object Library pane of the
Advanced Trigger editor.

Figure 48. Object Library

Custom Trigger HDL Object

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.6.5.1. Using the Custom Trigger HDL Object

To define a custom trigger flow:

1. Select the trigger you want to edit.

2. Open the Advanced Trigger tab by selecting Advanced in the Trigger
Conditions list.

3. Add to your project the Verilog HDL or VHDL source file that contains the trigger
module using the Project Navigator.

4. Implement the inputs and outputs that your Custom Trigger HDL module requires.

5. Drag in your Custom Trigger HDL object and connect the object’s data input bus
and result output bit to the final trigger result.

Figure 49. Custom Trigger HDL Object

6. Right-click your Custom Trigger HDL object and configure the object’s
properties.

Figure 50. Configure Object Properties

7. Compile your design.

8. Acquire data with Signal Tap using your custom Trigger HDL object.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 1. Verilog HDL Triggers

The following trigger uses configuration bitstream:

module test_trigger
 (
 input acq_clk, reset,
 input[3:0] data_in,
 input[1:0] pattern_in,
 output reg trigger_out
);
 always @(pattern_in) begin
 case (pattern_in)
 2'b00:
 trigger_out = &data_in;
 2'b01:
 trigger_out = |data_in;
 2'b10:
 trigger_out = 1'b0;
 2'b11:
 trigger_out = 1'b1;
 endcase
 end
endmodule

This trigger does not have configuration bitstream:

module test_trigger_no_bs
 (
 input acq_clk, reset,
 input[3:0] data_in,
 output reg trigger_out
);
 assign trigger_out = &data_in;
endmodule

2.4.6.5.2. Required Inputs and Outputs of Custom Trigger HDL Module

Table 12. Custom Trigger HDL Module Required Inputs and Outputs

Name Description Input/Output Required/ Optional

acq_clk Acquisition clock that Signal Tap uses Input Required

reset Reset that Signal Tap uses when restarting a
capture.

Input Required

data_in • Data input you connect in the Advanced
Trigger editor.

• Data your module uses to trigger.

Input Required

pattern_in • Module’s input for the configuration bitstream
property.

• Runtime configurable property that you can
set from Signal Tap GUI to change the
behavior of your trigger logic.

Input Optional

trigger_out Output signal of your module that asserts when
trigger conditions met.

Output Required

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.6.5.3. Custom Trigger HDL Module Properties

Table 13. Custom Trigger HDL Module Properties

Property Description

Custom HDL Module Name Module name of the triggering logic.

Configuration Bitstream • Allows to create trigger logic that you can configure at runtime, based upon
the value of the configuration bitstream.

• The Signal Tap logic analyzer reads the configuration bitstream property as
binary, therefore the bitstream must contain only the characters 1 and 0.

• The bit-width (number of 1s and 0s) must match the pattern_in bit width.
• A blank configuration bitstream implies that the module does not have a

pattern_in input.

Pipeline Specifies the number of pipeline stages in the triggering logic.
For example, if after receiving a triggering input the LA needs three clock cycles
to assert the trigger output, you can denote a pipeline value of three.

2.4.6.6. Specify Trigger Position

You can specify the amount of data the logic analyzer acquires before and after a
trigger event. Positions for Runtime and Power-Up triggers are separate.

The Signal Tap logic analyzer offers three pre-defined ratios of pre-trigger data to
post-trigger data:

• Pre—saves signal activity that occurred after the trigger (12% pre-trigger, 88%
post-trigger).

• Center—saves 50% pre-trigger and 50% post-trigger data.

• Post—saves signal activity that occurred before the trigger (88% pre-trigger, 12%
post-trigger).

These pre-defined ratios apply to both non-segmented buffers and each segment of a
buffer.

2.4.6.6.1. Post-fill Count

In a custom state-based triggering flow with the segment_trigger and trigger
buffer control actions, you can use the post-fill_count argument to specify a
custom trigger position.

• If you do not use the post-fill_count argument, the trigger position for the
affected buffer defaults to the trigger position you specified in the Setup tab.

• In the trigger buffer control action (for non-segmented buffers), post-
fill_count specifies the number of samples to capture before stopping data
acquisition.

• In the segment_trigger buffer control action (for segmented buffer), post-
fill_count specifies a data segment.

Note: In the case of segment_trigger, acquisition of the current buffer stops immediately
if a subsequent triggering action is issued in the next state, regardless of the current
buffer's post-fill count. The logic analyzer discards the remaining unfilled post-count
acquisitions in the current buffer, and displays them as grayed-out samples in the data
window.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When the Signal Tap data window displays the captured data, the trigger position
appears as the number of post-count samples from the end of the acquisition segment
or buffer.

Sample Number of Trigger Position = (N – Post-Fill Count)

In this case, N is the sample depth of either the acquisition segment or non-
segmented buffer.

Related Information

Buffer Control Actions on page 72

2.4.6.7. Power-Up Triggers

Power-Up Triggers capture events that occur during device initialization, immediately
after you power or reset the FPGA.

The typical use of Signal Tap logic analyzer is triggering events that occur during
normal device operation. You start an analysis manually once the target device fully
powers on and the JTAG connection for the device is available. With Signal Tap Power-
Up Trigger feature, the Signal Tap logic analyzer captures data immediately after
device initialization.

You can add a different Power-Up Trigger to each logic analyzer instance in the Signal
Tap Instance Manager pane.

2.4.6.7.1. Enabling a Power-Up Trigger

To enable the Power-Up Trigger for Signal Tap instance:

• In the Instance Manager, right-click the Signal Tap instance and click Enable
Power-Up Trigger.

Figure 51. Enabling Power-Up Trigger in Signal Tap Instance Manager

Power-Up Trigger appears as a child instance of the selected Signal Tap instance.
The first time you enable Power-Up Trigger, the Trigger conditions column in the
Setup tab is populated with the default values. Subsequently, when you disable
Power-Up Trigger, the current values in the Setup tab is retrieved the next time
you re-enable Power-Up Trigger.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To disable a Power-Up Trigger, right-click the instance and click Disable Power-Up
Trigger.

2.4.6.7.2. Configuring Power-Up Trigger Conditions

• Any change that you make to a Power-Up Trigger conditions requires that you
recompile the Signal Tap logic analyzer instance, even if a similar change to the
Runtime Trigger conditions does not require a recompilation.

• You can also force trigger conditions with the In-System Sources and Probes in
conjunction with the Signal Tap logic analyzer. The In-System Sources and Probes
feature allows you to drive and sample values on to selected nets over the JTAG
chain.

Related Information

Design Debugging Using In-System Sources and Probes on page 145

2.4.6.7.3. Managing Signal Tap Instances with Run-Time and Power-Up Trigger Conditions

Inside Instance Manager, on instances that have two types of trigger conditions,
Power-Up Trigger conditions are color coded light blue, while Run-Time Trigger
conditions remain white.

To switch between the trigger conditions of the Power-Up Trigger and the Run-Time
Trigger, double-click the instance name or the Power-Up Trigger name in the Instance
Manager.

To copy trigger conditions from a Run-Time Trigger to a Power-Up Trigger or vice
versa, right-click the trigger name in the Instance Manager and click Duplicate
Trigger. Alternatively, select the trigger name and click Edit ➤ Duplicate Trigger.

Figure 52. Instance Manager Commands

Note: Run-time trigger conditions allow fewer adjustments than power-up trigger conditions.

2.4.6.8. External Triggers

External trigger inputs allow you to trigger the Signal Tap logic analyzer from an
external source.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The external trigger input behaves like trigger condition 0, in that the condition must
evaluate to TRUE before the logic analyzer evaluates any other trigger conditions.

The Signal Tap logic analyzer supplies a signal to trigger external devices or other
logic analyzer instances. These features allow you to synchronize external logic
analysis equipment with the internal logic analyzer. Power-Up Triggers can use the
external triggers feature, but they must use the same source or target signal as their
associated Run-Time Trigger.

You can use external triggers to perform cross-triggering on a hard processor system
(HPS):

• The processor debugger allows you to configure the HPS to obey or disregard
cross-trigger request from the FPGA, and to issue or not issue cross-trigger
requests to the FPGA.

• The processor debugger in combination with the Signal Tap external trigger
feature allow you to develop a dynamic combination of cross-trigger behaviors.

• You can implement a system-level debugging solution for an Intel FPGA SoC by
using the cross-triggering feature with the ARM Development Studio 5 (DS-5)
software.

2.4.6.9. Trigger Condition Flow Control

The Trigger Condition Flow Control allows you to define the relationship between a set
of triggering conditions. Signal Tap logic analyzer Signal Configuration pane offers
two flow control mechanisms for organizing trigger conditions:

• Sequential Triggering—default triggering flow. Sequential triggering allows you
to define up to 10 triggering levels that must be satisfied before the acquisition
buffer finishes capturing.

• State-Based Triggering—gives the greatest control over your acquisition buffer.
Custom-based triggering allows you to organize trigger conditions into states
based on a conditional flow that you define.

You can use sequential or state based triggering with either a segmented or a non-
segmented buffer.

2.4.6.10. Sequential Triggering

When you specify a sequential trigger the Signal Tap logic analyzer sequentially
evaluates each the conditions. The sequential triggering flow allows you to cascade up
to 10 levels of triggering conditions.

When the last triggering condition evaluates to TRUE, the Signal Tap logic analyzer
starts the data acquisition. For segmented buffers, every acquisition segment after the
first starts on the last condition that you specified. The Signal Tap Node annotates
this final condition column with Seg if a segmented buffer is enabled. The Simple
Sequential Triggering feature allows you to specify basic triggers, comparison triggers,
advanced triggers, or a mix of all three. The following figure illustrates the simple
sequential triggering flow for non-segmented and segmented buffers. The acquisition
buffer starts capture when all n triggering levels are satisfied, where n<10.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 53. Sequential Triggering Flow
Segmented BufferNon Segmented Buffer

n ≤ 10

Trigger Condition n

Trigger Condition 1

Trigger Condition 2

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

Trigger Condition n

Trigger Condition n

n - 2 transitions

Acquisition Segment m
trigger

trigger

trigger

Acquisition Buffer
trigger

n - 2 transitions

m-2 transitions

Acquisition Segment 2

Acquisition Segment 1

The Signal Tap logic analyzer considers external triggers as level 0, evaluating
external triggers before any other trigger condition.

2.4.6.10.1. Configuring the Sequential Triggering Flow

To configure Signal Tap logic analyzer for sequential triggering:

1. On Trigger Flow Control, select Sequential

2. On Trigger Conditions, select the number of trigger conditions from the drop-
down list.
The Node List pane now displays the same number of trigger condition columns.

3. Configure each trigger condition in the Node List pane.

You can enable/disable any trigger condition from the column header.

Figure 54. Sequential Triggering Flow Configuration

2.4.6.11. State-Based Triggering

With state-based triggering, a state diagram organizes the events that trigger the
acquisition buffer. The states capture all actions that the acquisition buffer performs,
and each state contains conditional expressions that define transition conditions.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Custom state-based triggering grants control over triggering condition arrangement.
Because the logic analyzer only captures samples of interest, custom state-based
triggering allows for more efficient use of the space available in the acquisition buffer.

To help you describe the relationship between triggering conditions, the state-based
triggering flow provides tooltips in the GUI. Additionally, you can use the Signal Tap
Trigger Flow Description Language, which is based upon conditional expressions.

Each state allows you to define a set of conditional expressions. Conditional
expressions are Boolean expressions that depend on a combination of triggering
conditions, counters, and status flags. You configure the triggering conditions within
the Setup tab. The Signal Tap logic analyzer custom-based triggering flow provides
counters and status flags.

Figure 55. State-Based Triggering Flow

n ≤ 20

Segmented Acquisition Buffer

First Acquisition Segment Next Acquisition Segment Next Acquisition Segment Last Acquisition Segment

Transition
 Condition: i

TC: j

TC: k

TC: l S: 2
TCS: b S: 3

TCS: c

State: 1
Trigger Condition Set: a

 S: n (last state)
TCS: d

segment_trigger segment_trigger segment_trigger segment_trigger

Within each conditional expression you define a set of actions. Actions include
triggering the acquisition buffer to stop capture, a modification to either a counter or
status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented acquisition buffer
or to the entire non-segmented acquisition buffer. Each trigger action provides an
optional count that specifies the number of samples the buffer captures before the
logic analyzer stops acquisition of the current segment. The count argument allows
you to control the amount of data the buffer captures before and after a triggering
event occurs.

Resource manipulation actions allow you to increment and decrement counters or set
and clear status flags. The logic analyzer uses counter and status flag resources as
optional inputs in conditional expressions. Counters and status flags are useful for
counting the number of occurrences of certain events and for aiding in triggering flow
control.

The state-based triggering flow allows you to capture a sequence of events that may
not necessarily be contiguous in time. For example, a communication transaction
between two devices that includes a hand shaking protocol containing a sequence of
acknowledgments.

2.4.6.11.1. State-Based Triggering Flow Tab

The State-Based Trigger Flow tab is the control interface for the custom state-
based triggering flow.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This tab is only available when you select State-Based on the Trigger Flow Control
list. If you specify Trigger Flow Control as Sequential, the State-Based Trigger
Flow tab is not visible.

Figure 56. State-Based Triggering Flow Tab

The State-Based Trigger Flow tab contains three panes:

2.4.6.11.2. State Machine Pane

The State Machine pane contains the text entry boxes where you define the
triggering flow and actions associated with each state.

• You can define the triggering flow using the Signal Tap Trigger Flow Description
Language, a simple language based on “if-else” conditional statements.

• Tooltips appear when you move the mouse over the cursor, to guide command
entry into the state boxes.

• The GUI provides a syntax check on your flow description in real-time and
highlights any errors in the text flow.

The State Machine description text boxes default to show one text box per state. You
can also have the entire flow description shown in a single text field. This option can
be useful when copying and pasting a flow description from a template or an external
text editor. To toggle between one window per state, or all states in one window,
select the appropriate option under State Display mode.

Related Information

Signal Tap Trigger Flow Description Language on page 68

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.6.11.3. Resources Pane

The Resources pane allows you to declare status flags and counters for your Custom
Triggering Flow's conditional expressions.

• You can increment/decrement counters or set/clear status flags within your
triggering flow.

• You can specify up to 20 counters and 20 status flags.

• To initialize counter and status flags, right-click the row in the table and select Set
Initial Value.

• To specify a counter width, right-click the counter in the table and select Set
Width.

• To assist in debugging your trigger flow specification, the logic analyzer
dynamically updates counters and flag values after acquisition starts.

The Configurable at runtime settings allow you to control which options can change
at runtime without requiring a recompilation.

Table 14. Runtime Reconfigurable Settings, State-Based Triggering Flow

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows you to modify comparison values in Boolean expressions at runtime. In
addition, you can modify the segment_trigger and trigger action post-fill
count argument at runtime.

Comparison operators Allows you to modify the operators in Boolean expressions at runtime.

Logical operators Allows you to modify the logical operators in Boolean expressions at runtime.

Related Information

• Performance and Resource Considerations on page 84

• Runtime Reconfigurable Options on page 89

2.4.6.11.4. State Diagram Pane

The State Diagram pane provides a graphical overview of your triggering flow. this
pane displays the number of available states and the state transitions. To adjust the
number of available states, use the menu above the graphical overview.

2.4.6.11.5. Signal Tap Trigger Flow Description Language

The Trigger Flow Description Language is based on a list of conditional expressions per
state to define a set of actions.

To describe the actions that the logic analyzer evaluates when a state is reached,
follow this syntax:

Syntax of Trigger Flow Description Language

state <state_label>:
 <action_list>
 if (<boolean_expression>)
 <action_list>
 [else if (<boolean_expression>)

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 <action_list>]
 [else
 <action_list>]

• Non-terminals are delimited by "<>".

• Optional arguments are delimited by "[]".

• The priority for evaluation of conditional statements is from top to bottom.

• The Trigger Flow Description Language allows multiple else if conditions.

<state_label> on page 69

<boolean_expression> on page 69

<action_list> on page 70

Trigger that Skips Clock Cycles after Hitting Condition on page 71

Storage Qualification with Post-Fill Count Value Less than m on page 72

Resource Manipulation Action on page 72

Buffer Control Actions on page 72

State Transition Action on page 73

Related Information

Custom State-Based Triggering Flow Examples on page 114

<state_label>

Identifies a given state. You use the state label to start describing the actions the logic
analyzer evaluates once said state is reached. You can also use the state label with the
goto command.

The state description header syntax is:
state <state_label>

The description of a state ends with the beginning of another state or the end of the
whole trigger flow description.

<boolean_expression>

Collection of operators and operands that evaluate into a Boolean result. The
operators can be logical or relational. Depending on the operator, the operand can
reference a trigger condition, a counter and a register, or a numeric value. To group a
set of operands within an expression, you use parentheses.

Table 15. Logical Operators
Logical operators accept any boolean expression as an operand.

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16. Relational Operators
You use relational operators on counters or status flags.

Operator Description Syntax

> Greater than <identifier> > <numerical_value>

>= Greater than or Equal
to

<identifier> >= <numerical_value>

== Equals <identifier> == <numerical_value>

!= Does not equal <identifier> != <numerical_value>

<= Less than or equal to <identifier> <= <numerical_value>

< Less than <identifier> < <numerical_value>

Notes to table:
1. <identifier> indicates a counter or status flag.
2. <numerical_value> indicates an integer.

Note: • The <boolean_expression> in an if statement can contain a single event or
multiple event conditions.

• When the boolean expression evaluates TRUE, the logic analyzer evaluates all the
commands in the <action_list> concurrently.

<action_list>

List of actions that the logic analyzer performs within a state once a condition is
satisfied.

• Each action must end with a semicolon (;).

• If you specify more than one action within an if or an else if clause, you must
delimit the action_list with begin and end tokens.

Possible actions include:
Buffer Control Actions

Actions that control the acquisition buffer.

Table 17. Buffer Control Actions

Action Description Syntax

trigger Stops the acquisition for the current buffer and
ends analysis. This command is required in every
flow definition.

trigger <post-fill_count>;

segment_trigger Available only in segmented acquisition mode.
Ends acquisition of the current segment. After
evaluating this command, the Signal Tap logic
analyzer starts acquiring from the next segment. If
all segments are written, the logic analyzer
overwrites the oldest segment with the latest
sample. When a trigger action is evaluated the
acquisition stops.

segment_trigger <post-fill_count>;

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Action Description Syntax

start_store Active only in state-based storage qualifier mode.
Asserts the write_enable to the Signal Tap
acquisition buffer.

start_store

stop_store Active only in state-based storage qualifier mode.
De-asserts the write_enable signal to the Signal
Tap acquisition buffer.

stop_store

Both trigger and segment_trigger actions accept an optional post-fill_count
argument.

State Transition Action

Specifies the next state in the custom state control flow. The syntax is:
goto <state_label>;

Trigger that Skips Clock Cycles after Hitting Condition

Trigger flow description that skips three clock cycles of samples after hitting
condition 1

Code:

State 1: ST1
 start_store
 if (condition1)
 begin
 stop_store;
 goto ST2;
 end
State 2: ST2
 if (c1 < 3)
 increment c1; //skip three clock cycles; c1 initialized to 0
 else if (c1 == 3)
 begin
 start_store;//start_store necessary to enable writing to finish
 //acquisition
 trigger;
 end

The figures show the data transaction on a continuous capture and the data capture
when you apply the Trigger flow description.

Figure 57. Continuous Capture of Data Transaction

Figure 58. Capture of Data Transaction with Trigger Flow Description Applied

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Storage Qualification with Post-Fill Count Value Less than m

The data capture finishes successfully. It uses a buffer with a sample depth of 64, m =
n = 10, and post-fill count = 5.

Real data acquisition of the previous scenario

Figure 59. Storage Qualification with Post-Fill Count Value Less than m (Acquisition
Successfully Completes)

The combination of using counters, Boolean and relational operators in conjunction
with the start_store and stop_store commands can give a clock-cycle level of
resolution to controlling the samples that are written into the acquisition buffer.

Figure 60. Waveform After Forcing the Analysis to Stop

Resource Manipulation Action

The resources the trigger flow description uses can be either counters or status flags.

Table 18. Resource Manipulation Actions

Action Description Syntax

increment Increments a counter resource by 1 increment <counter_identifier>;

decrement Decrements a counter resource by 1 decrement <counter_identifier>;

reset Resets counter resource to initial value reset <counter_identifier>;

set Sets a status flag to 1 set <register_flag_identifier>;

clear Sets a status flag to 0 clear <register_flag_identifier>;

Buffer Control Actions

Actions that control the acquisition buffer.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 19. Buffer Control Actions

Action Description Syntax

trigger Stops the acquisition for the current buffer and
ends analysis. This command is required in every
flow definition.

trigger <post-fill_count>;

segment_trigger Available only in segmented acquisition mode.
Ends acquisition of the current segment. After
evaluating this command, the Signal Tap logic
analyzer starts acquiring from the next segment. If
all segments are written, the logic analyzer
overwrites the oldest segment with the latest
sample. When a trigger action is evaluated the
acquisition stops.

segment_trigger <post-fill_count>;

start_store Active only in state-based storage qualifier mode.
Asserts the write_enable to the Signal Tap
acquisition buffer.

start_store

stop_store Active only in state-based storage qualifier mode.
De-asserts the write_enable signal to the Signal
Tap acquisition buffer.

stop_store

Both trigger and segment_trigger actions accept an optional post-fill_count
argument.

Related Information

Post-fill Count on page 61

State Transition Action

Specifies the next state in the custom state control flow. The syntax is:
goto <state_label>;

2.4.6.11.6. State-Based Storage Qualifier Feature

Selecting a state-based storage qualifier type enables the start_store and
stop_store actions. When you use these actions in conjunction with the expressions
of the State-based trigger flow, you get maximum flexibility to control data written
into the acquisition buffer.

Note: You can only apply the start_store and stop_store commands to a non-
segmented buffer.

The start_store and stop_store commands are similar to the start and stop
conditions of the start/stop storage qualifier mode. If you enable storage
qualification, the Signal Tap logic analyzer doesn't write data into the acquisition buffer
until the start_store command occurs. However, in the state-based storage
qualifier type you must include a trigger command as part of the trigger flow
description. This trigger command is necessary to complete the acquisition and
display the results on the waveform display.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Storage Qualification Feature for the State-Based Trigger Flow

This trigger flow description contains three trigger conditions that occur at different
times after you click Start Analysis:

State 1: ST1:
 if (condition1)
 start_store;
 else if (condition2)
 trigger value;
 else if (condition3)
 stop_store;

Figure 61. Capture Scenario for Storage Qualification with the State-Based Trigger Flow

a b c Sample
n Samples

m Samples

Time Scale for Data Stream
at the Start of Acquisition

Condition 1 Occurs Condition 3 OccursCondition 2 Occurs

When you apply the trigger flow to the scenario in the figure:

1. The Signal Tap logic analyzer does not write into the acquisition buffer until
Condition 1 occurs (sample a).

2. When Condition 2 occurs (sample b), the logic analyzer evaluates the trigger
value command, and continues to write into the buffer to finish the acquisition.

3. The trigger flow specifies a stop_store command at sample c, which occurs m
samples after the trigger point.

4. If the data acquisition finishes the post-fill acquisition samples before Condition 3
occurs, the logic analyzer finishes the acquisition and displays the contents of the
waveform. In this case, the capture ends if the post-fill count value is < m.

5. If the post-fill count value in the Trigger Flow description 1 is > m samples, the
buffer pauses acquisition indefinitely, provided there is no recurrence of Condition
1 to trigger the logic analyzer to start capturing data again.

The Signal Tap logic analyzer continues to evaluate the stop_store and
start_store commands even after evaluating the trigger. If the acquisition paused,
click Stop Analysis to manually stop and force the acquisition to trigger. You can use
counter values, flags, and the State diagram to help you perform the trigger flow. The
counter values, flags, and the current state update in real-time during a data
acquisition.

2.4.6.12. Trigger Lock Mode

Trigger lock mode restricts changes to only the configuration settings that you specify
as Configurable at runtime. The runtime configurable settings for the Custom
Trigger Flow tab are on by default.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You may get some performance advantages by disabling some of the runtime
configurable options.

You can restrict changes to your Signal Tap configuration to include only the options
that do not require a recompilation. Trigger lock-mode allows you to make changes
that reflect immediately in the device.

1. On the Setup tab, point to Lock mode and select Allow trigger condition
changes only.

Figure 62. Allow Trigger Conditions Change Only

2. Modify the Trigger Flow conditions.

2.4.7. Specifying Pipeline Settings

The Pipeline factor setting indicates the number of pipeline registers that the Intel
Quartus Prime software can add to boost the fMAX of the Signal Tap logic analyzer.

To specify the pipeline factor from the Signal Tap GUI:

• In the Signal Configuration pane, specify a pipeline factor ranging from 0 to 5.
The default value is 0.

Note: Setting the pipeline factor does not guarantee an increase in fMAX, as the pipeline
registers may not be in the critical paths.

Alternatively, you can specify pipeline parameters as part of HDL instantiation, as
Creating a Signal Tap Instance by HDL Instantiation on page 35 describes.

Note: The Signal Tap Intel FPGA IP is not optimized for the Intel Hyperflex architecture.

2.4.8. Filtering Relevant Samples

The Storage Qualifier feature allows you to filter out individual samples not relevant to
debugging your design.

The Signal Tap logic analyzer offers a snapshot in time of the data that the acquisition
buffers store. By default, the Signal Tap logic analyzer writes into acquisition memory
with data samples on every clock cycle. With a non-segmented buffer, there is one
data window that represents a comprehensive snapshot of the data stream.
Conversely, segmented buffers use several smaller sampling windows spread out over
more time, with each sampling window representing a contiguous data set.

With analysis using acquisition buffers you can capture most functional errors in a
chosen signal set, provided adequate trigger conditions and a generous sample depth
for the acquisition. However, each data window can have a considerable amount of
unnecessary data; for example, long periods of idle signals between data bursts. The
default behavior in the Signal Tap logic analyzer doesn't discard the redundant sample
bits.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Storage Qualifier feature allows you to establish a condition that acts as a write
enable to the buffer during each clock cycle of data acquisition, thus allowing a more
efficient use of acquisition memory over a longer period of analysis.

Because you can create a discontinuity between any two samples in the buffer, the
Storage Qualifier feature is equivalent to creating a custom segmented buffer in which
the number and size of segment boundaries are adjustable.

Note: You can only use the Storage Qualifier feature with a non-segmented buffer. The IP
Catalog flow only supports the Input Port mode for the Storage Qualifier feature.

Figure 63. Data Acquisition Using Different Modes of Controlling the Acquisition Buffer

Data Transaction Elapsed Time

Trigger

Acquisition Buffer

1 1 0 01

(1) Non-Segmented Buffer

0 1 1 0 1

Data Transaction
Elapsed Time

Trigger

Acquisition Buffer

1 0 0

(2) Segmented Buffer

1 1 01 10 0

Trigger

0 1

Data Transaction
Elapsed Time

Acquisition Buffer

0

(3) Non-Segmented Buffer with Storage Qualifier

0 1

Trigger

0 1 01 1 0 0 1

Trigger

Notes to figure:

1. Non-segmented buffers capture a fixed sample window of contiguous data.

2. Segmented buffers divide the buffer into fixed sized segments, with each segment
having an equal sample depth.

3. Storage Qualifier allows you to define a custom sampling window for each
segment you create with a qualifying condition, thus potentially allowing a larger
time scale of coverage.

There are six storage qualifier types available under the Storage Qualifier feature:

• Continuous (default) Turns the Storage Qualifier off.

• Input port

• Transitional

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Conditional

• Start/Stop

• State-based

Figure 64. Storage Qualifier Settings

Upon the start of an acquisition, the Signal Tap logic analyzer examines each clock
cycle and writes the data into the buffer based upon the storage qualifier type and
condition. Acquisition stops when a defined set of trigger conditions occur.

The Signal Tap logic analyzer evaluates trigger conditions independently of storage
qualifier conditions.

2.4.8.1. Input Port Mode

When using the Input port mode, the Signal Tap logic analyzer takes any signal from
your design as an input. During acquisition, if the signal is high on the clock edge, the
Signal Tap logic analyzer stores the data in the buffer. If the signal is low on the clock
edge, the logic analyzer ignores the data sample. If you don't specify an internal node,
the logic analyzer creates and connects a pin to this input port.

When creating a Signal Tap logic analyzer instance with the Signal Tap logic analyzer
GUI, specify the Storage Qualifier signal for the Input port field located on the
Setup tab. You must specify this port for your project to compile.

When creating a Signal Tap logic analyzer instance through HDL instantiation, specify
the Storage Qualifier parameter to include in the instantiation template. You can
then connect this port to a signal in your RTL. If you enable the input port storage
qualifier, the port accepts a signal and predicates when signals are recorded into the
acquisition buffer before or after the specified trigger condition occurs. That is, the
trigger you specify is responsible for triggering and moving the logic analyzer into the
post-fill state. The input port storage qualifier signal you select controls the recording
of samples.

The following example compares and contrasts two waveforms of the same data, one
without storage qualifier enabled (Continuous means always record samples,
effectively no storage qualifier), and the other with Input Port mode. The bottom
signal in the waveform, data_out[7],is the input port storage qualifier signal. The
continuous mode waveform shows 01h, 07h, 0Ah, 0Bh, 0Ch, 0Dh, 0Eh, 0Fh, 10h as
the sequence of data_out[7] bus values where the storage qualifier signal is
asserted. The lower waveform for input port storage qualifier shows how this same

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

traffic pattern of the data_out bus is recorded when you enable the input port
storage qualifier. Values recorded are a repeating sequence of the 01h, 07h, 0Ah, 0Bh,
0Ch, 0Dh, 0Eh, 0Fh, 10h (same as Continuous mode).

Figure 65. Comparing Continuous and Input Port Capture Mode in Data Acquisition of a
Recurring Data Pattern

• Continuous Mode:

• Input Port Storage Qualifier:

2.4.8.2. Transitional Mode

In Transitional mode, the logic analyzer monitors changes in a set of signals, and
writes new data in the acquisition buffer only after detecting a change. You select the
signals for monitoring using the check boxes in the Storage Qualifier column.

Figure 66. Transitional Storage Qualifier Setup

Select signals to monitor

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 67. Comparing Continuous and Transitional Capture Mode in Data Acquisition of a
Recurring Data Pattern

• Continuous mode:

IDLE

• Transitional mode:

Redundant Idle
Samples Discarded

2.4.8.3. Conditional Mode

In Conditional mode, the Signal Tap logic analyzer determines whether to store a
sample by evaluating a combinational function of predefined signals within the node
list. The Signal Tap logic analyzer writes into the buffer during the clock cycles in
which the condition you specify evaluates TRUE.

You can select either Basic AND, Basic OR, Comparison, or Advanced storage
qualifier conditions. A Basic AND or Basic OR condition matches each signal to one
of the following:

• Don’t Care

• Low

• High

• Falling Edge

• Rising Edge

• Either Edge

If you specify a Basic AND storage qualifier condition for more than one signal, the
Signal Tap logic analyzer evaluates the logical AND of the conditions.

You can specify any other combinational or relational operators with the enabled signal
set for storage qualification through advanced storage conditions.

You can define storage qualification conditions similar to the manner in which you
define trigger conditions.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 68. Conditional Storage Qualifier Setup
The figure details the conditional storage qualifier setup in the .stp file.

Signals not enabled for storage cannot be part
of the Storage Qualifier condition

Storage Enable Storage Condition

Figure 69. Comparing Continuous and Conditional Capture Mode in Data Acquisition of a
Recurring Data Pattern

The data pattern is the same in both cases.

• Continuous sampling capture mode:

• Conditional sampling capture mode:

Related Information

• Basic Trigger Conditions on page 52

• Comparison Trigger Conditions on page 54

• Advanced Trigger Conditions on page 56

2.4.8.4. Start/Stop Mode

The Start/Stop mode uses two sets of conditions, one to start data capture and one
to stop data capture. If the start condition evaluates to TRUE, the Signal Tap logic
analyzer stores the buffer data every clock cycle until the stop condition evaluates to
TRUE, which then pauses the data capture. The logic analyzer ignores additional start
signals received after the data capture starts. If both start and stop evaluate to TRUE
at the same time, the logic analyzer captures a single cycle.

Note: You can force a trigger by pressing the Stop button if the buffer fails to fill to
completion due to a stop condition or if the start condition never occurs.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 70. Start/Stop Mode Storage Qualifier Setup
Start condition Stop Condition

Storage Qualifier Enabled signals

Figure 71. Comparing Continuous and Start/Stop Acquisition Modes for a Recurring Data
Pattern

• Continuous Mode:

IDLE

• Start/Stop Storage Qualifier:

2.4.8.5. State-Based Mode

The State-based storage qualification mode is part of the State-based triggering flow.
The state based triggering flow evaluates a conditional language to define how the
Signal Tap logic analyzer writes data into the buffer. With the State-based trigger flow,
you have command over boolean and relational operators to guide the execution flow
for the target acquisition buffer.

When you enable the storage qualifier feature for the State-based flow, two additional
commands become available: start_store and stop_store. These commands are
similar to the Start/Stop capture conditions. Upon the start of acquisition, the Signal
Tap logic analyzer doesn't write data into the buffer until a start_store action is
performed. The stop_store command pauses the acquisition. If both start_store
and stop_store actions occur within the same clock cycle, the logic analyzer stores
a single sample into the acquisition buffer.

Related Information

State-Based Triggering on page 65

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.8.6. Showing Data Discontinuities

When you turn on Record data discontinuities, the Signal Tap logic analyzer marks
the samples during which the acquisition paused from a storage qualifier. This marker
is displayed in the waveform viewer after acquisition completes.

2.4.8.7. Disable the Storage Qualifier

You can disable the storage qualifier with the Disable Storage Qualifier option, and
then perform a continuous capture. The Disable Storage Qualifier option is run-time
reconfigurable. Changing the storage qualifier mode from the Type field requires
recompilation of the project.

2.5. Step 3: Compile the Design and Signal Tap Instances

After you configure one or more Signal Tap instances and define trigger conditions,
you must compile your project that includes the Signal Tap logic analyzer, prior to
device configuration.

When you define a Signal Tap instance in the logic analyzer GUI or with HDL
instantiation, the Signal Tap logic analyzer instance becomes part of your design for
compilation.

To run full compilation of the design that includes the Signal Tap logic analyzer
instance:

• Click Processing ➤ Start Compilation

You can employ various techniques to preserve specific signals for debugging during
compilation, and to reduce overall compilation time and iterations. Refer to the
following sections for more details.

2.5.1. Recompiling Only Signal Tap Changes

Certain Signal Tap configuration changes require a full recompilation of the design to
implement. However, you can use the Start Recompile command to implement the
following types of configuration changes without running a full design compilation.

Table 20. Signal Tap Configuration Changes Not Requiring Full Compilation

Change the post-fit tap target Increase the number of post-fit targets

Change the post-fit tap inputs to a Basic AND trigger Change the post-fit tap inputs to a Basic OR trigger

Change an Advanced trigger (post-fit inputs or logic) Convert a pre-synthesis tap into a post-fit tap

Start Recompile appends Signal Tap node changes to the existing finalized snapshot,
without changing placement and routing outside of the Signal Tap partition.

To recompile Signal Tap configuration changes only, follow these steps:

1. Make supported changes to the Signal Tap configuration in the Signal
Configuration pane, according to Signal Tap Configuration Changes Not Requiring
Full Compilation.

2. In the Signal Tap window, click Processing ➤ Start Recompile, or click the
Start Recompile button. A dialog box displays whether each change is Supported
or Unsupported by Start Recompile.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 72. Signal Tap Toolbar Start Recompile Button and Command

Start Recompile
ButtonStart Recompile

Command

Figure 73. Recompilation Changes List

Recompile Button

3. If the Signal Tap configuration changes have a Status of Supported, click the
Recompile button to recompile and implement only the Signal Tap configuration
changes, as Recompilation Changes List shows.

4. For any change with Status of Unsupported, you must either revert the change to
Previous value, or click Processing ➤ Start Compilation in Signal Tap to
perform a full compilation to implement the change.

Figure 74. Signal Tap Toolbar Start Compilation Button and Command

Start Compilation
Button

Start Compilation
Command

Related Information

Changing the Post-Fit Target Nodes on page 86

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.2. Timing Preservation

The following techniques can help you preserve timing in designs that include the
Signal Tap logic analyzer:

• Avoid adding critical path signals to the .stp file.

• Minimize the number of combinational signals you add to the .stp file, and add
registers whenever possible.

• Specify an fMAX constraint for each clock in the design.

Related Information

Timing Closure and Optimization
In Intel Quartus Prime Pro Edition User Guide: Design Optimization

2.5.3. Performance and Resource Considerations

When you perform logic analysis of your design, you can see the necessary trade-off
between runtime flexibility, timing performance, and resource usage. The Signal Tap
logic analyzer allows you to select runtime configurable parameters to balance the
need for runtime flexibility, speed, and area.

The default values of the runtime configurable parameters provide maximum
flexibility, so you can complete debugging as quickly as possible; however, you can
adjust these settings to determine whether there is a more appropriate configuration
for your design. Because performance results are design-dependent, try these options
in different combinations until you achieve the desired balance between functionality,
performance, and utilization.

2.5.3.1. Increasing Signal Tap Logic Performance

If Signal Tap logic is part of your critical path, follow these tips to speed up the
performance of the Signal Tap logic:

• Disable runtime configurable options—runtime flexibility features expend
some device resources. If you use Advanced Triggers or State-based triggering
flow, disable runtime configurable parameters to a boost in fMAX of the Signal Tap
logic. If you use the State-based triggering flow, disable the Goto state
destination option and perform a recompilation before disabling the other
runtime configurable options. The Goto state destination option has the
greatest impact on fMAX, compared to the other runtime configurable options.

• Minimize the number of signals that have Trigger Enable selected—By
default, the Signal Tap logic analyzer enables the Trigger Enable option for all
signals that you add to the .stp file. For signals that you do not plan to use as
triggers, turn this option off.

• Turn on Physical Synthesis for register retiming—If many (more than the
number of inputs that fit in a LAB) enabled triggering signals fan-in logic to a
gate-based triggering condition (basic trigger condition or a logical reduction
operator in the advanced trigger tab), turn on Perform register retiming. This
can help balance combinational logic across LABs.

2.5.3.2. Reducing Signal Tap Device Resources

If your design has resource constraints, follow these tips to reduce the logic or
memory the Signal Tap logic analyzer requires:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

84

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/timing-closure-and-optimization.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Disable runtime configurable options—disabling runtime configurability for
advanced trigger conditions or runtime configurable options in the State-based
triggering flow results in fewer LEs.

• Minimize the number of segments in the acquisition buffer—you can reduce
the logic resources that the Signal Tap logic analyzer requires if you limit the
segments in your sampling buffer.

• Disable the Data Enable for signals that you use only for triggering—by
default, the Signal Tap logic analyzer enables data enable options for all signals.
Turning off the data enable option for signals you use only as trigger inputs saves
memory resources.

2.6. Step 4: Program the Target Hardware

After you add the Signal Tap logic analyzer instance to your project and fully compile
the design, you configure the FPGA target device with your design that includes the
Signal Tap logic analyzer instance. You can also program multiple devices with
different designs and simultaneously debug them.

When you debug a design with the Signal Tap logic analyzer, you can program a target
device directly using the supported JTAG hardware from the Signal Tap window,
without using the Intel Quartus Prime Programmer.

Related Information

• Managing Multiple Signal Tap Configurations on page 101

• Intel Quartus Prime Pro Edition User Guide: Programmer

2.6.1. Ensure Compatibility Between .stp and .sof Files

The .stp file is compatible with a .sof file if the logic analyzer instance parameters,
such as the size of the capture buffer and the monitoring and triggering signals, match
the programming settings for the target device.

If the files are not compatible, you can still program the device, but you cannot run or
control the logic analyzer from the Signal Tap logic analyzer GUI.

Use either of the following methods to ensure compatibility between .stp and .sof
files

• Attach the .sof file to the .stp file in the SOF Manager. The SOF Manager ensures
compatibility between any attached .sof files and the current .stp file settings
automatically, as SOF Manager on page 102 describes.

• To ensure programming compatibility, program the FPGA device with the most
recent .sof file.

Note: When the Signal Tap logic analyzer detects incompatibility after the analysis starts, the
Intel Quartus Prime software generates a system error message containing two CRC
values: the expected value and the value retrieved from the .stp instance on the
device. The CRC value comes from all Signal Tap settings that affect the compilation.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

85

https://www.intel.com/content/www/us/en/docs/programmable/683039/current/programmer-user-guide.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7. Step 5: Run the Signal Tap Logic Analyzer

Debugging signals with the Signal Tap logic analyzer GUI is similar to debugging with
an external logic analyzer. During normal device operation, you control the logic
analyzer through the JTAG connection, specifying the start time for trigger conditions
to begin capturing data.

Figure 75. Starting Signal Tap Analysis

1. Select the Signal Tap instance, and then initialize the logic analyzer for that
instance by clicking Processing ➤ Run Analysis in the Signal Tap logic analyzer
GUI.

2. When a trigger event occurs, the logic analyzer stores the captured data in the
FPGA device's memory buffer, and then transfers this data to the Signal
Configuration pane Data tab. You can perform the equivalent of a force trigger
instruction that allows you to view the captured data currently in the buffer
without a trigger event occurring.

You can also use In-System Sources and Probes in conjunction with the Signal Tap
logic analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected signals over the JTAG chain.

2.7.1. Changing the Post-Fit Signal Tap Target Nodes

After performing full compilation of your design and Signal Tap instance, you can
subsequently make iterative changes to the post-fit Signal Tap nodes that you want to
target, without rerunning full compilation to implement the changes.

The Signal Tap Node list displays whether a target node is Pre-Syn (pre-synthesis) or
Post-Fit in the filterable Tap column.

To modify the post-fit Signal Tap nodes:

1. Optionally, mark signals for debug, as Preserving Signals for Monitoring and
Debugging describes.

Note: You cannot change all pre-synthesis nodes to post-fit nodes, unless you are
changing the nodes before running full compilation. Once you preserve any
signal with preserve_for_debug, you can change those preserved pre-
synthesis nodes to post-fit nodes.

2. In the Signal Configuration pane, modify any of the following properties for
nodes with a Tap of Post-Fit:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 76. Changing the Post-Fit Signal Tap Nodes

Change Post-Fit Targets Change Trigger Mode Change Number of NodesConvert Pre-Synthesis
to Post-Fit Nodes

• In the Name column, modify or add a new post-fit Signal Tap node target,
regardless of the trigger mode.

• In the Trigger Conditions column, modify the trigger mode. You can add the
post-fit Signal Tap node inputs to a Basic AND or Basic OR trigger.

• In Nodes Allocated, you can specify the Manual option to increase or
decrease the number of post-fit node targets. You can use manual allocation
to help you avoid any major logic change that may require a full
recompilation. The data input width affects memory use. The trigger input and
storage input width affects the complexity of the condition logic, which can
increase the device resource use and the complexity of timing closure.

• Right-click any pre-synthesis Signal Tap node to convert to a post-fit Signal
Tap node. The conversion is only successful if Signal Tap can resolve pre-
synthesis to post-fit name mapping. Otherwise, the node appears in red and
connected to ground. When conversion is successful the post-fit taps names
appear in blue text.

Figure 77. Post-fit Taps Names Appear in Blue Text

Post-fit Nodes Appear in Blue Text

3. After your post-fit node changes are complete, click Processing ➤ Start
Recompile to implement only the Signal Tap node changes. A dialog box appears
that lists the changes you are implementing, and whether recompilation supports
the change.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 78. Recompilation Changes List

Recompile Button

4. For any change with Status of Unsupported, you must either revert the change
to Previous value, or perform a full compilation to implement the change.

5. Click the Recompile button, as Recompilation Changes List shows. Recompilation
uses the Engineering Change Order (ECO) compilation flow to append your Signal
Tap node changes to the existing finalized snapshot, without changing placement
and routing outside the Signal Tap partition.

Note: The recompilation only applies to the project database if the recompilation is
successful. Otherwise, the last successful compilation results remain
unchanged.

6. View the changes in the following Compilation Reports following recompilation:

Figure 79. Connections to In-System Debugging Report
Lists each tap target and whether the connection successfully routes (is Connected after recompilation)

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 80. ECO Detected Changes Report
Lists each tap change that you implement with recompilation.

Figure 81. ECO Resource Usage Change
Shows the device resource area change that recompilation implements. Use this report to approximate whether
additional changes to the Signal Tap configuration are likely to succeed in combination with the overall design
utilization reports.

Related Information

• Recompiling Signal Tap Configuration Changes on page 82

• Using the ECO Compilation Flow in Intel Quartus Prime Pro Edition User Guide:
Design Optimization

2.7.2. Runtime Reconfigurable Options

When you use Runtime Trigger mode, you can change certain settings in the .stp
without requiring recompilation of the design.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

89

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 21. Runtime Reconfigurable Features

Runtime Reconfigurable Setting Description

Basic Trigger Conditions and Basic Storage
Qualifier Conditions

Change without recompiling all signals that have the Trigger condition
turned on to any basic trigger condition value

Comparison Trigger Conditions and Comparison
Storage Qualifier Conditions

All the comparison operands, the comparison numeric values, and the
interval bound values are runtime-configurable.
You can also switch from Comparison to Basic OR trigger at runtime
without recompiling.

Advanced Trigger Conditions and Advanced
Storage Qualifier Conditions

Many operators include runtime configurable settings. For example, all
comparison operators are runtime-configurable. Configurable settings
appear with a white background in the block representation. This
runtime reconfigurable option is turned on in the Object Properties
dialog box.

Switching between a storage-qualified and a
continuous acquisition

Within any storage-qualified mode, you can switch to continuous
capture mode without recompiling the design. To enable this feature,
turn on disable storage qualifier.

State-based trigger flow parameters Refer to Runtime Reconfigurable Settings, State-Based Triggering
Flow

Runtime Reconfigurable options can save time during the debugging cycle by allowing
you to cover a wider possible range of events, without requiring design recompilation.
You may experience a slight impact to the performance and logic utilization. You can
turn off runtime re-configurability for advanced trigger conditions and the state-based
trigger flow parameters, boosting performance and decreasing area utilization.

To configure the .stp file to prevent changes that normally require recompilation in
the Setup tab, select the Allow Trigger Condition changes only lock mode above
the node list.

This example illustrates a potential use case for Runtime Reconfigurable features, by
providing a storage qualified enabled State-based trigger flow description, and
showing how to modify the size of a capture window at runtime without a recompile.
This example gives you equivalent functionality to a segmented buffer with a single
trigger condition where the segment sizes are runtime reconfigurable.

state ST1:
if (condition1 && (c1 <= m))// each "segment" triggers on condition // 1
begin // m = number of total "segments"
 start_store;
 increment c1;
 goto ST2:
end

else (c1 > m) // This else condition handles the last
 // segment.
begin
 start_store
 trigger (n-1)
end

state ST2:
if (c2 >= n) //n = number of samples to capture in each
 //segment.
begin
 reset c2;
 stop_store;
 goto ST1;
end

else (c2 < n)
begin

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 increment c2;
 goto ST2;
end

Note: m x n must equal the sample depth to efficiently use the space in the sample buffer.

The next figure shows the segmented buffer that the trigger flow example describes.

Figure 82. Segmented Buffer Created with Storage Qualifier and State-Based Trigger
Total sample depth is fixed, where m x n must equal sample depth.

Segment 1

1 n

Segment 2

1 n

Segment m

1 n

During runtime, you can modify the values m and n. Changing the m and n values in
the trigger flow description adjust the segment boundaries without recompiling.

You can add states into the trigger flow description and selectively mask out specific
states and enable other ones at runtime with status flags.

This example is like the previous example with an additional state inserted. You use
this extra state to specify a different trigger condition that does not use the storage
qualifier feature. You insert status flags into the conditional statements to control the
execution of the trigger flow.

state ST1 :
 if (condition2 && f1) // additional state for non-segmented
 // acquisition set f1 to enable state
 begin
 start_store;
 trigger
 end
 else if (! f1)
 goto ST2;
state ST2:
 if ((condition1 && (c1 <= m) && f2) // f2 status flag used to mask state.
Set f2
 // to enable
 begin
 start_store;
 increment c1;
 goto ST3:
 end
 else (c1 > m)
 start_store;
 trigger (n-1)
 end
state ST3:
 if (c2 >= n)
 begin
 reset c2;
 stop_store;
 goto ST1;
 end
 else (c2 < n)
 begin
 increment c2;
 goto ST2;
 end

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7.3. Signal Tap Status Messages

The following table describes the text messages that might appear in the Signal Tap
Status Indicator in the Instance Manager pane before, during, or after data
acquisition. These messages allow you to monitor the state of the logic analyzer and
identify the operation that the logic analyzer is performing.

Table 22. Messages in the Signal Tap Status Indicator

Message Message Description

Not running The Signal Tap logic analyzer is not running.
This message appears when there is no connection to a device, or
the device is not configured.

(Power-Up Trigger) Waiting for clock (1) The Signal Tap logic analyzer is performing a Runtime or Power-Up
Trigger acquisition and is waiting for the clock signal to transition.

Acquiring (Power-Up) pre-trigger data (1) The trigger condition is not yet evaluated.
If the acquisition mode is non-segmented buffer, and the storage
qualifier type is continuous, the Signal Tap logic analyzer collects a
full buffer of data.

Trigger In conditions met Trigger In conditions are met. The Signal Tap logic analyzer is
waiting for the first trigger condition to occur.
This message only appears when a Trigger In condition exists.

Waiting for (Power-up) trigger (1) The Signal Tap logic analyzer is waiting for the trigger event to
occur.

Trigger level <x> met Trigger condition x occurred. The Signal Tap logic analyzer is
waiting for condition x + 1 to occur.

Acquiring (power-up) post-trigger data (1) The entire trigger event occurred. The Signal Tap logic analyzer is
acquiring the post-trigger data.
You define the amount of post-trigger data to collect (between
12%, 50%, and 88%) when you select the non-segmented buffer
acquisition mode.

Offload acquired (Power-Up) data (1) The JTAG chain is transmitting data to the Intel Quartus Prime
software.

Ready to acquire The Signal Tap logic analyzer is waiting for you to initialize the
analyzer.

1. This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger, the
text in parentheses appears.

Note: In segmented acquisition mode, pre-trigger and post-trigger do not apply.

2.8. Step 6: Analyze Signal Tap Captured Data

The Signal Tap logic analyzer GUI allows you to examine the data that you capture
manually or with a trigger. In the Data view, you can isolate the data of interest with
the drag-to-zoom feature, enabled with a left-click. You can save the data for later
analysis, or convert the data to other formats for sharing and further study.

• To simplify reading and interpreting the signal data you capture, set up mnemonic
tables, either manually or with a plug-in.

• To speed up debugging, use the Locate feature in the Signal Tap node list to
find the locations of problem nodes in other tools in the Intel Quartus Prime
software.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following topics describe viewing, saving, and exporting Signal Tap analysis
captured data:

• Viewing Capture Data Using Segmented Buffers on page 93

• Viewing Data with Different Acquisition Modes on page 94

• Creating Mnemonics for Bit Patterns on page 95

• Locating a Node in the Design on page 96

• Saving Captured Signal Tap Data on page 97

• Exporting Captured Signal Tap Data on page 97

• Creating a Signal Tap List File on page 97

2.8.1. Viewing Capture Data Using Segmented Buffers

Segmented buffers allow you to capture recurring events or sequences of events that
span over a long period.

Each acquisition segment acts as a non-segmented buffer, continuously capturing data
after activation. When you run analyses with segmented buffers, the Signal Tap logic
analyzer captures back-to-back data for each acquisition segment within the data
buffer. You define the trigger flow, or the type and order in which the trigger
conditions evaluate for each buffer, either in the Sequential trigger flow control or in
the Custom State-based trigger flow control.

The following figure shows a segmented acquisition buffer with four segments
represented as four separate non-segmented buffers.

Figure 83. Segmented Acquisition Buffer

01
1

Segment 1 Buffer

11111
1

1 1 1 1 1 1

0000
0

0
0 0 0

Trigger 1
Post Pre

01
1

Segment 2 Buffer

11111
1

1 1 1 1 1 1

0000
0

0
0 0 0

Trigger 2
Post Pre

01
1

Segment 3 Buffer

11111
1

1 1 1 1 1 1

0000
0

0
0 0 0

Trigger 3
Post Pre

01
1

Segment 4 Buffer

11111
1

1 1 1 1 1 1

0000
0

0
0 0 0

Trigger 4
Post Pre

When the Signal Tap logic analyzer finishes an acquisition with a segment and
advances to the next segment to start a new acquisition, the data capture that
appears in the waveform viewer depends on when a trigger condition occurs. The
figure illustrates the data capture method. The Trigger markers—Trigger 1, Trigger 2,
Trigger 3 and Trigger 4—refer to the evaluation of the segment_trigger and
trigger commands in the Custom State-based trigger flow. In sequential flows, the
Trigger markers for segments 2 through 4 refer to the final trigger condition that you
specify within the Setup tab.

If the Segment 1 Buffer is the active segment and Trigger 1 occurs, the Signal Tap
logic analyzer starts evaluating Trigger 2 immediately. Data Acquisition for the
Segment 2 buffer starts when either the Segment 1 Buffer finishes its post-fill count,
or when Trigger 2 evaluates as TRUE, whichever condition occurs first. Thus, trigger
conditions associated with the next buffer in the data capture sequence can preempt
the post-fill count of the current active buffer. This allows the Signal Tap logic analyzer
to accurately capture all the trigger conditions that occurred. Unused samples appear
as a blank space in the waveform viewer.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 84. Segmented Capture with Preemption of Acquisition Segments
The figure shows a capture using sequential flow control with the trigger condition for each segment specified
as Don’t Care.

Each segment before the last captures only one sample, because the next trigger
condition immediately preempts capture of the current buffer. The trigger position for
all segments is specified as pre-trigger (12% of the data is before the trigger condition
and 88% of the data is after the trigger position). Because the last segment starts
immediately with the trigger condition, the segment contains only post-trigger data.
The three empty samples in the last segment are left over from the pre-trigger
samples that the Signal Tap logic analyzer allocated to the buffer.

For the sequential trigger flow, the Trigger Position option applies to every segment
in the buffer. A custom state-based trigger flow provides maximum flexibility defining
the trigger position. By adjusting the trigger position specific to the debugging
requirements, you can help maximize the use of the allocated buffer space.

Related Information

Segmented Buffer on page 45

2.8.2. Viewing Data with Different Acquisition Modes

Different acquisition modes capture different amounts of data immediately after
running the Signal Tap logic analyzer and before any trigger conditions occur.

Non-Segmented Buffers in Continuous Mode

In configurations with non-segmented buffers running in continuous mode, the buffer
must be full of sampled data before evaluating any trigger condition. Only after the
buffer is full, the Signal Tap logic analyzer starts retrieving data through the JTAG
connection and evaluates the trigger condition.

If you click the Stop Analysis button, Signal Tap prevents the buffer from dumping
data during the first acquisition prior to a trigger condition.

Buffers with Storage Qualification

For buffers using a storage qualification mode, the Signal Tap logic analyzer
immediately evaluates all trigger conditions while writing samples into the acquisition
memory. This evaluation is especially important when using any storage qualification
on the data set. The logic analyzer may miss a trigger condition if it waits to capture a
full buffer's worth of data before evaluating any trigger conditions.

If a trigger activates before the specified amount of pre-trigger data has occurred, the
Signal Tap logic analyzer begins filling memory with post-trigger data, regardless of
the amount of pre-trigger data you specify. For example, if you set the trigger position
to 50% and set the logic analyzer to trigger on a processor reset, start the logic
analyzer, and then power on the target system, the trigger activates. However, the
logic analyzer memory contains only post-trigger data, and not any pre-trigger data,
because the trigger event has higher precedence than the capture of pre-trigger data.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.2.1. Continuous Mode and a Storage Qualifier Examples

The following show the capture differences between a non-segmented buffer in
continuous mode and a non-segmented buffer using a storage qualifier. The
configuration of the logic analyzer waveforms is a base trigger condition, sample depth
of 64 bits, and Post trigger position.

Figure 85. Signal Tap Logic Analyzer Continuous Data Capture

In the continuous data capture, Trig1 occurs several times in the data buffer before
the Signal Tap logic analyzer trigger activates. The buffer must be full before the logic
analyzer evaluates any trigger condition. After the trigger condition occurs, the logic
analyzer continues acquisition for eight additional samples (12% of the buffer, as
defined by the "post-trigger" position).

Figure 86. Signal Tap Logic Analyzer Conditional Data Capture

Note to figure:

1. Conditional capture, storage always enabled, post-fill count.

2. The Signal Tap logic analyzer captures a recurring pattern using a non-segmented
buffer in conditional mode. The configuration of the logic analyzer is a basic
trigger condition "Trig1" and sample depth of 64 bits. The Trigger in condition is
Don't care, so the buffer captures all samples.

In conditional capture the logic analyzer triggers immediately. As in continuous
capture, the logic analyzer completes the acquisition with eight samples, or 12% of
64, the sample capacity of the acquisition buffer.

2.8.3. Creating Mnemonics for Bit Patterns

A mnemonic table allows you to assign a meaningful name to a set of bit patterns,
such as a bus. To create a mnemonic table:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Right-click the Setup or Data tab of a Signal Tap instance, and click Mnemonic
Table Setup.

2. Create a mnemonic table by entering sets of bit patterns and specifying a label to
represent each pattern.

3. Assign the table to a group of signals by right-clicking the group, clicking Bus
Display Format, and selecting the mnemonic table.

4. On the Setup tab, you can create basic triggers with meaningful names by right-
clicking an entry in the Trigger Conditions column and selecting a label from the
table you assigned to the signal group.

On the Data tab, if data captured matches a bit pattern contained in an assigned
mnemonic table, the Signal Tap GUI replaces the signal group data with the
appropriate label, simplifying the visual inspection of expected data patterns.

2.8.3.1. Adding Mnemonics with a Plug-In

When you use a plug-in to add signals to an .stp, mnemonic tables for the added
signals are automatically created and assigned to the signals defined in the plug-in. To
enable these mnemonic tables manually, right-click the name of the signal or signal
group. On the Bus Display Format shortcut menu, click the name of the mnemonic
table that matches the plug-in.

As an example, the Nios II plug-in helps you to monitor signal activity for your design
as the code is executed. If you set up the logic analyzer to trigger on a function name
in your Nios II code based on data from an .elf, you can see the function name in
the Instruction Address signal group at the trigger sample, along with the
corresponding disassembled code in the Disassembly signal group, as shown in
Figure 13–52. Captured data samples around the trigger are referenced as offset
addresses from the trigger function name.

Figure 87. Data Tab when the Nios II Plug-In is Used

2.8.4. Locating a Node in the Design

When you find the source of an error in your design using the Signal Tap logic
analyzer, you can use the node locate feature to locate that signal in various Intel
Quartus Prime design visualization tools, as well as in the design file. Locating the
node allows you to visualize the source of the problem quickly and correct the issue.
To locate a signal from the Signal Tap logic analyzer, right-click the signal in the .stp,
and click Locate in ➤ <tool name>.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can locate a signal from the node list with the following tools:

• Assignment Editor

• Pin Planner

• Timing Closure Floorplan

• Chip Planner

• Resource Property Editor

• Technology Map Viewer

• RTL Viewer

• Design File

2.8.5. Saving Captured Signal Tap Data

When you save a data capture, the Signal Tap logic analyzer stores this data in the
active .stp file, and the Data Log adds the capture as a log entry under the current
configuration.

When you set Signal Tap analysis to Autorun Analysis, which starts the Signal Tap
logic analyzer in a repetitive acquisition mode, the logic analyzer creates a separate
entry in the Data Log to store the data captured each time the trigger occurs. This
preservation allows you to review the captured data for each trigger event.

The default name for a log derives from the time stamp when the logic analyzer
acquires the data. As a best practice, rename the data log with a more meaningful
name.

The organization of logs is hierarchical; the logic analyzer groups similar logs of
captured data in trigger sets.

Related Information

Data Log Pane on page 101

2.8.6. Exporting Captured Signal Tap Data

You can export captured data to the following file formats, for use with other EDA
simulation tools:

• Comma Separated Values File (.csv)

• Table File (.tbl)

• Value Change Dump File (.vcd)

• Vector Waveform File (.vwf)

• Graphics format files (.jpg, .bmp)

To export the captured data from the Signal Tap logic analyzer, click File ➤ Export,
and then specify the File Name, Export Format, and Clock Period.

2.8.7. Creating a Signal Tap List File

You can generate a Signal Tap list file that contains all the data the logic analyzer
captures for a trigger event, in text format.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Signal Tap list file is especially useful when combined with a plug-in that includes
instruction code disassembly. You can view the order of instruction code execution
during the same time period of the trigger event.

To create a Signal Tap list file, click File ➤ Create/Update ➤ Create Signal Tap List
File.

Each row of the list file corresponds to one captured sample in the buffer. Columns
correspond to the value of each of the captured signals or signal groups for that
sample. If you defined a mnemonic table for the captured data, a matching entry from
the table replaces the numerical values in the list.

2.9. Other Signal Tap Debugging Flows

Refer to the following information about more advanced (non-standard) Signal Tap
debugging flows and alternative methods.

2.9.1. Signal Tap and Simulator Integration

You can use Signal Tap signal and acquisition data directly in your supported simulator
for enhanced visibility into internal signal states in a design hierarchy. The Add
Simulator Aware Nodes command intelligently analyzes the circuit to determine the
minimum set of nodes needed to tap to gain full visibility into the selected hierarchy's
cone of logic.

Signal Tap can also transform the Signal Tap data into an RTL simulation testbench for
any level of the design hierarchy. This simulation testbench allows you to export
acquired Signal Tap hardware data directly into your RTL simulator and observe signal
states beyond Signal Tap observability.

The following topics describe these Signal Tap and Simulator Integration features in
detail:

• Adding Simulator-Aware Signal Tap Nodes on page 48

• Generating a Simulation Testbench from Signal Tap Data on page 98

Simulator Integration Beta Limitations

This version of the Signal Tap and simulator integration feature is a beta release. The
following known limitations apply to this beta release:

• Supports only Verilog HDL simulation.

• Supports testbench generation only within the current project directory.

2.9.1.1. Generating a Simulation Testbench from Signal Tap Data

You can use Signal Tap to capture signal data about your running system, and then
automatically generate an RTL simulation testbench directly from this capture data for
use in your supported simulator.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To generate a simulation testbench from Signal Tap data, follow these steps:

1. Add simulator-aware Signal Tap nodes to the logic analyzer, as Adding Simulator-
Aware Signal Tap Nodes on page 48 describes.

2. Run Signal Tap analysis, as Step 5: Run the Signal Tap Logic Analyzer on page 86
describes.

Figure 88. Create Simulation Testbench

3. In the Signal Tap window, click File ➤ Create Simulation Testbench. Retain
defaults and click OK. The testbench generates in a vendor-specific directory.
Refer to Create Simulation Testbench Dialog Box Settings on page 100.

4. Source the generated simulator setup script in your supported simulator. For
example:

source msim_setup.tcl

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Use the commands in the setup script to compile and load the testbench into a
supported simulator. For example, in the Questa or ModelSim simulators:

ld_debug

Note: Signal Tap uses a Verilog HDL force statement to inject the Signal Tap data
into the simulator.

6. Add signals to the waveform and run the simulation in your simulator.

7. View the results of simulation in your simulator.

2.9.1.2. Create Simulation Testbench Dialog Box Settings

The following options are available for RTL simulation testbench generation from the
Signal Tap Create Simulation Testbench Dialog Box. The default values derive
from Signal Tap signal data.

Table 23. Create Simulation Testbench Dialog Box (Signal Tap Logic Analyzer)

Name Description

Directory Specifies the directory to generated save RTL simulation testbench files.
Note: Signal Tap currently supports testbench generation only within the

current project directory.

Starting hierarchy to simulate Specifies the design hierarchy level to include in the simulation. The default
location is a subdirectory of the project with the hierarchy name.

Testbench top level properties Specifies the following testbench properties. By default, these values populate
from the Signal Tap data:
• Module name—specifies the name of the design module that you want to

simulate, as specified in Signal Tap
• DUT instance name—specifies the default instance name for the design

under test (DUT) in your simulator. The default is DUT. This name appears in
your simulator.

• DUT clock port name—specifies the clock port name of the design under
test (DUT) for simulation. Signal Tap automatically derives this value based
on the DUT instance name.

Simulation event properties Specifies the following testbench properties. By default, these values populate
from the Signal Tap data:
• Initial unknown data—specifies the number of clock cycles for which the

data value is initially unknown at the start of simulation.
• Discontinued data due to storage qualification—specifies the number of

clock cycles for which the data is discontinued because of lack of storage.
• Final unknown data—specifies the number of clock cycles for which the

data is unknown initially at the end of simulation.

Options The following options must be enabled for testbench generation:
• Use force statement based on value change—specifies the number of

clock cycles for which the data value is initially unknown at the start of
simulation.
Note: Signal Tap uses a Verilog HDL force statement to inject the Signal

Tap data into the simulator.
• Generate simulation scripts—specifies that simulation scripts generate in

vendor specific subdirectories during testbench generation. Source these
scripts in your simulator to setup simulation.

Node string replacement Specifies options for nomenclature and syntax within the generated testbench:

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

• Prefix hierarchies with instance name—specifies the instance name that
prepends to hierarchy names in the testbench. In general, the derived default
value is suitable.

• Search|Replace—specifies the search and replace strings for Node string
replacement.

Preview Displays the result of the Node string replacement settings within the
testbench.

2.9.2. Managing Multiple Signal Tap Configurations

You can debug different blocks in your design by grouping related monitoring signals.
Similarly, you can use a group of signals to define multiple trigger conditions. Each
combination of signals, capture settings, and trigger conditions determines a debug
configuration, and one configuration can have zero or more associated data logs.

You can save each debug configuration as a different .stp file. Alternatively, you can
embed multiple configurations within the same .stp file, and use the Data Log to
view and manage each debug configuration.

Note: Each .stp pertains to a specific programming (.sof) file. To function correctly, the
settings in the .stp file you use at runtime must match the Signal Tap specifications
in the .sof file that you use to program the device.

Related Information

Ensure Compatibility Between .stp and .sof Files on page 85

2.9.2.1. Data Log Pane

The Data Log pane displays all Signal Tap configurations and data capture results that
a single .stp file stores.

• To save the current configuration or capture in the Data Log of the current .stp
file, click Edit ➤ Save to Data Log.

• To automatically generate a log entry after every data capture, click Edit ➤
Enable Data Log. Alternatively, enable the box at the top of the Data Log pane.

The Data Log displays its contents in a tree hierarchy. The active items display a
different icon.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 24. Data Log Items

Item Icon Contains one or
more

Comments

Unselected Selected

Instance Signal Set The top-level for a particular Signal Tap instance.

Signal Set Trigger The Signal Set changes whenever you add a new
signal to a Signal Tap instance. After a change in
the Signal Set, you need to recompile.

Trigger Capture Log A trigger changes when you change any trigger
condition. Some of these changes do not require
recompilation.

Capture Log Contains captured sample data for this particular
trigger configuration, for the particular signal set
for this particular Signal Tap instance. There can
be multiple capture logs for a particular setup if
you run the logic analyzer multiple times, as
Simple Data Log shows.

The name on each entry displays the wall-clock time when the Signal Tap logic
analyzer triggers, and the time elapsed from start acquisition to trigger activation. You
can rename entries.

To switch between configurations, double-click an entry in the Data Log. As a result,
the Setup and Data tabs update to display the active signal list, trigger conditions, or
specified captured data.

Figure 89. Simple Data Log
In this example, the Data Log displays one instance with three signal set configurations, two trigger condition
setups, and three different captured data sets.

2.9.2.2. SOF Manager

The SOF Manager is in the JTAG Chain Configuration pane.

With the SOF Manager you can attach multiple .sof files to a single .stp file. This
attachment allows you to move the .stp file to a different location, either on the
same computer or across a network, without including the attached .sof separately.

The SOF Manager also ensures compatibility between any attached .sof files and the
current .stp file settings automatically, as Ensure Compatibility Between .stp and .sof
Files on page 85 describes.

To attach a new .sof in the .stp file, click the Attach SOF File icon .

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 90. SOF Manager

Attach SOF File Icon

As you switch between configurations in the Data Log, you can extract the .sof that
is compatible with that configuration.

To download the new .sof to the FPGA, click the Program Device icon in the SOF
Manager, after ensuring that the configuration of your .stp is compatible with the
design to program into the target device.

Related Information

Data Log Pane on page 101

2.9.3. Debugging Partial Reconfiguration Designs with Signal Tap

You can debug a Partial Reconfiguration (PR) design with the Signal Tap logic analyzer.
The Signal Tap logic analyzer supports data acquisition in the static and PR regions.
You can debug multiple personas present in a PR region and multiple PR regions.

For examples on debugging PR designs targeting specific devices, refer to AN 841:
Signal Tap Tutorial for Intel Stratix® 10 Partial Reconfiguration Design or AN 845:
Signal Tap Tutorial for Intel Arria® 10 Partial Reconfiguration Design.

Related Information

• AN 841: Signal Tap Tutorial for Intel Stratix 10 Partial Reconfiguration Design

• AN 845: Signal Tap Tutorial for Intel Arria 10 Partial Reconfiguration Design

2.9.3.1. Signal Tap Guidelines for PR Designs

Follow these guidelines to obtain the best results when debugging PR designs with the
Signal Tap logic analyzer:

• Include one .stp file per project revision.

• Tap pre-synthesis nodes only. In the Node Finder, filter by Signal Tap: pre-
synthesis.

• Do not tap nodes in the default persona (the personas you use in the base revision
compile). Create a new PR implementation revision that instantiates the default
persona, and tap nodes in the new revision.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

103

https://www.intel.com/content/www/us/en/docs/programmable/683875.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Store all the tapped nodes from a PR persona in one .stp file, to enable
debugging the entire persona using only one Signal Tap window.

• Do not tap across PR regions, or from a static region to a PR region in the
same .stp file.

• Each Signal Tap window opens only one .stp file. Therefore, to debug more than
one partition simultaneously, you must use stand-alone Signal Tap from the
command-line.

2.9.3.2. PR Design Setup for Signal Tap Debug

Figure 91. Setting Up PR Design for Debug with Signal Tap

Prepare Base Revision

Finish

Debug Static Region

Prepare PR Personas

Prepare Static Region

yes

no

To debug a PR design, you must instantiate SLD JTAG bridges when generating the
base revision, and then define debug components for all PR personas. Optionally, you
can specify signals to tap in the static region. After configuring all the PR personas in
the design, you can continue the PR design flow.

Related Information

• Debug Fabric for Partial Reconfiguration Designs on page 20

• Partial Reconfiguration Design Flow, Intel Quartus Prime Pro Edition User Guide:
Partial Reconfiguration

2.9.3.2.1. Preparing the Static Region for Signal Tap Debugging

To debug the static region in your PR design:

1. Tap nodes in the static region exclusively.

2. Save the .stp file with a name that identifies the file with the static region.

3. Enable Signal Tap in your project, and include the .stp file in the base revision.

Note: Do not tap signals in the default PR personas.

2.9.3.2.2. Preparing the Base Revision for Signal Tap Debugging

In the base revision, for each PR region that you want to debug in the design:

1. Instantiate the SLD JTAG Bridge Agent Intel FPGA IP in the static region.

2. Instantiate the SLD JTAG Bridge Host Intel FPGA IP in the PR region of the default
persona.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

104

https://www.intel.com/content/www/us/en/docs/programmable/683834/current/partial-reconfiguration-design-flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683834/current/partial-reconfiguration-design-flow.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the IP Catalog or Platform Designer to instantiate SLD JTAG Bridge
components.

Related Information

• Instantiating the SLD JTAG Bridge Agent on page 17

• Instantiating the SLD JTAG Bridge Host on page 18

2.9.3.2.3. Preparing PR Personas for Signal Tap Debugging

Before you create revisions for personas in your design, you must instantiate debug IP
components and tap signals.

For each PR persona that you want to debug:

1. Instantiate the SLD JTAG Bridge Host Intel FPGA IP in the PR persona.

2. Tap pre-synthesis nodes in the PR persona only.

3. Save in a new .stp file with a name that identifies the persona.

4. Use the new .stp file in the implementation revision.

If you do not want to debug a particular persona, drive the tdo output signal to 0.

2.9.3.3. Performing Data Acquisition in a PR design

After generating the .sof and .rbf files for the revisions you want to debug, you are
ready to program your device and debug with the Signal Tap logic analyzer.

To perform data acquisition:

1. Program the base image into your device.

2. Partially reconfigure the device with the persona that you want to debug.

3. Open the Signal Tap logic analyzer by clicking Tools ➤ Signal Tap logic
analyzer in the Intel Quartus Prime software.

The logic analyzer opens and loads the .stp file set in the current active revision.

4. To debug other regions in your design, open new Signal Tap windows by opening
the other region's .stp file from the Intel Quartus Prime main window.

Alternatively, use the command-line:

quartus_stpw <stp_file_other_region.stp>

5. Debug your design with Signal Tap.

To debug another revision, you must partially reconfigure your design with the
corresponding .rbf file.

2.9.4. Debugging Block-Based Designs with Signal Tap

The Intel Quartus Prime Pro Edition software supports verification of block-based
design flows with the Signal Tap logic analyzer.

Verifying a block-based design requires planning to ensure visibility of logic inside
partitions and communication with the Signal Tap logic analyzer. The preparation steps
depend on whether you are reusing a core partition or a root partition.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For information about designing with reusable blocks, refer to the Intel Quartus Prime
Pro Edition User Guide: Block-Based Design. For step-by-step block-based design
debugging instructions, refer to AN 847: Signal Tap Tutorial with Design Block Reuse
for Intel Arria 10 FPGA Development Board.

Related Information

Intel Quartus Prime Pro Edition User Guide: Block-Based Design

2.9.4.1. Signal Tap Debugging with a Core Partition

To perform Signal Tap debugging in a core design partition that you reuse from
another project, you identify the signals of interest, and then make those signals
visible to a Signal Tap logic analyzer instance. The Intel Quartus Prime software
supports two methods to make the reused core partition signals visible for Signal Tap
monitoring: by creating partition boundary ports, or by Signal Tap HDL instantiation.

Figure 92. Debug Setup with Reused Core Partition

Signal Tap HDL Instance
Parent Partition

JTAG
TAP

RTL

Reused Core Partition
JTAG
HUB

Signal Tap
Instance

Partition Boundary Ports
Parent Partition

JTAG
TAP

Reused Core Partition
JTAG
HUB

Manual Connection Automatic Connection RTL Partition Boundary Ports

Signal Tap
Instance

Signal Tap
Instance

Legend:

2.9.4.1.1. Partition Boundary Ports Method

Partition boundary ports expose core partition nodes to the top-level partition.
Boundary ports simplify the management of hierarchical blocks by tunneling through
layers of logic without making RTL changes. The partition boundary ports method
includes these high-level steps:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

106

https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the project that exports the partition, define boundary ports for all potential
Signal Tap nodes in the core partition. Define partition boundary ports with the
Create Partition Boundary Ports assignment in the Assignment Editor. When
you assign a bus, the assignment applies to the root name of the debug port, with
each bit enumerated.

2. In the project that exports the partition, create a black box file that includes the
partition boundary ports, to allows tapping these ports as pre-synthesis or post-fit
nodes in another project.

3. In the project that reuses the partition, run Analysis & Synthesis on the reused
partition. All valid ports with the Create Partition Boundary Ports become
visible in the project. After synthesis you can verify the partition boundary ports in
the Create Partition Boundary Ports report in the In-System Debugging folder
under Synthesis reports.

4. Tap the partition boundary ports to connect to a Signal Tap instance in the top-
level partition. You can also tap logic from the top-level partition to this Signal Tap
instance. When using this method, the project requires only one Signal Tap
instance to debug both the top-level and the reused core partition.

The following procedures explain these steps in more detail.

2.9.4.1.2. Debug a Core Partition through Partition Boundary Ports

To use Signal Tap to debug a design that includes a core partition exported with
partition boundary ports from another project, follow these steps:

1. Add to your project the black-box file that you create in Export a Core Partition
with Partition Boundary Ports on page 107.

2. To run synthesis, double-click Analysis & Synthesis on the Compilation
Dashboard.

3. Define a Signal Tap instance with the Signal Tap GUI, or by instantiating a Signal
Tap HDL instance in the top level root partition, as Step 1: Add the Signal Tap
Logic Analyzer to the Project on page 34 describes.

4. Connect the partition boundary ports of the reused core partition to the HDL
instance, or add post-synthesis or post-fit nodes to the Signal Configuration tab
in the Signal Tap logic analyzer GUI.

5. To create a design partition, click Assignments ➤ Design Partitions Window.
Define a partition and assign the exported partition .qdb file as the Partition
Database File option.

6. Compile the design, including all partitions and the Signal Tap instance.

7. Program the Intel FPGA device with the design and Signal Tap instances.

8. Perform data acquisition with the Signal Tap logic analyzer GUI.

2.9.4.1.3. Export a Core Partition with Partition Boundary Ports

To export a core partition with partition boundary ports for reuse and Signal Tap
debugging in another project, follow these steps:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To run synthesis, double-click Analysis & Synthesis on the Compilation
Dashboard.

2. Define a design partition for reuse that contains only core logic. Click
Assignments ➤ Design Partitions Window to define the partition.

3. To create partition boundary ports for the core partition, specify the Create
Partition Boundary Ports assignment in the Assignment Editor for partition
ports.

4. Click Project ➤ Export Design Partition. By default, the .qdb file you export
includes any Signal Tap HDL instances for the partition.

5. Compile the design and Signal Tap instance.

6. Create a black box file that defines only the port and module or entity definitions,
without any logic.

7. Manually copy the exported partition .qdb file and any black box file to the other
project.

Optionally, you can verify signals in the root and core partitions in the Developer
project with the Signal Tap logic analyzer.

2.9.4.1.4. Signal Tap HDL Instance Method

To use the Signal Tap HDL instance method, you first create a Signal Tap HDL instance
in the reusable core partition, and then connect the signals of interest to that
instance. The Compiler ensures top-level visibility of Signal Tap instances inside
partitions. Since the root partition and the core partition have separated HDL
instances, the Signal Tap files are also separate.

When you reuse the partition in another project, you must generate one Signal Tap file
in the target project for each HDL instance present in the reused partition.

Debug a Core Partition Exported with Signal Tap HDL Instances

To use Signal Tap to debug a design that includes a core partition exported with Signal
Tap HDL instances, follow these steps:

1. Add to your project the black-box file that you create in Export a Core Partition
with Signal Tap HDL Instances on page 109.

2. To create a design partition, click Assignments ➤ Design Partitions Window.
Define a partition and assign the exported partition .qdb file as the Partition
Database File option.

3. Create a Signal Tap file for the top-level partition as Step 1: Add the Signal Tap
Logic Analyzer to the Project on page 34 describes.

4. Compile the design and Signal Tap instances.

5. Generate a Signal Tap file for the reused Core Partition with the File ➤ Create/
Update ➤ Create Signal Tap File from Design Instance command.

6. Program the Intel FPGA device with the design and Signal Tap instances.

7. Perform hardware verification of top-level partition with the Signal Tap instance
defined in Step 3.

8. Perform hardware verification of the Reused Core Partition with the Signal Tap
instance defined in Step 5.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.4.1.5. Export a Core Partition with Signal Tap HDL Instances

To export a core partition with Signal Tap HDL instances for reuse and eventual Signal
Tap debugging in another project, follow these steps:

1. To run synthesis, double-click Analysis & Synthesis on the Compilation
Dashboard.

2. Define a design partition for reuse that contains only core logic. Click
Assignments ➤ Design Partitions Window to define the partition.

3. Add a Signal Tap HDL instance to the core partition, connecting it to nodes of
interest.

4. Click Project ➤ Export Design Partition. By default, the .qdb file you export
includes any Signal Tap HDL instances for the partition.

5. Create a black box file that defines only the port and module or entity definitions,
without any logic.

6. Manually copy the exported partition .qdb file and any black box file to the other
project.

2.9.4.1.6. Debug a Core Partition Exported with Signal Tap HDL Instances

To use Signal Tap to debug a design that includes a core partition exported with Signal
Tap HDL instances, follow these steps:

1. Add to your project the black-box file that you create in Export a Core Partition
with Signal Tap HDL Instances on page 109.

2. To create a design partition, click Assignments ➤ Design Partitions Window.
Define a partition and assign the exported partition .qdb file as the Partition
Database File option.

3. Create a Signal Tap file for the top-level partition as Step 1: Add the Signal Tap
Logic Analyzer to the Project on page 34 describes.

4. Compile the design and Signal Tap instances.

5. Generate a Signal Tap file for the reused Core Partition with the File ➤ Create/
Update ➤ Create Signal Tap File from Design Instance command.

6. Program the Intel FPGA device with the design and Signal Tap instances.

7. Perform hardware verification of top-level partition with the Signal Tap instance
defined in Step 3.

8. Perform hardware verification of the Reused Core Partition with the Signal Tap
instance defined in Step 5.

2.9.4.2. Signal Tap Debugging with a Root Partition

In a project that reuses a root partition, you enable debugging of the root partition
and the core partition independently, with separate Signal Tap instances in each
partition. In the project that exports the partition, you add the Signal Tap instance to
the root partition. Additionally, you extend the debug fabric into the reserved core
partition with a debug bridge. This bridge allows subsequent instantiation of Signal Tap
when reusing the partition in another project.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You implement the debug bridge with the SLD JTAG Bridge Agent Intel FPGA IP and
SLD JTAG Bridge Host Intel FPGA IP pair for each reserved core boundary in the
design. You instantiate the SLD JTAG Bridge Agent IP in the root partition, and the
SLD JTAG Bridge Host IP in the core partition.

Figure 93. Debug Setup with Reused Root Partition

Root Partition

JTAG
TAP

JTAG
HUB

Manual Connection

Automatic Connection

RTL
Signal Tap

Partition

JTAG
HUB

Signal Tap

SL
D

JTA
G

Br
idg

e A
ge

nt

SL
D

JTA
G

Br
idg

e H
os

t

For details about the debug bridge, refer to the SLD JTAG Bridge in the System
Debugging Tools Overview chapter.

Related Information

SLD JTAG Bridge on page 14

2.9.4.2.1. Export the Root Partition with SLD JTAG Bridge

To export a reusable root partition with SLD JTAG Bridge that allows debugging of core
partitions in another project, follow these steps.

1. Create a reserved core partition and define a Logic Lock region.

2. Generate and instantiate SLD JTAG Bridge Agent in the root partition.

The combination of agent and host allows debugging the reserved core partition in
Consumer projects.

3. Generate and instantiate the SLD JTAG Bridge Host in the reserved core partition.

4. Add a Signal Tap instance to the root partition, as Step 1: Add the Signal Tap Logic
Analyzer to the Project on page 34 describes.

5. In the Signal Tap instance, specify the signals for monitoring. This action allows
debugging the root partition in the Developer and Consumer projects.

6. Compile the design and Signal Tap instance.

7. Click Project ➤ Export Design Partition. By default, the .qdb file you export
includes any Signal Tap HDL instances for the partition.

8. Manually copy files to the project that reuses the root partition:

— In designs targeting the Intel Arria 10 device family, copy .qdb and .sdc
files.

— In designs targeting the Intel Stratix 10 device family copy the .qdb file.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In designs with multiple child partitions, you must provide the hierarchy path and
the associated index of the JTAG Bridge Instance Agents in the design to the
Consumer.

2.9.4.2.2. Debugging an Exported Root Partition and Core Partition Simultaneously using
the SLD JTAG Bridge

When you reuse an exported root partition in another project, the exported .qdb
includes the Signal Tap connection to signals in the root partition, and the SLD JTAG
Bridge Agent IP, which allows debugging logic in the core partition.

To perform Signal Tap debugging in a project that includes a reused root partition:

1. Add the exported .qdb (and .sdc) files to the project that reuses them.

2. From the IP Catalog, parameterize and instantiate the SLD JTAG Bridge Host Intel
FPGA IP in the core partition.

3. Run the Analysis & Synthesis stage of the Compiler.

4. Create a Signal Tap instance in the core partition, as Step 1: Add the Signal Tap
Logic Analyzer to the Project on page 34 describes.

5. In the Signal Tap instance, specify post-synthesis signals for monitoring.

Note: You can only tap signals in the core partition.

6. Compile the design and Signal Tap instance.

7. Generate a Signal Tap file for the reused root partition with the quartus_stp
command.

8. Program the device.

9. Perform hardware verification of the reserved core partition with the Signal Tap
instance defined in Step 3.

10. Perform hardware verification of the reused root partition with the Signal Tap
instance defined in Step 7.

2.9.4.3. Compiler Snapshots and Signal Tap Debugging

When you reuse a design partition exported from another project, the design partition
preserves the results of a specific snapshot of the compilation. Whenever possible, it is
easiest to specify the signals for monitoring in the original project that exports the
partition.

Adding new signals to a Signal Tap instance in a reused partition requires the Fitter to
connect and route these signals. This is only possible when:

• The reused partition contains the Synthesis snapshot—reused partitions that
contain the Placed or Final snapshot do not allow adding more signals to the
Signal Tap instance for monitoring, because you cannot create additional boundary
ports.

• The signal that you want to tap is a post-fit signal—adding pre-synthesis Signal
Tap signals is not possible, because that requires resynthesis of the partition.

Related Information

Signals Unavailable for Signal Tap Debugging on page 51

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.4.3.1. Add Post-Fit Nodes when Reusing a Partition Containing a Synthesis Snapshot

You can add post-fit nodes for Signal Tap debug when reusing a design partition
containing the synthesis snapshot exported from another project.

To add post-fit nodes to Signal Tap for monitoring:

1. Open the project that reuses the partition, and then compile the reused partition
through the Fitter stage.

2. Add a Signal Tap instance to the project that reuses the partition, as Step 1: Add
the Signal Tap Logic Analyzer to the Project on page 34 describes.

3. In the Signal Tap GUI, add the post-fit Signal Tap nodes to the Signal
Configuration tab.

4. Recompile the design from the Place stage by clicking Processing ➤ Start ➤
Start Fitter (Place).

The Fitter attaches the Signal Tap nodes to the existing synthesized nodes.

2.9.5. Debugging Devices that use Configuration Bitstream Security

Some Intel FPGA device families support bitstream decryption during configuration
using an on-device AES decryption engine. You can still use the Signal Tap logic
analyzer to analyze functional data within the FPGA with such devices. However, JTAG
configuration is not possible after programming the security key into the device.

Use an unencrypted bitstream during the prototype and debugging phases of the
design, to allow programming file generation and reconfiguration of the device over
the JTAG connection while debugging.

If you must use the Signal Tap logic analyzer with an encrypted bitstream, first
configure the device with an encrypted configuration file using Passive Serial (PS),
Fast Passive Parallel (FPP), or Active Serial (AS) configuration modes. The design must
contain at least one instance of the Signal Tap logic analyzer. After configuring the
FPGA with a Signal Tap instance and the design, you can open the Signal Tap logic
analyzer GUI and scan the chain to acquire data with the JTAG connection.

Related Information

Intel Quartus Prime Pro Edition User Guide: Programmer

2.9.6. Signal Tap Data Capture with the MATLAB MEX Function

When you use MATLAB for DSP design, you can acquire data from the Signal Tap logic
analyzer directly into a matrix in the MATLAB environment. To use this method, you
call the MATLAB MEX function, alt_signaltap_run, that the Intel Quartus Prime
software includes. If you use the MATLAB MEX function in a loop, you can perform as
many acquisitions in the same amount of time as when using Signal Tap in the Intel
Quartus Prime software environment.

Note: The MATLAB MEX function for Signal Tap is available in the Windows* version and
Linux version of the Intel Quartus Prime software. This function is compatible with
MATLAB Release 14 Original Release Version 7 and later.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

112

https://www.intel.com/content/www/us/en/docs/programmable/683039/current/programmer-user-guide.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To set up the Intel Quartus Prime software and the MATLAB environment to perform
Signal Tap acquisitions:

1. In the Intel Quartus Prime software, create an .stp file.

2. In the node list in the Data tab of the Signal Tap logic analyzer Editor, organize
the signals and groups of signals into the order in which you want them to appear
in the MATLAB matrix.

Each column of the imported matrix represents a single Signal Tap acquisition
sample, while each row represents a signal or group of signals in the order you
defined in the Data tab.

Note: Signal groups that the Signal Tap logic analyzer acquires and transfers into
the MATLAB MEX function have a width limit of 32 signals. To use the
MATLAB MEX function with a bus or signal group that contains more than 32
signals, split the group into smaller groups that do not exceed the limit.

3. Save the .stp file and compile your design. Program your device and run the
Signal Tap logic analyzer to ensure your trigger conditions and signal acquisition
work correctly.

4. In the MATLAB environment, add the Intel Quartus Prime binary directory to your
path with the following command:

addpath <Quartus install directory>\win

You can view the help file for the MEX function by entering the following command
in MATLAB without any operators:

alt_signaltap_run

5. Use the MATLAB MEX function to open the JTAG connection to the device and run
the Signal Tap logic analyzer to acquire data. When you finish acquiring data, close
the JTAG connection.

To open the JTAG connection and begin acquiring captured data directly into a
MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run \
('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[, \
'<signalset name>'[,'<trigger name>']]]]);

When capturing data, you must assign a filename, for example, <stp filename> as
a requirement of the MATLAB MEX function. The following table describes other
MATLAB MEX function options:

Table 25. Signal Tap MATLAB MEX Function Options

Option Usage Description

signed

unsigned

'signed'

'unsigned'

The signed option turns signal group data into 32-bit two’s-
complement signed integers. The MSB of the group as
defined in the Signal Tap Data tab is the sign bit. The
unsigned option keeps the data as an unsigned integer.
The default is signed.

<instance name> 'auto_signaltap_0' Specify a Signal Tap instance if more than one instance is
defined. The default is the first instance in the .stp,
auto_signaltap_0.

<signal set name>
<trigger name>

'my_signalset'

'my_trigger'

Specify the signal set and trigger from the Signal Tap data
log if multiple configurations are present in the .stp. The
default is the active signal set and trigger in the file.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

During data acquisition, you can enable or disable verbose mode to see the status
of the logic analyzer. To enable or disable verbose mode, use the following
commands:

alt_signaltap_run('VERBOSE_ON');-alt_signaltap_run('VERBOSE_OFF');

When you finish acquiring data, close the JTAG connection with the following
command:

alt_signaltap_run('END_CONNECTION');

For more information about the use of MATLAB MEX functions in MATLAB, refer to
the MATLAB Help.

2.10. Signal Tap Logic Analyzer Design Examples

Application Note 845: Signal Tap Tutorial for Intel Arria 10 Partial Reconfiguration
Design includes a design example that demonstrates Signal Tap debugging with a
partial reconfiguration design. The design example has one 32-bit counter. At the
board level, the design connects the clock to a 50MHz source, and connects the output
to four LEDs on the FPGA. Selecting the output from the counter bits in a specific
sequence causes the LEDs to blink at a specific frequency example demonstrates
initiating a DMA transfer. The tutorial demonstrates how to tap signals in a PR design
by extending the debug fabric to the PR regions when creating the base revision, and
then defining debug components in the implementation revisions.

Application Note 446: Debugging Nios II Systems with the Signal Tap Logic Analyzer
includes a design example with a Nios II processor, a direct memory access (DMA)
controller, on-chip memory, and an interface to external SDRAM memory. After you
press a button, the processor initiates a DMA transfer, which you analyze using the
Signal Tap logic analyzer. In this example, the Nios II processor executes a simple C
program from on-chip memory and waits for you to press a button.

Related Information

• AN 845: Signal Tap Tutorial for Intel Arria 10 Partial Reconfiguration Design

• AN 446: Debugging Nios II Systems with the Signal Tap Logic Analyzer

2.11. Custom State-Based Triggering Flow Examples

The custom state-based triggering flow in the Signal Tap logic analyzer GUI can
organize multiple triggering conditions for precise control over the acquisition buffer.
The following examples demonstrate defining a custom triggering flow. You can easily
copy the examples directly into the state machine description box by specifying the All
states in one window option.

Related Information

On-chip Debugging Design Examples website

2.11.1. Trigger Example 1: Custom Trigger Position

Actions to the acquisition buffer can accept an optional post-count argument. This
post-count argument enables you to define a custom triggering position for each
segment in the acquisition buffer.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

114

https://www.intel.com/content/www/us/en/programmable/documentation/fir1520982817117.html
https://cdrdv2.intel.com/v1/dl/getContent/654956
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/on-chip-debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example shows how to apply a trigger position to all segments in the
acquisition buffer. The example describes a triggering flow for an acquisition buffer
split into four segments. If each acquisition segment is 64 samples in depth, the
trigger position for each buffer is at sample #34. The acquisition stops after all
segments are filled once.

if (c1 == 3 && condition1)
 trigger 30;
else if (condition1)
begin
 segment_trigger 30;
 increment c1;
end

Each segment acts as a non-segmented buffer that continuously updates the memory
contents with the signal values.

The Data tab displays the last acquisition before stopping the buffer as the last
sample number in the affected segment. The trigger position in the affected segment
is then defined by N – post count fill, where N is the number of samples per
segment.

Figure 94. Specifying a Custom Trigger Position

0
1

1
111

1

1

1 1 1 1 1
1

1

000
0

0

0

0 0
0

Trigger

Sample #1

Post Count

Last Sample

2.11.2. Trigger Example 2: Trigger When triggercond1 Occurs Ten Times
between triggercond2 and triggercond3

You can use a custom trigger flow to count a sequence of events before triggering the
acquisition buffer, as the following example shows. This example uses three basic
triggering conditions configured in the Signal Tap Setup tab.

This example triggers the acquisition buffer when condition1 occurs after
condition3 and occurs ten times prior to condition3. If condition3 occurs prior
to ten repetitions of condition1, the state machine transitions to a permanent wait
state.

state ST1:
if (condition2)
begin
 reset c1;
 goto ST2;
end

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

State ST2 :
if (condition1)
 increment c1;
else if (condition3 && c1 < 10)
 goto ST3;
else if (condition3 && c1 >= 10)
 trigger;
ST3:
goto ST3;

2.12. Signal Tap File Templates

Signal Tap file templates provide preset settings for various trigger conditions,
interfaces, and state-based triggering flows. The following Signal Tap file templates
are available whenever you open a new Signal Tap session or create a new .stp file.

Right-click any template in the New File from Template dialog box, and then click
Set as the default selection to always open new .stp files in that template by
default.

Figure 95. Settings Default Signal Tap File Template

Note: Refer to the New File from Template dialog box for complete descriptions of all
templates.

Table 26. Quick Start Signal Tap File Templates

Template Summary Description

Default The most basic and compact setup that is suitable for many debugging needs

Default with Hidden Hierarchy
and Data Log

The same setup as the Default template, with additional Hierarchy Display and Data
Log windows for trigger condition setup.

State-Based Trigger Flow Control Starts with three conditions setup to replicate the basic sequential trigger flow
control.

Conditional Storage Qualifier Enables the Conditional storage qualifier and Basic OR condition. This setup
provides a versatile storage qualifier condition expression.

Transitional Storage Qualifier Enables the Transitional storage qualifier. The Transitional storage qualifier
simply detects changes in data.

Start-Stop Storage Qualifier Enables the Start/Stop storage qualifier and the Basic OR condition. Provides two
conditions to frame the data.

State-Based Storage Qualifier Provides more sophisticated qualification conditions for use with state machine
expressions. You must use the State-Based Storage Qualifier template in
conjunction with the state-based trigger flow control

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Template Summary Description

Input Port Storage Qualifier Enables the Input port storage qualifier to provide total control of the storage
qualifier condition by supporting development of custom logic outside of the Signal
Tap logic hierarchy.

Trivial Advanced Trigger
Condition

Enables the Advanced trigger condition. The Advanced condition provides the
most flexibility to express complex conditions. The Advanced trigger condition
scales from a simple wire to the most complex logical expression. This template
starts with the simplest condition.

Trigger Position Defined Using
Sample Count

Supports specifying an exact number of samples to store after the trigger position,
using the State-Based Trigger Flow Control template as a reference.

Cross-triggering Between STP
Instances

Enables "Cross-triggering by using the Trigger out from one instance as the
Trigger in of another instance, when using multiple Signal Tap instances.

Setup for Incremental
Compilation

Specifies a fixed input width for signal inputs. This technique allows efficient
incremental compilation by reducing the amount of Signal Tap logic change, and by
adding only post-fit nodes to tap.

Define Trigger Condition in RTL Supports defining a custom trigger condition in the RTL language of your choice.

Table 27. Standard Interface Signal Tap File Templates

Template Summary Description

Capture Avalon Memory Mapped
Transactions

Allows you to use the storage qualifier feature to store only meaningful Avalon
memory-mapped interface transactions.

Simple Avalon Streaming
Interface Bus Performance
Analysis

Supports recording of event time for analysis of the data packet flow in an Avalon
streaming interface.

Use Counters in the State-based
Flow Control to Collect Stats

Use counters to track of the number of packets produced (pkt_counter), number
of data beats produced (pkt_beat_counter), and number of data beats
consumed (stream_beat_counter).

Table 28. State-Based Triggering Design Flow Examples Signal Tap File Templates

Template Setup Description

Trigger on an Event Absent for
Greater Than or Equal to 5 Clock
Cycles

Requires setup of one basic trigger condition in the Setup tab to the value that you
want.

Trigger on Event Absent for Less
Than 5 Clock Cycles

Requires setup of one basic trigger condition in the Setup tab to the value that you
want.

Trigger on 5th Occurrence of a
Group Value

Requires setup of one basic trigger condition in the Setup tab to the value that you
want.

Trigger on the 5th Transition of a
Group Value

Requires setup of an edge-sensitive trigger condition to detect all bus transitions to
the desired group value. Requires edge detection for any data bus bit logically
ANDed with a comparison to the desired group value. An advanced trigger condition
is necessary in this case.

Trigger After Condition1 is
Followed by Condition2

Requires setup of three basic trigger conditions in the Setup tab to the values you
specify. The first two trigger conditions are set to the desired group values. The
third trigger condition is set to capture some type of idle transaction across the bus
between the first and second conditions.

Trigger on Condition1
Immediately Followed by
Condition2

Requires setup of two basic trigger conditions in the Setup tab to the group values
that you want.

Trigger on Condition2 Not
Occurring Between Condition1
and Condition3

Requires setup of three basic trigger conditions in the Setup tab to the group
values that you want.

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Template Setup Description

Trigger on the 5th Consecutive
Occurrence of Condition1

Requires setup of one basic trigger condition in the Setup tab to the value you
want.

Trigger After a Violation of
Sequence From Condition1 To
Condition4

Requires setup of four basic trigger conditions to the sequence values that you
want.

Trigger on a Sequence of Edges Requires setup of three edge-sensitive basic trigger conditions for the sequence
that you want.

Trigger on Condition1 Followed
by Condition2 After 5 Clock
Cycles

Requires setup of two basic trigger conditions to the group values that you want.

Trigger on Condition1 Followed
by Condition2 Within 5 Samples

Requires setup of two basic trigger conditions to the group values that you want.

Trigger on Condition1 Not
Followed by Condition2 Within 5
Samples

Requires setup of two basic trigger conditions to the group values that you want.

Trigger After 5 Consecutive
Transitions

Requires setup of a trigger condition to capture any transition activity on the
monitored bus. This example requires an Advanced trigger condition because the
example requires an OR condition.

Trigger When Condition1 Occurs
Less Than 5 Times Between
Condition2 and Condition3

Requires setup of three edge-sensitive trigger conditions, with each trigger
condition containing a comparison to the desired group value.

2.13. Running the Stand-Alone Version of Signal Tap

You can optionally install a stand-alone version of the Signal Tap logic analyzer, rather
than using the Signal Tap logic analyzer integrated with the Intel Quartus Prime
software.

The stand-alone version of Signal Tap is particularly useful in a lab environment that
lacks a suitable workstation for a complete Intel Quartus Prime installation, or lacks a
full Intel Quartus Prime software license.

The standalone version of the Signal Tap logic analyzer includes and requires use of
the Intel Quartus Prime stand-alone Programmer, which is also available from the
Download Center for FPGAs.

2.14. Signal Tap Scripting Support

The Intel Quartus Prime software supports automation of Signal Tap controls in a Tcl
scripting environment, or with the quartus_stp executable. For detailed information
about scripting command options, refer to the Intel Quartus Prime command-line and
Tcl API help by typing quartus_sh --qhelp at the command prompt.

Related Information

Intel Quartus Prime Pro Edition User Guide: Scripting

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

118

https://www.intel.com/content/www/us/en/programmable/downloads/download-center.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.14.1. Signal Tap Command-Line Options

You can use the following options with the quartus_stp executable:

Table 29. quartus_stp Command-Line Options

Option Usage Description

--stp_file <stp_filename> Required Specifies the name of the .stp file.

--enable Optional Sets the ENABLE_SIGNALTAP option to ON in the project's .qsf file, so
the Signal Tap logic analyzer runs in the next compilation.
If you omit this option, the Intel Quartus Prime software uses the current
value of ENABLE_SIGNALTAP in the .qsf file.
Writes subsequent Signal Tap assignments to the .stp that appears in
the .qsf file. If the .qsf file does not specify a .stp file, you must use
the --stp_file option.

--disable Optional Sets the ENABLE_SIGNALTAP option to OFF in the project's .qsf file, so
the Signal Tap logic analyzer does not in the next compilation.
If you omit the --disable option, the Intel Quartus Prime software
uses the current value of ENABLE_SIGNALTAP in the .qsf file.

2.14.2. Data Capture from the Command Line

The quartus_stp executable supports a Tcl interface that allows you to capture data
without running the Intel Quartus Prime GUI.

Note: You cannot execute Signal Tap Tcl commands from within the Tcl console in the Intel
Quartus Prime software.

To execute a Tcl script containing Signal Tap logic analyzer Tcl commands, use:

quartus_stp -t <Tcl file>

Example 2. Continuously Capturing Data

This excerpt shows commands you can use to continuously capture data. Once the
capture meets trigger condition, the Signal Tap logic analyzer starts the capture and
stores the data in the data log.

Open Signal Tap session
open_session -name stp1.stp

Start acquisition of instances auto_signaltap_0 and
auto_signaltap_1 at the same time

Calling run_multiple_end starts all instances
run_multiple_start

run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger \
 trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger \
 trigger_1 -data_log log_1 -timeout 5

run_multiple_end

Close Signal Tap session
close_session

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

::quartus::stp
In Intel Quartus Prime Help

2.15. Signal Tap File Version Compatibility

If you open a .stp file created in a previous version of the Intel Quartus Prime
software in a newer version of the software, you can no longer open that .stp file in
the previous version of the Intel Quartus Prime software.

If you open an Intel Quartus Prime project that includes a .stp file from a previous
version of the software in a later version of the Intel Quartus Prime software, the
software may require you to update the .stp configuration file before you can
compile the project. Update the configuration file by simply opening the .stp in the
Signal Tap logic analyzer GUI. If configuration update is required, Signal Tap confirms
that you want to update the .stp to match the current version of the Intel Quartus
Prime software.

Note: The Intel Quartus Prime Pro Edition software uses a new methodology for settings and
assignments. For example, Signal Tap assignments include only the instance name,
not the entity:instance name. Refer to Migrating to Intel Quartus Prime Pro
Edition for more information about migrating existing Signal Tap files (.stp) to Intel
Quartus Prime Pro Edition.

Related Information

Migrating to Intel Quartus Prime Pro Edition, Intel Quartus Prime Pro Edition User
Guide: Getting Started

2.16. Design Debugging with the Signal Tap Logic Analyzer Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2023.12.04 23.4 • Added support for != operator to Comparison Trigger Conditions topic.

2023.10.02 23.3 • Enhanced the information in Enabling a Power-Up Trigger.
• Made a minor correction in the image in Specifying the Buffer

Acquisition Mode.
• Made a minor correction in the description in Managing Signal Tap

Instances with Run-Time and Power-Up Trigger Conditions.

2022.07.08 22.1 • Fixed broken link in Custom State-Based Triggering Flow Examples.

2022.03.28 22.1 • Added Organizing Signals in the Signal Tap Logic Analyzer topic.
• Removed incorrect links from Intel Quartus Prime Pro Edition User

Guide Debug Tools Archives topic.

2021.10.13 21.3 • Added Recompiling Only Signal Tap Changes topic.
• Changed title of Prevent Changes Requiring Recompilation to

Preventing Changes that Require Full Recompilation and revised
figures.

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

120

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_stp_ver_1.0.htm
https://www.intel.com/content/www/us/en/docs/programmable/683463/current/migrating-to.html
https://www.intel.com/content/www/us/en/docs/programmable/683463/current/migrating-to.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2021.10.04 21.3 • Updated Signal Tap Logic Analyzer Introduction with Signal Tap Logic
Analyzer and Simulator Integration section.

• Added description of Autorun mode to Managing Signal Tap Instances
topic.

• Added new Adding Simulator-Aware Signal Tap Nodes topic.
• Added new Add Simulator Aware Node Finder Settings topic.
• Added new Signal Tap and Simulator Integration topic.
• Added new Generating a Simulation Testbench from Signal Tap Data

topic.
• Added new Create Simulation Testbench Dialog Box Settings topic.
• Revised Preserving Signals for Monitoring and Debugging topic for

latest techniques and links to other resources.
• Revised Adding Pre-Synthesis or Post-Fit Nodes for latest techniques

and links to other resources.
• Added new Changing the Post-Fit Signal Tap Target Nodes topic.
• Updated Adding Pre-Synthesis or Post-Fit Nodes topic for preserve for

debug filters.
• Added details about SOF Manager to Ensure Compatibility Between .stp

and .sof Files topic.

2020.09.28 20.3 • Revised "Signal Tap Logic Analyzer Introduction" for screenshot and
details about role of Signal Tap Intel FPGA IP.

• Revised graphic and wording in "Signal Tap Hardware and Software
Requirements" topic.

• Revised wording and link to download in "Running the Stand-Alone
Version of Signal Tap."

• Updated flow diagram and added links to retitled "Signal Tap Debugging
Flow" topic.

• Retitled "Add the Signal Tap Logic Analyzer to Your Design" to "Step 1:
Add the Signal Tap Logic Analyzer to the Project," and referenced new
template and added links to next steps.

• Added "Creating a Signal Tap Instance with the Signal Tap GUI" topic.
• Added new "Signal Tap File Templates" topic.
• Added new "Creating a Signal Tap Instance by HDL Instantiation" topic.
• Added new "Signal Tap Intel FPGA IP Parameters" topic.
• Retitled "Configure the Signal Tap Logic Analyzer" to "Step 2: Configure

the Signal Tap Logic Analyzer," and referenced new template and added
links to next steps.

• Enhanced description in Step 5: Run the Signal Tap Logic Analyzer"
topic.

• Revised "Adding Signals to the Signal Tap Logic Analyzer" to add
detailed steps and screenshot.

• Retitled and revised "Adding Nios II Processor Signals" to reflect there
is only one plug-in in Intel Quartus Prime Pro Edition.

• Revised "Disabling or Enabling Signal Tap Instances" and added
screenshot.

• Replaced outdated links to AN446 with links to AN845.
• Revised headings and steps in "Debugging Block-Based Designs with

Signal Tap" section.
• Retitled "Debugging Imported Snapshots" to "Compiler Snapshots and

Signal Tap Debugging".
• Retitled "Backward Compatibility" to "Signal Tap File Version

Compatibility."
• Removed incorrect statement about debugging multiple designs from

"Step 4: Program the Target Hardware" topic.

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Removed reference to obsolete resource checking function from
"Ensure Compatibility Between STP and SOF Files" topic.

• Removed obsolete "Remote Debugging Using the Signal Tap Logic
Analyzer" section.

• Removed obsolete "Estimating FPGA Resources" topic.

2019.06.11 18.1.0 Added more explanation to Comparing Continuous and Input Port Capture
Mode in Data Acquisition of a Recurring Data Pattern about continuous and
input mode.

2019.05.01 18.1.0 In Adding Signals with a Plug-In topic, removed outdated information from
step 1 about turning on Create debugging nodes for IP cores.

2018.09.24 18.1.0 • Added content about debugging designs in block-based flows.
• Renamed topic: Untappable Signals to Signals Unavailable for Signal

Tap Debugging.

2018.08.07 18.0.0 Reverted document title to Debug Tools User Guide: Intel Quartus Prime
Pro Edition.

2018.07.30 18.0.0 Updated Partial Reconfiguration sections to reflect changes in the PR flow.

2018.05.07 18.0.0 • Added note stating Signal Tap IP not optimized for Stratix 10 Devices.
• Moved information about debug fabric on PR designs to the System

Debugging Tools Overview chapter.
• Removed restrictions of Rapid Recompile support for Intel Stratix 10

devices.

2017.11.06 17.1.0 • Added support for Incremental Routing in Intel Stratix 10 devices.
• Removed unsupported FSM auto detection.
• Clarified information about the Data Log Pane.
• Updated Figure: Data Log and renamed to Simple Data Log.
• Added Figure: Accessing the Advanced Trigger Condition Tab.
• Removed outdated information about command-line flow.

2017.05.08 17.0.0 • Added: Open Standalone Signal Tap Logic Analyzer GUI.
• Added: Debugging Partial Reconfiguration Designs Using Signal Tap

Logic Analyzer.
• Updated figures on Create Signal Tap File from Design Instance(s).

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Added: Create SignalTap II File from Design Instance(s).
• Removed reference to unsupported Talkback feature.

2016.05.03 16.0.0 • Added: Specifying the Pipeline Factor
• Added: Comparison Trigger Conditions

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.
• Updated content to reflect SignalTap II support in Intel Quartus Prime

Pro Edition

2015.05.04 15.0.0 Added content for Floating Point Display Format in table: SignalTap II Logic
Analyzer Features and Benefits.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

December 2014 14.1.0 • Added MAX 10 as supported device.
• Removed Full Incremental Compilation setting and Post-Fit (Strict)

netlist type setting information.
• Removed outdated GUI images from "Using Incremental Compilation

with the SignalTap II Logic Analyzer" section.

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

June 2014 14.0.0 • DITA conversion.
• Replaced MegaWizard Plug-In Manager and Megafunction content with

IP Catalog and parameter editor content.
• Added flows for custom trigger HDL object, Incremental Route with

Rapid Recompile, and nested groups with Basic OR.
• GUI changes: toolbar, drag to zoom, disable/enable instance, trigger

log time-stamping.

November 2013 13.1.0 Removed HardCopy material. Added section on using cross-triggering with
DS-5 tool and added link to white paper 01198. Added section on remote
debugging an Altera SoC and added link to application note 693. Updated
support for MEX function.

May 2013 13.0.0 • Added recommendation to use the state-based flow for segmented
buffers with separate trigger conditions, information about Basic OR
trigger condition, and hard processor system (HPS) external triggers.

• Updated “Segmented Buffer” on page 13-17, Conditional Mode on page
13-21, Creating Basic Trigger Conditions on page 13-16, and Using
External Triggers on page 13-48.

June 2012 12.0.0 Updated Figure 13–5 on page 13–16 and “Adding Signals to the SignalTap
II File” on page 13–10.

November 2011 11.0.1 Template update.
Minor editorial updates.

May 2011 11.0.0 Updated the requirement for the standalone SignalTap II software.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Add new acquisition buffer content to the “View, Analyze, and Use
Captured Data” section.

• Added script sample for generating hexadecimal CRC values in
programmed devices.

• Created cross references to Quartus II Help for duplicated procedural
content.

November 2009 9.1.0 No change to content.

March 2009 9.0.0 • Updated Table 13–1
• Updated “Using Incremental Compilation with the SignalTap II Logic

Analyzer” on page 13–45
• Added new Figure 13–33
• Made minor editorial updates

November 2008 8.1.0 Updated for the Quartus II software version 8.1 release:
• Added new section “Using the Storage Qualifier Feature” on page 14–

25
• Added description of start_store and stop_store commands in

section “Trigger Condition Flow Control” on page 14–36
• Added new section “Runtime Reconfigurable Options” on page 14–63

May 2008 8.0.0 Updated for the Quartus II software version 8.0:
• Added “Debugging Finite State machines” on page 14-24
• Documented various GUI usability enhancements, including

improvements to the resource estimator, the bus find feature, and the
dynamic display updates to the counter and flag resources in the State-
based trigger flow control tab

• Added “Capturing Data Using Segmented Buffers” on page 14–16
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Quick Design Verification with Signal Probe
This chapter describes a technique that provides debug access to internal device
signals without affecting the design.

The Signal Probe feature in the Intel Quartus Prime Pro Edition software allows you to
route an internal node to a top-level I/O. When you start with a fully routed design,
you can select and route debugging signals to I/O pins that you previously reserve or
are currently unused.

Related Information

System Debugging Tools Overview on page 6

3.1. Signal Probe Debugging Flow

Use the following flow to add Signal Probe debugging and verification capabilities to
your design:

Figure 96. Signal Probe Debugging Flow

Reserve Signal Probe Pins

Assign Nodes to Pins

Run Full Compilation

Change

No

View Compilation Report

Yes
Run Fitter-Only CompilationSignal Probe

Nodes

Step 1: Reserve Signal Probe Pins on page 125

Step 2: Assign Nodes to Signal Probe Pins on page 125

Step 3: Connect the Signal Probe Pin to an Output Pin on page 125

Step 4: Compile the Design on page 126

(Optional) Step 5: Modify the Signal Probe Pins Assignments on page 126

Step 6: Run Fitter-Only Compilation on page 126

Step 7: Check Connection Table in Fitter Report on page 127

683819 | 2023.12.04

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3.1.1. Step 1: Reserve Signal Probe Pins

You must first create and reserve a pin for Signal Probe with a Tcl command:

set_global_assignment –name CREATE_SIGNALPROBE_PIN <pin_name>

pin_name Specifies the name of the Signal Probe pin.

Optionally, you can assign locations for the Signal Probe pins. If you do not assign a
location, the Fitter places the pins automatically.

Note: If from the onset of the debugging process you know which internal signals you want
to route, you can reserve pins and assign nodes before compilation. This early
assignment removes the recompilation step from the flow.

Example 3. Tcl Command to Reserve Signal Probe Pins

set_global_assignment -name CREATE_SIGNALPROBE_PIN wizard
set_global_assignment -name CREATE_SIGNALPROBE_PIN probey

Related Information

Constraining Designs with Tcl Scripts

3.1.2. Step 2: Assign Nodes to Signal Probe Pins

You can assign any node in the post-compilation netlist to a Signal Probe pin. In the
Intel Quartus Prime software, click View ➤ Node Finder, and filter by Signal Tap:
post-fitting to view the nodes you can route.

You specify the node that connects to a Signal Probe pin with a Tcl command:

set_instance_assignment –name CONNECT_SIGNALPROBE_PIN <pin_name> \
 –to <node_name>

pin_name Specifies the name of the Signal Probe pin that connects to the
node.

node_name Specifies the full hierarchy path of the node you want to route.

Example 4. Tcl Commands to Connect Pins to Internal Nodes

Make assignments to connect nodes of interest to pins
set_instance_assignment -name CONNECT_SIGNALPROBE_PIN wizard -to sprobe_me1
set_instance_assignment -name CONNECT_SIGNALPROBE_PIN probey -to sprobe_me2

3.1.3. Step 3: Connect the Signal Probe Pin to an Output Pin

Once you reserve pins and assign internal nodes to the Signal Probe pins, you must
connect the Signal Probe pin to an external output pin.

Example 5. Tcl Command to Specify Signal Probe Pin Assignment

set_instance_assignment –name CONNECT_SIGNALPROBE_PIN <pin_name> –to <node_name>

3. Quick Design Verification with Signal Probe

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

125

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/constraining-designs-with-tcl-scripts.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.4. Step 4: Compile the Design

Perform a full compilation of the design. You can use Intel Quartus Prime software
GUI, a command line executable, or the following Tcl command to start the Compiler

Example 6. Tcl Command to Compile the Design

execute_flow -compile

At this point in the design flow, you can determine the nodes that you want to debug.

Related Information

Design Compilation

3.1.5. (Optional) Step 5: Modify the Signal Probe Pins Assignments

As long as you reserve the pins (with CREATE_SIGNALPROBE_PIN) before running full
compilation, you can optionally add or modify the node that connects to a reserved
Signal Probe pin (with CONNECT_SIGNALPROBE_PIN) without rerunning a full
compilation. Rather, you can run a Fitter-only compilation to implement the Signal
Probe pin assignment change.

Note: If you modify the physical I/O pin assignments with (with
CREATE_SIGNALPROBE_PIN) after running compilation, you must rerun full
compilation to implement those changes before using Signal Probe.

Example 7. Tcl Command to Specify Signal Probe Pin Assignment

set_instance_assignment –name CONNECT_SIGNALPROBE_PIN <pin_name> –to <node_name>

3.1.6. Step 6: Run Fitter-Only Compilation

After re-assigning nodes to the Signal Probe pins, you can run a Fitter-only
compilation (using --recompile) to implement the post-fit change without rerunning
a full compilation.

Example 8. Tcl Command to Run Fitter-Only Compile

Run the fitter with --recompile to preserve timing
and quickly connect the Signal Probe pins
execute_module -tool fit -args {--recompile}

After recompilation, you are ready to program the device and debug the design.

Related Information

• Using the ECO Compilation Flow in Intel Quartus Prime Pro Edition User Guide:
Design Optimization

• Using the ECO Compilation Flow in Intel Quartus Prime Pro Edition User Guide:
Design Optimization

3. Quick Design Verification with Signal Probe

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

126

https://www.intel.com/content/www/us/en/docs/programmable/683236/current/design-compilation.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-the-eco-compilation-flow.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.7. Step 7: Check Connection Table in Fitter Report

When you compile a design with Signal Probe pins, Compiler generates a connection
report showing the connection status to Signal Probe pins.

To view this report, click Processing ➤ Compilation Report, open the Fitter ➤ In-
System Debugging folder, and click Connections to Signal Probe pins.

The Status column indicates whether or not the routing attempt from the nodes to
the Signal Probe pins is successful.

Table 30. Status of Signal Probe Connection

Status Description

Connected Routing succeeded.

Unconnected Routing did not succeed. Possible reasons are:
• Node belongs to an I/O cell or another hard IP, thus cannot be routed.
• Node hierarchy path does not exist in the design.
• Node is not Signal Tap: post-fitting.

Example 9. Connections to Signal Probe Pins in the Compilation Report

Alternatively, you can find the Signal Probe connection information in the Fitter report
file (<project_name>.fit.rpt).

Example 10. Connections to Signal Probe Pins in top.fit.rpt

+--
+
; Connections to Signal Probe
pins ;
+--
+
Signal Probe Pin Name : probey
Status : Connected
Attempted Connection : sprobe_me2
Actual Connection : sprobe_me2
Details :

Signal Probe Pin Name : wizard
Status : Connected
Attempted Connection : sprobe_me1
Actual Connection : sprobe_me1
Details :
+--
+

3. Quick Design Verification with Signal Probe

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Signals Unavailable for Signal Tap Debugging on page 51

• Text-Based Report Files

3.2. Quick Design Verification with Signal Probe Revision History

Document Version Intel Quartus
Prime Version

Changes

2021.10.04 21.3 • Removed references to obsolete Rapid Recompile feature.
• Updated Signal Probe Debugging Flow topic for new optional step and

added flow diagram.
• Added step numbers to tasks in flow to emphasize order of operations.
• Added (Optional) Step 4: Modify the Signal Probe Pins Assignments

topic.
• Revised wording in Step 5: Run Fitter-Only Compilation.
• Revised screenshot and wording in Step 6: Check Connection Table in

Fitter Report.
• Added new Step 3: Connect the Signal Probe Pin to an Output Pin topic.

2018.05.07 18.0.0 Initial release for Intel Quartus Prime Pro Edition software.

3. Quick Design Verification with Signal Probe

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

128

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/text-based-report-files.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. In-System Debugging Using External Logic Analyzers

4.1. About the Intel Quartus Prime Logic Analyzer Interface

The Intel Quartus Prime Logic Analyzer Interface (LAI) allows you to use an external
logic analyzer and a minimal number of Intel-supported device I/O pins to examine
the behavior of internal signals while your design is running at full speed on your
Intel-supported device.

The LAI connects a large set of internal device signals to a small number of output
pins. You can connect these output pins to an external logic analyzer for debugging
purposes. In the Intel Quartus Prime LAI, the internal signals are grouped together,
distributed to a user-configurable multiplexer, and then output to available I/O pins on
your Intel-supported device. Instead of having a one-to-one relationship between
internal signals and output pins, the Intel Quartus Prime LAI enables you to map many
internal signals to a smaller number of output pins. The exact number of internal
signals that you can map to an output pin varies based on the multiplexer settings in
the Intel Quartus Prime LAI.

Note: The term “logic analyzer” when used in this document includes both logic analyzers
and oscilloscopes equipped with digital channels, commonly referred to as mixed
signal analyzers or MSOs.

The LAI does not support Hard Processor System (HPS) I/Os.

Related Information

Devices Support Center

4.2. Choosing a Logic Analyzer

The Intel Quartus Prime software offers the following two general purpose on-chip
debugging tools for debugging a large set of RTL signals from your design:

• The Signal Tap Logic Analyzer

• An external logic analyzer, which connects to internal signals in your Intel-
supported device by using the Intel Quartus Prime LAI

Table 31. Comparing the Signal Tap Logic Analyzer with the Logic Analyzer Interface

Feature Description Recommended Logic
Analyzer

Sample Depth You have access to a wider sample depth with an
external logic analyzer. In the Signal Tap Logic
Analyzer, the maximum sample depth is set to

LAI

continued...

683819 | 2023.12.04

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/support/programmable/support-resources/devices/devices.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Feature Description Recommended Logic
Analyzer

128 Kb, which is a device constraint. However, with
an external logic analyzer, there are no device
constraints, providing you a wider sample depth.

Debugging Timing Issues Using an external logic analyzer provides you with
access to a “timing” mode, which enables you to
debug combined streams of data.

LAI

Performance You frequently have limited routing resources
available to place and route when you use the Signal
Tap Logic Analyzer with your design. An external logic
analyzer adds minimal logic, which removes resource
limits on place-and-route.

LAI

Triggering Capability The Signal Tap Logic Analyzer offers triggering
capabilities that are comparable to external logic
analyzers.

LAI or Signal Tap

Use of Output Pins Using the Signal Tap Logic Analyzer, no additional
output pins are required. Using an external logic
analyzer requires the use of additional output pins.

Signal Tap

Acquisition Speed With the Signal Tap Logic Analyzer, you can acquire
data at speeds of over 200 MHz. You can achieve the
same acquisition speeds with an external logic
analyzer; however, you must consider signal integrity
issues.

Signal Tap

Related Information

System Debugging Tools Overview on page 6

4.2.1. Required Components

To perform analysis using the LAI you need the following components:

• Intel Quartus Prime software version 15.1 or later

• The device under test

• An external logic analyzer

• An Intel FPGA communications cable

• A cable to connect the Intel-supported device to the external logic analyzer

4. In-System Debugging Using External Logic Analyzers

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 97. LAI and Hardware Setup

JTAG

(1)

(2)

FPGA

Connected to
Unused FPGA Pins

LAI

FPGA Programming
Hardware Quartus Prime Software

External Logic Analyzer
Board

Notes to figure:

1. Configuration and control of the LAI using a computer loaded with the Intel
Quartus Prime software via the JTAG port.

2. Configuration and control of the LAI using a third-party vendor logic analyzer via
unused FPGA pins. Support varies by vendor.

4.3. Flow for Using the LAI

Figure 98. LAI Workflow

Configure Logic Analyzer
Interface File

Create New Logic
Analyzer Interface File

Compile Project

Program Device

Control Output Pin

Debug Project

Start the Quartus Prime Software

4.3.1. Defining Parameters for the Logic Analyzer Interface

The Logic Analyzer Interface Editor allows you to define the parameters of the LAI.

4. In-System Debugging Using External Logic Analyzers

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Click Tools ➤ Logic Analyzer Interface Editor.

Figure 99. Logic Analyzer Interface Editor

• In the Setup View list, select Core Parameters.

• Specify the parameters of the LAI instance.

Related Information

LAI Core Parameters on page 135

4.3.2. Mapping the LAI File Pins to Available I/O Pins

To assign pin locations for the LAI:

1. Select Pins in the Setup View list

4. In-System Debugging Using External Logic Analyzers

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 100. Mapping LAI file Pins

2. Double-click the Location column next to the reserved pins in the Name column,
and select a pin from the list.

3. Right-click the selected pin and locate in the Pin Planner.

Related Information

Managing Device I/O Pins
In Intel Quartus Prime Pro Edition User Guide: Design Constraints

4.3.3. Mapping Internal Signals to the LAI Banks

After specifying the number of banks to use in the Core Parameters settings page,
you must assign internal signals for each bank in the LAI.

1. Click the Setup View arrow and select Bank n or All Banks.

2. To view all the bank connections, click Setup View and then select All Banks.

3. Before making bank assignments, right click the Node list and select Add Nodes
to open the Node Finder.

4. Find the signals that you want to acquire.

5. Drag the signals from the Node Finder dialog box into the bank Setup View.

When adding signals, use Signal Tap: pre-synthesis for non-incrementally
routed instances and Signal Tap: post-fitting for incrementally routed instances

As you continue to make assignments in the bank Setup View, the schematic of
the LAI in the Logical View pane begins to reflect the changes.

6. Continue making assignments for each bank in the Setup View until you add all
the internal signals that you want to acquire.

Related Information

Node Finder Command
In Intel Quartus Prime Help

4.3.4. Compiling Your Intel Quartus Prime Project

After you save your .lai file, a dialog box prompts you to enable the Logic Analyzer
Interface instance for the active project. Alternatively, you can define the .lai file
your project uses in the Global Project Settings dialog box. After specifying the
name of your .lai file, compile your project.

4. In-System Debugging Using External Logic Analyzers

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

133

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/assign/unb/unb_com_node_finder.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To verify the Logic Analyzer Interface is properly compiled with your project, open the
Compilation Report tab and select Resource Utilization by Entity, nested under
Partition "auto_fab_0". The LAI IP instance appears in the Compilation Hierarchy Node
column, nested under the internal module of auto_fab_0

Figure 101. LAI Instance in Compilation Report

Logic Analyzer
Interface
IP instance

Resource Utilization
 by Entity

4.3.5. Programming Your Intel-Supported Device Using the LAI

After compilation completes, you must configure your Intel-supported device before
using the LAI.

You can use the LAI with multiple devices in your JTAG chain. Your JTAG chain can also
consist of devices that do not support the LAI or non-Intel, JTAG-compliant devices. To
use the LAI in more than one Intel-supported device, create an .lai file and
configure an .lai file for each Intel-supported device that you want to analyze.

4.4. Controlling the Active Bank During Runtime

When you have programmed your Intel-supported device, you can control which bank
you map to the reserved .lai file output pins. To control which bank you map, in the
schematic in the Logical View, right-click the bank and click Connect Bank.

Figure 102. Configuring Banks

4.4.1. Acquiring Data on Your Logic Analyzer

To acquire data on your logic analyzer, you must establish a connection between your
device and the external logic analyzer. For more information about this process and for
guidelines about how to establish connections between debugging headers and logic
analyzers, refer to the documentation for your logic analyzer.

4. In-System Debugging Using External Logic Analyzers

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5. LAI Core Parameters

The table lists the LAI file core parameters:

Table 32. LAI File Core Parameters

Parameter Range Value Description

Pin Count 1 - 255 Number of pins dedicated to the LAI. You must connect the pins to a
debug header on the board.
Within the device, The Compiler maps each pin to a user-
configurable number of internal signals.

Bank Count 1 - 255 Number of internal signals that you want to map to each pin.
For example, a Bank Count of 8 implies that you connect eight
internal signals to each pin.

Output/Capture Mode Specifies the acquisition mode. The two options are:
• Combinational/Timing—This acquisition mode uses the

external logic analyzer’s internal clock to determine when to
sample data.
This acquisition mode requires you to manually determine the
sample frequency to debug and verify the system, because the
data sampling is asynchronous to the Intel-supported device.
This mode is effective if you want to measure timing information
such as channel-to-channel skew. For more information about the
sampling frequency and the speeds at which it can run, refer to
the external logic analyzer's data sheet.

• Registered/State—This acquisition mode determines when to
sample from a signal on the system under test. Consequently, the
data samples are synchronous with the Intel-supported device.
The Registered/State mode provides a functional view of the
Intel-supported device while it is running. This mode is effective
when you verify the functionality of the design.

Clock Specifies the sample clock. You can use any signal in the design as a
sample clock. However, for best results, use a clock with an
operating frequency fast enough to sample the data that you want to
acquire.
Note: The Clock parameter is available only when Output/

Capture Mode is set to Registered State.

Power-Up State Specifies the power-up state of the pins designated for use with the
LAI. You can select tri-stated for all pins, or selecting a particular
bank that you enable.

Related Information

Defining Parameters for the Logic Analyzer Interface on page 131

4.6. In-System Debugging Using External Logic Analyzers Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2023.10.02 23.3 • Made a minor correction in the description in Required Components.
• Removed the figure notes in Flow for Using the LAI.

2022.07.08 22.1 • Fixed broken link in "About the Intel Quartus Prime Logic Analyzer
Interface"

continued...

4. In-System Debugging Using External Logic Analyzers

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2018.05.07 18.0.0 • Moved list of LAI File Core Parameters from Configuring the File Core
Parameters to its own topic, and added links.

2017.05.08 17.0.0 • Updated Compiling Your Intel Quartus Prime Project
• Updated figure: LAI Instance in Compilation Report.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 • Dita conversion
• Added limitation about HPS I/O support

June 2012 12.0.0 Removed survey link

November 2011 10.1.1 Changed to new document template

December 2010 10.1.0 • Minor editorial updates
• Changed to new document template

August 2010 10.0.1 Corrected links

July 2010 10.0.0 • Created links to the Intel Quartus Prime Help
• Editorial updates
• Removed Referenced Documents section

November 2009 9.1.0 • Removed references to APEX devices
• Editorial updates

March 2009 9.0.0 • Minor editorial updates
• Removed Figures 15–4, 15–5, and 15–11 from 8.1 version

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content

May 2008 8.0.0 • Updated device support list on page 15–3
• Added links to referenced documents throughout the chapter
• Added “Referenced Documents”
• Added reference to Section V. In-System Debugging
• Minor editorial updates

4. In-System Debugging Using External Logic Analyzers

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. In-System Modification of Memory and Constants
The Intel Quartus Prime In-System Memory Content Editor (ISMCE) allows to view and
update memories and constants at runtime through the JTAG interface. By testing
changes to memory contents in the FPGA while the design is running, you can identify,
test, and resolve issues.

The ability to read data from memories and constants can help you identify the source
of problems, and the write capability allows you to bypass functional issues by writing
expected data.

When you use the In-System Memory Content Editor in conjunction with the Signal
Tap logic analyzer, you can view and debug your design in the hardware lab.

Related Information

• System Debugging Tools Overview on page 6

• Design Debugging with the Signal Tap Logic Analyzer on page 29

5.1. IP Cores Supporting In System Memory Content Editor

You can use the In System Memory Content Editor (ISMCE) with the following Intel
FPGA IP cores in the current version of the Intel Quartus Prime Pro Edition software:

Table 33. IP Cores Supporting ISMCE

Device Family IP Supported for ISMCE

Intel Agilex® 7 devices
Intel Stratix 10 devices
Intel Cyclone® 10 GX devices
Intel Arria 10 devices

• RAM: 1-PORT Intel FPGA IP
• ROM: 1-PORT Intel FPGA IP

Note: To use the ISMCE tool with designs migrated from an older device to the Intel Stratix
10 device or the Intel Agilex 7 device, you must first replace instances of the
altsyncram Intel FPGA IP with the altera_syncram Intel FPGA IP.

Related Information

• Intel Stratix 10 Embedded Memory IP Core References
In Intel Stratix 10 Embedded Memory User Guide

• About Embedded Memory IP Cores
In Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM:
2-PORT) User Guide

• Intel Agilex 7 Embedded Memory User Guide

683819 | 2023.12.04

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683423/current/embedded-memory-ip-references.html
https://www.intel.com/content/www/us/en/docs/programmable/683240.html
https://www.intel.com/content/www/us/en/docs/programmable/683241/22-3.html?wapkw=agilex%20embedded%20memory
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

5.2. Debug Flow with the In-System Memory Content Editor

To debug a design with the In-System Memory Content Editor:

1. Identify the memories and constants that you want to access at runtime.

2. Specify in the design the memory or constant that must be run-time modifiable.

3. Perform a full compilation.

4. Program the device.

5. Launch the In-System Memory Content Editor.
The In-System Memory Content Editor retrieves all instances of run-time
configurable memories and constants by scanning the JTAG chain and sending a
query to the device selected in the JTAG Chain Configuration pane.

6. Modify the values of the memories or constants, and check the results.

For example, if a parity bit in a memory is incorrect, you can use the In-System
Memory Content Editor to write the correct parity bit values into the RAM, allowing
the system to continue functioning. To check the error handling functionality of a
design, you can intentionally write incorrect parity bit values into the RAM.

5.3. Enabling Runtime Modification of Instances in the Design

To make an instance of a memory or constant runtime-modifiable:

1. Open the instance with the Parameter Editor.

2. In the Parameter Editor, turn on Allow In-System Memory Content Editor to
capture and update content independently of the system clock.

3. Recompile the design.

When you specify that a memory or constant is run-time modifiable, the Intel Quartus
Prime software changes the default implementation to enable run-time modification
without changing the functionality of your design, by:

• Converting single-port RAMs to dual-port RAMs

• Adding logic to avoid memory write collision and maintain read write coherency in
device families that do not support true dual-port RAMs, such as the Intel Stratix
10 device family.

5. In-System Modification of Memory and Constants

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4. Programming the Device with the In-System Memory Content
Editor

After compilation, you must program the design in the FPGA. You can use the JTAG
Chain Configuration pane to program the device from within the In-System Memory
Content Editor.

Related Information

JTAG Chain Configuration Pane (In-System Memory Content Editor)
In Intel Quartus Prime Help

5.5. Loading Memory Instances to the ISMCE

To view the content of reconfigurable memory instances:

1. On the Intel Quartus Prime software, click Tools ➤ In-System Memory Content
Editor.

Figure 103. Hex Editor After Scanning JTAG Chain

2. In the JTAG Chain Configuration pane, click Scan Chain. The In-System
Memory Content Editor sends a query to the device in the JTAG Chain
Configuration pane and retrieves all instances of run-time configurable memories
and constants.
The Instance Manager pane lists all the instances of constants and memories
that are runtime-modifiable. The Hex Editor pane displays the contents of each
memory or constant instance. The memory contents in the Hex Editor pane
appear as red question marks until you read the device.

3. Click an instance from the Instance manager, and then click to load the
contents of that instance.

5. In-System Modification of Memory and Constants

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

139

http://quartushelp.altera.com/current/index.htm#program/red/red_com_jtag_chain.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Hex Editor now displays the contents of the instance.

Figure 104. Hex Editor Displaying Instance

5.6. Monitoring Locations in Memory

The ISMCE allows you to monitor information in memory regions. For example, you
can determine if a counter increments, or if a given word changes. For memories
connected to a Nios II processor, you can observe how the software uses key regions
of memory.

• Click to synchronize the Hex Editor to the current instance's content. The Hex
Editor displays in red content that changed with respect to the last device
synchronization.

• If you want a live output of the memory contents instead of manually

synchronizing, click . Continuous read is analogous to using the Signal Tap logic
analyzer in continuous acquisition, with the memory values appearing as words in
the Hex Editor instead of toggling waveforms.

Note: For Intel Stratix 10 and Intel Agilex 7 devices only, ISMCE logic can perform read and
write operations only when the design logic is idle. If the design logic attempts a write
or an address change operation, the design logic prevails, and the ISMCE operation
times out. An error message lets you know that the memory connected to the In-
System Memory Content Editor instance is in use, and memory content is not
updated.

5. In-System Modification of Memory and Constants

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 105. Hex Editor After Manually Editing Content

Related Information

• Read Information from In-System Memory Commands (Processing Menu)
In Intel Quartus Prime Help

• Stop In-System Memory Analysis Command (Processing Menu)
In Intel Quartus Prime Help

5.7. Editing Memory Contents with the Hex Editor Pane

You can edit the contents of instances by typing values directly into the Hex Editor
pane.

Black content on the Hex Editor pane means that the value read is the same as last
synchronization.

1. Type content on the pane.
The Hex Editor displays in blue changed content that has not been synchronized
to the device.

2. Click to synchronize the content to the device.

Note: For Intel Stratix 10 and Intel Agilex 7 devices only, ISMCE logic can perform read and
write operations only when the design logic is idle. If the design logic attempts a write
or an address change operation, the design logic prevails, and the ISMCE operation
times out. An error message lets you know that the memory connected to the In-
System Memory Content Editor instance is in use, and reports the number of
successful writes before the design logic requested access to the memory.

5. In-System Modification of Memory and Constants

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

141

http://quartushelp.altera.com/current/index.htm#program/red/red_com_read_data.htm
http://quartushelp.altera.com/current/index.htm#program/red/red_com_stop.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 106. Hex Editor After Manually Editing Content

Related Information

• Custom Fill Dialog Box
In Intel Quartus Prime Help

• Write Information to In-System Memory Commands (Processing Menu)
In Intel Quartus Prime Help

• Go To Dialog Box
In Intel Quartus Prime Help

• Select Range Dialog Box
In Intel Quartus Prime Help

5.8. Importing and Exporting Memory Files

The In-System Memory Content Editor allows you to import and export data values for
memories that are runtime modifiable. Importing from a data file enables you to
quickly load an entire memory image. Exporting to a data file allows you to save the
contents of the memory for future use.

You can import or export files in hex or mif formats.

1. To import a file, click Edit ➤ Import Data from File..., and then select the file to
import.

If the file is not compatible, unexpected data appears in the Hex Editor.

2. To export memory contents to a file, click Edit ➤ Export Data to File..., and then
specify the name.

5. In-System Modification of Memory and Constants

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

142

http://quartushelp.altera.com/current/index.htm#program/red/red_com_val_fill_custom.htm
http://quartushelp.altera.com/current/index.htm#program/red/red_com_write_all_words.htm
http://quartushelp.altera.com/current/index.htm#program/red/red_com_go_to.htm
http://quartushelp.altera.com/current/index.htm#program/red/red_com_sel_range.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Import Data
In Intel Quartus Prime Help

• Export Data
In Intel Quartus Prime Help

• Hexadecimal (Intel-Format) File (.hex) Definition
In Intel Quartus Prime Help

• Memory Initialization File (.mif) Definition
In Intel Quartus Prime Help

5.9. Access Two or More Devices

If you have more than one device with in-system configurable memories or constants
in a JTAG chain, you can launch multiple In-System Memory Content Editors within the
Intel Quartus Prime software to access the memories and constants in each of the
devices. Each window of the In-System Memory Content Editor can access the
memories and constants of a single device.

5.10. Scripting Support

The Intel Quartus Prime software allows you to perform runtime modification of
memories and constants in scripted flows.

You can enable memory and constant instances to be runtime modifiable from the HDL
code. Additionally, the In-System Memory Content Editor supports reading and writing
of memory contents via Tcl commands from the insystem_memory_edit package.

Related Information

• Tcl Scripting
In Intel Quartus Prime Pro Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Pro Edition User Guide: Scripting

5.10.1. The insystem_memory_edit Tcl Package

The ::quartus::insystem_memory_edit Tcl package contains the set of Tcl functions
for reading and editing the contents of memory in an Intel FPGA device using the In-
System Memory Content Editor. The quartus_stp and quartus_stp_tcl command
line executables load this package by default.

For the most up-to-date information about the ::quartus::insystem_memory_edit,
refer to the Intel Quartus Prime Pro Edition User Guide: Scripting.

Related Information

Intel Quartus Prime Pro Edition User Guide: Scripting
In Intel Quartus Prime Pro Edition User Guide: Scripting

5.10.1.1. Getting Information about the insystem_memory_edit Package

You can also get information on the insystem_memory_edit package directly from
the command line:

5. In-System Modification of Memory and Constants

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

143

http://quartushelp.altera.com/current/index.htm#program/red/red_com_import_data.htm
http://quartushelp.altera.com/current/index.htm#program/red/red_com_export_data.htm
http://quartushelp.altera.com/current/index.htm#reference/glossary/def_hexfile.htm
http://quartushelp.altera.com/current/index.htm#reference/glossary/def_mif.htm
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/command-line-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• For general information about the package, type:

quartus_stp --tcl_eval help -pkg insystem_memory_edit

• For information about a command in the package, type:

quartus_stp --tcl_eval help -cmd <command_name>

5.11. In-System Modification of Memory and Constants Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2023.04.03 23.1 • Updated product family name to "Intel Agilex 7."

2022.12.12 22.4 • Added support for the Intel Agilex 7 device family.

2018.05.07 18.0.0 • Added support for the Intel Stratix 10 device family.
• Removed obsolete example.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 • Dita conversion.
• Removed references to megafunction and replaced with IP core.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.3 Template update.

December 2010 10.0.2 Changed to new document template. No change to content.

August 2010 10.0.1 Corrected links

July 2010 10.0.0 • Inserted links to Intel Quartus Prime Help
• Removed Reference Documents section

November 2009 9.1.0 • Delete references to APEX devices
• Style changes

March 2009 9.0.0 No change to content

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Added reference to Section V. In-System Debugging in volume 3 of the
Intel Quartus Prime Handbook on page 16-1

• Removed references to the Mercury device, as it is now considered to
be a “Mature” device

• Added links to referenced documents throughout document
• Minor editorial updates

5. In-System Modification of Memory and Constants

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Design Debugging Using In-System Sources and Probes
The Signal Tap Logic Analyzer and Signal Probe allow you to read or “tap” internal
logic signals during run time as a way to debug your logic design.

Traditional debugging techniques often involve using an external pattern generator to
exercise the logic and a logic analyzer to study the output waveforms during run time.

You can make the debugging cycle more efficient when you can drive any internal
signal manually within your design, which allows you to perform the following actions:

• Force the occurrence of trigger conditions set up in the Signal Tap Logic Analyzer

• Create simple test vectors to exercise your design without using external test
equipment

• Dynamically control run time control signals with the JTAG chain

The In-System Sources and Probes Editor in the Intel Quartus Prime software extends
the portfolio of verification tools, and allows you to easily control any internal signal
and provides you with a completely dynamic debugging environment. Coupled with
either the Signal Tap Logic Analyzer or Signal Probe, the In-System Sources and
Probes Editor gives you a powerful debugging environment in which to generate
stimuli and solicit responses from your logic design.

The Virtual JTAG IP core and the In-System Memory Content Editor also give you the
capability to drive virtual inputs into your design. The Intel Quartus Prime software
offers a variety of on-chip debugging tools.

The In-System Sources and Probes Editor consists of the ALTSOURCE_PROBE IP core
and an interface to control the ALTSOURCE_PROBE IP core instances during run time.
Each ALTSOURCE_PROBE IP core instance provides you with source output ports and
probe input ports, where source ports drive selected signals and probe ports sample
selected signals. When you compile your design, the ALTSOURCE_PROBE IP core sets
up a register chain to either drive or sample the selected nodes in your logic design.
During run time, the In-System Sources and Probes Editor uses a JTAG connection to
shift data to and from the ALTSOURCE_PROBE IP core instances. The figure shows a
block diagram of the components that make up the In-System Sources and Probes
Editor.

683819 | 2023.12.04

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 107. In-System Sources and Probes Editor Block Diagram

Design Logic

altsource_probe
Intel FPGA IP Core

Probes Sources

JTAG
Controller

FPGA
Programming

Hardware

Intel
Quartus Prime

Software

FPGA

D Q

D Q

The ALTSOURCE_PROBE IP core hides the detailed transactions between the JTAG
controller and the registers instrumented in your design to give you a basic building
block for stimulating and probing your design. Additionally, the In-System Sources and
Probes Editor provides single-cycle samples and single-cycle writes to selected logic
nodes. You can use this feature to input simple virtual stimuli and to capture the
current value on instrumented nodes. Because the In-System Sources and Probes
Editor gives you access to logic nodes in your design, you can toggle the inputs of low-
level components during the debugging process. If used in conjunction with the Signal
Tap Logic Analyzer, you can force trigger conditions to help isolate your problem and
shorten your debugging process.

The In-System Sources and Probes Editor allows you to easily implement control
signals in your design as virtual stimuli. This feature can be especially helpful for
prototyping your design, such as in the following operations:

• Creating virtual push buttons

• Creating a virtual front panel to interface with your design

• Emulating external sensor data

• Monitoring and changing run time constants on the fly

The In-System Sources and Probes Editor supports Tcl commands that interface with
all your ALTSOURCE_PROBE IP core instances to increase the level of automation.

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

System Debugging Tools
For an overview and comparison of all the tools available in the Intel Quartus Prime
software on-chip debugging tool suite

6.1. Hardware and Software Requirements

The following components are required to use the In-System Sources and Probes
Editor:

• Intel Quartus Prime software

or

• Intel Quartus Prime Lite Edition

• Download Cable (USB-BlasterTM download cable or ByteBlasterTM cable)

• Intel FPGA development kit or user design board with a JTAG connection to device
under test

The In-System Sources and Probes Editor supports the following device families:

• Arria series

• Stratix series

• Cyclone series

• MAX® series

6.2. Design Flow Using the In-System Sources and Probes Editor

The In-System Sources and Probes Editor supports an RTL flow. Signals that you want
to view in the In-System Sources and Probes editor are connected to an instance of
the In-System Sources and Probes IP core.

After you compile the design, you can control each instance via the In-System
Sources and Probes Editor pane or via a Tcl interface.

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

147

https://www.intel.com/content/www/us/en/docs/programmable/683819/current/system-debugging-tools-overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 108. FPGA Design Flow Using the In-System Sources and Probes Editor

Yes

No

Start

End

Functionality
Satisfied?

Create a New Project or Open an
Existing Project

Configure altsource_probe
Intel FPGA IP Core

Instrument selected logic nodes
by Instantiating the

altsource_probe Intel FPGA IP
Core variation file into the HDL

Design

Compile the design

Program Target Device(s)

Control Source and Probe
Instance(s)

Debug/Modify HDL

6.2.1. Instantiating the In-System Sources and Probes IP Core

To instantiate the In-System Sources and Probes IP core in a design:

1. In the IP Catalog (Tools ➤ IP Catalog), type In-System Sources and
Probes.

2. Double-click In-System Sources and Probes to open the parameter editor.

3. Specify a name for the IP variation.

4. Specify the parameters for the IP variation.

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The IP core supports up to 512 bits for each source, and design can include up to
128 instances of this IP core.

5. Click Generate or Finish to generate IP core synthesis and simulation files
matching your specifications.

6. Using the generated template, instantiate the In-System Sources and Probes IP
core in your design.

Note: The In-System Sources and Probes Editor does not support simulation. Remove the
In-System Sources and Probes IP core before you create a simulation netlist.

6.2.2. In-System Sources and Probes IP Core Parameters

Use the template to instantiate the variation file in your design.

Table 34. In-System Sources and Probes IP Port Information

Port Name Required? Direction Comments

probe[] No Input The outputs from your design.

source_clk No Input Source Data is written synchronously to this clock. This input is required
if you turn on Source Clock in the Advanced Options box in the
parameter editor.

source_ena No Input Clock enable signal for source_clk. This input is required if specified in
the Advanced Options box in the parameter editor.

source[] No Output Used to drive inputs to user design.

You can include up to 128 instances of the in-system sources and probes IP core in
your design, if your device has available resources. Each instance of the IP core uses a
pair of registers per signal for the width of the widest port in the IP core. Additionally,
there is some fixed overhead logic to accommodate communication between the IP
core instances and the JTAG controller. You can also specify an additional pair of
registers per source port for synchronization.

6.3. Compiling the Design

When you compile your design that includes the In-System Sources and Probes IP
core, the In-System Sources and Probes and SLD Hub Controller IP core are added to
your compilation hierarchy automatically. These IP cores provide communication
between the JTAG controller and your instrumented logic.

You can modify the number of connections to your design by editing the In-System
Sources and Probes IP core. To open the design instance you want to modify in the
parameter editor, double-click the instance in the Project Navigator. You can then
modify the connections in the HDL source file. You must recompile your design after
you make changes.

6.4. Running the In-System Sources and Probes Editor

The In-System Sources and Probes Editor gives you control over all
ALTSOURCE_PROBE IP core instances within your design. The editor allows you to
view all available run time controllable instances of the ALTSOURCE_PROBE IP core in
your design, provides a push-button interface to drive all your source nodes, and
provides a logging feature to store your probe and source data.

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To run the In-System Sources and Probes Editor:

• On the Tools menu, click In-System Sources and Probes Editor.

6.4.1. In-System Sources and Probes Editor GUI

The In-System Sources and Probes Editor contains three panes:

• JTAG Chain Configuration—Allows you to specify programming hardware,
device, and file settings that the In-System Sources and Probes Editor uses to
program and acquire data from a device.

• Instance Manager—Displays information about the instances generated when
you compile a design, and allows you to control data that the In-System Sources
and Probes Editor acquires.

• In-System Sources and Probes Editor—Logs all data read from the selected
instance and allows you to modify source data that is written to your device.

When you use the In-System Sources and Probes Editor, you do not need to open an
Intel Quartus Prime software project. The In-System Sources and Probes Editor
retrieves all instances of the ALTSOURCE_PROBE IP core by scanning the JTAG chain
and sending a query to the device selected in the JTAG Chain Configuration pane.
You can also use a previously saved configuration to run the In-System Sources and
Probes Editor.

Each In-System Sources and Probes Editor pane can access the
ALTSOURCE_PROBE IP core instances in a single device. If you have more than one
device containing IP core instances in a JTAG chain, you can launch multiple In-
System Sources and Probes Editor panes to access the IP core instances in each
device.

6.4.2. Programming Your Device With JTAG Chain Configuration

After you compile your project, you must configure your FPGA before you use the In-
System Sources and Probes Editor.

To configure a device to use with the In-System Sources and Probes Editor, perform
the following steps:

1. Open the In-System Sources and Probes Editor.

2. In the JTAG Chain Configuration pane, point to Hardware, and then select the
hardware communications device. You may be prompted to configure your
hardware; in this case, click Setup.

3. From the Device list, select the FPGA device to which you want to download the
design (the device may be automatically detected). You may need to click Scan
Chain to detect your target device.

4. In the JTAG Chain Configuration pane, click to browse for the SRAM Object File
(.sof) that includes the In-System Sources and Probes instance or instances.
(The .sof may be automatically detected).

5. Click Program Device to program the target device.

6.4.3. Instance Manager

The Instance Manager pane provides a list of all ALTSOURCE_PROBE instances in
the design, and allows you to configure data acquisition.

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Instance Manager pane contains the following buttons and sub-panes:

• Read Probe Data—Samples the probe data in the selected instance and displays
the probe data in the In-System Sources and Probes Editor pane.

• Continuously Read Probe Data—Continuously samples the probe data of the
selected instance and displays the probe data in the In-System Sources and
Probes Editor pane; you can modify the sample rate via the Probe read
interval setting.

• Stop Continuously Reading Probe Data—Cancels continuous sampling of the
probe of the selected instance.

• Read Source Data—Reads the data of the sources in the selected instances.

• Probe Read Interval—Displays the sample interval of all the In-System Sources
and Probe instances in your design; you can modify the sample interval by clicking
Manual.

• Event Log—Controls the event log that appears in the In-System Sources and
Probes Editor pane.

• Write Source Data—Allows you to manually or continuously write data to the
system.

Beside each entry, the Instance Manager pane displays the instance status. The
possible instance statuses are Not running Offloading data, Updating data, and
Unexpected JTAG communication error.

6.4.4. In-System Sources and Probes Editor Pane

The In-System Sources and Probes Editor pane allows you to view data from all
sources and probes in your design.

The data is organized according to the index number of the instance. The editor
provides an easy way to manage your signals, and allows you to rename signals or
group them into buses. All data collected from in-system source and probe nodes is
recorded in the event log and you can view the data as a timing diagram.

6.4.4.1. Reading Probe Data

You can read data by selecting the ALTSOURCE_PROBE instance in the Instance
Manager pane and clicking Read Probe Data.

This action produces a single sample of the probe data and updates the data column
of the selected index in the In-System Sources and Probes Editor pane. You can
save the data to an event log by turning on the Save data to event log option in the
Instance Manager pane.

If you want to sample data from your probe instance continuously, in the Instance
Manager pane, click the instance you want to read, and then click Continuously
read probe data. While reading, the status of the active instance shows Unloading.
You can read continuously from multiple instances.

You can access read data with the shortcut menus in the Instance Manager pane.

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To adjust the probe read interval, in the Instance Manager pane, turn on the
Manual option in the Probe read interval sub-pane, and specify the sample rate in
the text field next to the Manual option. The maximum sample rate depends on your
computer setup. The actual sample rate is shown in the Current interval box. You
can adjust the event log window buffer size in the Maximum Size box.

6.4.4.2. Writing Data

To modify the source data you want to write into the ALTSOURCE_PROBE instance,
click the name field of the signal you want to change. For buses of signals, you can
double-click the data field and type the value you want to drive out to the
ALTSOURCE_PROBE instance. The In-System Sources and Probes Editor stores the
modified source data values in a temporary buffer.

Modified values that are not written out to the ALTSOURCE_PROBE instances appear in
red. To update the ALTSOURCE_PROBE instance, highlight the instance in the
Instance Manager pane and click Write source data. The Write source data
function is also available via the shortcut menus in the Instance Manager pane.

The In-System Sources and Probes Editor provides the option to continuously update
each ALTSOURCE_PROBE instance. Continuous updating allows any modifications you
make to the source data buffer to also write immediately to the ALTSOURCE_PROBE
instances. To continuously update the ALTSOURCE_PROBE instances, change the
Write source data field from Manually to Continuously.

6.4.4.3. Organizing Data

The In-System Sources and Probes Editor pane allows you to group signals into
buses, and also allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group, right-click and
select Group. You can modify the display format in the Bus Display Format and the
Bus Bit order shortcut menus.

The In-System Sources and Probes Editor pane allows you to rename any signal.
To rename a signal, double-click the name of the signal and type the new name.

The event log contains a record of the most recent samples. The buffer size is
adjustable up to 128k samples. The time stamp for each sample is logged and is
displayed above the event log of the active instance as you move your pointer over
the data samples.

You can save the changes that you make and the recorded data to a Sources and
Probes File (.spf). To save changes, on the File menu, click Save. The file contains
all the modifications you made to the signal groups, as well as the current data event
log.

6.5. Tcl interface for the In-System Sources and Probes Editor

To support automation, the In-System Sources and Probes Editor supports the
procedures described in this chapter in the form of Tcl commands. The Tcl package for
the In-System Sources and Probes Editor is included by default when you run
quartus_stp.

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Tcl interface for the In-System Sources and Probes Editor provides a powerful
platform to help you debug your design. The Tcl interface is especially helpful for
debugging designs that require toggling multiple sets of control inputs. You can
combine multiple commands with a Tcl script to define a custom command set.

Table 35. In-System Sources and Probes Tcl Commands

Command Argument Description

start_insystem_source_probe -device_name<device
name> -hardware_name
<hardware name>

Opens a handle to a device with the
specified hardware.
Call this command before starting any
transactions.

get_insystem_source_probe_instance_info -device_name <device
name> -hardware_name
<hardware name>

Returns a list of all
ALTSOURCE_PROBE instances in your
design. Each record returned is in the
following format:
{<instance Index>, <source width>,
<probe width>, <instance name>}

read_probe_data -instance_index
<instance_index> -
value_in_hex (optional)

Retrieves the current value of the
probe.
A string is returned that specifies the
status of each probe, with the MSB as
the left-most bit.

read_source_data -instance_index
<instance_index> -
value_in_hex (optional)

Retrieves the current value of the
sources.
A string is returned that specifies the
status of each source, with the MSB
as the left-most bit.

write_source_data -instance_index
<instance_index> -value
<value> -value_in_hex
(optional)

Sets the value of the sources.
A binary string is sent to the source
ports, with the MSB as the left-most
bit.

end_insystem_source_probe None Releases the JTAG chain.
Issue this command when all
transactions are finished.

The example shows an excerpt from a Tcl script with procedures that control the
ALTSOURCE_PROBE instances of the design as shown in the figure below. The
example design contains a DCFIFO with ALTSOURCE_PROBE instances to read from
and write to the DCFIFO. A set of control muxes are added to the design to control the
flow of data to the DCFIFO between the input pins and the ALTSOURCE_PROBE
instances. A pulse generator is added to the read request and write request control
lines to guarantee a single sample read or write. The ALTSOURCE_PROBE instances,
when used with the script in the example below, provide visibility into the contents of
the FIFO by performing single sample write and read operations and reporting the
state of the full and empty status flags.

Use the Tcl script in debugging situations to either empty or preload the FIFO in your
design. For example, you can use this feature to preload the FIFO to match a trigger
condition you have set up within the Signal Tap logic analyzer.

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

153

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 109. DCFIFO Example Design Controlled by Tcl Script

Write_clock

write_req
data[7..0]

write_clock

read_req

read_clock

wr_full

Q[7..0]

rd_empty

data_out

read_clock
source_read_sel

s_read_req

s_write_req

rd_req_in

wr_req_in

data_in[7..0]

altsource_probe
(Instance 1)

altsource_probe
(Instance 0)

source_write_sel

s_data[7..0]
D Q

D Q

Setup USB hardware - assumes only USB Blaster is installed and
an FPGA is the only device in the JTAG chain
set usb [lindex [get_hardware_names] 0]
set device_name [lindex [get_device_names -hardware_name $usb] 0]
write procedure : argument value is integer
proc write {value} {
global device_name usb
variable full
start_insystem_source_probe -device_name $device_name -hardware_name $usb
#read full flag
set full [read_probe_data -instance_index 0]
if {$full == 1} {end_insystem_source_probe
return "Write Buffer Full"
}
##toggle select line, drive value onto port, toggle enable
##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;
##bit 9 = Source_write_sel
##int2bits is custom procedure that returns a bitstring from an integer
 ## argument
write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | $value]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | $value]]
##clear transaction
write_source_data -instance_index 0 -value 0
end_insystem_source_probe
}
proc read {} {
global device_name usb
variable empty
start_insystem_source_probe -device_name $device_name -hardware_name $usb
##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads empty_flag
set empty [read_probe_data -instance_index 1]
if {[regexp {1........} $empty]} { end_insystem_source_probe
return "FIFO empty" }
toggle select line for read transaction

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Source_read_sel = bit 0; s_read_reg = bit 1
pulse read enable on DC FIFO
write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex
set x [read_probe_data -instance_index 1]
end_insystem_source_probe
return $x
}

Related Information

• Tcl Scripting in Intel Quartus Prime Pro Edition User Guide: Scripting

• Intel Quartus Prime Pro Edition Settings File Manual

• Command Line Scripting in Intel Quartus Prime Pro Edition User Guide: Scripting

6.6. Design Example: Dynamic PLL Reconfiguration

The In-System Sources and Probes Editor can help you create a virtual front panel
during the prototyping phase of your design. You can create relatively simple, high
functioning designs of in a short amount of time. The following PLL reconfiguration
example demonstrates how to use the In-System Sources and Probes Editor to
provide a GUI to dynamically reconfigure a Stratix PLL.

Stratix PLLs allow you to dynamically update PLL coefficients during run time. Each
enhanced PLL within the Stratix device contains a register chain that allows you to
modify the pre-scale counters (m and n values), output divide counters, and delay
counters. In addition, the ALTPLL_RECONFIG IP core provides an easy interface to
access the register chain counters. The ALTPLL_RECONFIG IP core provides a cache
that contains all modifiable PLL parameters. After you update all the PLL parameters in
the cache, the ALTPLL_RECONFIG IP core drives the PLL register chain to update the
PLL with the updated parameters. The figure shows a Stratix-enhanced PLL with
reconfigurable coefficients.

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

155

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683296.html
https://www.intel.com/content/www/us/en/docs/programmable/683432/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 110. Stratix-Enhanced PLL with Reconfigurable Coefficients

÷n Δtn

Δt
m

÷m

÷g0 Δt
g0

÷e3 Δt
e3

÷g3 Δt
g3

PFD VCOCharge
Pump

Loop
Filter

fREF

scandata

scanclk

scanaclr

Counters and Clock
Delay Settings are
Programmable

All Output Counters and
Clock Delay Settings can
be Programmed Dynamically

LSB MSB

LSB MSB

LSB MSB

LSB MSB

LSB

MSB

(1) (2)

The following design example uses an ALTSOURCE_PROBE instance to update the PLL
parameters in the ALTPLL_RECONFIG IP core cache. The ALTPLL_RECONFIG IP core
connects to an enhanced PLL in a Stratix FPGA to drive the register chain containing
the PLL reconfigurable coefficients. This design example uses a Tcl/Tk script to
generate a GUI where you can enter in new m and n values for the enhanced PLL. The
Tcl script extracts the m and n values from the GUI, shifts the values out to the
ALTSOURCE_PROBE instances to update the values in the ALTPLL_RECONFIG IP core
cache, and asserts the reconfiguration signal on the ALTPLL_RECONFIG IP core. The
reconfiguration signal on the ALTPLL_RECONFIG IP core starts the register chain
transaction to update all PLL reconfigurable coefficients.

Figure 111. Block Diagram of Dynamic PLL Reconfiguration Design Example

In-System Sources
and Probes
Tcl Interface

JTAG
Interface

Counter
Parameters

Intel Stratix Series FPGA50 MHz

PLL_scandata
PLL_scandlk
PLL_scanaclr

E0

C0

C1

fref

Stratix-Enhanced
PLLalt_pll_reconfig

IP Core

In-System
Sources and

Probes

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This design example was created using a Nios II Development Kit, Stratix Edition. The
file sourceprobe_DE_dynamic_pll.zip contains all the necessary files for running
this design example, including the following:

• Readme.txt—A text file that describes the files contained in the design example
and provides instructions about running the Tk GUI shown in the figure below.

• Interactive_Reconfig.qar—The archived Intel Quartus Prime project for this
design example.

Figure 112. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources
and Probes Tcl Package

Related Information

On-chip Debugging Design Examples
to download the In-System Sources and Probes Example

6.7. Design Debugging Using In-System Sources and Probes
Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2023.07.31 22.1 • Corrected incorrect space characters in Tcl interface for the In-System
Sources and Probes Editor.

2022.07.08 22.1 • Fixed broken link in "Design Example: Dynamic PLL Reconfiguration".

2019.06.11 18.1.0 Rebranded megafunction to Intel FPGA IP core

2018.05.07 18.0.0 Added details on finding the In-System Sources and Probes in the IP
Catalog.

2016.10.31 16.1.0 Implemented Intel rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

December 2010 10.1.0 Minor corrections. Changed to new document template.

July 2010 10.0.0 Minor corrections.

November 2009 9.1.0 • Removed references to obsolete devices.
• Style changes.

continued...

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

157

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/on-chip-debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

March 2009 9.0.0 No change to content.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Documented that this feature does not support simulation on page 17–
5

• Updated Figure 17–8 for Interactive PLL reconfiguration manager
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

6. Design Debugging Using In-System Sources and Probes

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Analyzing and Debugging Designs with System Console

7.1. Introduction to System Console

System Console provides visibility into your design and allows you to perform system-
level debug on an FPGA at run-time. System Console performs tests on debug-enabled
Intel FPGA IP. A variety of debug services provide read and write access to elements
in your design.

• Perform board bring-up with finalized or partially complete designs.

• Automate run-time verification through scripting across multiple devices.

• Debug transceiver links, memory interfaces, and Ethernet interfaces.

• Integrate your debug IP into the debug platform.

• Perform system verification with MATLAB and Simulink.

Figure 113. System Console Tools
The System Console API supports services that access your design in operation.

Tcl Console ToolkitsAutosweep Eye Viewer

System Console Tcl
(Command-Line Interface) System Console GUI Interface

System Console

Ethernet Processor Host Bytestream Others

TCP/IP Nios II JTAG Master JTAG UART ISSP

Nios II with
JTAG Debug

USB Debug
Master

Tools

API

Hardware
Requirements

Dashboard

683819 | 2023.12.04

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

System Console also provides the hardware debugging infrastructure to support
operation and customization of debugging "toolkits." Toolkits are small applications
that you can use to perform system-level debug of such elements as external memory
interfaces, Ethernet interfaces, PCI Express interfaces, transceiver PHY interfaces, and
various other debugging functions. The Intel Quartus Prime software includes the
Available System Debugging Toolkits on page 175. For advanced users, System
Console also supports Tcl commands that allow you to define and operate your own
custom toolkits, as System Console and Toolkit Tcl Command Reference Manual
describes.

Related Information

• System Console Online Training

• System Console and Toolkit Tcl Command Reference Manual

7.1.1. IP Cores that Interact with System Console

System Console runs on your host computer and communicates with your running
design through debug agents. Debug agents are the soft-logic embedded in some IP
cores that enable debug communication with the host computer.

You can instantiate debug IP cores using the Intel Quartus Prime software IP Catalog
and IP parameter editor. Some IP cores are enabled for debug by default, while you
must enable debug for other IP cores through options in the parameter editor. Some
debug agents have multiple purposes.

When you include debug-enabled IP cores in your design, you can access large
portions of the design running on hardware for debugging purposes. Debug agents
allow you to read and write to memory and alter peripheral registers from the tool.

Services associated with debug agents in the running design can open and close as
needed. System Console determines the communication protocol with the debug
agent. The communication protocol determines the best board connection to use for
command and data transmission.

The Programmable SRAM Object File (.sof) that the Intel Quartus Prime Assembler
generates for device programming provides the System Console with channel
communication information. When you open System Console from the Intel Quartus
Prime software GUI, with a project open that includes a .sof, System Console
automatically finds and links to the device(s) it detects. When you open System
Console without an open project, or with an unrelated project open, you can manually
load the .sof file that you want, and then the design linking occurs automatically if
the device(s) match.

Related Information

• Available System Debugging Toolkits on page 175

• WP-01170 System-Level Debugging and Monitoring of FPGA Designs

7.1.2. Services Provided through Debug Agents

By adding the appropriate debug agent to your design, System Console services can
use the associated capabilities of the debug agent.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

160

https://learning.intel.com/developer/learn/course/external/view/elearning/96/advanced-system-design-using-platform-designer-system-verification-with-system-console
https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01170-system-console.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 36. Common Services for System Console

Service Function Debug Agent Providing Service

host Access a memory-mapped agent connected to the
host interface.

• Nios II with debug
• JTAG to Avalon Master Bridge
• USB Debug Master

agent Allows a host component to access a single agent
without needing to know the location of the agent
in the host's memory map. Any agent that is
accessible to a System Console host can provide
this service.

• Nios II with debug
• JTAG to Avalon Master Bridge
• USB Debug Master
If an SRAM Object File (.sof) is loaded, then
agents accessed by a debug host provide the
agent service.

issp The In-System Sources and Probes (ISSP) service
provides scriptable access to the In-System
Sources and Probes Intel FPGA IP for generating
stimuli and soliciting responses from your logic
design.

In-System Sources and Probes Intel FPGA IP

processor • Start, stop, or step the processor.
• Read and write processor registers.

Nios II with debug

JTAG UART The JTAG UART is an Avalon memory mapped
agent that you can use in conjunction with
System Console to send and receive byte
streams.

JTAG UART

Note: The following debug agent IP cores in the IP Catalog do not support VHDL simulation
generation in the current version of the Intel Quartus Prime software:

• JTAG Debug Link

• JTAG Hub Controller System

• USB Debug Link

7.1.3. System Console Debugging Flow

The System Console debugging flow includes the following steps:

1. Add debug-enabled Intel FPGA IP to your design.

2. Compile the design.

3. Connect to a board and program the FPGA.

4. Start System Console.

5. Locate and open a System Console service.

6. Perform debug operations with the service.

7. Close the service.

Related Information

• Starting System Console on page 162

• Launching a Toolkit in System Console on page 174

• Using System Console Services on page 178

• Running System Console in Command-Line Mode on page 193

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2. Starting System Console

You can use any of the following methods to start System Console:

• To start System Console from the Intel Quartus Prime software GUI:

Click Tools ➤ System Debugging Tools ➤ System Console.

Or

Click Tools ➤ System Debugging Tools ➤ System Debugging Toolkits.

• To start System Console from Platform Designer:

Click Tools ➤ System Console

• To start Stand-Alone System Console:

1. Navigate to the Download Center page, click Additional Software, and
download and install Intel Quartus Prime Pro Edition Programmer and Tools.

2. On the Windows Start menu, click All Programs ➤ Intel FPGA <version> ➤
Programmer and Tools ➤ System Console.

• To start System Console from a Nios II Command Shell:

1. On the Windows Start menu, click All Programs ➤ Intel ➤ Nios II EDS
<version> ➤ Nios II<version> ➤ Command Shell.

2. Type system-console --project_dir=<project directory> and
specify a directory that contains .qsf or .sof files.

Note: Type --help for System Console help.

7.2.1. Customizing System Console Startup

You can customize your System Console startup environment, as follows:

• Add commands to the system_console_rc configuration file located at:

— <$HOME>/system_console/system_console_rc.tcl

The file in this location is the user configuration file, which only affects the owner
of the home directory.

• Specify your own design startup configuration file with the command-line
argument --rc_script=<path_to_script>, when you launch System Console
from the Nios II command shell.

• Use the system_console_rc.tcl file in combination with your custom
rc_script.tcl file. In this case, the system_console_rc.tcl file performs
System Console actions, and the rc_script.tcl file performs your debugging
actions.

On startup, System Console automatically runs the Tcl commands in these files. The
commands in the system_console_rc.tcl file run first, followed by the commands
in the rc_script.tcl file.

7.3. System Console GUI

The System Console GUI consists of a main window with the following panes that
allow you to interact with the design currently running on the FPGA device:

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Toolkit Explorer—displays all available toolkits and launches tools that use the
System Console framework.

• System Explorer—displays a list of interactive instances in your design, including
board connections, devices, designs, servers, and scripts.

• Main View—initially displays the welcome screen. All toolkits that you launch
display in this view.

• Tcl Console—allows you to interact with your design through individual Tcl
commands or by sourcing Tcl scripts, writing procedures, and using System
Console APIs.

• Messages—displays status, warning, and error messages related to connections
and debug actions.

Figure 114. System Console GUI

Toolkit Explorer
and System Explorer

Messages

Tcl Console

System Console GUI also provides the Autosweep, Dashboard, and Eye Viewer
panes, that display as tabs in the Main View.

System Console Views on page 164

Toolkit Explorer Pane on page 171

System Explorer Pane on page 171

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Customizing, Saving, and Resetting the System Console Layout on page 173

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.3.1. System Console Views

System Console provides the Main, Autosweep, Dashboard, and Eye Viewer views.

7.3.1.1. Main View

The Main View in System Console allows you to visualize certain parameter values of
the IP that the toolkit targets. These parameter values can be static values from
compile-time parameterization, or dynamic values read from the hardware (like
reading from CSR registers) at run-time.

The Main View GUI controls allow you to control or configure the IP on the hardware.

Figure 115. Main View of the System Console

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

164

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you are using a toolkit, you can add or remove columns from the table in the Main
View. Right-click on the table header and select Edit Columns in the right-click
menu. The Select column headers dialog box is displayed where you can choose to
include more columns, as shown in the following image:

Figure 116. Column Selection in the Main View Table

Parameters Pane

The Main View provides the Parameters pane that has two tabs, one for global
parameters (those not associated with a given channel) and another for channel
parameters (those associated with channels). The Channel Parameters tab is filled
with per-channel parameter editors based on channel row selection in the Status
Table, as System Console Toolkit Explorer shows.

Status Table Pane

The Status Table does not appear for toolkits that do not define channels. The
Status Table allows you to view status information across all channels of a collection
or a toolkit instance, as well as execute actions across multiple channels, as System
Console Toolkit Explorer shows. You can execute bulk actions spanning multiple
channels by selecting desired channels, and right-clicking and exploring the Actions
sub-menu.

You can also use the Status Table to select which channel to display in the
Parameters Pane. The channels you select in the Status Table are shown in the
Parameters Pane. You can use the Pin setting for a channel to display the channel,
regardless of the current selection in the Status Table.

If you develop your own toolkit, you can design the layout and GUI elements in the
Main View using the Toolkit Tcl API. You can also define how each GUI element
interacts with the hardware.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3.1.1.1. Link Pair View

Displaying Links With the Main View

You can use the Main View to simultaneously display and control associated TX and
RX pairs:

1. Select both RX and TX channels in the Status Table.

2. Right-click to view the context-sensitive menu.

3. Navigate to the Actions menu.

Figure 117. Displaying Links in the Main View

Custom Groups with Links

In the Status Table, links are displayed like any other channel, with the exception
that their parameter lists encompass all parameters from the associated TX and RX
channels. If you create a group with a link and its associated TX and RX instance
channels, the link row in the Status Table populates in all columns. Whereas, for the
independent TX and RX channel rows, only parameters associated with that channel
populate the Status Table.

Configuring a Link

You have the option to configure links in the following ways:

• Through the provided status table in the Main View.

• Through configuration options provided for the associated TX and RX channels.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option provided for the TX and RX channels allow you to individually manipulate each
associated channel. You can manipulate multiple parameters simultaneously by
selecting one or more items, and then right-clicking parameters in the status table.

7.3.1.2. Autosweep View

The Autosweep view allows you to sweep over IP parameters to find the best
combination and define your own quality metrics for a given Autosweep run.

The System Console Autosweep view allows you to define your own quality metrics
for a given Autosweep run.

Figure 118. Autosweep View of the System Console

By default, the Autosweep view launches without any connection to a toolkit
instance(s) or channel pair(s). You can add parameters by clicking Add Parameter
and selecting parameters from specific toolkit instance(s) in the Select Parameter
dialog box. You can remove parameters by selecting them and clicking Remove
Parameter. Alternatively, you can add your own parameters and create as many
Autosweep views as you want, to allow sweeping over different parameters on
different channels of the same instance, or different instances entirely.

To save a parameter set for future use, select the parameter set, and then click
Export Settings. To load a collection, click Import Settings.

Important: Any channel of a particular instance that has parameters currently being swept over in
one Autosweep view cannot have other (or the same) parameters swept over in a
different Autosweep view. For example, if one Autosweep view is currently
sweeping over parameters from InstA | Channel 0, and another Autosweep view
has parameters from InstA | Channel 0, an error is displayed if you attempt to
start the second sweep before the first has completed. This prevents you from
changing more things than are expected from a given run of autosweep.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Consider the following example complex system with parameters spread across
multiple devices:

Figure 119. An Example of the Autosweep System

FPGA 0 FPGA 1 FPGA 2
Communication

channel X
Communication

channel Y

Autosweep parameter A: -1, 3,8
Autosweep parameter B: foo, bar

Autosweep parameter C: 0->2
Autosweep parameter D: 5, 12

Quality metric A: Protocol-level QoS
Quality metric B: Eye Height
Quality metric C: Eye Width

The Autosweep view allows you to sweep such a complex system when the multiple
devices are visible to System Console. You can select the quality metrics from
instances different from those you sweep. You can even span levels of the hardware
stack from the PMA-level up to protocol-level signaling.

Results

The Results table is populated with one row per autosweep iteration. For every output
quality metric added in the Output Metrics section, a column for that metric is added
to the Results table, with new row entries added to the bottom. This format allows
sorting of the results by quality metric of the system under test, across many
combinations of parameters, to determine which parameter settings achieve best real-
world results.

The Results table allows visualizing or copying the parameter settings associated with
a given case, and sorting by quality metrics. Sort the rows of the table by clicking on
the column headers.

Control

The Control pane of the Autosweep view allows starting an autosweep run, once you
define at least one input parameter and one quality metric. Starting a run, allowing all
combinations to complete, and then pressing the Start button re-runs the same test
case. Pressing the Stop button cancels a currently running autosweep.

7.3.1.3. Dashboard View

The Dashboard view allows you to visualize the changes to toolkit parameters over
time.

The Dashboard provides options to view a line chart, histogram, pie chart or bar
graph, and a data history. There is no limit imposed on the number of instances of the
Dashboard view open at once. However, a performance penalty occurs if you update
a high number of parameters at a high frequency simultaneously.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 120. Dashboard View of the System Console

The Add Parameter dialog box opens when you click the Add button. Only those
parameters that declare the allows_charting parameter property are available for
selection in the Add Parameter dialog box.

7.3.1.4. Eye Viewer

The System Console Eye Viewer allows you to configure, run, and render eye scans.
The Eye Viewer allows independent control of the eye for each transceiver instance.
System Console allows you to open only one Eye Viewer per-instance channel pair at
any given time. Therefore, there is a one-to-one mapping of a given Eye Viewer GUI
to a given instance of the eye capture hardware on the FPGA. Click Tools ➤ Eye
Viewer to launch the Eye Viewer.

Eye Viewer Controls

The Eye Viewer controls allow you to configure toolkit-specific settings for the current
Eye Viewer scan. The parameters in the Eye Viewer affect the behavior and details
of the eye scan run.

Start / Stop Controls

The Eye Viewer provides Start and Stop controls. The Start button starts the eye
scanning process while the Stop button cancels an incomplete scan.

Note: The actual scanning controls, configurations, and metrics shown with the Eye Viewer
vary by toolkit.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Eye Diagram Visualization

The eye diagram displays the transceiver eye captured from on-die instrumentation
(ODI) with a color gradient.

Figure 121. Eye Viewer (E-Tile Transceiver Native PHY Toolkit Example)

Eye Viewer Settings

Start/Stop Controls

Eye Parameters

Eye Diagram

Results Table

The Results table displays results and statistics of all eye scans. While an eye scan is
running, you cannot view any partial results. However, there is a progress bar showing
the current progress of the eye scan underway.

When an eye scan successfully completes, a new entry appears in the Results table,
and that entry automatically gains focus. When you select a given entry in the
Results table, the eye diagram renders the associated eye data. You can right-click in
the Results table to do the following:

• Apply the test case parameters to the device

• Delete an entry

If developing your own toolkit that includes the Eye Viewer, the BER gradient is
configurable, and the eye diagram GUI supports the following features:

• A BER tool-tip for each cell

• Ability to export the map as PNG

• Zoom

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3.2. Toolkit Explorer Pane

The Toolkit Explorer pane displays all available toolkits and launches tools that use
the System Console framework. When you load a design that contains debug-enabled
IP, the Toolkit Explorer displays the design instances, along with a list of channels
and channel collections for debugging. To interact with a channel or a toolkit, double-
click on it to launch the Main View tabbed window, as shown in the following image:

Figure 122. System Console Toolkit Explorer

IP Instances

Channels and Link Groups

Status Table Pane

Parameters Pane

Note: If you close Toolkit Explorer, you can reopen it by clicking View ➤ Toolkit
Explorer.

7.3.3. System Explorer Pane

The System Explorer pane displays a list of interactive instances from the design
loaded on a connected device. This includes the following items:

• IP instances with debug toolkit capabilities

• IP instances with a debug endpoint

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 123. System Explorer Pane

Additionally, the System Explorer also displays custom toolkit groups and links that
you create. System Explorer organizes the interactive instances according to the
available device connections. The System Explorer contains a Links instance, and
may contain a Files instance. The Links instance shows debug agents (and other
hardware) that System Console can access. The Files instance contains information
about the programming files loaded from the Intel Quartus Prime project for the
device.

The System Explorer provides the following information:

• Devices—displays information about all devices connected to the System Console.

• Scripts—stores scripts for easy execution.

• Connections—displays information about the board connections visible to System
Console, such as the Intel FPGA Download Cable. Multiple connections are
possible.

• Designs—displays information about Intel Quartus Prime designs connected to
System Console. Each design represents a loaded .sof file.

• Right-click on some of the instances to execute related commands.

• Instances that include a message display a message icon. Click on the instance to
view the messages in the Messages pane.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3.4. Customizing, Saving, and Resetting the System Console Layout

The System Console GUI includes the default System Console layout (for general
system-level debug) and Toolkit Explorer layout (for debugging with toolkits)
layouts. These layouts are tailored for system level debug and running debug toolkits,
respectively.

You can customize these layouts for your preferences in the System Console
workspace, save and reload your custom layout, and reset the layout to default. When
you re-load a design, System Console restores the last saved workspace associated
with that design.

To customize the layout to suit your task flow and preferences:

Follow these steps to customize and save the Platform Designer layout:

1. Click tabbed items on the View or Tools menus to display and then optionally
arrange, remove, or group the items to suit your preferences:

• Drag, drop, and group the items in the workspace to match your task flow and
preferences.

• Close or dock items that you are not using.

• Dock items in the main frame as a group, or individually by clicking the tab
control in the upper-right corner of the main frame.

• Tool tips on the upper-right corner of the tabbed item suggest potential
workspace arrangements, for example, restoring or disconnecting a tab from
the workspace.

Note: You cannot include the Autosweep, Dashboard, Eye Viewer, or
Legacy Toolkits tabs from Tools menu in custom layouts. You must
first close any of these items before saving a layout.

2. To save the current workspace configuration as a custom layout, click View ➤
Custom Layouts ➤ Save and specify a layout Name. System Console saves the
custom layouts and order in the layouts.ini file in project directory, and adds
the layout to the Custom Layouts list.

Figure 124. View Menu Layouts

3. Use any of the following methods to change to another layout:

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To revert the layout back to a default layout, click View ➤ Reset to System
Console Layout or View ➤ Reset to Toolkit Explorer Layout.

• To set your workspace to a previously saved layout, click View ➤ Custom
Layouts, and then select the custom layout.

4. To import, export, delete or rename custom layouts, click View ➤ Custom
Layouts ➤ Manage. The Manage Custom Layouts dialog box opens and allows
you to apply a variety of functions that facilitate custom layout management.

Figure 125. Manage Custom Layouts

7.4. Launching a Toolkit in System Console

System Console provides the hardware debugging infrastructure to run the Available
System Debugging Toolkits on page 175. When you load a design in the Toolkit
Explorer that includes debug-enabled Intel FPGA IP, the Toolkit Explorer
automatically lists the toolkits that are available for the IP in the design.

To launch a toolkit in System Console, follow these steps:

1. Create an Intel Quartus Prime project that includes debug-enabled Intel FPGA IP.
Refer to IP Cores that Interact with System Console on page 160.

2. On the Compilation Dashboard, double-click Assembler to generate a .sof
programming file for the design. Any prerequisite Compiler stages run
automatically before the Assembler starts.

3. Launch System Console, as Starting System Console on page 162 describes.

4. In the Toolkit Explorer, click Load Design, and then select the .sof file that
you create in step 2. When you load the design, Toolkit Explorer displays the
debug-enabled IP instances.

5. Select a debug-enabled IP instance. The Details pane displays the channels that
can launch toolkits.

6. To launch a toolkit, select the toolkit under Details. For toolkits with channels, you
can also multi-select one or more channels from the Details pane. Then, click
Open Toolkit. The toolkit opens in the Main View, and the Collections pane
displays a collection of any channels that you select.

7. To save a collection for future use, right-click the collection, and then click Export
Collection. To load a collection, right-click in the Collections pane, and then click
Import Collection. By default, System Console creates a collection when you
launch a toolkit.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 126. Launching a Toolkit in System Console

Debug-Enabled IP

Select Channels
and Open Toolkit

Save or Load Collections

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.4.1. Available System Debugging Toolkits

The following toolkits are available to launch from the System Console Toolkit
Explorer in the current version of the Intel Quartus Prime software.

Table 37. Toolkits Available in System Console Toolkit Explorer

Toolkit Description Toolkit Documentation

EMIF Calibration Debug Toolkit Helps you to debug external memory interfaces by
accessing calibration data obtained during memory
calibration. The analysis tools can evaluate the stability of
the calibrated interface and assess hardware conditions.

• External Memory
Interfaces Intel Agilex 7
FPGA IP User Guide

• External Memory
Interfaces Intel Stratix
10 FPGA IP User Guide

EMIF Traffic Generator
Configuration Toolkit

Helps you to debug external memory interfaces by
sending sample traffic through the external memory
interface to the memory device. The generated EMIF
design example includes a traffic generator block with
control and status registers.

continued...

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

175

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Toolkit Description Toolkit Documentation

EMIF Efficiency Monitor Toolkit Helps you to debug external memory interfaces by
measuring efficiency on the Avalon interface in real time.
The generated EMIF design example can include the
Efficiency Monitor block.

• External Memory
Interfaces Intel Agilex 7
FPGA IP User Guide

• External Memory
Interfaces Intel Stratix
10 FPGA IP User Guide

Ethernet Toolkit Helps you to interact with and debug an Ethernet Intel
FPGA IP interface in real time. You can verify the status of
the Ethernet link, assert and deassert IP resets, verifies
the IP error correction capability,

Ethernet Toolkit User Guide

Intel Stratix 10 FPGA P-Tile
Toolkit (for PCIe)

Helps you to optimize the performance of large-size data
transfers with real-time control, monitoring, and
debugging of the PCI Express* links at the Physical, Data
Link, and Transaction layers.

Intel FPGA P-Tile Avalon
Memory Mapped IP for PCI
Express* User Guide

Serial Lite IV IP Toolkit An inspection tool that monitors the status of a Serial Lite
IV IP link and provides a step-by-step guide for the IP link
initialization sequences.

• Serial Lite IV Intel
Agilex 7 FPGA IP Design
Example User Guide

• Serial Lite IV Intel
Stratix 10 FPGA IP
Design Example User
Guide

Intel Arria 10 and Intel Cyclone
10 GX Transceiver Native PHY
Toolkit

Helps you to optimize high-speed serial links in your board
design by providing real-time control, monitoring, and
debugging of the transceiver links running on your board.

L-Tile and H-Tile Transceiver
Native PHY Toolkit

E-Tile Transceiver Native PHY
Toolkit

The following legacy toolkits remain available by clicking Tools ➤ Legacy Toolkits in
System Console. The legacy toolkits support earlier device families and may be
subject to end of life and removal of support in a coming software release.

Table 38. Legacy Toolkits Available in System Console

Legacy Toolkit Description Legacy Toolkit
Documentation

Ethernet Link Inspector - Link
Monitor Toolkit

The Ethernet Link Inspector is an inspection tool that can
continuously monitor an Ethernet link that contains an Ethernet
IP. The Link Monitor toolkit performs real-time status monitoring
of an Ethernet IP link. The link monitor continuously reads and
displays all of the required status registers related to the
Ethernet IP link, and displays the Ethernet IP link status at
various stages are valid. Ethernet Link

Inspector User Guide
for Intel Stratix 10
Devices

Ethernet Link Inspector - Link
Analysis Toolkit

The Link Analysis toolkit displays a sequence of events on an
Ethernet IP link, which occur in a finite duration of time. The
Link Analysis requires the Signal Tap logic analyzer to first
capture and store a database (.csv) of all required signals. The
Link Analysis toolkit then performs an analysis on the database
to extract all the required information and displays them in a
user-friendly graphical user interface (GUI).

S10 SDM Debug Toolkit Provides access to current status of the Intel Stratix 10 device.
To use these commands, you must have a valid design loaded
that includes the module that you intend to access.

Intel Stratix 10
Configuration User
Guide

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Refer to the toolkit documentation for individual toolkit launch, setup, and use
information. The Transceiver Toolkit previously available in the Intel Quartus Prime
software Tools menu is replaced by the Intel Arria 10 and Intel Cyclone 10 GX
Transceiver Native PHY Toolkit.

Related Information

• External Memory Interfaces Intel Agilex 7 FPGA IP User Guide

• External Memory Interfaces Intel Stratix 10 FPGA IP User Guide

• Ethernet Toolkit User Guide

• Intel FPGA P-Tile Avalon Memory Mapped IP for PCI Express* User Guide

• Intel FPGA P-Tile Avalon Streaming IP for PCI Express* User Guide

• Ethernet Link Inspector User Guide for Intel Stratix 10 Devices

• Intel Stratix 10 Configuration User Guide

• Serial Lite IV Intel Agilex 7 FPGA IP Design Example User Guide

• Serial Lite IV Intel Stratix 10 FPGA IP Design Example User Guide

7.4.2. Creating Collections from the Toolkit Explorer

You can create custom collections to view and configure members from different
instances in a single Main View.

Perform these steps to group instances:

1. Select multiple items in the instances tree.

2. Right click to view the context-sensitive menu.

3. Select Add to Collection ➤ New Collection. The Add to Collection dialog box
appears with members you select.

System Console adds the collections that you create to the Collections pane of the
Toolkit Explorer. You can perform one of the following actions:

• Double-click on a custom-created collection to launch the Main view containing all
of the group’s members.

• Right-click on an existing collection member and select Remove from Collection
to remove the member.

7.4.3. Filtering and Searching Interactive Instances

By default, the Toolkits list shows all toolkit instances and their respective channels
linking to the System Console. This view is useful in simple cases, but can become
very dense in a complex system having many debug-enabled IPs, and having
potentially multiple FPGAs connected to System Console.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

177

https://www.intel.com/content/www/us/en/docs/programmable/683216.html
https://www.intel.com/content/www/us/en/docs/programmable/683741/current/external-memory-interfaces-fpga-ip-.html
https://www.intel.com/content/www/us/en/docs/programmable/683793.html
https://www.intel.com/content/www/us/en/docs/programmable/683268.html
https://www.intel.com/content/www/us/en/docs/programmable/683059.html
https://www.intel.com/content/www/us/en/docs/programmable/683367.html
https://www.intel.com/content/www/us/en/docs/programmable/683762.html
https://www.intel.com/content/www/us/en/docs/programmable/683391.html
https://www.intel.com/content/www/us/en/docs/programmable/683223.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 127. Toolkit Explorer with Filters

To limit the information display, the Filter list allows filtering the display by toolkit
types currently available in the System Console. You can also create custom filters
using groups, for example, “Inst A, Inst F, and Inst Z”, or “E-Tile and L/H-Tile
Transceivers only".

To refine the list of toolkits, use the search field in the Toolkit Explorer to filter the
list further.

7.5. Using System Console Services

System Console services provide access to hardware modules that you instantiate in
your FPGA. Services vary in the type of debug access they provide.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.1. Locating Available Services

System Console uses a virtual file system to organize the available services, which is
similar to the /dev location on Linux systems. Board connection, device type, and
IP names are all part of a service path. Instances of services are referred to by their
unique service path in the file system. To retrieve service paths for a particular
service, use the command get_service_paths <service-type>.

Example 11. Locating a Service Path

#We are interested in master services.
set service_type "master"

#Get all the paths as a list.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

178

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set master_service_paths [get_service_paths $service_type]

#We are interested in the first service in the list.
set master_index 0

#The path of the first master.
set master_path [lindex $master_service_paths $master_index]

#Or condense the above statements into one statement:
set master_path [lindex [get_service_paths master] 0]

System Console commands require service paths to identify the service instance you
want to access. The paths and indexes for different components can change between
runs of System Console and between versions. Use the get_service_paths
command to obtain service paths.

The string values of service paths change with different releases of the tool. Use the
marker_node_info command to get information from the path.

System Console automatically discovers most services at startup. System Console
automatically scans for all JTAG and USB-based service instances and retrieves their
service paths. System Console does not automatically discover some services, such as
TCP/IP. Use add_service to inform System Console about those services.

Example 12. Marker_node_info

Use the marker_node_info command to get information about SLD nodes
associated with the specified service.

set slave_path [get_service_paths -type altera_avalon_uart.slave slave]
array set uart_info [marker_node_info $slave_path]
echo $uart_info(full_hpath)

Example 13. Locating the Correct Service Path

If the design contains multiple instances of the same service, it is necessary to use the
full hierarchy path to correctly identify the service path.

In the following example, to identify the correct service path for a debug endpoint
called master_0:

1. Locate the full hierarchy name of the endpoint in your design.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

179

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Right-click master_0 and select Copy in the context-sensitive menu. This copies
the full hierarchical path, (ed_synth_top|master_0).

3. Save this hierarchy path to a Tcl variable for easy reference later, as follows:

set desired_hpath ed_synth_inst|master_0

4. Use the get_service_paths command with the –hpath flag and the hierarchy
path to obtain specific service path of the desired endpoint. The command returns
a list with a service path.

#Return a list of one element with the desired element
set service_paths [get_service_paths -hpath $desired_hpath master]

5. Save the service path as a variable for easier access later.

#Extract and store the element in a variable
set master_0_spath [lindex $service_paths 0]

7.5.2. Opening and Closing Services

After you have a service path to a particular service instance, you can access the
service for use.

The claim_service command directs System Console to start using a particular
service instance, and with no additional arguments, claims a service instance for
exclusive use.

Example 14. Opening a Service

set service_type "master"
set claim_path [claim_service $service_type $master_path mylib];#Claims service.

You can pass additional arguments to the claim_service command to direct System
Console to start accessing a particular portion of a service instance. For example, if
you use the master service to access memory, then use claim_service to only
access the address space between 0x0 and 0x1000. System Console then allows
other users to access other memory ranges, and denies access to the claimed memory
range. The claim_service command returns a newly created service path that you
can use to access your claimed resources.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

180

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can access a service after you open it. When you finish accessing a service
instance, use the close_service command to direct System Console to make this
resource available to other users.

Example 15. Closing a Service

close_service master $claim_path; #Closes the service.

7.5.3. Using the SLD Service

The SLD Service shifts values into the instruction and data registers of SLD nodes and
captures the previous value. When interacting with a SLD node, start by acquiring
exclusive access to the node on an opened service.

Example 16. SLD Service

set timeout_in_ms 1000
set lock_failed [sld_lock $sld_service_path $timeout_in_ms]

This code attempts to lock the selected SLD node. If it is already locked, sld_lock
waits for the specified timeout. Confirm the procedure returns non-zero before
proceeding. Set the instruction register and capture the previous one:

if {$lock_failed} {
 return
}
set instr 7
set delay_us 1000
set capture [sld_access_ir $sld_service_path $instr $delay_us]

The 1000 microsecond delay guarantees that the following SLD command executes at
least 1000 microseconds later. Data register access works the same way.

set data_bit_length 32
set delay_us 1000
set data_bytes [list 0xEF 0xBE 0xAD 0xDE]
set capture [sld_access_dr $sld_service_path $data_bit_length $delay_us \
$data_bytes]

Shift count is specified in bits, but the data content is specified as a list of bytes. The
capture return value is also a list of bytes. Always unlock the SLD node once finished
with the SLD service.

sld_unlock $sld_service_path

Related Information

Virtual JTAG IP Core User Guide

7.5.3.1. SLD Commands

Table 39. SLD Commands

Command Arguments Function

sld_access_ir <claim-path>
<ir-value>
<delay> (in µs)

Shifts the instruction value into the instruction register of the specified
node. Returns the previous value of the instruction.

continued...

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

181

https://www.intel.com/content/www/us/en/docs/programmable/683705.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

If the <delay> parameter is non-zero, then the JTAG clock is paused for
this length of time after the access.

sld_access_dr <service-path>
<size_in_bits>
<delay-in-µs>,
<list_of_byte_values>

Shifts the byte values into the data register of the SLD node up to the size
in bits specified.
If the <delay> parameter is non-zero, then the JTAG clock is paused for at
least this length of time after the access.
Returns the previous contents of the data register.

sld_lock <service-path>
<timeout-in-milliseconds>

Locks the SLD chain to guarantee exclusive access.
Returns 0 if successful. If the SLD chain is already locked by another user,
tries for <timeout>ms before returning a Tcl error. You can use the catch
command if you want to handle the error.

sld_unlock <service-path> Unlocks the SLD chain.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.4. Using the In-System Sources and Probes Service

The In-System Sources and Probes (ISSP) service provides scriptable access to the In-
System Sources and Probes Intel FPGA IP in a similar manner to using the In-System
Sources and Probes Editor in the Intel Quartus Prime software.

Example 17. ISSP Service

Before you use the ISSP service, ensure your design works in the In-System
Sources and Probes Editor. In System Console, open the service for an ISSP
instance:

set issp_index 0
set issp [lindex [get_service_paths issp] 0]
set claimed_issp [claim_service issp $issp mylib]

View information about this particular ISSP instance:

array set instance_info [issp_get_instance_info $claimed_issp]
set source_width $instance_info(source_width)
set probe_width $instance_info(probe_width)

The Intel Quartus Prime software reads probe data as a single bitstring of length equal
to the probe width:

set all_probe_data [issp_read_probe_data $claimed_issp]

As an example, you can define the following procedure to extract an individual probe
line's data:

proc get_probe_line_data {all_probe_data index} {
 set line_data [expr { ($all_probe_data >> $index) & 1 }]
 return $line_data
}
set initial_all_probe_data [issp_read_probe_data $claim_issp]
set initial_line_0 [get_probe_line_data $initial_all_probe_data 0]
set initial_line_5 [get_probe_line_data $initial_all_probe_data 5]
...
set final_all_probe_data [issp_read_probe_data $claimed_issp]
set final_line_0 [get_probe_line_data $final_all_probe_data 0]

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

182

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Similarly, the Intel Quartus Prime software writes source data as a single bitstring of
length equal to the source width:

set source_data 0xDEADBEEF
issp_write_source_data $claimed_issp $source_data

You can also retrieve the currently set source data:

set current_source_data [issp_read_source_data $claimed_issp]

As an example, you can invert the data for a 32-bit wide source by doing the
following:

set current_source_data [issp_read_source_data $claimed_issp]
set inverted_source_data [expr { $current_source_data ^ 0xFFFFFFFF }]
issp_write_source_data $claimed_issp $inverted_source_data

7.5.4.1. In-System Sources and Probes Commands

Note: The valid values for ISSP claims include read_only, normal, and exclusive.

Table 40. In-System Sources and Probes Commands

Command Arguments Function

issp_get_instance_info <service-path> Returns a list of the configurations of the In-System Sources and Probes
instance, including:
instance_index

instance_name

source_width

probe_width

issp_read_probe_data <service-path> Retrieves the current value of the probe input. A hex string is returned
representing the probe port value.

issp_read_source_data <service-path> Retrieves the current value of the source output port. A hex string is
returned representing the source port value.

issp_write_source_data <service-path>
<source-value>

Sets values for the source output port. The value can be either a hex
string or a decimal value supported by the System Console Tcl
interpreter.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.5. Using the Monitor Service

The monitor service builds on top of the host service to allow reads of Avalon memory-
mapped interface agents at a regular interval. The service is fully software-based. The
monitor service requires no extra soft-logic. This service streamlines the logic to do
interval reads, and it offers better performance than exercising the host service
manually for the reads.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

183

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 18. Monitor Service

1. Determine the host and the memory address range that you want to poll:

set master_index 0
set master [lindex [get_service_paths master] $master_index]
set address 0x2000
set bytes_to_read 100
set read_interval_ms 100

With the first host, read 100 bytes starting at address 0x2000 every 100
milliseconds.

2. Open the monitor service:

set monitor [lindex [get_service_paths monitor] 0]
set claimed_monitor [claim_service monitor $monitor mylib]

The monitor service opens the host service automatically.

3. With the monitor service, register the address range and time interval:

monitor_add_range $claimed_monitor $master $address $bytes_to_read
monitor_set_interval $claimed_monitor $read_interval_ms

4. Add more ranges, defining the result at each interval:

global monitor_data_buffer
set monitor_data_buffer [list]

5. Gather the data and append it with a global variable:

proc store_data {monitor master address bytes_to_read} {\
 global monitor_data_buffer
monitor_read_data returns the range of data polled from the running \
 design as a list
#(in this example, a 100-element list).
 set data [monitor_read_data $claimed_monitor $master $address \
 $bytes_to_read]
Append the list as a single element in the monitor_data_buffer \
 global list.
 lappend monitor_data_buffer $data
}

Note: If this procedure takes longer than the interval period, the monitor service
may have to skip the next one or more calls to the procedure. In this case,
monitor_read_data returns the latest polled data.

6. Register this callback with the opened monitor service:

set callback [list store_data $claimed_monitor $master $address
$bytes_to_read]
monitor_set_callback $claimed_monitor $callback

7. Use the callback variable to call when the monitor finishes an interval. Start
monitoring:

monitor_set_enabled $claimed_monitor 1

Immediately, the monitor reads the specified ranges from the device and invokes
the callback at the specified interval. Check the contents of
monitor_data_buffer to verify this. To turn off the monitor, use 0 instead of 1
in the above command.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.5.5.1. Monitor Commands

You can use the Monitor commands to read many Avalon memory-mapped interface
agent memory locations at a regular interval.

Under normal load, the monitor service reads the data after each interval and then
calls the callback. If the value you read is timing sensitive, you can use the
monitor_get_read_interval command to read the exact time between the
intervals at which the data was read.

Under heavy load, or with a callback that takes a long time to execute, the monitor
service skips some callbacks. If the registers you read do not have side effects (for
example, they read the total number of events since reset), skipping callbacks has no
effect on your code. The monitor_read_data command and
monitor_get_read_interval command are adequate for this scenario.

If the registers you read have side effects (for example, they return the number of
events since the last read), you must have access to the data that was read, but for
which the callback was skipped. The monitor_read_all_data and
monitor_get_all_read_intervals commands provide access to this data.

Table 41. Monitoring Commands

Command Arguments Function

monitor_add_range <service-path>
<target-path>
<address>
<size>

Adds a contiguous memory address into the
monitored memory list.
<service path> is the value returned when
you opened the service.
<target-path> argument is the name of a
host service to read. The address is within
the address space of this service. <target-
path> is returned from [lindex
[get_service_paths master] n] where
n is the number of the host service.
<address> and <size> are relative to the
host service.

monitor_get_all_read_intervals <service-path>
<target-path>
<address>
<size>

Returns a list of intervals in milliseconds
between two reads within the data returned
by monitor_read_all_data.

monitor_get_interval <service-path> Returns the current interval set which
specifies the frequency of the polling action.

monitor_get_missing_event_count <service-path> Returns the number of callback events
missed during the evaluation of last Tcl
callback expression.

monitor_get_read_interval <service-path>
<target-path>
<address>
<size>

Returns the milliseconds elapsed between
last two data reads returned by
monitor_read_data.

monitor_read_all_data <service-path>
<target-path>
<address>
<size>

Returns a list of 8-bit values read from all
recent values read from device since last Tcl
callback. You must specify a memory range
within the range in monitor_add_range.

continued...

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

monitor_read_data <service-path>
<target-path>
<address>
<size>

Returns a list of 8-bit values read from the
most recent values read from device. You
must specify a memory range within the
range in monitor_add_range.

monitor_set_callback <service-path>
<Tcl-expression>

Specifies a Tcl expression that the System
Console must evaluate after reading all the
memories that this service monitors.
Typically, you specify this expression as a
single string Tcl procedure call with
necessary argument passed in.

monitor_set_enabled <service-path>
<enable(1)/disable(0)>

Enables and disables monitoring. Memory
read starts after this command, and Tcl
callback evaluates after data is read.

monitor_set_interval <service-path>
<interval>

Defines the target frequency of the polling
action by specifying the interval between two
memory reads. The actual polling frequency
varies depending on the system activity.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.6. Using the Device Service

The device service supports device-level actions.

Example 19. Programming

You can use the device service with Tcl scripting to perform device programming:

set device_index 0 ; #Device index for target
set device [lindex [get_service_paths device] $device_index]
set sof_path [file join project_path output_files project_name.sof]
device_download_sof $device $sof_path

To program, all you need are the device service path and the file system path to
a .sof. Ensure that no other service (e.g. host service) is open on the target device
or else the command fails. Afterwards, you may do the following to check that the
design linked to the device is the same one programmed:

device_get_design $device

7.5.6.1. Device Commands

The device commands provide access to programmable logic devices on your board.
Before you use these commands, identify the path to the programmable logic device
on your board using the get_service_paths.

Table 42. Device Commands

Command Arguments Function

device_download_sof <service_path>
<sof-file-path>

Loads the specified .sof to the device specified by the path.

device_get_connections <service_path> Returns all connections which go to the device at the specified path.

device_get_design <device_path> Returns the design this device is currently linked to.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

186

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.7. Using the Design Service

You can use design service commands to work with Intel Quartus Prime design
information.

Example 20. Load

When you open System Console from the Intel Quartus Prime software, the current
project's debug information is sourced automatically if the .sof file is present. In
other situations, you can load the .sof manually.

set sof_path [file join project_dir output_files project_name.sof]
set design [design_load $sof_path]

System Console is now aware of the .sof loading.

Example 21. Linking

Once a .sof loads, System Console automatically links design information to the
connected device. The link persists and you can unlink or reuse the link on an
equivalent device with the same .sof.

You can perform manual linking as follows:

set device_index 0; # Device index for our target
set device [lindex [get_service_paths device] $device_index]
design_link $design $device

Manual linking fails if the target device does not match the design service.

Linking fails even if the .sof programmed to the target is not the same as the
design .sof.

7.5.7.1. Design Service Commands

Design service commands load and work with your design at a system level.

Table 43. Design Service Commands

Command Arguments Function

design_load <quartus-
project-path>,
<sof-file-path>,
or <qpf-file-
path>

Loads a model of an Intel Quartus Prime design into System
Console. Returns the design path.
For example, if your Intel Quartus Prime Project File (.qpf) is in
c:/projects/loopback, type the following command:
design_load {c:\projects\loopback\}

design_link <design-path>
<device-service-
path>

Links an Intel Quartus Prime logical design with a physical device.
For example, you can link an Intel Quartus Prime design called
2c35_quartus_design to a 2c35 device. After you create this
link, System Console creates the appropriate correspondences
between the logical and physical submodules of the Intel Quartus
Prime project.

design_extract_debug_files <design-path>
<zip-file-name>

Extracts debug files from a .sof to a zip file which can be
emailed to Intel FPGA Support for analysis.

continued...

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

187

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

You can specify a design path of {} to unlink a device and to
disable auto linking for that device.

design_get_warnings <design-path> Gets the list of warnings for this design. If the design loads
correctly, then an empty list returns.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.8. Using the Bytestream Service

The bytestream service provides access to modules that produce or consume a stream
of bytes. Use the bytestream service to communicate directly to the IP core that
provides bytestream interfaces, such as the JTAG UART or the Avalon Streaming JTAG
interface Intel FPGA IP.

Example 22. Bytestream Service

The following code finds the bytestream service for your interface and opens it:

set bytestream_index 0
set bytestream [lindex [get_service_paths bytestream] $bytestream_index]
set claimed_bytestream [claim_service bytestream $bytestream mylib]

To specify the outgoing data as a list of bytes and send it through the opened service:

set payload [list 1 2 3 4 5 6 7 8]
bytestream_send $claimed_bytestream $payload

Incoming data also comes as a list of bytes:

set incoming_data [list]
while {[llength $incoming_data] ==0} {
 set incoming_data [bytestream_receive $claimed_bytestream 8]
}

Close the service when done:

close_service bytestream $claimed_bytestream

7.5.8.1. Bytestream Commands

Table 44. Bytestream Commands

Command Arguments Function

bytestream_send <service-path>
<values>

Sends the list of bytes to the specified bytestream service. Values argument is
the list of bytes to send.

bytestream_receive <service-path>
<length>

Returns a list of bytes currently available in the specified services receive
queue, up to the specified limit. Length argument is the maximum number of
bytes to receive.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

188

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.5.9. Using the JTAG Debug Service

The JTAG Debug service allows you to check the state of clocks and resets within your
design.

The following is a JTAG Debug design flow example.

1. To identify available JTAG Debug paths:

get_service_paths jtag_debug

2. To select a JTAG Debug path:

set jtag_debug_path [lindex [get_service_paths jtag_debug] 0]

3. To claim a JTAG Debug service path:

 set claim_jtag_path [claim_service jtag_debug$jtag_debug_path mylib]

4. Running the JTAG Debug service:

jtag_debug_reset_system $claim_jtag_path
jtag_debug_loop $claim_jtag_path [list 1 2 3 4 5]

7.5.9.1. JTAG Debug Commands

JTAG Debug commands help debug the JTAG Chain connected to a device.

Table 45. JTAG Debug Commands

Command Argument Function

jtag_debug_loop <service-path>
<list_of_byte_val
ues>

Loops the specified list of bytes through a loopback of tdi
and tdo of a system-level debug (SLD) node. Returns the
list of byte values in the order that they were received. This
command blocks until all bytes are received. Byte values
have the 0x (hexadecimal) prefix and are delineated by
spaces.

jtag_debug_sample_clock <service-path> Returns the clock signal of the system clock that drives the
module's system interface. The clock value is sampled
asynchronously; consequently, you must sample the clock
several times to guarantee that it is switching.

jtag_debug_sample_reset <service-path> Returns the value of the reset_n signal of the Avalon-ST
JTAG Interface core. If reset_n is low (asserted), the value
is 0 and if reset_n is high (deasserted), the value is 1.

jtag_debug_sense_clock <service-path> Returns a sticky bit that monitors system clock activity. If
the clock switched at least once since the last execution of
this command, returns 1. Otherwise, returns 0.. The sticky
bit is reset to 0 on read.

jtag_debug_reset_system <service-path> Issues a reset request to the specified service. Connectivity
within your device determines which part of the system is
reset.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

189

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.6. On-Board Intel FPGA Download Cable II Support

System Console supports an On-Board Intel FPGA Download Cable II circuit via the
USB Debug Master IP component. This IP core supports the master service.

7.7. MATLAB and Simulink* in a System Verification Flow

You can test system development in System Console using MATLAB and Simulink*,
and set up a system verification flow using the Intel FPGA Hardware in the Loop (HIL)
tools. In this approach, you deploy the design hardware to run in real time, and
simulate the system's surrounding components in a software environment. The HIL
approach allows you to use the flexibility of software tools with the real-world
accuracy and speed of hardware. You can gradually introduce more hardware
components to the system verification testbench. This technique gives you more
control over the integration process as you tune and validate the system. When the
full system is integrated, the HIL approach allows you to provide stimuli via software
to test the system under a variety of scenarios.

Advantages of HIL Approach

• Avoid long computational delays for algorithms with high processing rates

• API helps to control, debug, visualize, and verify FPGA designs all within the
MATLAB environment

• FPGA results are read back by the MATLAB software for further analysis and
display

Required Tools and Components

• MATLAB software

• DSP Builder for Intel FPGAs software

• Intel Quartus Prime software

• Intel FPGA

Note: The DSP Builder for Intel FPGAs installation bundle includes the System Console
MATLAB API.

Figure 128. Hardware in the Loop Host-Target Setup

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Hardware in the Loop from the MATLAB Simulink Environment white paper

7.7.1. Supported MATLAB API Commands

You can perform the work from the MATLAB environment, and read and write to hosts
and agents through the System Console. The supported MATLAB API commands do
not require launching the System Console GUI. The supported commands are:

• SystemConsole.refreshMasters;

• M = SystemConsole.openMaster(1);

• M.write (type, byte address, data);

• M.read (type, byte address, number of words);

• M.close

Example 23. MATLAB API Script Example

SystemConsole.refreshMasters; %Investigate available targets
M = SystemConsole.openMaster(1); %Creates connection with FPGA target
%%%%%%%% User Application %%%%%%%%%%%%
....
M.write('uint32',write_address,data); %Send data to FPGA target
....
data = M.read('uint32',read_address,size); %Read data from FPGA target
....
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M.close; %Terminates connection to FPGA target

7.7.2. High Level Flow

1. Install the DSP Builder for Intel FPGAs software, so you have the necessary
libraries to enable this flow

2. Build the design using Simulink and the DSP Builder for Intel FPGAs libraries.

DSP Builder for Intel FPGAs helps to convert the Simulink design to HDL

3. Include Avalon memory mapped components in the design (DSP Builder for Intel
FPGAs can port non-Avalon memory mapped components)

4. Include Signals and Control blocks in the design

5. Separate synthesizable and non-synthesizable logic with boundary blocks.

6. Integrate the DSP system in Platform Designer

7. Program the Intel FPGA

8. Interact with the Intel FPGA through the supported MATLAB API commands.

7.8. System Console Examples and Tutorials

Intel provides examples for performing board bring-up, creating a simple toolkit, and
programming a Nios II processor. The System_Console.zip file contains design files
for the board bring-up example. The Nios II Ethernet Standard .zip files contain the
design files for the Nios II processor example.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

191

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01208-hardware-in-the-loop.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The instructions for these examples assume that you are familiar with the Intel
Quartus Prime software, Tcl commands, and Platform Designer.

Related Information

On-Chip Debugging Design Examples Website
Contains the design files for the example designs that you can download.

7.8.1. Nios II Processor Example

This example programs the Nios II processor on your board to run the count binary
software example included in the Nios II installation. This is a simple program that
uses an 8-bit variable to repeatedly count from 0x00 to 0xFF. The output of this
variable is displayed on the LEDs on your board. After programming the Nios II
processor, you use System Console processor commands to start and stop the
processor.

To run this example, perform the following steps:

1. Download the Nios II Ethernet Standard Design Example for your board from the
Intel website.

2. Create a folder to extract the design. For this example, use C:\Count_binary.

3. Unzip the Nios II Ethernet Standard Design Example into C:\Count_binary.

4. In a Nios II command shell, change to the directory of your new project.

5. Program your board. In a Nios II command shell, type the following:

nios2-configure-sof niosii_ethernet_standard_<board_version>.sof

6. Using Nios II Software Build Tools for Eclipse, create a new Nios II Application and
BSP from Template using the Count Binary template and targeting the Nios II
Ethernet Standard Design Example.

7. To build the executable and linkable format (ELF) file (.elf) for this application,
right-click the Count Binary project and select Build Project.

8. Download the .elf file to your board by right-clicking Count Binary project and
selecting Run As ➤ Nios II Hardware.

• The LEDs on your board provide a new light show.

9. Type the following:

system-console; #Start System Console.

#Set the processor service path to the Nios II processor.
set niosii_proc [lindex [get_service_paths processor] 0]

set claimed_proc [claim_service processor $niosii_proc mylib]; #Open the
service.

processor_stop $claimed_proc; #Stop the processor.
#The LEDs on your board freeze.

processor_run $claimed_proc; #Start the processor.
#The LEDs on your board resume their previous activity.

processor_stop $claimed_proc; #Stop the processor.

close_service processor $claimed_proc; #Close the service.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

192

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/on-chip-debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The processor_step, processor_set_register, and
processor_get_register commands provide additional control over the
Nios II processor.

Related Information

• Nios II Ethernet Standard Design Example

• Nios II Gen2 Software Developer's Handbook

7.8.1.1. Processor Commands

Table 46. Processor Commands

Command (2) Arguments Function

processor_download_elf <service-path>
<elf-file-path>

Downloads the given Executable and Linking Format File
(.elf) to memory using the master service associated with the
processor. Sets the processor's program counter to the .elf
entry point.

processor_in_debug_mode <service-path> Returns a non-zero value if the processor is in debug mode.

processor_reset <service-path> Resets the processor and places it in debug mode.

processor_run <service-path> Puts the processor into run mode.

processor_stop <service-path> Puts the processor into debug mode.

processor_step <service-path> Executes one assembly instruction.

processor_get_register_names <service-path> Returns a list with the names of all of the processor's accessible
registers.

processor_get_register <service-path>
<register_name>

Returns the value of the specified register.

processor_set_register <service-path>
<register_name>
<value>

Sets the value of the specified register.

Related Information

Nios II Processor Example on page 192

7.9. Running System Console in Command-Line Mode

You can run System Console in command line mode and either work interactively or
run a Tcl script. System Console prints the output in the console window.

(2) If your system includes a Nios II/f core with a data cache, it may complicate the debugging
process. If you suspect the Nios II/f core writes to memory from the data cache at
nondeterministic intervals; thereby, overwriting data written by the System Console, you can
disable the cache of the Nios II/f core while debugging.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

193

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/exm-net-std-de.html
https://www.intel.com/content/www/us/en/docs/programmable/683525/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• --cli—Runs System Console in command-line mode.

• --project_dir=<project dir>—Directs System Console to the location of
your hardware project. Also works in GUI mode.

• --script=<your script>.tcl—Directs System Console to run your Tcl script.

• --help— Lists all available commands. Typing --help <command name>
provides the syntax and arguments of the command.

System Console provides command completion if you type the beginning letters of a
command and then press the Tab key.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.10. Using System Console Commands

You can use System Console commands to control hardware debug and testing with
the command-line or scripting. Use System Console commands to identify a System
Console service by its path, to open and close a connection, add a service, and a
variety of other System Console controls.

Note: For a complete reference of currently supported System Console and toolkit
commands, refer to the System Console and Toolkit Tcl Command Reference Manual.

The following steps show initiation of a simple service connection:

1. Identify a service by specifying its path with the get_service_paths command.

2. Open a connection to the service with the claim_service command.

3. Use Tcl and System Console commands to test the connected device.

4. Close a connection to the service with the close_service command

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.11. Using Toolkit Tcl Commands

For advanced users, System Console also supports Tcl commands that allow you to
define and operate your own custom toolkits.

You can use the Toolkit Tcl commands to add and set the toolkit requirements and
properties, and to retrieve accessible toolkit modules, systems, and services at the
command-line or with scripting.

Note: For a complete reference of currently supported System Console and toolkit
commands, refer to the System Console and Toolkit Tcl Command Reference Manual.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

194

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.12. Analyzing and Debugging Designs with the System Console
Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2023.10.02 23.3 • Updated product family name to "Intel Agilex 7."
• Revised the existing information and added a new example on how to

locate the correct service path using full hierarchy name in Locating
Available Services topic.

2022.12.12 22.4 • Added new Customizing, Saving, and Resetting the System Console
Layout topic for new layout manager feature.

2022.07.08 22.1 • Fixed broken links in the following topics:
— "Introduction to System Console"
— "MATLAB and Simulink* in a System Verification Flow"
— "System Console Example"
— "Nios II Gen 2 Processor Example"

2021.06.21 21.2 • Moved System Console and Toolkit Tcl command descriptions to System
Console and Toolkit Tcl Command Reference Manual and provided links
to this new comprehensive document.

• Replaced non-inclusive terms with "host" and "agent" inclusive terms
for Avalon memory mapped interface descriptions and related GUI
elements.

• Added toolkit definition to Introduction to System Console topic.
• Revised System Console Tools figure.
• Revised wording of Autosweep View topic for clarity.
• Added details to explanation of legacy toolkits in Available System

Debugging Toolkits
• Added ISSP service to Common Services for System Console table.
• Added link to download center.

2020.09.28 20.3 • Revised "Introduction to System Console" wording and block diagram.
• Revised "Starting System Console" to consolidate all methods.
• Revised "Toolkit Explorer Pane" to refer to launching toolkits.
• Revised "Autosweep View" to account for use with or without toolkit

and export and import of settings.
• Added new "Launching a Toolkit in System Console" topic.
• Added new "Available System Debugging Toolkits" topic.
• Added new Toolkit Tcl Commands section.
• Reordered some topics and updated outdated screenshots.

2019.09.30 19.3 Made the following updates in the Analyzing and Debugging Designs with
System Console chapter:

continued...

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

195

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Updated System Console GUI and System Explorer Pane topics to
describe the new framework.

• Added the following new topics to describe various panes and views
added to the System Console:
— System Console Default Panes
— Toolkit Explorer Pane
— Filtering and Searching Interactive Instances
— Creating Collections from the Toolkit Explorer
— System Console Views
— Main View
— Link Pair View
— Autosweep View
— Dashboard View
— Eye View

• Removed Working with Toolkit section completely since it was now
outdated due to the implementation of new System Console
framework.

2018.05.07 18.0.0 Removed obsolete section: Board Bring-Up with System Console Tutorial.

2017.05.08 17.0.0 • Created topic Convert your Dashboard Scripts to Toolkit API.
• Removed Registering the Service Example from Toolkit API Script

Examples, and added corresponding code snippet to Registering a
Toolkit.

• Moved .toolkit Description File Example under Creating a Toolkit
Description File.

• Renamed Toolkit API GUI Example .toolkit File to .toolkit Description
File Example.

• Updated examples on Toolkit API to reflect current supported syntax.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2015.11.02 15.1.0 • Edits to Toolkit API content and command format.
• Added Toolkit API design example.
• Added graphic to Introduction to System Console.
• Deprecated Dashboard.
• Changed instances of Quartus II to Intel Quartus Prime.

October 2015 15.1.0 • Added content for Toolkit API
— Required .toolkit and Tcl files
— Registering and launching the toolkit
— Toolkit discovery and matching toolkits to IP
— Toolkit API commands table

May 2015 15.0.0 Added information about how to download and start System Console
stand-alone.

December 2014 14.1.0 • Added overview and procedures for using ADC Toolkit on MAX 10
devices.

• Added overview for using MATLAB/Simulink Environment with System
Console for system verification.

June 2014 14.0.0 Updated design examples for the following: board bring-up, dashboard
service, Nios II processor, design service, device service, monitor service,
bytestream service, SLD service, and ISSP service.

November 2013 13.1.0 Re-organization of sections. Added high-level information with block
diagram, workflow, SLD overview, use cases, and example Tcl scripts.

June 2013 13.0.0 Updated Tcl command tables. Added board bring-up design example.
Removed SOPC Builder content.

continued...

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

November 2012 12.1.0 Re-organization of content.

August 2012 12.0.1 Moved Transceiver Toolkit commands to Transceiver Toolkit chapter.

June 2012 12.0.0 Maintenance release. This chapter adds new System Console features.

November 2011 11.1.0 Maintenance release. This chapter adds new System Console features.

May 2011 11.0.0 Maintenance release. This chapter adds new System Console features.

December 2010 10.1.0 Maintenance release. This chapter adds new commands and references for
Qsys.

July 2010 10.0.0 Initial release. Previously released as the System Console User Guide,
which is being obsoleted. This new chapter adds new commands.

7. Analyzing and Debugging Designs with System Console

683819 | 2023.12.04

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Intel Quartus Prime Pro Edition User Guide Debug
Tools Archives

For the latest and previous versions of this user guide, refer to Intel Quartus Prime Pro
Edition User Guide: Design Compilation. If a software version is not listed, the guide
for the previous software version applies.

683819 | 2023.12.04

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Intel Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Pro Edition FPGA design flow.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Pro Edition software, including managing Intel Quartus Prime Pro Edition
projects and IP, initial design planning considerations, and project migration
from previous software versions.

• Intel Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Pro Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Pro Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Pro Edition Compiler. The Compiler synthesizes, places, and routes your
design before generating a device programming file.

• Intel Quartus Prime Pro Edition User Guide: Design Optimization
Describes Intel Quartus Prime Pro Edition settings, tools, and techniques that
you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Intel Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Pro Edition Programmer, which
allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683819 | 2023.12.04

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Intel Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys* that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys*. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence
Checking Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Intel Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Pro Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, system
debugging toolkits, In-System Memory Content Editor, and In-System Sources
and Probes Editor.

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Intel Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Pro Edition software and to perform a wide range of functions, such as
managing projects, specifying constraints, running compilation or timing
analysis, or generating reports.

A. Intel Quartus Prime Pro Edition User Guides

683819 | 2023.12.04

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

200

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202023.12.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Pro Edition User
Guide
Timing Analyzer

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q What's new in this version?
A What's New In This Version on page 4

Q What are the basic concepts of timing analysis?
A Timing Analysis Basic Concepts on page 4

Q When do I apply timing constraints?
A Using Constraints throughout Design Flow on page 27

Q How do I run timing analysis?
A Run the Timing Analyzer on page 34

Q Where are the timing-critical paths in my design?
A Report Timing By Source Files on page 134

Q What are the recommended initial constraints?
A Recommended Initial SDC Constraints on page 49

Q How do I constrain CDC buses?
A Constraining CDC Paths on page 92

Q Do you have an example SDC file?
A Example Circuit and SDC File on page 54

Q Do you have training on timing analysis?
A Intel FPGA Technical Training: Timing Analysis

Online Version

Send Feedback UG-20140

683243

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/catalog.html?s=Newest&q=timing%20analysis
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Timing Analysis Introduction.. 4
1.1. What's New In This Version...4
1.2. Timing Analysis Basic Concepts... 4

1.2.1. Timing Path and Clock Analysis..5
1.2.2. Clock Setup Analysis.. 9
1.2.3. Clock Hold Analysis.. 10
1.2.4. Recovery and Removal Analysis... 11
1.2.5. Multicycle Path Analysis.. 11
1.2.6. Metastability Analysis... 16
1.2.7. Timing Pessimism.. 16
1.2.8. Clock-As-Data Analysis... 18
1.2.9. Multicorner Timing Analysis... 19
1.2.10. Time Borrowing... 19

1.3. Timing Analysis Overview Document Revision History... 25

2. Using the Quartus Prime Timing Analyzer...26
2.1. Using Timing Constraints throughout the Design Flow... 27
2.2. Timing Analysis Flow.. 28

2.2.1. Step 1: Specify General Timing Analyzer Settings...29
2.2.2. Step 2: Specify Timing Constraints...30
2.2.3. Step 3: Run the Timing Analyzer..34
2.2.4. Step 4: Analyze Timing Reports... 40

2.3. Applying Timing Constraints.. 49
2.3.1. Recommended Initial Conventional SDC Constraints..................................... 49
2.3.2. Example Circuit and Conventional SDC File..54
2.3.3. SDC File Precedence...55
2.3.4. Iteratively Modifying Constraints.. 56
2.3.5. Applying Entity-Bound Timing Constraints... 56
2.3.6. Constraining Design Partition Ports...75
2.3.7. Using Fitter Overconstraints.. 76

2.4. Timing Constraint Descriptions.. 78
2.4.1. Clock Constraints... 78
2.4.2. I/O Constraints..93
2.4.3. Delay and Skew Constraints.. 96
2.4.4. Timing Exception Constraints...99
2.4.5. Delay Annotation... 125

2.5. Timing Report Descriptions..126
2.5.1. Report Fmax Summary... 127
2.5.2. Report Timing..128
2.5.3. Report Timing By Source Files..134
2.5.4. Report Data Delay..134
2.5.5. Report Net Delay..134
2.5.6. Report Clocks and Clock Network... 135
2.5.7. Report Clock Transfers.. 137
2.5.8. Report Metastability..138
2.5.9. Report CDC Viewer ..139
2.5.10. Report Asynchronous CDC... 142

Contents

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.11. Report Logic Depth... 145
2.5.12. Report Neighbor Paths.. 147
2.5.13. Report Register Spread... 148
2.5.14. Report Route Net of Interest.. 152
2.5.15. Report Retiming Restrictions.. 153
2.5.16. Report Register Statistics...154
2.5.17. Report Pipelining Information...155
2.5.18. Report Time Borrowing Data.. 158
2.5.19. Report Exceptions and Exceptions Reachability... 159
2.5.20. Report Bottlenecks... 160
2.5.21. Check Timing...161
2.5.22. Report SDC... 164

2.6. Scripting Timing Analysis.. 164
2.6.1. The quartus_sta Executable...165
2.6.2. The quartus_staw Executable...166
2.6.3. Collection Commands... 167

2.7. Using the Quartus Prime Timing Analyzer Document Revision History........................170
2.8. Quartus Prime Pro Edition User Guide: Timing Analyzer Archive................................175

A. Quartus Prime Pro Edition User Guides...176

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Timing Analysis Introduction
Comprehensive timing analysis of your design allows you to validate circuit
performance, identify timing violations, and drive the Fitter's placement of logic to
meet your timing goals. The Quartus® Prime Timing Analyzer uses industry-standard
constraint and analysis methodology to report on all data required times, data arrival
times, and clock arrival times for all register-to-register, I/O, and asynchronous reset
paths in your design.

The Timing Analyzer verifies that your design meets all required timing relationships
to correctly function, and confirms actual signal arrival times against the constraints
that you specify. This user guide provides an introduction to basic timing analysis
concepts, along with step-by-step instructions for using the Quartus Prime Timing
Analyzer.

1.1. What's New In This Version

• Updated throughout to reflect recent added support for DNI-related SDC-on-RTL
constraints and post-synthesis Early Timing Analysis.

• Some timing reports now support opening the reported source file in a text editor,
as Report Timing By Source Files describes.

• For change details, refer to the chapter revision histories in this document.

1.2. Timing Analysis Basic Concepts

This user guide introduces the following concepts to describe timing analysis:

Table 1. Timing Analyzer Terminology

Term Definition

Arrival time The Timing Analyzer calculates the data and clock arrival time versus the required time
at register pins.

Cell Device resource that contains look-up tables (LUT), registers, digital signal processing
(DSP) blocks, memory blocks, or I/O elements. In Stratix® series devices, the LUTs
and registers are contained in logic elements (LE) modeled as cells.

Clock Named signal representing clock domains inside or outside of your design.

Clock-as-data analysis More accurate timing analysis for complex paths that includes any phase shift
associated with a PLL for the clock path, and considers any related phase shift for the
data path.

Clock hold time Minimum time interval that a signal must be stable on the input pin that feeds a data
input or clock enable, after an active transition on the clock input.

continued...

683243 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Term Definition

Clock launch and latch edge The launch edge is the clock edge that sends data out of a register or other sequential
element, and acts as a source for the data transfer. The latch edge is the active clock
edge that captures data at the data port of a register or other sequential element,
acting as a destination for the data transfer.

Clock pessimism Clock pessimism refers to use of the maximum (rather than minimum) delay variation
associated with common clock paths during static timing analysis.

Clock setup time Minimum time interval between the assertion of a signal at a data input, and the
assertion of a low-to-high transition on the clock input.

Maximum or minimum delay
constraint

A constraint that specifies timing path analysis with a non-default setup or hold
relationship.

Net A collection of two or more interconnected components.

Node Represents a wire carrying a signal that travels between different logical components
in the design. Most basic timing netlist unit. Used to represent ports, pins, and
registers.

Pin Inputs or outputs of cells.

Port Top-level module inputs or outputs; for example, a device pin.

Metastability Metastability problems can occur when a signal transfers between circuitry in unrelated
or asynchronous clock domains. The Timing Analyzer analyzes the potential for
metastability in your design and can calculate the MTBF for synchronization register
chains.

Multicorner analysis Timing analysis of slow and fast timing corners to verify your design under a variety of
voltage, process, and temperature operating conditions.

Multicycle paths A data path that requires a non-default number of clock cycles for proper analysis.

Recovery and removal time Recovery time is the minimum length of time for the deassertion of an asynchronous
control signal relative to the next clock edge. Removal time is the minimum length of
time the deassertion of an asynchronous control signal must be stable after the active
clock edge.

Timing netlist A Compiler-generated list of your design's synthesized nodes and connections. The
Timing Analyzer requires this netlist to perform timing analysis.

Timing path The wire connection (net) between any two sequential design nodes, such as the
output of a register to the input of another register.

1.2.1. Timing Path and Clock Analysis

The Timing Analyzer measures the timing performance for all timing paths identified in
your design. Prior to running full timing analysis, you can run post-synthesis early
timing analysis to obtain an early view of the design core timing. For post-fit timing
analysis, the Timing Analyzer requires a timing netlist that describes your design's
nodes and connections for analysis and uses routing delays between core blocks
represented by average interconnect delays. The post-synthesis timing delays reflect
the delays of each type of connected core block.

Post-fit timing analysis also determines clock relationships for all register-to-register
transfers in your design by analyzing the clock setup and hold relationship between
the launch edge and latch edge of the clock.

1.2.1.1. The Timing Netlist

The Timing Analyzer uses the timing netlist data to determine the data and clock
arrival time versus required time for all timing paths in the design. Post-synthesis
timing analysis utilizes a timing netlist that incorporates core blocks (including their

1. Timing Analysis Introduction

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

internal logic) and peripheral blocks (excluding their internal details). The Timing
Analyzer estimates pre-synthesis routing delays by using an average interconnect
model that the Analysis & Elaboration compilation stage generates. You can generate
the post-fit timing netlist in the Timing Analyzer any time after running the Fitter.

The following figures illustrate division of a simple design schematic into timing netlist
delays.

Figure 1. Simple Design Schematic

data1

data2

clk

reg1

reg2

and_inst

reg3

Figure 2. Division of Elements into Timing Netlist Delays

reg2

data1

data2

clk clk~clkctrl

reg1

and_inst
reg3 data_out

combout

inclk0

datain

clk regout

regout

datac

datad

combout
datain

Cells
Cell

Cell

Pin

Pin

outclk

Port

Port

Net Net

Net

1.2.1.2. Timing Paths

Timing paths connect two design nodes, such as the output of a register to the input
of another register.

1. Timing Analysis Introduction

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Understanding the types of timing paths is important to timing closure and
optimization. The Timing Analyzer recognizes and analyzes the following timing paths:

• Edge paths—connections from ports-to-pins, from pins-to-pins, and from pins-to-
ports.

• Clock paths—connections from device ports or internally generated clock pins to
the clock pin of a register.

• Data paths—connections from a port or the data output pin of a sequential
element to a port or the data input pin of another sequential element.

• Asynchronous paths—connections from a port or asynchronous pins of another
sequential element such as an asynchronous reset or asynchronous clear.

Figure 3. Path Types Commonly Analyzed by the Timing Analyzer

CLRN

D Q

CLRN

D Q

clk

rst

Clock Path Data Path

Asynchronous Clear Path

data

In addition to identifying various paths in a design, the Timing Analyzer analyzes clock
characteristics to compute the worst-case requirement between any two registers in a
single register-to-register path. You must constrain all clocks in your design before
analyzing clock characteristics.

1.2.1.3. Data and Clock Arrival Times

After the Timing Analyzer identifies the path type, the Timing Analyzer can report data
and clock arrival times at register pins.

The Timing Analyzer calculates data arrival time by adding the launch edge time to the
delay from the clock source to the clock pin of the source register, the micro clock-to-
output delay (µtCO) of the source register, and the delay from the source register’s
data output (Q) to the destination register’s data input (D).

The Timing Analyzer calculates data required time by adding the latch edge time to
the sum of all delays between the clock port and the clock pin of the destination
register. It includes any clock port buffer delays and subtracts the micro setup time
(µtSU) (or adds the micro hold time) of the destination register. Where the µtSU is the
intrinsic setup time of an internal register in the FPGA.

1. Timing Analysis Introduction

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. Data Arrival and Data Required Times

D Q D Q

Data Arrival Time

Data Required Time

The basic calculations for data arrival and data required times including the launch and
latch edges.

Figure 5. Data Arrival and Data Required Time Equations

Data Arrival Time = Launch Edge + Source Clock Delay + µtCO + Register-to-Register Delay
Data Required Time = Latch Edge + Destination Clock Delay – µtSU

1.2.1.4. Launch and Latch Edges

All timing analysis requires the presence of one or more clock signals. The Timing
Analyzer determines clock relationships for all register-to-register transfers in your
design by analyzing the clock setup and hold relationship between the launch edge
and latch edge of the clock.

The launch edge of the clock signal is the clock edge that sends data out of a register
or other sequential element, and acts as a source for the data transfer. The latch edge
is the active clock edge that captures data at the data port of a register or other
sequential element, acting as a destination for the data transfer.

Figure 6. Setup and Hold Relationship for Launch and Latch Edges 10ns Apart
In this example, the launch edge sends the data from register reg1 at 0 ns, and the register reg2 captures
the data when triggered by the latch edge at 10 ns. The data arrives at the destination register before the next
latch edge.

Launch Clock

Latch Clock

0ns 10ns 20ns

Setup relationshipHold relationship

You must define all clocks in your design by assigning a clock constraint to each clock
source node. These clock constraints provide the structure required for repeatable
data relationships. If you do not constrain the clocks in your design, the Quartus Prime
software analyzes all clocks as 1 GHz clocks to maximize timing based Fitter effort. To
ensure realistic slack values, you must constrain all clocks in your design with real
values.

1. Timing Analysis Introduction

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.2. Clock Setup Analysis

To perform a clock setup check, the Timing Analyzer determines a setup relationship
by analyzing each launch and latch edge for each register-to-register path.

For each latch edge at the destination register, the Timing Analyzer uses the closest
previous clock edge at the source register as the launch edge. The following figure
shows two setup relationships, setup A and setup B. For the latch edge at 10 ns, the
closest clock that acts as a launch edge is at 3 ns and has the setup A label. For the
latch edge at 20 ns, the closest clock that acts as a launch edge is 19 ns and has the
setup B label. The Timing Analyzer analyzes the most restrictive setup relationship, in
this case setup B; if that relationship meets the design requirement, then setup A
meets the requirement by default.

Figure 7. Setup Check

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

The Timing Analyzer reports the result of clock setup checks as slack values. Slack is
the margin by which a circuit meets or does not meet the timing requirement. Positive
slack indicates the margin by the circuit meets the requirement. Negative slack
indicates the margin by which the circuit does not meet the requirement.

Figure 8. Clock Setup Slack for Internal Register-to-Register Paths

Clock Setup Slack = Data Required Time – Data Arrival Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU – Setup Uncertainty

The Timing Analyzer performs setup checks using the maximum delay when
calculating data arrival time, and minimum delay when calculating data required time.
Some of the spread between maximum arrival path delays and minimum required
path delays may be recoverable with path pessimism removal, as Timing Pessimism
on page 16 describes.

Figure 9. Clock Setup Slack from Input Port to Internal Register

Clock Setup Slack = Data Required Time – Data Arrival Time
Data Arrival Time = Launch Edge + Clock Network Delay + Input Maximum Delay + Port-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU – Setup Uncertainty

Figure 10. Clock Setup Slack from Internal Register to Output Port

Clock Setup Slack = Data Required Time – Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Output Port – Output Maximum Delay
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register +µtCO + Register-to-Port Delay

1. Timing Analysis Introduction

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.3. Clock Hold Analysis

To perform a clock hold check, the Timing Analyzer determines a hold relationship for
each possible setup relationship that exists for all source and destination register
pairs. The Timing Analyzer checks all adjacent clock edges from all setup relationships
to determine the hold relationships.

The Timing Analyzer performs two hold checks for each setup relationship. The first
hold check determines that the data launched by the current launch edge is not
captured by the previous latch edge. The second hold check determines that the data
launched by the next launch edge is not captured by the current latch edge. From the
possible hold relationships, the Timing Analyzer selects the hold relationship that is
the most restrictive. The most restrictive hold relationship is the hold relationship with
the smallest difference between the latch and launch edges and determines the
minimum allowable delay for the register-to-register path. In the following example,
the Timing Analyzer selects hold check A2 as the most restrictive hold relationship of
two setup relationships, setup A and setup B, and their respective hold checks.

Figure 11. Setup and Hold Check Relationships

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

Hold
Check A1

Hold
Check B2

Hold
Check A2

Hold
Check B1

Figure 12. Clock Hold Slack for Internal Register-to-Register Paths

Clock Hold Slack = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH + Hold Uncertainty

The Timing Analyzer performs hold checks using the minimum delay when calculating
data arrival time, and maximum delay when calculating data required time.

Figure 13. Clock Hold Slack Calculation from Input Port to Internal Register

Clock Hold Slack = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay + Input Minimum Delay + Pin-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH

Figure 14. Clock Hold Slack Calculation from Internal Register to Output Port

Clock Hold Slack = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Pin Delay
Data Required Time = Latch Edge + Clock Network Delay – Output Minimum Delay

1. Timing Analysis Introduction

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.4. Recovery and Removal Analysis

Recovery time is the minimum length of time for the deassertion of an asynchronous
control signal relative to the next clock edge.

For example, signals such as clear and preset must be stable before the next
active clock edge. The recovery slack calculation is similar to the clock setup slack
calculation, but the calculation applies to asynchronous control signals.

Figure 15. Recovery Slack Calculation if the Asynchronous Control Signal is Registered

Recovery Slack Time = Data Required Time – Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU

Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Register Delay

Figure 16. Recovery Slack Calculation if the Asynchronous Control Signal is not
Registered

Recovery Slack Time = Data Required Time – Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU

Data Arrival Time = Launch Edge + Clock Network Delay + Input Maximum Delay + Port-to-Register Delay

Note: If the asynchronous reset signal is from a device I/O port, you must create an input
delay constraint for the asynchronous reset port for the Timing Analyzer to perform
recovery analysis on the path.

Removal time is the minimum length of time the deassertion of an asynchronous
control signal must be stable after the active clock edge. The Timing Analyzer removal
slack calculation is similar to the clock hold slack calculation, but the calculation
applies to asynchronous control signals.

Figure 17. Removal Slack Calculation if the Asynchronous Control Signal is Registered
Removal Slack Time = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO of Source Register + Register-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH

Figure 18. Removal Slack Calculation if the Asynchronous Control Signal is not
Registered

Removal Slack Time = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay + Input Minimum Delay of Pin + Minimum Pin-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH

If the asynchronous reset signal is from a device pin, you must create an input delay
constraint to the asynchronous reset pin for the Timing Analyzer to perform removal
analysis on the path.

1.2.5. Multicycle Path Analysis

Multicycle paths are data paths that require an exception to the default setup or hold
relationship, for proper analysis. For example, a register that requires data capture on
every second or third rising clock edge (multicycle exception), rather than requiring
capture on every clock edge (default analysis).

1. Timing Analysis Introduction

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A multicycle path occurs between the input registers of a multiplier, and an output
register with a destination that latches data on every other clock edge.

Figure 19. Multicycle Path

2 Cycles

ENA

D Q

ENA

D Q

D Q

ENA

A register-to-register path is for the default setup and hold relationship. Also, for the
respective timing diagrams for the source and destination clocks and the default setup
and hold relationships, when the source clock, src_clk, has a period of 10 ns and
the destination clock, dst_clk, has a period of 5 ns. The default setup relationship is
5 ns; the default hold relationship is 0 ns.

Figure 20. Register-to-Register Path and Default Setup and Hold Timing Diagram

reg reg

data_out
data_in

src_clk

dst_clk

D Q D Q

0 10 20 30

setup
hold

To accommodate the system requirements, you can modify the default setup and hold
relationships by specifying a multicycle timing constraint to a register-to-register path.

1. Timing Analysis Introduction

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. Register-to-Register Path

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

CLK

Tclk1

TCO TSU / TH

Tdata

Tclk2

The exception has a multicycle setup assignment of two to use the second occurring
latch edge; in this example, to 10 ns from the default value of 5 ns.

Figure 22. Modified Setup Diagram

 new setup
default setup

0 10 20 30

1.2.5.1. Multicycle Clock Hold

The number of clock periods between the clock launch edge and the latch edge defines
the setup relationship.

By default, the Timing Analyzer performs a single-cycle path analysis. When analyzing
a path, the Timing Analyzer performs two hold checks. The first hold check determines
that the data that launches from the current launch edge is not captured by the
previous latch edge. The second hold check determines that the data that launches
from the next launch edge is not captured by the current latch edge. The Timing
Analyzer reports only the most restrictive hold check. The Timing Analyzer calculates
the hold check by comparing launch and latch edges.

Figure 23. Hold Check
The Timing Analyzer uses the following calculation to determine the hold check.

hold check 1 = current launch edge – previous latch edge
hold check 2 = next launch edge – current latch edge

Tip: If a hold check overlaps a setup check, the hold check is ignored.

A start multicycle hold assignment modifies the launch edge of the source clock by
moving the launch edge the number of clock periods you specify to the right of the
default launch edge. The following figure shows various values of the start multicycle
hold (SMH) assignment and the resulting launch edge.

1. Timing Analysis Introduction

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. Start Multicycle Hold Values

-10 0 10 20

Source Clock

Destination Clock

SMH = 1
SMH = 0
(default) SMH = 2

An end multicycle hold assignment modifies the latch edge of the destination clock by
moving the latch edge the specific number of clock periods to the left of the default
latch edge. The following figure shows various values of the end multicycle hold (EMH)
assignment and the resulting latch edge.

Figure 25. End Multicycle Hold Values

Source Clock

Destination Clock

EMH = 0
(Default)

EMH = 2

EMH = 1

-20 -10 0 10 20

Figure 26. End Multicycle Hold Values the Timing Analyzer Reports
The following shows the hold relationship the Timing Analyzer reports for the negative hold relationship:

Source Clock

Destination Clock

EMH = 0
(Default)

EMH = 2

EMH = 1

-10 0 10 20

1. Timing Analysis Introduction

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.5.2. Multicycle Clock Setup

The setup relationship is the number of clock periods between the latch edge and the
launch edge. By default, the Timing Analyzer performs a single-cycle path analysis,
which results in the setup relationship being equal to one clock period (latch edge –
 launch edge). Applying a multicycle setup assignment, adjusts the setup relationship
by the multicycle setup value. The adjustment value may be negative.

An end multicycle setup assignment modifies the latch edge of the destination clock by
moving the latch edge the specified number of clock periods to the right of the
determined default latch edge. The following figure shows various values of the end
multicycle setup (EMS) assignment and the resulting latch edge.

Figure 27. End Multicycle Setup Values
-10 0 10 20

Source Clock

EMS = 2
EMS = 1
(default)

EMS = 3

Destination Clock

A start multicycle setup assignment modifies the launch edge of the source clock by
moving the launch edge the specified number of clock periods to the left of the
determined default launch edge. A start multicycle setup (SMS) assignment with
various values can result in a specific launch edge.

Figure 28. Start Multicycle Setup Values

Source Clock

Destination Clock

SMS = 1
(Default)

SMS = 2

SMS = 3

0 10 20 30 40

1. Timing Analysis Introduction

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. Start Multicycle Setup Values Reported by the Timing Analyzer
The following shows the negative setup relationship reported by the Timing Analyzer.

-10 0 10 20

Source Clock

Destination Clock

SMS = 2

SMS = 1
(default) SMS = 3

1.2.6. Metastability Analysis

Metastability problems can occur when a signal transfers between circuitry in
unrelated or asynchronous clock domains because the signal does not meet setup and
hold time requirements.

To minimize the failures due to metastability, circuit designers typically use a sequence
of registers, also known as a synchronization register chain, or synchronizer, in the
destination clock domain to resynchronize the data signals to the new clock domain.

The mean time between failures (MTBF) is an estimate of the average time between
instances of failure due to metastability.

The Timing Analyzer analyzes the potential for metastability in your design and can
calculate the MTBF for synchronization register chains. The Timing Analyzer then
estimates the MTBF of the entire design from the synchronization chains the design
contains.

In addition to reporting synchronization register chains found in the design, the
Quartus Prime software also protects these registers from optimizations that might
negatively impact MTBF, such as register duplication and logic retiming. The Quartus
Prime software can also optimize the MTBF of your design if the MTBF is too low.

Related Information

• Report Metastability on page 138

• Step 1: Specify General Timing Analyzer Settings on page 29

• report_metastability

1.2.7. Timing Pessimism

Common clock path pessimism removal accounts for the minimum and maximum
delay variation associated with common clock paths during static timing analysis by
adding the difference between the maximum and minimum delay value of the
common clock path to the appropriate slack equation.

Minimum and maximum delay variation can occur when timing analysis uses two
different delay values for the same clock path. For example, in a simple setup
analysis, the maximum clock path delay to the source register determines the data

1. Timing Analysis Introduction

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

16

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_metastability.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

arrival time. The minimum clock path delay to the destination register determines the
data required time. However, if the clock path to the source register and to the
destination register share a common clock path, both the maximum delay and the
minimum delay model the common clock path during timing analysis. The use of both
the minimum delay and maximum delay results in an overly pessimistic analysis since
two different delay values, the maximum and minimum delays, cannot be used to
model the same clock path.

Figure 30. Typical Register to Register Path

D Q

D Q
clk

A

B

C

reg1

reg2

5.5 ns
5.0 ns

2.2 ns
2.0 ns

2.2 ns
2.0 ns

3.2 ns
3.0 ns

Segment A is the common clock path between reg1 and reg2. The minimum delay is
5.0 ns; the maximum delay is 5.5 ns. The difference between the maximum and
minimum delay value equals the common clock path pessimism removal value; in this
case, the common clock path pessimism is 0.5 ns. The Timing Analyzer adds the
common clock path pessimism removal value to the appropriate slack equation to
determine overall slack. Therefore, if the setup slack for the register-to-register path
in the example equals 0.7 ns without common clock path pessimism removal, the
slack is 1.2 ns with common clock path pessimism removal.

You can also use common clock path pessimism removal to determine the minimum
pulse width of a register. A clock signal must meet a register’s minimum pulse width
requirement for recognition by the register. A minimum high time defines the
minimum pulse width for a positive-edge triggered register. A minimum low time
defines the minimum pulse width for a negative-edge triggered register.

Clock pulses that violate the minimum pulse width of a register prevent data from
latching at the data pin of the register. To calculate the slack of the minimum pulse
width, the Timing Analyzer subtracts the required minimum pulse width time from the
actual minimum pulse width time. The Timing Analyzer determines the actual
minimum pulse width time by the clock requirement you specify for the clock that
feeds the clock port of the register. The Timing Analyzer determines the required
minimum pulse width time by the maximum rise, minimum rise, maximum fall, and
minimum fall times.

1. Timing Analysis Introduction

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 31. Required Minimum Pulse Width time for the High and Low Pulse

High Pulse
Width

Low Pulse
Width

Minimum and
Maximum
Fall Arrival Times

Minimum and
Maximum Rise
Arrival Times

0.8
0.5

0.5
0.8

0.9
0.7

With common clock path pessimism, the minimum pulse width slack can increase by
the smallest value of either the maximum rise time minus the minimum rise time, or
the maximum fall time minus the minimum fall time. In the example, the slack value
can increase by 0.2 ns, which is the smallest value between 0.3 ns (0.8 ns – 0.5 ns)
and 0.2 ns (0.9 ns – 0.7 ns).

1.2.8. Clock-As-Data Analysis

The majority of FPGA designs contain simple connections between any two nodes,
known as either a data path or a clock path.

A data path is a connection between the output of a synchronous element to the input
of another synchronous element.

A clock is a connection to the clock pin of a synchronous element. However, for more
complex FPGA designs, such as designs that use source-synchronous interfaces, this
simplified view is no longer sufficient. The Timing Analyzer performs clock-as-data
analysis in circuits with elements such as clock dividers and DDR source-synchronous
outputs.

You can treat the connection between the input clock port and output clock port as a
clock path or a data path. Simplified Source Synchronous Output shows a design
where the path from port clk_in to port clk_out is both a clock and a data path.
The clock path is from the port clk_in to the register reg_data clock pin. The data
path is from port clk_in to the port clk_out.

Figure 32. Simplified Source Synchronous Output

D Q

clk_in clk_out

reg_data

1. Timing Analysis Introduction

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

With clock-as-data analysis, the Timing Analyzer provides a more accurate analysis of
the path based on user constraints. In the clock path analysis, the Timing Analyzer
includes any phase shift associated with the phase-locked loop (PLL). For the data
path analysis, the Timing Analyzer includes any phase shift associated with the PLL,
rather than ignoring the phase shift.

The clock-as-data analysis also applies to internally generated clock dividers. In the
following figure, the waveforms are for the inverter feedback path, analyzed during
timing analysis. The output of the divider register determines the launch time, and the
clock port of the register determines the latch time.

Figure 33. Clock Divider

D Q

D Q

Launch Clock (2 T)

Data Arrival Time

Latch Clock (T)

1.2.9. Multicorner Timing Analysis

You can direct the Timing Analyzer to perform multicorner timing analysis to verify
your design under different voltage, process, and temperature operating conditions.

To ensure that no violations occur under different timing conditions (models) during
device operation, you must perform static timing analysis under all available operating
conditions.

You specify the operating conditions in the Timing Analyzer prior to running analysis.

Related Information

Setting the Operating Conditions for Timing Analysis on page 38

1.2.10. Time Borrowing

Time borrowing can improve performance by enabling the path ending at a time-
borrowing flip-flop or latch to "borrow" time from the next path in the register
pipeline. The borrowed time subtracts from the next path, resulting in the same
cumulative timing. In this way, time borrowing can shift slack to more critical parts of
the design. Without time borrowing, the Timing Analyzer analyzes each path
independently and normally assumes exactly one clock cycle for each transfer.

1. Timing Analysis Introduction

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 34. Time Borrowing Example

Time-
Borrowing
Flip-flop

F F

Path A
Borrows from
Path B

A B

Some of the flip-flops in Stratix 10 and Arria® 10 devices allow time borrowing. The
exact size of the available time borrow window depends on hardware settings. The
Fitter (Finalize) stage automatically configures the appropriate borrow window for
each time-borrowing flip-flop, based on hardware restrictions and the available hold
slack.(1)

Figure 35. Time Borrowing with Various Slack Conditions and Borrow Values

Time Borrow Window

No Borrow, Positive Slack

No Borrow, Zero Slack

Borrow, Zero Slack

Max Borrow, Zero Slack

Max Borrow, Negative Slack

Path A Available Time
Path B Available Time

Intel FPGA devices generally support only a few borrow window sizes. For example,
Stratix 10 devices support narrow, medium, and wide. Typically, groups of several flip-
flops must share the same setting. The actual borrowed amount is completely flexible
within a given borrow window. The Timing Analyzer calculates the borrowed amount
separately for each operating condition, clock, and signal rise and fall edge. Selecting
a wider borrow window reduces hold slack. The Compiler only selects wider settings if
hold slack allows. Furthermore, if the Compiler determines that a narrower window is
sufficient for a given group of registers (based on the optimal time borrowing
solution), the Compiler uses the narrower window, even if there is sufficient hold slack
for a wider window.

(1) In Partial Reconfiguration designs, additional restrictions may apply to time-borrowing window
size.

1. Timing Analysis Introduction

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For a given borrow window size, the exact size of the borrow window may depend on
the register input (for example, d or sclr), the edge of the incoming signal (rising or
falling), the device speed grade, and operating conditions.

You can enable automatic implementation of time borrowing without making any RTL
changes. Once enabled, the Fitter automatically configures the window size. The Fitter
also determines the optimal time borrow amount within the available borrow window
for any design registers that the Fitter places in time-borrowing flip-flops.

Proper timing analysis of designs that contain level-sensitive latches typically requires
time borrowing. However, the automatic Fitter time borrowing optimizations do not
apply for level-sensitive latches, as Time Borrowing with Latches describes in detail.

Related Information

• Enabling Time Borrowing Optimization on page 23

• Report Time Borrowing Data on page 158

1.2.10.1. Time Borrowing Limitations

Time borrowing optimization, which occurs in the Fitter (Finalize) stage, cannot occur
for the following registers. For these registers, the time borrowing optimization is zero,
and the maximum operating frequency in the Fmax Summary reports include zero
time borrowing:

• Any register that is the source of a cross-clock transfer

• Any register that is the source of a set_max_skew or set_max_delay
assignment

• Any register in a clock domain with one or more level-sensitive latch

Furthermore, registers that are destinations of cross-clock transfers, set_max_skew
or set_max_delay constraints do not have borrowing values that are optimized for
such transfers (but may still have non-zero borrowing from other transfers).

If any such registers are on the critical timing path, you can possibly report better
performance by enabling Dynamic time borrowing mode, which reports time
borrowing for all borrow-capable registers. Dynamic time borrowing mode can then
provide a more accurate (less pessimistic) analysis, but only at a specific set of clock
frequencies that you specify in the .sdc.

To view time borrowing results for such registers:

1. Set the clock frequency in the .sdc file to a value higher than the clock frequency
that Fmax Summary reports.

2. Reset your design and read the SDC file again in the Timing Analyzer.

3. Run the update_timing_netlist -dynamic_borrow command.

4. View the results in Slack Summary reports (Reports ➤ Slack to determine if
timing passes. The Fmax Summary report does not reflect any gains from
dynamic borrowing.

1. Timing Analysis Introduction

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Time borrowing is similar to the beneficial clock skew technique, whereby you delay
the clock to a given register, giving more time to the incoming paths at the expense of
the outgoing paths. However, time borrowing and beneficial clock skew have the
following important differences:

• Time borrowing offers more flexibility than clock skew in distributing setup slack.
Skewing is typically limited to fixed increments. You can use borrowing to shift any
amount of slack (however small) from one side of the register to the other, as long
as the amounts fit within the available borrow window. Furthermore, borrow
amounts calculate separately for each operating condition, making it possible to
shift the optimum amount of slack for each operating condition. This type of
shifting is not possible with skewing.

• You can use beneficial clock skew to increase Hold slack on outgoing paths from
the register where the clock is skewed. Time borrowing does not offer this benefit.

1.2.10.2. Time Borrowing with Latches

The Quartus Prime Timing Analyzer treats level-sensitive latches similar to registers.
The Timing Analyzer treats the latch enable pin as a clock pin, while modifying the
clock relationship appropriately.

You can run Reports ➤ Constraint Diagnostics ➤ Check Timing in the Timing
Analyzer Tasks pane to view a list of the level-sensitive latches in your design.

Implementation of latch time borrowing requires that you enable Dynamic borrowing
mode (update_timing_netlist -dynamic_borrow). Otherwise, the Timing
Analyzer calculates zero time borrowing for latches. In Dynamic mode, the Timing
Analyzer simply reports the amount of time borrowing that would physically happen in
the circuit, given the clock frequencies you specify in SDC constraints, and does not
actually optimize borrowing in any way.

For latches, the setup relationship is to the opening edge of the latch, which allows
time borrowing. The hold relationship is to the closing edge of the latch. For example,
a path from a positive register to another positive register has a default setup clock
relationship of one clock period. A path from a positive register to a positive (open-
high), level-sensitive latch has a default setup clock relationship of zero clock periods,
plus any time borrow value.

The Timing Analyzer treats paths to and from a latch as two separate paths. For
example, in a positive register--> positive latch--> negative register transfer, the
Timing Analyzer does not analyze the overall register-->register transfer, even though
you expect the latch to be transparent for the entire duration of the transfer. The
Timing Analyzer analyzes and reports the paths to and from the latch separately.

The Timing Analyzer automatically computes the maximum amount of time borrowing
available for each latch. Typically, the maximum amount of time borrowing available is
roughly equivalent to half the clock period. The exact amount of time borrowing
available is based on:

• The timing of opening and closing latch edges

• Physical latch implementation (closing-edge µtSU of the latch)

• Clock uncertainty and other effects

1. Timing Analysis Introduction

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The time borrowing never exceeds the maximum borrow value. However, you can
specify a smaller maximum borrow time with the set_max_time_borrow SDC
constraint. For example:

#Borrow at most 3ns at all "lat*" latches:
set_max_time_borrow 3 [get_registers lat*]

Specifying a clock with a negative borrow window can result in negative maximum
borrowable time, which is equivalent to a minimum pulse width violation. For example,
this condition can occur if half the clock period is smaller than the closing-edge µtSU of
the latch. If such a violation occurs, a warning indicates that the design cannot pass
timing.

Note: Whether you use time borrowing or not, do not rely on the timing analysis Fmax
Summary report for any clock domains with latches. The Fmax Summary values for
such clock domains include no borrowing, and are therefore significantly pessimistic.

1.2.10.3. Enabling Time Borrowing Optimization

During any High or Superior Performance compilation, the Compiler automatically
computes and stores Optimal time borrow values for Stratix 10 and Arria 10 designs
during the Finalize stage. By default, the subsequent timing analysis results reflect the
Optimal borrow values from the Finalize stage.

Follow these steps to enable time borrowing for supported devices:

1. Click Assignments ➤ Settings ➤ Compiler Settings ➤ Optimization Mode.
Select any high or superior Performance setting.

2. Run the Fitter and Timing Analyzer, as Step 3: Run the Timing Analyzer on page
34 describes.

3. To generate reports showing time borrowing data, click Reports ➤ Timing Slack
➤ Report Timing. Time borrowing data appears on the critical path for a given
clock domain, as Report Time Borrowing Data describes.

Figure 36. Performance Compiler Optimization Mode Settings

1. Timing Analysis Introduction

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To specify time borrowing optimization without changing the Compiler
Optimization Mode, specify the following assignment in the project .qsf:

set_global_assignment -name ENABLE_TIME_BORROWING_OPTIMIZATION <ON|OFF>

• To manually specify the time borrow mode during timing analysis, run one of the
following update_timing_netlist command options:

Table 2. Time Borrowing Modes

Time Borrowing Mode Command Option Default Mode For

Optimal—timing analysis includes
optimal time borrow values from
the Finalize stage. You can
optionally add the
recompute_borrow option to
update_timing_netlist to
recompute the borrow amounts,
but not the borrow window sizes.

update_timing_netlist High and Superior
performance
compilations for
Stratix 10 and
Arria 10 designs.

Dynamic—timing analysis reports
the time borrowing that would
physically occur on the device,
with respect to your SDC
constraints, without any
optimization. That is, timing
analysis applies as much
borrowing as necessary to fix all
negative slack. Timing analysis
assumes maximum possible
borrowing for any timing path
where the maximum amount of
time borrowing is insufficient to
eliminate all negative slack. Only
mode that allows borrowing for
level-sensitive latches.

update_timing_netlist -dynamic_borrow

update_timing_netlist -loop_aware_dynamic_borrow

None

Zero—timing analysis uses zero
time borrowing.

update_timing_netlist –no_borrow Unsupported
devices, or any
Compiler
Optimization mode
other than a
Performance
mode.

Note: Dynamic mode cannot yield the optimal results with overconstrained clocks, as
overconstrained clocks result in excessive negative slack on almost every path. This
condition causes use of maximum time borrowing everywhere, which is unlikely to be
optimal. When using Partial Reconfiguration, if you compile the base design with time
borrowing enabled, compile the implementation design(s) with time borrowing
enabled. Otherwise, time borrowing amounts in the base design reset to zero, and the
design may not pass timing. If this condition occurs, you can use the
update_timing_netlist –recompute_borrow command to restore time
borrowing amounts throughout the design.

Related Information

Time Borrowing on page 19

1. Timing Analysis Introduction

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3. Timing Analysis Overview Document Revision History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Updated What's New In This Version topic for DNI, SDC-on-RTL, and
locating from report to source file.

2023.04.03 23.1 • Updated What's New In This Version topic for changes to entity-bound
SDCs.

2022.03.28 22.1 • Added Top FAQ navigation to cover page.
• Added new What's New In This Version topic for changes to Report

Register Statistics report.

2020.09.28 20.3 • Revised setup arrow direction in multiple timing diagrams for
consistency.

2020.04.13 20.1 • Added "Time Borrowing" section.

2019.09.30 19.3 • Updated "MultiCorner Timing Analysis" code example and stated
limitation for operating conditions.

2019.07.15 19.2 • Updated "MultiCorner Analysis" for SmartVID timing models.

2018.09.24 18.1 Minor text enhancements for clarity and style.

Table 3. Document Revision History

Date Version Changes

2016.10.31 16.1 • Implemented Intel rebranding.

2016.05.02 16.0 Corrected typo in Fig 6-14: Clock Hold Slack Calculation from Internal
Register to Output Port

2015.11.02 15.1 Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1 Moved Multicycle Clock Setup Check and Hold Check Analysis section from
the Timing Analyzer chapter.

June 2014 14.0 Updated format

June 2012 12.0 Added social networking icons, minor text updates

November 2011 11.1 Initial release.

1. Timing Analysis Introduction

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Using the Quartus Prime Timing Analyzer
The Quartus Prime Timing Analyzer is a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-standard
constraint, analysis, and reporting methodology. Use the Timing Analyzer GUI or
command-line interface to constrain, analyze, and report results for all timing paths in
your design.

Figure 37. Quartus Prime Timing Analyzer GUI

Start Timing Analyzer Tasks

Specify Constraints View Reports

Related Information

• Timing Analyzer Quick-Start Tutorial: Quartus Prime Pro Edition

• Intel FPGA Technical Training

683243 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/caf1499898833805.html
http://www.altera.com/education/training/trn-index.jsp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2.1. Using Timing Constraints throughout the Design Flow

To ensure accurate timing analysis, it is essential to define proper timing constraints
that specify your design's clock frequency requirements, timing exceptions, and I/O
timing specifications for comparison with actual conditions.

You specify the timing constraints in various Synopsys Design Constraint (SDC) files
that you add to the project. You can define SDC files and run timing analysis at two
key stages of the design compilation flow:

• After running Analysis & Synthesis—you can run Early Timing Analysis based on
the synthesized design and initial SDC-on-RTL constraints you specify. If you're
starting a new design, you can use SDC-on-RTL constraint methodology to learn
benefits of timing analysis after synthesis. If you've already partially completed an
existing design, it is best to use conventional SDC constraints.

• After running the Fitter—you can run post-fit timing analysis that accounts for
actual path delays and the conventional SDC constraints you specify.

Post-Synthesis Early Timing Analysis Constraints

After running Analysis & Synthesis, you can run post-synthesis Early Timing
Analysis based on the synthesized design and initial constraints that you define with
SDC-on-RTL (.rtlsdc) or a synthesis-only conventional (.sdc). SDC-on-RTL allows
you to define constraints using the same names in your design RTL, ensuring that your
timing constraints names align closely with the RTL node names in the elaborated
netlist.

Early timing analysis uses the initial SDC-on-RTL constraints that you specify to
perform post-synthesis static timing analysis without needing to run the Fitter. The
Compiler reads the constraints during Analysis & Elaboration, and then applies the
SDC-on-RTL constraints for all downstream stages of compilation. For more details,
refer to Specifying SDC-on-RTL Timing Constraints for step by step instructions.

As an alternative to SDC-on-RTL, you can define a conventional synthesis-only .sdc
that applies the constraints only for design synthesis, as Specifying Synthesis-Only
SDC Timing Constraints describes.

Post-Fit Timing Analysis Constraints

After running the Fitter's Plan, Place Route, Fitter (Finalize) stage, you can run post-fit
timing analysis that accounts for actual path delays based on the Planned, Placed, or
Routed design with constraints that you define in conventional SDC (.sdc) files. This
post-fit timing analysis provides the most precise control over timing constraints.

You can define a conventional .sdc file directly in the Timing Analyzer GUI, or use the
SDC file templates available using Edit ➤ Insert Template. You can alternatively
define an .sdc file in any text editor and then integrate it into your project. Refer to
Specifying Conventional SDC Timing Constraints.

The SDC File Types Supported table summarizes the differences between the various
SDC file types and when the Quartus Prime software uses them.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 4. Supported SDC File Types

SDC-on-RTL Synthesis-Only SDC Conventional SDC

Stage where constraints are
read

Analysis &
Elaboration

Synthesis Fitter, Signoff

Stage where constraints are
processed

Synthesis through
Fitter

Synthesis only Fitter, Signoff

QSF assignment RTL_SDC_FILE
(supports entities)

SDC_FILE SDC_ENTITY_FILE -
read_during_post_syn_and_post_fit_
timing_analysis

SDC_FILE

SDC_FILE SDC_ENTITY_FIL E -
read_during_post_syn_and_not_post_
fit_timing_analysis

Syntax supported Tcl with SDC 2.1
commands

Tcl with Quartus Prime SDC commands Tcl with Quartus
Prime SDC
commands

SDC 2.1-compliant Yes No No

Target type RTL Quartus Prime timing graph Quartus Prime
timing graph

Hierarchical targets Yes No No

Buried timing nodes (used
by IP)

No Core fabric only. Such nodes do not exist for
the periphery in post-synthesis timing
analysis.

Yes

STA command to load
constraints

Executes the
read_sdc or
import_sdc
command in any
snapshot.

Executes the read_sdc command only
during static timing analysis on the
synthesized snapshot.

Executes the
read_sdc
command during
static timing
analysis on any
fitter snapshot
(plan, place, route,
retime). Not loaded
during synthesis.

Related Information

• Applying Timing Constraints on page 49

• Using Entity-Bound SDC Files on page 64

• Using Entity-Based SDC-on-RTL Constraints on page 57

• Creating Constraints in SDC-on-RTL SDC Files, Quartus Prime Pro Edition User
Guide: Design Compilation

2.2. Timing Analysis Flow

The following describes high-level steps in the timing analysis flow. This section
describes each step in detail:

• Step 1: Specify General Timing Analyzer Settings on page 29

• Step 2: Specify Timing Constraints on page 30

• Step 3: Run the Timing Analyzer on page 34

• Step 4: Analyze Timing Reports on page 40

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

28

https://www.intel.com/content/www/us/en/docs/programmable/683236/current/creating-constraints-in-sdc-on-rtl-sdc-files.html
https://www.intel.com/content/www/us/en/docs/programmable/683236/current/creating-constraints-in-sdc-on-rtl-sdc-files.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.1. Step 1: Specify General Timing Analyzer Settings

Before running timing analysis, you must open an Quartus Prime project. You can then
consider and specify general settings for timing analysis, as well as other project-wide
Compiler settings that impact the timing analysis results.

To specify general Timing Analyzer settings, follow these steps:

1. To open an existing project, click File ➤ Open Project.

2. Click Assignments ➤ Settings ➤ Timing Analyzer to open the Timing
Analyzer settings.

Figure 38. Timing Analyzer Page of Settings Dialog Box

General Timing Analyzer Settings

Various SDC Files in Project

3. In the Timing Analyzer page, specify one or more of the following general
Timing Analyzer general settings:

Table 5. Timing Analyzer General Settings

Setting Description

SDC files to include in the project Specifies the name and processing order of timing constraint files in the
project, such as conventional .sdc files and SDC-on-RTL (.rtlsdc) files. For
more details, refer to Using Timing Constraints Effectively and Step 2: Specify
Timing Constraints.

Interactive Timing Analysis Specify options for automatically running timing analysis, reading constraints,
and generating reports automatically. Turn on or off:

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description

• Automatically launch Timing Analyzer GUI after a full compilation
(default, on)

• Automatically read constraints and update the timing netlist when
project is opened in Timing Analyzer (default, on)

• Automatically run setup summary report when project is opened in
Timing Analyzer (default, on)

Default Reporting Specify options to automatically Report worst-case paths during
compilation (default, on). Specify the Paths reported per clock domain
(default, 10), and whether to Show routing (default, off) in reports.

Tcl Script Options Tcl Script File name specifies the file name for a custom timing analysis
script. You can specify whether to Run default timing analysis before
running custom script.

Metastability Analysis Specifies how the Timing Analyzer identifies registers as being part of a
synchronization register chain for metastability analysis.

4. Consider and specify project-wide Compiler settings that impact timing analysis:

Table 6. Compiler Settings Impacting Timing Analysis

Setting Description Location

Enable multicorner
support for Timing
Analyzer and EDA Netlist
Writer(default, on)

Directs the Timing Analyzer to perform multicorner
timing analysis by default, which analyzes the design
against best-case and worst-case operating conditions.

Assignments ➤ Settings ➤
Compilation Process
Settings

Optimization Mode
(default, Balanced)

Specifies the focus of Compiler optimization efforts
during synthesis and fitting. Specify a Balanced
strategy, or optimize for Performance, Area, Power,
Routability, or Compile Time.

Assignments ➤ Settings ➤
Compiler Settings

SDC Constraint Protection
(default, off)

Verifies.sdc constraints in register merging. This option
helps to maintain the validity of .sdc constraints
through compilation.

Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings
(Synthesis)

Synchronization Register
Chain Length (default, 3)

Specifies the maximum number of registers in a row that
the Compiler considers as a synchronization chain. The
Compiler considers these registers for metastability
analysis. The Compiler prevents optimizations of these
registers, such as retiming. When gate-level retiming is
enabled, the Compiler does not remove these registers.

Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings
(Synthesis)

Optimize Design for
Metastability (default, on)

This setting improves the reliability of the design by
increasing its Mean Time Between Failures (MTBF). The
Fitter increases the output setup slacks of synchronizer
registers in the design. This slack can exponentially
increase the design MTBF. This option only applies when
using the Timing Analyzer for timing-driven compilation.
Use the Timing Analyzer report_metastability
command to review the synchronizers detected in your
design and to produce MTBF estimates.

Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings (Fitter)

2.2.2. Step 2: Specify Timing Constraints

You can use any combination of the following to enter the timing constraints for your
Quartus Prime project throughout the design flow, as Using Timing Constraints
Effectively throughout the Design Flow describes.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Specifying SDC-on-RTL Timing Constraints

• Specifying Conventional SDC Timing Constraints

• Specifying Synthesis-Only SDC Timing Constraints

2.2.2.1. Specifying SDC-on-RTL Timing Constraints

To specify SDC-on-RTL timing constraints for post-synthesis Early Timing Analysis,
follow these steps:

1. In the Quartus Prime software, click File ➤ New and then select the SDC File
Targeting RTL Names (.rtlsdc) file type. The new file opens in the Text Editor.

You can specify any extension for SDC-on-RTL constraints, but this document
always uses the file extension .rtlsdc to distinguish from conventional SDC files.

2. In the Text Editor, define SDC-on-RTL constraints. You can click Edit ➤ Insert
Template ➤ Timing Analyzer to insert available SDC templates. Alternatively,
use any other text editor to enter the constraints and save as .rtlsdc file type.

Note: SDC-on-RTL constraints support a subset of conventional SDC commands.
The syntax and arguments of SDC-on-RTL constraints aligns with the SDC
2.1 standard. The Quartus Prime software may support more than just the
SDC 2. 1 commands because of some Quartus Prime software-specific
arguements.

Figure 39. Inserting SDC Templates

Note: The -comment argument in SDC-on-RTL allows you to add a constraint
comment. This comment does not appear in timing analysis reports.

3. Save the .rtlsdc file in the Quartus Prime Text Editor, turning on the Add File
to Project option.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can add any SDC file to the project at any time by clicking
Assignments ➤ Settings ➤ Timing Analyzer.

4. Run post-synthesis Early Timing Analysis, as Running Post-Synthesis Early Timing
Analysis describes.

Note: As an alternative to SDC-on-RTL constraints, you can consider initially
specifying synthesis-only constraints that apply only to the Analysis &
Synthesis stage of compilation, as Specifying Synthesis-Only SDC Timing
Constraints describes.

Related Information

• Using Entity-Based SDC-on-RTL Constraints on page 57

• Automatic Scope Example for SDC-on-RTL on page 61

• Manual Scope Example for SDC-on-RTL on page 64

• Using Synopsys* Design Constraint (SDC) on RTL Files

2.2.2.2. Specifying Conventional SDC Timing Constraints

To specify conventional timing constraints for post-fit timing analysis in the Timing
Analyzer GUI, follow these steps:

Note: As an alternative to the Timing Analyzer GUI, you can specify conventional SDC
constraints directly in a .sdc text file and add it to the project.

1. In the Timing Analyzer GUI, click the Constraints menu and then click the
constraint that you want to define. You can start by adding the Recommended
Initial Conventional SDC Constraints, and then iteratively modify the constraints
and reanalyze the timing results.

2. In the GUI, specify values for the constraint and click OK. The SDC command
field echoes the corresponding SDC command that applies as you enter the
constraint value in the GUI.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

32

https://www.intel.com/content/www/us/en/docs/programmable/683236/current/using-synopsys-design-constraint-sdc.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40. Create Clock Dialog Defines Clock Constraints

3. When done entering constraints, click Constraints ➤ Write SDC File to save the
constraints to an .sdc file.

4. To add the conventional .sdc file to your project, click Assignments ➤ Settings
➤ Timing Analyzer.

Figure 41. Adding an SDC to the Project

SDC Files in Project Browse for SDC Files

Add, Remove,
Change Order

5. Run post-fit timing analysis, as Running Post-Fit Timing Analysis describes.

Related Information

• Using Entity-Bound SDC Files on page 64

• Automatic Scope Entity-bound Constraint Example on page 69

• Manual Scope Entity-bound Constraint Example on page 71

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.2.3. Specifying Synthesis-Only SDC Timing Constraints

You use this synthesis-only SDCs if you want to create custom SDC's that apply just
for post-synthesis timing analysis, but you do not want the constraints to apply to
other downstream stages of the compilation flow. If you want the constraints to
persist post-synthesis, you can use SDC-on-RTL constraints, as Specifying SDC-on-RTL
Timing Constraints describes.
Follow these steps to define a conventional .sdc file that applies only to the Analysis
& Synthesis stage of compilation.

1. Create a conventional .sdc file that contains only the timing constraints for the
Analysis & Synthesis stage of compilation, as Specifying Conventional SDC Timing
Constraints describes.

2. To apply the conventional .sdc to the project for synthesis-only, add the following
assignment to the project:

set_global_assignment -name SDC_ENTITY_FILE <file>.sdc /
 -entity <name> -read_during_post_syn_and_not_post_fit_timing_analysis

3. To run design synthesis and apply the constraints to the timing netlist, click
Analysis & Synthesis on the Compilation Dashboard.

4. Click the Open Timing Analyzer icon next to Analysis & Synthesis on the
Compilation Dashboard. The synthesis-only constraints now apply to only the
static timing analysis of this synthesized snapshot.

5. Analyze the results of Early Timing Analysis, as Step 4: Analyze Timing Reports on
page 40 describes.

2.2.3. Step 3: Run the Timing Analyzer

The Timing Analyzer generates reports that you can review to determine the
performance of your design compared against your timing constraints. You can run
timing analysis at two key stages of the design compilation flow:

• After running Analysis & Synthesis—you can run Early Timing Analysis based on
the synthesized design and initial SDC-on-RTL constraints you specify.

• After running the Fitter—you can run post-fit timing analysis that accounts for
actual path delays and the conventional SDC constraints you specify.

2.2.3.1. Running Post-Synthesis Early Timing Analysis

Running the Early Timing Analysis stage of compilation provides a preliminary view of
your design's core timing. Before running Early Timing Analysis, you must setup your
design RTL, the Quartus Prime project, specify timing constraints, and run the
Compiler through the Analysis & Synthesis stage.

To run post-synthesis Early Timing Analysis, follow these steps:

1. Specify SDC-on-RTL timing constraints for Early Timing Analysis, as Specifying
SDC-on-RTL Timing Constraints describes.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: As an alternative to SDC-on-RTL, you can define a synthesis-only .sdc, as
Specifying Synthesis-Only SDC Timing Constraints describes.

2. On the Compilation Dashboard, click Analysis & Elaboration. Analysis &
Elaboration processes all SDC-on-RTL, applying the constraints to the design
netlist. During Analysis & Elaboration, messages confirm that the Compiler
appropriately applies each .rtlsdc file according to its assigned module.

3. To review the implementation of constraints when Elaboration & Analysis
completes, click the Open Compilation Reports icon next to Elaboration &
Analysis in the Compilation Dashboard.

4. Click the SDC Constraints ➤ SDC-on-RTL File List report to view all SDC-on-
RTL files in the current project.

Figure 42. SDC-on-RTL File List Report

5. Click Analysis & Synthesis on the Compilation Dashboard. Analysis & Synthesis
transforms the elaborated netlist into a node netlist for device resource mapping
and generates a simplified device delay model that excludes precise Fitter-
generated timing delays. This simplified delay model provides an early overview of
the design delays based on block types that connect to a net. Analysis & Synthesis
propagates SDC-on-RTL constraints to subsequent compilation stages, thereby
applying to all subsequent Timing Analyzer runs.

6. To run Early Timing Analysis and view the results, double-click Early Timing
Analysis on the Compilation Dashboard. The Compiler runs Analysis & Synthesis
and then initializes the Timing Analyzer.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 43. Running Early Timing Analysis from Compilation Dashboard

Starts Early Timing Analysis Opens
Stage
Report

Opens
Timing
Analyzer

7. When Analysis & Synthesis completes, click the Open Timing Analyzer icon next
to Early Timing Analysis on the Compilation Dashboard. The Timing Analyzer
opens with the updated timing netlist loaded automatically.

8. In the Timing Analyzer reports, view the preliminary timing report data measured
against your SDC-on-RTL constraints, such as the Setup Summary, Create
Generated Clocks, and Set False Path reports. Refer to Step 4: Analyze Timing
Reports.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.3.2. Running Post-Fit Timing Analysis

Before running post-fit timing analysis, you must run the Fitter to apply conventional
SDC constraints to the post-fit timing netlist. The Fitter then attempts to place the
logic of your design to adhere to the timing constraints you specify. After running the
Fitter, the Timing Analyzer generates reports detailing the margin (slack) by which
your design either meets or fails each constraint. The post-fit timing netlist accounts
for actual path delays.

To run post-fit timing analysis, follow these steps:

1. Specify conventional SDC timing constraints for post-fit timing analysis, as
Specifying Conventional SDC Timing Constraints describes.

2. On the Compilation Dashboard, run any stage of the Fitter (Plan, Place, Route,
Retime, Fitter (Finalize)) or run a full compilation.

Figure 44. Fitter Stages in Compilation Dashboard

Fitter Stages Opens
Stage
Report

Opens
Timing
Analyzer

3. When the Fitter completes, click the Timing Analyzer icon next to the completed
stage in the Compilation Dashboard. The Setup Summary report opens by default
in the Timing Analyzer.

4. Review the timing reports. To generate additional timing reports for analysis, click
the Reports menu, and then click one of the submenu items to generate that
report, as Step 4: Analyze Timing Reports describes.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 45. Setup Summary Report

5. To run timing analysis under different operation conditions, click Set Operating
Conditions on the Tasks pane and specify options, as Setting the Operating
Conditions for Timing Analysis describes. By default, the Timing Analyzer
generates reports for all supported operating conditions.

6. If you specify any settings or constraints that impact timing analysis, click Update
Timing Netlist on the Tasks pane to apply the new constraints to the timing
netlist.

2.2.3.2.1. Setting the Operating Conditions for Timing Analysis

Click View ➤ Timing Corners in the Timing Analyzer to specify the operating
conditions for the timing analysis under different power and temperature ranges. The
available operating conditions vary by device and speed grade. The various operating
conditions that you can select represent the different "timing corners" in a multi-
corner timing analysis.

Figure 46. Set Operating Conditions Panel

The Timing Analyzer displays the selectable operating conditions that are appropriate
for your device in the Set Operating Conditions panel, according to the following
timing model name conventions:

<process in speed grade> <voltage/vid> <temperature>

The following examples illustrate this naming convention:

• Fast 900mV 40C Model

— Fast—timing model for the fastest process within a speed grade.

— 900mV—nominal 900mV timing model.

— 40C—low temperature (40 Celsius) timing model.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Slow vid<n> 100C Model

— Slow—timing model for the slowest process within a speed grade.

— vid—timing model for analysis with SmartVID.

— <n>—the device speed grade of the timing model.

— 100C—high temperature (100 Celsius) timing model.

Select one or more voltage and temperature combinations and double-click Report
Timing… under Timing Slack in the Tasks pane to configure the generation of
timing analysis reports for that model. The generated report shows the worst-case
timing path slack across all operating conditions that you specify. After generating the
report for that model, the report shows the worst-case timing path slacks across all
operating conditions that you select.

You can use the following context menu options to generate or regenerate reports in
the Report window:

• Regenerate—regenerates the report you select.

• Regenerate All Out of Date—regenerates all reports that are outdated because
of SDC changes since the last generation.

• Delete All Out of Date—removes all outdated report data.

As an alternative to the GUI, you can run the set_operating_conditions
command with the -model, -speed, -temperature, and -voltage options to
specify the operating conditions. When running set_operating_conditions, you
must only specify valid operating conditions for the current device. Run the
get_available_operating_conditions command to return a list of all valid
operating conditions for the current device.

The following example sets the operating condition to the slow timing model, with a
voltage of 900 mV, and temperature of 100° C:

set_operating_conditions -model slow -temperature 100 -voltage 900

Related Information

Multicorner Timing Analysis on page 19

2.2.3.2.2. Promoting Critical Warnings to Errors

 You can promote critical warnings to errors so that the Timing Analyzer halts on
receiving the critical warnings (as it does for all errors). All critical warnings support
promotion to error. However, you can only promote the message IDs of open projects.

1. In the Message dialog box, right-click on the critical warning you want to promote
to an error.

2. Click Message Promotion ➤ Promote Critical Message ID to Error

3. To clear all promotions, click Message Promotion ➤ Clear All Message
Promotions

4. Alternatively, promote or demote a critical warning in the .qsf with the following:

set_global_assignment -name PROMOTE_WARNING_TO_ERROR
<ID_Number>

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.4. Step 4: Analyze Timing Reports

During analysis, the Timing Analyzer examines the timing paths in the design,
calculates the propagation delay along each path, checks for timing constraint
violations, and reports timing results as positive slack or negative slack. Negative
slack indicates a timing violation. Positive slack indicates that timing requirements are
met.

The Timing Analyzer provides very fine-grained reporting and analysis capabilities to
identify and correct violations along timing paths. Generate timing reports to view how
to best optimize the critical paths in your design. If you modify, remove, or add
constraints, re-run timing analysis. This iterative process helps resolve timing
violations in your design.

Figure 47. Timing Analyzer Shows Failing Paths in Red

Reports that indicate failing timing performance appear in red text, and reports that
pass appear in black text. A gold question mark icon indicates reports that are
outdated due to SDC changes since generation. Regenerate these reports to show the
latest data.

The following sections describe how to generate various timing reports for analysis.

Related Information

Timing Report Descriptions on page 126

2.2.4.1. Cross-Probing with Design Assistant

The Quartus Prime Design Assistant can automatically report any violations against a
standard set of Intel FPGA-recommended design guidelines during stages of
compilation. You can specify which rules you want the Design Assistant to check in
your design, and customize the severity levels, thus eliminating or waiving rule checks
that are not important for your design.

When you run Design Assistant during compilation, Design Assistant utilizes the in-
flow (transient) data that generates during compilation to check for rule violations.

When you run Design Assistant in analysis mode from the Timing Analyzer, Design
Assistant performs design rule checks using the static compilation snapshot data that
you load.

Some Design Assistant rule violations allow cross-probing into the related timing
analysis data. Cross-probing can help you to more quickly identify the root cause and
resolve any Design Assistant rule violations. For example, for a path with a setup
analysis violation, you can cross-probe into the Timing Analyzer to identify the edge
that has delay added for hold time.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You must run the Compiler through at least the Plan stage before you can cross-probe
to Timing Analyzer.

2.2.4.1.1. Cross-Probing from Design Assistant to Timing Analyzer

Some Design Assistant rule violations allow cross-probing into Timing Analyzer. For
example, for a path that Design Assistant flags with a setup analysis violation due to
delay added for hold, you can cross-probe into the Timing Analyzer to view more
information on the affected path and edge.

Figure 48. Cross Probing from Design Assistant Rule TMC-20210 Violations to Timing
Analyzer

Follow these steps to cross-probe from such Design Assistant rule violations to the
Timing Analyzer:

1. Compile the design through at least the Compiler's Plan stage.

2. Locate a rule violation in the Design Assistant folder of the Compilation Report.

3. Right-click the rule violation to display any Report Timing commands available
for the violation.

4. Click the Report Timing command. The Timing Analyzer opens and reports the
timing data for the violation path. Report Timing (Extra Info) includes
Estimated Delay Added for Hold and Route Stage Congestion Impact extra data.

2.2.4.2. Launching Design Assistant from Timing Analyzer

You can run Design Assistant directly from the Timing Analyzer to assist when
optimizing timing paths and other timing conditions. When you launch Design
Assistant from the Timing Analyzer, Design Assistant only checks rules that relate to
timing analysis.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to run the Design Assistant from the Timing Analyzer:

1. Compile the design through at least the Compiler's Plan stage.

2. Open the Timing Analyzer for the Compiler stage from the Compilation Dashboard.

3. In the Timing Analyzer, click Reports ➤ Design Assistant ➤ Report DRC. The
Report DRC (design rule check) dialog box opens.

4. Under Rules, disable any rules that are not important to your analysis by
removing the check mark.

5. Consider whether to adjust rule parameter values in the Parameters field.

Figure 49. Report DRC (Design Rule Check) Dialog Box

6. Confirm the Report panel name and optionally specify an output File name.

7. Click Run. The Results reports generate and appear in the Report pane, as well
as the main Compilation Report.

Figure 50. Design Assistant Reports in Timing Analyzer Report Pane

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.4.3. Locating Timing Paths in Other Tools

You can locate from paths and elements in the Timing Analyzer to other visualization
tools in the Quartus Prime software, such as the Chip Planner, Technology Map Viewer,
or Resource Property Viewer.

You can right-click most paths or node names in the Timing Analyzer reports and click
the Locate Node or Locate Path commands. Use these commands in the Timing
Analyzer GUI or the locate command in the Tcl console to locate to that node in
other Quartus Prime tools.

Figure 51. Locate Path from Timing Analyzer to Technology Map Viewer

The following examples show how to locate the ten paths with the worst timing slack
from Timing Analyzer to the Technology Map Viewer, and locate all ports matching
data* in the Chip Planner.

Example 1. Locating from the Timing Analyzer

Locate in the Technology Map Viewer the ten paths with the worst slack
locate [get_timing_paths -npaths 10] -tmv
locate all ports that begin with data in the Chip Planner
locate [get_ports data*] -chip

2.2.4.4. Correlating Constraints to the Timing Report

Understanding how timing constraints and violations appear in the timing analysis
reports is critical to understanding the results. The following examples show how
specific constraints impact the timing analysis reports. Most timing constraints only
affect the clock launch and latch edges. Specifically, create_clock and
create_generated_clock create clocks with default relationships. However, the
set_multicycle_path exception modifies the default setup and hold relationships.
The set_max_delay and set_min_delay constraints are low-level overrides that
explicitly indicate the maximum and minimum delays for the launch and latch edges.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following figures show the results of running Report Timing on a particular path.
You can view the incremental delays on the Data Path and Waveform tabs after
running Report Timing. The Waveform tab allows you to visually reference the
Data Path data, as well as the original .sdc constraints. You can use the Waveform
tab to easily see how and where the constraints apply.

Figure 52. Report Timing (Waveform Tab)

In the following example, the design includes a clock driving the source and
destination registers with a period of 10 ns. This results in a setup relationship of 10
ns (launch edge = 0 ns, latch edge = 10ns) and hold relationship of 0 ns (launch edge
= 0 ns, latch edge = 0 ns) from the command:

create_clock -name clocktwo -period 10.000 [get_ports {clk2}]

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 53. Setup Relationship 10ns

Figure 54. Hold Relationship 0ns

Adding set_multicycle_path constraints adds multicycles to relax the setup
relationship, or open the window, making the setup relationship 20 ns while
maintaining the hold relationship at 0 ns:

set_multicycle_path -from clocktwo -to clocktwo -setup -end 2
set_multicycle_path -from clocktwo -to clocktwo -hold -end 1

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 55. Setup Relationship 20ns

Adding the following set_max_delay constraints explicitly overrides the setup
relationship:

set_max_delay -from [get_registers {regA}] -to \
 [get_registers {regB}] 15

Note that the only thing changing for these different constraints are the launch edge
time and latch edge times for setup and hold analysis. Every other line item comes
from delays inside the FPGA and are static for a given fit. View these reports to
analyze how your constraints affect the timing reports.

Figure 56. Using set_max_delay

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For I/O, you must add set_input_delay and set_output_delay constraints, as
the following example shows. These constraints describe delays on signals from
outside of the FPGA design that connect to the design's I/O ports.

create_clock -period 10 [get_ports clk]
Clock used by the transfer, clock relationship is 10ns

Setup constraints
set_output_delay -clock clk -max 1.2 [get_ports out]
Subtracted from Data Required Path as oExt
set_max_delay -from [get_registers B] 12
Sets latch edge time

Hold constraints
set_output_delay -clock clk -min 2.3 [get_ports out]
Subtracted from Data Required Path as oExt
set_min_delay -from [get_registers B] 8
Sets latch edge time

The values of these constraints are the delays of the external signals between an
external register and a port on the design. The -clock argument to the
set_input_delay and set_output_delay specifies the clock domain that the
external signal belongs to, or rather, the clock domain of the external register
connected to the I/O port. The -min and -max options specify the worst-case or best-
case delay; not specifying either option causes the worst- and best-case delays to be
equal. I/O delays display as iExt or oExt in the Type column, as the following
example reports shows.

Figure 57. Setup Slack Path Report and Waveforms for a Reg-To-Output Same-Clock
Transfer

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 58. Hold Slack Path Report and Waveforms for a Reg-To-Output Same-Clock
Transfer

A clock relationship, which is the difference between the launching and latching clock
edge of a transfer, is determined by the clock waveform, multicycle constraints, and
minimum and maximum delay constraints. The Timing Analyzer also adds the value of
set_output_delay as an oExt value. For outputs, this value is part of the Data
Required Path, since this is the external part of the analysis. The setup report
subtracts the -max value, making the setup relationship harder to meet, since the
Data Arrival Path delay must be shorter than the Data Required Path delay. The
Timing Analyzer also subtracts the -min value. This subtraction is why a negative
number causes more restrictive hold timing. The Data Arrival Path delay must be
longer than the Data Required Path delay.

Related Information

• Running Post-Synthesis Early Timing Analysis on page 34

• Running Post-Fit Timing Analysis on page 37

• Scripting Timing Analysis on page 164

• Relaxing Setup with Multicycle (set_multicyle_path) on page 104

• Creating Virtual Clocks on page 80

• I/O Constraints on page 93

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3. Applying Timing Constraints

This section provides examples and describes how to correctly apply SDC timing
constraints that guide design synthesis, Fitter placement, and produce accurate timing
analysis results under various circumstances.
You can define a set of initial timing constraints, and then iteratively modify those
constraints as the design progresses.

Early in the design cycle, you can use SDC-on-RTL constraints to target analysis of
RTL nodes. This analysis provides a stable reference for constraints that can remain
unchanged in subsequent compilation stages, such as clock definitions. Establishing a
set of SDC-on-RTL constraints enables their propagation and application throughout
the entire design cycle. Concurrently, you can create a conventional .sdc file for
analysis of the remaining design elements, providing flexibility for iterative constraint
adjustments as the design evolves.

This section also outlines the proper application of recommended conventional SDC
timing constraints. Conventional SDC constraints guide Fitter placement via .sdc files,
offering alternative approaches to achieve precise control over constraints throughout
the design flow.

Related Information

• Using Timing Constraints throughout the Design Flow on page 27

• Applying Entity-Bound Timing Constraints on page 56

• Recommended Initial Conventional SDC Constraints on page 49

2.3.1. Recommended Initial Conventional SDC Constraints

Include the following basic SDC constraints in your conventional .sdc file. The
following example shows application of the recommended conventional SDC
constraints for a simple dual-clock design:

create_clock -period 20.00 -name adc_clk [get_ports adc_clk]
create_clock -period 8.00 -name sys_clk [get_ports sys_clk]

derive_pll_clocks

derive_clock_uncertainty

Note: Only Arria 10 and Cyclone® 10 GX devices support the Derive PLL Clocks
(derive_pll_clocks) constraint. For all other supported devices, the Timing
Analyzer automatically derives PLL clocks from constraints bound to the related IP.

Create Clock (create_clock) on page 50

Derive PLL Clocks (derive_pll_clocks) on page 50

Derive Clock Uncertainty (derive_clock_uncertainty) on page 51

Set Clock Groups (set_clock_groups) on page 52

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.1.1. Create Clock (create_clock)

The Create Clock (create_clock) constraint allows you to define the properties and
requirements for a clock in the design. You must define clock constraints to determine
the performance of your design and constrain the external clocks coming into the
FPGA. You can enter the constraints in the Timing Analyzer GUI, or in the .sdc file
directly.

You specify the Clock name (-name), clock Period (-period), rising and falling
Waveform edge values (-waveform), and the target signal(s) to which the
constraints apply.

The following command creates the sys_clk clock with an 8ns period, and applies
the clock to the fpga_clk port.:

create_clock -name sys_clk -period 8.0 \
 [get_ports fpga_clk]

Note: Tcl and .sdc files are case-sensitive. Ensure that references to pins, ports, or nodes
match the case of names in your design.

By default, the sys_clk example clock has a rising edge at time 0 ns, a 50% duty
cycle, and a falling edge at time 4 ns. If you require a different duty cycle, or to
represent an offset, specify the -waveform option.

Typically, you name a clock with the same name as the port you assign. In the
example above, the following constraint accomplishes this:

create_clock -name fpga_clk -period 8.0 [get_ports fpga_clk]

There are now two unique objects called fpga_clk, a port in your design and a clock
applied to that port.

Note: In Tcl syntax, square brackets execute the command inside them. [get_ports
fpga_clk] executes a command that finds and returns a collection of all ports in the
design that match fpga_clk.

Warning: Constraints that you define in the Timing Analyzer apply directly to the timing
database, but do not automatically transfer to the .sdc file. Click Write SDC File on
the Timing Analyzer Tasks pane to preserve constraints changes from the GUI in
an .sdc file.

Related Information

Creating Base Clocks on page 79

2.3.1.2. Derive PLL Clocks (derive_pll_clocks)

The Derive PLL Clocks (derive_pll_clocks) constraint automatically creates
clocks for each output of any PLL in your design.

Note: Only Arria 10 and Cyclone 10 GX devices support the Derive PLL Clocks
(derive_pll_clocks) constraint. For all other supported devices, the Timing
Analyzer automatically derives PLL clocks from constraints bound to the related IP.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The constraint can generate multiple clocks for each output clock pin if the PLL is
using clock switchover: one clock for the inclk[0] input clock pin, and one clock for
the inclk[1] input clock pin. Specify the Create base clocks
(create_base_clocks) option to create base clocks on the inputs of the PLLs by
default. By default the clock name is the same as the output clock pin name, or
specify the Use net name as clock name (use_net_name) option to use the net
name.

When you create PLLs, you must define the configuration of each PLL output. This
definition allows the Timing Analyzer to automatically constrain the PLLs with the
derive_pll_clocks command. This command also constrains transceiver clocks
and adds multicycles between LVDS SERDES and user logic.

The derive_pll_clocks command prints an Info message to show each generated
clock the command creates.

As an alternative to derive_pll_clocks you can copy-and-paste each
create_generated_clock assignment into the .sdc file. However, if you
subsequently modify the PLL setting, you must also change the generated clock
constraint in the .sdc file. Examples of this type of change include modifying an
existing output clock, adding a new PLL output, or making a change to the PLL's
hierarchy. Use of derive_pll_clocks eliminates this requirement.

Related Information

• Creating Base Clocks on page 79

• Deriving PLL Clocks on page 85

2.3.1.3. Derive Clock Uncertainty (derive_clock_uncertainty)

The Derive Clock Uncertainty (derive_clock_uncertainty) constraint applies
setup and hold clock uncertainty for clock-to-clock transfers in the design. This
uncertainty represents characteristics like PLL jitter, clock tree jitter, and other factors
of uncertainty.

You can enable the Add clock uncertainty assignment (-add) to add clock
uncertainty values from any Set Clock Uncertainty (set_clock_uncertainty)
constraint. You can Overwrite existing clock uncertainty assignments (-
overwrite) any set_clock_uncertainty constraints.

create_clock -period 10.0 -name fpga_sys_clk [get_ports fpga_sys_clk] \
 derive_clock_uncertainty -add - overwrite

The Timing Analyzer generates an information message if you omit
derive_clock_uncertainty from the .sdc file.

Related Information

Accounting for Clock Effect Characteristics on page 90

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.1.4. Set Clock Groups (set_clock_groups)

The Set Clock Groups (set_clock_groups) constraint allows you to specify which
clocks in the design are unrelated. By default, the Timing Analyzer assumes that all
clocks with a common base or parent clock are related, and that all transfers between
those clock domains are valid for timing analysis. You can exclude transfers between
specific clock domains from timing analysis by cutting clock groups.

Conversely, clocks without a common parent or base clock are always unrelated, but
timing analysis includes the transfers between such clocks, unless those clocks are in
different clock groups (or if all of their paths are cut with false path constraints).

You define the clock signals to include in each Group (-group), then specify the
relationship between different groups, and then specify whether the groups are
Logically exclusive (-logically_exclusive), Physically exclusive (-
physically_exclusive, or Asynchronous (-asynchronous) from one another.

set_clock_groups -asynchronous -group {<clock1>...<clockn>} ... \
 -group {<clocka>...<clockn>}

• -logically_exclusive—defines clocks that are logically exclusive and not
active at the same time, such as multiplexed clocks

• -physically_exclusive—defines clocks that that cannot be physically on the
device at the same time.

• -asynchronous—defines completely unrelated clocks that have different ideal
clock sources. This flag means the clocks are both switching, but not in a way that
can synchronously pass data.

For example, if there are paths between an 8ns clock and 10ns clock, even if the
clocks are completely asynchronous, the Timing Analyzer attempts to meet a 2ns
setup relationship between these clocks, unless you specify that they are not related.

The following shows example constraints for a clock mux with two inputs, with multi-
rate clocks, and the appropriate combinations of logical and physical exclusivity:

First profile
create_clock -name clk_a1 -period 10 [get_ports clk_a]
create_clock -name clk_b1 -period 20 [get_ports clk_b]

Second profile
create_clock -name clk_a2 -period 100 [get_ports clk_a] -add
create_clock -name clk_b2 -period 200 [get_ports clk_b] -add

Mark base clocks as asynchronous to each other
set_clock_groups -asynchronous -group {clk_a?} -group {clk_b?}

Define muxed clocks for each profile
set muxout [get_pins -compatibility_mode {mux*|combout}]
foreach profile {1 2} {
 set mux_clk_a "mux_clk_a${profile}"
 set mux_clk_b "mux_clk_b${profile}"

 create_generated_clock -name $mux_clk_a -source [get_ports clk_a] \
 -master_clock "clk_a${profile}" $muxout -add
 create_generated_clock -name $mux_clk_b -source [get_ports clk_b] \
 -master_clock "clk_b${profile}" $muxout -add

 # Mark each muxed clock as logically exclusive to each other
 set_clock_groups -logically_exclusive -group $mux_clk_a \
 -group $mux_clk_b
}

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Mark profile clocks as physically exclusive to each other
(Do this after defining the derived clocks so they get cut too)
set_clock_groups -physically_exclusive -group {*clk_?1} \
 -group {*clk_?2}

Figure 59. Example Constraints Design Topology

Although the Set Clock Groups dialog box only permits two clock groups, you can
specify an unlimited number of -group {<group of clocks>} options in the .sdc
file. If you omit an unrelated clock from the assignment, the Timing Analyzer acts
conservatively and analyzes that clock in context with all other domains to which the
clock connects.

The Timing Analyzer does not currently analyze crosstalk explicitly. Instead, the timing
models use extra guard bands to account for any potential crosstalk-induced delays.
The Timing Analyzer treats the -asynchronous and -exclusive options the same
for crosstalk-related analysis, but treats asynchronous and exclusive clock groups
differently for things like max skew reporting and synchronizer detection.

A clock cannot be within multiple groups (-group) in a single assignment; however,
you can have multiple set_clock_groups assignments.

Another way to cut timing between clocks is to use set_false_path. To cut timing
between sys_clk and dsp_clk, you can use:

set_false_path -from [get_clocks sys_clk] -to [get_clocks dsp_clk]

set_false_path -from [get_clocks dsp_clk] -to [sys_clk]

This technique is effective if there are only a few clocks, but can become
unmanageable with a large number of constraints. In a simple design with three PLLs
that have multiple outputs, the set_clock_groups command can cut timing
between clocks with less than ten lines, but the set_false_path command may
require more than 50 lines.

Related Information

• Creating Generated Clocks (create_generated_clock) on page 82

• Relaxing Setup with Multicycle (set_multicyle_path) on page 104

• Accounting for a Phase Shift (-phase) on page 105

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.2. Example Circuit and Conventional SDC File

The following .sdc file demonstrates constraining a dual-clock, phase-locked loop
(PLL) example that illustrates. and other common synchronous design elements.

Example 2. Conventional .sdc Constraints Example

Create clock constraints
create_clock -name clockone -period 10.000Ns [get_ports {clk1}]
create_clock -name clocktwo -period 10.000Ns [get_ports {clk2}]
Create virtual clocks for input and output delay constraints
create clock -name clockone_ext -period 10.000Ns
create clock -name clocktwo_ext -period 10.000Ns
derive PLL clocks to create the altpll0| clock referenced later
derive_pll_clocks
derive clock uncertainty
derive_clock_uncertainty
Specify that clockone and clocktwo are unrelated by assigning
them to separate asynchronous groups
set_clock_groups \
 -asynchronous \
 -group {clockone} \
 -group {clocktwo altpll0|altpll_component|auto_generated|pll1|clk[0]}
set input and output delays
set_input_delay -clock { clockone_ext } -max 4 [get_ports {data1}]
set_input_delay -clock { clockone_ext } -min -1 [get_ports {data1}]
set_input_delay -clock { clockone_ext } -max 4 [get_ports {data2}]
set_input_delay -clock { clockone_ext } -min -1 [get_ports {data2}]
set_output_delay -clock { clocktwo_ext } -max 6 [get_ports {dataout}]
set_output_delay -clock { clocktwo_ext } -min -3 [get_ports {dataout}]

The conventional .sdc file contains the following constraints that you typically include
for most designs:

• Definitions of clockone and clocktwo as base clocks, and assignment of those
constraints to nodes in the design.

• Definitions of clockone_ext and clocktwo_ext as virtual clocks, which
represent clocks driving external devices interfacing with the FPGA.

• Automated derivation of generated clocks on PLL outputs.

• Derivation of clock uncertainty.

• Specification of two clock groups, the first containing clockone and its related
clocks, the second containing clocktwo and the output of the PLL. This
specification overrides the default analysis of all clocks in the design as related to
each other.

• Specification of input and output delays for the design.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 60. Dual-Clock Design Constraint Example

data1

data2

clk1

clk2

inst

inst1

inst2lpm_add_sub0 myfifo

altpll0

dataout

Related Information

Asynchronous Clock Groups (-asynchronous) on page 89

2.3.3. SDC File Precedence

To ensure proper integration into the compilation flow, you must add any SDC-on-RTL
and conventional SDC files to your project, as Step 1: Specifying General Timing
Analyzer Settings describes. Alternatively, you can add files to your project by
modifying the assignments in the project .qsf file directly.

The Compiler processes conventional SDC files in the order listed in the .qsf. You can
add, remove, or change the processing order of .sdc files using Assignments ➤
Settings ➤ Timing Analyzer, or by modifying the .qsf directly.

Note: SDC-on-RTL files take precedence and the Compiler always processes .rtlsdc files
before conventional .sdc files that target the timing netlist, regardless of order in
Assignments ➤ Settings ➤ Timing Analyzer.

When using the read_sdc command at the command line without any arguments,
the Compiler reads constraints in the following sequence:

1. Initially, the Compiler reads any SDC-on-RTL constraints.

2. Next, the Compiler reads any synthesis-only constraints that apply to only the
synthesis stage.

3. Next, the Compiler reads any conventional SDC constraints. For conventional SDC
constraints, the following order applies:

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. First, the Compiler processes constraints embedded in HDL files.

b. Finally, the Compiler processes .sdc files based on file order.

2.3.4. Iteratively Modifying Constraints

You initially establish SDC-on-RTL constraints during the Analysis & Elaboration stage
of the compilation flow. Making iterative changes to SDC-on-RTL constraints may
require you to rerun Analysis & Elaboration multiple times to apply revised constraints
to the netlist.

It is best to designate constraints that remain constant across compilation stages as
SDC-on-RTL constraints. Subsequently, you can iteratively modify and reanalyze the
constraints in the rest of your design using conventional constraint files.

To iteratively modify constraints, follow these steps

1. Click Tools ➤ Timing Analyzer.

2. Generate the reports you want to analyze. Double-click Report All Summaries
under Macros to generate setup, hold, recovery, and removal summaries,
summaries for supported reports, and a list of all the defined clocks in the design.
These summaries cover all paths you constrain in your design. Whenever
modifying or correcting constraints, generate the Constraint Diagnostic reports
to identify unconstrained parts of your design, or ignored constraints.

3. Analyze the results in the reports. When done modifying constraints, rerun the
reports to find any unexpected results. For example, a cross-domain path might
indicate that you forgot to cut a transfer by including a clock in a clock group.

4. Create or edit the appropriate constraints in your .sdc file and save the file.

5. Double-click Reset Design in the Tasks pane. This removes all constraints from
your design. Removing all constraints from your design allows rereading the SDC
files, including your changes.

6. Regenerate the reports you want to analyze.

7. Reanalyze the results.

8. Repeat steps 4-7 as necessary.

Using this approach, timing analysis runs with updated constraints, preserving the
existing logic placement. The Fitter relies on the original constraints for design place-
and-route, while the Timing Analyzer incorporates the newly applied constraints. If
any timing issues arise in relation to the updated constraints, rerun the Fitter stage of
compilation. Furthermore, for enhanced control over your design, consider converting
select refined constraints to the SDC-on-RTL approach, as Specifying SDC-on-RTL
Timing Constraints describes.

Related Information

Relaxing Setup with Multicycle (set_multicyle_path) on page 104

2.3.5. Applying Entity-Bound Timing Constraints

Entity-bound timing constraints enable meticulous control of timing constraints by
allowing you to confine (bind) a constraint set to a specific design entity or a group of
entities. You can define entity-based SDC-on-RTL constraints that enable early timing
analysis after running only Analysis & Elaboration. You can similarly use conventional
SDCs for post-fit timing analysis.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Using Entity-Based SDC-on-RTL Constraints on page 57

• Using Entity-Bound SDC Files on page 64

2.3.5.1. Using Entity-Based SDC-on-RTL Constraints

A typical design includes a combination of third-party IPs and actively evolving RTL
components. You can use entity-based SDC-on-RTL constraints to define precise
timing constraints at module boundaries, helping to ensure the seamless integration of
IP and constraints. Entity-based SDC-on-RTL constraints allow IP authors to
encapsulate the SDC constraints for their IP.

Conventional SDC timing constraints generally apply globally throughout a design,
rather than to specific entities. However, proper encapsulation of IP SDCs allows you
to use the IP without encountering unexpected SDC leaks. Entity binding prefixes
filters with the full path name of each IP, effectively limiting the scope of the SDC
constraints. This entity binding effectively prevents any SDC leaks and any potential
impact on design paths with a matching name.

IP authors can optimize these constraints for post-synthesis Early Timing Analysis
within the context IP instantiation in the design hierarchy. Even if an IP author does
not know where the IPs are instantiated yet, the constraints remain effective. This
approach allows IP authors to implement SDC constraints without requiring detailed
information about the eventual placement of the IP within the design hierarchy.

The Compiler reads entity-based SDC-on-RTL constraints in designs and IP cores
during Analysis & Elaboration. The Compiler preserves the constraints in a low-level
entity database. The Compiler processes these constraints in the SDC read-in order
and applies the constraints to the hierarchical netlist objects during compilation.

QSF Assignment Syntax

set_instance_assignment -name RTL_SDC_FILE <sdc_file_name> \
 -entity <entity_name> [-no_sdc_promotion]

Where:

Argument Description

RTL_SDC_FILE Specifies the SDC-on-RTL file name.

-entity Specifies an entity-based assignment. The SDC file applies to each instance of the
design entity. The instance hierarchy path implicitly applies to the pattern argument
search for dni::get_* (get_cells, get_pins, get_ports, and get_nets)
commands.

[-no_sdc_promotion] An optional argument that requires the -entity flag. For entity-based constraints, the
[-no_sdc_promotion] argument removes the default behavior of the instance
hierarchy path being the default implicit with the netlist search commands. This
argument specifies which individual command to apply the instance hierarchy path in
the netlist object search. Use the get_entity_current_instance Tcl command to
obtain the current instance hierarchy path of the entity. For example:

set_false_path -from [get_pins [get_entity_current_instance]|ff_src|clk] \
-to [get_pins [get_entity_current_instance]|ff_dst|d]]

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.5.1.1. Targeting Constraints to Module Inputs and Outputs

SDC-on-RTL allows you to define constraints at module boundaries, even if some
internal connections within the modules or IP remain partially unknown. It is best to
apply SDC-on-RTL constraints at the module boundaries, specifically at the input and
output boundaries of each module.

When targeting your timing constraints to the inputs and outputs of a module, you can
target the following different element types, depending on your circumstances:

inst_port—these elements are retrieved in collections due to applying the get_pins
filter. They target inputs and outputs of modules in a manner similar to addressing
pins on registers and LUTs.

inside
get_pins {clk_in} clk_dic.rtlsdc

Note: Use get_pins for constraints that expect pins as targets.

Figure 61. Targeting the Instance Port

port— these elements reside within the module and are primarily for use in targeting
ports in entity-bound constraints. You can employ the get_ports filter for this
purpose.

Inside
get_ports {clk_in} clk_dic.rtlsdc

Note: Use get_ports for constraints that expect ports as targets.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 62. Targeting the Port

2.3.5.1.2. Entity Based SDC-on-RTL Constraint Scope

The entity-based SDC-on-RTL approach offers diverse scoping possibilities for
determining the constraint's scope of influence.

Table 7. Entity-based Constraint Scope

Constraint
Scope Type

Features To Enable Instance-based Scoping

Automatic • Accessible only by .qsf assignment.
• Under automatic scoping, constraints apply

to every instance of the assigned entity
across the project.

• Each result from any get command (for
example, get_pins, get_ports, and so
on) in the SDC file is prepended with the
instance's path.

• All get commands are confined to the target
elements within the bound instance
associated with the SDC-on-RTL file.

Use the following arguments:

name RTL_SDC_FILE <sdc_on_rtl_file_name>

-entity <entity_name>

-library <library_name>

Manual • Accessible only by .qsf assignment.
• The -no_sdc_promotion setting disables

automatic scoping, necessitating full
hierarchical path for targeting nodes.

• Allows targeting nodes beyond entity
boundaries.

• The get_entity_current_instance
command delivers the top-level path to the
current instance, allowing you to merge
filters targeting elements in the current
instance with commands addressing those
beyond entity boundaries.

Use the following arguments:

-name RTL_SDC_FILE <sdc_on_rtl_file_name>
-entity <entity_name>
-library <library_name>
-no_sdc_promotion

Prepend each collection filter with
get_entity_current_instance to target nodes
within the entity boundaries.
For example:

get_pins [get_entity_current_instance]|reg[*]|q

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Constraint
Scope Type

Features To Enable Instance-based Scoping

Disabled • Accessible by QSF assignment only.
• -no_sdc_promotion and the -

no_auto_inst_discovery arguments
together disable scoping, treating an entity-
bound SDC-on-RTL as a global scope. The
SDC file is read only once for the entire
compilation, rather processing for each
instance linked.

• This mode is ideal when bundling the SDC-
on-RTL with an entity destined for export as
a .qdb file, while preserving the ability to
specify global, top-level paths in their get
commands.

Use the following arguments:

-name RTL_SDC_FILE <sdc_on_rtl_file_name>
-entity <entity_name>
-library <library_name>
-no_sdc_promotion
-no_auto_inst_discovery

When you define entity-bound SDC files, the software applies the constraints using
automatic scoping, unless the -no_sdc_promotion or -no_auto_inst_discovery
arguments are present.

Automatic scoping involves prepending filters with the instance's path. To provide
clarity, the following table illustrates how paths are interpreted in various Tcl
commands due to the automatic scoping of constraints:

Table 8. Automatic Scope of Constraints

Constraint Example Auto-Scope Constraint Interpretation for Instance X|Y

set_false_path -from [get_pins reg_a|clk] set_false_path -from [get_pins X|Y|reg_a|clk]

set_false_path -from [get_pins reg_a|clk] -
to [get_pins reg_b|d]

set_false_path -from [get_pins X|Y|reg_a|clk] -
to [get_pins X|Y|reg_b|d]

set_false_path –from [get_clocks clk_1] –to
[get_clocks clk_2]

set_false_path –from [get_clocks clk_1] –to
[get_clocks clk_2]

set_max_delay –from [get_ports in] -to
[get_pins reg_a|d] 2.0

set_max_delay –from [get_ports in] -to
[get_pins X|Y|reg_a|d] 2.0

get_ports * get_ports *

get_clocks * get_clocks *

get_ports a get_ports a

get_clocks a get_clocks a

When automatic scoping is disabled through QSF assignments, including the use of the
-no_sdc_promotion argument, you must manually prepend the top-level path to
achieve the same behavior as automatic scoping. To simplify this process, use the -
get_entity_current_instance command that returns the top-level path of the

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

current instance. The following table illustrates how paths are interpreted when you
use the -get_entity_current_instance command to add the top-level path to
certain Tcl commands:

Table 9. Manual Scope of Constraints

Constraint Example Manual Scope Constraint Interpretation

set_false_path –from [get_entity_current_instance
|reg_a|clk –to [get_entity_current_instance]|reg_b|d

set_false_path –from i1|inner|reg_a|clk –to i1|inner|
reg_b|d
set_false_path –from i2|inner|reg_a|clk –to i2|inner|
reg_b|d
set_false_path –from i3|reg_a|clk –to i3|reg_b|d

create_generated_clock –divide_by 2 –source \
 [get_ports inclk] –name \
 [get_entity_current_instance]_divclk \
 [get_entity_current_instance]|div
set_multicycle_path –from \
 [get_entity_current_instance]|a \
 –to [get_entity_current_instance]|b 2

Evaluated for instances i1 and i2
create_generated_clock –divide_by 2 –source \
 [get_ports inclk] –name i1_divclk i1|div
set_multicycle_path –from i1|a –to i1|b 2 \
create_generated_clock –divide_by 2 –source \
 [get_ports inclk] –name i2_divclk \
 i2|div set_multicycle_path –from i2|a \
 –to i2|b 2 \

2.3.5.1.3. Automatic Scope Example for SDC-on-RTL

This example illustrates how to employ entity-based SDC-on-RTL constraints with
automatic scope in your design. The following example uses two instances of clk_div
and an additional fifo instance to illustrate how to apply this automatic scope
approach:

Figure 63. Entity-Based SDC-on-RTL Design Example

1. Apply global SDC-on-RTL constraints to the design:

sdc_on_rtl_global.rtlsdc

create_clock -period 100MHz [get_ports clk_100]
create_clock -period 75MHz [get_ports clk_75]

2. Use the File Properties dialog to assign this .rtlsdc file as the SDC File
Targeting RTL names or use the following .qsf assignment:

set_global_assignment -name RTL_SDC_FILE <filename>

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 64. File Properties Dialog

3. Define the following contents of the first entity based .rtlsdc file that is confined
to the clk_div modules. In this case, the inner content of the module is
unknown, but you can describe the known multiplexed clock behavior of the
output in the .rtlsdc:

clk_dic.rtlsdc
set current_instance [get_entity_current_instance];

create_generated_clock -name ${current_instance}_clk_mux_2 -source
[get_ports clk_in] -divide_by 2 [get_ports clk_out]
create_generated_clock -name ${current_instance}_clk_mux_1 -source
[get_ports clk_in] [get_ports clk_out] -add

In contrast, you can still define constraints using the following entity-bound
approach for the fifo module that for which inner logic is already known. This
approach can be advantageous, especially when multiple instances of the same
module share identical constraints.

Figure 65. FIFO Module

set_false_path -from [get_pins wptr_full|wptr[*]|clk] -to [get_pins sync_w2r|
rq1_wptr[*]|d]
set_false_path -from [get_pins rptr_empty|rbin[4]|clk] -to [get_pins
sync_r2w|wq1_rptr[4]|d]
set_false_path -from [get_pins rptr_empty|rptr[*]|clk] -to [get_pins

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

sync_r2w|wq1_rptr[*]|d]
set_false_path -from [get_pins wptr_full|wbin[4]|clk] -to [get_pins sync_w2r|
rq1_wptr[4]|d]

The following .qsf assignments add the clk_div.rtlsdc and fifo.rtlsdc files to
the project, and define the file behavior as entity-based SDC-on-RTL:

set_global_assignment -name RTL_SDC_FILE clk_dic.rtlsdc -entity clk_div_wrapper -
library clk_div_wrapper
set_global_assignment -name RTL_SDC_FILE fifo.rtlsdc -entity fifo -library fifo

This assignment reduces the scope of each .rtlsdc file to the entities that match the
assigned name. During Analysis & Elaboration, messages confirm that the Compiler
appropriately applies each .rtlsdc file according to its assigned module.

Figure 66. Analysis & Elaboration Messages Confirm .rtlsdc Files Applied

You can further validate the correct application of each .rtlsdc file in the SDC File
List report. The SDC File List report contains a comprehensive list, delineating each
SDC file read, the file's assigned instance, and the file uses the SDC-on-RTL approach.

Figure 67. SDC File List Report

You can further confirm the correct application of constraints according to the
constraint target and purpose in the Create Generated Clocks and Set False Paths
reports.

Figure 68. Create Generated Clock Report

Figure 69. Set False Path Report

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.5.1.4. Manual Scope Example for SDC-on-RTL

You can change the scope of entity-based SDC-on-RTL files to manual by including the
-no_sdc_promotion parameter in the RTL_SDC_FILE file definition. This parameter
prevents the Compiler from prepending each collection filter with the full path of the
current instance.

For example, to change to manual the scoping of the clk_dic.rtlsdc file
associated with the clk_div_wrapper entity , add the -no_sdc_promotion
parameter as follows:

set_global_assignment -name RTL_SDC_FILE clk_dic.rtlsdc -entity clk_div_wrapper \
-library clk_div_wrapper -no_sdc_promotion

To scope your collection filters precisely, use the get_entity_current_instance
command. Specifying the top-level path to the present instance streamlines the
process of scoping filters directed towards elements within instance boundaries.

set current_instance [get_entity_current_instance]
create_generated_clock -name ${current_instance}_clk_mux_2 -source \
 [get_ports $current_instance|clk_in] -divide_by 2 [get_ports $current_instance|
clk_out]

create_generated_clock -name ${current_instance}_clk_mux_1 -source \
[get_ports $current_instance|clk_in] [get_ports $current_instance|clk_out] -add

When the automatic scope is disabled for a designated entity-based SDC-on-RTL file,
the SDC File List report indicates this change by displaying "No" in the promoted
column.

Figure 70. SDC File List Report

2.3.5.2. Using Entity-Bound SDC Files

Throughout the design flow, most timing constraints specified in a Synopsis Design
Constraints (SDC) file have a global scope across your project. However, if you want to
associate a distinct set of constraints with a specific design entity, you can use the
SDC_ENTITY_FILE assignment to assign SDC files to particular entity modules within
your project.

Entity-bound SDC files significantly enhance the precision of timing constraints by
allowing you to target constraints exclusively to specific entities where they are
required. This approach bypasses the inadvertent ramifications of global constraints,
which could encompass more targets than intended. As a result, you gain greater
control over the precise locations within your design where these constraints take
effect.

In addition to enhanced constraint precision, entity-bound SDC files also provide
portability of the constraints. When you export a partition that contains entity-bound
SDC constraints, you can optionally include these constraints in the exported file using

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the Include entity-bound SDC files for the selected partition option in the
Export Design Partition dialog box. Alternatively, you can specify this with the-
include_sdc_entity_in_partition argument via a Tcl command.

To associate a specific SDC file with an entity using the entity-bound SDC file approach
within the Quartus Prime Pro Edition software, follow these steps:

1. Generate a new SDC file and include it in your project by clicking Project ➤ Add/
Remove files in project.

2. Navigate to the files list and select the newly created SDC file.

3. Click the Properties button.

4. In the Type drop-down list, select Synopsys Design Constraints File with
entity binding.

Figure 71. Entity Binding

5. In the Entity drop-down list, identify the entity you intend to bind to the SDC file.

6. Click OK to save the changes.

Alternatively, you can define the association between a specific SDC file and an entity
by using the following assignment in the .qsf file:

QSF Assignment Syntax:

set_global_assignment -entity <entity_name> -name SDC_ENTITY_FILE
<sdc_file_name> \
-library <library_name> [-no_sdc_promotion] [-no_auto_inst_discovery]

Where:

Argument Description

-entity <entity_name> Mandatory argument. It defines the entity you want to bind to the SDC file.

-name SDC_ENTITY_FILE
<sdc_file_name>

Specifies the SDC file name. The file's name is relative to the project path.
In terms of scoping, the default setup for SDC_ENTITY_FILE is automatic constraint
scoping. Automatic scoping means that each result from any get command (for
example, get_pins, get_ports, and so on) in the SDC file is prepend with the
instance's path. This confines all get commands to target items solely within the bound

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Argument Description

instance associated with the SDC file. You can deactivate this configuration (which
facilitates instance-level targeting) using the -no_sdc_promotion argument available
through SDC commands. With this choice, you can handle the responsibility of manually
scoping your collections either by explicitly providing the top-level path to the current
instance or using the get_current_instance command that delivers the top-level
path to the current instance. Such an approach proves invaluable when combining local
commands with those that necessitate targeting global, top-level paths or objects
outside the instance associated with the SDC file.

-library <library_name> Indicates a library for the referenced entity. If you choose not to specify a library, the
Quartus Prime Pro Edition software automatically defaults to the altera_work library.

-no_sdc_promotion

-no_auto_inst_discovery

Converts any entity-bound SDC into a global SDC file read just once for the entire
compilation, making it particularly fitting for bundling an SDC with an entity designated
for export as a qdb file. This configuration still permits SDC's collection filters to specify
global top-level paths in your get commands.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.5.2.1. Entity-Bound SDC Constraint Scope

The entity-bound SDC approach offers diverse scoping possibilities for your
constraints, each dictating the extent of their influence.

Table 10. Entity-bound Constraint Scope

Constraint
Scope Type

Features To Enable Instance-bound Scoping

Automatic • Default mode applied to entity-bound SDC
files defined in the Quartus Prime Pro Edition
GUI.

• Under automatic scoping, constraints apply
to every instance of the assigned entity
across the project.

• Each result from any get command (for
example, get_pins, get_ports, and so
on) in the SDC file is prepended with the
instance's path.

• All get commands are confined to the target
elements within the bound instance
associated with the SDC file.

Default mode for SDC_ENTITY_FILE. No additional
steps required.

Manual • Accessible by QSF assignment only.
• The -no_sdc_promotion setting disables

automatic scoping, necessitating full
hierarchical path for targeting nodes.

• Allows the flexibility to target nodes beyond
entity boundaries.

• The get_current_instance command
specifies the top-level path to the current
instance, allowing you to merge filters
targeting elements in the current instance
with commands addressing those beyond
entity boundaries.

Use -no_sdc_promotion. Append each collection filter
with get_current_instance to target nodes within
the entity boundaries.
For example:

get_registers [get_current_instance]|reg[*]

Disabled • Accessible by QSF assignment only.
• -no_sdc_promotion and the -

no_auto_inst_discovery arguments
together disable scoping, treating an entity-
bound SDC as a global SDC file. The SDC file
is read only once for the entire compilation
instead of processing repeatedly for each
instance it is linked to.

• This mode is ideal when bundling an SDC
with an entity destined for export as a qdb
file, while preserving the capability for SDC's
collection filters to specify global, top-level
paths in their get commands.

Use -no_sdc_promotion and -
no_auto_inst_discovery arguments.

When you define entity-bound SDC files either through the GUI or via .qsf
assignments (excluding the -no_sdc_promotion and -no_auto_inst_discovery
arguments), the constraints use automatic scoping. Automatic scoping involves

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

prepending filters with the instance's path. To provide clarity, the following table
illustrates how paths are interpreted in various Tcl commands due to the automatic
scoping of constraints:

Table 11. Automatic Scope of Constraints

Constraint Example Auto-Scope Constraint Interpretation for Instance X|Y

set_false_path -from [get_keepers a] set_false_path -from [get_keepers X|Y|a]

set_false_path -from [get_registers a] -to
[get_registers b]

set_false_path -from [get_registers X|Y|a] -to
[get_registers X|Y|b]

set_false_path –from [get_clocks clk_1] –
to [get_clocks clk_2]

set_false_path –from [get_clocks clk_1] –to
[get_clocks clk_2]

set_max_delay –from [get_ports in] -to
[get_registers A] 2.0

set_max_delay –from [get_ports in] -to
[get_registers X|Y|A] 2.0

get_ports * get_ports *

get_clocks * get_clocks *

get_ports a get_ports a

get_clocks a get_clocks a

When you disable automatic scoping through .qsf assignments, including the use of
the -no_sdc_promotion argument, you must manually prepend the top-level path
to achieve the same behavior as automatic scoping. To simplify this process, use the -
get_current_instance command to return the top-level path of the current
instance. The following table illustrates how paths are interpreted when the -
get_current_instance command is employed to add the top-level path to certain
Tcl commands:

Table 12. Manual Scope of Constraints

Constraint Example Manual Scope Constraint Interpretation

set_false_path –from [get_current_instance]|d\
 –to [get_current_instance]|e

set_false_path –from i1|inner|d –to i1|inner|e
set_false_path –from i2|inner|d –to i2|inner|e
set_false_path –from i3|d –to i3|e

create_generated_clock –divide_by 2 –source \
 [get_ports inclk] –name \
 [get_current_instance]_divclk \
 [get_current_instance]|div
set_multicycle_path –from [get_current_instance]|a \
 –to [get_current_instance]|b 2

create_generated_clock –divide_by 2 –source \
 [get_ports inclk] –name “i1_divclk” i1|div
set_multicycle_path –from i1|a –to i1|b 2 \
 create_generated_clock –divide_by 2 –source \
 [get_ports inclk] –name “i2_divclk” i2|div
set_multicycle_path –from i2|a –to i2|b 2

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.5.2.2. Automatic Scope Entity-bound Constraint Example

In the following design, two instances of the clk_div entity are constrained using the
entity-bound SDC file approach. After running the Fitter's Plan stage and the timing
netlist becomes available, follow the steps below to associate an SDC file with a
particular entity in your design:

Figure 72. Automatic Scope Example

1. Create a non-entity-bound SDC file that defines constraints targeted by a global
scope and add it to the project. For this design, two clocks (clk0 and clk1 are
defined.

global.sdc
create_clock -period 100MHz -name clk_100 [get_ports clk0]
create_clock -period 75MHz -name clk_75 [get_ports clk1]

2. Create a second SDC file to constrain your target entity and add it to the project.
This file follows the entity-bound approach and associates with the clk_div
entity. Consequently, you define constraints as if this entity were at the top-level
hierarchy, with path names relative to the entity. For example, the get_pins
clkdiv_a|q command does not require the X|U0 hierarchy. In this example, the
get_current_instance Tcl command generates a unique name for each clock.

In this specific case, the .sdc file creates a new clock on the output of the
module, and the get_current_instance Tcl command generates a unique
name for each clock.

clk_div.sdc
set unique_clock_name "[get_current_instance]_clkout"
create_generated_clock -divide_by 2 -source [get_pins clkdiv_a|clk] -name
$unique_clock_name [get_pins clkdiv_a|q]

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Open the File Properties dialog for the .sdc file associated with the clk_div
entity from the files list in the left-hand Project Tasks pane.

a. Select the SDC File with entity binding (Read by the Timing Analyzer at
each fitter stage) option in the Type list.

b. In the Entity list, select clk_div.

This step applies automatic scoping to the entity-bound file, where all paths in
filter commands are prepended with the top-level path of the current
hierarchy. For instance, the command get_registers clkdiv_a is
dynamically transformed into its fully hierarchical counterpart, such as
get_registers X|U0|clkdiv_a.

Note: You must first complete Analysis & Synthesis to populate the list of
entities.

Figure 73. File Properties Dialog

Alternatively, you can use the following .qsf assignment to set the entity binding:

set_global_assignment -name SDC_ENTITY_FILE clk_div.sdc -entity clk_div

4. Recompile the project to apply the changes. This results in the
corresponding .sdc file being effectively bound to the entity in the automatic
scope mode.

5. Verify the implementation of the entity-bound property by reviewing the SDC File
List report in the Timing Analyzer. This report provides a comprehensive list of the
applied SDC files for the design. For entity-bound SDC files, the report includes
the associated instance, entity name, library, and the status of automatic scoping:

Figure 74. SDC File List Report in the Timing Analyzer

6. Determine the correct application of each constraint according to the intended
purpose. For example, examine the generated clocks and cross-reference with the
clock hierarchy to determine if the constraints are successfully applied, as shown
in the following images:

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 75. Create Generated Clock Window in the Timing Analyzer

Figure 76. Clock Hierarchy Summary Window in the Timing Analyzer

2.3.5.2.3. Manual Scope Entity-bound Constraint Example

To modify the scope of the entity-bound SDC file to manual, for example, to target
elements outside the entity, utilize .qsf assignments. By including the -
no_sdc_promotion parameter in the entity-bound SDC file definition, you can
prevent the Compiler from prepending each collection filter with the full path of the
current instance. For example, to change to manual scope, the .sdc file associated
with the clk_div entity in the automatic scope example above, add the -
no_sdc_promotion parameter as follows:

set_global_assignment -name SDC_ENTITY_FILE clk_div.sdc -entity clk_div -
no_sdc_promotion

To scope your collection filters precisely, use the get_current_instance command.
By specifying the top-level path to the present instance, get_current_instance
streamlines the process of scoping filters directed towards elements confined within
instance boundaries.

clk_div.sdc
set current_entity_instance [get_current_instance]
set unique_clock_name "${current_entity_instance}_clkout"
create_generated_clock -divide_by 2 -source [get_pins clkdiv_a|clk] \
-name $unique_clock_name [get_pins ${current_entity_instance}|clkdiv_a|q]

If you disable the automatic scope for a designated entity-bound SDC file, the SDC
File List report within the Timing Analyzer indicates this change by displaying "No" in
the promoted column:

Figure 77. SDC File List Report in the Timing Analyzer

2.3.5.2.4. Exporting a Design Partition with Entity-bound Constraints

The following example illustrates exporting a partition that includes entity bound
constraints for use in another project. This example uses the fifo entity.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 78. Entity-Bound Constraints Design Example

Perform these steps to export a design partition with entity-bound constraints:

1. After applying the constraints to the fifo entity, click Fitter on the Compilation
Dashboard to run the Fitter. The Messages window report when the Fitter is
complete.

2. Click Assignments ➤ Design Partitions Window and define Default Type
design partition for the fifo entity in the Assignments View tab of the Design
Partition dialog box.

Figure 79. Assignments View of the Design Partition Window

3. Specify the entity-bound SDC File name and Type to establish the binding
between the fifo entity and the .sdc file.

Figure 80. File Properties Dialog

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Click Compile Design on the Compilation Dashboard to run a full compilation and
apply the changes to your project. The Timing Analyzer opens by default following
a successful full compilation.

5. Confirm the correct association of the .sdc file with the fifo entity by reviewing
the SDC File List report in the Timing Analyzer.

Figure 81. SDC File List Report in the Timing Analyzer

6. Click Project ➤ Export Design Partition and specify the following options:

a. In the Partition name list, select the partition to export.

b. In Partition Database File, specify the partition database file.

c. Turn on the Include entity-bound SDC files for the selected partition
option for entity-bound SDC files linked to the chosen partitions.

d. For Snapshot, specify Synthesized or Final.

Figure 82. Export Design Partition Dialog

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.5.2.5. Importing a Design Partition with Entity-bound Constraints

Importing a partition with entity-bound SDC files requires that you define a black box
wrapper for the entity in your design. This wrapper declares a partition in which the
data from the imported partition is utilized. Consider the following example with an
entity named fifo_imported:

Figure 83. Example of an Entity Named fifo_imported

To import a design partition with entity-bound constraints, perform these steps:

1. To run design synthesis, click Analysis & Synthesis on the Compilation
Dashboard.

2. To create a new partition within the wrapper entity, click Assignments ➤ Design
Partitions Window and specify the following options on the Assignments View
tab:

a. Specify the Partition Name and the Hierarchy Path of the entity instance.

b. Specify Default for the partition Type.

c. Specify synthesized in the Preservation Level column.

d. Specify the .qdb file from the previous project as the Partition Database
File

Figure 84. Assignments View of the Design Partition Dialog

3. To run a full compilation, click Compile Design on the Compilation Dashboard.
The Timing Analyzer appears automatically following successful compilation.

4. Verify the correct application of the entity-bound SDC file assignment in the SDC
File List report.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 85. SDC File List Report in the Timing Analyzer

2.3.6. Constraining Design Partition Ports

You can assign clock definitions and SDC exceptions to design partition ports. The
block-based design and partial reconfiguration design flows require the use of design
partitions.

The Compiler represents design partition ports in your timing netlist as combinational
nodes with persistent names that the Compiler cannot optimize away. You can safely
refer to these ports as clock sources or -through points in SDC constraints. You can
also use design partition port names as -to and -from points in the report_path
command.

If a port on partition_a has the name clk_divide, then the SDC constraint is:

create_generated_clock –source clock -divide_by 2 \
 top|partition_a|clk_divide

If a set of ports on partition_b has the name data_input[0..7], then the SDC
constraint is:

set_multicycle_path –from top|partition_a|data_reg* \
 -through top|partition_b|data_input* 2

You can use multiple -through clauses. This technique allows you to specify paths
that go through output ports of one design partition, and then through the input ports
of another, downstream design partition.

To add constraints to partition ports:

1. Run Analysis & Synthesis or run full compilation on a design containing design
partitions.

2. To open the RTL Viewer and locate the partition ports of interest, click Tools ➤
Netlist Viewers ➤ RTL Viewer.

3. Using the same names as the RTL Viewer, add clock and other SDC constraints
to the .sdc file for your project. You can use wildcards to refer to more than one
port.

4. Recompile the design to apply the new definitions and constraints.

Aside from block-based and PR flows, this technique also aids in emulation of
ASICs using FPGAs. In this type of design, clock networks often span multiple
hierarchies of partitions. Typically, designers remove the clock-dividing circuitry
from the netlist, since they cannot easily emulate this circuitry on Intel FPGAs. For
such clock networks, this technique allows you to define different versions of the
clock signal in places where the circuitry is removed.

You must design and place your partitions strategically, and then define the
appropriate ports on these partitions. Ensure that your ports and partitions
coincide with the part of the clock network which contains the special circuitry. You
can manually edit the emulated ASIC netlist to annotate appropriate clock

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

definitions and clock relationships. You can also use this technique in any projects
where arbitrary locations on paths require constrained timing or defined clock
sources.

Related Information

• Output Constraints (set_output_delay) on page 95

• Input Constraints (set_input_delay) on page 94

2.3.6.1. Timing Analysis of Imported Compilation Results

You can preserve the compilation results for your design as a version-compatible
Quartus database file (.qdb) that you can open in a later version of the Quartus Prime
software without compatibility issues.

When you import and open the .qdb in a later version of software, you can run timing
analysis on the imported compilation results without re-running the Compiler.

2.3.7. Using Fitter Overconstraints

Fitter overconstraints are timing constraints that you adjust to overcome modeling
inaccuracies, mis-correlation, or other deficiencies in logic optimization. You can
overconstrain setup and hold paths in the Fitter to enable more aggressive timing
optimization of specific paths.

Overconstraints for Stratix 10 Designs

One typically writes overconstraints that apply only during the Fitter, with a conditional
statement that checks the name of the executable that is reading the .sdc file. The
following example shows a conditional statement that applies an overconstraint during
the Fitter.

Example Fitter overconstraint targeting specific nodes
if { $::TimingAnalyzerInfo(nameofexecutable) eq "quartus_fit"} {
 set_max_delay -from ${my_src_regs} -to ${my_dst_regs} 1ns
}

One typically applies overconstraints because a particular path (or set of paths)
requires more than the default optimization effort from the Fitter. Therefore,
overconstraints typically specify particular node or register names in the path or paths
that require extra optimization.

For devices that support the Hyperflex® architecture, such as Stratix 10 and Agilex™

FPGA portfolio devices, timing constraints that apply to particular node or register
names prevent the Hyper-Retimer from optimizing paths containing those nodes or
registers.

Because the Hyper-Retimer is component of the Fitter, an overconstraint that
conditionally applies during the Fitter is counter-productive during the Hyper-Retimer
portion of the Fitter. The overconstraint actually prevents the optimization instead of
focusing the optimization effectively.

When designing for the Hyperflex architecture, use the is_post_route Tcl function
form of conditional statement to apply the overconstraint during placement and
routing but not during the Hyper-Retimer. is_post_route allows you to apply

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

overconstraints and adjust slack for stages of the Fitter, such as Plan, Place, and
Route. is_post_route also allows post-route retiming via the Hyper-Retimer without
affecting sign-off timing analysis.

Example Fitter overconstraint targeting specific nodes (allows for post-route
retiming)
if { ! [is_post_route]} {
 set_max_delay -from ${my_src_regs} -to ${my_dst_regs} 1ns
}

Note: The is_post_route function is inclusive. To exclude the function, use the negation
syntax (!).

Overconstraints for Designs that Target All Other Device Families

You can assign Fitter overconstraints that check the name of the current executable,
(either quartus_fit or quartus_sta) to apply different constraints for Fitter
optimization and sign-off timing analysis.

set fit_flow 0
if { $::TimingAnalyzerInfo(nameofexecutable) == "quartus_fit" } {
 set fit_flow 1
}
if {$fit_flow} {
 # Example Fitter overconstraint targeting specific nodes (restricts retiming)
 set_max_delay -from ${my_src_regs} -to ${my_dst_regs} 1ns
}

Other Overconstraint Combinations

You can apply timing constraints to specific stages of the Compiler, in addition to the
Fitter as described above. The following table shows different combinations of compile
stages and the conditional expression that applies those constraints during the stage
or stages.

Table 13. Overconstraint Combinations

Compile Stages Tcl Condition Notes

Fitter if { $::TimingAnalyzerInfo(nameofexecutable) eq
"quartus_fit" }

Applies constraints during
entire Fitter stage. Use for
fitter overconstraints with
devices that do not support
Hyperflex architecture.

Signoff timing if { $::TimingAnalyzerInfo(nameofexecutable) eq
"quartus_sta" }

Applies constraints during
timing analysis. This
condition is uncommon.
Typically you apply timing
analysis constraints during
the entire compile flow.

Plan, Place, and
Route

if { ! [is_post_route] } Applies constraints during
the Plan, Place, and Route
stages in devices that
support the Hyperflex
architecture. Use for fitter
overconstraints .

Retime
(HyperRetimer),
Finalize, Signoff
timing

if { [is_post_route] } Applies constraints after the
Route stage completes in
devices that support the
Hyperflex architecture. This
combination of stages is

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compile Stages Tcl Condition Notes

uncommon. Typically you
apply timing analysis
constraints during the entire
compile flow.

Retime
(HyperRetimer) and
Finalize

if { [is_post_route] &&
$::TimingAnalyzerInfo(nameofexecutable) eq
"quartus_fit" }

Applies constraints during
Retiming and Finalize stages
in devices that support the
Hyperflex architecture. This
combination of stages is
uncommon.

2.4. Timing Constraint Descriptions

This section provides examples and describes how to correctly apply SDC timing
constraints that guide design synthesis, Fitter placement, and produce accurate timing
analysis results.
You can define a set of initial timing constraints, and then iteratively modify those
constraints as the design progresses.

Early in the design cycle, you can use SDC-on-RTL constraints to target analysis of
RTL nodes. This analysis provides a stable reference for constraints that can remain
unchanged in subsequent compilation stages, such as clock definitions. Establishing a
set of SDC-on-RTL constraints enables their propagation and application throughout
the entire design cycle. Concurrently, you can create a conventional .sdc file for
analysis of the remaining design elements, providing flexibility for iterative constraint
adjustments as the design evolves.

This section also outlines the proper application of recommended conventional SDC
timing constraints. Conventional SDC constraints guide Fitter placement via .sdc files,
offering alternative approaches to achieve precise control over constraints throughout
the design flow.

2.4.1. Clock Constraints

You must define all clocks and any associated clock characteristics, such as
uncertainty, latency or skew. The Timing Analyzer supports .sdc commands that
accommodate various clocking schemes, such as:

• Base clocks

• Virtual clocks

• Multifrequency clocks

• Generated clocks

You can verify correct implementation of clock constraints by using Report Clocks
(report_clocks) to generate clock timing reports. You can use Check Timing
(check_timing) to report problems with a variety of timing constraints, such as
missing clocks.

Related Information

• Report Clocks on page 135

• Check Timing on page 161

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1.1. Creating Base Clocks

Base clocks are the primary input clocks to the device. The Create Clock
(create_clock) constraint allows you to define the properties and requirements for
base clocks in the design. Unlike clocks that are generated in the device (such as an
on-chip PLL), base clocks are generated by off-chip oscillators or forwarded from an
external device. Define base clocks at the top of your .sdc file, because generated
clocks and other constraints often reference base clocks. The Timing Analyzer ignores
any constraints that reference an undefined clock.

The following examples show common use of the create_clock constraint:

 create_clock Command

The following specifies a 100 MHz requirement on a clk_sys input clock port:

create_clock -period 100Mhz -name clk_sys [get_ports clk_sys]

100 MHz Shifted by 90 Degrees Clock Creation

The following creates a 10 ns clock, with a 50% duty cycle, that is phase shifted by
90 degrees, and applies to port clk_sys. This type of clock definition commonly
refers to source synchronous, double-rate data that is center-aligned with respect to
the clock.

create_clock -period 10ns -waveform { 2.5 7.5 } [get_ports clk_sys]

Two Oscillators Driving the Same Clock Port

You can apply multiple clocks to the same target with the -add option. For example,
to specify that you can drive the same clock input at two different frequencies, enter
the following commands in your .sdc file:

create_clock -period 10ns -name clk_100 [get_ports clk_sys]
create_clock -period 5ns -name clk_200 [get_ports clk_sys] -add

Although uncommon to define more than two base clocks for a port, you can define as
many as are appropriate for your design, making sure you specify -add for all clocks
after the first.

Creating Multifrequency Clocks

You must create a multifrequency clock if your design has more than one clock source
feeding a single clock node. The additional clock may act as a low-power clock, with a
lower frequency than the primary clock. If your design uses multifrequency clocks, use
the set_clock_groups command to define clocks that are physically exclusive (that
is, clocks that are not physically present at the same time).

Use the create_clock command with the -add option to create multiple clocks on a
clock node. You can create a 10 ns clock applied to clock port clk, and then add an
additional 15 ns clock to the same clock port. The Timing Analyzer analyzes both
clocks.

create_clock –period 10ns –name clock_primary –waveform { 0 5 } \
 [get_ports clk]
create_clock –period 15ns –name clock_secondary –waveform { 0 7.5 } \
 [get_ports clk] -add

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can verify correct implementation of clock constraints by using Report Clocks
(report_clocks) to generate clock timing reports. You can use Check Timing
(check_timing) to report problems with a variety of timing constraints, such as
missing clocks.

Related Information

• Accounting for Clock Effect Characteristics on page 90

• Report Clocks on page 135

• Check Timing on page 161

2.4.1.1.1. Automatic Clock Detection and Constraint Creation

Use the derive_clocks command to automatically create base clocks in your design
The derive_clocks command is equivalent to using the create_clock command
for each register or port feeding the clock pin of a register. The derive_clocks
command creates clock constraints on ports or registers to ensure every register in
your design has a clock constraints, and it applies one period to all base clocks in your
design.

The following command specifies a base clock with a 100 MHz requirement for
unconstrained base clock nodes.

derive_clocks -period 10

The derive_clocks command names the automatically created base clocks
according to the name of the register or port that is the target of each clock.
Automatically derived clocks have the suffix “~derived". You can choose another suffix
to append with the -suffix option for the derive_clocks command.

Caution: If your design has more than a single clock, the derive_clocks command constrains
all the clocks to the same specified frequency. To achieve a realistic analysis of your
design's timing requirements, do not use derive_clocks command for final timing
sign-off. Instead, use create_clock and create_generated_clock commands to
make individual clock constraints for all clocks in your design.

If you want to create some base clocks automatically, use the -
create_base_clocks option to derive_pll_clocks. With this option, the
derive_pll_clocks command automatically creates base clocks for each PLL,
based on the input frequency information that you specify when you generate the PLL.
This feature works for simple port-to-PLL connections. Base clocks do not
automatically generate for complex PLL connectivity, such as cascaded PLLs. You can
also use the command derive_pll_clocks -create_base_clocks to create the
input clocks for all PLL inputs automatically.

2.4.1.2. Creating Virtual Clocks

A virtual clock is a clock without a real source in the design, or a clock that does not
interact directly with the design. You can use virtual clocks in I/O constraints to
represent clocks that drive external devices connected to the FPGA..

To create virtual clocks, use the create_clock constraint with no value for the
<targets> option.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This following example defines a 100 MHz virtual clock because the command includes
no <targets>.

create_clock -period 10 -name my_virt_clk

I/O Constraints with Virtual Clocks

You can use a base clock to constrain the circuit in the FPGA and a virtual clock to
represent the clock driving the external device. .

Figure 86. Virtual Clock Board Topology
The figure shows the base clock (system_clk), virtual clock (virt_clk), and output delay for the virtual
clock constraints example

FPGA External Device

system_clk virt_clk

reg_a reg_b
dataout

datain

The following example creates the 10 ns virt_clk virtual clock, with a 50% duty
cycle, with the first rising edge occurring at 0 ns. The virtual clock can then become
the clock source for an output delay constraint.

Example 3. Virtual Clock Constraints

#create base clock for the design
create_clock -period 5 [get_ports system_clk]
#create the virtual clock for the external register
create_clock -period 10 -name virt_clk
#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports dataout]
set_output_delay -clock virt_clk -min 0.0 [get_ports dataout]

You can verify correct implementation of clock constraints by using Report Clocks
(report_clocks) to generate clock timing reports. You can use Check Timing
(check_timing) to report problems with a variety of timing constraints, such as the
number of unreferenced virtual clocks without constraint.

Related Information

• Report Clocks on page 135

• Check Timing on page 161

2.4.1.2.1. Specifying I/O Interface Uncertainty

Virtual clocks are recommended for I/O constraints because they most accurately
represent the clocking topology of the design. An additional benefit is that you can
specify different uncertainty values on clocks that interface with external I/O ports and
clocks that feed register-to-register paths inside the FPGA.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1.2.2. I/O Interface Clock Uncertainty Example

To specify I/O interface uncertainty, you must create a virtual clock and constrain the
input and output ports with the set_input_delay and set_output_delay
commands that reference the virtual clock.

When the set_input_delay or set_output_delay commands reference a clock
port or PLL output, the virtual clock allows the derive_clock_uncertainty
command to apply separate clock uncertainties for internal clock transfers and I/O
interface clock transfers.

Create the virtual clock with the same properties as the original clock that is driving
the I/O port, as the following example shows:

Example 4. SDC Commands to Constrain the I/O Interface

Create the base clock for the clock port
create_clock -period 10 -name clk_in [get_ports clk_in]
Create a virtual clock with the same properties of the base clock
driving the source register
create_clock -period 10 -name virt_clk_in
Create the input delay referencing the virtual clock and not the base
clock
DO NOT use set_input_delay -clock clk_in <delay value>
[get_ports data_in]
set_input_delay -clock virt_clk_in <delay value> [get_ports data_in]

2.4.1.3. Creating Generated Clocks (create_generated_clock)

The Create Generate Clock (create_generated_clock) constraint allows you to
define the properties and constraints of an internally generated clock in the design.
You specify the Clock name (-name), the Source node (-source) from which clock
derives, and the Relationship to the source properties. Define generated clocks for
any node that modifies the properties of a clock signal, including modifying the phase,
frequency, offset, or duty cycle.

You apply generated clocks most commonly on the outputs of PLLs, on register clock
dividers, clock muxes, and clocks forwarded to other devices from an FPGA output
port, such as source synchronous and memory interfaces. In the .sdc file, enter
generated clocks after the base clocks definitions. Generated clocks automatically
account for all clock delays and clock latency to the generated clock target.

The -source option specifies the name of a node in the clock path that you use as
reference for your generated clock. The source of the generated clock must be a node
in your design netlist, and not the name of a clock you previously define. You can use
any node name on the clock path between the input clock pin of the target of the
generated clock and the target node of its reference clock as the source node.

Specify the input clock pin of the target node as the source of your new generated
clock. By accepting a node as the generated clock's source clock, the generated clock
constraint decouples from the source clock. If you change the source clock for the
generated clock and the source node is the same, you do not have to edit the
generated clock constraint.

If you have multiple base clocks feeding a node that is the source for a generated
clock, you must define multiple generated clocks. You associate each generated clock
with one base clock using the -master_clock option in each generated clock
statement. In some cases, generated clocks generate with combinational logic.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Depending on how your clock-modifying logic synthesizes, the source or target node
can change from one compilation to the next. If the name changes after you write the
generated clock constraint, the Compiler ignores the generated clock because that
target name no longer exists in the design. To avoid this problem, use a synthesis
attribute or synthesis assignment to retain the final combinational node name of the
clock-modifying logic. Then use the kept name in your generated clock constraint.

Figure 87. Example of clock-as-data

When you create a generated clock on a node that ultimately feeds the data input of a
register, this creates a special case of “clock-as-data." The Timing Analyzer treats
clock-as-data differently. For example, if you use clock-as-data with DDR, you must
consider both the rise and the fall of this clock, and the Timing Analyzer reports both
rise and fall. With clock-as-data, the Compiler treats the From Node as the target of
the generated clock, and the Launch Clock as the generated clock.

In Example of clock-as-data, the first path is from toggle_clk (INVERTED) to clk,
and the second path is from toggle_clk to clk. The slack in both cases is slightly
different due to the difference in rise and fall times along the path. The Data Delay
column reports the ~5 ps difference. Only the path with the lowest slack value
requires consideration. The Timing Analyzer only reports the worst-case path between
the two (rise and fall). In this example, if you do not define the generated clock on the
register output, then timing analysis reports only one path with the lowest slack value.

You can use the derive_pll_clocks command to automatically generate clocks for
all PLL clock outputs. The properties of the generated clocks on the PLL outputs match
the properties you define for the PLL.

You can verify correct implementation of clock constraints by using Report Clocks
(report_clocks) to generate clock timing reports. You can use Check Timing
(check_timing) to report problems with a variety of timing constraints, such as the
number of generated clocks that are invalid.

Related Information

• Deriving PLL Clocks on page 85

• Report Clocks on page 135

• Check Timing on page 161

• create_generated_clock

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

83

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_generated_clock.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• derive_pll_clocks

2.4.1.3.1. Clock Divider Example (-divide_by)

A common form of generated clock is the divide-by-two register clock divider. The
following example constraint creates a half-rate clock on the divide-by-two register.

create_clock -period 10ns -name clk_sys [get_ports clk_sys]
create_generated_clock -name clk_div_2 -divide_by 2 -source \
 [get_ports clk_sys] [get_pins reg|q]

To specify the clock pin of the register as the clock source:

create_clock -period 10ns -name clk_sys [get_ports clk_sys]
create_generated_clock -name clk_div_2 -divide_by 2 -source \
 [get_pins reg|clk] [get_pins reg|q]

Figure 88. Clock Divider

reg

clk_sys

Figure 89. Clock Divider Waveform

1 2 3 4 5 6 7 8Edges

clk_sys

clk_div_2

0 10 20 30Time

2.4.1.3.2. Clock Multiplexer Example

The output of a clock multiplexer (mux) is a form of generated clock. Each input clock
requires one generated clock on the output. The following .sdc example also includes
the set_clock_groups command to indicate that the two generated clocks can
never be active simultaneously in the design. Therefore, the Timing Analyzer does not
analyze cross-domain paths between the generated clocks on the output of the clock
mux.

Figure 90. Clock Mux

clk_b

clk_a mux_out

create_clock -name clock_a -period 10 [get_ports clk_a]
create_clock -name clock_b -period 10 [get_ports clk_b]
create_generated_clock -name clock_a_mux -source [get_ports clk_a] \

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

84

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_pll_clocks.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 [get_pins clk_mux|mux_out]
create_generated_clock -name clock_b_mux -source [get_ports clk_b] \
 [get_pins clk_mux|mux_out] -add
set_clock_groups -logically_exclusive -group clock_a_mux -group clock_b_mux

2.4.1.4. Deriving PLL Clocks

The Derive PLL Clocks (derive_pll_clocks) constraint automatically creates
clocks for each output of any PLL in your design. derive_pll_clocks detects your
current PLL settings and automatically creates generated clocks on the outputs of
every PLL by calling the create_generated_clock command.

Note: Only Arria 10 and Cyclone 10 GX devices support the Derive PLL Clocks
(derive_pll_clocks) constraint. For all other supported devices, the Timing
Analyzer automatically derives PLL clocks from constraints bound to the related IP.

Create Base Clock for PLL input Clock Ports

If your design contains transceivers, LVDS transmitters, or LVDS receivers, use the
derive_pll_clocks to constrain this logic in your design and create timing
exceptions for those blocks.

create_clock -period 10.0 -name fpga_sys_clk [get_ports fpga_sys_clk]
derive_pll_clocks

Include the derive_pll_clocks command in your .sdc file after any
create_clock command. Each time the Timing Analyzer reads the .sdc file, the
appropriate generated clock is created for each PLL output clock pin. If a clock exists
on a PLL output before running derive_pll_clocks, the pre-existing clock has
precedence, and an auto-generated clock is not created for that PLL output.

The following shows a simple PLL design with a register-to-register path:

Figure 91. Simple PLL Design

reg_1 reg_2

pll_inclk pll_inst

dataout

The Timing Analyzer generates messages like the following example when you use the
derive_pll_clocks command to constrain the PLL.

Example 5. derive_pll_clocks Command Messages

Info:
Info: Deriving PLL Clocks:
Info: create_generated_clock -source pll_inst|altpll_component|pll|inclk[0] -
divide_by 2 -name
pll_inst|altpll_component|pll|clk[0] pll_inst|altpll_component|pll|clk[0]
Info:

The input clock pin of the PLL is the node pll_inst|altpll_component|pll|
inclk[0] which is the -source option. The name of the output clock of the PLL is
the PLL output clock node, pll_inst|altpll_component|pll|clk[0].

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the PLL is in clock switchover mode, multiple clocks generate for the output clock of
the PLL; one for the primary input clock (for example, inclk[0]), and one for the
secondary input clock (for example, inclk[1]). Create exclusive clock groups for the
primary and secondary output clocks since they are not active simultaneously.

You can verify correct implementation of clock constraints by using Report Clocks
(report_clocks) to generate clock timing reports. You can use Check Timing
(check_timing) to report problems with a variety of timing constraints, such as the
number of instances where clocks that are assigned to a PLL do not correspond
properly with the PLL settings you define in design files.

Related Information

• Creating Clock Groups (set_clock_groups) on page 86

• Report Clocks on page 135

• Check Timing on page 161

2.4.1.5. Creating Clock Groups (set_clock_groups)

The Set Clock Groups (set_clock_groups) constraint allows you to specify which
clocks in the design are unrelated.

The set_clock_groups command allows you to cut timing between unrelated clocks
in different groups. The Timing Analyzer performs the same analysis regardless of
whether you specify -exclusive or -asynchronous groups. You define a clock
group with the -group option. The Timing Analyzer excludes the timing paths
between clocks for each of the separate groups.

The following tables show the impact of set_clock_groups.

Table 14. set_clock_groups -group A

Destination\Source A B C D

A Analyzed Cut Cut Cut

B Cut Analyzed Analyzed Analyzed

C Cut Analyzed Analyzed Analyzed

D Cut Analyzed Analyzed Analyzed

Table 15. set_clock_groups -group {A B}

Destination\Source A B C D

A Analyzed Analyzed Cut Cut

B Analyzed Analyzed Cut Cut

C Cut Cut Analyzed Analyzed

D Cut Cut Analyzed Analyzed

Table 16. set_clock_groups -group A -group B

Destination\Source A B C D

A Analyzed Cut Analyzed Analyzed

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

B Cut Analyzed Analyzed Analyzed

C Analyzed Analyzed Analyzed Analyzed

D Analyzed Analyzed Analyzed Analyzed

Table 17. set_clock_groups -group {A C} -group {B D}

Destination\Source A B C D

A Analyzed Cut Analyzed Cut

B Cut Analyzed Cut Analyzed

C Analyzed Cut Analyzed Cut

D Cut Analyzed Cut Analyzed

Table 18. set_clock_groups -group {A C D}

Destination\Source A B C D

A Analyzed Cut Analyzed Analyzed

B Cut Analyzed Cut Cut

C Analyzed Cut Analyzed Analyzed

D Analyzed Cut Analyzed Analyzed

You can verify correct implementation of clock constraints by using Report Clocks
(report_clocks) to generate clock timing reports. You can use Check Timing
(check_timing) to report problems with a variety of timing constraints, such as
missing clocks.

Related Information

• Timing Exception Precedence on page 99

• Report Clocks on page 135

• Check Timing on page 161

• set_clock_groups Command, Quartus Prime Help

2.4.1.5.1. Exclusive Clock Groups (-logically_exclusive or -physically_exclusive)

You can use the logically_exclusive option to declare that two clocks are
physically active simultaneously, but the two clocks are not actively used at the same
time (that is, the clocks are logically mutually exclusive). The
physically_exclusive option declares clocks that cannot be physically on the
device at the same time.

If you define multiple clocks for the same node, you can use clock group assignments
with the logically_exclusive option to declare clocks as mutually exclusive. This
technique can be useful for multiplexed clocks.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

87

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_derive_clocks.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, consider an input port that is clocked by either a 100-MHz or 125-MHz
clock. You can use the logically_exclusive option to declare that the clocks are
mutually exclusive and eliminate clock transfers between the 100-MHz and 125-MHz
clocks, as the following diagrams and example SDC constraints show:

Figure 92. Synchronous Path with Clock Mux Internal to FPGA

clkB
clkA

out

sel

clkmux
reg1 reg2

FPGA

Example SDC Constraints for Internal Clock Mux

Create a clock on each port
create_clock -name clk_100 -period 10 [get_ports clkA]
create_clock -name clk_125 -period 8 [get_ports clkB]
Create derived clocks on the output of the mux
create_generated_clock -name mux_100 -source [get_ports clkA] \
 [get_pins clkmux|combout]
create_generated_clock -name mux_125 -source [get_ports clkB] \
 [get_pins clkmux|combout] -add
Set the two clocks as exclusive clocks
set_clock_groups -logically_exclusive -group {mux_100} -group {mux_125}

Figure 93. Synchronous Path with Clock Mux External to FPGA

clkB
clkA

out

sel

clkmux
reg1 reg2

FPGA

clk

Example SDC Constraints for External Clock Mux

Create virtual clocks for the external primary clocks
create_clock -period 10 -name clkA
create_clock -period 20 -name clkB
Create derived clocks on the port clk
create_generated_clock -name mux_100 -master_clock clkA [get_ports clk]
create_generated_clock -name mux_125 -master_clock clkB [get_ports clk] -add
Assume no clock network latency between the external clock sources & the \
 clock mux output
set_clock_latency -source 0 [get_clocks {mux_100 mux_125}]
Set the two clocks as exclusive clocks
set_clock_groups -physically_exclusive -group mux_100 -group mux_125

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1.5.2. Asynchronous Clock Groups (-asynchronous)

Use the -asynchronous option to create asynchronous clock groups. You can use
asynchronous clock groups to break the timing relationship when data transfers
through a FIFO between clocks running at different rates.

2.4.1.5.3. set_clock_groups Constraint Tips

When you use derive_pll_clocks to create clocks, it can be time consuming to
determine all the clock names to include in set_clock_groups constraints. However,
you can use the following technique to somewhat automate clock constraint creation,
even if you do not know all of the clock names.

1. Create a basic .sdc file that contains the Recommended Initial Conventional SDC
Constraints, except omit the set_clock_groups constraint for now.

2. To add the .sdc to the project, click Assignments ➤ Settings ➤ Timing
Analyzer. Specify the .sdc file under SDC files to include in the project.

3. To open the Timing Analyzer, click Tools ➤ Timing Analyzer.

4. In the Task pane, double-click Report Clocks. The Timing Analyzer reads
your .sdc, applies the constraints (including derive_pll_clocks), and reports
all the clocks.

5. From the Clocks Summary report, copy all the clock names that appear in the first
column. The report lists the clock names in the correct format for recognition in
the Timing Analyzer.

6. Open .sdc file and the paste the clock names into the file, one clock name per line.

7. Format the list of clock names list into the set_clock_groups command by
cutting and pasting clock names into appropriate groups. Next, paste the following
template into the .sdc file:

set_clock_groups -asynchronous -group { \
} \
 -group { \
} \
-group { \
} \
-group { \
}

8. Cut and paste the clock names into groups to define their relationship, adding or
removing groups, as necessary. Format the groups to make the code readable.

Note: This command can be difficult to read on a single line. You can use the Tcl
line continuation character "\" to make this more readable. Place a space
after the last character, and then place the "\" character at the end of the
line. Be careful not to include any spaces after the escape character.
Otherwise, the space becomes the escape character, rather than the end-of-
line character.

set_clock_groups -asynchronous \
 -group {adc_clk \
 the_adc_pll|altpll_component_autogenerated|pll|clk[0] \
 the_adc_pll|altpll_component_autogenerated|pll|clk[1] \
 the_adc_pll|altpll_component_autogenerated|pll|clk[2] \
 } \
 -group {sys_clk \
 the_system_pll|altpll_component_autogenerated|pll|clk[0] \
 the_system_pll|altpll_component_autogenerated|pll|clk[1] \

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 } \
 -group {the_system_pll|altpll_component_autogenerated|pll|clk[2] \
 }

Note: The last group has a PLL output system_pll|..|clk[2] while the input clock and
other PLL outputs are in different groups. If you use PLLs, and the input clock
frequency does not relate to the frequency of the PLL's outputs, you must treat the
PLLs asynchronously. Typically the outputs of a PLL are related and are in the same
group, but this is not a requirement.

For designs with complex clocking, creating clock groups can be an iterative process.
For example, a design with two DDR3 cores and high-speed transceivers can have
thirty or more clocks. In such cases, you start by adding the clocks that you manually
create. Timing Analyzer assumes that the clocks not appearing in the clock groups
command relate to every clock and conservatively groups the known clocks. If the
design still has failing paths between unrelated clock domains, you can add the new
clock domains, as necessary. In this case, a large number of the clocks are not in the
set_clock_groups command, because they are either cut in the .sdc file for the IP
(such as the .sdc files that the DDR3 cores generate), or they connect only to related
clock domains.

For many designs, that is all that's necessary to constrain the IP.

Related Information

Multicycle Paths on page 102

2.4.1.6. Accounting for Clock Effect Characteristics

The clocks you create with the Timing Analyzer are ideal clocks that do not account for
any board effects. You can account for clock effect characteristics with clock latency
and clock uncertainty constraints.

You can verify correct implementation of clock constraints by using Report Clocks
(report_clocks) to generate clock timing reports. You can use Check Timing
(check_timing) to report problems with a variety of timing constraints, such as
missing clocks.

Related Information

• Report Clocks on page 135

• Check Timing on page 161

2.4.1.6.1. Set Clock Latency (set_clock_latency)

The Set Clock Latency (set_clock_latency) constraint allows you to specify
additional delay (that is, latency) in a clock network. This delay value represents the
external delay from a virtual (or ideal) clock through the longest Late (-late) or
shortest Early (-early) path, with reference to the Rise (-rise) or Fall (-fall) of
the clock transition.

When calculating setup analysis, the Timing Analyzer uses the late clock latency for
the data arrival path and the early clock latency for the clock arrival path. . When
calculating hold analysis, the Timing Analyzer uses the early clock latency for the data
arrival time and the late clock latency for the clock arrival time.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There are two forms of clock latency: clock source latency, and clock network latency.
Source latency is the propagation delay from the origin of the clock to the clock
definition point (for example, a clock port). Network latency is the propagation delay
from a clock definition point to a register’s clock pin. The total latency at a register’s
clock pin is the sum of the source and network latencies in the clock path.

To specify source latency to any clock ports in your design, use the
set_clock_latency command.

Note: The Timing Analyzer automatically computes network latencies. Therefore, you can
only characterize source latency with the set_clock_latency command using the -
source option.

Related Information

set_clock_latency Command, Quartus Prime Help

2.4.1.6.2. Clock Uncertainty

By default, the Timing Analyzer creates clocks that are ideal and have perfect edges.
To mimic clock-level effects like jitter, you can add uncertainty to those clock edges.
The Timing Analyzer automatically calculates appropriate setup and hold uncertainties
and applies those uncertainties to all clock transfers in your design, even if you do not
include the derive_clock_uncertainty command in your .sdc file. Setup and
hold uncertainties are a critical part of constraining your design correctly.

The Timing Analyzer subtracts setup uncertainty from the data required time for each
applicable path and adds the hold uncertainty to the data required time for each
applicable path. This slightly reduces the setup and hold slack on each path.

The Timing Analyzer accounts for uncertainty clock effects for three types of clock-to-
clock transfers: intraclock transfers, interclock transfers, and I/O interface clock
transfers.

• Intraclock transfers occur when the register-to-register transfer takes place in the
device and the source and destination clocks come from the same PLL output pin
or clock port.

• Interclock transfers occur when a register-to-register transfer takes place in the
core of the device and the source and destination clocks come from a different PLL
output pin or clock port.

• I/O interface clock transfers occur when data transfers from an I/O port to the
core of the device or from the core of the device to the I/O port.

To manually specify clock uncertainty, use the set_clock_uncertainty command.
You can specify the uncertainty separately for setup and hold. You can also specify
separate values for rising and falling clock transitions. You can override the value that
the derive_clock_uncertainty command automatically applies.

The derive_clock_uncertainty command accounts for PLL clock jitter, if the clock
jitter on the input to a PLL is within the input jitter specification for PLL's in the target
device. If the input clock jitter for the PLL exceeds the specification, add additional
uncertainty to your PLL output clocks to account for excess jitter with the
set_clock_uncertainty -add command. Refer to the device handbook for your
device for jitter specifications.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

91

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_latency.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can also use set_clock_uncertainty -add to account for peak-to-peak jitter
from a board when the jitter exceeds the jitter specification for that device. In this
case you add uncertainty to both setup and hold equal to 1/2 the jitter value:

set_clock_uncertainty –setup –to <clock name> \
 -setup –add <p2p jitter/2>

set_clock_uncertainty –hold –enable_same_physical_edge –to <clock name> \
 –add <p2p jitter/2>

There is a complex set of precedence rules for how the Timing Analyzer applies values
from derive_clock_uncertainty and set_clock_uncertainty, which depend
on the order of commands and options in your .sdc files. The Help topics below
contain complete descriptions of these rules. These precedence rules are easier to
implement if you follow these recommendations:

• To assign your own clock uncertainty values to any clock transfers, put your
set_clock_uncertainty exceptions after the derive_clock_uncertainty
command in the .sdc file.

• When you use the -add option for set_clock_uncertainty, the value you
specify is additive to the derive_clock_uncertainty value. If you do not
specify -add, the value you specify replaces the value from
derive_clock_uncertainty.

2.4.1.7. Constraining CDC Paths

It is essential to apply timing constraints to the multibit clock domain crossing (CDC)
paths in your design. You can use the following constraints to constrain CDC paths:

Attention: As of Quartus Prime Pro Edition software version 21.3, the set_false_path
constraint does not override the set_max_skew constraint. You can now apply the
set_false_path and set_max_skew constraints on the same path without
override.

Table 19. CDC Path Constraints

Constraints Description

set_false_path

set_clock_groups -asynchronous

Both constraints prevent the Compiler from optimizing slack between
asynchronous domain crossings. set_clock_groups is the most
aggressive constraint.
• Clock-based false paths are less aggressive because these constraints

only cut timing on the from_clock to to_clock order specified.
• Clock-based false paths are unlike clock groups that cut the path in both

directions.
• Path-based false paths are the most specific constraint because they cut

only on the specified from and to nodes.

set_max_skew Sets a bound on the allowable skew between different bus bits.

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Constraints Description

• Check the timing of your clock domain crossing by running the Report
Max Skew Summary command.

• The actual skew requirements depends on your design characteristics,
and how you handle the clock domain crossing.

set_net_delay -max

set_data_delay

Sets a bound on the allowable datapath delay on any bit of a bus transfer.
• set_net_delay is for constraining individual clock edges and nets. Run

the Report Net Delay Summary command to report data for this
constraint.

• set_data_delay is for constraining entire paths. Run the Report Data
Delay command to report data for this constraint.

The following shows example constraints for a clock domain crossing between data_a
in clock domain clk_a, and data_b in clock domain clk_b:

create_clock -name clk_a -period 4.000 [get_ports {clk_a}]
create_clock -name clk_b -period 4.500 [get_ports {clk_b}]
set_clock_groups -asynchronous -group [get_clocks {clk_a}] -group \
 [get_clocks {clk_b}]
set_net_delay -from [get_registers {data_a[*]}] -to [get_registers \
 {data_b[*]}] -max -get_value_from_clock_period \
 dst_clock_period -value_multiplier 0.8
set_max_skew -from [get_keepers {data_a[*]}] -to [get_keepers \
 {data_b[*]}] -get_skew_value_from_clock_period min_clock_period \
 -skew_value_multiplier 0.8

The following examples show applying set_false_path for a design that contains a
DCFIFO block to avoid timing failures in the synchronization registers. These examples
are for constraining single-bit synchronizer CDC paths:

• For paths crossing from the write into the read domain, apply a false path
assignment between registers delayed_wrptr_g and rs_dgwp:

set_false_path -from [get_registers {*dcfifo*delayed_wrptr_g[*]}] \
-to [get_registers {*dcfifo*rs_dgwp*}]

• For paths crossing from the read into the write domain, apply a false path
assignment between registers rdptr_g and ws_dgrp:

set_false_path -from [get_registers {*dcfifo*rdptr_g[*]}] \
-to [get_registers {*dcfifo*ws_dgrp*}]

You can verify correct implementation of clock constraints in the following CDC related
reports:

Related Information

• Report Clock Transfers on page 137

• Report CDC Viewer on page 139

• Report Asynchronous CDC on page 142

2.4.2. I/O Constraints

The Timing Analyzer reviews setup and hold relationships for designs in which an
external source interacts with a register internal to the design. The Timing Analyzer
supports input and output external delay modeling with the set_input_delay and
set_output_delay commands. You can specify the clock and minimum and
maximum arrival times relative to the clock.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specify internal and external timing requirements before you fully analyze a design.
With external timing requirements specified, the Timing Analyzer verifies the I/O
interface, or periphery of the device, against any system specification.

You can use the Check Timing (check_timing) command to report problems with a
variety of timing constraints, such as the number of input ports that are not clocks
that have no input delay constraint.

Related Information

Check Timing on page 161

2.4.2.1. Input Constraints (set_input_delay)

Input constraints specify delays for all external signals feeding the FPGA. Specify input
requirements for all input ports in your design.

set_input_delay -clock { clock } -clock_fall -fall -max 20 foo

Use the Set Input Delay (set_input_delay) constraint to specify external input
delay requirements. Specify the Clock name (-clock) to reference the virtual or
actual clock. You can specify a clock to allow the Timing Analyzer to correctly derive
clock uncertainties for interclock and intraclock transfers. The clock defines the
launching clock for the input port. The Timing Analyzer automatically determines the
latching clock inside the device that captures the input data, because all clocks in the
device are defined.

Figure 94. Input Delay Diagram

External Device FPGA

Oscillator

dd

cd_altrcd_ext

tco_ext

Figure 95. Input Delay Calculation

input delayMAX = (cd_extMAX – cd_altrMIN) + tco_extMAX + ddMAX

input delayMIN = (cd_extMIN – cd_altrMAX) + tco_extMIN + ddMIN

If your design includes partition boundary ports, you can use the -blackbox option
with set_input_delay to assign input delays. The -blackbox option creates a new
keeper timing node with the same name as the boundary port. This new node permits
the propagation of timing paths through the original boundary port and acts as a
set_input_delay constraint. The new keeper timing nodes display when you use
the get_keepers command. You can remove these black box constraints with
remove_input_delay -blackbox.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the Check Timing (check_timing) command to report problems with a
variety of timing constraints, such as the number of input ports that are not clocks
that have no input delay constraint.

Related Information

Check Timing on page 161

2.4.2.2. Output Constraints (set_output_delay)

Output constraints specify all external delays from the device for all output ports in
your design.

set_output_delay -clock { clock } -clock_fall -rise -max 2 foo

Use the Set Output Delay (set_output_delay) constraint to specify external
output delay requirements. Specify the Clock name (-clock) to reference the virtual
or actual clock. When specifying a clock, the clock defines the latching clock for the
output port. The Timing Analyzer automatically determines the launching clock inside
the device that launches the output data, because all clocks in the device are defined.
The following figure is an example of an output delay referencing a virtual clock.

Figure 96. Output Delay Diagram

External DeviceFPGA

Oscillator

dd

cd_altr

cd_ext

tsu_ext/th_ext

Figure 97. Output Delay Calculation

output delayMAX = ddMAX + tsu_ext + (cd_altrMAX – cd_extMIN)
output delayMIN = (ddMIN – th_ext +(cd_altrMIN – cd_extMAX))

If your design includes partition boundary ports, you can use the -blackbox option
with set_ouput_delay to assign output delays. The -blackbox option creates a
new keeper timing node with the same name as the boundary port. This new node
permits the propagation of timing paths through the original boundary port and acts
as a set_output_delay constraint. The new keeper timing nodes display when you
use the get_keepers command.

You can remove blackbox constraints with remove_output_delay -blackbox.

You can use the Check Timing (check_timing) command to report problems with a
variety of timing constraints, such as the number of output ports that have no output
delay constraint.

Related Information

• Check Timing on page 161

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• set_input_delay Command, Quartus Prime Help

• set_output_delay Command, Quartus Prime Help

2.4.3. Delay and Skew Constraints

You can specify skew and delays to model external device timing and board timing
parameters.

2.4.3.1. Advanced I/O Timing and Board Trace Model Delay

The Timing Analyzer can use advanced I/O timing and board trace model constraints
to model I/O buffer delays in your design.

If you change any advanced I/O timing settings or board trace model assignments,
recompile your design before you analyze timing, or use the -force_dat option to
force delay annotation when you create a timing netlist.

Example 6. Forcing Delay Annotation

create_timing_netlist -force_dat

2.4.3.2. Maximum Skew (set_max_skew)

The Set Max Skew (set_max_skew) constraint specifies the maximum allowable
skew between the sets of registers or ports you specify. In order to constrain skew
across multiple paths, you must constrain all such paths within a single
set_max_skew constraint.

set_max_skew -from_clock { clock } -to_clock { * } -from foo -to blat 2

The set_max_delay, set_min_delay, set_multicycle_path, and
set_false_path constraints do not affect the set_max_skew timing constraint.
However, the set_clock_groups constraint does impact the set_max_skew
constraint.

Note: Exclusive clock groups (set with set_clock_groups -exclusive) override
set_max_skew constraints.

The Timing Analyzer does not compare two paths for skew if their clocks are exclusive
to each other. However, the Timing Analyzer does analyze for skew paths whose clocks
are asynchronous.

Table 20. set_max_skew Options

Arguments Description

-h | -help Short help.

-long_help Long help with examples and possible return values.

-fall_from_clock <names> Valid source clocks (Tcl matches string patterns). Analysis only
considers paths from falling clock edges.

-fall_to_clock <names> Valid destination clocks (Tcl matches string patterns). Analysis
only considers paths from falling clock edges.

-from <names>(2) Valid sources (Tcl matches string patterns).

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

96

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments Description

-from_clock <names> Valid source clocks (Tcl matches string patterns).

-get_skew_value_from_clock_period
<src_clock_period|dst_clock_period|
min_clock_period>

Option to interpret skew constraint as a multiple of the clock
period.

-rise_from_clock <names> Valid source clocks (Tcl matches string patterns). Analysis only
considers paths from rising clock edges.

-rise_to_clock <names> Valid destination clocks (Tcl matches string patterns). Analysis
only considers paths to rising clock edges.

-skew_value_multiplier <multiplier> Value by which the clock period multiplies to compute skew
requirement.

-to <names>(2) Valid destinations (Tcl matches string patterns)

-to_clock <names> Valid destination clocks (Tcl matches string patterns).

<skew> The value of the skew you require.

Applying maximum skew constraints between clocks applies the constraint from all
register or ports driven by the clock you specify (with the -from option) to all
registers or ports driven by the clock you specify (with the -to option).

Maximum skew analysis can include data arrival times, clock arrival times, register
micro parameters, clock uncertainty, on-die variation, and clock pessimism removal.
Among these, the Fitter only disables clock pessimism removal by default.

Use -get_skew_value_from_clock_period to set the skew as a multiple of the
launching or latching clock period, or whichever of the two has a smaller period. If you
use this option, set -skew_value_multiplier, and you may not set the positional
skew option. If more than one clock clocks the set of skew paths, Timing Analyzer
uses the clock with smallest period to compute the skew constraint.

Click Report Max Skew... (report_max_skew) to view the max skew analysis.
Since skew occurs between two or more paths, no results display if the -from/-
from_clock and -to/-to_clock filters satisfy less than two paths.

Related Information

• Timing Exception Precedence on page 99

• report_max_skew Command, Quartus Prime Help

2.4.3.3. Net Delay (set_net_delay)

Use the set_net_delay command to set the net delays and perform minimum or
maximum timing analysis across nets. A net delay constraint is invalid if there is a
combinational cell between the From and To nodes.

(2) Legal values for the -from and -to options are collections of clocks, registers, ports, pins, cells
or partitions in a design.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

97

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_max_skew.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The -from and -to options can be string patterns or pin, port, register, or net
collections. When you use pin or net collection, include output pins or nets in the
collection.

set_net_delay -from reg_a -to reg_c -max 20

Table 21. set_net_delay Options

Arguments Description

-h | -help Short help.

-long_help Long help with examples and possible return values.

-from <names>(3) Valid source pins, ports, registers or nets (Tcl matches
string patterns).

-get_value_from_clock_period
<src_clock_period|dst_clock_period|
min_clock_period|max_clock_period>

Option to interpret net delay constraint as a multiple of the
clock period.

-max Specifies maximum delay.

-min Specifies minimum delay.

-to <names>(4) Valid destination pins, ports, registers or nets (Tcl matches
string patterns).

-value_multiplier <multiplier> Value by which the clock period multiplies to compute net
delay requirement.

<delay> Delay value.

If you use the -min option, the Timing Analyzer calculates slack by determining the
minimum delay on the edge. If you use -max option, the Timing Analyzer calculates
slack by determining the maximum edge delay.

Use -get_value_from_clock_period to set the net delay requirement as a
multiple of the launching or latching clock period, or whichever of the two has a
smaller or larger period. If you use this option, you must not set the positional delay
option. If more than one clock clocks the set of nets, the Timing Analyzer uses the net
with the smallest period to compute the constraint for a -max constraint, and the
largest period for a -min constraint. If no clocks are clocking the endpoints of the net
(that is, if the endpoints of the nets are not registers or constraint ports), the Timing
Analyzer ignores the net delay constraint.

Related Information

• Timing Exception Precedence on page 99

• report_net_delay Command, Quartus Prime Help

(3) If option is a wildcard ("*") character, all the output pins and registers on timing netlist
become valid source points.

(4) If no option, or if option is a wildcard ("*") character, all the output pins and registers on
timing netlist become valid destination points.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

98

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_net_delay.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.4. Timing Exception Constraints

Timing exception assignments allow you to modify (or provide exception to) the
default timing analysis behavior to account for your specific design conditions.

You can specify the following timing constraints that modify the default timing analysis
behavior:

• Set False Path

• Set Multicycle Path

• Set Minimum Delay

• Set Maximum Delay

Verify correct implementation of timing exception assignments by using the Report
Exceptions (report_exceptions) command to report all exceptions to default
timing analysis conditions.

Related Information

Report Exceptions on page 159

2.4.4.1. Timing Exception Precedence

If the same clock or node names occur in multiple timing exceptions, the Timing
Analyzer observes the following order of timing exception precedence:

1. Set False Path (set_false_path) is the first priority. False paths and clock
groups have identical priority, except when you use the -latency_insensitive
or -no_synchronizer options with a false path exception. With either option,
the false path has priority over a clock group.

2. Set Clock Groups (set_clock_groups) is the second priority.

3. Set Minimum Delay (set_min_delay) and Set Maximum Delay
(set_max_delay) are the third priority.

4. Set Multicycle Path (set_multicycle_path) is the fourth priority.

The false path timing exception has the highest precedence. Within each category,
assignments to individual nodes have precedence over assignments to clocks. For
exceptions of the same type:

1. -from <node> is the first priority.

2. -to <node> is the second priority.

3. -thru <node> is the third priority.

4. -from <clock> is the fourth priority.

5. -to <clock> is the fifth priority.

An asterisk wildcard (*) for any of these options applies the same precedence as not
specifying the option at all. For example, -from a -to * is treated identically to -
from a with regards precedence.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Precedence example

1. set_max_delay 1 -from x -to y

2. set_max_delay 2 -from x

3. set_max_delay 3 -to y

The first exception has higher priority than either of the other two, since the first
exception specifies a -from (while #3 does not) and specifies a -to (while #2 does
not). In the absence of the first exception, the second exception has higher priority
than the third, since the second exception specifies a -from, which the third does not.
Finally, the remaining order of precedence for additional exceptions is order-
dependent, such that the assignments most recently created overwrite, or partially
overwrite, earlier assignments.

The set_net_delay, set_max_skew, and set_data_delay constraints analyze
independently of minimum or maximum delays, or multicycle path constraints.

• The set_net_delay exception applies regardless of the existence of a
set_false_path exception, or set_clock_groups exception, or other path-
based constraint or exception. It is a net-based exception, and net-based and
path-based exceptions are applied independently of each other.

• The set_max_skew exception applies on paths cut by an asynchronous clock
group, and regardless of any set_false_path exception. Exclusive clock groups
override max skew exceptions, because paths between exclusive clocks are
entirely inactive and should not be analyzed for timing or skew requirements. This
precedence allows you to define more targeted constraints on asynchronous CDC
bus transfers.

• The set_data_delay exception specifies a maximum datapath delay exception
for a given path. Exclusive clock groups override data delay exceptions, because
paths between exclusive clocks are entirely inactive and should not be analyzed
for timing or data delay requirements. Asynchronous clock groups do not override
data delay exceptions. False path exceptions override data delay exceptions in the
Quartus Prime Pro software version 21.2 and earlier. Beginning in version 21.3,
false path exceptions do not override data delay exceptions. This change in
precedence allows you to write more targeted constraints on asynchronous CDC
bus transfers.

Verify correct implementation of timing exception assignments by using the Report
Exceptions (report_exceptions) command to report all exceptions to default
timing analysis conditions.

Related Information

• False Paths (set_false_path) on page 101

• Creating Clock Groups (set_clock_groups) on page 86

• Constraining CDC Paths on page 92

• Creating Clock Groups (set_clock_groups) on page 86

• Maximum Skew (set_max_skew) on page 96

• Minimum and Maximum Delays on page 101

• Net Delay (set_net_delay) on page 97

• Report Data Delay on page 134

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Report Exceptions on page 159

2.4.4.2. False Paths (set_false_path)

The Set False Path (set_false_path) constraint allows you to exclude a path from
timing analysis, such as test logic or any other path not relevant to the circuit's
operation. You can specify the source (-from), common through elements (-thru),
and destination (-to) elements of that path.

The following SDC command makes false path exceptions from all registers starting
with A, to all registers starting with B:

set_false_path -from [get_pins A*] -to [get_pins B*]

You can specify either a point-to-point or clock-to-clock path as a false path. A false
path's -from and -to targets can be either nodes or clocks. However, the -thru
targets can only be combinational nodes. For example, you can specify a false path for
a static configuration register that writes once during power-up initialization, but does
not change state again.

Although signals from static configuration registers often cross clock domains, you
may not want to make false path exceptions to a clock-to-clock path, because some
data may transfer across clock domains. However, you can selectively make false path
exceptions from the static configuration register to all endpoints.

The Timing Analyzer assumes all clocks are related unless you specify otherwise. Use
clock groups to more efficiently make false path exceptions between clocks, rather
than writing multiple set_false_path exceptions between each clock transfer you
want to eliminate.

Verify correct implementation of timing exception assignments by using the Report
Exceptions (report_exceptions) command to report all exceptions to default
timing analysis conditions.

Related Information

• Timing Exception Precedence on page 99

• Creating Clock Groups (set_clock_groups) on page 86

• Constraining CDC Paths on page 92

• Report Exceptions on page 159

• set_false_path Command, Quartus Prime Help

2.4.4.3. Minimum and Maximum Delays

To specify an absolute minimum or maximum delay for a path, use the Set Minimum
Delay (set_min_delay) or the Set Maximum Delay (set_max_delay)
constraints, respectively. Specifying minimum and maximum delay directly overwrites
existing setup and hold relationships with the minimum and maximum values.

Use the set_max_delay and set_min_delay constraints for asynchronous signals
that do not have a specific clock relationship in your design, but require a minimum
and maximum path delay. You can create minimum and maximum delay exceptions
for port-to-port paths through the device without a register stage in the path. If you

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

101

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_false_path.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

use minimum and maximum delay exceptions to constrain the path delay, specify both
the minimum and maximum delay of the path; do not constrain only the minimum or
maximum value.

If the source or destination node is clocked, the Timing Analyzer takes into account
the clock paths, allowing more or less delay on the data path. If the source or
destination node has an input or output delay, the minimum or maximum delay check
also includes that delay.

If you specify a minimum or maximum delay between timing nodes, the delay applies
only to the path between the two nodes. If you specify a minimum or maximum delay
for a clock, the delay applies to all paths where the clock clocks the source node or
destination node.

You can create a minimum or maximum delay exception for an output port that does
not have an output delay constraint. You cannot report timing for the paths that relate
to the output port; however, the Timing Analyzer reports any slack for the path in the
setup summary and hold summary reports. Because there is no clock that relates to
the output port, the Timing Analyzer reports no clock for timing paths of the output
port.

Note: To report timing with clock filters for output paths with minimum and maximum delay
constraints, you can set the output delay for the output port with a value of zero. You
can use an existing clock from the design or a virtual clock as the clock reference.

Verify correct implementation of timing exception assignments by using the Report
Exceptions (report_exceptions) command to report all exceptions to default
timing analysis conditions.

Related Information

• Timing Exception Precedence on page 99

• Report Exceptions on page 159

• set_max_delay Command, Quartus Prime Help

• set_min_delay Command, Quartus Prime Help

2.4.4.4. Multicycle Paths

By default, the Timing Analyzer performs a single-cycle analysis, which is the most
restrictive type of analysis. When analyzing a path without a multicycle constraint, the
Timing Analyzer determines the setup launch and latch edge times by identifying the
closest two active edges in the respective waveforms.

Figure 98. Default Setup and Hold Relationship (No Multicycle)

0 ns 10 ns 20 ns 30 ns No Multicycles
(Default Relationship)

Setup = 10 ns
Hold = 0 ns

For hold time analysis, the timing analyzer analyzes the path for two timing conditions
for every possible setup relationship, not just the worst-case setup relationship.
Therefore, the hold launch and latch times can be unrelated to the setup launch and
latch edges.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

102

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_max_delay.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_min_delay.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A multicycle constraint adjusts this default setup or hold relationship by the number of
clock cycles you specify, based on the source (-start) or destination (-end) clock. A
setup multicycle constraint of 2 extends the worst-case setup latch edge by one
destination clock period. If you do not specify -start and -end values, the default
constraint is -end.

Figure 99. Setup and Hold Relationship with Multicycle = 2

0 ns 10 ns 20 ns 30 ns Setup = 2
Hold = 1

Setup = 20 ns
Hold = 0 ns

Hold multicycle constraints derive from the default hold position (the default value
is 0). An end hold multicycle constraint of 1 effectively subtracts one destination clock
period from the default hold latch edge.

When the objects are timing nodes, the multicycle constraint only applies to the path
between the two nodes. When an object is a clock, the multicycle constraint applies to
all paths where the source node (-from) or destination node (-to) is clocked by the
clock. When you adjust a setup relationship with a multicycle constraint, the default
hold relationship adjusts automatically.

You can use timing constraints to modify either the launch or latch edge times that the
Timing Analyzer uses to determine a setup relationship or hold relationship.

Table 22. Multicycle Constraints

Command Modification

set_multicycle_path -setup -end <value> Latch edge time of the setup
relationship.

set_multicycle_path -setup -start<value> Launch edge time of the setup
relationship.

set_multicycle_path -hold -end <value> Latch edge time of the hold
relationship.

set_multicycle_path -hold -start <value> Launch edge time of the hold
relationship.

Verify correct implementation of timing exception assignments by using the Report
Exceptions (report_exceptions) command to report all exceptions to default
timing analysis conditions.

Related Information

Report Exceptions on page 159

2.4.4.4.1. Common Multicycle Applications

Multicycle exceptions adjust the timing requirements for a register-to-register path,
allowing the Fitter to optimally place and route a design. Two common multicycle
applications are relaxing setup to allow a slower data transfer rate, and altering the
setup to account for a phase shift.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.4.4.2. Relaxing Setup with Multicycle (set_multicyle_path)

You can use a multicycle exception when the data transfer rate is slower than the
clock cycle. Relaxing the setup relationship increases the window when timing analysis
accepts data as valid.

In the following example, the source clock has a period of 10 ns, but the clock enable
signal controls a group of latching registers, so the registers only enable every other
cycle. The 10 ns clock feeds registers , so the Timing Analyzer reports a setup of 10 ns
and a hold of 0 ns. However, the data is transferring every other cycle, so the Timing
Analyzer must analyze the relationships as if the clock is operating at 20 ns. The result
is a setup of 20 ns, while the hold remains 0 ns, thus extending the window for data
recognition.

The following pair of multicycle assignments relax the setup relationship by specifying
the -setup value of N and the -hold value as N-1. You must specify the hold
relationship with a -hold assignment to prevent a positive hold requirement.

Constraint to Relax Setup and Maintain Hold

set_multicycle_path -setup -from src_reg* -to dst_reg* 2
set_multicycle_path -hold -from src_reg* -to dst_reg* 1

Figure 100. Multicycle Setup Relationships

0 ns 10 ns 20 ns 30 ns

0 ns 10 ns 20 ns 30 ns

0 ns 10 ns 20 ns 30 ns

No Multicycles
(Default Relationship)

Setup = 10 ns
Hold = 0 ns

Setup = 2
Hold = 1

Setup = 20 ns
Hold = 0 ns

Setup = 3
Hold = 2

Setup = 30 ns
Hold = 0 ns

You can extend this pattern to create larger setup relationships to ease timing closure
requirements. A common use for this exception is when writing to asynchronous RAM
across an I/O interface. The delay between address, data, and a write enable may be
several cycles. A multicycle exception to I/O ports allows extra time for the address
and data to resolve before the enable occurs.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following constraint relaxes the setup by three cycles:

Three Cycle I/O Interface Constraint

set_multicycle_path -setup -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 3
set_multicycle_path -hold -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 2

2.4.4.4.3. Accounting for a Phase Shift (-phase)

In the following example, the design contains a PLL that performs a phase-shift on a
clock whose domain exchanges data with domains that do not experience the phase
shift. This occurs when the destination clock phase-shifts forward, and the source
clock does not shift. The default setup relationship becomes that phase-shift, thus
shifting the window when data is valid.

For example, the following code phase-shifts one output of a PLL forward by a small
amount, in this case 0.2 ns.

Cross Domain Phase-Shift

create_generated_clock -source pll|inclk[0] -name pll|clk[0] pll|clk[0]
create_generated_clock -source pll|inclk[0] -name pll|clk[1] -phase 30 pll|clk[1]

The default setup relationship for this phase-shift is 0.2 ns, shown in Figure A,
creating a scenario where the hold relationship is negative, which makes achieving
timing closure nearly impossible.

Figure 101. Phase-Shifted Setup and Hold

-10 ns 0 ns 10 ns 20 ns

-10 ns 0 ns 10 ns 20 ns

No Multicycles
(Default Relationship)

Setup = 0.2 ns
Hold = -9.8 ns

Setup = 2

Setup = 10.2 ns
Hold = 0.2 ns

The following constraint allows the data to transfer to the following edge:

set_multicycle_path -setup -from [get_clocks clk_a] -to [get_clocks clk_b] 2

The hold relationship derives from the setup relationship, making a multicycle hold
constraint unnecessary.

Related Information

• Same Frequency Clocks with Destination Clock Offset on page 114

• set_multicycle_path Command, Quartus Prime Help

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

105

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_multicycle_path.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.4.5. Multicycle Exception Examples

The examples in this section illustrate how the multicycle exceptions affect the default
setup and hold analysis in the Timing Analyzer. The multicycle exceptions apply to a
simple register-to-register circuit. Both the source and destination clocks are set to
10 ns.

Verify correct implementation of timing exception assignments by using the Report
Exceptions (report_exceptions) command to report all exceptions to default
timing analysis conditions.

Related Information

Report Exceptions on page 159

2.4.4.5.1. Default Multicycle Analysis

By default, the Timing Analyzer performs a single-cycle analysis to determine the
setup and hold checks. Also, by default, the Timing Analyzer sets the end multicycle
setup assignment value to one and the end multicycle hold assignment value to zero.

The source and the destination timing waveform for the source register and
destination register, respectively where HC1 and HC2 are hold checks 1 and 2 and SC
is the setup check.

Figure 102. Default Timing Diagram
The timing waveforms show the source and destination registers of a data transfer. HC1 and HC2 are the hold
checks that Timing Analyzer performs. SC is the setup check that Timing Analyzer performs.

-10 0 10 20
Current Launch

Current Latch

0 1 2

HC1 HC2SC

REG1.CLK

REG2.CLK

Figure 103. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 10 ns – 0 ns
 = 10 ns

The most restrictive default single-cycle setup relationship, with an implied end
multicycle setup assignment of one, is 10 ns.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 104. Default Setup Report

Figure 105. Hold Check Calculation
The figure shows the setup timing report with the launch and latch edge times highlighted.

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 0 ns
 = 0 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 10 ns
 = 0 ns

The most restrictive default single-cycle hold relationship, with an implied end
multicycle hold assignment of zero, is 0ns.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 106. Default Hold Report
The figure shows the hold timing report with the launch and latch edge times highlighted.

2.4.4.5.2. End Multicycle Setup = 2 and End Multicycle Hold = 0

In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is zero.

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Timing Analyzer does not require an end multicycle hold value because the default
end multicycle hold value is zero.

In this example, the setup relationship relaxes by a full clock period by moving the
latch edge to the next latch edge. The hold analysis is does not change from the
default settings. The following shows the setup timing diagram for the analysis that
the Timing Analyzer performs. The latch edge is a clock cycle later than in the default
single-cycle analysis.

Figure 107. Setup Timing Diagram
The figure shows the setup timing diagram for the analysis that the Timing Analyzer
performs. Without the multicycle constraint the latching edge is edge 1. However, with the
multicycle constraint the latching edge is edge 2.

-10 0

0 1 2

10 20

SC

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

Figure 108. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 20 ns – 0 ns
 = 20 ns

The most restrictive setup relationship with an end multicycle setup assignment of two
is 20 ns. The following shows the setup report in the Timing Analyzer and highlights
the launch and latch edges.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 109. Setup Report with Setup Multicycle Exception

Because the multicycle hold latch and launch edges are the same as the results of
hold analysis with the default settings, the multicycle hold analysis in this example is
equivalent to the single-cycle hold analysis. The hold checks are relative to the setup
check. Normally, the Timing Analyzer performs hold checks on every possible setup
check, not only on the most restrictive setup check edges.

Figure 110. Hold Timing Diagram
The figure shows the hold latching edges are now at 10 and 20 ns, instead of 0 and 10 ns.

-10 0 10 20
Current Launch

Current Latch

REG1.CLK

REG2.CLK

SCHC1Data HC2

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 111. Hold Report with Setup Multicycle Exception

Figure 112. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 10 ns
 = –10 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 20 ns
 = –10 ns

2.4.4.5.3. End Multicycle Setup = 2 and End Multicycle Hold = 1

In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is one.

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2
set_multicycle_path -from [get_clocks clk_src] -to
\[get_clocks clk_dst] -hold -end 1

In this example, the setup relationship relaxes by one clock period by moving the
latching edge to the right of the default latching edge by 1 clock period. The hold
relationship relaxes by one clock period by moving the latch edges to the left of the
default latching edges by one.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following shows the setup timing diagram for the analysis that the Timing
Analyzer performs:

Figure 113. Setup Timing Diagram

-10 0

0 1 2

10 20

SC

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

Figure 114. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 20 ns – 0 ns
 = 20 ns

The most restrictive hold relationship with an end multicycle setup assignment value
of two is 20 ns.

The following shows the setup report for this example in the Timing Analyzer and
highlights the launch and latch edges.

Figure 115. Setup Report with Setup and Hold Multicycle Exception

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following shows the timing diagram for the hold checks for this example. The hold
checks are relative to the setup check.

Figure 116. Hold Timing Diagram

-10 0 10 20

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

SC
HC1

HC2

Figure 117. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 0 ns
 = 0 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 10 ns
 = 0 ns

The most restrictive hold relationship with an end multicycle setup assignment value
of two and an end multicycle hold assignment value of one is 0 ns.

The following shows the hold report for this example in the Timing Analyzer and
highlights the launch and latch edges.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 118. Hold Report with Setup and Hold Multicycle Exception

2.4.4.5.4. Same Frequency Clocks with Destination Clock Offset

In this example, the source and destination clocks have the same frequency, but the
destination clock is offset with a positive phase shift. Both the source and destination
clocks have a period of 10 ns. The destination clock has a positive phase shift of 2 ns
with respect to the source clock.

The following example shows a design with the same frequency clocks and a
destination clock offset.

Figure 119. Same Frequency Clocks with Destination Clock Offset Diagram

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

clk1

In

clk0

Out

The following timing diagram shows the default setup check analysis that the Timing
Analyzer performs.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 120. Setup Timing Diagram

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

Figure 121. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 2 ns – 0 ns
 = 2 ns

The setup relationship shown is too pessimistic and is not the setup relationship
required for typical designs. To adjust the default analysis, you assign an end
multicycle setup exception of two. The following shows a multicycle exception that
adjusts the default analysis:

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2

The following timing diagram shows the preferred setup relationship for this example:

Figure 122. Preferred Setup Relationship

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

The following timing diagram shows the default hold check analysis that the Timing
Analyzer performs with an end multicycle setup value of two.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 123. Default Hold Check

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2

Figure 124. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 2 ns
 = –2 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 12 ns
 = –2 ns

In this example, the default hold analysis returns the preferred hold requirements and
no multicycle hold exceptions are required.

The associated setup and hold analysis if the phase shift is –2 ns. In this example, the
default hold analysis is correct for the negative phase shift of 2 ns, and no multicycle
exceptions are required.

Figure 125. Negative Phase Shift
The figure shows an example of the setup and hold analysis for a negative phase shift of -2 ns. In this
example, the default setup and hold analysis are correct, and no multicycle exceptions are required.

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.4.5.5. Destination Clock Frequency is a Multiple of the Source Clock Frequency

In this example, the destination clock frequency value of 5 ns is an integer multiple of
the source clock frequency of 10 ns. The destination clock frequency can be an integer
multiple of the source clock frequency when a PLL generates both clocks with a phase
shift on the destination clock.

The following example shows a design in which the destination clock frequency is a
multiple of the source clock frequency.

Figure 126. Destination Clock is Multiple of Source Clock

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

The following timing diagram shows the default setup check analysis that the Timing
Analyzer performs:

Figure 127. Setup Timing Diagram

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

Figure 128. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 5 ns – 0 ns
 = 5 ns

The setup relationship demonstrates that the data requires capture at edge two;
therefore, you can relax the setup requirement. To correct the default analysis, you
shift the latch edge by one clock period with an end multicycle setup exception of two.
The following multicycle exception assignment adjusts the default analysis in this
example:

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following timing diagram shows the preferred setup relationship for this example:

Figure 129. Preferred Setup Analysis

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

The following timing diagram shows the default hold check analysis the Timing
Analyzer performs with an end multicycle setup value of two.

Figure 130. Default Hold Check

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SC
HC1 HC2

Figure 131. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 5 ns
 = –5 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 10 ns
 = 0 ns

In this example, hold check one is too restrictive. The data is launched by the edge at
0 ns and must check against the data captured by the previous latch edge at 0 ns,
which does not occur in hold check one. To correct the default analysis, you must use
an end multicycle hold exception of one.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.4.5.6. Destination Clock Frequency is a Multiple of the Source Clock Frequency with an
Offset

This example is a combination of the previous two examples. The destination clock
frequency is an integer multiple of the source clock frequency, and the destination
clock has a positive phase shift. The destination clock frequency is 5 ns, and the
source clock frequency is 10 ns. The destination clock also has a positive offset of 2 ns
with respect to the source clock. The destination clock frequency can be an integer
multiple of the source clock frequency. The destination clock frequency can be with an
offset when a PLL generates both clocks with a phase shift on the destination clock.

The following example shows a design in which the destination clock frequency is a
multiple of the source clock frequency with an offset.

Figure 132. Destination Clock is Multiple of Source Clock with Offset
REG1 REG2

Combinational
Logic

SET SET
D Q D Q

CLR CLRclk

In

clk0

clk1

Out

The timing diagram for the default setup check analysis the Timing Analyzer performs.

Figure 133. Setup Timing Diagram

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

Figure 134. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 2 ns – 0 ns
 = 2 ns

The setup relationship in this example demonstrates that the data does not require
capture at edge one, but rather requires capture at edge three; therefore, you can
relax the setup requirement. To adjust the default analysis, you shift the latch edge by
two clock periods, and specify an end multicycle setup exception of three.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The multicycle exception adjusts the default analysis in this example:

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 3

The timing diagram for the preferred setup relationship for this example.

Figure 135. Preferred Setup Analysis

SC

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

The following timing diagram shows the default hold check analysis that the Timing
Analyzer performs with an end multicycle setup value of three:

Figure 136. Default Hold Check

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1
HC2

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 137. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 7 ns
 = –7 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 12 ns
 = –2 ns

In this example, the hold check one is too restrictive. The data is launched by the
edge at 0 ns, and must check against the data that the previous latch edge at 2ns
captures. You can use the multicycle hold assignment of 1 to correct this.

2.4.4.5.7. Source Clock Frequency is a Multiple of the Destination Clock Frequency

In this example, the source clock frequency value of 5 ns is an integer multiple of the
destination clock frequency of 10 ns. The source clock frequency can be an integer
multiple of the destination clock frequency when a PLL generates both clocks and use
different multiplication and division factors.

In the following example the source clock frequency is a multiple of the destination
clock frequency:

Figure 138. Source Clock Frequency is Multiple of Destination Clock Frequency:
REG1 REG2

Combinational
Logic

SET SET
D Q D Q

CLR CLRclk

In

clk0

clk1

Out

The following timing diagram shows the default setup check analysis the Timing
Analyzer performs:

Figure 139. Default Setup Check Analysis

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 140. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 10 ns – 5 ns
 = 5 ns

The setup relationship demonstrates that the data launched at edge one does not
require capture, and the data launched at edge two requires capture; therefore, you
can relax the setup requirement. To correct the default analysis, you shift the launch
edge by one clock period with a start multicycle setup exception of two. The following
multicycle exception adjusts the default analysis in this example:

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -start 2

The following timing diagram shows the preferred setup relationship for this example:

Figure 141. Preferred Setup Check Analysis

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

The following timing diagram shows the default hold check analysis the Timing
Analyzer performs for a start multicycle setup value of two:

Figure 142. Default Hold Check

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1 HC2

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 143. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 0 ns
 = 0 ns

hold check 2 = next launch edge – current latch edge
 = 5 ns – 10 ns
 = –5 ns

In this example, the hold check two is too restrictive. The data is launched next by the
edge at 10 ns and must check against the data captured by the current latch edge at
10 ns, which does not occur in hold check two. To correct the default analysis, you use
a start multicycle hold exception of one.

2.4.4.5.8. Source Clock Frequency is a Multiple of the Destination Clock Frequency with an
Offset

In this example, the source clock frequency is an integer multiple of the destination
clock frequency and the destination clock has a positive phase offset. The source clock
frequency is 5 ns and destination clock frequency is 10 ns. The destination clock also
has a positive offset of 2 ns with respect to the source clock. The source clock
frequency can be an integer multiple of the destination clock frequency with an offset
when a PLL generates both clocks with different multiplication.

Figure 144. Source Clock Frequency is Multiple of Destination Clock Frequency with Offset

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

The following timing diagram shows the default setup check analysis the Timing
Analyzer performs:

Figure 145. Setup Timing Diagram

SC

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 146. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 12 ns – 10 ns
 = 2 ns

The setup relationship in this example demonstrates that the data is not launched at
edge one, and the data that is launched at edge three must be captured; therefore,
you can relax the setup requirement. To correct the default analysis, you shift the
launch edge by two clock periods with a start multicycle setup exception of three.

The following multicycle exception adjusts the default analysis in this example:

 Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -start 3

The following timing diagram shows the preferred setup relationship for this example:

Figure 147. Preferred Setup Check Analysis

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

The Timing Analyzer performs the following calculation to determine the hold check:

Figure 148. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 2 ns
 = –2 ns

hold check 2 = next launch edge – current latch edge
 = 5 ns – 12 ns
 = –7 ns

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following timing diagram shows the default hold check analysis the Timing
Analyzer performs for a start multicycle setup value of three:

Figure 149. Default Hold Check Analysis

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1

HC2

SC

In this example, the hold check two is too restrictive. The data is launched next by the
edge at 10 ns and must check against the data captured by the current latch edge at
12 ns, which does not occur in hold check two. To correct the default analysis, you
must specify a multicycle hold exception of one.

2.4.5. Delay Annotation

To modify the default delay values used during timing analysis, use the
set_annotated_delay and set_timing_derate commands. You must update the
timing netlist to apply these commands.

To specify different operating conditions in a single .sdc file, rather than having
multiple .sdc files that specify different operating conditions, use the
set_annotated_delay -operating_conditions command.

Related Information

• set_timing_derate Command, Quartus Prime Help

• set_annotated_delay Command, Quartus Prime Help

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

125

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_timing_derate.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_annotated_delay.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5. Timing Report Descriptions

The Timing Analyzer generates only a subset of all available reports by default,
including the Setup Summary and Timing Analyzer Summary reports. However, you
can generate dozens of other detailed reports in the Timing Analyzer GUI, or with
command-line commands to help pin-point timing issues. You can customize the
display of information in the reports.

You can automatically generate reports that are useful to you, to display after opening
a project in the stand-alone Timing Analyzer GUI, as The quartus_staw executable
describes.

The following section describes a partial list of all the timing analysis reports that you
can generate:

Report Fmax Summary on page 127

Report Timing on page 128

Report Timing By Source Files on page 134

Report Data Delay on page 134

Report Net Delay on page 134

Report Clocks and Clock Network on page 135

Report Clock Transfers on page 137

Report Metastability on page 138

Report CDC Viewer on page 139

Report Asynchronous CDC on page 142

Report Logic Depth on page 145

Report Neighbor Paths on page 147

Report Register Spread on page 148

Report Route Net of Interest on page 152

Report Retiming Restrictions on page 153

Report Register Statistics on page 154

Report Pipelining Information on page 155

Report Time Borrowing Data on page 158

Report Exceptions and Exceptions Reachability on page 159

Report Bottlenecks on page 160

Check Timing on page 161

Report SDC on page 164

Related Information

Step 4: Analyze Timing Reports on page 40

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.1. Report Fmax Summary

The Timing Analyzer Reports ➤ Datasheet ➤ Report Fmax Summary command
generates a report panel showing the potential maximum frequency for every clock in
your design. The Fmax column reports the fastest frequency that your clock can run,
and still pass report_timing -setup -intra_clock with a slack of 0. The
equivalent console command is report_clock_fmax_summary.

Figure 150. Fmax Summary Report

Note: The related get_clock_fmax_info command returns a Tcl list, which is useful for
scripting and parsing. Refer to get_clock_fmax_info (::quartus::sta) in Quartus Prime
Pro Edition User Guide Scripting.

Timing analysis only computes fMAX for paths where the source and destination
registers or ports are driven by the same clock. Timing analysis ignore paths of
different clocks, including generated clocks. For paths between a clock and its
inversion, the Timing Analyzer computes fMAX as if the rising and falling edges of the
clock scale along with fMAX, such that duty cycle (by percentage) is maintained.

However, the Fmax report does not indicate whether your design meets timing for
recovery, removal, nor setup or hold without the intra_clock option. For these
reasons, always make sure to view the Setup, Hold, Recovery, Removal, and Min Pulse
Width slack summaries to determine whether your design meets timing.

The Restricted Fmax column reports the lesser of the following values:

• The fastest frequency that your clock can run, and still pass report_timing -
hold -intra_clock with a slack of 0 or report_min_pulse_width with a
slack of 0.

• The Fmax column value.(5)

Restricted Fmax considers hold timing in addition to setup timing, as well as
minimum pulse and minimum period restrictions. Similar to unrestricted fMAX, the
analysis computes the restricted fMAX as if the rising and falling edges of the clock
scale along with fMAX, such that the duty cycle (in terms of a percentage) is
maintained.

The Restricted Fmax may display text indicating any of the following limiting factors:

• Limit due to hold check

• Limit due to minimum pulse width restriction

• Limit due to high minimum pulse width restriction

• Limit due to low minimum pulse width restriction

(5) The Restricted Fmax column never reports a value higher than the Fmax column.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Typically, hold checks do not limit the maximum frequency (fMAX) because the checks
are for same-edge relationships, and therefore independent of clock frequency. For
example, when launch equals zero and latch equals zero. However, with an inverted
clock transfer, or a multicycle transfer, the hold relationship is not a same-edge
transfer and changes with the clock frequency.

Refer to the timing reports, such as those that you can generate using
report_timing, or using minimum pulse width reports via the
report_min_pulse_width command for details of specific paths, registers, or
ports.

Related Information

Quartus Prime Pro Edition User Guide: Scripting

2.5.2. Report Timing

The Timing Analyzer's Reports ➤ Timing Slack ➤ Report Timing… command
allows you to specify settings to report the timing of any path or clock domain in the
design. The equivalent scripting command is report_timing.

Figure 151. Report Timing Report

You can specify diverse options to customize the reporting. You can specify the Clocks
and Targets that the report displays, the Analysis Type to run, whether to display
Extra Info in the report, and the Output options for the report. For example, you can
increase the number of paths to report, add a Target filter, and add a From Clock.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

128

https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 152. Report Timing Dialog Box (Top Section)

Figure 153. Report Timing Dialog Box (Bottom Section)

Table 23. Report Timing Settings

Option Description

Clocks From Clock and To Clock filter paths in the report to show only the launching or latching
clocks you specify.

Targets Specifies the target node for From Clock and To Clock to report paths with only those
endpoints. Specify an I/O or register name or I/O port for this option. The field also supports
wildcard characters. For example, to report only paths within a specific hierarchy:

report_timing -from *|egress:egress_inst|* \
 -to *|egress:egress_inst|* -(other options)

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

When the From, To, or Through boxes are empty, the Timing Analyzer assumes all possible
targets in the device. The Through option limits the report to paths that pass through
combinatorial logic, or a particular pin on a cell.

Analysis type The Analysis type options are Setup, Hold, Recovery, or Removal. The Timing Analyzer
reports the results for the type of analysis you select.

Paths Specifies the number of paths to display by endpoint and slack level. The default value for
Report number of paths is 10, otherwise, the report can be very long. Enable Pairs only to
list only one path for each pair of source and destination. Limit further with Maximum
number of paths per endpoints. You can also filter paths by entering a value in the
Maximum slack limit field.

Extra Info Provides additional data that is relevant for diagnosing timing failure root cause, such as setup
slack breakdown, and unexpected routing detours caused by congestion and hold time fix-up.
Specify whether to include None, Basic, or All extra information in the report. The Extra Info
tab data can help you identify potential, unnecessary routing detours, as well as placement or
circuit issues that restrict the path fMAX performance. Refer to Setup Slack Breakdown On the
Extra Info Tab on page 131.
• All—report includes Extra Info tab that reports extra information for source timing

endpoints that pass through the unregistered output of a RAM or DSP block, or for
destination timing endpoints that pass through the unregistered input of a DSP block. The
Data Path tab includes Estimated Delay Added for Hold and Route Stage Congestion
Impact data.

• Basic—report includes the Extra Info tab but no extra information on the Data Path tab.
• None—report includes no Extra Info tab or other extra information on the Data Path tab.

Output Specify the path types the analysis includes in output for Detail level:
• Summary—level includes basic summary reports. Review the Clock Skew column in the

Summary report. If the skew is less than +/-150ps, the clock tree is well balanced
between source and destination.

• Path only—displays all the detailed information, except the Data Path tab displays the
clock tree as one line item.

• Path and Clock—displays the same as Path only with respect to the clock.
• Full path—when higher clock skew is present, enable the Full path option. This option

breaks the clock tree into greater detail, showing every cell, including the input buffer, PLL,
global buffer (called CLKCTRL_), and any logic. Review this data to determine the cause of
clock skew in your design. Use the Full path option for I/O analysis because only the
source clock or destination clock is inside the FPGA, and therefore the delay is a critical
factor to meet timing.

Show routing Shows routing data in the report.

Split the report by
operating conditions

For the operating condition timing corners, subdivides the data by each operating condition.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces
the report as HTML. If you enable File name, you can Overwrite or Append the file with
latest data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 154. Extra Info Tab

Setup Slack Breakdown On the Extra Info Tab

The Extra Info tab contains other timing metrics to help you diagnose timing closure
issues, including Setup Slack Breakdown for the path.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The slack of a path specifies the margin by which the path meets its timing
requirement. The setup slack breakdown is a numeric value that the Timing Analyzer
calculates from the following timing requirements and path element delays:

Figure 155. Setup Slack Breakdown Calculations

Clock Relationship

Clock Uncertainty

µParameters

t = 0

Intrinsics

Non-Intrinsics

Time

Slack
IC

Delay
Cell

Delay

Clock Skew

Required Time = Latch Edge + Required Clock Delay - Clock Uncertainty + µtSU | µtH

Arrival Time = Launch Edge + Arrival Clock Delay + µtCO + Data Cell Delay + Data IC Delay

Intrinsic Margin = Clock Relationship - µParameters - Clock Uncertainty

Intrinsic Margin (Setup) = Slack + Data Cell Delay + Data IC Delay - Clock Skew

Intrinsic Delays = Orange
Non-Intrinsic Delays = Blue

A path can fail timing requirements for many varied reasons. For example, the clock
relationship can be impossibly tight, or there can be excessive routing delays that
alone cause failure for the timing path. Calculating the intrinsic margin of a timing
path, and then comparing that margin to other delays of the path, can help identify
the specific reasons why a path fails its timing requirement.

The Extra Info tab can help you identify potential significant or unexpected routing
detours caused by congestion and hold time fix-up. The Extra Info tab can also
report extra information for source timing endpoints that pass through the
unregistered output of a RAM or DSP block, or for destination timing endpoints that
pass through the unregistered input of a DSP block.

You can review the Extra Info data and Locate Path or Locate Chip Area in Chip
Planner, Technology Map Viewer, or Resource Property Viewer to determine whether to
make changes to improve placement and routing.

Some delay elements are more sensitive to a path’s placement and routing than
others. Intrinsic delays that are part of Setup Slack Breakdown are less sensitive to
placement and routing, and are inherent in the RTL and timing requirements. Non-
intrinsic delays are the other delays that are sensitive to placement and routing.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 24. Extra Info Tab Data

Extra Info Data Description

Intrinsic Margin Reports the intrinsic and non-intrinsic timing elements that comprise the timing path slack
value. Intrinsic margin is a numeric value that the Timing Analyzer calculates from the timing
requirements and path element delays. The Timing Analyzer also derives the slack of the path
from the same requirements and delays, but with a different calculation. Intrinsic delays are
less sensitive to placement and routing, and are inherent in the RTL and timing requirements.
Non-intrinsic delays are the other delays that are sensitive to placement and routing.

From Node Info Specifies the node Type, any Retiming Restriction, and any Power-Up "Don't Care" attributes for
the From Node. Consider removing the retiming restriction to allow retiming and improve
performance for timing closure.

To Node Info Specifies the node Type, any Retiming Restriction, and any Power-Up "Don't Care" attributes for
the To Node. Consider removing the retiming restriction to allow retiming and improve
performance for timing closure.

Max Fanout Reports the maximum fan-out of register and combinational nodes in the path.

Route Stage
Congestion Impact

Reports whether routing has a Low, Medium, or High impact on congestion. A Low value
suggests timing issues are not congestion related. A High value suggests competition for
scarce routing resources plays a role in poor timing.

Estimated Delay
Added for Hold

Reports the estimated amount of delay added on to the fastest delay route to satisfy hold. This
value can help you determine whether delays are routing congestion or Hold related.

Sufficient Setup
Margin for Hold

Reports whether the setup margin is suitable for the hold timing. Yes, indicates that the setup
margin is sufficient. No indicates that the setup margin is insufficient for hold timing.

Source/Destination
Bounding Box

Reports the lower-left and upper-right coordinates for the boundary box enclosing the source
and destination registers.
In an ideal case, the Source/Destination Bounding Box, Cell Bounding Box, and
Interconnect Bounding Box values are roughly the same, and the relative areas are
approximately 1.0. If the cell bounding box size grows relative to the Source/Destination
Bounding Box, that can indicate a potential unnecessary routing detour on the path.

Source/Destination
Area Covered

Reports the total area covered in terms of LABs.

Source/Destination
Relative Area

Reports the area for the source and destination, relative to the Source/Destination
Bounding Box. The value is always 1.0, which equals the same size.

Cell Bounding Box Reports the lower-left and upper-right coordinates for the boundary box enclosing the source
and destination registers, and any cells in the path.

Cell Area Covered Reports the area for the cell, relative to the Source/Destination Bounding Box. A value of
1.0 equals the same size. A value greater than 1.0 can indicate a path has a cell outside of the
space between the registers in the path.

The following describe the interpretation of timing conditions indicated by the Setup
Slack Breakdown:

• When the Setup Slack Breakdown is less than 0—the path has such a tight
timing relationship, a significant difference in microparameters, or such significant
clock source uncertainty, that the path fails before the addition of any delay.
Review the SDC constraints to verify that the timing relationship is correct. An
incorrect relationship can exist between unrelated clocks that lack the proper
timing cut. Ensure that parameterizable hard blocks (such as 20K RAM and DSP
blocks) are fully registered. Investigate clock sources to verify that the clocks use
global signals for routing.

• When the clock skew exceeds the Setup Slack Breakdown—address the
clock transfer to meet timing on the path. You may need to create clock region
assignments. You might also need to redesign cross-clock transfers to switch from
synchronous to asynchronous implementation, such as with a FIFO or other
handshake.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• When the cell delay is greater than its intrinsic margin—reduce the cell
delay, as the path would fail timing even if the clocks are perfect and use no
routing wires. Rewrite RTL to reduce the logic depth, restructure logic to allow the
Compiler to use faster LUT inputs, or unblock retiming optimizations. The Compiler
can automatically retime registers to reduce logic depth, but only in ways that
maintain functionality and that the device architecture supports. To unblock the
Hyper-Retimer, remove asynchronous resets and initial conditions.

• When the interconnect delay is greater than its intrinsic margin—the path
would fail timing even if the clocks are perfect, and there is no logic. This occurs if
registers are too far apart, or a timing path detours around a congested chip area.
Review the fan-in and fan-out of registers that are far apart. Apply Logic Lock
regions so the Fitter places the registers closer together. Use Logic Lock regions
only after determining why placement is initially poor.

Related Information

Hyperflex Architecture High-Performance Design Handbook

2.5.3. Report Timing By Source Files

The Timing Analyzer's Reports ➤ Timing Slack ➤ Report Timing By Source Files
command allows you to specify settings to report the timing of any path or clock
domain in the design, similar to Report Timing on page 128. However, Report Timing
By Source Files groups the timing paths by the containing entity, and groups the
entities by the source file that defines the entity.

This report allows you to attribute timing paths to exactly one instance in the design.
The Path TNS column shows the sum of all negative slacks within a file or entity. The
equivalent scripting command is report_timing_by_source_files.

From the report in the Timing Analyzer GUI, you can right-click on any source file to
open it in a text editor to easily investigate timing paths within a particular source file.

2.5.4. Report Data Delay

You can run the Timing Analyzer's Reports ➤ Other Slack Analyses ➤ Report Data
Delay... command to generate a custom report showing the worst-case slack for the
datapath delay exception for a given path. The report shows only paths covered by
data delay (set_data_delay) constraints, including paths whose non-datapath
analysis is cut by a false path.

Note: Exclusive clock groups (set with set_clock_groups -exclusive) override
set_data_delays constraints.

Related Information

Timing Exception Precedence on page 99

2.5.5. Report Net Delay

The Timing Analyzer's Reports ➤ Other Slack Analyses ➤ Report Net Delay...
command to configure and display a customized report that details the results of net
delay analysis, as defined by timing constraints and exceptions.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

134

https://www.intel.com/content/www/us/en/docs/programmable/683353.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each set_net_delay command is treated as a separate analysis and
report_net_delay reports the results of all set_net_delay commands in a single
report. The report contains each set_net_delay command with the worst case slack
result followed by the results of each edge matching the criteria set by that
set_net_delay command. These results are ordered based on the slack value.

2.5.6. Report Clocks and Clock Network

The Timing Analyzer's Reports ➤ Clocks ➤ Report Clocks command reports all
clock signals in the design. The equivalent scripting command is report_clocks.

Report Clocks generates the Clock Summary report that lists details about all of the
signals with clock setting constraints in the design.

Figure 156. Clock Summary Report Shows Properties of Clock Signals in Design

Similarly, you can click the Reports ➤ Clocks ➤ Report Clock Network... command
to generate a custom report that helps you identify and evaluate advanced clock
structures, such as clock muxes, clock gates, and clock dividers.

Figure 157. Report Clock Network Dialog Box

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 25. Report Clock Network Dialog Box Settings

Option Description

Report target Specifies the collection of clocks and nodes that you want to analyze and report.

Expand clock path Displays all subordinate nodes in expanded view. The default display collapses trivial
nodes in the report.

Include potential clock
paths

Includes nodes in the report that are not on a clock path, but are upstream of a register
clock port.

Report panel name Specifies the name that appears in the report panel title bar.

File name Specifies the name of an optional output file to contain report data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy
the command from the Console into a Tcl file.

This report shows the nodes on the clock network hierarchically, starting from the
input clock ports, followed by any other nodes that transform or route the clocks to
the clock loads. The Join Points indicate whether the clock network has convergence,
such as with clock muxes. The Statistics Table provides more details about the
signals that you select in the report, such as the relationships between the incoming
and outgoing clocks of this node.

Figure 158. Report Clock Network Report

Right-click any of the nodes in the Clock Network report to click Open Clock
Network Viewer. The Clock Network Viewer displays a graphical representation of
the clock domains and constraints on the clock network to help you to see clock tree
problems, such as signals entering and exiting globals. Use this graphical view to
determine which clocks drive portions of the design. The Clock Network Viewer color
codes the clock connection edge to indicate the clock types.

• Blue—the base clock

• Orange—a derived clock

• Green—a multicycle clock

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The display shows a truncated signal name by default. Hover the mouse over the clock
signals to display the full signal name. Right-click any signal to display the Color
Legend. Click the Zoom controls to view more detail. You can export the schematic
view as a PDF from the right-click menu.

Figure 159. Clock Network Viewer

You can also right-click and choose Report Paths from Node, Report Paths Thru
Node, Report Paths To Node, or Focus On Node to rerun the report on the
selected node.

2.5.7. Report Clock Transfers

The Timing Analyzer's Reports ➤ Clock Domain Crossings ➤ Report Clock
Transfers command reports all clock-to-clock transfers in the design. The equivalent
scripting command is report_clock_transfers.

Report Clock Transfers generates the Setup Transfers report and the Hold Transfers
report that display data about the clock-to-clock transfers.

Figure 160. Setup Transfers Report Shows Clock-to-Clock Transfers

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Setup Transfers report and Hold Transfers report display all possible transfers,
including rising clock edge to rising clock edge (RR), falling clock edge to rising clock
edge (FR), rising clock edge to falling clock edge (RF), and falling clock edge to falling
clock edge (FF) paths.

• If a path exists in the design, the report column cell is white and lists the number
of paths.

• If a path is a false path, the report column cell is light gray and contains the text
"false path."

• If a path does not exist in the design, then the report column cell is dark gray.

The Setup Transfers report and Hold Transfers report also lists the Worst-Case Slack
for setup, the Worst-Case Operating Conditions, and the Clock Pair Classification for
each clock path. The Clock Pair Classification includes the following:

Table 26. Clock Pair Classifications

Clock Pair Classification Definition

Intra-Clock (Timed
Safe)

• From Clock and To Clock are the same.
• No timing constraint required.

Inter-Clock
Synchronous (Timed
Safe)

• From Clock and To Clock relate synchronously, and have a known phase and frequency
relationship.

• Multicycle path constraint may or may not exist.

Asynchronous (Timed
Unsafe)

• From Clock and To Clock are asynchronous.
• Timing constraints (false path, clock groups, set_max_skew) do not exist.

Ignored (Not Timed) • From Clock and To Clock are asynchronous.
• Timing constraints (false path, clock groups, set_max_skew) exist and setup and hold

slack are not applicable.

2.5.8. Report Metastability

The Timing Analyzer’s Reports ➤ Clock Domain Crossings ➤ Report
Metastability... command generates a list of synchronization register chains found in
the design, and can provide estimates of the Mean Time Between Failures (MTBF) of
each chain. The equivalent scripting command is report_metastability.

Metastable registers have outputs hovering at a voltage between high and low for a
length of time beyond the normal tCO for the register, which may cause subsequent
registers that use this metastable signal to latch different values. Synchronize register
chains when transferring data between unrelated clock domains to reduce the
probability of the captured data signal becoming metastable.

A synchronization register chain is a sequence of registers with the same clock, that is
driven by a pin, or logic from an unrelated clock domain. All but the last register in the
chain must connect only to the next register, but may do so through logic.

The Metastability Report displays the following for each synchronization chain the
analysis discovers:

• Typical Mean Time Between Failures (MTBF) for the chain

• MTBF equation and method of synchronizer identification

• Available settling time of the synchronization register chain

• Number of synchronization registers in the chain

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Names of synchronization registers in the chain

• name of asynchronous source registers

• Data toggle rate used in the MTBF estimation

• Source clock domain names

• Synchronization clock domain names

To help you analyze synchronizer chains in more detail, you can report the neighbor
paths for synchronization registers in a chain. From the list of synchronization
registers in the report in the Timing Analyzer GUI, you can right-click any of the
synchronization register names an click Report Neighbor Paths in the context menu.

To report the timing for the synchronization registers, you can right-click and then
click Report Timing for the synchronization registers. For the asynchronous source
registers, right-click and click Report Path.

When you do not specify a data toggle rate, the Timing Analyzer uses the value of
12.5% of the frequency of the clock domain that contains the synchronizer to
calculate MTBF.

Related Information

• Metastability Analysis on page 16

• Step 1: Specify General Timing Analyzer Settings on page 29

2.5.9. Report CDC Viewer

The Timing Analyzer's Reports ➤ Clock Domain Crossings ➤ Report CDC
Viewer... command allows you to configure and display a custom clock domain
crossing report and the Clock Domain Crossing (CDC) Viewer. The CDC Viewer
graphically displays the setup, hold, recovery, or removal analysis of all clock transfers
in your design. The equivalent scripting command is report_cdc_viewer.

Table 27. Report Clock Domain Crossing Viewer Settings

Option Description

Clocks From Clock and To Clock filter paths in the report to show only the launching or latching
clocks you specify.

Analysis type Options are Setup, Hold, Recovery, or Removal. The Timing Analyzer reports the results for
the type of analysis you select.

Transfers Specifies the type of clock transfers to include or exclude from the report, including Timed
transfers, Fully cut transfers, Clock groups, Inactive clocks, and Non-crossing
transfers. You can specify the Maximum slack limit and Grid options for the report.

Detail level Full shows all details of the report and Summary filters the details and shows summary data.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces
the report as HTML. If you enable File name, you can Overwrite or Append the file with
latest data, and specify Grid or List format.
Note: In grid format reports, clocks with non-crossing transfers always appear if they have

transfers between other clocks.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

139

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can specify the following options to customize CDC Viewer reporting:

Table 28. CDC Viewer Report Controls

Control Description

From Clock: and To Clock: Filters the display according to the clock names you specify. Click From Clock: or To
Clock: to search for specific clock names.

Legend Defines the status colors. A color coded grid displays the clock transfer status. The clock
headers list each clock with transfers in the design. The GUI truncates long clock names,
but you can view the full name in a tool tip or by resizing the clock header cell. The GUI
represents the generated clocks as children of the parent clock. A '+' icon next to a clock
name indicates the presence of generated clocks. Clicking on the clock header displays
the generated clocks associated with that clock.

Toggle Data The text in each transfer cell contains data specific to each transfer. Turn on or off display
of the following types of data:
• Number of timed endpoints between clocks— the number of timed, endpoint-

unique paths in the transfer. A path being “timed” means that analysis occurs on that
path. Only paths with unique endpoints count towards this total.

• Number of cut endpoints between clocks— the number of cut endpoint-unique
paths, instead of timed paths. These paths are cut by either a false path or clock
group assignment. Timing analysis skips such paths.

• Worst-case slack between clocks— the worst-case slack among all endpoint-unique
paths in the transfer.

• Total negative slack between clocks— the sum of all negative slacks among all
endpoint-unique paths in this transfer.

• Tightest relationship between clocks— the lowest-value setup, hold, recovery, or
removal relationship between the two clocks in this transfer.

Show Filters and Show
Legend

Turns on or off Filters and Legend.

Figure 161. CDC Viewer Setup Transfers Report

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each block in the grid is a transfer cell. Each transfer cell uses color and text to display
important details of the paths in the transfer. The color coding represents the following
states:

Table 29. Transfer Cell Content

Cell Color Color Legend

Black Indicates no transfers. There are no paths crossing between the source and destination clock
of this cell.

Green Indicates passing timing. All timing paths in this transfer, that have not been cut, meet their
timing requirements.

Red Indicates failing timing. One or more of the timing paths in the transfer do not meet their
timing requirements. If the transfer is between unrelated clocks, the paths likely require a
synchronizer chain.

Blue Indicates clock groups. The source and destination clocks of these transfers are cut by means
of asynchronous clock groups.

Gray Indicates a cut transfer. All paths in this transfer are cut by false paths. Therefore, timing
analysis does not consider these paths.

Orange Indicates inactive clocks. One of the clocks in the transfer is an inactive clock (with the
set_active_clocks command). The Timing Analyzer ignores such transfers.

Right-click menus allow you to perform operations on transfer cells and clock headers.
When the operation is a Timing Analyzer report or SDC command, a dialog box opens
containing the contents of the transfer cell.

Table 30. Transfer Cell Right-Click Menus

Command Description

Copy Copies the contents of the transfer cell or clock header to the clipboard.

Report Timing Reports timing. Not available for transfer cells with no valid paths (gray or black cells).

Report Endpoints Reports endpoints. Not available for transfer cells with no cut paths (gray or black cells).

Report False Path Reports false paths. Not available for transfer cells with no valid paths (black cells).

Report Exceptions Reports exceptions. Only available for clock group transfers (blue cells).

Report Exceptions
(with clock groups)

Reports exceptions with clock groups. Only available for clock group transfers (blue cells).

Set False Path Sets a false path constraint.

Set Multicycle Path Sets a multicycle path exception.

Set Min Delay Sets a min delay constraint.

Set Max Delay Sets a max delay constraint.

Set Clock Uncertainty Sets a clock uncertainty constraint.

Table 31. Clock Header Right-Click Menus

Command Description

Copy (include children) Copies the name of the clock header, and the names of each of its derived clocks. This option
only appears for clock headers with generated clocks.

Expand/Collapse All
Rows/Columns

Shows or hides all derived clocks in the grid.

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Description

Create Slack Histogram Generates a slack histogram report for the clock you select.

Report Timing From/To
Clock

Generates a timing report for the clock you select. If you do not expand the clock to display
derived clocks, the timing report includes all clocks that derive from the clock. To prevent this,
expand the clock before right-clicking it.

Remove Clock(s) Removes the clock you select from the design. If you do not expand the clock, timing analysis
removes all clocks that derive from the clock.

You can view CDC Viewer output in any of the following formats:

• A report panel in the Timing Analyzer

• Output in the Timing Analyzer Tcl console

• A plain-text file

• An HTML file you can view in a web browser.

Related Information

• Report Asynchronous CDC on page 142

• Constraining CDC Paths on page 92

2.5.10. Report Asynchronous CDC

The Timing Analyzer’s Reports ➤ Clock Domain Crossings ➤ Report
Asynchronous CDC... command allows you to classify and report all asynchronous
clock-domain-crossing (CDC) transfers in your design. Asynchronous CDCs include
single-bit transfers, multibit transfers, and asynchronous reset CDCs. Designs often
contain unintended CDCs or transfers. Use this report to ensure that the Timing
Analyzer correctly detects all CDCs.

Table 32. Report Asynchronous CDC Information Settings

Option Available Settings

Clocks Filters the report to only show CDCs that originate from From clock and terminate at
To clock.

Targets Filters the report to only show CDCs that originate from From register and terminate
at To register. Both the From and To must be registers. This option is optional with
the Clocks option.

Entries Limits the number of entries that are reported per CDC category

Detail Chooses whether to show a summary of all CDC’s or give detail on each individual
CDC

CDC Categories Specifies the CDC categories to be reported.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write
the information to a file. If you append .htm or .html as a suffix, the Timing
Analyzer produces the report as HTML. If you enable File name, you can overwrite
or append the file with latest data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can
copy the command from the Console into a Tcl file.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 162. Report Asynchronous CDC Summary View

The summary view of the Asynchronous CDC Report provides an overview of the
number of CDC’s that fall into each category in your design. CDC Count gives the
number of topologies detected for a category. Total Transfer Width shows the total
number of CDC crossings for a category. This value is different than CDC Count for
multibit CDC’s because each topology consists of multiple crossings.

The full view of the Asynchronous CDC report shows the source and destination
registers and clocks for each detected CDC topology in your design. You may click on
any row of this report. Clicking on a row that contains the name of a CDC category
brings up the description for that category and associated Design Assistant rules that
check for such topologies. Clicking on a row that contains a CDC displays detailed
information on that CDC in the CDC Statistics table. The information available varies
depending on the topology of the CDC.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 163. Report Asynchronous CDC Full View

Figure 164. Statistics Table Showing Detailed Information on Each CDC

In the Asynchronous CDC Full Report panel, the All Source Clocks (Synch/Asynch)
column displays all clocks driving all source nodes of a synchronizer chain, regardless
of whether the transfers are synchronous or asynchronous. There can be
asynchronous and synchronous transfers into the head of a synchronizer chain if the
paths go through combinational logic before the head of the synchronizer chain. For
example, Figure xx shows a circuit with both asynchronous and synchronous transfers

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

into a synchronizer chain. For this example, the Asynchronous CDC Full Report lists
both clkA and clkB as source clocks of the synchronizer chain, even though clkB is
a synchronous transfer.

Figure 165. Circuit with Asynchronous and Synchronous Transfers to a Synchronizer
Chain

clkB

clkA 0
1

control/
pseudo constant

Related Information

• Report CDC Viewer on page 139

• Constraining CDC Paths on page 92

2.5.11. Report Logic Depth

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Logic Depth...
command allows you to report the number of logic levels within a clock domain. This
value typically corresponds to the number of look-up tables (LUTs) that a path passes
through.

The equivalent scripting command is report_design_metrics -logic_depth.
Report Logic Depth shows the distribution of logic depth among the critical paths,
allowing you to identify areas where you can reduce logic levels in your RTL.

Figure 166. Report Logic Depth (Histogram)

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 167. Report Paths of Depth 3
Call report logic depth by topology for each clock, intraclock only.

Figure 168. Summary of Paths
Close timing with accurate histogram cross probing.

You can specify various options to customize the reporting.

Table 33. Report Logic Depth Settings

Option Description

Clocks From Clock and To Clock filter paths in the report to show only the launching or latching clocks
you specify.

Targets Specifies the target node for From Clock and To Clock to report logic depth with only those
endpoints. Specify an I/O or register name or I/O port for this option. The field also supports
wildcard characters. When the From, To, or Through boxes are empty, the Timing Analyzer
assumes all possible targets in the device. The Through option limits the report for paths that
pass through combinatorial logic, or a particular pin on a cell.

Analysis type The Setup, Hold, Recovery, and Removal analyses report the logic depths of the top X paths
by slack. Topology analysis reports the logic depths of the top X paths by logic depth.

Paths Specifies the number of paths to display by endpoint and slack level. The default value for Report
number of paths is 10, otherwise, the report can be very long. Enable Pairs only to list only
one path for each pair of source and destination. Limit further with Maximum number of paths
per endpoints. You can also filter paths by entering a value in the Maximum slack limit field.

Detail Specify whether to display on Histogram or full Path level of detail.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces the
report as HTML. If you enable File name, you can Overwrite or Append the file with latest
data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.12. Report Neighbor Paths

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Neighbor Paths...
command helps you to determine the root cause of critical paths (for example, high
logic level, retiming limitation, sub-optimal placement, I/O column crossing, hold fix-
up, time borrowing, or others). The equivalent scripting command is
report_design_metrics -neighbor_paths.

Figure 169. Report Neighbor Paths Report

Report Neighbor Paths reports the most timing-critical paths in the design,
including associated slack, additional path summary information, and path bounding
boxes. Report Neighbor Paths shows the most timing-critical Path Before and
Path After each critical Path. You can optionally view multiple before and after paths.
Retiming or logic balancing of the Path can simplify timing closure if there is negative
slack on the Path, but positive slack on the Path Before or Path After.

Table 34. Report Neighbor Path Dialog Box Settings

Option Description

Clocks From Clock and To Clock filter paths in the report to show only the launching or latching
clocks you specify.

Targets Specifies the target node for From Clock and To Clock to report neighbor paths with only
those endpoints. Specify an I/O or register name or I/O port for this option. The field also
supports wildcard characters. When the From, To, or Through boxes are empty, the Timing
Analyzer assumes all possible targets in the device. The Through option limits the report for
paths that pass through combinatorial logic, or a particular pin on a cell.

Analysis type The Analysis type options are Setup, Hold, Recovery, or Removal. The Timing Analyzer
reports the results for the type of analysis you select.

Paths Specifies the number of paths to display by endpoint and slack level. The default value for
Report number of paths is 10, otherwise, the report can be very long. Enable Pairs only to
list only one path for each pair of source and destination. Limit further with Maximum
number of paths per endpoints. You can also filter paths by entering a value in the
Maximum slack limit field.

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Report Number of
Neighbor Paths

Specifies the number of neighbor paths to report, allowing you to view a number of the top
adjacent paths entering the critical path, and the top paths exiting the critical path.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces
the report as HTML. If you enable File name, you can Overwrite or Append the file with
latest data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

Extra Info Specifies extra info.

2.5.13. Report Register Spread

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Register Spread...
command analyzes the final placement to identify registers with sinks pulling them in
various directions. These registers are potential candidates for duplication. The
equivalent scripting command is report_register_spread.

Registers that drive in opposite directions and connect to high fan-out can have
placement-warping effects on the floorplan that impact fMAX. The placement-warping
may not cause timing failures. Therefore, you can view this report to identify such
registers. Taking steps to address the registers listed in the report can make
placement of the design easier and improve fMAX performance.

You can automate duplication of registers with the DUPLICATE_REGISTER and
DUPLICATE_HIERARCHY_DEPTH .qsf assignments, or you can manually modify RTL
to duplicate registers or refactor logic. Refer to "Automatic Register Duplication:
Hierarchical Proximity" in Quartus Prime Pro Edition User Guide: Design Optimization.

Figure 170. Report Register Spread Report

You can specify various options to customize the report.

Table 35. Report Register Spread Settings

Option Available Settings

Spread Type Specifies the type of spread data in the report:

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Available Settings

• Tension—reports the sum over each sink of the distance from it to the centroid of all the
sinks.

• Angle—reports how far around the source register the fan-outs wrap, expressed from 0 to
360 degrees. This value corresponds to 360 minus the maximum angle between any two
angularly adjacent sinks. This metric complements Tension by identifying registers which
are surrounded by their sinks in all directions, and not those registers only being pulled in a
few directions.

• Span—reports the maximum 1-dimensional delta between the left bottom-most sink and
the right top-most sink.

• Area—reports the coverage of the sinks by number of LABs on the FPGA device. This option
multiplies the span of the sinks in both X- and Y- dimensions. This metric complements
Span by incorporating both dimensional spans of the sinks, and not only the maximum
sink.

• Count—reports registers with the largest sink counts.

Sink Type Specifies the type of sink in the report:
• Endpoint—the nodes (usually registers) that terminate timing paths from a register.
• Immediate Fanout—the immediately connected nodes of the register. For example, lookup

tables, other registers, RAM, or DSP blocks.

From Clock Filters paths in the report to show only the launching clocks you specify.

To Clock Filters paths in the report to show only the latching clocks you specify, allowing you to debug
one clock at a time.

Report number of
registers

Specifies the number of registers to display in the report. The default value for Report
number of registers is 10.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces
the report as HTML. If you enable File name, you can Overwrite or Append the file with
latest data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

Figure 171. Report Register Spread Types

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 172. Report Register Spread Dialog Box

Related Information

Automatic Register Duplication: Hierarchical Proximity, Quartus Prime Pro Edition

2.5.13.1. Registers with High Timing Path Endpoint Tension

Timing path endpoints are the nodes (usually registers) that terminate timing paths
from a register. The Timing path endpoint is equivalent to the nodes that the
get_fanouts command returns, or the overall set of nodes that appear as a "From
Node" after running the report_timing command. Register duplication is necessary,
but not always sufficient, in helping to distribute the signal more efficiently. In
addition, you may need to duplicate or restructure any intermediate logic before
duplicating the register.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

150

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/automatic-register-duplication-hierarchical.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 173. Register A has 4 Timing Path Endpoints

Tension is the sum over each sink of the distance from the sink to the centroid of all
the sinks. The value of tension is therefore dependent on the number of sinks.
Register duplication can help to break up these clouds, since they may be the result of
the placement solution getting "warped" by the presence of the register.

Figure 174. Register A has High Tension

2.5.13.2. Registers with High Immediate Fan-Out Tension

There are two Sink Type options: Endpoint and Immediate Fanout. The immediate
fan-outs are the immediately connected nodes (lookup tables, other registers, RAM or
DSP blocks, and others) of the register. This fan-out is equivalent to fan-outs that the
Chip Planner displays, and in various high fan-out reports. Register duplication directly
distributes the immediate fan-outs of a register among the duplicates.

Figure 175. Register A has High Immediate Fan-Out

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.14. Report Route Net of Interest

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Route Net of
Interest... command allows you to report the nets that require the most effort from
the router. The report shows the percentage of total router effort for the nets
reported. The equivalent scripting command is report_route_net_of_interest.

This report allows you to identify nets that should not require significant router effort.
For example, you might expect that low speed management interface nets are not
timing critical, and therefore not require much router effort. However, if Report
Route Net of Interest reports that some nets in the low speed management
interface require significant effort from the router, you can investigate that further.
The investigation can determine whether the timing constraints are correct, whether
the fan-out is significant and can reduce through driver duplication, or whether the net
passes through congested areas.

Figure 176. Report Route Net of Interest Report

Figure 177. Report Route Net of Interest Dialog Box

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

From the Route Net of Interest Report in the Timing Analyzer GUI, you can right-click
on any net and run Report Timing for more details about the net, its slack, and any of
the net's paths.

Table 36. Report Route Net of Interest Settings

Option Available Settings

Nets Specifies the Maximum number of nets to report. The default value is 50.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces the
report as HTML. If you enable File name, you can Overwrite or Append the file with latest data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

2.5.15. Report Retiming Restrictions

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Retiming
Restrictions... command allows you to report the occurrences of design conditions
that restrict Hyper-Retiming, such as Power-up "Care" restrictions, and don’t touch or
preserve attributes for each port. You can refer to this report to improve the circuit
and remove retiming restrictions that limit circuit performance.
report_retiming_restrictions is the equivalent scripting command.

Figure 178. Report Retiming Restrictions Report

For table entries with two number values, the number in parentheses indicates the
number of retiming restrictions in the specific entity alone. The number listed outside
of parentheses indicates the number of retiming restrictions in the specific entity and
all of its sub-entities in the hierarchy.

Related Information

Retiming Restrictions and Workarounds, Hyperflex Architecture High-Performance
Design Handbook

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

153

https://www.intel.com/content/www/us/en/programmable/documentation/jbr1444752564689.html#jbr1457936807030
https://www.intel.com/content/www/us/en/programmable/documentation/jbr1444752564689.html#jbr1457936807030
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.16. Report Register Statistics

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Register Statistics
command allows you to report the number of synchronous and asynchronous resets,
hyper registers, and registers with clock enables in the design. You can use this
information, combined with timing slack, congestion, and other analysis reports, to
identify timing-critical parts of your design that can have resets removed or control
schemes changed to meet timing requirements more efficiently.

Figure 179. Report Register Statistics (Report Truncated)

Truncated Report Columns:

Note: • This report works similarly in both post-synthesis Early Timing Analysis and post-
fit timing analysis. However, the report's Without a Clock column is more helpful
for Early Timing Analysis because you typically do not apply conventional SDCs for
Early Timing Analysis.

• Clocks generated from derive_clocks commands do not count as user clocks.

• The report's Without a Control Signal column identifies registers that have no
corresponding control signal.

• The report's Synchronous Load column identifies any synchronous load that can
apply to Arria 10 devices only.

The Without a Clock column informs you of the number of registers where no
defined clock feeds the registers in the hierarchy shown in the Register Count
column. A value of 0 in this column suggests that your design has SDC-defined clocks
feeding registers in the design. The Unique Clocks column indicates the number of
unique SDC-defined clocks feeding registers in the hierarchy identified by the

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register Count. To view these columns, enable Show registers without clocks
and Show the number of unique clocks feeding registers additional options in
the dialog that displays when you run the report, as shown in the following image:

Figure 180. Report Register Statistics Additional Options Dialog

2.5.17. Report Pipelining Information

The Timing Analyzer's Reports ➤ Design Metrics ➤ Report Pipelining
Information... command allows you to generate a report that can help you to identify
potential areas of over-pipelining in your design. Excessive pipelining unnecessarily
consumes area. The equivalent scripting command is report_pipelining_info.

Report Pipelining Information... does not perform any functional analysis in
making the recommended pipeline stage adjustment. You must be aware of any
potential functional changes from removing pipeline stages. There may be
circumstances when all the stages in a register pipeline are necessary for functional
reasons. The report helps to identify location with more registers than necessary for
covering distance.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 181. Report Pipelining Information Report

Figure 182. Report Detailed Pipelining

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The detailed report shows every register in a tree structure. Over- or under-pipelining
recommendations are in the main report. The following shows every single register
inside the bus chain in a tree structure:

Figure 183. Detailed Pipelining Result

To help identify potential over-pipelining, Report Pipelining Information reports:

• The recommended pipeline stage adjustment across bus

• The minimum total slack of one bit across bus

• The minimum average slack of one bit across bus

• The distance between the registers

• The width of buses in your design

• The number of sequential registers

• The number of registers on the bus

The Recommended Pipeline Stage Adjustment Across Bus reports the number of
registers that you can remove from the bus for each bit. The Average Distance Per
Stage, Max Distance Per Stage, and Min Distance Per Stage columns report the
Manhattan distance measured in logic array blocks (LABs). The Bus Average Depth,
Bus Max Depth, and Bus Min Depth columns report the number of sequential, single
fan-out registers. For registers that have more than one clock source, the report lists
the fastest one.

The 1+ sign under Recommended Pipeline Stage Adjustment Across Bus column
means that the bus might need to add more registers to meet timing requirement.
Refer to the Fast Forward Timing Closure Recommendations report.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the report identifies a large register chain with multiple sequential registers, and the
distance between registers is low, that condition can suggest over-pipelining. You may
be able to remove some registers to recover some of the device area and reduce
congestion.

The following options are available for this report:

Figure 184. Report Pipelining Information Dialog Box

Table 37. Report Pipelining Information Settings

Option Available Settings

Pipeline Specifies the thresholds for reporting a register pipeline. You can define the Minimum average
bus depth, the Minimum bus width, and the Maximum number of rows that the report
includes.

Report panel name Specifies the name of the report panel. You can optionally enable File name to write the
information to a file. If you append .htm or .html as a suffix, the Timing Analyzer produces the
report as HTML. If you enable File name, you can Overwrite or Append the file with latest data.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

2.5.18. Report Time Borrowing Data

You can run the Timing Analyzer's Reports ➤ Timing Slack ➤ Report Timing...
command to generate a report showing time borrowing data. The equivalent scripting
command is report_timing (with specific arguments).

The Timing Analyzer reports time borrowing data for the Data Arrival Path or Data
Required Path, according to whether borrowing occurs at the destination or the
source.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 185. Report for Time Borrowing At Destination
The following report shows 100ps borrowed on the Data Required path. The setup slack improves on incoming
paths, at the expense of worse setup slack for outgoing paths.

Figure 186. Report for Time Borrowing At Source
The following report shows 100ps borrowed on the Data Arrival Path, worsening the setup relationship for the
outgoing path.

Related Information

Time Borrowing on page 19

2.5.19. Report Exceptions and Exceptions Reachability

The Timing Analyzer's Reports ➤ Constraint Diagnostics ➤ Report Exceptions...
command allows you to report all exceptions to default timing analysis conditions, as
specified by the Set False Path, Set Multicycle Path, Set Minimum Delay, or Set
Maximum Delay commands (and the corresponding Tcl commands:
set_false_path, set_multicycle_path, set_min_delay, and
set_max_delay.)

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 187. Report Exceptions Reachability Report

Similarly, you can click on Reports ➤ Constraint Diagnostics ➤ Report
Exceptions Reachability... to report the scope of exception constraints in your
project. This report allows you to determine whether constraints apply fully or
partially, are overridden, and whether the source and destination node are reachable
for the constraint by providing a "reachability" percentage. Reachability is the
percentage of paths to which the constraint applies. Low reachability indicates a
constraint that may be too broad, potentially covering many unrelated items. High
reachability indicates that the exception is very targeted.

2.5.20. Report Bottlenecks

You can run the Timing Analyzer's Reports ➤ Design Metrics ➤ Report
Bottlenecks... command to list all nodes in a design ranked by specified criteria. The
equivalent scripting command is report_bottleneck.

The following ranking criteria are pre-defined:

• num_fpaths—the number of paths that fail timing through a node.

• num_fanins—the number of fan-in edges from a node.

• num_fanouts—the number of fan-out edges from a node.

• num_paths—the number of paths through a node.

• tns—the total negative slack of all the paths through a node.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When using scripting, you can specify the paths for analysis by passing the result of
any get_timing_paths call as the last argument to report_bottleneck. When
using the GUI, the Report Bottlenecks dialog box handles this argument
automatically. If you specify no paths, report_bottleneck analyzes the worst 1000
setup paths in the design by default.

You can direct the report output to the Tcl console (-stdout), the Timing Analyzer
GUI (-panel), or to a combination of console and GUI.

Figure 188. Report Bottlenecks Rated on Number of Failing Paths Through a Node

2.5.20.1. Specifying Custom Bottleneck Criteria

You can optionally specify your own custom criteria for evaluating nodes based on the
combination of the number of fan-outs, fan-ins, failing paths, and total paths.

To specify custom bottleneck criteria, follow these steps:

1. Create a Tcl procedure that takes one argument. For example, arg.

2. Use upvar $arg metric in the procedure.

3. Calculate the rating based on $metric(tns), $metric(num_fanouts),
$metric(num_fanins), and $metric(num_fpaths).

4. Return the rating with return $rating.

5. Pass the name of your custom criteria procedure to report_bottleneck using
the -cmetric option

2.5.21. Check Timing

The Timing Analyzer's Reports ➤ Constraint Diagnostics ➤ Check Timing
command (check_timing) checks your design and constraint files for problems with
design constraints.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Check Timing can perform a series of different checks based on the variables and
options that you specify for the command. When using scripted methods, use the -
include option to specify which checks to perform. You must run Update Timing
Netlist (update_timing_netlist) before running Check Timing
(check_timing).

Figure 189. Check Timing Report and No Output Delay Subreport

Check Timing can report the following data:

Table 38. Check Timing Report Data

Check Timing Data Description

no_clock Reports the registers that do not have at least one clock assignment at their clock pin,
including any PLLs without a clock assignment.

multiple_clock Reports the registers that have more than one clock at their clock pin. If multiple clocks reach
a register clock pin, you must define which clock is used for analysis.

generated_clock Reports the generated clocks that are invalid. Generated clocks must have a source that is
triggered by a valid clock.

no_input_delay Reports the input ports that are not clocks that have no input delay constraint.

no_output_delay Reports the output ports that have no output delay constraint.

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Check Timing Data Description

partial_input_delay Reports the input delays that lack a rise-min, fall-min, rise-max, and fall-max
constraint set.

partial_output_delay Reports the output delays that lack a rise-min, fall-min, rise-max, and fall-max
constraint set.

io_min_max_delay_consi
stency

Reports the minimum delay values that you specify in set_input_delay or
set_output_delay constraints that are not less than maximum delay values.

reference_pin Reports the reference pins that you specify with set_input_delay and set_output_delay
using the -reference_pin that are invalid. A reference_pin is only valid if the -clock
option in the same set_input_delay or set_output_delay command matches the clock
that is in the direct fan-in of the reference_pin. Being in the direct fan-in of the
reference_pin means that there must be no keepers between the clock and the
reference_pin.

latency_override Reports the instances where the clock latency that you set on a port or pin overrides the more
generic clock latency set on a clock. You can set clock latency on a clock, where the latency
applies to all keepers clocked by the clock. You can also set clock latency on a port or pin,
where the latency applies to registers in the fan-out of the port or pin.

loops Reports the instances where there are strongly connected components in the netlist. These
loops prevent a design from properly analysis. The loops check also reports whether loops exist
but are marked so that they are not traversed by timing analysis.

latches Reports the instances where latches are present in the design and warns that latches may not
be analyzed properly. For best results, change your design to remove latches whenever
possible.

pos_neg_clock_domain Reports the instances where any register is clocked by both the rising and falling edges of the
same clock. If this scenario is necessary, such as in a clock multiplexer, create two separate
clocks that have similar settings and are assigned to the same node.

pll_cross_check Reports the instances where clocks that are assigned to a PLL do not correspond properly with
the PLL settings you define in design files. The subreport specifies the inconsistent settings, or
an unmatched number of clocks associated with the PLL.

uncertainty Reports the clock-to-clock transfers that do not have a clock uncertainty assignment set
between the two clocks. If the target device family has derive_clock_uncertainty
support, this report also includes the number of user-defined set_clock_uncertainty
assignments that have less than recommended clock uncertainty value.

virtual_clock Reports the unreferenced virtual clocks without constraint.

partial_multicycle Reports the setup multicycle assignments without a corresponding hold multicycle assignment,
and whether each hold muticycle assignment has a corresponding setup multicycle assignment.

multicycle_consistency Reports the multicycle instances where a setup multicycle does not equal one less than the
hold multicycle. Appropriate Hold multicycle assignments are usually one cycle less than setup
multicycle assignments.

partial_min_max_delay Reports the minimum delay assignments without a corresponding maximum delay assignment,
and vice versa.

clock_assignments_on_o
utput_ports

Reports the output ports that have clock assignments.

input_delay_assigned_to
_clock

Reports the clocks with input delay values set. The Timing Analyzer ignores input delays set on
clock ports because clock-as-data analysis takes precedence.

internal_io_delay Reports the I/O delay constraints that have no specification for -reference_pin and -
source_latency_included, and where -clock is a clock that is not assigned to a top level
input or output port.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.22. Report SDC

The Timing Analyzer's Reports ➤ Constraint Diagnostics ➤ Report SDC command
generates the SDC Assignments report folder.

The SDC Assignments folder contains separately named reports for any SDC
constraints found in the current project. For example, the Create Clock report appears
in the SDC Assignments folder if the project includes any create_clock SDC
constraint.

Figure 190. Create Clock Report Lists Clock Constraints in Current Project

Other Info
from Timing Analyzer
(non-user-editable)

In SDC Assignment reports, the Comments column may contain non-user-editable
information reported by the Timing Analyzer.

Note: The Comments column in the SDC Assignment report has no relation to the SDC-
on-RTL -comment argument that allows you to add comments to .sdc constraints.
The SDC-on-RTL -comment does not appear in SDC Assignment reports.

The equivalent scripting command for SDC Assignments is report_sdc, for
example:

report_sdc -panel_name sdc_report_panel

You can use the -ignored option to report any SDC constraints that the Timing
Analyzer is ignoring and the reason for ignoring the constraint.

2.6. Scripting Timing Analysis

You can optionally use Tcl commands from the Quartus Prime software Tcl Application
Programming Interface (API) to constrain, analyze, and collect timing information for
your design. This section describes running the Timing Analyzer and setting
constraints using Tcl commands. You can alternatively perform these same functions in
the Timing Analyzer GUI. Tcl .sdc extensions provide additional methods for
controlling timing analysis and reporting. The following Tcl packages support the Tcl
timing analysis commands this chapter describes:

• ::quartus::sta

• ::quartus::sdc

• ::quartus::sdc_ext

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software provides the following two executables you can use for
timing analysis and reporting:

• The quartus_sta executable—can perform timing analysis of your design
without running the full Quartus Prime software GUI. If you use separate
executables for various stages of design compilation (for example, quartus_syn,
quartus_fit) you must use then use the quartus_sta executable to analyze
timing for your placed and routed design. The quartus_sta executable also
supports the interactive command-shell text-based timing reporting or scripted
report generation.

• The quartus_staw executable—opens a GUI and supports interactive, graphical
timing analysis and reporting.

Related Information

• ::quartus::sta

• ::quartus::staw

• ::quartus::sdc

• ::quartus::sdc_ext

2.6.1. The quartus_sta Executable

The quartus_sta executable allows you to run timing analysis without running the
full Quartus Prime software GUI. The following methods are available:

• To run the Timing Analyzer in interactive command-shell mode, type the following
at the command prompt:

quartus_sta -s

• To run timing analysis from a system command prompt, type the following
command:

quartus_sta <options><project_name>

You can optionally use command line options available to perform iterative timing
analysis on large designs. You can perform a less intensive analysis with
quartus_sta --mode=implement. In this mode, the Quartus Prime software
performs a reduced-corner timing analysis. When you achieve the desired result, you
can use quartus_sta --mode=finalize to perform final Fitter optimizations and a
full multi-corner timing analysis under all operating conditions.

Table 39. quartus_sta Command-Line Options

Command-Line Option Description

-h | --help Provides help information on quartus_sta.

-t <script file> | --script=<script
file>

Sources the <script file>.

-s | --shell Enters shell mode.

--tcl_eval <tcl command> Evaluates the Tcl command <tcl command>.

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

165

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_staw_ver_1.0.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command-Line Option Description

--do_report_timing For all clocks in the design, run the following commands:

report_timing -npaths 1 -to_clock $clock
report_timing -setup -npaths 1 -to_clock $clock
report_timing -hold -npaths 1 -to_clock $clock
report_timing -recovery -npaths 1 -to_clock $clock
report_timing -removal -npaths 1 -to_clock $clock

--force_dat Forces an update of the project database with new delay
information.

--lower_priority Lowers the computing priority of the quartus_sta process.

--post_map Uses the post-map database results.

--sdc=<SDC file> Specifies the .sdc file to use.

--report_script=<custom script> Specifies a custom report script to call.

--speed=<value> Specifies the device speed grade used for timing analysis.

-f <argument file> Specifies a file containing additional command-line arguments.

-c <revision name> | --
rev=<revision_name>

Specifies which revision and its associated Quartus Prime Settings
File (.qsf) to use.

--multicorner Specifies that the Timing Analyzer generates all slack summary
reports for both slow- and fast-corners.

--multicorner[=on|off] Turns off multicorner timing analysis.

--voltage=<value_in_mV> Specifies the device voltage, in mV used for timing analysis.

--temperature=<value_in_C> Specifies the device temperature in degrees Celsius, used for timing
analysis.

--parallel [=<num_processors>] Specifies the number of computer processors to use on a
multiprocessor system.

--mode=implement|finalize Regulates whether Timing Analyzer performs a reduced-corner
analysis for intermediate operations (implement),or a four-corner
analysis for final Fitter optimization and placement (finalize).

2.6.2. The quartus_staw Executable

The quartus_staw executable opens a graphical interface to perform interactive
timing reporting and analysis of your Quartus Prime project. The following methods
are available:

• To run the Timing Analyzer as a stand-alone GUI application, type the following at
the command prompt:

quartus_staw

quartus_staw can automatically open a project in the Timing Analyzer GUI if you
specify the project name as an argument, as the following example shows. Specifying
a project name as an argument saves you time because you do not have to browse to
your project file after the GUI opens.

quartus_staw <project name>

You can specify a Tcl script that contains timing reporting and analysis commands to
automatically run each time you open a project in the Timing Analyzer GUI. This
feature allows you to easily define a uniform set of reports that the Timing Analyzer

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

GUI always generates, saving you time when you open a new project for interactive
timing reporting. Use the --report_script option and specify a path to your report
script:

quartus_staw --report_script=<custom script>

You must include only reporting and analysis commands in your report script. Do not
include Tcl commands that open or close projects, create the timing netlist, read .sdc
files, or update the timing netlist. The report script runs after the Timing Analyzer
completely prepares the timing netlist for analysis.

You can optionally specify the directory and file names for the output of the reporting
and analysis commands. The output of the reporting commands in the script are
visible in the Timing Analyzer GUI, in the folder names you specify, when the reporting
script completes. At that point, you can perform other reporting or analysis, as
necessary.

2.6.3. Collection Commands

The Timing Analyzer supports collection commands that provide easy access to ports,
pins, cells, or nodes in the design. Use collection commands with any constraints or Tcl
commands specified in the Timing Analyzer.

Table 40. Collection Commands

Command Collection Returned

all_clocks All clocks in the design

all_inputs All input ports in the design.

all_outputs All output ports in the design.

all_registers All registers in the design.

get_cells Cells in the design. All cell names in the collection match the specified
pattern. Wildcards can be used to select multiple cells at the same time.

get_clocks Lists clocks in the design. When used as an argument to another
command, such as the -from or -to of set_multicycle_path, each
node in the clock represents all nodes clocked by the clocks in the
collection. The default uses the specific node (even if the node is a clock)
as the target of a command. The -of_objects option takes a node like
a register and returns the clocks that drive it.

get_nets Nets in the design. All net names in the collection match the specified
pattern. You can use wildcards to select multiple nets at the same time.

get_pins Pins in the design. All pin names in the collection match the specified
pattern. You can use wildcards to select multiple pins at the same time.

get_ports All ports (design inputs and outputs) in the design.

get_registers Gets the specified registers in the design.

get_keepers Gets the specified keepers in the design. Keepers are I/O ports or
registers.

You can also examine collections and experiment with collections using wildcards in
the Timing Analyzer by clicking Name Finder from the View menu.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.3.1. Wildcard Characters

To apply constraints to many nodes in a design, use the “*” and “?” wildcard
characters. The “*” wildcard character matches any string; the “?” wildcard character
matches any single character.

If you apply a constraint to node reg*, the Timing Analyzer searches for and applies
the constraint to all design nodes that match the prefix reg with any number of
following characters, such as reg, reg1, reg[2], regbank, and reg12bank.

If you apply a constraint to a node specified as reg?, the Timing Analyzer searches
and applies the constraint to all design nodes that match the prefix reg and any single
character following; for example, reg1, rega, and reg4.

2.6.3.2. Adding and Removing Collection Items

Wildcards that you use with collection commands define collection items that the
command identifies. For example, if a design contains registers with the name src0,
src1, src2, and dst0, the collection command [get_registers src*] identifies
registers src0, src1, and src2, but not register dst0. To identify register dst0, you
must use an additional command, [get_registers dst*]. To include dst0, you
can also specify a collection command [get_registers {src* dst*}].

To modify collections, use the add_to_collection and remove_from_collection
commands. The add_to_collection command allows you to add additional items to
an existing collection.

add_to_collection Command

add_to_collection <first collection> <second collection>

Note: The add_to_collection command creates a new collection that is the union of the
two collections you specify.

The remove_from_collection command allows you to remove items from an
existing collection.

 remove_from_collection Command

remove_from_collection <first collection> <second collection>

The following example shows use of add_to_collection to add items to a
collection.

 Adding Items to a Collection

#Setting up initial collection of registers
set regs1 [get_registers a*]
#Setting up initial collection of keepers
set kprs1 [get_keepers b*]
#Creating a new set of registers of $regs1 and $kprs1
set regs_union [add_to_collection $kprs1 $regs1]
#OR
#Creating a new set of registers of $regs1 and b*
#Note that the new collection appends only registers with name b*
not all keepers
set regs_union [add_to_collection $regs1 b*]

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the Quartus Prime software, keepers are I/O ports or registers. An .sdc file that
includes get_keepers is incompatible with third-party timing analysis flows.

Related Information

• add_to_collection Command, Quartus Prime Help

• remove_from_collection Command, Quartus Prime Help

2.6.3.3. Query of Collections

You can display the contents of a collection with the query_collection command.
Use the -report_format option to return the contents in a format of one element
per line. The -list_format option returns the contents in a Tcl list.

query_collection -report_format -all $regs_union

Use the get_collection_size command to return the number of items the
collection contains. If your collection is in a variable with the name col, use set
num_items [get_collection_size $col] rather than set num_items
[llength [query_collection -list_format $col]] for more efficiency.

2.6.3.4. Using the get_pins Command

The get_pins command supports options that control the matching behavior of the
wildcard character (*). Depending on the combination of options you use, you can
make the wildcard character (*) respect or ignore individual levels of hierarchy. The
pipe character (|) indicates levels of hierarchy. By default, the wildcard character (*)
matches only a single level of hierarchy.

These examples filter the following node and pin names to illustrate function:

• lvl (a hierarchy level with the name lvl)

• lvl|dataa (an input pin in the instance lvl)

• lvl|datab (an input pin in the instance lvl)

• lvl|cnod (a combinational node with the name cnod in the lvl instance)

• lvl|cnod|datac (an input pin to the combinational node with the name cnod)

• lvl|cnod|datad (an input pin to the combinational node cnod)

Table 41. Sample Search Strings and Search Results

Search String Search Result

get_pins *|dataa lvl|dataa

get_pins *|datac <empty>(6)

get_pins *|*|datac lvl|cnod|datac

get_pins lvl*|* lvl|dataa, lvl|datab

continued...

(6) The search result is <empty> because the wildcard character (*) does not match more than
one hierarchy level, that a pipe character (|) indicates, by default. This command matches
any pin with the name datac in instances at the top level of the design.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

169

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_add_to_collection.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_remove_from_collection.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Search String Search Result

get_pins -hierarchical *|*|datac <empty>(6)

get_pins -hierarchical lvl|* lvl|dataa, lvl|datab

get_pins -hierarchical *|datac lvl|cnod|datac

get_pins -hierarchical lvl|*|datac <empty>(6)

get_pins -compatibility_mode *|datac lvl|cnod|datac (7)

get_pins -compatibility_mode *|*|datac lvl|cnod|datac

The default method separates hierarchy levels of instances from nodes and pins with
the pipe character (|). A match occurs when the levels of hierarchy match, and the
string values including wildcards match the instance or pin names. For example, the
command get_pins <instance_name>|*|datac returns all the datac pins for
registers in a given instance. However, the command get_pins *|datac returns an
empty collection because the levels of hierarchy do not match.

Use the -hierarchical matching scheme to return a collection of cells or pins in all
hierarchies of your design.

For example, the command get_pins -hierarchical *|datac returns all the
datac pins for all registers in your design. However, the command get_pins -
hierarchical *|*|datac returns an empty collection because more than one pipe
character (|) is not supported.

The -compatibility_mode option returns collections matching wildcard strings
through any number of hierarchy levels. For example, an asterisk can match a pipe
character when using -compatibility_mode.

2.7. Using the Quartus Prime Timing Analyzer Document Revision
History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Added new Using Timing Constraints throughout the Design Flow topic.
• Revised the Step 1: Specify General Timing Analyzer Settings topic to

add link to SDC-on-RTL info.
• Revised Step 3: Run the Timing Analyzer topic for Early Timing Analysis

and SDC-on-RTL.
• Revised Applying Timing Constraints section for Early Timing Analysis

and SDC-on-RTL.
• Revised SDC File Precedence topic for SDC-on-RTL.
• Revised Iteratively Modifying Constraints topic for SDC-on-RTL.
• Added new Using Entity-based SDC-on-RTL Constraints section.
• Revised Using Entity-bound SDC Files section for SDC-on-RTL.
• Renamed Generate Timing Reports topic to Timing Report Descriptions

and relocated.

continued...

(7) When you use -compatibility_mode, the Timing Analyzer does not treat pipe characters
(|) as special characters when you use the characters with wildcards.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Revised the Timing Report Descriptions topic to reference quartus_staw
method.

• Revised Report Timing By Source File topic to mention ability to open
the source file in a text editor from the report.

• Revised Report Metastability topic to mention ability to run Report
Neighbor Paths, default toggle rate, and more report details.

• Revised Report Route Net of Interest topic to mention ability to run
report_timing from the report.

• Revised Timing Analyzer Scripting topic to reference quartus_sta and
quartus_staw executables.

• Added more details about derived_clock naming to Automatic Clock
Detection and Constraint Creation topic.

• Added new The quartus_staw Executable topic.
• Enhanced Using Fitter Overconstraints topic for details specific to the

Hyperflex architecture, new examples, and Other Overconstraint
Combinations table of examples.

• Added new Report SDC topic explaining report and Comments column.
• Revised constraint precendence in Maximum Skew topic.

2023.12.04 23.4 • Revised the Applying Timing Constraints topic to add introductory
information and context about typical constraints.

• Added new Check Timing topic describing Check Timing command and
report.

• Added new cross-referencing links throughout Applying Timing
Constraints section.

2023.10.02 23.3 • Updated compilation dashboard image in Step 3: Run the Timing
Analyzer.

• Revised the following topics entirely:
— Using Entity-bound SDC Files
— Entity-bound Constraint Scope
— Entity-bound Constraint Examples

2023.08.03 23.1 • Corrected typo in command example in Report Data Delay topic.
• Corrected typo in command example in Constraining CDC Paths topic.
• Corrected typo in command example in Maximum Skew topic.
• Added Promoting Critical Warnings to Errors topic.

2023.04.03 23.1 • Revised updated image and description in Report Register Description
for new Without a Control Signal and Synchronous Load columns and
data.

2023.01.31 22.4 • Revised outdated timing model descriptions in Setting the Operating
Conditions for Timing Analysis topic.

2022.09.26 22.3 • Renamed the report title "Report Reset Statistics" as "Report Register
Statistics."

• Revised the Report Register Statistics topic to describe some new
features of the report.

• Revised Report Fmax Summary topic to refer to get_clock_fmax_info
command and provide more detail.

• Revised Example SDC Constraints for External Clock Mux to replace
logically_exclusive with physically_exclusive.

2022.03.28 22.1 • Described new Clock Network Viewer in Report Clocks and Clock
Networks topic.

• Updated Report Register Spread topic for new angle and area spread
types and -to_clock filtering.

• Added new Report Timing By Source Files topic.
• Added new Report Metastability topic.
• Added new Report Bottlenecks topic.

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

• Added new Specifying Custom Bottleneck Criteria topic.
• Revised Basic .sdc Constraints Example in Example Circuit and SDC File

topic.
• Added more detailed constraint example and diagram to Set Clock

Groups topic.
• Revised scripting examples and screenshots in Correlating Constraints

to the Timing Report topic.
• Revised scripting example in Creating Base Clocks topic.
• Revised scripting example in Clock Divider Example topic.
• Revised Constraining CDC Paths topic.
• Added note about referenced SDCs within IP to SDC File Precedence

topic.

2021.09.27 21.3 • Updated name of Report Hierarchical Retiming Restrictions command
and report to Report Retiming Restrictions.

• Added Constraining CDC Paths topic and linked to related topics.
• Updated Setting the Operating Conditions with details about operating

condition nomenclature.
• Replaced Custom Reports, Device Specific, Diagnostic, and Slack report

folder names throughout.
• Added Report Exceptions and Exceptions Reachability topic describing

new report.
• Added Report Clocks and Clock Networks topic describing new report.
• Added Report Data Delay topic describing report.
• Mentioned option to view multiple before and after paths in Report

Neighbor Paths topic.
• Added set_clock_groups to Timing Exception Precedence
• Updated content of Extra Info tab in Report Timing topic.
• Corrected the set_clock_groups -group A -group B table in the Creating

Clock Groups topic.
• Removed Report Custom CDC Viewer Command topic.
• Revised assignment examples in Exclusive Clock Groups topic.

2021.04.05 21.1 • Added:
— "Report Reset Statistics"
— "Report Asynchronous CDC"
— Two new fields to "Report Pipelining Information".
— New screenshots to "Report Logic Depth" and "Report Neighbor

Paths"
— get_registers and get_keepers to "Collection Commands".

• Removed -include and -exclude options from "Maximum Skew"

2021.02.22 20.3 Added extra SDC_ENTITY_FILE info to "Using Entity-bound SDC Files"

2020.09.28 20.3 • Added "Cross Probing with Design Assistant" section.
• Updated “Step 3: Run the Timing Analyzer” for multiple methods.
• Updated "Step 1: Specify Timing Analyzer Settings for new tabbed

dialog box and options.
• Added new "Report Register Spread," "Report Route Net of Interest,"

"Report Hierarchical Retiming Restrictions," and "Report Pipelining
Information" topics.

• Updated "Report Clock Transfers" topic for new data columns.
• Updated "Report Timing" topic for Extra Info tab data.
• Updated "Report Fmax Summary," "Report Logic Depth," "Report

Neighbor Paths," "Report CDC Viewer," and "Report Custom CDC
Viewer" topics for latest GUI and consistency.

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2020.04.13 20.1 • Added details and Agilex 7 device examples to "Setting the Operating
Conditions" topic.

• Added "Report Logic Level Depth" topic.
• Added "Report Neighbor Paths" topic.
• Added "Enabling Time Borrowing Optimization" topic.
• Added "Report Time Borrowing Data" topic.

2019.07.15 19.2 • Updated "Setting Operating Conditions" for SmartVID timing models.
• Added step for setting operating conditions to "Step 4: Run Timing

Analysis."
• Added details about exclusive paths to "Maximum Skew" topic.
• Added GUI steps for creating entity-bound SDC files to "Using Entity-

bound SDC Files" topic.

2019.04.15 19.1 • Corrected typo in "Timing Constraint Precedence" topic.
• Corrected typo in "Maximum Skew" topic.
• Updated "Viewing Design Assistant Recommendations" for latest GUI

changes.

2018.11.07 18.1 • Improved description and diagram for "Exclusive Clock Groups" topic.

2018.09.24 18.1 • Added "Using Entity-bound SDC Files" topic.
• Added "Scoping Entity-bound Constraints" topic.
• Added "Entity-bound Constraint Examples" topic.
• Revised "Basic Timing Analysis Flow" section to add sequential step

organization, update steps, and add supporting screenshots.
• Added Timing Analyzer screenshot to "Using the Timing Analyzer" topic.
• Removed "Creating a Constraint File from Templates with the Text

Editor" topic due to limitations of this feature in this version of the
software.

• Retitled "SDC Constraint Creation Summary" to " Dual Clock SDC
Example."

• Retitled "Default Settings" to "Default Multicycle Analysis."
• Retitled "SDC (Clock and Exception) Assignments on Blackbox Ports" to

"Constraining Design Partition Ports."
• Added "Viewing Design Assistant Recommendations" topic.

2018.05.07 18.0 • First release as part of the stand-alone Timing Analyzer User Guide

2017.11.27 17.1.0 • Removed outdated figure: Design Flow with the Timing Analyzer.
• Updated Performing an Initial Analysis and Synthesis topic with Quartus

Prime Pro Edition commands.

2017.11.06 17.1 • Updated Using Fitter Overconstraints topic for Stratix 10 support.

2017.05.08 17.0 • Added Using Fitter Overconstraints topic.
• Added Clock Domain Crossing report topics

2016.10.31 16.1 • Implemented Intel rebranding.
• Added support for -blackbox option with set_input_delay,

set_output_delay, remove_input_delay,
remove_output_delay.

2016.05.03 16.0 Added new topic: SCDS (Clock and Exception) Assignments on Blackbox
Ports

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.
• Added a description of running three- and four-corner analysis with --

mode=implement|finalize.
• Added description for new set_operating_conditions UI.

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2015.05.04 15.0.0 Added and updated contents in support of new timing algorithms for Arria
10:
• Enhanced Timing Analysis for Arria 10
• Maximum Skew (set_max_skew command)
• Net Delay (set_net_delay command)
• Create Generated Clocks (clock-as-data example)

2014.12.15 14.1 Major reorganization. Revised and added content to the following topic
areas:
• Timing Constraints
• Create Clocks and Clock Constraints
• Creating Generated Clocks
• Creating Clock Groups
• Clock Uncertainty
• Running the Timing Analyzer
• Generating Timing Reports
• Understanding Results
• Constraining and Analyzing with Tcl Commands

August 2014 14.0a10.0 Added command line compilation requirements for Arria 10 devices.

June 2014 14.0 • Minor updates.
• Updated format.

November 2013 13.1 • Removed HardCopy device information.

June 2012 12.0 • Reorganized chapter.
• Added “Creating a Constraint File from Quartus Prime Templates with

the Quartus Prime Text Editor” section on creating an SDC constraints
file with the Insert Template dialog box.

• Added “Identifying the Quartus Prime Software Executable from the
SDC File” section.

• Revised multicycle exceptions section.

November 2011 11.1 • Consolidated content from the Best Practices for the Quartus Prime
Timing Analyzer chapter.

• Changed to new document template.

May 2011 11.0 • Updated to improve flow. Minor editorial updates.

December 2010 10.1 • Changed to new document template.
• Revised and reorganized entire chapter.
• Linked to Quartus Prime Help.

continued...

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Quartus Prime Pro Edition User Guide: Timing Analyzer Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

July 2010 10.0 Updated to link to content on SDC commands and the Timing Analyzer GUI
in Quartus Prime Help.

November 2009 9.1 Updated for the Quartus Prime software version 9.1, including:
• Added information about commands for adding and removing items

from collections
• Added information about the set_timing_derate and report_skew

commands
• Added information about worst-case timing reporting
• Minor editorial updates

November 2008 8.1 Updated for the Quartus Prime software version 8.1, including:
• Added the following sections:

“set_net_delay” on page 7–42
“Annotated Delay” on page 7–49
“report_net_delay” on page 7–66

• Updated the descriptions of the -append and -file <name> options
in tables throughout the chapter

• Updated entire chapter using 8½” × 11” chapter template
• Minor editorial updates

2.8. Quartus Prime Pro Edition User Guide: Timing Analyzer Archive

For the latest and previous versions of this user guide, refer to Quartus Prime Pro
Edition User Guide: Timing Analyzer. If an IP or software version is not listed, the user
guide for the previous IP or software version applies.

2. Using the Quartus Prime Timing Analyzer

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

175

https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel® FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel® FPGA devices, and program CPLD and configuration
devices, via connection with an Intel® FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683243 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys* that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel® FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys*. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

A. Quartus Prime Pro Edition User Guides

683243 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Timing Analyzer

177

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Timing%20Analyzer%20(683243%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Pro Edition User
Guide
Power Analysis and Optimization

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q What is power analysis?
A Power Analysis on page 4

Q What power analysis tools are provided?
A Power Analysis Tools on page 5

Q Can I get early power estimates?
A Intel FPGA Power and Thermal Calculator User Guide

Q How do I run power analysis?
A Running the Power Analyzer on page 7

Q Where are power analysis results?
A Viewing Power Analysis Reports on page 19

Q What factors influence power?
A Factors Affecting Power Consumption on page 32

Q How do I optimize designs for power?
A Design Guidelines on page 41

Online Version

Send Feedback UG-20141

683174

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683445.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Power Analysis... 4
1.1. Power Analysis Tools.. 5
1.2. Running the Power Analyzer..7
1.3. Specifying Power Analyzer Input..8

1.3.1. Settings for Power Analysis... 8
1.3.2. Specifying Signal Activity Data...11
1.3.3. Specifying the Default Toggle Rate... 17
1.3.4. Specifying Toggle Rates for Specific Nodes...17
1.3.5. Avoiding Simulation Node Name Match... 18

1.4. Viewing Power Analysis Reports... 19
1.5. Power Analysis in Modular Design Flows..23

1.5.1. Complete Design Simulation Power Analysis Flow... 25
1.5.2. Modular Design Simulation Power Analysis Flow... 25
1.5.3. Multiple Simulation Power Analysis Flow..25
1.5.4. Overlapping Simulation Power Analysis Flow.. 26
1.5.5. Partial Design Simulation Power Analysis Flow..26
1.5.6. Vectorless Estimation Power Analysis Flow...27

1.6. Scripting Support...27
1.6.1. Running the Power Analyzer from the Command–Line...................................28

1.7. Power Analysis Revision History... 29

2. Power Optimization.. 32
2.1. Factors Affecting Power Consumption... 32

2.1.1. Design Activity and Power Analysis...32
2.1.2. Device Selection.. 32
2.1.3. Environmental Conditions..33
2.1.4. Device Resource Usage...33
2.1.5. Signal Activity... 34

2.2. Design Space Explorer II for Power-Driven Optimization..35
2.3. Power-Driven Compilation... 35

2.3.1. Power-Driven Synthesis.. 35
2.3.2. Power-Driven Fitter.. 38
2.3.3. Area-Driven Synthesis.. 38
2.3.4. Gate-Level Register Retiming...39
2.3.5. Quartus Prime Compiler Settings..39
2.3.6. Assignment Editor Options.. 40

2.4. Design Guidelines.. 41
2.4.1. Clock Power Management... 41
2.4.2. Pipelining and Retiming...47
2.4.3. Architectural Optimization... 48
2.4.4. I/O Power Guidelines..48
2.4.5. Dynamically Controlled On-Chip Terminations (OCT)..................................... 49
2.4.6. Memory Optimization (M20K/MLAB)... 50
2.4.7. DDR Memory Controller Settings..52
2.4.8. DSP Implementation.. 52
2.4.9. Reducing High-Speed Tile (HST) Usage... 53
2.4.10. Unused Transceiver Channels...54

Contents

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.11. Periphery Power reduction XCVR Settings.. 54
2.5. Power Optimization Advisor...55

2.5.1. Set Realistic Timing Constraints... 55
2.5.2. Appropriate Device Family...56
2.5.3. Dynamic Power..56
2.5.4. Static Power..57
2.5.5. Appropriate I/O Standards.. 57
2.5.6. Use RAM Blocks... 57
2.5.7. Shut Down RAM Blocks...58
2.5.8. Clock Enables on Logic..58
2.5.9. Pipeline Logic to Reduce Glitching...58

2.6. Power Optimization Revision History...59

3. Power Analysis and Optimization Document Archive.. 61

A. Quartus Prime Pro Edition User Guides...62

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Power Analysis
Power consumption is a critical design consideration. When designing a PCB, you must
determine the power consumption of the FPGA device to develop an accurate power
budget, and to design the power supplies, voltage regulators, heat sink, and cooling
system.

The Quartus® Prime software includes the Power Analyzer to help you to estimate the
power consumption of your compiled design.

Figure 1. Power Analyzer Tool Settings

Write Report
Files

PTC File
Name

Write Out
Signal Activities

Specify Toggle
Rates

Specify Power
Input Files

The Quartus Prime Design Suite also provides the Early Power Estimator (EPE)
spreadsheet for Arria® 10 devices, and the Intel® FPGA Power and Thermal Calculator
for Agilex™ FPGA portfolio and Stratix® 10 devices to estimate power consumption
calculated from your predicted design characteristics.

683174 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Power estimation and analysis allows you to confirm that your design does not exceed
thermal or power supply requirements throughout the design process:

• Thermal—Thermal power is the power that dissipates as heat from the FPGA.
Devices use a heatsink or fan to act as a cooling solution. This cooling solution
must be sufficient to dissipate the heat that the device generates. Additionally, the
computed junction temperature must fall within normal device specifications.

• Power supply—Power supply is the power that the device needs to operate.
Power supplies must provide adequate current to support device operation.

Note: Do not use the results of the Power Analyzer as design specifications. You must also
verify the actual power during device operation to account for actual environmental
operating conditions.

Related Information

• Intel FPGA Power and Thermal Calculator (PTC) User Guide

• Power Analyzer Support Resources

1.1. Power Analysis Tools

The Quartus Prime Design Suite provides tools to analyze the power consumption of
your FPGA design at different stages of the design process.

• Intel FPGA Power and Thermal Calculator (PTC)—estimates power supply and
system thermal requirements before compiling the design, or anytime during the
design phase. Supports Agilex FPGA portfolio and Stratix 10 devices.

• Quartus Prime Power Analyzer (QPA)—estimates power consumption for a post-fit
design, allowing you establish guidelines for the power budget.

• Early Power Estimator (EPE) spreadsheet—estimates power consumption for power
supply planning before compiling the design. Supports Arria 10 and Stratix 10
devices. (For versions of the Quartus Prime software later than version 19.4,
Stratix 10 devices are supported in the Intel FPGA Power and Thermal Calculator.)

Figure 2. Estimation Accuracy for Different Inputs and Power Analysis Tools

Estim
ation Accuracy

Design ImplementationDesign Concept

Lower
Higher

Design Stages

Intel FPGA Power and
Thermal Calculator Input

Power Analyzer Input

User Input

Quartus Prime
Design Profile

Placement and
Routing Results

Simulation
Results

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

5

https://www.intel.com/content/www/us/en/docs/programmable/683445/current/overview-of-the.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/power/sof-qts-power.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The accuracy of the power model is determined on a per-power-rail basis for the
Quartus Prime Power Analyzer.

• For most Stratix 10 designs, the Quartus Prime Power Analyzer has the following
accuracy, assuming final power models: Within 10% of silicon for the majority of
power rails with higher power, assuming accurate inputs and toggle rates.

• For most Agilex FPGA portfolio designs, the Quartus Prime Power Analyzer has the
following accuracy, assuming final power models: Within 10% of silicon for all
power rails, assuming accurate inputs and toggle rates.

Table 1. Comparison of EPE/Intel FPGA PTC and Quartus Prime Power Analyzer
Capabilities

Characteristic EPE / PTC Quartus Prime Power Analyzer

When to use Any time
Note: For post-fit power analysis, you

get better results with the
Quartus Prime Power Analyzer.

Post-fit

Software requirements EPE: Spreadsheet program.
Intel FPGA PTC: Integrated into the
Quartus Prime software, and is also
available as a standalone tool.

The Quartus Prime software

Accuracy Medium Medium to very high

Data inputs • Resource usage estimates
• Clock requirements
• Environmental conditions
• Toggle rate

• Post-fit design
• Clock requirements
• Signal activity defaults
• Environmental conditions
• Register transfer level (RTL)

simulation results (optional)
• Post-fit simulation results (optional)
• Signal activities per node or entity

(optional)

Data outputs
Note: The EPE and Power Analyzer

outputs vary by device family.

• Total thermal power dissipation
• Thermal static power
• Thermal dynamic power
• Off-chip power dissipation
• Current drawn from voltage

supplies

• Total thermal power
• Thermal static power
• Thermal dynamic power
• Thermal I/O power
• Thermal power by design hierarchy
• Thermal power by block type
• Thermal power dissipation by clock

domain
• Device supply currents

Estimation of transceiver power for
dynamic reconfiguration features

Includes an estimation of the
incremental power consumption by
these features.

Not included

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Quartus Prime Power Analyzer does not support power analysis of the following
Intel FPGA IP:

• Stratix 10 HBM2 IP

• Stratix 10 HPS IP

• Arria 10 HPS IP

In versions of the Quartus Prime software later than 19.4, you can obtain power
estimations for the Stratix 10 HBM2 IP and Stratix 10 HPS IP using the Intel FPGA
Power and Thermal Calculator (PTC).

For power estimation of Arria 10 HPS IP, and for power estimation in the Quartus
Prime software version 19.4 or earlier, you can obtain power estimations using the
Early Power Estimator spreadsheet (EPE).

1.2. Running the Power Analyzer

Before running the Power Analyzer you must run full compilation of your design to
generate the post-fit netlist. In addition, you must either provide timing assignments
for all clocks in the design, or specify signal activity data for power analysis. You must
specify the I/O standard on each device input and output, and the board trace model
on each output in the design.

To run the Power Analyzer:

1. To specify device power characteristics, operating voltage, and temperature
conditions for power analysis, click Assignments ➤ Settings ➤ Operating
Settings and Conditions, as Settings for Power Analysis on page 8 describes.

2. To run full compilation of your design, click Processing ➤ Start Compilation.

3. Click Assignments ➤ Settings ➤ Power Analyzer.

4. Specify the source of signal activity data, as Generating Signal Activity Data for
Power Analysis on page 12 describes.

5. To generate a Signal Activity (.saf) file during analysis, turn on Write out signal
activities used during power analysis, and specify the file name.

6. You can customize the generated Power and Thermal Calculator export file
name. This file summarizes the resource utilization and allows you to perform
what-if analyses in PTC

7. Specify the Default toggle rates for unspecified signals, as Specifying the
Default Toggle Rate on page 17 describes.

8. To specify temperature range and cooling options, click Cooling Solution and
Temperature.

9. To run full compilation of your design, click Processing ➤ Start ➤ Start Power
Analyzer.

10. When power analysis is complete, click Report to open the Power Analyzer
reports that Viewing Power Analysis Reports on page 19 describes.

Related Information

Specifying Power Analyzer Input on page 8

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3. Specifying Power Analyzer Input

The Power Analyzer accuracy is driven by design factors, operating conditions, and
signal activity data that affect power consumption. The following figure shows how the
Power Analyzer interprets these inputs and generates results in the Power Analysis
report:

Figure 3. Power Analyzer High-Level Flow

Intel Quartus Prime
Power Analyzer

(1)Operating condition specifications are available for only some device families

Operating Conditions(1)

Input

Output

Power
Report

Power
Report

Signal
Activity

Post-Fit
Design

To obtain accurate I/O power estimates, the Power Analyzer requires full compilation
of your design, in addition to specifying the following settings:

• The electrical standard on each I/O cell.

• The board trace model on each I/O standard in the design.

• Timing assignments for all the clocks in your design, or use a simulation-based
flow to generate activity data.

Note: For accurate results, ensure that any .VCD file used with the Power Analyzer is the
result of gate-level simulation.

1.3.1. Settings for Power Analysis

You can specify device power characteristics, operating voltage conditions, operating
temperature conditions, Power Analyzer settings and thermal settings, in the
Operating Settings and Conditions, Power Analyzer Settings, and Thermal
pages of the Settings dialog box.

Table 2. Operating Settings and Conditions

Option Settings

Device power
characteristics

• Maximum—specifies maximum power consumed by the worst-case device. This is the
default value for Stratix 10 and Agilex devices.

• Typical—specifies average power consumed by typical silicon at nominal operating
conditions.

Voltage tab Specifies the operating voltage conditions for each power rail in the device, and the supply
voltages for power rails with selectable supply voltages.

Temperature tab Specifies the minimum and maximum junction temperature range.

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. Operating Settings and Conditions

Figure 5. Power Analyzer Settings

Table 3. Power Analyzer Settings

Option Settings

Power Analyzer Settings Specifies the Power Analyzer options, including:
• Run Power Analyzer during compilation—Check this box to turn on power analysis

during compilation.
• Use input file(s) to initialize toggle rates and static probabilities during power

analysis—Check this box to use Signal Activity Files or VCD files to initialize toggle
rates and static probabilities for power estimation.

• Write out signal activities used during power analysis—Check this box to write
the toggle rates and static probabilities used during power estimation to a file.

• Power and thermal calculator export file name—specifies the export file name
(.qptc) of the design summary that you can import into the Intel FPGA Power and
Thermal Calculator. You can customize this name.

• Write signal activities to report file—Check this box to have the Power Analyzer
write a report file containing the signal activities used during power analysis.

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Settings

• Write power dissipation by block to report file—Check this box to have the Power
Analyzer report the thermal power dissipation calculated during power analysis, in the
Thermal Power Dissipation by Block report panel.

• Default toggle rate used for input I/O signals—Specify a default toggle rate for
use on input I/O pins during power estimation. Can be expressed as a percentage or in
transitions/second.

• Default toggle rate used for remaining signals
— Use default value—Specify a default toggle rate for use during power estimation

on all nodes except I/O pins. This value is used only if no toggle rate is specified
through a Signal Activity File, VCD file, or user assignment. Can be expressed as a
percentage or in transitions/second.

— Use vectorless estimation—Turn on this control to use vectorless estimation to fill
in undefined toggle rates and static probabilities. If this option is not available, the
device family does not support vectorless estimation.

Figure 6. Thermal Settings

Table 4. Thermal Settings

Option Settings

Thermal Settings Specifies the thermal power analysis temperature conditions, including:
• Thermal Solver Mode—Select the thermal solver mode to use during power

estimation.
• Junction temperature—Specifies the junction temperature, in °C, used during power

estimation.
• Ambient temperature—Specifies the ambient temperature, in °C, used during power

estimation.
• Cooling solution—Specifies the cooling solution case-to-ambient thermal resistance,

in °C per watt.
• Maximum junction temperature limit—Specifies the maximum junction

temperature limit that no part of any die in the package should exceed.
• Apply additional margin—Specifies, as a percentage, the amount of additional

margin to apply to detailed thermal analysis results. Valid values are 0–25%. The
default value is 0%. The recommended margin for Agilex FPGA portfolio devices is
10%, and for Stratix 10 devices, 25%.
Note: For a design compiled in an earlier version of the Quartus Prime software with

the Apply Recommended Margin parameter set to Yes, the current version of
Power Analyzer interprets this as an Apply Additional Margin setting of 25%.

• Temperature measurement method—Select the method to use for reporting
temperature sensors for thermal analysis.

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2. Specifying Signal Activity Data

The accuracy of the power estimation depends on how representative signal activity
data is during power analysis. The Power Analyzer allows you to specify signal activity
data from the following sources:

• .vcd files from supported simulators

• User-entered node, entity, clock, and toggle rate assignments

• Vectorless estimation (selected devices)

You can mix and match the signal activity data sources on a signal-by-signal basis.

Figure 7. Priority Scheme Applied to Each Signal

Node or entity
assignment?

Simulation
data?

Is primary
input?

Vectorless
supported and

enabled?
Use vectorless

estimation

Use default
assignment

Use simulation
data

Use node or
entity assignment

Start

Yes Yes Yes No

YesNoNoNo

1.3.2.1. Using Simulation Signal Activity Data in Power Analysis

You can specify a Verilog Value Change Dump File (.vcd) generated by simulating a
placed and routed gate-level netlist in a supported simulator as the source of signal
activity data for power analysis. Third-party simulators can output a .vcd that
contains signal activity and static probability information for power analysis. The .vcd
includes all routing resources and the logic array resource usage.

To improve the accuracy of power analysis, you can generate a Standard Delay Output
(.sdo) file that includes back-annotated delay estimates of the instances of core
atoms for ModelSim* simulation. ModelSim simulation can then output a more
accurate .vcd for use as power analysis input. You must run Fitter (Finalize) before
generating the .sdo.

Figure 8. Using Simulation Signal Activity Data in Power Analysis

Intel Quartus Prime
Power Analyzer

Power Analyzer Input Power Analyzer Output

Power
Report

Signal
Activity

Supported
Simulator

VCD
File

Operating Conditions

Post-Fit
Design

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2.1.1. Generating Signal Activity Data for Power Analysis

To generate and use simulation signal activity data for power analysis:

1. To run full compilation on your design, click Processing ➤ Start Compilation.

2. To specify settings for simulation output, click Assignments ➤ Settings ➤ EDA
Tool Settings ➤ Simulation. Select your simulator in Tool name and the
Format for output netlist and Output directory.

Figure 9. EDA Tool Settings for Simulation

3. Turn on Map illegal HDL characters. This setting directs the EDA Netlist Writer
to map illegal characters for VHDL or Verilog HDL, and results in more accurate
data for power analysis.

4. Click the Power Analyzer Settings page.

5. For Stratix 10 designs, to generate a Standard Delay Output (.sdo) file that
includes back-annotation of delays for power analysis, refer to Generating
Standard Delay Output for Power Analysis on page 13.

6. Under Input file, turn on Use input files to initialize toggle rates and static
probabilities during power analysis.

Figure 10. Specifying Power Analysis Input Files

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. To specify a .vcd for power analysis, click Add and specify the File name,
Entity, and Simulation period for the .vcd, and click OK.

8. To enable glitch filtering during power analysis with the .vcd you generate, turn
on Perform glitch filtering on VCD files.

9. To run the power analysis, click Start on the Power Analysis step in the
Compilation Dashboard. View the toggle rates in the power analysis results.

Note: To improve accuracy of power analysis, the Quartus Prime EDA Netlist writer can
generate a Standard Delay Output (.sdo) file that includes back-annotation of delays
for a design's netlist for use during simulation in QuestaSim. Although the .sdo only
contains delay estimates and imprecise timing information, including the .sdo in
simulation results in a more accurate output .vcd for power analysis. The EDA Netlist
Writer currently supports .sdo file generation only for Verilog .vo simulation in the
QuestaSim simulator (not ModelSim - Intel FPGA Edition) for Stratix 10 designs. The
EDA Netlist Writer does not currently support .sdo file generation for any other
simulator or device family.

1.3.2.1.2. Generating Standard Delay Output for Power Analysis

To improve accuracy of power analysis, you can generate a Standard Delay Output
(.sdo) file that includes back-annotated delay estimates for QuestaSim simulation.
QuestaSim simulation can then output a more accurate .vcd for use as power
analysis input. You must run Fitter (Finalize) before generating the .sdo.

Figure 11. Using an SDO in Power Analysis

Intel Quartus Prime
Power Analyzer

Power Analyzer Input Power Analyzer Output

Power
Report

Signal
Activity

Supported
Simulator

VCD
File

Operating Conditions

SDO
File

Enable SDO
Generation

Post-Fit
Design

1. Click Assignments ➤ Settings ➤ EDA Tool Settings ➤ Simulation. In Tool
name select QuestaSim and Verilog for Format for output netlist.

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. More EDA Netlist Writer Settings

2. Click More EDA Netlist Writer Settings. Set Enable SDO Generation for
Power Estimation to On. Set Generate Power Estimate Scripts to
ALL_NODES.

3. To run the Fitter, click Processing ➤ Start ➤ Start Fitter (Finalize).

4. Create a representative testbench (.vt) that exercises the design functions
appropriately.

5. To specify the appropriate hierarchy level for signals in the output .vcd, add the
following line to the project .qsf file: (1)

set_global_assignment -name EDA_TEST_BENCH_DESIGN_INSTANCE_NAME
 <DUT instance path> -section_id eda_simulation

6. After Fitter processing is complete, click Processing ➤ Start ➤ Start EDA
Netlist Writer. EDA Netlist Writer generates the following files in /<project>/
simulation/questa/power/:

• <project>.vo (contains a reference to the .sdo file by default)

• <project>_dump_all_vcd_nodes.tcl—specifies nodes to save in .vcd

• <project>_v.sdo—back-annotated delay estimates

7. Create a QuestaSim script (.do) to load the design and testbench, start
QuestaSim, and then source the .do script.

8. To specify the signals QuestaSim includes in the .vcd file, source
*_dump_all_vcd_nodes.tcl in QuestaSim.

9. To generate the .vcd file, simulate the test bench and netlist in QuestaSim.
The .vcd file generates according to your specifications.

10. Specify the .vcd as an input to power analysis, as Generating Signal Activity Data
for Power Analysis describes.

(1) Specify the full hierarchical path in the testbench, not just the instance name. For example,
specify a|b|c, not just c.

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The EDA Netlist Writer currently supports .sdo file generation only for
Verilog .vo simulation in the QuestaSim simulator (not ModelSim - Intel
FPGA Edition) for Stratix 10 designs. The EDA Netlist Writer does not
currently support .sdo file generation for any other simulator or device
family.

1.3.2.1.3. Simulation Glitch Filtering

The Power Analyzer defines a glitch as two signal transitions so closely spaced in time
that the pulse, or glitch, occurs faster than the logic and routing circuitry can respond.
The output of a transport delay model simulator contains glitches for some signals.
The logic and routing structures of the device form a low-pass filter that filters out
glitches that are tens to hundreds of picoseconds long, depending on the device
family.

Some third-party simulators use different models than the transport delay model as
the default model. Different models cause differences in signal activity and power
estimation. The inertial delay model, which is the ModelSim default model, filters out
more glitches than the transport delay model and usually yields a lower power
estimate.

Note: Intel FPGA recommends that you use the transport simulation model when using the
Quartus Prime software glitch filtering support with third-party simulators. Simulation
glitch filtering has little effect if you use the inertial simulation model.

Glitch filtering in a simulator can also filter a glitch on one logic element (LE) (or other
circuit element) output from propagating to downstream circuit elements to ensure
that the glitch does not affect simulated results. Glitch filtering prevents a glitch on
one signal from producing non-physical glitches on all downstream logic, which can
result in a signal toggle rate and a power estimate that are too high. Circuit elements
in which every input transition produces an output transition, including multipliers and
logic cells configured to implement XOR functions, are especially prone to glitches.
Therefore, circuits with such functions can have power estimates that are too high
when glitch filtering is not used.

Note: Intel FPGA recommends that you use the glitch filtering feature to obtain the most
accurate power estimates. For .vcd files, the Power Analyzer flows support two levels
of glitch filtering.

Enable glitch filtering in the .vcd that you generate for use in power analysis by
turning on Perform glitch filtering on VCD files.

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Enabling Glitch Filtering for VCD

The .vcd file reader performs glitch filtering that is complementary to simulation
glitch filtering, but is often less precise. While the .vcd file reader has the ability to
remove glitches on logic blocks, the file reader cannot determine how a given glitch
potentially affects downstream logic and routing. Filtering the glitches during
simulation avoids switching downstream routing and logic automatically.

Note: When running simulation for design verification (rather than to produce input to the
Power Analyzer), Intel recommends that you turn off the glitch filtering option to
produce the most rigorous and conservative simulation from a functionality viewpoint.
When performing simulation to produce input for the Power Analyzer, Intel FPGA
recommends that you turn on the glitch filtering to produce the most accurate power
estimates.

1.3.2.2. Signal Activities from RTL (Functional) Simulation, Supplemented by
Vectorless Estimation

In the functional simulation flow, simulation provides toggle rates and static
probabilities for all pins and registers in your design. Vectorless estimation fills in the
values for all the combinational nodes between pins and registers, giving good results.
This flow usually provides a compilation time benefit when you use the third-party RTL
simulator.

1.3.2.2.1. RTL Simulation Limitation

RTL simulation may not provide signal activities for all registers in the post-fitting
netlist because synthesis loses some register names. For example, synthesis might
automatically transform state machines and counters, thus changing the names of
registers in those structures. As a result, a large number of nodes in the .vcd file
may not match the nodes in your design netlist, which can result in the power analysis
results being less accurate or of lower confidence.

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2.3. Signal Activities from Vectorless Estimation and User-Supplied Input Pin
Activities

The vectorless estimation flow provides a low level of accuracy, because vectorless
estimation for registers is not entirely accurate.

1.3.2.4. Signal Activities from User Defaults Only

The user defaults only flow provides the lowest degree of accuracy.

1.3.3. Specifying the Default Toggle Rate

You can specify the Default toggle rates for unspecified signals in your design for
power analysis. The Power Analyzer uses the default toggle rate when no other
method specifies the signal activity data.

Figure 14. Specifying the Default Toggle Rate

You specify the toggle rate in absolute terms (transitions per second), or as a fraction
of the clock rate in effect for each node. The toggle rate for a clock derives from the
timing settings for the clock. For example, if the Power Analyzer specifies a clock with
an fMAX constraint of 100 MHz and a default relative toggle rate of 20%, nodes in this
clock domain transition in 20% of the clock periods, or 20 million transitions occur per
second.

In some cases, the Power Analyzer cannot determine the clock domain for a node
because the clock domain is ambiguous. For example, the Power Analyzer cannot
determine a clock domain for a node unless you specify sufficient timing constraints
for the clock domains. If the Power Analyzer cannot determine the clock domain for a
node, the Power Analyzer substitutes and reports a toggle rate of zero.

Note: The transceiver I/O toggle rate is determined by the XCVR data rate value specified in
your IP catalog settings. Do not include transceiver I/O toggle rate in the default
toggle rates that you specify in the Power Analyzer.

Related Information

Toggle Rate on page 34

1.3.4. Specifying Toggle Rates for Specific Nodes

You can assign toggle rates and static probabilities to individual nodes in the design.
These assignments have the highest priority, overriding data from all other signal
activity sources.

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You must use the Assignment Editor or Tcl commands to create the Power Toggle
Rate and Power Static Probability assignments. You can specify the power toggle
rate as an absolute toggle rate in transitions per second using the Power Toggle
Rate assignment, or you can use the Power Toggle Rate Percentage assignment
to specify a toggle rate relative to the clock domain of the assigned node for a more
specific assignment made in terms of hierarchy level.

Note: If you use the Power Toggle Rate Percentage assignment, and the node does not
have a clock domain, the Quartus Prime software issues a warning and ignores the
assignment.

Assigning toggle rates and static probabilities to individual nodes is appropriate for
signals in which you have knowledge of the signal being analyzed. For example, if you
know that a 100 MHz data bus or memory output produces data that is essentially
random (uncorrelated in time), you can directly enter a 0.5 static probability and a
toggle rate of 50 million transitions per second.

The Power Analyzer treats bidirectional I/O pins differently. The combinational input
port and the output pad for a pin share the same name. However, those ports might
not share the same signal activities. For reading signal activity assignments, the
Power Analyzer creates a distinct name <node_name~output> when configuring the
bidirectional signal as an output and <node_name~result> when configuring the
signal as an input. For example, if a design has a bidirectional pin named MYPIN,
assignments for the combinational input use the name MYPIN~result, and the
assignments for the output pad use the name MYPIN~output.

Note: When you create the logic assignment in the Assignment Editor, you cannot find the
MYPIN~result and MYPIN~output node names in the Node Finder. Therefore, to
create the logic assignment, you must manually enter the two differentiating node
names to create the assignment for the input and output port of the bidirectional pin.

1.3.4.1. Clock Node Toggle Rates

For clock nodes, the Power Analyzer uses timing requirements to derive the toggle
rate when neither simulation data nor user-entered signal activity data is available.
fMAX requirements specify full cycles per second, but each cycle represents a rising
transition and a falling transition. For example, a clock fMAX requirement of 100 MHz
corresponds to 200 million transitions per second for the clock node.

1.3.5. Avoiding Simulation Node Name Match

Node name mismatches happen when you have .vcd applied to entities other than
the top-level entity. In a modular design flow, the gate-level simulation files created in
different Quartus Prime projects might not match their node names with the current
Quartus Prime project.

For example, you may have a file named 8b10b_enc.vcd, which the Quartus Prime
software generates in a separate project called 8b10b_enc while simulating the
8b10b encoder. If you import the .vcd into another project called Top, you might
encounter name mismatches when applying the .vcd to the 8b10b_enc module in
the Top project. This mismatch happens because the Quartus Prime software might
name all the combinational nodes in the 8b10b_enc.vcd differently than in the Top
project. To avoid such mismatches, Intel recommends using .vcd files generated from
simulation of your top level project.

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4. Viewing Power Analysis Reports

Following successful power analysis, click the Power Analyzer pulldown in the Table
of Contents of the Compilation Report, to view the Power Analysis section of the
report.

Figure 15. Power Analysis Reports

The Power Analysis reports contains the following sections:

Summary

The Summary section of the report shows the estimated total thermal power
consumption of your design. This includes dynamic, static, and I/O thermal power
consumption. The I/O thermal power includes the total I/O power drawn from the
VCCIO and VCCPD power supplies and the power drawn from VCCINT in the I/O
subsystem including I/O buffers and I/O registers. The report also includes a
confidence metric that reflects the overall quality of the data sources for the signal
activities. For example, a Low power estimation confidence value reflects that you
have provided insufficient toggle rate data, or most of the signal activity information
used for power estimation is from default or vectorless estimation settings. For more
information about the input data, refer to the Power Analyzer Confidence Metric
report.

Power Savings Summary

Lists any savings (in mW) and the type of savings method, such as SmartVID Power
Savings.

Parallel Compilation

When you enable parallel compilation, the Parallel Compilation report list the number
of processors you use during Power Analysis

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Settings

The Settings section of the report shows the Power Analyzer settings information of
your design, including the default input toggle rates, operating conditions, and other
relevant setting information.

Simulation Files Read

The Simulation Files Read section of the report lists the simulation output file that
the .vcd used for power estimation. This section also includes the file ID, file type,
entity, VCD start time, VCD end time, the unknown percentage, and the toggle
percentage. The unknown percentage indicates the portion of the design module
unused by the simulation vectors.

Operating Conditions Used

The Operating Conditions Used section of the report shows device characteristics,
voltages, temperature, and cooling solution, if any, during the power estimation. This
section also shows the entered junction temperature or auto-computed junction
temperature during the power analysis.

Thermal Map Visualization

For Agilex FPGA portfolio designs, the Power Analyzer provides a visualization of the
expected thermal distribution on the core die and the transceiver dies. This data is
available when you run the Power Analyzer on your compiled Agilex FPGA portfolio
design and you have enabled the Thermal Map visualization by selecting one
of the following options under the Thermal solver mode selection in the
Thermal Settings dialog:

• Find available thermal margin for cooling solution

• Find cooling solution for maximum junction temperature limit

• Find ambient temperature for specified cooling solution

Figure 16. Thermal Settings to Enable Thermal Map Visualization

After you run the Power Analyzer, select the Thermal Map section in the Power
Analyzer report. You can set the threshold temperature you want to use, which is
useful if you are making any what-if analyses based on your thermal design. You can
adjust the threshold temperature in increments of 5°C, between the ambient
temperature (or 50°C, whichever is lower), and an upper limit of 100°C.

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. Temperature View of the Thermal Map for an Agilex 7 FPGA Design

Knowing the locations of hot spots in your design can help you make modifications as
necessary for proper operation of the system.

The thermal map report can show two different views—a temperature view and a
power density view. You can choose the view from a pulldown selection in the GUI,
when you open the thermal map in the Power Analyzer.

Figure 18. Power Density View of the Thermal Map for an Agilex 7 FPGA Design

Thermal Power Dissipated by Block

The Thermal Power Dissipated by Block section of the report shows estimated thermal
dynamic power and thermal static power consumption categorized by atoms. This
information provides you with estimated power consumption for each atom in your
design.

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, this section does not contain any data, but you can turn on the report with
the Write power dissipation by block to report file option on the Power
Analyzer Settings page.

On-Chip Power Dissipation by Block Type

The On-Chip Power Dissipation by Block Type section of the report shows the
estimated total on-chip power consumption by block type, and estimated on-chip
dynamic power and estimated on-chip static power, by block type.

Figure 19. On-Chip Power Dissipation by Block Type

On-Chip Power Dissipation by Hierarchy

This On-Chip Power Dissipation by Hierarchy section of the report shows estimated
cumulative and current-hierarchy-level on-chip dynamic power consumption by
hierarchy node. This information is useful when locating modules with high power
consumption in your design. (Available for Agilex FPGA portfolio devices.)

Core Dynamic Thermal Power Dissipation by Clock Domain

The Core Dynamic Thermal Power Dissipation by Clock Domain section of the report
shows the estimated total core dynamic power dissipation by each clock domain,
which provides designs with estimated power consumption for each clock domain in
the design. If the clock frequency for a domain is unspecified by a constraint, the clock
frequency is listed as “unspecified.” For all the combinational logic, the clock domain is
listed as no clock with zero MHz.

Current Drawn per Supply

The Current Drawn per Supply section of the report lists the current drawn from each
voltage supply. The VCCIO and VCCPD voltage supplies are further categorized by I/O
bank and by voltage. This section also lists the minimum safe power supply size
(current supply ability) for each supply voltage. Minimum current requirement can be
higher than user mode current requirement in cases in which the supply has a specific
power up current requirement that goes beyond user mode requirement.

The I/O thermal power dissipation on the summary page does not correlate directly to
the power drawn from the VCCIO and VCCPD voltage supplies listed in this report. This is
because the I/O thermal power dissipation value also includes portions of the VCCINT
power, such as the I/O element (IOE) registers, which are modeled as I/O power, but
do not draw from the VCCIO and VCCPD supplies.

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The reported current drawn from the I/O Voltage Supplies (ICCIO and ICCPD) as
reported in the Power Analyzer report includes any current drawn through the I/O into
off-chip termination resistors. This can result in ICCIO and ICCPD values that are
higher than the reported I/O thermal power, because this off-chip current dissipates as
heat elsewhere and does not factor in the calculation of device temperature.
Therefore, total I/O thermal power does not equal the sum of current drawn from each
VCCIO and VCCPD supply multiplied by VCCIO and VCCPD voltage.

For SoC devices, there is no standalone ICC_AUX_SHARED current drawn information.
The ICC_AUX_SHARED is reported together with ICC_AUX.

Confidence Metric Details

The Confidence Metric is defined in terms of the total weight of signal activity data
sources for both combinational and registered signals. Each signal has two data
sources allocated to it; a toggle rate source and a static probability source.

The Confidence Metric Details section also indicates the quality of the signal toggle
rate data to compute a power estimate. The confidence metric is low if the signal
toggle rate data comes from poor predictors of real signal toggle rates in the device
during an operation. Toggle rate data that comes from simulation, user-entered
assignments on specific signals or entities are reliable. Toggle rate data from default
toggle rates (for example, 12.5% of the clock period) or vectorless estimation are
relatively inaccurate. This section gives an overall confidence rating in the toggle rate
data, from low to high. This section also summarizes how many pins, registers, and
combinational nodes obtained their toggle rates from each of simulation, user entry,
vectorless estimation, or default toggle rate estimations. This detailed information
helps you understand how to increase the confidence metric, letting you determine
your own confidence in the toggle rate data.

Signal Activities

The Signal Activities section lists toggle rates and static probabilities assumed by
power analysis for all signals with fan-out and pins. This section also lists the signal
type (pin, registered, or combinational) and the data source for the toggle rate and
static probability. By default, this section does not contain any data, but you can turn
on the report with the Write signal activities to report file option on the Power
Analyzer Settings page.

Intel recommends that you keep the Write signal activities to report file option
turned off for a large design because of the large number of signals present. You can
use the Assignment Editor to specify that activities for individual nodes or entities are
reported by assigning an on value to those nodes for the Power Report Signal
Activities assignment.

Messages

The Messages section lists the messages that the Quartus Prime software generates
during the analysis.

1.5. Power Analysis in Modular Design Flows

In modular or hierarchical design flows you develop each design block separately, and
then instantiate these blocks into a higher-level design to form a complete design. The
Intel Quartus Prime software supports simulation and power analysis of the top-level
design or individual blocks with the design.

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Modular Simulation Flow

Parameter
Input

Video
Processing

Column
Driver

Memory
Interface

Video
Source

Interface
Timing
Control

system.vcd
video_gizmo.vcd
output_driver.vcd
video_input.vcd

You can associate multiple .vcd simulation output files with specific node names,
enabling the integration of partial design simulations into a complete design power
analysis. When specifying multiple .vcd files for a node, more than one simulation file
can contain signal activity information for the same signal. In those cases, the Power
Analyzer follows these rules:

• When you apply multiple .vcd files to the same design node, the Power Analyzer
calculates the signal activity as the equal-weight arithmetic average of each .vcd.

• When you apply multiple simulation files to design nodes at different levels in the
design hierarchy, the signal activity in the power analysis derives from the
simulation file that applies to the most specific design node.

The following figure shows an example of a hierarchical design:

Figure 21. Example Hierarchical Design

8b10b_dec:decode1

8b10b_dec:decode2

8b10b_dec:decode3

8b10b_rxerr:err1

mux:mux1

8b10b_enc:encode1

Top

The top-level module of the design, called Top, consists of three 8b/10b decoders,
followed by a mux. The software encodes the output of the mux to produce the final
output of the top-level module. An error-handling module handles any 8b/10b
decoding errors. The Top module contains the top-level entity of the design and any
logic not defined as part of another module. The design file for the top-level module
can be a wrapper for the hierarchical entities or can contain its own logic.

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following usage scenarios show common ways that you can simulate the design
and import the .vcd into the Power Analyzer:

1.5.1. Complete Design Simulation Power Analysis Flow

You can simulate the entire gate-level design and generate a .vcd from a third-party
simulator. The Power Analyzer can then import the .vcd (specifying the top-level
design). The resulting power analysis uses the signal activities information from the
generated .vcd, including those that apply to submodules, such as decode [1-3],
err1, mux1, and encode1.

1.5.2. Modular Design Simulation Power Analysis Flow

You can independently simulate the top-level design, and then import all the
resulting .vcd files into the Power Analyzer. For example, you can simulate the
8b10b_dec independent of the entire design and mux, 8b10b_rxerr, and
8b10b_enc. You can then import the .vcd files generated from each simulation by
specifying the appropriate instance name. For example, if the files produced by the
simulations are 8b10b_dec.vcd, 8b10b_enc.vcd, 8b10b_rxerr.vcd, and
mux.vcd, you can use the import specifications in the following table:

Table 5. Import Specifications

File Name Entity

8b10b_dec.vcd Top|8b10b_dec:decode1

8b10b_dec.vcd Top|8b10b_dec:decode2

8b10b_dec.vcd Top|8b10b_dec:decode3

8b10b_rxerr.vcd Top|8b10b_rxerr:err1

8b10b_enc.vcd Top|8b10b_enc:encode1

mux.vcd Top|mux:mux1

The resulting power analysis applies the simulation vectors in each file to the assigned
instance. Simulation provides signal activities for the pins and for the outputs of
functional blocks. If the inputs to an instance are input pins for the entire design, the
simulation file associated with that instance does not provide signal activities for the
inputs of that instance. For example, an input to an instance such as mux1 has its
signal activity specified at the output of one of the decode instances.

1.5.3. Multiple Simulation Power Analysis Flow

You can perform multiple simulations of an entire design or specific modules of a
design. For example, in the process of verifying the top-level design, you can have
three different simulation testbenches: one for normal operation, and two for corner
cases. Each of these simulations produces a separate .vcd. In this case, apply the
different .vcd file names to the same top-level entity, as shown in the following table.

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6. Multiple Simulation File Names and Entities

File Name Entity

normal.vcd Top

corner1.vcd Top

corner2.vcd Top

The resulting power analysis uses an arithmetic average of the signal activities
calculated from each simulation file to obtain the final signal activities used. If a signal
err_out has a toggle rate of zero transition per second in normal.vcd, 50
transitions per second in corner1.vcd, and 70 transitions per second in
corner2.vcd, the final toggle rate in the power analysis is 40 transitions per second.

If you do not want the Power Analyzer to read information from multiple instances and
take an arithmetic average of the signal activities, use a .vcd that includes only
signals from the instance that you care about.

1.5.4. Overlapping Simulation Power Analysis Flow

You can perform a simulation on the entire design, and more exhaustive simulations
on a submodule, such as 8b10b_rxerr. The following table lists the import
specification for overlapping simulations:

Table 7. Overlapping Simulation Import Specifications

File Name Entity

full_design.vcd Top

error_cases.vcd Top|8b10b_rxerr:err1

In this case, the software uses signal activities from error_cases.vcd for all the
nodes in the generated .vcd and uses signal activities from full_design.vcd for
only those nodes that do not overlap with nodes in error_cases.vcd. In general,
the more specific hierarchy (the most bottom-level module) derives signal activities
for overlapping nodes.

1.5.5. Partial Design Simulation Power Analysis Flow

You can perform a simulation in which the entire simulation time is not applicable to
signal activity calculation. For example, if you run a simulation for 10,000 clock cycles
and reset the chip for the first 2,000 clock cycles. If the Power Analyzer performs the
signal activity calculation over all 10,000 cycles, the toggle rates are only 80% of their
steady state value (because the chip is in reset for the first 20% of the simulation). In
this case, you must specify the useful parts of the .vcd for power analysis. The Limit
VCD Period option enables you to specify a start and end time when performing
signal activity calculations.

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.5.1. Specifying Start and End Time for Signal Activity Calculations

To specify a start and end time for signal activity calculations using the Limit VCD
period option, follow these steps:

1. In the Quartus Prime software, click Assignments ➤ Settings.

2. Under the Category list, click Power Analyzer Settings.

3. Turn on the Use input file(s) to initialize toggle rates and static
probabilities during power analysis option.

4. Click Add.

5. In the File name and Entity fields, browse to the necessary files.

6. Under Simulation period, turn on VCD file and Limit VCD period options.

7. In the Start time and End time fields, specify the desired start and end time.

8. Click OK.

You can also use the following Tcl or .qsf assignment to specify .vcd files:

set_global_assignment -name POWER_INPUT_FILE_NAME "test.vcd" -section_id test.vcd
set_global_assignment -name POWER_VCD_FILE_START_TIME "10 ns" -section_id
test.vcd
set_global_assignment -name POWER_VCD_FILE_END_TIME "1000 ns" -section_id
test.vcd
set_instance_assignment -name POWER_READ_INPUT_FILE test.vcd -to test_design

1.5.6. Vectorless Estimation Power Analysis Flow

For some device families, the Power Analyzer automatically derives estimates for
signal activity on nodes with no simulation or user-entered signal activity data.

Vectorless estimation statistically estimates the signal activity of a node based on the
signal activities of nodes feeding that node, and on the actual logic function that the
node implements. Vectorless estimation cannot derive signal activities for primary
inputs. Vectorless estimation is accurate for combinational nodes, but not for
registered nodes. Therefore, the Power Analyzer requires simulation data for at least
the registered nodes and I/O nodes for accuracy.

1.6. Scripting Support

You can run procedures and create settings described in this chapter in a Tcl script.
Alternatively, you can run procedures at a command prompt. For more information
about scripting command options, refer to the Quartus Prime Command-Line and Tcl
API Help browser. To run the Help browser, type the following command at the
command prompt:

quartus_sh --qhelp

Related Information

Quartus Prime Pro Edition Settings File Reference Manual

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

27

https://www.intel.com/content/www/us/en/docs/programmable/683296.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.1. Running the Power Analyzer from the Command–Line

The executable to run the Power Analyzer is quartus_pow. For a complete listing of
all command–line options supported by quartus_pow, type the following command at
a system command prompt:

quartus_pow --help

or

quartus_sh --qhelp

The following lists the examples of using the quartus_pow executable. Type the
command listed in the following section at a system command prompt:

Note: These examples assume that operations are performed on Quartus Prime project
called sample.

• To customize the name of the generated EPE File:

quartus_pow sample --output_epe=sample.csv ←

• To customize the name of the generated Power and Thermal Calculator file:

quartus_pow sample --output_ptc=sample.qptc ←

• To instruct the Power Analyzer to use a .vcd as input (sample.vcd):

quartus_pow sample --input_vcd=sample.vcd ←

• To instruct the Power Analyzer to use two .vcd files as input files (sample1.vcd
and sample2.vcd), perform glitch filtering on the .vcd and use a default input
I/O toggle rate of 10,000 transitions per second:

quartus_pow sample --input_vcd=sample1.vcd --input_vcd=sample2.vcd \
--vcd_filter_glitches=on --\
default_input_io_toggle_rate=10000transitions/s

• To instruct the Power Analyzer not to use an input file, specify a default input I/O
toggle rate of 60%, with vectorless estimation off, and a default toggle rate of
20% on all remaining signals:

quartus_pow sample --no_input_file --default_input_io_toggle_rate=60% \
--use_vectorless_estimation=off --default_toggle_rate=20%

Note: No command–line options are available to specify the information found on the
Operating Settings and Conditions and Power Analyzer Settings ➤ Thermal
pages. Use the Quartus Prime GUI to specify these options.

The quartus_pow executable creates a report file, <revision name>.pow.rpt. You
can locate the report file in the main project directory. The report file contains the
same information that the Power Analyzer Compilation Report.

Related Information

Viewing Power Analysis Reports on page 19

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7. Power Analysis Revision History

The following revision history applies to this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 Updated Agilex 7 to Agilex FPGA portfolio in several topics to include
support for Agilex 5 devices.

2023.12.04 23.4 • Revised the information for Device power characteristics in the Settings
for Power Analysis.

2023.10.02 23.3 • Updated the section "Thermal Map Visualization" with additional
information in Viewing Power Analysis Reports.

• Updated the Power Analyzer Settings image and relevant description in
Settings for Power Analysis.

• Updated the product family name to "Intel Agilex 7."

2022.12.12 22.4 • Updated screenshot in Power Analysis topic.
• Revised description of On-Chip Power Dissipation by Hierarchy report in

Viewing Power Analysis Reports topic.
• Removed Write out Power and Thermal Calculator file option description

from Settings for Power Analysis topic. This setting is replaced by
Power and Thermal Calculator File Name option.

• Revised Running the Power Analyzer topic for Power and Thermal
Calculator File Name option.

• Revised Running the Power Analyzer from the Command Line for new
GUI option and removal of obsolete commands.

2022.06.22 21.4 In the Power Analysis Tools topic, added statements about Quartus Prime
Power Analyzer accuracy for Stratix 10 and Intel Agilex designs.

2021.12.13 21.4 • In the Settings for Power Analysis topic, modified a Thermal Settings
entry in the Power Analyzer and Thermal Settings table. Specifically,
changed Apply Recommended Margin to Apply Additional Margin, and
modified the description accordingly.

• In the Viewing Power Analysis Reports topic, added the Crypto block
type to the On-Chip Power Dissipation by Block Type section.

2021.10.04 21.3 Recast the note in the Power Analysis Tools topic for greater clarity.

2021.03.29 21.1 • In the Power Analysis topic, updated the figure.
• In the Running the Power Analyzer topic, modified step 3 and removed

the figure following step 9.
• Changed the title of the Device Operating Condition Settings for Power

Analysis topic to Settings for Power Analysis, updated the existing
figure and added an additional figure, recast the existing table and
added an additional table.

• In the Generating Signal Activity Data for Power Analysis topic,
modified step 5 and the figure within step 6.

• In the Viewing Power Analysis Reports topic, made minor changes to
the first paragraph of the Thermal Map Visualization section.

• In the Running the Power Analyzer from the Command–Line topic,
modified the note at the bottom of the topic.

2020.12.07 20.3.0 Added note to the Specifying the Default Toggle Rate topic.

2020.10.05 20.3.0 • Added mention of gate-level simulation to the Specifying Power
Analyzer Input, Specifying Signal Activity Data, Using Simulation Signal
Activity Data in Power Analysis, and Complete Design Simulation Power
Analysis Flow topics,

• Added a sentence to the RTL Simulation Limitation and Avoiding
Simulation Node Name Match topics.

• Added a Thermal Map Visualization section to the Viewing Power
Analysis Reports topic.

continued...

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2020.04.13 20.1.0 Added information about the Intel FPGA Power and Thermal Calculator to
the following topics:
• Power Analysis
• Power Analysis Tools
• Running the Power Analyzer from the Command–Line

2019.12.04 19.1.0 • Removed references to entity-specific toggle rates in "Specifying Toggle
Rates for Specific Nodes." Toggle rates must be either global or node
specific.

2019.08.02 19.1.0 • Clarified wording of statements about .vcd files in "Simulation Glitch
Filtering" topic.

• Corrected typo in "Specifying the Default Toggle Rate" topic.
• Corrected typo in "Running the Power Analyzer from the Command

Line" topic.
• Improved explanation in "Generating Standard Delay Output for Power

Analysis" topic.

2019.07.03 19.1.0 • Corrected broken links to Help.

2019.04.01 19.1.0 • Described new support for generation of SDO for use in power analysis.
• Retitled some topic headings for greater clarity.
• Changed the order of some topics for improved flow of information.
• Added descriptions of Power Savings Summary and Parallel Compilation

power analysis reports.
• Added new Power Analysis flow diagrams.

2018.09.24 18.1.0 • General chapter reorganization.
• Moved Factors Affecting Power Consumption to chapter: Power

Optimization.
• Updated figure: Power Analyzer High-level Flow.
• Divided topic: Types of Power Analysis into two topics: Power

Estimations and Design Requirements and Design Activity and Power
Analysis.

• Updated figure: Power Analysis Tools from Design Concept through
Design Implementation and renamed to: Estimation Accuracy for
Different Inputs and Power Analysis Tools

• Removed content referring to device families not supported in Intel
Quartus Prime Pro Edition.

2018.06.11 18.0.0 • In Comparison of the EPE and the Intel Quartus Prime Power Analyzer,
updated the data output types that the Power Analyzer supports.

• In Comparison of the EPE and the Intel Quartus Prime Power Analyzer,
added row about estimation of transceiver power for features that you
enable only through dynamic reconfiguration.

• Specified features not supported by the Power Analyzer.

2017.05.08 17.0.0 Removed references to PowerPlay name. Power analysis occurs in the Intel
Quartus Prime Power Analyzer.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Removed support for .vcd generation by the Compiler. Generate .vcd

files for power estimation in your EDA simulator.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1.0 • Removed Signal Activities from Full Post-fit Netlist (Timing) Simulation
and Signal Activities from Full Post-fit Netlist (Zero Delay) Simulation
sections as these are no longer supported.

• Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

continued...

1. Power Analysis

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2014.08.18 14.0a10.0 Updated "Current Drawn from Voltage Supplies" to clarify that for SoC
devices or for Arria V SoC and Cyclone V SoC devices, there is no
standalone ICC_AUX_SHARED current drawn information. The
ICC_AUX_SHARED is reported together with ICC_AUX.

November 2012 12.1.0 • Updated “Types of Power Analyses” on page 8–2, and “Confidence
Metric Details” on page 8–23.

• Added “Importance of .vcd” on page 8–20, and “Avoiding Power
Estimation and Hardware Measurement Mismatch” on page 8–24

June 2012 12.0.0 • Updated “Current Drawn from Voltage Supplies” on page 8–22.
• Added “Using the HPS Power Calculator” on page 8–7.

November 2011 10.1.1 • Template update.
• Minor editorial updates.

December 2010 10.1.0 • Added links to Quartus II Help, removed redundant material.
• Moved “Creating PowerPlay EPE Spreadsheets” to page 8–6.
• Minor edits.

July 2010 10.0.0 • Removed references to the Quartus II Simulator.
• Updated Table 8–1 on page 8–6, Table 8–2 on page 8–13, and Table 8–

3 on page 8–14.
• Updated Figure 8–3 on page 8–9, Figure 8–4 on page 8–10, and Figure

8–5 on page 8–12.

November 2009 9.1.0 • Updated “Creating PowerPlay EPE Spreadsheets” on page 8–6 and
“Simulation Results” on page 8–10.

• Added “Signal Activities from Full Post-fit Netlist (Zero Delay)
Simulation” on page 8–19 and “Generating a .vcd from Full Post-fit
Netlist (Zero Delay) Simulation” on page 8–21.

• Minor changes to “Generating a .vcd from ModelSim Software” on page
8–21.

• Updated Figure 11–8 on page 11–24.

March 2009 9.0.0 • This chapter was chapter 11 in version 8.1.
• Removed Figures 11-10, 11-11, 11-13, 11-14, and 11-17 from 8.1

version.

November 2008 8.1.0 • Updated for the Quartus II software version 8.1.
• Replaced Figure 11-3.
• Replaced Figure 11-14.

May 2008 8.0.0 • Updated Figure 11–5.
• Updated “Types of Power Analyses” on page 11–5.
• Updated “Operating Conditions” on page 11–9.
• Updated “PowerPlay Power Analyzer Compilation Report” on page 11–

31.
• Updated “Current Drawn from Voltage Supplies” on page 11–32.

1. Power Analysis

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Power Optimization
The Quartus Prime software offers power-driven compilation to fully optimize device
power consumption. Power-driven compilation focuses on reducing the design’s total
power consumption in synthesis and place-and-route stages.

This chapter focuses on design optimization options and techniques that help reduce
core dynamic power and I/O power. In addition to these techniques, there are
additional power optimization techniques available for specific devices, including
Programmable Power Technology and Device Speed Grade Selection.

Related Information

• Power Analysis on page 4

• AN 711: Power Reduction Features in Arria 10 Devices

• Intel FPGA Literature and Technical Documentation

2.1. Factors Affecting Power Consumption

Understanding the following factors that affect power consumption allows you to use
the Power Analyzer and interpret its results effectively:

Design Activity and Power Analysis on page 32

Device Selection on page 32

Environmental Conditions on page 33

Device Resource Usage on page 33

Signal Activity on page 34

2.1.1. Design Activity and Power Analysis

Power consumption of a device also depends on the design's activity over time. Static
power (PSTATIC) is the thermal power that a chip dissipates independent of user clocks.
PSTATIC includes leakage power from all FPGA functional blocks, except for I/O DC bias
power and transceiver DC bias power, which are accounted for in the I/O and
transceiver sections. Dynamic power is the additional power consumption of a device
due to signal activity or switching.

2.1.2. Device Selection

Device families have different power characteristics. Many parameters affect the
device family power consumption, including choice of process technology, supply
voltage, electrical design, and device architecture.

683174 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683566.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-documentation-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Power consumption also varies in a single device family. A larger device with more
transistors consumes more static power than a smaller device in the same family. In
devices that employ global routing architectures, dynamic power can also increase
with device size.

The choice of device package also affects the ability of the device to dissipate heat,
and you may need to use a different cooling solution to comply with junction
temperature constraints.

Process variation can affect power consumption. Process variation primarily impacts
static power, because sub-threshold leakage current varies exponentially with changes
in transistor threshold voltage. Therefore, you must consult device specifications for
static power, and not rely on empirical observation. Process variation has a weak
effect on dynamic power.

2.1.3. Environmental Conditions

The main environmental parameters affecting junction temperature are operating
temperature and the cooling solution. Operating temperature primarily affects device
static power consumption. Higher junction temperatures result in higher static power
consumption. The device thermal power and cooling solution that you use must keep
the device junction temperature within the maximum operating range for the device.

The following table lists the environmental conditions that influence power
consumption.

Table 8. Environmental Conditions that Affect Power Consumption

Environmental Condition Description

Airflow Measures how quickly the device replaces heated air from the vicinity of the device with air
at ambient temperature.
You can either specify airflow as “still air” when you are not using a fan, or as the linear
feet per minute rating of the fan in the system. Higher airflow decreases thermal
resistance.

Heat Sink and Thermal
Compound

A heat sink allows more efficient heat transfer from the device to the surrounding area
because of its large surface area exposed to the air. The thermal compound that interfaces
the heat sink to the device also influences the rate of heat dissipation. The case-to-ambient
thermal resistance (θCA) parameter describes the cooling capacity of the heat sink and
thermal compound employed at a given airflow. Larger heat sinks and more effective
thermal compounds reduce θCA.

Junction Temperature The junction temperature of a device is equal to:

TJunction=TAmbient+PThermal·θJA

in which θJA is the total thermal resistance from the device transistors to the environment,
in degrees Celsius per watt. The value θJA is equal to the sum of the junction-to-case
(package) thermal resistance (θJC), and the case-to-ambient thermal resistance (θCA) of
the cooling solution.

Board Thermal Model The junction-to-board thermal resistance (θJB) is the thermal resistance of the path through
the board, in degrees Celsius per watt. To compute junction temperature, you can use this
board thermal model along with the board temperature, the top-of-chip θJA and ambient
temperatures.

2.1.4. Device Resource Usage

Power consumption depends on the number and types of device resources that a
design uses.

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.4.1. Number, Type, and Loading of I/O Pins

Output pins drive off-chip components, resulting in high-load capacitance that leads to
a high-dynamic power per transition. Terminated I/O standards require external
resistors that draw constant (static) power from the output pin.

2.1.4.2. Number and Type of Hard Logic Blocks

A design with more logic elements (LEs), multiplier elements, memory blocks,
transceiver blocks, or HPS system tends to consume more power than a design with
fewer circuit elements. The operating mode of each circuit element also affects its
power consumption.

For example, a DSP block performing 18 × 18 multiplications and a DSP block
performing multiply-accumulate operations consume different amounts of dynamic
power, because of different amounts of charging internal capacitance on each
transition. The operating mode of a circuit element also affects static power.

2.1.4.3. Number and Type of Global Signals

Global signal networks span large portions of the device and have high capacitance,
resulting in significant dynamic power consumption. The type of global signal is
important as well. Global clocks cover the entire device, whereas quadrant clocks only
span one-fourth of the device. Clock networks that span smaller regions have lower
capacitance and tend to consume less power. The location of the logic array blocks
(LABs) driven by the clock network can also have an impact because the Quartus
Prime software automatically disables unused branches of a clock.

2.1.5. Signal Activity

The behavior of each signal in the design is an important factor in estimating power
consumption. To get accurate results from the power analysis, the signal activity must
represent the actual operating behavior of the design.

The two most important behaviors of a signal are toggle rate and static probability.

2.1.5.1. Toggle Rate

The toggle rate of a signal is the average number of times that the signal changes
value per unit of time. The units for toggle rate are transitions per second, and a
transition is a change from 1 to 0, or 0 to 1.

Note: Inaccurate signal toggle rate data is the largest source of power estimation error.

Dynamic power increases linearly with the toggle rate as you charge the board trace
model more frequently for logic and routing. The Quartus Prime software models full
rail-to-rail switching. For high toggle rates, especially on circuit output I/O pins, the
circuit can transition before fully charging the downstream capacitance. The result is a
slightly conservative prediction of power by the Power Analyzer.

Note: The transceiver I/O toggle rate is determined by the XCVR data rate value specified in
your IP catalog settings. Do not include transceiver I/O toggle rate in the default
toggle rates that you specify in the Power Analyzer.

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Specifying the Default Toggle Rate on page 17

2.1.5.2. Static Probability

The static probability of a signal is the fraction of time that the signal is logic 1 during
device operation. Static probability ranges from 0 (always at ground) to 1 (always at
logic-high).

The static probability of input signals impacts the design's static power consumption,
due to state-dependent leakage in routing and logic. This effect becomes more
important for smaller geometries. In output I/O standards that drive termination
resistors, the static power also depends on the static probability on I/O pins.

2.2. Design Space Explorer II for Power-Driven Optimization

The Design Space Explorer II (DSE II) tool allows you to find and implement the
project settings that result in best power behavior.

The DSE II offers two options in Exploration mode that target power optimization:
Power (High Effort) and Power (Aggressive). In both cases, the target is an
overall improvement in the design's power; specifically, reducing the total thermal
power in the design.

When the optimization targets power, the DSE II runs the Quartus Prime Power
Analyzer for every group of settings. The resultant reports help you debug the design
and determine trade-offs between power requirements and performance optimization.

Related Information

• Design Space Explorer II
In Quartus Prime Pro Edition User Guide: Design Optimization

• Launch Design Space Explorer Command (Tools Menu)
In Quartus Prime Help

2.3. Power-Driven Compilation

The standard Quartus Prime compilation flow consists of Analysis and Synthesis,
placement and routing, Assembly, and Timing Analysis. Power-driven compilation
takes place at the Analysis and Synthesis and Place-and-Route stages.

Quartus Prime software settings that control power-driven compilation are located in
the Power optimization during synthesis list in the Advanced Settings
(Synthesis) dialog box, and the Power optimization during fitting list on the
Advanced Fitter Settings dialog box. The following sections describes these power
optimization options at the Analysis and Synthesis and Fitter levels.

2.3.1. Power-Driven Synthesis

Synthesis netlist optimization occurs during the synthesis stage of the compilation
flow. You can apply these settings on a project or entity level.

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

35

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/optimize-settings-with-design-space.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#optimize/dse/dse_com_launch_DSE.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Power Optimization During Synthesis logic option determines how
aggressively Analysis & Synthesis optimizes the design for power. To access this option
at a project level, click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Synthesis).

Table 9. Power Optimization During Synthesis Options

Settings Description Optimization Techniques
Included

Off The Compiler does not perform netlist, placement, or
routing optimizations to minimize power.

-

Normal compilation
(Default)

The Compiler applies low compute effort algorithms to
minimize power through netlist optimizations that do not
reduce design performance.

• Memory block
optimization

• Power-aware logic
mapping

Extra effort Besides the techniques in the Normal compilation setting,
the Compiler applies high-compute-effort algorithms to
minimize power through netlist optimizations. Selecting this
option might impact performance.

• Memory block
optimization

• Power-aware logic
mapping

• Power-aware memory
balance

You can also control memory optimization options from the Quartus Prime Settings
dialog box. The Default Parameters page allows you to edit the Low_Power_Mode
parameter. The settings for this parameter are equivalent to the values of the Power
Optimization During Synthesis logic options. The Low_Power_Mode parameter
always takes precedence over the Optimize Power for Synthesis option for power
optimization on memory.

Table 10. Low Power Mode Parameter Options

Parameter Value Equivalent Setting in Power Optimization During
Synthesis Logic Option

None Off

Auto Normal compilation

All Extra effort

Related Information

• Clock Enable in Memory Blocks on page 42

• Quartus Prime Compiler Settings on page 39

2.3.1.1. Memory Block Optimization

Memory optimization involves moving user-defined read/write enable signals to
associated read-and-write clock enable signals for all memory types.

Memory blocks can represent a large fraction of total design dynamic power.
Minimizing the number of memory blocks accessed during each clock cycle can
significantly reduce memory power.

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22. Memory Block Transformation

Clock

DataData Q Q

Wren Write
Enable

Read
Enable Rden

Write
Address

Write
Address

Read
Address

Read
Address

Wr Clk
Enable

Rd Clk
EnableVCC VCC

Swap Swap

Clock

DataData Q Q

Wren

Write
Enable

Read
Enable

Rden

Write
Address

Write
Address

Read
Address

Read
Address

Wr Clk
Enable

Rd Clk
Enable

VCC VCC

Before Transformation After Transformation

In the default implementation of a simple dual-port memory block, write-clock enable
signals and read-clock enable signals connect to VCC, making both read and write
memory ports active during each clock cycle.

Memory transformation moves the read-enable and write-enable signals to the
respective read-clock enable and write-clock enable signals. This technique reduces
the design’s memory power consumption, because memory ports are shut down when
they are not accessed.

2.3.1.2. Power-Aware Logic Mapping

Power-aware logic mapping reduces power by rearranging the logic during synthesis to
eliminate nets with high switching rates.

2.3.1.3. Power-Aware Memory Balancing

Power-aware memory balancing chooses the best configuration for a memory
implementation and provides optimal power saving by determining the required
number of memory blocks, decoder, and multiplexer circuits. When the design does
not specify target-embedded memory blocks for the design’s memory functions, the
power-aware balancer automatically selects them during memory implementation.

The Compiler includes this optimization technique when the Power Optimization
During Synthesis logic option is set to Extra effort.

There is a trade-off between power saved by accessing fewer memories and power
consumed by the extra decoder and multiplexor logic. The Quartus Prime software
automatically balances the power savings against the costs to choose the lowest
power configuration for each logical RAM. The benchmark data shows that the power-
driven synthesis can reduce memory power consumption by as much as 60% in
Stratix devices.

You can also set the MAXIMUM_DEPTH parameter manually to configure the
memory for low power optimization. This technique is the same as the power-aware
memory balancer, but it is manual rather than automatic like the Extra effort setting
in the Power optimization list. The MAXIMUM_DEPTH parameter always takes
precedence over the Optimize Power for Synthesis options for power optimization
on memory optimization. You can set the MAXIMUM_DEPTH parameter for memory
modules manually in the Intel FPGA IP instantiation or in the IP Catalog.

Related Information

• RAM and ROM Parameter Settings
In Stratix 10 Embedded Memory User Guide

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

37

https://www.intel.com/content/www/us/en/docs/programmable/683423/current/ram-and-rom-parameter-settings.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Maximum Block Depth Configuration
In Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM:
2-PORT) User Guide

2.3.2. Power-Driven Fitter

The Quartus Prime software allows you to control the power-driven compilation setting
of the Fitter on a project-wide basis. The Advanced Fitter Settings dialog box page
provides the Power optimization during Fitting logic option, that determines how
aggressively the Fitter optimizes the design for power.

Table 11. Power-Driven Fitter Option

Option Description

Off The Fitter does not perform optimizations to minimize power.

Normal compilation
(Default)

The Fitter applies low compute effort algorithms to minimize power through placement and
routing optimizations. These techniques do not reduce design performance.
Includes DSP optimizations that create power-efficient DSP block configurations for DSP
functions.

Extra effort Besides the optimization techniques of the Normal Compilation option, the Fitter applies
high compute effort algorithms to minimize power through placement and routing
optimizations. These techniques might impact performance.
The Extra effort setting for the Fitter requires extensive effort to optimize the design for
power and can increase compilation time.

The Extra effort setting the Fitter works to minimize power even after the design
meets timing requirements by moving the logic closer during placement to localize
high-toggling nets and choosing routes with low capacitance.

The Extra effort setting uses a Value Change Dump (.vcd) file that guides the Fitter
to fully optimize the design for power, based on the signal activity of the design. The
best power optimization during fitting results from using the most accurate signal
activity information. If there is no .vcd file, the Quartus Prime software estimates the
signal activities from the settings in the Power Analyzer Settings page in the
Settings dialog box, such as assignments, clock assignments, and vectorless
estimation values.

Related Information

Assignment Editor Options on page 40

2.3.3. Area-Driven Synthesis

Using area optimization rather than timing or delay optimization during synthesis
saves power because you use fewer logic blocks. Using less logic usually means less
switching activity.

The Quartus Prime software provides Speed, Balanced, or Area for the
Optimization Technique option. You can also specify this logic option for specific
modules in your design with the Assignment Editor in cases where you want to reduce
area using the Area setting (potentially at the expense of register-to-register timing
performance) while leaving the default Optimization Technique setting at Balanced
(for the best trade-off between area and speed for certain device families). The Speed
Optimization Technique can increase the resource usage of your design if the
constraints are too aggressive and can also result in increased power consumption.

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

38

https://www.intel.com/content/www/us/en/docs/programmable/683240/current/maximum-block-depth-configuration.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Assignment Editor Options on page 40

2.3.4. Gate-Level Register Retiming

You can also use gate-level register retiming to reduce circuit switching activity.
Retiming shuffles registers across combinational blocks without changing design
functionality.

The Perform gate-level register retiming option in the Quartus Prime software
enables the movement of registers across combinational logic to balance timing,
allowing the software to trade off the delay between critical and noncritical paths.

Retiming uses fewer registers than pipelining. In this example of gate-level register
retiming, the 10 ns critical delay is reduced by moving the register relative to the
combinational logic, resulting in the reduction of data depth and switching activity.

Figure 23. Gate-Level Register Retiming

10 ns 5 ns

7 ns 8 ns

Before

After

Gate-level register retiming makes changes at the gate level. If you are using an atom
netlist from a third-party synthesis tool, you must also select the Perform WYSIWYG
primitive resynthesis option to undo the atom primitives to gates mapping (so that
register retiming can be performed), and then to remap gates to Intel primitives.

Related Information

Netlist Optimizations and Physical Synthesis
In Quartus Prime Pro Edition User Guide: Design Optimization

2.3.5. Quartus Prime Compiler Settings

The Quartus Prime software provides settings that optimize power for the full design.

To set the optimization mode on the Quartus Prime software, click Assignments ➤
Settings ➤ Compiler Settings.

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

39

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/netlist-optimizations-and-physical-synthesis-29493.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. Compiler Settings

Aggressive Power (reduces performance)

Makes aggressive effort to optimize synthesis for low power. The Compiler further
reduces the routing usage of signals with the highest specified or estimated toggle
rates, saving additional dynamic power but potentially affecting performance.

2.3.6. Assignment Editor Options

The Assignment Editor allows you to select Optimization Technique & Synthesis Power
Optimization for individual modules. With this feature, you can focus on the parts of
the design that require more work.

The Optimization Technique logic option specifies the overall optimization goal for
Analysis & Synthesis: attempt to maximize performance or minimize logic usage.

Figure 25. Optimization Technique Options

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Power Optimization During Synthesis logic option determines how
aggressively Analysis & Synthesis optimizes the design for power.

Figure 26. Power Optimization During Synthesis Options

Table 12. Power Optimization During Synthesis Options

Settings Description Optimization Techniques
Included

Off The Compiler does not perform netlist, placement, or
routing optimizations to minimize power.

-

Normal compilation
(Default)

The Compiler applies low compute effort algorithms to
minimize power through netlist optimizations that do not
reduce design performance.

• Memory block
optimization

• Power-aware logic
mapping

Extra effort Besides the techniques in the Normal compilation setting,
the Compiler applies high-compute-effort algorithms to
minimize power through netlist optimizations. Selecting this
option might impact performance.

• Memory block
optimization

• Power-aware logic
mapping

• Power-aware memory
balance

Related Information

• Area-Driven Synthesis on page 38

• Power-Driven Fitter on page 38

2.4. Design Guidelines

During FPGA design implementation, you can apply the following design techniques to
reduce power consumption. The results of these techniques are different from design
to design.

2.4.1. Clock Power Management

Clocks represent a significant portion of dynamic power consumption due to their high
switching activity and long paths. Actual clock-related power consumption is higher,
because the power consumption of a block includes local clock distribution within logic,
memory, and DSP or multiplier blocks.

The Quartus Prime software optimizes clock routing power automatically, enabling only
those portions of the clock network that are necessary to feed downstream registers.

2.4.1.1. Clock Gating

For designs containing logic that is not operational 100% of the time, you can reduce
power consumption by gating (disabling) the clock that feeds that logic.

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This solution requires that the logic in question have its own dedicated clock source.
Clock duplication (such as introducing a duplicate PLL clock output) is necessary if the
logic in question does not have its own dedicated clock source.

The following topics describe methods for gating clock networks.

2.4.1.1.1. Root Clock Gate

You can gate each clock network dynamically at the root level, using the Clock Control
Intel FPGA IP Core.

Refer to the Root Clock Gate section of the Clocking and PLL User Guide for your Intel
device.

2.4.1.1.2. Sector Clock Gate

You can gate each clock network dynamically at the clock sector level using the Clock
Control Intel FPGA IP Core.

Refer to the Sector Clock Gate section of the Clocking and PLL User Guide for your
Intel device.

2.4.1.1.3. I/O PLL Clock Gate

You can dynamically gate each of the device's I/O PLL output counters, using I/O PLL
Reconfiguration.

Refer to the I/O PLL Clock Gate section of the Clocking and PLL User Guide for your
Intel device.

2.4.1.2. Clock Enable in Memory Blocks

In memory blocks, power consumption is tied to the clock rate, and is insensitive to
the toggle rate on the data and address lines. Memory consumes approximately 20%
of the core dynamic power in typical designs.

When a memory block is clocked, a sequence of timed events occur within the block to
execute a read or write. The circuitry that the clock controls consumes the same
amount of power, independent of changes in address or data from one cycle to the
next. Thus, the toggle rate of input data and the address bus have no impact on
memory power consumption.

The key to reducing memory power consumption is to reduce the number of memory
clocking events. You can achieve this reduction through network-wide clock gating, or
on a per-memory basis through use of the clock enable signals on the memory ports.

Figure 27. Memory Clock Enable Signal
Logical view of the internal clock of the memory block. Use the appropriate enable signals on the memory to
make use of the clock enable signal instead of gating the clock.

Enable Internal Memory Clk

Clk

0

1

The clock enable signal enables the memory only when necessary, and shuts down for
the rest of the time, reducing the overall memory power consumption. You include
these enable signals when generating the memory block function.

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. Clock Enable in RAM 2-Port

The Quartus Prime software automatically chooses the best design memory
configuration for optimal power. However, you can set the MAXIMUM_DEPTH
parameter for memory modules during the IP core instantiation.

Figure 29. RAM 2-Port Maximum Depth

Related Information

• Power-Driven Compilation on page 35

• Clock Power Management on page 41

• Clocking Modes and Clock Enable
In Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM:
2-PORT) User Guide

2.4.1.3. LAB Clock Power

Another contributor to clock power consumption are LAB clocks, which distribute clock
to the registers within a LAB. LAB clock power can be the dominant contributor to
overall clock power.

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

43

https://www.intel.com/content/www/us/en/docs/programmable/683240/current/clocking-modes-and-clock-enable.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. LAB-Wide Control Signals

6

labclk1 labclk2 labclr2syncload

labclkena1 labclkena2 labclr1 synclr

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Dedicated
LAB Row
Clocks

To reduce LAB-wide clock power consumption without disabling the entire clock tree,
use the LAB-wide clock enable to gate the LAB-wide clock. The Quartus Prime software
automatically promotes register-level clock enable signals to the LAB-level. A shared
gated clock controls all registers within an LAB that share a common clock and clock
enable. To take advantage of these clock enables, use a clock enable construct in the
relevant HDL code for the registered logic.

2.4.1.3.1. LAB-Wide Clock Enable Example

This VHDL code makes use of a LAB-wide clock enable. This clock-gating logic is
automatically turned into an LAB-level clock enable signal.

IF clk'event AND clock = '1' THEN
 IF logic_is_enabled = '1' THEN
 reg <= value;
 ELSE
 reg <= reg;
 END IF;
END IF;

2.4.1.4. Clock Enables

Use clock enables instead of the gated clocks shown below:

Avoid the following form of gated clocks:

assign clk_gate = clk1 & gateA & gateB;
always @ (posedge clk_gate) begin
 sr[N-1:1] <= sr[N-2:0];
 sr[0]<=din1;
end

Use clock enables, such as the following:

assign enable = gateA & gateB;
always @(posedge clk2) begin
 if (enable) begin
 sr[N-1:1] <= sr[N-2:0];

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 sr[0]<=din2;
 end
end

Reduce LAB-wide clock power consumption without disabling the entire clock tree, use
the LAB-wide clock enable to gate the LAB-wide clock.

always @(posedge clk)
begin
 if (ena)
 temp <= dataa;
 else
 temp <= temp;
 end
end

2.4.1.5. Global Signals

Intel FPGAs have different kinds of global signal resources available. Global signals can
span the entire chip or smaller regions. Choose the clock networks that can cover all
the fanout on a specific domain. For example, you can reduce clock power by
switching from a clock network that spans the entire chip to one quarter of the chip,
provided all the fanout for that clock is within that region of the chip.

2.4.1.5.1. Viewing Clock Details in the Chip Planner

1. Open the Chip Planner (Tools ➤ Chip Planner).

2. In the Task pane, under Clock Reports, double-click Report Clock Details.

Figure 33. Chip Planner Task Pane

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 34. Report Clock Details

3. Click OK.
The Report pane generates the Clock folder.

4. Expand the Clock folder and select Used spine clock regions to highlight on the
Chip planner.

5. In the Layers Settings pane, turn on Regional/Periphery clock region to see
whether used spine clock regions are within.

Figure 35. Clock Highlight in Chip Planner
This example uses a Regional clock Region instead of a global signal.

2.4.1.6. Merge Clocks

Evaluate the possibility of merging clocks and PLLs in the design.

Design 2clks & 2PLLs 1 Clk & 1 PLL

Oc_dma_stamp25 6.079W 5.46W

• 2clks & 2PLLs

Clk1:350Mhz, Fanout 46788

Clk2: 365Mhz, Fanout 2450

• 1Clk & 1PLL

Merge clks

clk: 365Mhz, Fanout 51277

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.2. Pipelining and Retiming

Glitches are unnecessary and unpredictable temporary logic switches at the output of
combinational logic. Designs with glitches consume more power, because of faster
switching activity. A glitch usually occurs when there is a mismatch in input signal
timing, leading to unequal propagation delay.

For example, consider a 2-input XOR gate where one input changes from 1 to 0, and
moments later the other input changes from 0 to 1. For a short time, both inputs
become 1 (high), resulting in 0 (low) at the output of the XOR gate. Then, when the
second input transition takes place, the XOR gate output becomes 1 (high). Therefore,
before the output becomes stable, the input delay produces a glitch in the output.

Figure 36. XOR Gate Showing Glitch at the Output

XOR (Exclusive OR) Gate

A

B Q

A

B

Q

Timing Diagram for the 2-Input XOR Gate

Glitch

t

A glitch can propagate to subsequent logic and create unnecessary switching activity,
increasing power consumption. Circuits with many XOR functions, such as arithmetic
circuits or cyclic redundancy check (CRC) circuits, tend to have many glitches if there
are several levels of combinational logic between registers.

Registers stop glitches from propagating through combinational paths. Pipelining is a
technique that breaks combinational paths by inserting registers. By reducing logic-
level numbers between registers, pipelining can result in higher clock speed
operations. However, pipelining increases the latency of a circuit in terms of the
number of clock cycles to a first result.

The following figure shows how pipelining breaks a long combinational path.

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 37. Pipelining Example

Combinational
Logic

Combinational
Logic

Combinational
Logic

Short Logic
Depth

Short Logic
Depth

Long Logic
Depth

Non-Pipelined

Pipelined

This reduction in switching activity lowers power dissipation in combinational logic.
However, for designs with few glitches, pipelining can increase power consumption by
adding unnecessary registers. Pipelining can also increase resource utilization.

2.4.3. Architectural Optimization

Design-level architectural optimizations allow you to take advantage of device
architecture features. These features include dedicated memory, DSPs, or multiplier
blocks that can perform memory or arithmetic-related functions. You can reduce
power consumption by choosing blocks in place of LUTs. For example, you can build
large shift registers from RAM-based FIFO buffers instead of building the shift registers
from the LE registers.

Related Information

Timing Closure and Optimization
In Quartus Prime Pro Edition User Guide: Design Optimization

2.4.4. I/O Power Guidelines

The Power Analyzer calculates I/O power using the default capacitive load set for the
I/O standard in the Capacitive Loading page of the Device and Pin Options dialog
box. Any other components defined in the board trace model are not taken into
account for the power measurement.

Nonterminated I/O Standards

Nonterminated I/O standards such as LVTTL and LVCMOS have a rail-to-rail output
swing. The voltage difference between logic-high and logic-low signals at the output
pin is equal to the VCCIO supply voltage. If the capacitive loading at the output pin is
known, the following expression determines the dynamic power consumed in the I/O
buffer:

P = F ⋅ C ⋅ V 2
2

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

48

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/timing-closure-and-optimization.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

where:

• F is the output transition frequency

• C is the total load capacitance being switched

• V is equal to VCCIO supply voltage

Because of the quadratic dependence on VCCIO, lower voltage standards consume
significantly less dynamic power.

Transistor-to-transistor logic (TTL) I/O buffers consume very little static power. As a
result, the total power that a LVTTL or LVCMOS output consumes is highly dependent
on load and switching frequency.

Resistively Terminated I/O Standards

In resistively terminated I/O standards like SSTL and HSTL, the output load voltage
swings by a small amount around a bias point. The dynamic power equation above is
valid as well, but V is the actual load voltage swing. This voltage is much smaller than
VCCIO, resulting in lower dynamic power when comparing to nonterminated I/O under
similar conditions.

Resistively terminated I/O standards dissipate significant static (frequency-
independent) power, because the I/O buffer is constantly driving current into the
resistive termination network. However, the lower dynamic power of these I/O
standards means they often have lower total power than LVCMOS or LVTTL for high-
frequency applications. As a best practice, when using resistively terminated
standards choose the lowest drive strength I/O setting that meets the speed and
waveform requirements to minimize I/O power.

You can save a small amount of static power by connecting unused I/O banks to the
lowest possible VCCIO voltage.

Related Information

Managing Device I/O Pins
In Quartus Prime Pro Edition User Guide: Design Constraints

2.4.5. Dynamically Controlled On-Chip Terminations (OCT)

Dynamic OCT enables series termination (RS) and parallel termination (RT) to
dynamically turn on/off during the data transfer. This feature is especially useful in
FPGAs with external memory interfaces, such as interfacing with DDR memories.

Dynamic OCT eliminates the constant DC power that parallel termination consumes
when transmitting data, reducing power consumption when compared to conventional
termination. Parallel termination is extremely useful for applications that interface with
external memories where I/O standards, such as HSTL and SSTL, are used. Parallel
termination supports dynamic OCT, which is useful for bidirectional interfaces.

For more information about dynamic OCT in specific devices, refer to the Stratix 10
General Purpose I/O User Guide or the Arria 10 Core Fabric and General Purpose I/O
Handbook.

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

49

https://www.intel.com/content/www/us/en/docs/programmable/683641.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 1. Example: Power Saving for a DDR3 Interface with OCT

The static current consumed by parallel OCT is equal to the VCCIO voltage divided by
100 W. For DDR3 interfaces with SSTL-15, the static current per pin is:
1.5V
100W = 15mA

Therefore, the static power is:
1.5V × 15mA = 22.5mW

For an interface with 72 DQ and 18 DQS pins, the static power is:
90pins × 2.25mW = 2.025W

Dynamic parallel OCT disables parallel termination during write operations, so if
writing occurs 50% of the time, the power saved by dynamic parallel OCT is:
50 % × 2.025W = 1.0125W

For more information about dynamic OCT in Stratix IV devices, refer to the chapter in
the Stratix IV Device Handbook.

Related Information

• Dynamic OCT
In Arria 10 Core Fabric and General Purpose I/O Handbook

• Dynamic OCT
In Stratix 10 General Purpose I/O User Guide

2.4.6. Memory Optimization (M20K/MLAB)

M20K memory blocks represent a big part of the power consumption in a design. The
Fitter RAM Summary Report displays the utilization of the memory blocks in different
parts of the design.

Figure 38. Fitter RAM Summary Report

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

50

https://www.intel.com/content/www/us/en/docs/programmable/683461/current/dynamic-oct.html
https://www.intel.com/content/www/us/en/docs/programmable/683518/current/dynamic-oct.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Some guidelines to optimize the use of memories are:

• Port shallow memories from M20K to MLAB.

For example, implement in HDL with ramstyle attribute:

(* ramstyle = "MLAB" *) reg [0:7] my_ram[0:63];

• Avoid read-during-write behavior and set to Don’t care (at the HDL level)
wherever possible.

Read-during-write behavior impact the power of single-port and bidirectional dual-
port RAMs. Don’t care allows an optimization that sets the read-enable signal to
the inversion of the existing write-enable signal (if one exists). This allows the
core of the RAM to shut down, which prevents switching, saving a significant
amount of power.

• Pack input/output registers in M20K.

2.4.6.1. Implementation

Table 13. Single-port Embedded Memory Configurations for Arria 10 Devices
This table lists the maximum configurations that single-port RAM and ROM modes support.

Memory Block Depth (bits) Programmable Width

MLAB 32 x16, x18, or x20

64 (2) x8, x9, x10

M20K 512 x40, x32

1K x20, x16

2K x10, x8

4K x5, x4

8K x2

16K x1

Figure 39. Power numbers from EPE

2.4.6.2. Rd/Wr Enables

Dedicated RAM blocks dissipate most energy whenever the RAM is accessed for a read
or write cycle. You can save power by adding Read/Write enable.

(2) Supported through software emulation and consumes additional MLAB blocks.

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.7. DDR Memory Controller Settings

The External Memory Interfaces Arria 10 FPGA IP provides low power mode settings.
These settings put DDR memory in power saving mode when the controller is idle,
providing power savings on external memory DDR. The Enable Auto Power-Down
and Auto Power-Down Cycles settings enable this capability.

Low Power Mode Settings

• Enable Auto Power-Down—directs the controller to place the memory device in
power-down mode after a specific number of idle controller clock cycles. You can
configure the idle wait time. All ranks must be idle to enter auto power-down.

• Auto Power-Down Cycles—specifies the number of cycles the controller must be
IDLE before entering the power down state. You determine the number based on
the traffic pattern. If the number is too small, the control enters power down too
frequently, affecting efficiency. The Arria 10 device family supports from 1 to
65534 cycles.

Figure 40. Arria 10 EMIF Controller Parameters

Related Information

Arria 10 EMIF IP DDR3 Parameters: Controller
In External Memory Interfaces Arria 10 FPGA IP User Guide

2.4.8. DSP Implementation

When you maximize the packing of DSP blocks, you reduce Logic Utilization, power
consumption, and increase efficiency. The HDL coding style grants you control of the
DSP resources available in the FPGA.

Example 2. Implement Multiplier + Accumulator in 1 DSP

always @ (posedge clk)
begin
 if (ena)
 begin
 dataout <= dataa * datab + datac * datad;
 end
end

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

52

https://www.intel.com/content/www/us/en/docs/programmable/683106.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 3. Implement multiplication in 2 DSPs and the adder in LABs

always @ (posedge clk)
begin
 if (ena)
 begin
 mult1 <= dataa * datab;
 mult2 <= datac * datad;
 end
end
always @(posedge clk)
begin
 if (ena)
 begin
 dataout <= mult1 + mult2
 end
end

Related Information

Inferring Multipliers and DSP Functions
In Quartus Prime Pro Edition User Guide: Design Recommendations

2.4.9. Reducing High-Speed Tile (HST) Usage

High-Speed tiles are available in the Arria 10 design family.

1. In the Advanced Fitter Settings pane, The Programmable Power Technology
Optimization logic option controls how the fitter configures tiles to operate in
high-speed mode or low-power mode. Select Minimize Power Only.

Figure 41. Programmable Power Technology Optimization

2. Identify entity modules that use HST by plotting entity modules and HST heatmap
on the Chip Planner and modify the floorplan to reduce usage.

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

53

https://www.intel.com/content/www/us/en/docs/programmable/683082/current/inferring-multipliers-and-dsp-functions.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 42. Entity Modules and HST Heatmap on the Chip Planner

2.4.10. Unused Transceiver Channels

Transceivers in the device degrade over time unless you preserve them. The Quartus
Prime software generates a warning message if a design contains unused XCVRs.

You do not need to preserve transceivers under 8Gbps. For transceivers over 8Gbps,
the best practice is to preserve if there is a possibility for future usage. Otherwise, you
can turn the transceivers off. You enable unused transceivers through dynamic
reconfiguration or a new device programming file.

2.4.11. Periphery Power reduction XCVR Settings

2.4.11.1. Transceiver Settings

• Use min VCCR/T possible (depending on data rate).

• Certain devices have DFE ON by default. If possible, turn off the channel, This
depends on the how lossy is the channel.

• Turn off PDN compensation.
This setting induces jitter, which is necessary to check system tolerance.

• Use one equalizer stage.

DFE Adaptation Equalizer Stage Transmitter High-Speed
Compensation

Disabled Disabled Non-S1 Mode Disabled

Disabled Disabled Non-S1 Mode Enabled

Disabled Disabled N/A Enabled

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.11.2. I/O Current Strength

As a best practice, choose a low voltage I/O standard and the lowest drive strength
that meets the speed requirements.

2.5. Power Optimization Advisor

The Quartus Prime Power Optimization Advisor provides advice and recommendations
based on the current design project settings and assignments. You run the Advisor
after the Power Analyzer.

Figure 43. Power Optimization Advisor

The Power Optimization Advisor organizes the recommendations into stages that
suggest the implementation order. Each recommendation includes a description,
summary of the effect of the recommendation, and the action required to make the
appropriate setting.

An icon indicates whether each recommended setting is made in the current project.
Checkmark icons appear next to recommendations that are already implemented,
warning icons appear next to recommendations that are not followed for this
compilation. Information icons indicate general suggestions.

Recommendations include a link to the location in the Quartus Prime GUI where you
can change the setting. After implementing the recommended changes, recompile
your design. You can verify power results with the Power Analyzer.

2.5.1. Set Realistic Timing Constraints

Timing requirements are too high, the Compiler increases HST Usage. In addition, the
Fitter efforts focus more in timing than power optimization.

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.1.1. Find Timing Information

• To find False or Multi-Cycle Paths, click Report Ignored Constraints in the
Timing Analyzer Tasks pane.

Figure 44. Report Ignored Constraints

• To see a list of the 10 paths with highest delay in the design, in the Reports pane
find Fitter Summary Report ➤ Estimate Delay Added for Hold Timing ➤
Details.

2.5.2. Appropriate Device Family

Choose a device family with the dynamic and static power characteristics best suited
to your application.

Related Information

Device Selection on page 32

2.5.3. Dynamic Power

The recommendations in this section can reduce dynamic power.

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 45. Dynamic Power Recommendations in the Power Optimization Advisor

Related Information

• Design Space Explorer II for Power-Driven Optimization on page 35

• Power-Driven Synthesis on page 35

• Power-Driven Fitter on page 38

• Area-Driven Synthesis on page 38

2.5.4. Static Power

The recommendations in this section can reduce static power dissipation. Static power
is the frequency independent power that a design dissipates, even when the design
clocks are stopped.

Small Device

Use the smallest device which can fit your design.

Related Information

Device Selection on page 32

2.5.5. Appropriate I/O Standards

Choose appropriate I/O Standards to minimize design power.

Related Information

I/O Power Guidelines on page 48

2.5.6. Use RAM Blocks

Implement RAMs and medium to large shift registers in RAM blocks instead of logic
cell registers.

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Memory Optimization (M20K/MLAB) on page 50

2.5.7. Shut Down RAM Blocks

Use the clock enable, read enable and write enable ports on RAM blocks to shut them
down during cycles in which the RAM is not read or written. If your design does not
depend on a specific read result when reading and writing the same address, then
specify "don't care" for the read-during-write parameter in the RAM IP Catalog.

Related Information

• Clock Enable in Memory Blocks on page 42

• Memory Optimization (M20K/MLAB) on page 50

2.5.8. Clock Enables on Logic

Another technique for power reduction is gating clocks when the logic does not require
them. Even though you can build clock-gating logic, this approach can generate clock
glitches in FPGAs using ALMs or LEs.

2.5.9. Pipeline Logic to Reduce Glitching

Long chains of cascaded logic blocks can create glitches due to path delay differences
between the input signals. Inserting Flip-Flops to cut these long chains terminates the
propagation of glitches to consecutive logic cells.

Circuits that heavily use of XIO functions (for example, Cyclic redundancy check) tend
to glitch significantly when cascaded. Add pipeline registers or re-architect to reduce
signal toggling.

Example 4. Glitch Prone Design

Related Information

Pipelining and Retiming on page 47

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6. Power Optimization Revision History

The following revision history applies to this chapter:

Table 14. Document Revision History

Document Version Quartus Prime
Version

Changes

2022.12.12 22.4 Revised wording of Clock Enable topic for clarity.

2022.01.17 21.4 Added Clock Gating topics in the Design Guidelines section.

2021.10.04 21.3 Modified the Compiler Settings topic.

2020.12.07 18.1.0 Added note to the Toggle Rate topic.

2019.08.02 18.1.0 • Corrected typo in "Viewing Clock Details in the Chip Planner" topic.
• Corrected typo in "Pipelining and Retiming" topic.
• Corrected typo in "Implementation" topic.
• Updated "DDR Memory Controller Settings" topic for latest IP name and

to correct typos.
• Corrected typo in "Pipeline Logic to Reduce Glitching" topic.

2018.09.24 18.1.0 • Added topic: Factors Affecting Power Consumption, moved from
chapter: Power Analysis

• Extended content about Power Optimization Advisor with a description
of recommendations.

• Added design guidelines: Memories (M20K/MLAB), DDR Memory
Controller Settings, DSP Implementation, Reducing High-Speed Tile
(HST) Usage, Unused Transceiver Channels, Periphery Power reduction
XCVR Settings

• Removed content referring to device families not supported in Intel
Quartus Prime Pro Edition.

2018.06.11 18.0.0 • Moved general information about the Design Space Explorer (DSE II) to
the Design Optimization User Guide, left a section about using DSE II
for Power-Driven Optimization.

2018.05.07 18.0.0 • Moved general information about the Design Space Explorer (DSE II) to
the Design Optimization User Guide, left a section about using DSE II
for Power-Driven Optimization.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Removed statement of support for gate-level timing simulation.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.
• Updated screenshot for DSE II GUI.
• Added information about remote hosts for DSE II.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

• Updated DSE II GUI and optimization settings.

2014.06.30 14.0.0 Updated the format.

May 2013 13.0.0 Added a note to “Memory Power Reduction Example” on Qsys and SOPC
Builder power savings limitation for on-chip memory block.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Template update.

continued...

2. Power Optimization

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

July 2010 10.0.0 • Was chapter 11 in the 9.1.0 release
• Updated Figures 14-2, 14-3, 14-6, 14-18, 14-19, and 14-20
• Updated device support
• Minor editorial updates

November 2009 9.1.0 • Updated Figure 11-1 and associated references
• Updated device support
• Minor editorial update

March 2009 9.0.0 • Was chapter 9 in the 8.1.0 release
• Updated for the Quartus II software release
• Added benchmark results
• Removed several sections
• Updated Figure 13–1, Figure 13–17, and Figure 13–18

November 2008 8.1.0 • Changed to 8½” × 11” page size
• Changed references to altsyncram to RAM
• Minor editorial updates

May 2008 8.0.0 • Added support for Stratix IV devices
• Updated Table 9–1 and 9–9
• Updated “Architectural Optimization” on page 9–22
• Added “Dynamically-Controlled On-Chip Terminations” on page 9–26
• Updated “Referenced Documents” on page 9–29
• Updated references

2. Power Optimization

683174 | 2024.04.01

Quartus Prime Pro Edition User Guide: Power Analysis and Optimization Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Power Analysis and Optimization Document Archive

For the latest and previous versions of this user guide, refer to Quartus Prime Pro
Edition User Guide: Power Analysis and Optimization. If a software version is not
listed, the guide for the previous software version applies.

683174 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel FPGA devices, and program CPLD and configuration
devices, via connection with an Intel FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683174 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys* that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys*. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

A. Quartus Prime Pro Edition User Guides

683174 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Power Analysis and Optimization

63

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683174%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Pro Edition User
Guide
Design Constraints

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q What's new in this version?
A What's New In This Version on page 4

Q How do I enter my constraints?
A Specifying Design Constraints in the GUI on page 4

Q Can I specify constraints using scripts?
A Constraining Designs with Tcl Scripts on page 15

Q How do I place interface IP?
A Using Interface Planner on page 23

Q How do I constrain the NoC?
A Interface Planner NoC Tool Flow on page 37

Q Can I place IP on specific FPGA tiles?
A Using Tile Interface Planner on page 53

Q How do I place dynamic reconfiguration IP?
A Constraining Dynamic Reconfiguration IP on page 64

Q How do I assign I/O pins?
A Assigning I/O Pins on page 78

Q Can I validate my I/O pins assignments?
A Validating Pin Assignments on page 87

Online Version

Send Feedback UG-20142

683143

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Constraining Designs.. 4
1.1. Specifying Design Constraints in the GUI.. 4

1.1.1. Global Constraints and Assignments...5
1.1.2. Node, Entity, and Instance-Level Constraints... 5
1.1.3. Probing Between Components of the Quartus Prime GUI............................... 12
1.1.4. Specifying Timing Constraints..14

1.2. Constraining Designs with Tcl Scripts.. 15
1.2.1. Create a Project and Apply Constraints... 15
1.2.2. Assigning a Pin.. 16
1.2.3. Generating Quartus Prime Settings Files..16
1.2.4. Synopsys Design Constraint (.sdc) Files.. 18
1.2.5. Tcl-only Script Flows...18

1.3. A Fully Iterative Scripted Flow... 20
1.4. Constraining Designs Revision History...20

2. Interface Planning.. 23
2.1. Using Interface Planner.. 23

2.1.1. Interface Planner User Interface...24
2.1.2. Interface Planner General Tool Flow..28
2.1.3. Interface Planner NoC Tool Flow...37
2.1.4. Interface Planner Reports..44

2.2. Using Tile Interface Planner...53
2.2.1. Tile Interface Planner Terminology..53
2.2.2. Tile Interface Planner Tool Flow..55
2.2.3. Constraining Dynamic Reconfiguration IP.. 64
2.2.4. Tile Interface Planner GUI Reference.. 69

2.3. Interface Planning Revision History.. 72

3. Managing Device I/O Pins.. 75
3.1. I/O Planning Overview..76

3.1.1. Basic I/O Planning Flow.. 76
3.1.2. Integrating PCB Design Tools...76
3.1.3. Intel FPGA Device and I/O Terminology...78

3.2. Assigning I/O Pins..78
3.2.1. Assigning to Exclusive Pin Groups.. 79
3.2.2. Assigning Slew Rate and Drive Strength..79
3.2.3. Assigning I/O Banks... 79
3.2.4. Changing Pin Planner Highlight Colors...80
3.2.5. Showing I/O Lanes...80
3.2.6. Assigning Differential Pins... 81
3.2.7. Entering Pin Assignments with Tcl Commands.. 84
3.2.8. Entering Pin Assignments in HDL Code..84

3.3. Importing and Exporting I/O Pin Assignments..85
3.3.1. Importing and Exporting for PCB Tools.. 85
3.3.2. Migrating Assignments to Another Target Device.. 85

3.4. Validating Pin Assignments..87
3.4.1. I/O Assignment Validation Rules.. 87
3.4.2. I/O Assignment Analysis... 88

Contents

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.3. Understanding I/O Analysis Reports..91
3.5. Verifying I/O Timing...92

3.5.1. Running Advanced I/O Timing..93
3.5.2. Adjusting I/O Timing and Power with Capacitive Loading............................... 96

3.6. Viewing Routing and Timing Delays.. 97
3.7. Scripting API... 97

3.7.1. Generate Mapped Netlist...97
3.7.2. Reserve Pins... 97
3.7.3. Set Location..98
3.7.4. Exclusive I/O Group... 98
3.7.5. Slew Rate and Current Strength...98

3.8. Managing Device I/O Pins Revision History.. 98

4. Quartus Prime Pro Edition User Guide: Design Constraints Document Archives.......... 100

A. Quartus Prime Pro Edition User Guides...101

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Constraining Designs
The design constraints, assignments, and logic options that you specify influence how
the Quartus® Prime Compiler implements your design. The Compiler attempts to
synthesize and place logic in a manner than meets your constraints. In addition,
design constraints also have an impact on how the Timing Analyzer and the Power
Analyzer influence synthesis, placement, and routing.

You can specify design constraints in the GUI, with scripts, or directly in the files that
store the constraints. The Quartus Prime software preserves the constraints that you
specify in the GUI in the following files:

• Quartus Prime Settings file (<project_directory>/<revision_name>.qsf)—
contains project-wide and instance-level assignments for the current revision of
the project, in Tcl syntax. Each revision of a project has a separate .qsf file.

• Synopsys* Design Constraints file (<project_directory>/
<revision_name>.sdc)—the Timing Analyzer uses industry-standard Synopsys
Design Constraint format and stores those constraints in .sdc files.

By combining the syntax of the .qsf files and the .sdc files with procedural Tcl, you
can automate iterations over several different settings, changing constraints and
recompiling.

What's New In This Version

• Applied initial Altera rebranding throughout.

• Importing and Exporting I/O Pin Assignments topic is updated for current list of
file formats supported.

Related Information

• Quartus Prime Pro Edition Settings File Reference Manual
For information about all settings and constraints in the Quartus Prime
software.

• Agilex 7 M-Series FPGA Network-on-Chip (NoC) User Guide

• Quartus Prime Pro Edition User Guide: Scripting

1.1. Specifying Design Constraints in the GUI

Quartus Prime software provides tools that help you manually implement your project.
These tools can also support design visualization, pre-filled parameters, and window
cross probing, facilitating design exploration and debugging.

When you create or update a constraint in the Quartus Prime software, the System
tab of the Messages window displays the equivalent Tcl command. Utilize these
commands as references for future scripted design definition and compilation.

683143 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683296.html
https://www.intel.com/content/www/us/en/docs/programmable/768844.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1.1.1. Global Constraints and Assignments

Global constraints and project settings affect the entire Quartus Prime project and all
the applicable logic in the design. You often define global constraints in early project
development; for example, when running the New Project Wizard. Quartus Prime
software stores global constraints in .qsf files, one for each project revision.

Table 1. Quartus Prime Tools to Set Global Constraints

Setting Type New Project Wizard Device Dialog Box Settings Dialog Box

Project-wide X X X

Synthesis X X X

Fitter X X X

Simulation X

Third-party Tools X

IP Settings X

Related Information

Managing Project Settings
In Quartus Prime Pro Edition User Guide: Getting Started

1.1.2. Node, Entity, and Instance-Level Constraints

Node, entity, and instance-level constraints apply to a subset of the design hierarchy.
These constraints take precedence over any global assignment that affects the same
sections of the design hierarchy. The following tools are available in the Quartus Prime
software to specify node, entity, and instance-level constraints:

Table 2. Quartus Prime Pro Edition Tools to Set Node, Entity and Instance Level
Constraints

Assignment Type Assignment Editor Interface Planner NoC Assignment Editor Chip Planner Pin Planner

Pin X X

Location X X X

Routing X X

NoC X

Simulation X X X

1. Constraining Designs

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

5

https://www.intel.com/content/www/us/en/docs/programmable/683463/current/managing-project-settings.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Although you can specify constraints using a variety of tools, the following table shows
the most effective constraint tools at each design phase:

Table 3. Constraint Tools per Design Phase

Design
Phase

Assignment
Editor

NoC Assignment
Editor

Interface
Planner

Tile
Interface
Planner

Chip
Planner

Timing
Analyzer

Pin
Planner

Pre-
Synthesis

X X X X

Post-
Synthesis

X X X X

Post-Fit X X X X

1.1.2.1. Specify Instance-Specific Constraints in Assignment Editor

Quartus Prime Assignment Editor (Assignments ➤ Assignment Editor) provides a
spreadsheet-like interface for assigning all instance-specific settings and constraints.
To help you explore your design, the Assignment Editor allows you to filter
assignments by node name or category.

Figure 1. Quartus Prime Assignment Editor

Use the Assignment Editor to:

• Add, edit, or delete assignments for selected nodes

• Display information about specific assignments

• Enable or disable individual assignments

• Add comments to an assignment

Additionally, you can export assignments to a Comma-Separated Value File (.csv).

1.1.2.1.1. Specifying Multi-Dimensional Bus Constraints

The Quartus Prime Pro Edition software traditionally supports only 1- and 2-
dimensional bus names for specifying constraints. The Quartus Prime Pro Edition
version 19.3 and later now supports multi-dimensional bus names for more efficient
constraints.

1. Constraining Designs

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, you can specify the following assignment to apply a constraint to all bits
in the reg [31:0] r [0:2][4:5] three-dimensional bus:

set_instance_assignment -name PRESERVE_REGISTER ON -to r

The constraint then applies to all bits r: [0][4][31], r[0][4][30], … , r[1]
[5][0].

1.1.2.2. Specify NoC Constraints in NoC Assignment Editor

For designs targeting Agilex® 7 M-Series FPGAs only, the NoC Assignment Editor in the
Quartus Prime Pro Edition software allows you to make logical assignments for hard
memory NoC-related blocks in your design. These assignments include grouping,
connectivity, address mapping, and bandwidth requirements.

The hard memory NoC facilitates high-bandwidth data movement between the FPGA
core logic and memory resources, such as HBM2E and DDR5 memories. Refer to
Interface Planner NoC Tool Flow on page 37 and the Agilex 7 M-Series FPGA
Network-on-Chip (NoC) User Guide for details on the complete NoC flow including
Interface Planner.

The Quartus Prime software supports the following two flows for NoC design:

• Platform Designer Connection Flow—you use Platform Designer to configure
and instantiate your NoC-related IP. You also use Platform Designer to make
connections between NoC initiator bridges and NoC target bridges and to define
the addressing mapping for these connections. Once you generate HDL for your
Platform Designer system, your design is ready for RTL simulation. You must use
the NoC Assignment Editor to create additional assignments, such as specifying
NoC groupings and optional performance targets. You can use Interface Planner to
make physical location assignments for your NoC elements. Then you compile
your design and review the results.

• NoC Assignment Editor Connection Flow—you can configure and instantiate
your NoC-related IP in either Platform Designer or directly in RTL. You then use
the NoC Assignment Editor to make all NoC assignments including grouping,
connectivity, address mapping, and optional performance targets. After completing
the assignments and rerunning Analysis & Elaboration, your design is ready for
RTL simulation. You can use Interface Planner to make physical location
assignments for your NoC elements. Then compile your design and review the
results.

Using the NoC Assignment Editor is similar to using the Assignment Editor, but the
NoC Assignment Editor is optimized for making NoC assignments only. You must
successfully complete Quartus Prime Analysis & Elaboration before using the NoC
Assignment Editor. After Analysis & Elaboration, you can access the NoC Assignment
Editor by clicking Assignments ➤ Network on Chip (NoC) Assignment Editor.

Specify assignments on the following NoC Assignment Editor tabs:

• Group tab—specifies the Group Name of the NoC initiators and targets.

• Connection tab—specifies the connections between NoC initiators and targets or
SSM elements.

• Attributes tab—specifies address mapping, bandwidth requirements, and
transaction sizes for each connection.

1. Constraining Designs

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Network on Chip (NoC) Assignment Editor Group Tab

The assignments made on the Group tab affect the assignments available in the
Connection tab. The assignments made on the Connection tab affect the
assignments available in the Attributes tab.

Complete the assignments on each tab in order before moving to the next tab.

After making assignments in the NoC Assignment Editor, you click Validate to validate
the assignments, and then click Save to store the assignments in the Quartus Prime
settings file (.qsf).

Related Information

Agilex 7 M-Series FPGA Network-on-Chip (NoC) User Guide

1.1.2.2.1. NoC Assignment Editor Interface Controls

For designs targeting Agilex 7 M-Series FPGAs only, you can use the following
interface controls of the NoC Assignment Editor to specify NoC assignments:

Table 4. NoC Assignment Editor Interface Controls

NoC Assignment Editor GUI Description

Group Tab After completing Analysis & Elaboration and opening the NoC Assignment Editor, the
Group tab displays two columns. The Network Interface Unit column displays a list of
all NoC initiator, target, PLL, and SSM elements in your design. The Group Name column
allows you to assign each of the elements to one of two NoC groups by entering the name
of the group. You can define a custom, case-insensitive Group Name. Default names are
NOC_GROUP_0 and NOC_GROUP_1. Each group must contain the NoC initiators and targets

continued...

1. Constraining Designs

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

8

https://www.intel.com/content/www/us/en/docs/programmable/768844.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NoC Assignment Editor GUI Description

that you connect through that high-speed interconnect NoC, as well as one NoC PLL, and
one NoC SSM. You must complete all assignments on the Group tab before proceeding to
the Connections tab.

Connections Tab You use the Connections tab to define connection assignments between NoC initiators
and targets. Specify connections between a NoC initiator and a target or SSM by enabling
the corresponding checkbox in the connection table. The group subtab includes a
connection table with all the NoC initiators for that group listed on the left-hand side, and
of all the NoC targets and SSM elements for the group listed across the top. You must
complete all assignments on the Connections tab before proceeding to the Attributes
tab.

Attributes Tab You use the NoC Assignment Editor to create attribute assignments between initiators and
targets. You specify assignments for address mapping and bandwidth requirements for
each connection on the Attributes tab. The Attributes tab includes a subtab for each
group that you specify on the Group tab. Each subtab lists each initiator to target
connection. You must complete all assignments on the Attributes tab before you can
Save the assignments.

1.1.2.2.2. Troubleshooting NoC Assignment Editor

Use the following FAQs to help you understand conditions and resolve conflicts in the
NoC Assignment Editor:

Table 5. NoC Assignment Editor FAQs

FAQs Explanation/Resolution

Why are some assignments in NoC Assignment
Editor 'read-only'?

• Any NoC assignment that you make in Platform Designer appears as
read-only in NoC Assignment Editor. You cannot modify these read-
only assignments inside the NoC Assignment Editor.

• To modify such read-only NoC assignments, modify the corresponding
elements in Platform Designer and regenerate HDL for the system.

Why are there conflicting assignments
between Platform Designer and NoC
Assignment Editor?

• This condition can occur if you first make assignments in NoC
Assignment Editor, and then later make similar NoC assignments in
Platform Designer.
If you make Platform Designer assignments first, and then later make
assignments in NoC Assignment Editor, those Platform Designer
assignments appear as read-only in NoC Assignment Editor.

• This condition can also occur if you first make NoC assignments in
Platform Designer, and then later manually specify NoC assignments
in the .qsf file.
To avoid this condition, only use Platform Design or only use NoC
Assignment Editor to specify NoC connectivity and addressing
assignments. Avoid using the .qsf to specify NoC connectivity and
addressing assignments.

How do I identify conflicting assignments
between Platform Designer and NoC
Assignment Editor?

• The NoC Assignment Editor cell containing any assignment conflict is
highlighted in yellow.

• The last assignment in the list takes precedence and is displayed. If
the last assignment is a Platform Designer assignment, the cell is also
read-only.

How can I resolve conflicting assignments
between Platform Designer and NoC
Assignment Editor?

You can use either of the following methods to replace a conflicting .qsf
assignment with the Platform Designer assignment:
• Right-click in the highlighted cell with a conflict, and then click

Delete.
• Manually delete any conflicting assignment from the .qsf. Avoid

manually editing the .qsf if you can resolve issues in the NoC
Assignment Editor.

1. Constraining Designs

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.1.2.3. Specify I/O Constraints in Pin Planner

Quartus Prime Pin Planner allows you to assign design elements to I/O pins. You can
also plan and assign IP interface or user nodes not yet defined in the design.

Figure 3. Quartus Prime Pin Planner GUI

Task and
Report
Windows

All Pins
List

Device
 Package
View

Related Information

Managing Device I/O Pins on page 75

1.1.2.4. Plan Interface Constraints in Interface Planner and Tile Interface
Planner

The Interface Planner simplifies the planning of accurate constraints for physical
implementation. Similarly, you can use the Tile Interface Planner to build a plan for
placement of IP components in each tile available on Agilex 7 F-tile devices. Use
Interface Planner to prototype interface implementations, plan clocks, and rapidly
define a legal device floorplan.

Interface Planner and Tile Interface Planner interact dynamically with the Quartus
Prime Fitter to accurately verify placement legality while you plan. You can evaluate
different floorplans, using interactive reports to accurately plan the best
implementation without iterative compilation. Fitter verification ensures the highest
correlation between your interface plan and actual implementation results. You can
apply the interface plan constraints to your project with high confidence in the final
implementation.

1. Constraining Designs

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. Interface Planner GUI

Drag Elements to
Legal Locations

Run Interface Planner
Commands

Selected Element’s Properties

Related Information

• Using Interface Planner on page 23

• Using Tile Interface Planner on page 53

1.1.2.5. Adjust Constraints with the Chip Planner

With the Chip Planner you can adjust existing assignments to device resources, such
as pins, logic cells, and LABs in a graphical representation of the device floorplan. You
can also view equations and routing information and demote assignments by dragging
and dropping to Logic Lock regions in the Logic Lock Regions Window.

1. Constraining Designs

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Chip Planner GUI

Related Information

• Design Floorplan Analysis in the Chip Planner
In Quartus Prime Pro Edition User Guide: Design Optimization

• Defining Logic Lock Placement Constraints, Quartus Prime Pro Edition User Guide:
Design Optimization

1.1.2.6. Constraining Designs with the Design Partition Planner

The Design Partition Planner allows you to view design connectivity and hierarchy and
can assist you in creating effective design partitions.

Additionally, the Design Partition Planner allows you to optimize design performance
by isolating and resolving failing paths on a partition-by-partition basis.

Related Information

Creating Partitions and Logic Lock Regions with the Design Partition Planner and the
Chip Planner

In Quartus Prime Pro Edition User Guide: Design Optimization

1.1.3. Probing Between Components of the Quartus Prime GUI

The Quartus Prime software allows you to locate nodes and instances within the
compilation database from any of the following:

• Project Navigator

• Assignment Editor

• Chip Planner

1. Constraining Designs

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

12

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/design-floorplan-analysis-in-chip-planner.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/defining-placement-constraints.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/defining-placement-constraints.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-regions-in-combination-with-design.html
https://www.intel.com/content/www/us/en/docs/programmable/683641/current/using-regions-in-combination-with-design.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Timing Analyzer

• Resource Property Viewer

• RTL Viewer

• Technology Map Viewer

• Fast Forward Viewer

• Design Partition Planner

• Pin Planner

• HDL design files

To locate nodes or instances, follow these steps:

1. Right-click the resource you want to display.

2. Click Locate Node, and then click any of the available menu options.

The corresponding window opens—or appears in the foreground if it is already open—
and shows the element you clicked.

Example 1. Locate a Resource Selected in the Project Navigator

In the Entity list of the Hierarchy tab, right-click any object, and click Locate ➤
Locate in Chip Planner.

The Chip Planner opens and displays the instance you selected.

1. Constraining Designs

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Selected Item Highlighted
in Chip Planner Floorplan

1.1.4. Specifying Timing Constraints

You must specify timing constraints that describe the clock frequency requirements,
timing exceptions, and I/O timing requirements of your design for comparison against
actual conditions observed during timing analysis. You define timing constraints in one
or more Synopsys* Design Constraints (.sdc) files that you add to the project.

You can specify timing constraints in the Timing Analyzer GUI, which automatically
generates an .sdc based on your inputs. Click the Constraints menu in the Timing
Analyzer to specify timing constraints that you can apply to your project.

Alternatively, you can create an initial .sdc with provided .sdc file templates, or
manually in any text editor and then add the .sdc to the project.

In addition, generation of Intel FPGA IP or Platform Designer systems may also
automatically generate and add to your project .sdc constraints.

Figure 6. Constraint menu in Timing Analyzer

When you specify a constraint in the GUI, the dialog box displays the equivalent SDC
command syntax.

1. Constraining Designs

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 2. Create Clock Dialog Box

Equivalent
SDC Command

Insert Parameters

Individual timing assignments override project-wide requirements.

• To avoid reporting incorrect or irrelevant timing violations, you can assign timing
exceptions to nodes and paths.

• The Timing Analyzer supports point-to-point timing constraints, wildcards to
identify specific nodes when making constraints, and assignment groups to make
individual constraints to groups of nodes.

Refer to the following Related Information:

Related Information

Applying Timing Constraints, Quartus Prime Pro Edition User Guide: Timing Analyzer

1.2. Constraining Designs with Tcl Scripts

You can perform all your design assignments using .sdc and .qsf setting files. To
integrate these files in compilation and optimization flows, use Tcl scripts. Even
though .sdc and .qsf files are written in Tcl syntax, they are not executable by
themselves.

When you use Quartus Prime Tcl packages, your scripts can open projects, make the
assignments, compile the design, and compare compilation results against known
goals and benchmarks. Furthermore, such a script can automate the iterative design
process by modifying constraints and recompiling the design.

1.2.1. Create a Project and Apply Constraints

The command-line executables include options for common global project settings and
commands. You can use a Tcl script to apply constraints such as pin locations and
timing assignments. You can write a Tcl constraint file, or generate one for an existing
project by clicking Project ➤ Generate Tcl File for Project.

1. Constraining Designs

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

15

https://www.intel.com/content/www/us/en/docs/programmable/683243/current/applying-timing-constraints.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The example creates a project with a Tcl script and applies project constraints using
the tutorial design files in the <Quartus Prime installation directory>/qdesigns/
fir_filter/ directory.

project_new filtref -overwrite
Assign family, device, and top-level file
set_global_assignment -name FAMILY "Arria 10"
set_global_assignment -name DEVICE <Device>
set_global_assignment -name VERILOG_FILE filtref.v
Assign pins
set_location_assignment -to clk Pin_28
set_location_assignment -to clkx2 Pin_29
set_location_assignment -to d[0] Pin_139
set_location_assignment -to d[1] Pin_140
#
project_close

Save the script in a file called setup_proj.tcl and type the commands illustrated in
the example at a command prompt to create the design, apply constraints, compile
the design, and perform fast-corner and slow-corner timing analysis. Timing analysis
results are saved in two files, filtref_sta_1.rpt and filtref_sta_2.rpt.

quartus_sh -t setup_proj.tcl
quartus_syn filtref
quartus_fit filtref
quartus_asm filtref
quartus_sta filtref --model=fast --export_settings=off
mv filtref_sta.rpt filtref_sta_1.rpt
quartus_sta filtref --export_settings=off
mv filtref_sta.rpt filtref_sta_2.rpt

Type the following commands to create the design, apply constraints, and compile the
design, without performing timing analysis:

quartus_sh -t setup_proj.tcl
quartus_sh --flow compile filtref

The quartus_sh --flow compile command performs a full compilation, and is
equivalent to clicking the Start Compilation button in the toolbar.

1.2.2. Assigning a Pin

To assign a signal to a pin or device location, use the Tcl command shown in this
example:

set_location_assignment -to <signal name> <location>

Valid locations are pin location names. Some device families also support edge and I/O
bank locations. Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and
EDGE_RIGHT. I/O bank locations include IOBANK_1 to IOBANK_n, where n is the
number of I/O banks in a device.

1.2.3. Generating Quartus Prime Settings Files

Quartus Prime software allows you to generate .qsf files from your revision. You can
embed these constraints in a scripted compilation flow, and even create sets of .qsf
files for design optimization.

1. Constraining Designs

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To generate a .qsf file from the Quartus Prime software, click Assignments ➤
Export Assignments.

To organize the .qsf in a human readable form, Project ➤ Organize Quartus
Prime Settings File.

Example 3. Organized .qsf File

This example shows how .qsf files characterize a design revision. The
set_global_assignment command makes all global constraints and software
settings and set_location_assignment constrains each I/O node in the design to
a physical pin on the device.

Project-Wide Assignments
========================
set_global_assignment -name SYSTEMVERILOG_FILE top.sv
set_global_assignment -name SYSTEMVERILOG_FILE blinking_led.sv
set_global_assignment -name SDC_FILE blinking_led.sdc
set_global_assignment -name SDC_FILE jtag.sdc
set_global_assignment -name PROJECT_OUTPUT_DIRECTORY output_files
set_global_assignment -name LAST_QUARTUS_VERSION "17.1.0 Pro Edition"
set_global_assignment -name TEXT_FILE blinking_led_generated.txt
Pin & Location Assignments
==========================
set_location_assignment PIN_AN18 -to clock
set_location_assignment PIN_AR23 -to led_zero_on
set_location_assignment PIN_AM21 -to led_two_on
set_location_assignment PIN_AR22 -to led_one_on
set_location_assignment PIN_AL20 -to led_three_on
Analysis & Synthesis Assignments
================================
set_global_assignment -name FAMILY "Arria 10"
set_global_assignment -name TOP_LEVEL_ENTITY top
Fitter Assignments
==================
set_global_assignment -name DEVICE 10AS066N3F40E2SG

start ENTITY(top)
Fitter Assignments
==================
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_zero_on
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_one_on
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_two_on
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_three_on
set_instance_assignment -name SLEW_RATE 1 -to led_zero_on
set_instance_assignment -name SLEW_RATE 1 -to led_one_on
set_instance_assignment -name SLEW_RATE 1 -to led_two_on
set_instance_assignment -name SLEW_RATE 1 -to led_three_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to clock
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_zero_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_one_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_two_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_three_on
end ENTITY(top)

Related Information

• Quartus Prime Pro Edition Settings File Reference Manual
For information about all settings and constraints in the Quartus Prime
software.

• Agilex 7 M-Series FPGA Network-on-Chip (NoC) User Guide

1. Constraining Designs

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

17

https://www.intel.com/content/www/us/en/docs/programmable/683296.html
https://www.intel.com/content/www/us/en/docs/programmable/768844.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.4. Synopsys Design Constraint (.sdc) Files

Quartus Prime software keeps timing constraints in .sdc files, which use Tcl syntax.
You can embed these constraints in a scripted compilation flow, and even create sets
of .sdc files for timing optimization.

Example 4. .sdc File

The example shows the timing constrains of a small design.

PROGRAM "Quartus Prime"
VERSION "Version 17.1.0 Internal Build 91 05/07/2017 SJ Pro Edition"
DATE "Wed May 10 14:22:08 2017"
##
DEVICE "10AX115R4F40I3SG"
##
#**
Time Information
#**
set_time_format -unit ns -decimal_places 3
#**
Create Clock
#**
create_clock -name {clk_in} -period 10.000 -waveform { 0.000 5.000 } [get_ports
{clk_in}]
#**
Create Generated Clock
#**
derive_pll_clocks
#**
Set Clock Uncertainty
#**
derive_clock_uncertainty
#**
Set Input Delay
#**
set_input_delay -add_delay -clock [get_clocks {clk_in}] 1.500 [get_ports
{async_rst}]
set_input_delay -add_delay -clock [get_clocks {clk_in}] 1.200 [get_ports
{data_in}]
#**
Set Output Delay
#**
set_output_delay -add_delay -clock [get_clocks {clk_in}] 2.000 [get_ports
{data_out}]
#**
Set Multicycle Path
#**
set_multicycle_path -setup -end -from [get_keepers *] -to [get_keepers {reg2}] 2

1.2.5. Tcl-only Script Flows

As an alternative to .sdc and .qsf files, you can perform all design assignments and
timing constraints inside the Tcl scripts. In this case, the script that automates
compilation and custom results reporting also contains the design constraints.

You can export a design's contents to a procedural, executable Tcl (.tcl) file, and
then use the generated script to restore settings after experimenting with other
constraints.

To export your constraints as an executable Tcl script, click Project ➤ Generate Tcl
File for Project.

1. Constraining Designs

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 5. blinking_led_generated.tcl File

Quartus Prime: Generate Tcl File for Project
File: blinking_led_generated.tcl
Generated on: Wed May 10 10:14:44 2017
Load Quartus Prime Tcl Project package

package require ::quartus::project
set need_to_close_project 0
set make_assignments 1
Check that the right project is open
if {[is_project_open]} {
 if {[string compare $quartus(project) "blinking_led"]} {
puts "Project blinking_led is not open"
set make_assignments 0
 }
} else {
 # Only open if not already open
 if {[project_exists blinking_led]} {
project_open -revision blinking_led blinking_led
 } else {
project_new -revision blinking_led blinking_led
 }
 set need_to_close_project 1
}

Make assignments
if {$make_assignments} {
set_global_assignment -name SYSTEMVERILOG_FILE top.sv
set_global_assignment -name SYSTEMVERILOG_FILE blinking_led.sv
set_global_assignment -name SDC_FILE blinking_led.sdc
set_global_assignment -name SDC_FILE jtag.sdc
set_global_assignment -name PROJECT_OUTPUT_DIRECTORY output_files
set_global_assignment -name LAST_QUARTUS_VERSION "17.1.0 Pro Edition"
set_global_assignment -name TEXT_FILE blinking_led_generated.txt
set_global_assignment -name FAMILY "Arria 10"
set_global_assignment -name TOP_LEVEL_ENTITY top
set_global_assignment -name DEVICE 10AS066N3F40E2SG
set_location_assignment PIN_AN18 -to clock
set_location_assignment PIN_AR23 -to led_zero_on
set_location_assignment PIN_AM21 -to led_two_on
set_location_assignment PIN_AR22 -to led_one_on
set_location_assignment PIN_AL20 -to led_three_on
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_zero_on
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_one_on
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_two_on
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_three_on
set_instance_assignment -name SLEW_RATE 1 -to led_zero_on
set_instance_assignment -name SLEW_RATE 1 -to led_one_on
set_instance_assignment -name SLEW_RATE 1 -to led_two_on
set_instance_assignment -name SLEW_RATE 1 -to led_three_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to clock
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_zero_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_one_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_two_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_three_on
Commit assignments
export_assignments
Close project
if {$need_to_close_project} {
project_close
}
}

1. Constraining Designs

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The example:

• Opens the project

• Assigns Constraints

• Writes assignments to QSF file

• Closes project

1.3. A Fully Iterative Scripted Flow

The ::quartus::flow Tcl package in the Quartus Prime Tcl API allows you to modify
design constraints and recompile in an iterative flow.

Related Information

Quartus Prime Pro Edition User Guide: Scripting

1.4. Constraining Designs Revision History

Table 6. NoC Assignment Editor Interface Controls

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.

2023.12.04 23.4 • Applied initial Altera rebranding throughout.
• Added new Troubleshooting NoC Assignment Editor topic.
• Revised the Specifying Timing Constraints topic to add introductory

information and context about typical constraints.
• Updated Pin Planner screenshot in Specify I/O Constraints in Pin

Planner topic for removal of VREF Groups and Edges highlight.

2023.10.02 23.3 • Updated What's New In This Version for enhancements to Pin Planner
reporting.

• Updated screenshots in Probing Between Components of the Quartus
Prime GUI for latest Compilation Dashboard.

• Revised Specify NoC Constraints in NoC Assignment Editor topic for
new connection flows.

2023.04.03 23.1 • Updated What's New In This Version for NoC support and Intel Agilex 7
device family name changes.

• Updated Node, Entity, and Instance-Level Constraints topic for NoC
Assignment Editor.

• Updated Plan Tab Controls topic for NoC View.
• Updated Reports Tab Controls topic for NoC Performance report.
• Added new Specify NoC Constraints in the NoC Assignment Editor topic.
• Added new NoC Assignment Editor Interface Controls topic.
• Updated product family name to "Intel Agilex 7."

2022.06.21 22.2 • Added Top FAQs navigation to document cover.
• Added What's New In This Version section to Constraining Designs

topic.

2021.10.04 21.3 • Removed obsolete Tcl-only Timing Analysis topic.
• Updated Node, Entity, and Instance-Level Constraints topic for latest

tools and Constraint Tools per Design Phase table.
• Revised Plan Interface Constraints topic for Tile Interface Planner.
• Revised Probing Between Components of the Quartus Prime GUI for

latest tools.

continued...

1. Constraining Designs

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

20

https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2019.10.16 19.3 • Added "Specifying Multi-Dimensional Bus Constraints" topic.
• Updated examples in "Create a Project and Apply Constraints."

2019.08.21 18.1 Corrected minor typo in "Tcl-only Script Flows" topic.

2019.01.04 18.1 • Clarified default location of .sdc and .qsf files in "Constraining Designs"
topic.

• Added "Plan Interface Constraints with Interface Planner" topic.
• Added screenshots to "Constrain Designs with the Pin Planner" and

"Constrain Designs with the Chip Planner."
• Added two new "Assigning a Pin" and "Creating a Project and Applying

Constraints" topics showing Tcl examples.
• Added link to Using Timing Constraints topic in Timing Analyzer UG that

explains all of the commands

2017.11.06 17.1 • Renamed topic: Constraining Designs with the GUI to Constraining
Designs with Quartus Prime Tools.

• Renamed topic: Global Constraints to Global Constraints and
Assignments.

• Added table: Quartus Prime Tools to Set Global Constraints.
• Removed topic: Common Types of Global Constraints.
• Removed topic: Settings That Direct Compilation and Analysis Flows.
• Updated topic: Node, Entity and Instance-Level Constraints.
• Added table: Quartus Prime Tools to Set Node, Entity and Instance

Level Constraints.
• Added topic: Assignment Editor.
• Updated topic: Constraining Designs with the Pin Planner.
• Updated topic: Constraining Designs with the Chip Planner.
• Added topic: Constraining designs with the Design Partition Planner.
• Updated topic: Probing Between Components of the Quartus Prime

GUI.
• Added example: Locate a Resource Selected in the Project Navigator.
• Updated topic: SDC and the Timing Analyzer, and renamed to

Specifying Individual Timing Constraints.
• Added figure: Constraint Menu in Timing Analyzer.
• Added example: Create Clock Dialog Box.
• Updated topic: Constraining Designs with Tcl, and renamed to

Constraining Designs with Tcl Scripts
• Updated topic: Quartus Prime Settings Files and Tcl , and renamed to

Generating Quartus Prime Settings Files.
• Added example: blinking_led.qsf File.
• Updated topic: Timing Analysis with Synopsys Design Constraints and

Tcl, and renamed to Timing Analysis with .sdc Files and Tcl Scripts.
• Added example: .sdc File with Timing Constraints.
• Added topic: Tcl-only Script Flows.
• Updated topic: A Fully Iterative Scripted Flow.

2017.05.08 17.0 • Removed references to deprecated Fitter Effort logic option.

2016.10.31 16.1 • Implemented Intel rebranding.

2015.11.02 15.1 • Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0 Formatting updates.

November 2012 12.1 Update Pin Planner description for task and report windows.

June 2012 12.0 Removed survey link.

November 2011 10.0 Template update.

continued...

1. Constraining Designs

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

December 2010 10.0 Template update.

July 2010 10.0 Rewrote chapter to more broadly cover all design constraint methods.
Removed procedural steps and user interface details, and replaced with
links to Quartus II Help.

November 2009 9.1 • Added two notes.
• Minor text edits.

March 2009 9.0 • Revised and reorganized the entire chapter.
• Added section “Probing to Source Design Files and Other Quartus

Windows” on page1–2.
• Added description of node type icons (Table1–3).
• Added explanation of wildcard characters.

November 2008 8.1 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0 Updated Quartus II software 8.0 revision and date.

1. Constraining Designs

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Interface Planning
Interface planning—the feasibility analysis of interface physical constraints—is a
fundamental early step in advanced FPGA design. Periphery placement can be a
complex process involving many variables. The Quartus Prime Interface Planner
simplifies the planning of accurate constraints for physical implementation.

You can use the Interface Planner to prototype interface implementations, plan clocks,
and rapidly define a legal device floorplan.

Similarly, when targeting the Agilex 7 F-tile devices, you can use the Tile Interface
Planner build a plan for placement of IP components in each tile available on the FPGA
device.

Interface Planner and Tile Interface Planner (launched from the Tools menu) interact
dynamically with the Quartus Prime Fitter to accurately verify placement legality while
placing elements. You can evaluate different floorplans, using interactive reports to
accurately plan the best implementation without iterative compilation. Fitter
verification ensures the highest correlation between your interface plan or tile
interface plan and actual implementation results. You can apply the interface plan or
tile interface plan constraints to your project with high confidence in the final
implementation.

Related Information

• Video Demo: Using Interface Planner to Place DDR-3 and PCI Express Gen3

• Video Demo: Using the Tile Interface Planner

2.1. Using Interface Planner

After design synthesis, you can use Interface Planner to help you to rapidly define a
legal device floorplan.

Interface Planner displays your project's logical hierarchy, post-synthesis design
elements, and Fitter-created design elements, alongside a view of target device
locations. The GUI supports a variety of methods for placing design elements in the
floorplan. As you place elements in the floorplan, the Fitter verifies legality in real time
to ensure accurate correlation with the final implementation.

Intel® FPGAs contain core and periphery device locations. The device core locations
are adaptive look-up tables (ALUTs), core flip-flops, RAMs, and digital signal
processors (DSPs). Device periphery locations include I/O elements, phase-locked
loops (PLLs), clock buffers, and hard processor systems (HPS).

683143 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/content/dam/altera-www/global/en_US/video/acds-blueprint-platform-designer-overview.mp4
https://www.youtube.com/watch?v=NRIarGbfNTo?language=en_US&wapkw=interface%20planner%20video
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 7. Interface Planner Streamlines Legal Placement

PLL

GPIOs

DDR3

PCI Express
Potential

Placements

Apply Constraints
for Compilation

Interface Planner

Interface Planner shows
legal placement

Initial Design
1 2

3

Quartus Prime
Software

Intel FPGAs contain many silicon features in the device periphery, such as hard PCI
Express® IP cores, high speed transceivers, hard memory interface circuitry, and
embedded processors. Interactions among these periphery elements can be complex.
Interface Planner simplifies this complexity and allows you to quickly visualize and
place I/O interface and periphery elements, such as:

• I/O elements

• LVDS interfaces

• PLLs

• Clocks

• Hard interface IP Cores

• High-Speed Transceivers

• Hard Memory Interface IP Cores

• The Hard Memory Network-on-Chip (NoC)(1)

• Embedded Processors

2.1.1. Interface Planner User Interface

The Interface Planner user interface includes the following controls for planning your
design platform.

Flow Controls on page 25

Home Tab Controls on page 25

Assignments Tab Controls on page 25

Plan Tab Controls on page 26

Reports Tab Controls on page 27

(1) For designs targeting Agilex 7 M-Series FPGAs only.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.1.1. Flow Controls

The Flow control panel provides immediate access to common Interface Planner
commands from anywhere within Interface Planner. The Flow controls appear in order
of a typical interface planning flow.

Table 7. Flow Controls

Command Description

Open Project Allows you to select and open an Quartus Prime project in Interface Planner. Use of
Open Project command is only required when using Interface Planner in
standalone mode.

Initialize Interface Planner Loads the synthesis netlist, starts the Fitter verification engine, and imports
assignments from your Quartus Prime project.

View Assignments Opens the Assignments tab, which allows you to review and reconcile any
conflicting assignments that Interface Planner imports from your project. Enable or
disable specific project assignments to resolve any conflicts.

Update Plan Applies the enabled project assignments to your interface plan. You cannot perform
periphery planning on the Plan tab until you update the plan.

Plan Design Opens the Plan tab for placing logic in the interface plan.

Validate plan Verifies that all constraints in the interface plan are compatible with placement of
all remaining unplaced design elements. You can then directly locate and resolve
the source of any reported validation errors. You must successfully validate the
plan before running Write Plan File.

Export Constraints Saves your interface plan as a Tcl script file for subsequent application in your
project. This command is available only after successfully running Validate Plan.

View Reports Opens the Reports tab for filtering data and finding entities and locations.

View Summary Reports Opens the Interface Planner Summary report that summarizes the percentage
of placed and unplaced periphery cells.

2.1.1.2. Home Tab Controls

The Interface Planner Home tab contains controls for opening projects in Interface
Planner. You only need the Home tab when Interface Planner is in standalone mode.

Table 8. Home Tab Controls

Command Description

Recent Projects Provides quick access to recently opened Quartus Prime projects. A named tile
represents each project. Click the tile to display Details about the project. Double-
click the tile to open the project in Interface Planner.

Browse Allows you to locate and open an Quartus Prime project in Interface Planner.
Interface Planner requires the project's synthesized netlist for operation.

Details Provides project and file details such as the file path, revision, and creation date of
the Quartus Prime project. You can select a specific project revision.

2.1.1.3. Assignments Tab Controls

The Assignments tab contains controls for resolving potential conflicts with project
assignments. Click View Assignments to display the Assignments tab. You can
enable or disable specific or classes of assignments until you resolve all potential
conflicts. After you are satisfied with the status of all project assignments, click
Update Plan to update your interface plan with the enabled project assignments.
Interface Planner reports an error for any remaining assignment conflicts.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 9. Assignments Tab Controls

Command Description

Filter field Supports creation of wildcard expressions for assignment targets. Enabled and
Disabled buttons filter only enabled or disabled assignments in the list.

Enable All Project Assignments Enables all imported project assignments in your interface plan.

Disable All Project Assignments Disables all imported project assignments in the plan.

Clear Clears any filter from the Assignments list.

2.1.1.4. Plan Tab Controls

The Plan tab contains the following controls to help you locate and place logic in the
interface plan. Click Plan Design to display the Plan tab. Placement or unplacement
in the interface plan does not apply to your Quartus Prime project until you add the
generated Interface Planner constraints script to your project.

Table 10. Plan Tab Controls

Command Description

Lists legal locations for placement.

Locate Node Display a list of Quartus Prime Pro Edition tools where the selected design element
is referenced in the hierarchical database. If the Locate Node command is
disabled for a specific element in the Design Elements list, it is because that
element is not represented as an element in the design.

Autoplace All Attempts to place all unplaced design elements in legal locations in the interface
plan.

Autoplace Fixed Attempts to place all unplaced design elements that have only one legal location
into the interface plan.

Unplace All Unplaces all placed design elements in the interface plan.

Right-click ➤ Auto-place selected
element

Attempts to place the selected design element and all its children in a legal location
in the interface plan.

Chip View Displays the target device chip. Zoom in to display chip details.

Package View Displays the target device package. Zoom in to display chip details.

NoC View Displays a filtered view of NoC initiators and targets. Refer to Interface Planner
NoC Tool Flow

Show I/O Banks Selects and color codes the I/O banks in the Plan tab.

Show Differential Pin Pair
Connections

In Package View, displays a red connection line between a pair of differential
pins. The Package View labels the positive and negative pins with the letters p and
n, respectively.

Show PCIe Hard IP Interface
Pins

In Package View, selects and color codes the PCIe Hard IP interface pins in the
Plan tab. To access this command, right-click in the Plan tab package view, and
select x1 Lanes, x2 Lanes, x4 Lanes, x8 Lanes, or by 16 Lanes. After
enabling, view color coding in the Color Legend.

Show DQ/DQS Pins In Package View, selects and color codes the PCIe Hard IP interface pins in the
Plan tab. To access this command, right-click in the Plan tab package view, and
select x4 Mode, x8/x9 Mode, x16/x16 Mode, or x32/x36 Mode. After
enabling, view color coding in the Color Legend.

Right-click ➤ Report Placeability
of Selected Element

After selecting a low level element, displays detailed information on the Reports
tab, showing legal locations in the interface plan for the selected cell in order of
suitability for fitting.

continued...

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Description

Right-click ➤ Report Legal
Locations of Selected Element

After selecting a low level element, displays the legal locations in the interface plan
for the selected cell in order of suitability for fitting.

Copies the current interface plan to the clipboard for pasting into other files, such
as word processing or presentation files.

Reset Plan Unplaces all placed design elements and removes applied project assignments from
the interface plan. Resets all project assignments to the enabled state. You must
subsequently run Update Plan prior to placing design elements. This command
only applies to your interface plan and does not impact your Quartus Prime project
assignments until you apply the Interface Planner script.

Load Floorplan Allows you to select and load an Interface Planner Floorplan Format (.plan) file.
You can save Interface Planner floorplan files in the format by clicking Save
Floorplan.

Save Floorplan Allows you to save your Interface Planner floorplan as a .plan file.

2.1.1.5. Reports Tab Controls

The Interface Planner Reports tab contains the following Task pane controls to help
you filter data and find entities and locations.

Table 11. Reports Tab Controls

Command Description

Create all Summary Reports Creates the following summary reports:
• Interface Planner Summary
• All Periphery Cells
• Placed/Unplaced Periphery Cells
• Periphery Location Types.

Report All Placed/Unplaced
Pins

Reports the name, parent (if any), and type of all placed (Report All Placed Pins)
or unplaced (Report All Unplaced Pins) pins in the interface plan, respectively. The
Placed Pins report includes the placement location name. The Unplaced Pins report
includes the number of potential placement locations. Right-click any cell to place,
unplace, or report connectivity or location information.

Report All Placed/Unplaced
HSSI Channels

Reports the name, parent (if any), and type of all placed (Report All Placed HSSI
Channels) or unplaced (Report All Unplaced HSSI Channels) channels in the
interface plan, respectively. The Placed HSSI Channels report includes the placement
location name. The Unplaced HSSI Channels report includes the number of potential
placement locations. Right-click any cell to place, unplace, or report connectivity or
location information.

Right-click ➤ Report Placed/
Unplaced Periphery Cells of
Selected Type

Reports the name, parent (if any), and type of placed (Report Placed Periphery
Cells of Selected Type) or unplaced (Report Unplaced Periphery Cells of
Selected Type) cells matching the selected type. The placed cells report includes
the placement location name. The unplaced cells report includes the number of
potential placement locations. Right-click any cell to place, unplace, or report
connectivity or location information.

Right-click ➤ Report Periphery
Locations of Selected Type

Reports all locations in the device of the selected type, and whether the location
supports merging.

Right-click ➤ Report Periphery
Cell Connectivity

Reports the source port and type, destination port and type, of connections to the
selected cell. Right-click any cell to report the individual cell connectivity.

Right-click ➤ Place/Unplace
Cell

Places the cell in the selected location of the interface plan. Similarly, you can right-
click any cell and then click Place Cell of Selected Type or Unplace Cell of
Selected Type to place or unplace multiple cells of the same type.

continued...

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Description

Right-click ➤ Report Cell
Locations for Custom
Placement

Reports the preferred legal locations for the selected cell in the interface plan in the
Legal Location report. Right-click to immediately place the cell in a location or report
all periphery location of the selected type.

Remove Invalid Reports Removes outdated Interface Planner reports that you invalidate by changes to the
interface plan.

Report Instance Assignments Shows all imported project assignments in the interface plan. You can delete these
assignments from the plan.

Report NoC Performance Performs a static analysis of the NoC initiator and target locations to evaluate
whether the placement allows your design to meet the bandwidth requirements and
transaction sizes that you specify in the NoC Assignment Editor. You can review the
report, and then make changes in the Plan tab based on the results. Refer to Report
NoC Performance.

2.1.2. Interface Planner General Tool Flow

Interface Planner's user interface guides you through the design planning steps. Use
Interface Planner's Flow control to execute the main initialization, planning, and
validation functions of the flow in sequence.

Figure 8. Interface Planner Flow Control

Click to Launch
Planning Tasks

As you run each step in the Flow control, downstream commands and the
Assignments, Plan, and Reports tabs become available. Interface Planner only
allows you to run commands after completing any prerequisite steps in the flow. After
you Initialize Interface Planner, you are prompted to confirm any project
assignments that you made before planning starts. Disable or enable any imported
project assignments on the Assignments tab to resolve any conflicts and evaluate
different implementations.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Interface Planner GUI

Filters the Design Element Display Tabs Available After Initialization

Undo or Redo Placements Tcl Console

After you Update Plan with the project assignments, you are ready to place design
elements onto the target device Chip View or Package View on the Plan tab. As
you place design elements in the Plan tab, the Fitter verifies placement legality in
real-time. Once planning is complete and validated, you export the constraints as a Tcl
script for application in your project.

Note: The Interface Planner constraints you define do not apply to your project until you
export and source them with the generated Tcl script.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. Interface Planner Chip View

Chip View

Figure 11. Interface Planner Package View

Package View

Location
Coordinates

Hover for
Info

Icons for
I/O Types

I/O Bank
Coloring

The following topics describe these interface planning flow steps in detail:

Step 1: Setup and Synthesize the Project on page 31

Step 2: Initialize Interface Planner on page 31

Step 3: Update Plan with Project Assignments on page 32

Step 4: Plan Periphery Placement on page 32

Step 5: Report Placement Data on page 36

Step 6: Validate and Export Plan Constraints on page 37

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.2.1. Step 1: Setup and Synthesize the Project

Interface Planner requires at least a partially complete, synthesized Quartus Prime
project as input. You can also use Interface Planner to adjust placement for a fully
complete design project.

Follow these steps to setup the project and run synthesis:

1. Complete at least the following steps for your design:

• Fully define known device periphery interfaces.

• Instantiate all known interface IP cores.

• Declare all general purpose I/Os.

• Define the I/O standard, voltage, drive strength, and slew rate for all general
purpose I/Os.

• Define the core clocking (optional, but recommended).

• Connect all interfaces of the periphery IP to virtual pins or test logic. This
technique creates loop backs on any interfaces in the shell design, helping to
ensure that periphery interfaces persist after synthesis optimization.

2. To synthesize the design, click Processing ➤ Start ➤ Start Analysis &
Synthesis. You must run at least Analysis & Synthesis before running Interface
Planner.

2.1.2.2. Step 2: Initialize Interface Planner

Initializing Interface Planner loads the compilation database for the synthesis
snapshot, and enables the View Assignments command and Assignments tab for
reconciling project assignments.

To initialize Interface Planner:

1. Click Tools ➤ Interface Planner. The Interface Planner opens, displaying the
Home tab.

2. On the Flow control, click Initialize Interface Planner. After initialization, the
Fitter dynamically validates your interface plan as you make changes.

Figure 12. Interface Planner Home Tab

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.2.3. Step 3: Update Plan with Project Assignments

Before periphery planning in Interface Planner, you must reconcile any conflicting
imported project assignments and Update Plan with the assignments you want to
retain in the plan.

Follow these steps to review imported project assignments and reconcile any conflicts:

1. On the Flow control, click View Assignments.

2. On the Assignments tab, enable or disable specific or groups of project
assignments to resolve any conflicts or experiment with different settings. You can
filter the list of assignments by assignment name or status.

3. After resolving all conflicts, click Update Plan on the Flow control to apply the
enabled project assignments to your interface plan.

Figure 13. Interface Planner (Assignments Tab)

Filter AssignmentsEnable All Assignments Disable All Assignments

Disabled
Assignment

Related Information

• Home Tab Controls on page 25

• Assignments Tab Controls on page 25

• AN 821: Interface Planning for Intel Stratix 10 FPGAs

2.1.2.4. Step 4: Plan Periphery Placement

Click Plan Design on the Flow control to interactively place IP cores and other design
elements in legal locations in the device periphery. The Plan tab displays a list of your
project's design elements, alongside a graphical abstraction of the target device
architecture.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

32

https://www.intel.com/content/www/us/en/programmable/documentation/xrz1510776313202.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For efficiency, place design elements in the following order in Interface Planner:

1. Place all I/O pins or elements, such as PLLs, that have known, specific location
requirements.

2. Place all known periphery interface IP.

3. (Optional) Place all remaining unplaced cells.

Use the following controls to place design elements in the Interface Planner floorplan:

1. Locate design elements that you want to place in the Design Element list. You
can search and filter the list by name, IP, placement status, I/Os, and other
criteria.

2. To customize design element color coding definitions, click the Highlight column.

Figure 14. Interface Planner (Plan Tab)

Click Design Elements Drag to Legal LocationFilter and Search Elements

3. Use any of the following methods to place design elements in the floorplan:

• Drag elements from the Design Elements list and drop them onto available
device resources in the Chip or Package view. Use Ctrl+Click to drag and pan
across the Chip or Package views. You may experience a small delay while
dragging as Interface Planner calculates the legal locations.

• To allow Interface Planner to place an unplaced design element in a legal
location, right-click and select Autoplace Selected. You must use Autoplace
Selected for all unplaced clocks .

•
Click the button next to the Design Elements to display a list of Legal
Locations. Click any legal location in the list to highlight the location in the
floorplan. Double-click any location in the list to place the element in the
location.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15. Listing Legal Locations

Click to List
Legal Locations

Double-Click to Place
at Location

4. To step forward and backward though your plan changes, click the Undo and
Redo buttons.

5. To visualize and traverse design connectivity (for example, to view the reference
clock pin and driven destination cells of a PLL), select any design element and
then click the Link Info tab. Click the Back and Forward buttons to traverse
design connectivity.

6. To generate a report that shows the placement locations the Fitter prefers, select a
design element and click Report Placeability of Selected Element.

Figure 16. Link Info Tab for Traversing Connectivity

Note: Changes made in Interface Planner do not apply to your Quartus Prime project until
you apply the generated interface plan constraints script to your project.

Related Information

Plan Tab Controls on page 26

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.2.4.1. Plan Clock Networks

Interface Planner allows you to visualize and plan clock networks. For Arria® 10 and
Cyclone® 10 GX devices, you can locate, highlight, place, and edit the type of clock
elements in the Plan tab.

Note: The Stratix® 10 device family does not support the Clocking filter in Interface
Planner. For Stratix 10 designs, use the Autoplace Selected command to place all
unplaced clock elements.

Interface Planner generates a Clocks report that details the signals using low-skew
routing networks (clock networks) in the device.

To identify and place clocking elements in your design, click the Clocking filter in the
Plan tab. You can refine the list further by entering search text in the Design
Element Filter. Interface Planner represents clock networks as groupings of the clock
source, clock mux, and the clock region.

Figure 17. Clocking Design Elements

You can place an entire clock group or individual clock elements by dragging into the
location, or using the Report Legal Locations of Selected Element or the
Autoplace Selected commands. After placement, hover the cursor over the item in
the Design Element list to highlight the placement. The placement of clock elements
impacts the placement of dependent core and periphery elements.

You can edit the clock type for clocking design elements. The clock type impacts the
placement of dependent core and periphery elements. Right-click any clock element to
specify one of the available clock types.

2.1.2.4.2. Saving & Loading Floorplans

You can save the state of your Interface Planner floorplan for use in subsequent
Interface Planner sessions. Interface Planner saves your plan in Interface Planner
Floorplan Format (.plan). You can load a .plan file in Interface Planner to reopen
the floorplan.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To save an Interface Planner floorplan, click File ➤ Save Floorplan and specify a
file name.

2. To load an Interface Planner floorplan, click File ➤ Load Floorplan and browse
for the .plan file.

Note: .plan files are for use only in Interface Planner and are not for use directly in the
Quartus Prime software. Interface Planner generates an error if you attempt to load
a .plan file that is not associated with the current Interface Planner project.

2.1.2.5. Step 5: Report Placement Data

Generate Interface Planner placement and connectivity reports to help locate cells and
make the best decisions about placement for the interfaces and elements in your
design. Click View Reports on the Flow control to open the Reports tab from which
you can generate a range of reports.

Follow these steps to report Interface Planner placement data:

1. In the Flow control, click View Reports. The list of reports appears in the Tasks
pane.

2. In the Tasks pane, double-click any report name to generate the report in the
Table of Contents pane.

3. Select design elements in the report and click Place, Unplace, or report detailed
data about the selected elements or locations.

Figure 18. Reports Tab

Reports Generated

Reports you can Generate Right-Click Elements

Report Viewer

Related Information

• Reports Tab Controls on page 27

• Interface Planner Reports on page 44

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.2.6. Step 6: Validate and Export Plan Constraints

You must validate your interface plan before exporting the plan constraints to your
project as a generated Tcl script. Validation must confirm that the Fitter can place all
remaining unplaced design elements before you can generate the script. When you are
satisfied with your interface plan, follow these steps to validate and apply the interface
plan to your Quartus Prime project:

1. In the Flow control, click Validate Plan. The Fitter confirms placement of all
remaining unplaced design elements. You must correct any errors before you can
export constraints.

2. After validation, click Export Constraints to generate a Tcl script that applies the
plan to your project. The output Tcl file contains instructions to apply the interface
plan to your Quartus Prime project.

3. Close Interface Planner.

4. To apply the exported interface plan constraints to your Quartus Prime project,
click Tools ➤ Tcl Scripts and select the <project
name>.pdp_assignments.tcl script file.

5. Click Run. The script runs, applying the Interface Planner constraints to the
project. Alternatively, you can run the script from the project directory:

quartus_sh –t <assignments_file>.tcl

6. To run synthesis and apply the interface plan in your project, click Start ➤ Start
Analysis & Synthesis.

7. Confirm the implementation of your plan by reviewing the Compilation Report.

2.1.3. Interface Planner NoC Tool Flow

For designs targeting Agilex 7 M-Series FPGAs only, you can use Interface Planner to
assign physical locations for Network-on-Chip (NoC) initiators, PLLs, and SSMs. The
Hard Memory NoC facilitates high-bandwidth data movement between the FPGA core
logic and memory resources, such as HBM2e and DDR5 memories. Refer to the Agilex
7 M-Series FPGA Network-on-Chip (NoC) User Guide for details on the complete NoC
flow including Interface Planner.

You can use Interface Planner to assign physical locations for NoC initiators, targets
(as part of the HBM2e or external memory interfaces), PLLs, and SSMs. If you do not
make physical assignments for NoC elements, the Fitter places NoC elements
automatically during compilation.

You use the floorplan view in Interface Planner to place hard memory NoC and
periphery elements. There are three floorplan views available:

• NoC View—shows a filtered view of NoC initiators and targets.

• Chip View—shows the placeable locations for hard memory NoC elements,
including NoC initiators, targets, PLLs, and SSMs.

• Package View—NoC elements are not visible in the Package View.

In the Chip View, the available NoC initiator and target locations appear as rows of
small boxes across the top and bottom edges of the device, between the FPGA fabric
and the periphery I/O structures. Placing your cursor over locations displays a tooltip
indicating whether the location supports only an initiator, only a target, or both an
initiator and a target.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The available NoC PLL and NoC SSM locations appear as smaller boxes at the end of
the row of initiators and targets. The PLL and SSM locations appear at the left end of
the rows (if using the Chip Top view), or at the right end of the rows (if using the
Chip Bottom view).

Interface Planner Chip View, Closeup of NoC Features shows an example of the
Interface Planner Chip View showing the top left corner of the die as viewed from the
top. The two smaller pink boxes at the top left corner of the fabric are the locations of
the NoC PLL and the NoC SSM.

Figure 19. Interface Planner Chip View, Closeup of NoC Features

NoC PLL
&

NoC SSM

In the NoC View, only the NoC initiators and targets are visible as larger rectangles.
The targets and initiators for both high-speed NoC along the top edge of the die, and
the high-speed NoC along the bottom edge of the die, are visible. Initiators and
targets that may share the same location in the Chip View are split into separate
elements in the NoC View.

The outer-top and outer-bottom rows are the targets for the top-edge NoC and
bottom-edge NoC, respectively. Similarly, the inner-top and inner-bottom rows are the
initiators for the top-edge NoC and bottom-edge NoC, respectively. As with the Chip
View, if you place your cursor over one of these locations, a tooltip reports if that
location supports a target or an initiator.

NoC View Showing Targets and Initiators is an example of the Interface Planner NoC
View, showing the targets and initiators for both the top-edge NoC and the bottom-
edge NoC.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. NoC View Showing Targets and Initiators

NoC Targets

NoC Initiators

NoC Initiators

NoC Targets

Related Information

Agilex 7 M-Series FPGA Network-on-Chip (NoC) User Guide

2.1.3.1. Placing NoC Design Elements Using Interface Planner

The following steps describe recommended placement of NoC design elements:

1. Open, initialize, and load assignments in Interface Planner, as Interface Planner
General Tool Flow describes.

2. Click Plan Design on the Flow control to interactively place NoC elements and
other design elements in legal locations in the device periphery. All placeable
elements, including NoC elements and periphery elements, appear in the Design
Elements list. Refer to Recommended Placement Order for NoC Elements in
Interface Planner.

3. Use any of the following methods to place design elements in the Chip View:

• Drag NoC elements from the Design Elements list and drop them onto
available device resources in the Chip view. You may experience a small
delay while dragging as Interface Planner calculates the legal locations.

• To allow Interface Planner to place an unplaced design element in a legal
location, right-click and select Autoplace Selected. You must use Autoplace
Selected for all unplaced clocks.

• Right-click an element the Design Elements list, and then click Generate
Legal Locations to display a list of Legal Locations for the element. Click
any legal location in the list to highlight the location in the floorplan. Double-
click any location in the list to place the element in the location.

4. After making all necessary location assignments in Interface Planner, validate the
placement by clicking Validate Plan in the Flow pane.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

39

https://www.intel.com/content/www/us/en/docs/programmable/768844.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. NoC Elements in Interface Planner Design Tab Chip View

5. To generate a Tcl script to apply the placement constraints to your project, click
Export Constraints in the Flow pane. To automatically run the Tcl script, enable
Apply Assignments.

Figure 22. Export Physical Constraints from Interface Planner to Your Project

6. To report whether the NoC initiator and target location placement allows your
design to meet the bandwidth and transaction size requirements, click the
Reports tab, and then double-click Report NoC Performance in the Tasks
pane. For report details, refer to Report NoC Performance.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.3.1.1. Recommended Placement Order for NoC Elements in Interface Planner

For best results, place NoC-related elements in the following order:

Note: For important considerations when choosing initiator interface placement, refer to
Horizontal Bandwidth Considerations in the Agilex 7 M-Series FPGA Network-on-Chip
(NoC) User Guide to translate location choices into physical placements.

1. Start by placing the NoC PLL and SSM in the Interface Planner Chip View. Expand
the contents of the NoC Clock Control IP by clicking the small triangle to the left of
the IP instance name (noc_clock_ctrl_0) in the Design Element pane. Place
the PLL and SSM instances for each clock control IP at either the top corner or the
bottom corner.

2. Use the Autoplace Selected command to place the remaining NoC Clock Control
Intel FPGA IP.

3. If using HBM2e memory, start by placing the UIB PLL using the Interface Planner
Chip View. Expand the contents of the HBM2e IP by clicking the small triangle to
the left of the IP instance name (hbm_fp_0) in the Design Element pane.
Interface Planner may display legal locations on both the top edge and on the
bottom edge of the die. Place the IP along the same edge of the die as the
corresponding NoC PLL.

4. Place the HBM2e instance (design element name ending in …|xhbmc). Interface
Planner displays only one legal location for the HBM2e instance.

5. Use Autoplace Selected to place the remaining HBM2e IP, including all NoC
target interfaces.

6. If using high-speed external memory interfaces that connect to the NoC, place
these interfaces next. As with the HBM2e Intel FPGA IP above, start by placing the
PLL for the external memory interface. Ensure you place this interface along the
same edge as the corresponding NoC PLL.

7. Place the mem_ck pins to fix the pin-out for the interface.

8. Use Autoplace Selected to place the remaining external memory interface IP,
including all of the NoC target interfaces.

9. Select the NoC View to place the initiator interfaces. The NoC View shows the
target interfaces that you already placed. As you place each initiator, the targets
you connect to highlight. When placing each initiator, consider which targets
communicate with the initiator.

Low-speed external memory interfaces and other GPIO functions that bypass the NoC
can conflict with initiator interface placement. Depending on design requirements, you
can place these I/O functions that bypass the NoC before or after placing the NoC
initiator interfaces. Placing I/O functions first gives greater flexibility to their
placement, while restricting which initiator locations you can use. Placing NoC initiator
interfaces first allows optimal initiator placement, while restricting which I/O locations
are available.

Other interfaces, such as transceivers, have no direct interaction with the hard
memory NoC. Therefore, you can place such interfaces before or after the NoC.

Related Information

Agilex 7 M-Series FPGA Network-on-Chip (NoC) User Guide

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

41

https://www.intel.com/content/www/us/en/docs/programmable/768844.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.3.1.2. High-Speed Interconnect NoC Locations in Interface Planner

When placing NoC initiators and targets, refer to the following tables to correlate
locations with NoC elements visible in the Interface Planner.

Table 12. Top-Edge High-Speed Interconnect NoC Locations in Interface Planner

NoC Segment Initiator Target Interface Planner Location

PLL/SSM NOCPLL_X11_Y417_N221 NOCSSM_X11_Y417_N220

GPIO-B_0 I0 T0 NOCINITIATOR_X27_Y417_N202 NOCTARGET_X27_Y417_N200

I1 AXI4 Lite NOCINITIATOR_X42_Y417_N202
NOCAXILITETARGET_X42_Y417_N200

I2 T2 NOCINITIATOR_X53_Y417_N202 NOCTARGET_X53_Y417_N200

GPIO-B_1 I0 T0 NOCINITIATOR_X79_Y417_N202 NOCTARGET_X79_Y417_N200

I1 AXI4 Lite NOCINITIATOR_X94_Y417_N202
NOCAXILITETARGET_X94_Y417_N200

I2 T2 NOCINITIATOR_X105_Y417_N202
NOCTARGET_X105_Y417_N200

UIB_L AXI4 Lite NOCAXILITETARGET_X123_Y417_N200

AXI4 Lite NOCAXILITETARGET_X129_Y417_N200

I0 AXI4 Lite NOCINITIATOR_X134_Y417_N202
NOCAXILITETARGET_X134_Y417_N200

T3 NOCTARGET_X140_Y417_N200

I1 T4 NOCINITIATOR_X150_Y417_N202 NOCTARGET_X150_Y417_N200

T5 NOCTARGET_X156_Y417_N200

I2 T6 NOCINITIATOR_X161_Y417_N202 NOCTARGET_X161_Y417_N200

T7 NOCTARGET_X167_Y417_N200

UIB_M T0 NOCTARGET_X177_Y417_N200

T1 NOCTARGET_X183_Y417_N200

I0 T2 NOCINITIATOR_X188_Y417_N202 NOCTARGET_X188_Y417_N200

I1 NOCINITIATOR_X204_Y417_N202

T3 NOCTARGET_X210_Y417_N200

I2 T4 NOCINITIATOR_X215_Y417_N202 NOCTARGET_X215_Y417_N200

T5 NOCTARGET_X221_Y417_N200

UIB_R T0 NOCTARGET_X231_Y417_N200

T1 NOCTARGET_X237_Y417_N200

I0 T2 NOCINITIATOR_X242_Y417_N202 NOCTARGET_X242_Y417_N200

T3 NOCTARGET_X248_Y417_N200

I1 T4 NOCINITIATOR_X258_Y417_N202
NOCTARGET_X258_Y417_N200

AXI4 Lite NOCAXILITETARGET_X264_Y417_N200

continued...

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NoC Segment Initiator Target Interface Planner Location

I2 AXI4 Lite NOCINITIATOR_X269_Y417_N202
NOCAXILITETARGET_X269_Y417_N200

AXI4 Lite NOCAXILITETARGET_X275_Y417_N200

GPIO-B_3 I0 T0 NOCINITIATOR_X296_Y417_N202 NOCTARGET_X296_Y417_N200

I1 AXI4 Lite NOCINITIATOR_X311_Y417_N202
NOCAXILITETARGET_X311_Y417_N200

I2 T2 NOCINITIATOR_X322_Y417_N202
NOCTARGET_X322_Y417_N200

GPIO-B/HPS T0 NOCTARGET_X346_Y417_N200

I0(fabric) AXI4 Lite NOCINITIATOR_X357_Y417_N204
NOCAXILITETARGET_X357_Y417_N200

I1(fabric) T2 NOCINITIATOR_X365_Y417_N204 NOCTARGET_X365_Y417_N200

I0(MPFE)
AXI4 Lite
I2(MPFE)

NOCINITIATOR_X373_Y417_N202
NOCAXILITEINITIATOR_X373_Y417_N201
NOCINITIATOR_X373_Y417_N200

Table 13. Bottom-Edge High-Speed Interconnect NoC Locations in Interface Planner

NoC Segment Initiator Target Interface Planner Location

PLL/SSM NOCPLL_X11_Y6_N221 NOCSSM_X11_Y6_N220

SDM I0 NOCINITIATOR_X28_Y6_N200

GPIO-B_1 I0 T0 NOCINITIATOR_X79_Y6_N202 NOCTARGET_X79_Y6_N200

I1 AXI4 Lite NOCINITIATOR_X94_Y6_N202 NOCAXILITETARGET_X94_Y6_N200

I2 T2 NOCINITIATOR_X105_Y6_N202 NOCTARGET_X105_Y6_N200

GPIO-B_2 I0 T0 NOCINITIATOR_X134_Y6_N202 NOCTARGET_X134_Y6_N200

I1 AXI4 Lite NOCINITIATOR_X149_Y6_N202
NOCAXILITETARGET_X149_Y6_N200

I2 T2 NOCINITIATOR_X160_Y6_N202 NOCTARGET_X160_Y6_N200

UIB_L AXI4 Lite NOCAXILITETARGET_X177_Y6_N200

AXI4 Lite NOCAXILITETARGET_X183_Y6_N200

I0 AXI4 Lite NOCINITIATOR_X188_Y6_N202
NOCAXILITETARGET_X188_Y6_N200

T3 NOCTARGET_X194_Y6_N200

I1 T4 NOCINITIATOR_X204_Y6_N202 NOCTARGET_X204_Y6_N200

T5 NOCTARGET_X210_Y6_N200

I2 T6 NOCINITIATOR_X215_Y6_N202 NOCTARGET_X215_Y6_N200

T7 NOCTARGET_X221_Y6_N200

UIB_M T0 NOCTARGET_X231_Y6_N200

T1 NOCTARGET_X237_Y6_N200

continued...

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NoC Segment Initiator Target Interface Planner Location

I0 T2 NOCINITIATOR_X242_Y6_N202 NOCTARGET_X242_Y6_N200

I1 NOCINITIATOR_X258_Y6_N202

T3 NOCTARGET_X264_Y6_N200

I2 T4 NOCINITIATOR_X269_Y6_N202 NOCTARGET_X269_Y6_N200

T5 NOCTARGET_X275_Y6_N200

UIB_R T0 NOCTARGET_X285_Y6_N200

T1 NOCTARGET_X291_Y6_N200

I0 T2 NOCINITIATOR_X296_Y6_N202 NOCTARGET_X296_Y6_N200

T3 NOCTARGET_X302_Y6_N200

I1 T4 NOCINITIATOR_X312_Y6_N202 NOCTARGET_X312_Y6_N200

AXI4 Lite NOCAXILITETARGET_X318_Y6_N200

I2 AXI4 Lite NOCINITIATOR_X323_Y6_N202
NOCAXILITETARGET_X323_Y6_N200

AXI4 Lite NOCAXILITETARGET_X329_Y6_N200

GPIO-B_3 I0 T0 NOCINITIATOR_X350_Y6_N202 NOCTARGET_X350_Y6_N200

I1 AXI4 Lite NOCINITIATOR_X365_Y6_N202
NOCAXILITETARGET_X365_Y6_N200

I2 T2 NOCINITIATOR_X376_Y6_N202 NOCTARGET_X376_Y6_N200

GPIO-B_4 I0 T0 NOCINITIATOR_X404_Y6_N202 NOCTARGET_X404_Y6_N200

I1 AXI4 Lite NOCINITIATOR_X419_Y6_N202
NOCAXILITETARGET_X419_Y6_N200

I2 T2 NOCINITIATOR_X430_Y6_N202 NOCTARGET_X430_Y6_N200

2.1.4. Interface Planner Reports

Use Interface Planner reports to locate cells and assign suitable placement locations
for specific interfaces and elements in your design. Interface Planner reports provide
detailed, actionable feedback to help you quickly implement the best plan for your
design. You can access placement and further reporting functions directly from
Interface Planner reports. Interface Planner generates the following reports that
provide detailed planning information:

Report Summary on page 45

Report Pins on page 46

Report HSSI Channels on page 47

Report Clocks on page 48

Report Periphery Locations on page 48

Report Cell Connectivity on page 49

Report Instance Assignments on page 50

Report NoC Performance on page 51

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.4.1. Report Summary

Click Create all Summary Reports on the Reports tab to generate summary
reports about periphery cells in the interface plan. Right-click any cell type to report
placed, unplaced, connectivity, or location information.

Figure 23. Summary Reports

Double-Click to Generate Reports

All Periphery Cells Report
Lists Generated Reports

Click to Open Report Right-Click Options

Table 14. Report Summary

Command Description

Create all Summary Reports Creates the following summary reports:
• Interface Planner Summary—reports software version and total number of

periphery and top-level periphery cells.
• All Periphery Cells— reports the name, parent, and type of all periphery cells

in the design.
• Placed/Unplaced Periphery Cells—reports the name, parent, and type of all

placed and unplaced periphery cells in the interface plan.
• Periphery Location Types—reports the number of each type of periphery

location available in the target device and the number required by your design.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.4.2. Report Pins

Generate reports about I/O pins in the design. Right-click any cell type to place,
unplace, or report connectivity or location information.

Table 15. Report Pin Commands

Command Description

Report All Placed Pins Generates the Placed Pins report. This report lists the name, parent, type, and
location of all placed pins in the interface plan.

Report All Unplaced Pins Generates the Unplaced Pins report. This report lists the name, parent, type, and
the number of potential placements for all unplaced pins in the interface plan.

Figure 24. Placed Pins Report

Right-Click To
Unplace Placed Pins

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 25. Unplaced Pins Report

Right-Click to
Place Unplaced Pins

2.1.4.3. Report HSSI Channels

Generate reports about HSSI channels in the interface plan. Right-click any cell type
to place, unplace, or report connectivity or location information.

Table 16. Report Channel Commands

Command Description

Report All Placed HSSI Channels Generates the Placed HSSI Channels report. This report lists the name, parent,
type, and location of all placed HSSI RX/TX channels in the interface plan.

Report All Unplaced HSSI
Channels

Generates the Unplaced HSSI Channels report. This report lists the name, parent,
type, and location of all unplaced HSSI RX/TX channels in the interface plan.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 26. Unplaced HSSI Channels Report

2.1.4.4. Report Clocks

Generate reports showing clock networks in the plan. Use this report to analyze clock
network scenarios and ensure that specific device regions are fed by high fan-out
signals.

Table 17. Report Clocks Commands

Command Description

Report Clocks Generates the Global and other Fast Signals report.

Figure 27. Clocks Report

2.1.4.5. Report Periphery Locations

Generate reports that show the status of periphery cells in the interface plan.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 18. Report Periphery Locations Commands

Command Description

Right-click ➤ Report Placed
Periphery Cells of Selected Type

Accessible from the All Periphery Cells report. This command reports the name,
parent (if any), type, and location of the selected placed periphery cells matching
the selected type. Right-click any cell to place, unplace, or report connectivity or
location information.

Right-click ➤ Report Unplaced
Periphery Cells of Selected Type

Accessible from the All Periphery Cells report. This command reports the name,
parent (if any), type, and number of suitable locations for the selected unplaced
periphery cells matching the selected type. Right-click any cell to place, unplace, or
report connectivity or location information.

Right-click ➤ Report Periphery
Locations of Selected Type

Reports all locations in the device of the selected type, and whether the location
supports merging.

Figure 28. Placed Periphery Cells Report

2.1.4.6. Report Cell Connectivity

Generate reports showing the connections between all cells in the interface plan.

Table 19. Report Cell Connectivity Command

Command Description

Right-click ➤ Report Periphery
Cell Connectivity

Right-click any Cell Name in the reports to Report Periphery Cell Connectivity.
The report lists the source and destination ports and type of connections to the
selected cell. Right-click any cell to report all connections to the cell.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. Periphery Cell Connectivity Report

2.1.4.7. Report Instance Assignments

Click Report Instance Assignments to show all imported project assignments in the
interface plan. You can delete these assignments from the plan.

Table 20. Report Instance Assignments Command

Command Description

Report Instance Assignments Reports all enabled instance assignments in your design. Right-click any cell to
delete the assignment or to delete all assignments of the same type.

Figure 30. Instance Assignments Report

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.4.8. Report NoC Performance

For designs that include the Hard Memory NoC, you can interactively generate a NoC
Performance Report in Interface Planner.

The NoC Performance Report generation performs a static analysis of the NoC initiator
and target locations to evaluate whether the placement allows your design to meet the
bandwidth requirements and transaction sizes that you specify in the NoC Assignment
Editor. You can review the report, and then make changes in the Plan tab based on
the results.

To access the NoC Performance Report in Interface Planner, click the Reports tab, and
then double-click Report NoC Performance in the Tasks pane.

Figure 31. Sample NoC Performance Report

The NoC Performance Report reports performance data for each initiator to target
connection. The latencies in this report are based on the minimum structural latency
with respect to the initiator and target placement. These latencies are for the NoC
portion of the path only. These latencies do not include any latency of, for instance,
external memory access. Nor do these latencies account for potential delay due to
congestion on the NoC. You can achieve lower minimum structural latency by placing
the NoC initiators and targets closer together.

Table 21. NoC Performance Report Data

NoC Performance Report Column Description

Requested RD BW The requested read bandwidth.

Requested WR BW The requested write bandwidth.

NoC Req latency The requested request latency.

NoC Res latency The requested response latency.

continued...

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NoC Performance Report Column Description

Initiator placement The placement location of the initiator element.

Target placement The placement location of the target element.

Message Text message that identifies the reason that the current placement cannot meet the
requested bandwidth.

One possible reason the Message reports that the current placement cannot meet the
requested bandwidth is because of over-saturation of an initiator or a target. For
example, if the sum of all bandwidth requirements through a particular initiator is
greater than the bandwidth that the initiator can support, based on the data width and
operating frequency of its AXI4 interface. To avoid this problem, either reduce
bandwidth requirements or increase bandwidth capability.

Another possible reason that the current placement cannot meet the requested
bandwidth is over-saturation of the horizontal bandwidth available in the NoC. This
condition is the result of multiple initiator to target connections requesting bandwidth
in the same direction through a horizontal section of the NoC. The NoC Performance
Report message reports the congested segments. You can adjust initiator placement
to alleviate congestion.

Note: For important considerations when choosing initiator interface placement, refer to the
tables in Horizontal Bandwidth Considerations, along with tables in High-Speed
Interconnect NoC Locations in Interface Planner in the Agilex 7 M-Series FPGA
Network-on-Chip (NoC) User Guide to translate location choices into physical
placements.

You can also view NoC elements in the Quartus Prime Chip Planner, and view
connectivity of NoC elements in following fitting in the NoC Connectivity Report, as the
Agilex 7 M-Series FPGA Network-on-Chip (NoC) User Guide.

Related Information

Agilex 7 M-Series FPGA Network-on-Chip (NoC) User Guide

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

52

https://www.intel.com/content/www/us/en/docs/programmable/768844.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2. Using Tile Interface Planner

The Quartus Prime Tile Interface Planner helps you to quickly place component IP in
legal tile locations of device F-tiles. Tile Interface Planner is an interactive
floorplanning tool that simplifies this process.

Tile Interface Planner displays your project's component IP in a hierarchical tree view,
next to a visual representation of the device tile segments. You can then locate the
potential legal locations for each IP within the tile, place each IP at one of these
locations, and apply generated placement constraints to the project for downstream
Compiler stages.

As you place elements in the tile floorplan, the legality engine verifies that the
placement is legal in real-time, thus ensuring correlation with your intent in the final
implementation.

Figure 32. Tile Interface Planner GUI

Lists Legal Locations
(double-click to place)

Shows Legal
Tile Locations

Design Elements Tree View

Tool Flow
Commands

In contrast with Interface Planner, Tile Interface Planner is specifically for placing
component IP on the F-tile, and requires you to run an initial Design Analysis stage
before you define a legal tile floorplan for all component IP targeting device tiles.

• Tile Interface Planner Tool Flow on page 55

• Tile Interface Planner GUI Reference on page 69

2.2.1. Tile Interface Planner Terminology

Tile Interface Planner refers to the following terminology:

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 22. Tile Interface Planner Terminology

Term Description

Dynamic Reconfiguration Intel FPGA IP technology that allows you to modify some features of a supported
multi-rate Intel FPGA IP interface in real time while the FPGA remains in operation.
For example, you can dynamically reconfigure the settings in the F-tile CPRI PHY
Multi-Rate Intel FPGA IP to run your design at different data rates and features for
different IP "profiles."

Floorplan The layout of physical resources on the device. Creating a design floorplan, or
floorplanning, is the process of mapping the logical design hierarchy to physical
regions in the device. Tile Interface Planner is a tile IP floorplanning tool.

IP building block Intel FPGA IP cores are comprised of building blocks that combine to provide all
functionality of the IP. The Design Tree view in Tile Interface Planner displays each
IP's building blocks. Building blocks can be movable, fixed, or always movable types.
• Movable building blocks—building blocks are initially movable. Movable

building blocks can be re-placed by the legality engine in potentially one of
several legal locations to accommodate other building blocks. You can convert a
movable building block to fixed by specifying a fixed placement location. The
legality engine cannot change the placement of fixed building blocks. Movable
building block placements appear in italic text in the Design Tree view. Movable
building blocks have a dithered fill in Chip View.

• Fixed building blocks—building blocks that you place in a fixed, legal location
that the legality engine cannot change. You can convert a movable building block
to fixed, and a fixed building block to movable. Fixed building block placements
appear in plain text in the Design Tree view. Fixed building blocks have a solid fill
In the Chip View.

• Always movable building blocks—building blocks that are always movable by
the legality engine and cannot be fixed. These building blocks must remain
movable to prevent inadvertent conflicting constraints. Always movable building
blocks appear in gray italic text in the Design Tree view.

Quartus Prime Settings File
(.qsf)

Quartus Prime software file that preserves project settings and assignments,
including the placement of fixed IP building blocks and fixed tile assignments that
you specify in Tile Interface Planner.

JSON file Quartus Prime software internal file that preserves the most recent placement from
the Logic Generation stage of the Compiler. You can load this placement when you
click Update Assignments if you want the starting point for planning to include the
last Logic Generation assignments.

Legal location Tile Interface Planner legality engine identifies the legal locations in the tile floorplan
for placement of the IP or building block that you select in the Design Tree.

Legality engine Tile Interface Planner function that generates valid legal locations for tile placement,
and places movable and always movable building blocks in the tile plan.

Placed design element IP or building block that you or the legality engine has assigned to a fixed or
movable legal location.

Support-Logic Generation stage A Compiler stage, preceding Analysis & Synthesis, that includes the Design Analysis
and Logic Generation sub-stages. This stage is only present when targeting F-tile.
• Design Analysis stage—A Compiler stage, preceding Analysis & Synthesis, that

elaborates the design RTL to extract design information about component IP
targeting F-tile. You must run this stage before running Tile Interface Planner.
This stage is not present for other FPGA device families or for designs without
required IP.

• Logic Generation stage—A Compiler stage, following Design Analysis, that uses
your Tile Interface Plan to generate logic for synthesis and implementation of
your tile configuration plan. You must run Logic Generation after Design Analysis
before you can synthesize your tile plan.

Tile plan One or more fixed placements that you define and save in Tile Interface Planner
using the (.qsf).

Unplaced design element IP or building blocks that are unassigned to a fixed or movable legal location.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.2. Tile Interface Planner Tool Flow

The Tile Interface Planner user interface guides you through each step in the tile
interface planning process.

Figure 33. Tile Interface Planner Tool Flow

Ethernet

PCI Express Show Legal
Placements

Create Tile PlanInstantiate IP in Design
1 4

Legality
Engine

Save Tile Plan
5

6

Run Logic Generation
 and SynthesisRun Design Analysis

Enable/Disable
Assignments

2

Apply Tile Constraints
for Compilation

Start Tile
Interface Planner

3

• Step 1: Instantiate IP and Run Design Analysis on page 55—Tile Interface
Planner first requires a design with component IP, targeting the Agilex 7 FPGA with
F-tile. After initial design setup, you run Design Analysis to elaborate the
component IP in the design.

• Step 2: Initialize Tile Interface Planner on page 56—launch Tile Interface
Planner, component IP and existing assignment data loads, and the legality engine
initializes.

• Step 3: Update Plan with Project Assignments on page 57—enable or disable any
existing placement assignments and optionally load placement data from previous
planning sessions for the current tile planning session.

• Step 4: Create a Tile Plan on page 58—use the Plan tab to locate the potential
legal locations for each unplaced component IP, place the IP in the tile location,
and verify that the placement is legal in real-time to ensure correlation in the final
implementation.

• Step 5: Save Tile Plan Assignments on page 62—save the tile IP plan
assignments to the project for design compilation.

• Step 6: Run Logic Generation and Design Synthesis on page 63—run the
Compiler Logic Generation stage to implement your tile plan and continue
synthesis and the remaining design compilation stages.

2.2.2.1. Step 1: Instantiate IP and Run Design Analysis

Tile Interface Planner requires an Quartus Prime project that includes component IP
targeting the Agilex 7 FPGA with F-tile.

After instantiating the component IP in a top-level project design file (for example,
top.v), you run the Design Analysis compilation stage to elaborate the design RTL to
extract component IP and target device information. Upon launch, Tile Interface
Planner initializes and displays this component IP information in the Design Tree view.

Follow these steps to instantiate IP and run Design Analysis:

1. Open or create an Quartus Prime project that includes component IP targeting F-
tile:

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Create a new project, add design files, and specify the target Agilex 7 FPGA by
clicking File ➤ New Project Wizard.

Or

• Parameterize and instantiate component IP with IP Catalog (View ➤ IP
Catalog) or Platform Designer (Tools ➤ Platform Designer).

2. To run the Design Analysis stage of the Compiler, double-click Design Analysis
on the Compilation Dashboard (Processing ➤ Compilation Dashboard).

Figure 34. Design Analysis Stage in Compilation Dashboard

Click to Run
Design Analysis

3. Initialize Tile Interface Planner, as Step 2: Initialize Tile Interface Planner on page
56 describes.

2.2.2.2. Step 2: Initialize Tile Interface Planner

When you launch Tile Interface Planner, the tool initializes the placement legality
engine and loads component IP and target device data extracted by Design Analysis.
Tile Interface Planner then displays the component IP information in the Design Tree
view and enables the Flow control.

Figure 35. Tile Interface Planner Flow Control

To initialize Tile Interface Planner:

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Run the Design Analysis stage of the Compiler, as Step 1: Instantiate IP and Run
Design Analysis on page 55 describes.

2. When Design Analysis is complete, launch Tile Interface Planner by clicking the
Tile Interface Planner icon in the Compilation Dashboard, the main toolbar, or by
clicking Tools ➤ Tile Interface Planner.

Figure 36. Launching Tile Interface Planner

Launch Tile
Interface Planner

Tile Interface Planner launches and initializes with the legality engine and the
component IP and target device data that Design Analysis extracts.

3. Load existing project assignments, as Step 3: Update Plan with Project
Assignments on page 57 describes.

2.2.2.3. Step 3: Update Plan with Project Assignments

You can determine which fixed assignments to load from the project settings .qsf,
and optionally load the latest placement from Logic Generation. The enabled
assignments become the starting point for the tile plan. Follow these steps to update
the plan with existing assignments:

1. On the Flow control, click View Assignments.

Figure 37. Plan Assignment Options

2. On the Assignments tab, select the assignment types to load for the current
planning session, as Assignments Tab Controls on page 70 describes.

3. On the Assignments tab, enable or disable assignments to resolve any conflicts
or experiment with alternative placements. Filter the list of assignments by
assignment name or status.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 38. Enable or Disable Existing Assignments for Current Planning Session

Existing Assignments
Included in Tile Plan

4. When assignment selections are complete, or if you have no existing assignments,
click Update Plan on the Flow control to apply the enabled project assignments
to your current tile interface plan.

5. Place IP components and building blocks on the Plan tab, as Step 4: Create a Tile
Plan on page 58 describes.

2.2.2.4. Step 4: Create a Tile Plan

Click Plan Design on the Flow control to interactively place component IP in legal
locations on device tiles. The Plan tab displays a hierarchical list of your project
component IP design elements, alongside a graphical abstraction of the target device
tile architecture. Place IP (and IP building blocks) in legal tile locations within the
graphical tile floorplan.

Figure 39. Tile Interface Planner Design Elements and Chip View

Unplaced Tile Interface IP

Tile Chip View

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Recommended Two-Stage Tile IP Placement

Handle IP tile placement in two stages for the most efficiency:

Table 23. Two-Stage Tile IP Placement

Tile IP Placement Description

Stage 1 • Place all of the IPs targeting the same tile to ensure that all IP can be placed within the tile,
as Placing IP Components on page 59 describes.

• Fill each tile with the desired IP, before refining any IP building block placement for any
specific placement requirements you may have for a particular building block.

Stage 2 • Review the placement of IP building blocks.
• Refine any building block placement to meet any specific placement requirements, as

Constraining IP Building Blocks on page 61 describes.

Note: Changes made in Tile Interface Planner do not apply to your Quartus Prime project
until you apply the generated tile interface plan constraints to your project, as Step 5:
Save Tile Plan Assignments on page 62 describes.

Placing IP Components on page 59

Constraining IP Building Blocks on page 61

2.2.2.4.1. Placing IP Components

To place IP components and create a tile plan, follow these steps:

Note: For placing multi-rate IP components, refer to Constraining Dynamic Reconfiguration
IP on page 64.

1. Update the plan with existing assignments, as Step 3: Update Plan with Project
Assignments on page 57 describes.

2. In Tile Interface Planner, click the Plan tab. Tile Interface Planner displays the
Design Element hierarchy, alongside a graphical representation of the tile chip or
package view.

3. In the Design Element list, locate the tile interface IP that you want to place. You
can search and filter the list by name, IP, placement status, I/Os, and other
criteria.

Figure 40. Unplaced PCIe Tile Interface IP in Plan Tab

4. To customize design element color coding, double-click a color in the Highlight
column to specify a new color.

5. Use any of the following methods to locate legal tile placements for component IP:

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• In the Design Element list, right-click the tile interface IP that you want to
place, and then click Generate Legal Locations for Selected Element.

Note: You can select multiple IP targeting the same tile to generate legal
locations for all IP at once.

•
Click the button next to the Design Element to display a list of Legal
Locations.

Figure 41. Listing Legal Locations for Tile Placement

6. In Legal Locations, click any location in the list to highlight the location in the
floorplan.

Figure 42. Highlighting Legal Locations for Tile Placement

Legal Location Listed
and Highlighted in Chip View
Double-Click Location to Place

7. Double-click any location in Legal Locations to place the element in a legal
location. Tile Interface Planner places the IP in the legal location on the device tile,
as indicated by color highlighting in the Chip View. When listing legal locations for
multiple IPs at once, you can also place multiple IPs at once.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 43. IP Placed In Legal Tile Location

Highlight Shows Placement

2.2.2.4.2. Constraining IP Building Blocks

Intel FPGA IP cores are comprised of building blocks that combine to provide all
functionality of the IP. The Design Tree view displays each IP building block hierarchy.

When you place component IP, Tile Interface Planner also places the corresponding IP
building blocks in the tile. Each building block has a movable, fixed, or always movable
state. You can review the building block placement and determine whether to refine
any building block placement, or allow the legality engine to determine the best
building block placement.

Figure 44. IP Core Comprised of IP Building Blocks in Design Tree View

Moveable Building Blocks
(italics)

IP core

Fixed Building Blocks
(no italics)

The placement column indicates the movable, fixed, and always-movable state of the
design element. In general, use movable building block placement to allow placement
flexibility. Only apply fixed building blocks if a specific building block placement is
essential.

Follow these steps to constrain or relax the placement of IP building blocks:

1. Place all IP on the tile, as Placing IP Components on page 59 describes.

2. To the left of the Placement column, click the List Legal Locations button to
display all legal locations for a building block.

3. To constrain building blocks to specific placement:

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To fix a movable building block, right-click one or more movable building
blocks and click Make Selected Element Fixed. The building block is fixed
and does not move to accommodate other components.

• To fix an IP component's building blocks, right-click the IP component and click
Make Child Elements Fixed. The IP and child building blocks are fixed and
do not move to accommodate other components.

Figure 45. Make Selected Element Fixed

List Legal Locations Button

4. To remove specific building block placement constraints from fixed building blocks:

• To make fixed building blocks movable, right-click one or more fixed building
blocks and click Make Selected Element Movable. The building block can
move to accommodate other components.

• To make all of an IP component's fixed building blocks movable, right-click the
IP component and click Make Child Elements Movable. All child building
blocks can move automatically to accommodate other components.

Figure 46. Make Child Elements Movable

5. When all tile IP placement is complete, save the tile plan, as Step 5: Save Tile
Plan Assignments on page 62 describes.

2.2.2.5. Step 5: Save Tile Plan Assignments

Once you have placed all IP components, and fixed any movable building blocks that
you want to constrain, you save the constraints in Tile Interface Planner. Tile Interface
Planner saves the fixed tile constraints to the project .qsf. The Compiler reads
the .qsf assignments during the Logic Generation stage.

To save the tile plan assignments, follow these steps:

1. Review and consider constraining any IP building blocks. To guarantee placement
to exact locations, you must fix the IP building blocks connected to the IP pins to
preserve those constraints in the .qsf, as Constraining IP Building Blocks on page
61 describes.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 47. Save Assignments from Tile Interface Planner

2. In Tile Interface Planner, click Save Assignments on the Flow control, and then
click OK.

3. Close Tile Interface Planner and return to the Quartus Prime GUI. The tile IP
assignments are visible in the Assignment Editor (Assignments ➤ Assignment
Editor) and in the .qsf file.

Figure 48. Tile IP Assignments in Assignment Editor

4. Run the Logic Generation stage, as Step 6: Run Logic Generation and Design
Synthesis on page 63 describes.

2.2.2.6. Step 6: Run Logic Generation and Design Synthesis

After saving your tile plan assignments, run the Compiler's Logic Generation stage to
implement your tile plan and run the remaining design compilation stages.

To run Logic Generation and design synthesis, follow these steps:

1. Save your tile interface plan, as Step 5: Save Tile Plan Assignments on page 62
describes.

2. In the Quartus Prime software, double-click the Logic Generation stage in the
Compilation Dashboard. Logic Generation reads the tile plan assignments from
the .qsf.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 49. Run Logic Generation Stage Before Synthesis

3. Once Logic Generation completes, double-click Analysis & Synthesis on the
dashboard.

4. Once Analysis & Synthesis complete, run the other remaining downstream stages
in the compilation flow when ready.

2.2.3. Constraining Dynamic Reconfiguration IP

Tile Interface Planner and Tile Assignment Editor provide support for constraining IP
instances that are part of a dynamic reconfiguration group.

Dynamic reconfiguration allows you to modify some features of an Intel FPGA IP
interface in real time, while the FPGA remains in continuous operation. This dynamic
reconfiguration capability allows you to change your design to run at different data
rates, and with different features, for different IP "profiles."

When you generate a dynamically reconfigurable IP instance, the IP includes a .mif
file that specifies the base and secondary profiles that you define. Each profile
contains the delta programming sequences for the dynamic reconfiguration of the IP in
a linked-list format.

Related Information

• F-Tile Dynamic Reconfiguration Suite Intel FPGA IP User Guide

• F-Tile Dynamic Reconfiguration Design Example User Guide

• F-tile CPRI PHY IP User Guide

• F-tile CPRI Multi-rate PHY Dynamic Reconfiguration Design Example User Guide

2.2.3.1. Defining a Dynamic Reconfiguration Group

You can define a dynamic reconfiguration group to declare the tree structure that
defines how dynamic reconfiguration operates for all of the IP instances that you
assign to the group. The reconfiguration group can be either Exclusive (only one DR
group IP instance is active at any time), or Inclusive (any combination of DR group
IP instances can be active at any time).

You define the members and properties of the group, and then assign the tile
placement of the group members. The Tile Assignment Editor allows you to easily
create a dynamic reconfiguration group scheme in a unified GUI. You can then
visualize and interactively place the dynamic reconfiguration group in the Tile
Interface Planner floorplan.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

64

https://www.intel.com/content/www/us/en/docs/programmable/711009.html
https://www.intel.com/content/www/us/en/docs/programmable/710582.html
https://www.intel.com/content/www/us/en/programmable/documentation/lux1612296394670.html
https://www.intel.com/content/www/us/en/programmable/documentation/pxw1627396837869.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you place or unplace any member IPs of a multirate DR group, Tile Interface
Planner also appropriately places or unplaces the children and sibling IPs in the DR
group automatically. You can then expand and refine the placement of member IPs
individually.

1. Define and add to your project all of the dynamically reconfigurable IP instances to
be included in the dynamic reconfiguration group or groups, as Step 1: Instantiate
IP and Run Design Analysis on page 55 describes. Connect the IP instances in a
manner that is compatible with the dynamic reconfiguration scheme that you want
to create.

Figure 50. Dynamically Reconfigurable IP In Project Navigator

2. To run the Design Analysis stage of the Compiler, double-click Design Analysis
on the Compilation Dashboard. Design Analysis discovers your project's
dynamically reconfigurable IP instance information for use in Tile Assignment
Editor and Tile Interface Planner.

3. To open Tile Assignment Editor, click Assignments ➤ Tile Assignment Editor.
Tile Assignment Editor displays the Name, Type, and other Properties of the
ungrouped and any grouped IP instances that are valid for dynamic
reconfiguration grouping within your project.

Figure 51. Tile Assignment Editor GUI

Create New DR

IP Available for DR Grouping

4. To define a new DR group, double-click <<new DR group>> in the Tile
Assignment Editor Name column. The Create New DR Group dialog box
appears.

5. In the Group name box, specify a name for the DR group, along with the
following options:

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 24. Create New DR Group Options

Option Description

Group parent Specifies that the DR group is the <root> (parent), or allows you to select an
existing DR group as the parent to newly created dynamic reconfiguration group..

Group type Specifies that the group is Exclusive (only one IP instance is active at any given
time) or Inclusive (Any combination of IP instances may be active at any given
time). Default value is Exclusive.

Reconfig controller Allows you to select the appropriate reconfiguration controller for the group. You may
have multiple reconfiguration controllers in your project.(2)

Has master clock channel By default, the group inherits this value from the Specifies On if your IP group has a
master clock channel, or Off if your IP group does not have a master clock channel.
When On, you can also specify the Building block instance name and the Clock
port of the master clock channel.

Figure 52. Create New DR Group Dialog Box

6. To add IP instances to a DR group, right-click the DR instance name and then click
Move IP Instance. In Move to group, select the DR group to add the IP
instance and click OK.

Figure 53. Move Item To Group

Move Item To Group

7. To specify the startup instance, right click any instance and then click Toggle as
startup IP instance.

(2) If you do not specify this option child DR groups inherit this value from the parent.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 54. Moved Item Within DR Group

Instance Added to DRG_A

8. Once you are done defining the DR groups for the project, click Save Tile
Assignment Editor to save the tile assignments to the project .qsf.

Figure 55. DR Group Assignments in QSF

9. Use the DR groups to place DR groups in Tile Interface Planner, as Assigning
Dynamic Reconfiguration Group Placement on page 67 describes.

2.2.3.2. Assigning Dynamic Reconfiguration Group Placement

Once you load a design that includes dynamic reconfiguration groups, Tile Interface
Planner displays the tile location of the dynamically reconfigurable IP instances and
related building blocks. You can dynamically assign the tile location of IP instances
within each dynamic reconfiguration group, and place other IP components in relation
to the dynamic reconfiguration group. When placing other components, Tile Interface
Planner takes all of the dynamic reconfiguration group placements into account.

Figure 56. Reconfiguration Groups Tree View

The Reconfiguration Groups view shows the members and placement of the
dynamic reconfiguration groups that you create. Use the Reconfiguration Groups
view to select the dynamic reconfiguration group that you want to assign. You can
only modify the DR groupings in Tile Assignment Editor, not in Tile Interface Planner.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To assign DR groups to tile locations, follow these steps:

1. Define one or more dynamic reconfiguration groups, as Defining a Dynamic
Reconfiguration Group on page 64 describes.

2. To run Logic Generation, double-click Logic Generation on the Compilation
Dashboard.

3. To start Tile Interface Planner, click the Tile Interface Planner icon on
Compilation Dashboard, as Step 2: Initialize Tile Interface Planner on page 56
describes.

4. In Tile Interface Planner, click the Plan tab. Tile Interface Planner displays the
dynamic reconfiguration IP profiles in the Design Element hierarchy.

5. Select an instance in the Reconfiguration Groups tree view, the selection
synchronizes with the selection in the Design Elements lists.

Figure 57. Reconfiguration Groups and Design Elements Selection Synchronization

Synchronized
Selection

6.
Click the button next to the Design Element to display a list of Legal
Locations for the selected DR group.

7. Double-click any location in Legal Locations to place the element in a legal
location. Tile Interface Planner places the IP in the legal location on the device tile.

Figure 58. Placing One Member Automatically Places All Others in DR Group

Placing Any Single Member Places All Members in Group

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: When you place or unplace any member IPs of a multirate DR group, Tile
Interface Planner also appropriately places or unplaces the children and
sibling IPs in the DR group automatically. You can then expand and refine
the placement of member IPs individually.

8. Place other IP components in relation to the DR group location, as Placing IP
Components on page 59 describes. Tile Interface Planner takes the dynamic
reconfiguration group placement into account when you place other IP
components.

Figure 59. Placing Other IP Components

Unplaced
Non Multi-Rate

IP

Legal Placement Locations

Legal Placement
Locations for

dr_f_0

2.2.4. Tile Interface Planner GUI Reference

The Tile Interface Planner user interface includes the following controls for
floorplanning your design.

2.2.4.1. Flow Controls

The Flow control panel provides immediate access to common Tile Interface Planner
commands from anywhere within Tile Interface Planner.

Table 25. Flow Controls

Command Description

Initialize Tile Interface Planner Launches the placement legality engine and loads the component IP and target
device data that Design Analysis extracts.

View Assignments Opens the Assignments tab, which allows you to review and enable or disable any
existing placement assignments for the current planning session.

Update Plan Optionally applies a previous tile planning session fixed placement assignments
from the .qsf, and movable placements from a .json to the current tile interface
plan.

Plan Design Opens the Plan tab for placing component IP in the tile interface plan.

Save Assignments Opens the Save Assignments dialog box for saving the fixed tile constraints to
the project .qsf and the movable building block constraints to a .json file.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Flow controls appear in order of a typical tile interface planning flow.

Figure 60. Tile Interface Planner Flow Control

Start Tile Planning
Tasks

2.2.4.2. Home Tab

The Tile Interface Planner Home tab is the default tab that displays the Flow control
and an introductory interface planning infographic. There are no controls specific to
the Tile Interface Planner Home tab.

2.2.4.3. Assignments Tab Controls

The Assignments tab allows you to review and enable or disable any existing
placement assignments for the current tile interface planning session. Click View
Assignments on the Flow control to display the Assignments tab.

You can enable or disable any placement assignments that Design Analysis finds. After
you are satisfied with the status of all project assignments, click Update Plan on the
Flow control to update your tile interface plan with the enabled project assignments.

Table 26. Assignments Tab Controls

Command Description

Filter field Supports creation of wildcard expressions for assignment targets. Enabled and
Disabled buttons filter only enabled or disabled assignments in the list.

Enable All Project Assignments Enables all existing assignments for the current tile interface planning session.
These assignments then become the starting point for your tile plan.

Disable All Project Assignments Disables all existing assignments for the current tile interface planning session.

Clear Clears any filter from the Assignments list.

Plan Assignment Options The following options are mutually exclusive:
• Load enabled fixed assignments—loads fixed assignments from .qsf. These

assignments then become the starting point for your tile plan.
• Load enabled fixed assignments and the most recent placement from

Logic Generation—loads fixed assignments from .qsf and the most recent
placement data from the last Logic Generation stage of the Compiler.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.4.4. Plan Tab Controls

The Plan tab contains the Design Tree and tile visualization panes. The Design Tree
lists design elements for placement. The tile visualization pane displays a graphical
view of the target device tile to help you visualize the appropriate legal locations for
placement of component IP.

Click Plan Design on the Flow control to display the Plan tab.

Table 27. Plan Tab Controls

Command Description

Lists legal locations for placement in the Legal Locations pane.

Unplace All Unplaces all placed design elements in the interface plan.

Chip View Displays the target device at the chip level of detail, showing a representation of
the divisions of device resources spread across the device. Zoom in to display chip
details.

Package View Displays the target device package at the package level of detail, showing the I/O
pin details of the device package. Zoom in to display package details.

Birdseye View Displays the target device chip or package view at maximum Zoom Out.

Reset Plan Unplaces all placed design elements and removes applied project assignments from
the tile interface plan.

Zoom In and Zoom Out Increases or decreases the magnification of the tile view to show more or less
detail.

Fit in Window Increases or decreases the magnification of the tile view to fit in the current
window.

2.2.4.4.1. Design Tree and Filters

The Design Tree View displays a hierarchy of the IP components and building block
design elements found during the Design Analysis compilation stage. You can locate
the IP and building blocks in the design tree, and then assign the elements to legal
locations in the tile floorplan on the Plan tab.

The Design Tree view includes these columns:

• Design Element—lists all component IP and building blocks that Design Analysis
identifies. IP cores and building blocks are distinguished by different icons. Fixed
IP building blocks are shown in plain text. Movable IP building blocks are shown in
italic text. Always movable building blocks are shown in gray italic text.

• Highlight—indicates the color for display of design elements in the tile
visualization pane.

• Placement—indicates the placement status (placed, unplaced) or placement tile
location for design elements.

You can type a partial or complete name in the design element filter field to refine the
list of elements displayed.

• Click the Full icon to show all design elements in the tree.

• Click the IP icon to show only IP level hierarchy in the tree.

• Click the Unplaced icon to show only unplaced design elements in the tree.

• Click the I/Os icon to show only I/O design elements in the tree.

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.4.4.2. Reconfiguration Groups View

The Reconfiguration Groups view shows all IP instances that are part of a dynamic
reconfiguration group, or in a multi-rate IP instance. Use this view to readily display
the dynamic reconfiguration group hierarchy in the current design. The
Reconfiguration Groups view shows you which IP instances in the dynamic
reconfiguration group are placed, and identifies the tile placement location.

Figure 61. Reconfiguration Groups View (Multi-Rate IP Design)

2.2.4.4.3. Legal Locations Pane

The Legal Locations pane lists the legal locations for tile placement that the legality
engine determines. You can enter a text string in the Filter field to limit the list.

• Click any legal location in the list to highlight that location in the tile visualization
pane.

• Double-click any legal location in the list to assign placement to that tile location.

2.2.4.5. Tcl Console Window

The Tcl Console Window echoes the commands that you run in the Tile Interface
Planner GUI. The Tile Interface Planner GUI operates on top of the Tile Interface
Planner API. You can alternatively execute Tile Interface Planner commands in the Tcl
console.

Related Information

Video Demo: Using the Tile Interface Planner

2.3. Interface Planning Revision History

This document has the following revision history:

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

72

https://www.youtube.com/watch?v=NRIarGbfNTo?language=en_US&wapkw=interface%20planner%20video
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 28. Interface Planning Revision History

Document Version Intel Quartus
Prime Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.

2023.10.02 23.3 • Updated screenshot in Step 1: Instantiate IP and Run Design Analysis
for latest Compilation Dashboard.

2023.04.03 23.1 • Added new Interface Planner NoC Tool Flow section describing general
use of new Interface Planner features that support the Hard Memory
NoC in Agilex 7 M-Series FPGAs.

• Added new Report NoC Performance topic describing the new NoC
Performance Report that Interface Planner can generate.

• Updated product family name to "Intel Agilex 7."

2022.09.26 22.3 • Updated Defining a Dynamic Reconfiguration Group topic to describe
automated placement of children and siblings in DR groups.

• Added note and image to Assigning Dynamic Reconfiguration Group
Placement topic to describe automated placement of children and
siblings in DR groups.

2022.06.21 22.2 • Updated Constraining Dynamic Reconfiguration Group IP topic for Tile
Assignment Editor support.

• Added new Defining a Dynamic Reconfiguration Group topic describing
use of new Tile Assignment Editor.

• Updated Assigning Dynamic Reconfiguration Group Placement topic for
support of interactive placement in Tile Interface Planner.

2022.03.28 22.1 • Added dynamic reconfiguration to Tile Interface Planner Terminology
topic.

• Retitled and updated Dynamic Reconfiguration Multi-Rate IP Tile
Planning topic for new display of base and secondary dynamic
reconfiguration profiles.

• Added new Reconfiguration Groups View topic.

2021.10.04 21.3 • Updated Tile Interface Planner Terminology JSON file and IP building
block definitions.

• Updated GUI options in Step 3: Update Plan Assignments and
Assignments Tab Controls topics.

• Added "Multi-Rate IP Tile Planning" topic.
• Updated "Step 5: Save Tile Plan Assignments" for latest GUI.
• Added new video demo link to Interface Planning topic.
• Added new controls to Flow Controls topic.
• Revised Plan Tab Controls topic for new toolbar controls.
• Added application note link to Step 3: Update Plan with Project

Assignments

2021.06.21 21.2 • Integrated new Tile Interface Planning section.

2019.04.01 19.1.0 • Updated "Plan Tab Controls" to describe new color coding controls for
I/O banks, differential pin pairs, DQ/DQS pins, and PCIe hard IP pins.

• Update screenshots and procedure steps for latest user interface.

2018.05.07 18.0.0 • Initial release in Design Constraints User Guide: Intel Quartus Prime
Pro Edition.

• Updated Step 2: Initialize Interface Planner to remove the requirement
to close Intel Quartus Prime.

• Updated Step 4: Plan Periphery Placement to describe when the Locate
Node command is disabled.

2017.11.06 17.1.0 • Removed support for the Clocking feature for Intel Stratix 10. Intel
Stratix 10 clocks must use Autoplace Selected.

• Renamed BluePrint to Interface Planner.
• Renamed chapter from BluePrint Design Planning to Interface Planning.

continued...

2. Interface Planning

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2016.10.31 16.1.0 • Implemented Intel rebranding.

2016.05.03 16.0.0 • Added Plan Clock Networks topic.
• Added Saving and Loading Floorplans topic.
• Added Undo/Redo command descriptions.
• Added Flow control description.
• Added note about panning feature.
• Updated all screenshots for latest GUI.

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.
• Integration of content into Quartus Prime Handbook.
• Added descriptions of new dynamic reports.
• Added Package View description.
• Added GUI controls reference.

2015.05.04 15.0.0 Second beta release of document on Molson. Added information about the
following subjects:
• Overview information
• Reset Plan command
• Legal Assignments list and prompt
• Tcl console

2014.12.15 14.1. First beta release of document on Molson.

2. Interface Planning

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Managing Device I/O Pins
This chapter describes efficient planning and assignment of I/O pins in your target
device. Consider I/O standards, pin placement rules, and your PCB characteristics
early in the design phase.

Figure 62. Quartus Prime Pin Planner GUI

Task and
Report
Windows

All Pins
List

Device
 Package
View

Table 29. Quartus Prime I/O Pin Planning Tools

I/O Planning Task Click to Access

Plan interfaces and device periphery Tools ➤ Interface Planner

Edit, validate, or export pin assignments Assignments ➤ Pin Planner

For more information about special pin assignment features for the Arria 10 SoC
devices, refer to Instantiating the HPS Component in the Arria 10 Hard Processor
System Technical Reference Manual.

Related Information

Instantiating the HPS Component
In Arria 10 Hard Processor System Technical Reference Manual

683143 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683711/current/instantiating-the-hps-component.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3.1. I/O Planning Overview

On FPGA design, I/O planning includes creating pin-related assignments and validating
them against pin placement guidelines. This process ensures a successful fit in your
target device. When you plan and assign I/O pins in the initial stages of your project,
you design for compatibility with your target device and PCB characteristics. As a
result, your design process goes through fewer iterations, and you develop an
accurate PCB layout sooner.

You can plan your I/O pins even before defining design files. Assign expected nodes
not yet defined in design files, including interface IP core signals, and then generate a
top-level file. The top-level file instantiates the next level of design hierarchy and
includes interface port information like memory, high-speed I/O, device configuration,
and debugging tools.

Assign design elements, I/O standards, interface IP, and other properties to the device
I/O pins by name or by dragging to cells. You can then generate a top-level design file
for I/O validation.

Use I/O assignment validation to fully analyze I/O pins against VCCIO, VREF,
electromigration (current density), Simultaneous Switching Output (SSO), drive
strength, I/O standard, PCI_IO clamp diode, and I/O pin direction compatibility rules.

Quartus Prime software provides the Pin Planner tool to view, assign, and validate
device I/O pin logic and properties. Alternatively, you can enter I/O assignments in a
Tcl script, or directly in HDL code.

3.1.1. Basic I/O Planning Flow

The following steps describe the basic flow for assigning and verifying I/O pin
assignments:

1. Click Assignments ➤ Device and select a target device that meets your logic,
performance, and I/O requirements. Consider and specify I/O standards, voltage
and power supply requirements, and available I/O pins.

2. Click Assignments ➤ Pin Planner.

3. Assign I/O properties to match your device and PCB characteristics, including
assigning logic, I/O standards, output loading, slew rate, and current strength.

4. Click Run I/O Assignment Analysis in the Tasks pane to validate assignments
and generate a synthesized design netlist. Correct any problems reported.

5. Click Processing ➤ Start Compilation. During compilation, the Quartus Prime
software runs I/O assignment analysis.

3.1.2. Integrating PCB Design Tools

You can integrate PCB design tools into your work flow to map pin assignments to
symbols in your system circuit schematics and board layout.

The Quartus Prime software integrates with board layout tools by allowing import and
export of pin assignment information in Quartus Prime Settings Files (.qsf) or Pin-
Out Files (.pin).

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 30. Integrating PCB Design Tools

PCB Tool Integration Supported PCB Tool

Define and validate I/O assignments in the Pin Planner, and then export the
assignments to the PCB tool for validation

Cadence Allegro

Define I/O assignments in your PCB tool, and then import the assignments into
the Pin Planner for validation

Cadence Allegro

Figure 63. PCB Tool Integration

Create and
Modify Pin

Assignments

PCB Tool

I/O Assignment Analysis

Validate?

Quartus Prime Software

Import Pin Assignments
Design Files
(if available)

Yes

No

Analysis & Synthesis

Pins have been Validated

Pin File

.pin

Related Information

Cadence PCB Design Tools Support
In Quartus Prime Pro Edition User Guide: PCB Design Tools

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

77

https://www.intel.com/content/www/us/en/docs/programmable/683768/current/cadence-board-design-tools-support.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3. Intel FPGA Device and I/O Terminology

The following terms describe Intel FPGA device and I/O structures:

3.2. Assigning I/O Pins

Use the Pin Planner to visualize, modify, and validate I/O assignments in a graphical
representation of the target device. You can increase the accuracy of I/O assignment
analysis by reserving specific device pins to accommodate undefined but expected
I/O.

To assign I/O pins in the Pin Planner, follow these steps:

1. Open an Quartus Prime project, and then click Assignments ➤ Pin Planner.

2. Click Processing ➤ Start Analysis & Elaboration to elaborate the design and
display All Pins in the device view.

3. To locate or highlight pins for assignment, click Pin Finder or a pin type under
Highlight Pins in the Tasks pane.

4. (Optional) To define a custom group of nodes for assignment, select one or more
nodes in the Groups or All Pins list, and click Create Group.

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Enter assignments of logic, I/O standards, interface IP, and properties for device
I/O pins in the All Pins spreadsheet, or by dragging into the package view.

6. To assign properties to differential pin pairs, click Show Differential Pin Pair
Connections. A red connection line appears between positive (p) and negative
(n) differential pins.

7. (Optional) To create board trace model assignments:

a. Right-click an output or bidirectional pin, and click Board Trace Model. For
differential I/O standards, the board trace model uses a differential pin pair
with two symmetrical board trace models.

b. Specify board trace parameters on the positive end of the differential pin pair.
The assignment applies to the corresponding value on the negative end of the
differential pin pair.

8. To run a full I/O assignment analysis, click Run I/O Assignment Analysis. The
Fitter reports analysis results. Only reserved pins are analyzed prior to design
synthesis.

3.2.1. Assigning to Exclusive Pin Groups

You can designate groups of pins for exclusive assignment. When you assign pins to
an Exclusive I/O Group, the Fitter does not place the signals in the same I/O bank
with any other exclusive I/O group. For example, if you have a set of signals assigned
exclusively to group_a, and another set of signals assigned to group_b, the Fitter
ensures placement of each group in different I/O banks.

3.2.2. Assigning Slew Rate and Drive Strength

You can designate the device pin slew rate and drive strength. These properties affect
the pin’s outgoing signal integrity. Use either the Slew Rate or Slow Slew Rate
assignment to adjust the drive strength of a pin with the Current Strength
assignment.

Note: The slew rate and drive strength apply during I/O assignment analysis.

3.2.3. Assigning I/O Banks

Some Intel FPGA devices support assignments to I/O banks. I/O banks are a logical
grouping of I/O pins for convenience in making certain types of assignments, such as
I/O standard assignments.

When targeting a device family that supports I/O bank assignments, the I/O Bank
cell value automatically populates in Pin Planner once you select a corresponding pin
Location. The rows for various I/O banks are color coded for easy visual
identification.

Figure 64. Pin Location and I/O Bank Cells in Pin Planner

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you save your Pin Planner constraints, the pin location saves to the
project .qsf that also saves the I/O bank locations as a comment. Command-line
users can use this comment to identify I/O bank locations for the placed pins without
launching the Quartus Prime software GUI.

Figure 65. I/O Bank Location Saved As Comment in QSF

3.2.4. Changing Pin Planner Highlight Colors

The Pin Planner Task window provides one-click access to execute common pin
planning tasks. After clicking a pin planning task, you can view and highlight the
results in the Report window by selecting or deselecting I/O types.

You can highlight the various pin types in the current device view for easy visualization
and assignment to specific types of pins. You can optionally customize the highlight
color for each item in the report window to suit your preferences.

To change the default color for any item in the Pin Planner Report panel, follow these
steps:

1. Right-click on any item in the Report window, and then click Change Color.

2. From the color pallet, specify the highlight color for the item.

3. Click OK. The highlight color changes for the selected items in Pin Planner.

Figure 66. 2A I/O Bank Green Before Highlight Color Change

Figure 67. 2A I/O Bank Red After Highlight Color Change

3.2.5. Showing I/O Lanes

You can use the Report window I/O 12 Lanes command to generate a report that
displays all I/O lanes in an I/O bank.

You can highlight the various I/O lanes and change color coding for easy visualization
and assignment.

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Alternatively, you can generate this report by clicking View ➤ Show ➤ Show I/O 12
Lanes in Pin Planner.

Figure 68. Showing I/O Lanes in Pin Planner

3.2.6. Assigning Differential Pins

When you assign a differential I/O standard to a single-ended top-level pin in your
design, the Pin Planner automatically recognizes the negative pin as part of the
differential pin pair assignment and creates the negative pin for you. The Quartus
Prime software writes the location assignment for the negative pin to the .qsf;
however, the I/O standard assignment is not added to the .qsf for the negative pin of
the differential pair.

The following example shows a design with lvds_in top-level pin, to which you
assign a differential I/O standard. The Pin Planner automatically creates the
differential pin, lvds_in(n) to complete the differential pin pair.

Note: If you have a single-ended clock that feeds a PLL, assign the pin only to the positive
clock pin of a differential pair in the target device. Single-ended pins that feed a PLL
and are assigned to the negative clock pin device cause the design to not fit.

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 69. Creating a Differential Pin Pair in the Pin Planner

If your design contains a large bus that exceeds the pins available in a particular I/O
bank, you can use edge location assignments to place the bus. Edge location
assignments improve the circuit board routing ability of large buses, because they are
close together near an edge. The following figure shows Intel device package edges.

Figure 70. Die View and Package View of the Four Edges on an Intel Device

Top Edge

Silicon Die View

Bottom Edge

Left Edge Right Edge Right Edge

Top Edge

Package View (Top)

Bottom Edge

Left Edge

When you assign differential pin pairs in Package View, a red connection line
displays between the pair of differential pins. The Package View labels the positive and
negative pins with the letters p and n, respectively.

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 71. Differential Pin Pair Color Coding

3.2.6.1. Overriding I/O Placement Rules on Differential Pins

I/O placement rules ensure that noisy signals do not corrupt neighboring signals. Each
device family has predefined I/O placement rules.

I/O placement rules define, for example, the allowed placement of single-ended I/O
with respect to differential pins, or how many output and bidirectional pins you can
place within a VREF group when using voltage referenced input standards.

Use the IO_MAXIMUM_TOGGLE_RATE assignment to override I/O placement rules
on pins, such as system reset pins that do not switch during normal design activity.
Setting a value of 0 MHz for this assignment causes the Fitter to recognize the pin at a
DC state throughout device operation. The Fitter excludes the assigned pin from
placement rule analysis. Do not assign an IO_MAXIMUM_TOGGLE_RATE of 0 MHz
to any actively switching pin, or your design may not function as you intend.

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.7. Entering Pin Assignments with Tcl Commands

You can apply pin assignments with Tcl scripts, by either entering individual Tcl
commands in the Tcl Console, or creating a .tcl script and the typing the following in
the command line:

Example 6. Applying Tcl Script Assignments

quartus_sh -t <my_tcl_script>.tcl

Example 7. Scripted Pin Assignment

The following example uses set_location_assignment and
set_instance_assignment Tcl commands to assign a pin to a specific location, I/O
standard, and drive strength.

set_location_assignment PIN_M20 -to address[10]
set_instance_assignment -name IO_STANDARD "2.5 V" -to address[10]
set_instance_assignment -name
 CURRENT_STRENGTH_NEW "MAXIMUM CURRENT" -to address[10]

Related Information

Quartus Prime Pro Edition User Guide: Scripting

3.2.8. Entering Pin Assignments in HDL Code

You can use synthesis attributes or low-level I/O primitives to embed I/O pin
assignments directly in your HDL code. When you analyze and synthesize the HDL
code, the information is converted into the appropriate I/O pin assignments. You can
use either of the following methods to specify pin-related assignments with HDL code:

• Assigning synthesis attributes for signal names that are top-level pins

• Using low-level I/O primitives, such as ALT_BUF_IN, to specify input, output, and
differential buffers, and for setting parameters or attributes

3.2.8.1. Using Low-Level I/O Primitives

You can alternatively enter I/O pin assignments using low-level I/O primitives. You can
assign pin locations, I/O standards, drive strengths, slew rates, and on-chip
termination (OCT) value assignments. You can also use low-level differential I/O
primitives to define both positive and negative pins of a differential pair in the HDL
code for your design.

Primitive-based assignments do not appear in the Pin Planner until after you perform a
full compilation and back-annotate pin assignments (Assignments > Back Annotate
Assignments).

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

84

https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3. Importing and Exporting I/O Pin Assignments

The Quartus Prime software supports transfer of I/O pin assignments across projects,
or for analysis in third-party PCB tools. You can import or export I/O pin assignments
in the following ways:

Table 31. Importing and Exporting I/O Pin Assignments

Import Assignments Export Assignments

Scenario • From your PCB design tool or spreadsheet
into Pin Planner during early pin planning or
after optimization in PCB tool

• From another Quartus Prime project with
common constraints

• From Quartus Prime project for optimization in a
PCB design tool

• From Quartus Prime project for spreadsheet
analysis or use in scripting assignments

• From Quartus Prime project for import into another
Quartus Prime project with similar constraints

Command Assignments ➤ Import Assignments Assignments ➤ Export Assignments

File formats .qsf, .csv, .txt, .sdc .pin, .csv, .tcl, .qsf

Notes N/A Exported .csv files retain column and row order and
format. Do not modify the row of column headings if
importing the .csv file

3.3.1. Importing and Exporting for PCB Tools

The Pin Planner supports import and export of assignments with PCB tools. You can
export valid assignments as a .pin file for analysis in other supported PCB tools. You
can also import optimized assignment from supported PCB tools. The .pin file
contains pin name, number, and detailed properties.

Table 32. Contents of .pin File

File Column Name Description

Pin Name/Usage The name of the design pin, or whether the pin is GND or VCC pin

Location The pin number of the location on the device package

Dir The direction of the pin

I/O Standard The name of the I/O standard to which the pin is configured

Voltage The voltage level that is required to be connected to the pin

I/O Bank The I/O bank to which the pin belongs

User Assignment Y or N indicating if the location assignment for the design pin was user assigned
(Y) or assigned by the Fitter (N)

Related Information

PCB Design Tools Support
In Quartus Prime Pro Edition User Guide: PCB Design Tools

3.3.2. Migrating Assignments to Another Target Device

Click View ➤ Pin Migration Window to verify whether pin assignments are
compatible with migration to a different Intel device.

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

85

https://www.intel.com/content/www/us/en/docs/programmable/683768/current/pcb-design-tools-support.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can migrate compatible pin assignments from one target device to another. You
can migrate to a different density and the same device package. You can also migrate
between device packages with different densities and pin counts.

The Quartus Prime software ignores invalid assignments and generates an error
message during compilation. After evaluating migration compatibility, modify any
incompatible assignments, and then click Export to export the assignments to
another project.

Figure 72. Device Migration Compatibility (AC24 does not exist in migration device)

The migration result for the pin function of highlighted PIN_AC23 is not an NC but a
voltage reference VREFB1N2 even though the pin is an NC in the migration device.
VREF standards have a higher priority than an NC, thus the migration result displays
the voltage reference. Even if you do not use that pin for a port connection in the
design, you must use the VREF standard for I/O standards that require it on the actual
board for the migration device.

If one of the migration devices has pins intended for connection to VCC or GND and
these same pins are I/O pins on a different device in the migration path, the Quartus
Prime software ensures these pins are not used for I/O. Ensure that these pins are
connected to the correct PCB plane.

When migrating between two devices in the same package, pins that are not
connected to the smaller die may be intended to connect to VCC or GND on the larger
die. To facilitate migration, you can connect these pins to VCC or GND in the original
design because the pins are not physically connected to the smaller die.

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4. Validating Pin Assignments

The Quartus Prime software validates I/O pin assignments against predefined I/O
rules for your target device. You can use the following tools to validate your I/O pin
assignments throughout the pin planning process:

Table 33. I/O Validation Tools

I/O Validation Tool Description Click to Run

Advanced I/O Timing Fully validates I/O assignments against all I/O and timing
checks during compilation

Processing ➤ Start Compilation

3.4.1. I/O Assignment Validation Rules

I/O Assignment Analysis validates your assignments against the following rules:

Table 34. Examples of I/O Rule Checks

Rule Description HDL
Required?

I/O bank capacity Checks the number of pins assigned to an I/O bank against
the number of pins allowed in the I/O bank.

No

I/O bank VCCIO voltage compatibility Checks that no more than one VCCIO is required for the pins
assigned to the I/O bank.

No

I/O bank VREF voltage compatibility Checks that no more than one VREF is required for the pins
assigned to the I/O bank.

No

I/O standard and location conflicts Checks whether the pin location supports the assigned I/O
standard.

No

I/O standard and signal direction conflicts Checks whether the pin location supports the assigned I/O
standard and direction. For example, certain I/O standards on
a particular pin location can only support output pins.

No

Differential I/O standards cannot have
open drain turned on

Checks that open drain is turned off for all pins with a
differential I/O standard.

No

I/O standard and drive strength conflicts Checks whether the drive strength assignments are within the
specifications of the I/O standard.

No

Drive strength and location conflicts Checks whether the pin location supports the assigned drive
strength.

No

BUSHOLD and location conflicts Checks whether the pin location supports BUSHOLD. For
example, dedicated clock pins do not support BUSHOLD.

No

WEAK_PULLUP and location conflicts Checks whether the pin location supports WEAK_PULLUP (for
example, dedicated clock pins do not support WEAK_PULLUP).

No

Electromigration check Checks whether combined drive strength of consecutive pads
exceeds a certain limit. For example, the total current drive for
10 consecutive pads on a Stratix II device cannot exceed 200
mA.

No

PCI_IO clamp diode, location, and I/O
standard conflicts

Checks whether the pin location along with the I/O standard
assigned supports PCI_IO clamp diode.

No

SERDES and I/O pin location compatibility
check

Checks that all pins connected to a SERDES in your design are
assigned to dedicated SERDES pin locations.

Yes

PLL and I/O pin location compatibility check Checks whether pins connected to a PLL are assigned to the
dedicated PLL pin locations.

Yes

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 35. Signal Switching Noise Rules

Rule Description HDL
Required?

I/O bank cannot have single-ended I/O
when DPA exists

Checks that no single-ended I/O pin exists in the same I/O
bank as a DPA.

No

A PLL I/O bank does not support both a
single-ended I/O and a differential signal
simultaneously

Checks that there are no single-ended I/O pins present in the
PLL I/O Bank when a differential signal exists.

No

Single-ended output is required to be a
certain distance away from a differential
I/O pin

Checks whether single-ended output pins are a certain
distance away from a differential I/O pin.

No

Single-ended output must be a certain
distance away from a VREF pad

Checks whether single-ended output pins are a certain
distance away from a VREF pad.

No

Single-ended input is required to be a
certain distance away from a differential
I/O pin

Checks whether single-ended input pins are a certain distance
away from a differential I/O pin.

No

Too many outputs or bidirectional pins in a
VREFGROUP when a VREF is used

Checks that there are no more than a certain number of
outputs or bidirectional pins in a VREFGROUP when a VREF is
used.

No

Too many outputs in a VREFGROUP Checks whether too many outputs are in a VREFGROUP. No

3.4.2. I/O Assignment Analysis

I/O assignment analysis validates I/O assignments against the complete set of I/O
system and board layout rules. Full I/O assignment analysis validates blocks that
directly feed or are fed by resources such as a PLL, LVDS, or gigabit transceiver
blocks. In addition, the checker validates the legality of proper VREF pin use, pin
locations, and acceptable mixed I/O standards

Run I/O assignment analysis during early pin planning to validate initial reserved pin
assignments before compilation. Once you define design files, run I/O assignment
analysis to perform more thorough legality checks with respect to the synthesized
netlist. Run I/O assignment analysis whenever you modify I/O assignments.

The Fitter assigns pins to accommodate your constraints. For example, if you assign
an edge location to a group of LVDS pins, the Fitter assigns pin locations for each
LVDS pin in the specified edge location and then performs legality checks. To display
the Fitter-placed pins, click Show Fitter Placements in the Pin Planner. To accept
these suggested pin locations, you must back-annotate your pin assignments.

View the I/O Assignment Warnings report to view and resolve all assignment
warnings. For example, a warning that some design pins have undefined drive
strength or slew rate. The Fitter recognizes undefined, single-ended output and
bidirectional pins as non-calibrated OCT. To resolve the warning, assign the Current
Strength, Slew Rate or Slow Slew Rate for the reported pin. Alternatively, can
assign the Termination to the pin. You cannot assign drive strength or slew rate
settings when a pin has an OCT assignment.

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.2.1. Early I/O Assignment Analysis Without Design Files

You can perform basic I/O legality checks before defining HDL design files. This
technique produces a preliminary board layout. For example, you can specify a target
device and enter pin assignments that correspond to PCB characteristics. You can
reserve and assign I/O standards to each pin, and then run I/O assignment analysis to
ensure that there are no I/O standard conflicts in each I/O bank.

Figure 73. Assigning and Analyzing Pin-Outs without Design Files

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Create a Quartus Prime Project

Pin Assignments Complete

Yes

No

Modify and Correct Illegal
Assignments Found in Report File

Assignments
Correct?

You must reserve all pins you intend to use as I/O pins, so that the Fitter can
determine each pin type. After performing I/O assignment analysis, correct any errors
reported by the Fitter and rerun I/O assignment analysis until all errors are corrected.
A complete I/O assignment analysis requires all design files.

3.4.2.2. I/O Assignment Analysis With Design Files

I/O assignment analysis allows you to perform full I/O legality checks after fully
defining HDL design files. When you run I/O assignment analysis on a complete
design, the tool verifies all I/O pin assignments against all I/O rules. When you run
I/O assignment analysis on a partial design, the tool checks legality only for defined
portions of the design. The following figure shows the work flow for analyzing pin-outs
with design files.

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 74. I/O Assignment Analysis Flow

Modify and Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Back-Annotate I/O Assignment
Analysis Pin Placements

Perform Analysis & Synthesis
to Create a Mapped Netlist

Open Quartus Prime Project or Design File

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

Quartus Prime Project & Design Files

.qpf .edf .vqm .v .vhd .bdf .tdf

Even if I/O assignment analysis passes on incomplete design files, you may still
encounter errors during full compilation. For example, you can assign a clock to a user
I/O pin instead of assigning to a dedicated clock pin, or design the clock to drive a PLL
that you have not yet instantiated in the design. This issues occur because I/O
assignment analysis does not account for the logic that the pin drives and does not
verify that only dedicated clock inputs can drive the a PLL clock port.

To obtain better coverage, analyze as much of the design as possible over time,
especially logic that connects to pins. For example, if your design includes PLLs or
LVDS blocks, define these files prior to full analysis. After performing I/O assignment
analysis, correct any errors reported by the Fitter and rerun I/O assignment analysis
until all errors are corrected.

The following figure shows the compilation time benefit of performing I/O assignment
analysis before running a full compilation.

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 75. I/O Assignment Analysis Reduces Compilation Time

Errors
Reported
and Fixed

I/O
Assignment
Analysis

First Full Compilation

First Full Compilation

Second Full Compilation

Errors Reported and Fixed

Without
Start I/O Assignment Analysis

Command

With
Start I/O Assignment Analysis

Command

Compilation Time

3.4.2.3. Overriding Default I/O Pin Analysis

You can override the default I/O analysis of pins to accommodate I/O rule exceptions,
such as for analyzing VREF or inactive pins.

Each device contains VREF pins, each supporting one or more I/O pins. A VREF pin
and its I/O pins comprise a VREF bank. The VREF pins are typically assigned inputs
with VREF I/O standards, such as HSTL- and SSTL-type I/O standards. Conversely,
VREF outputs do not require the VREF pin. When a voltage-referenced input is present
in a VREF bank, only a certain number of outputs can be present in that VREF bank.
I/O assignment analysis treats bidirectional signals controlled by different output
enables as independent output enables.

To assign the Output Enable Group option to bidirectional signals to analyze the
signals as a single output enable group, follow these steps:

1. To access this assignment in the Pin Planner, right-click the All pins list and click
Customize Columns.

2. Under Available columns, add Output Enable Group to Show these columns
in this order. The column appears in the All Pins list.

3. Enter the same integer value for the Output Enable Group assignment for all
sets of signals that are driving in the same direction.

3.4.3. Understanding I/O Analysis Reports

The detailed I/O assignment analysis reports include the affected pin name and a
problem description. The Fitter section of the Compilation report contains information
generated during I/O assignment analysis, including the following reports:

• I/O Assignment Warnings—lists warnings generated for each pin

• Resource Section—quantifies use of various pin types and I/O banks

• I/O Rules Section—lists summary, details, and matrix information about the I/O
rules tested

The Status column indicates whether rules passed, failed, or were not checked. A
severity rating indicates the rule’s importance for effective analysis. “Inapplicable”
rules do not apply to the target device family.

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 76. I/O Rules Matrix

3.5. Verifying I/O Timing

You must verify board-level signal integrity and I/O timing when assigning I/O pins.
High-speed interface operation requires a quality signal and low propagation delay at
the far end of the board route. Click Tools ➤ Timing Analyzer to confirm timing
after making I/O pin assignments.

For example, if you change the slew rates or drive strengths of some I/O pins with
ECOs, you can verify timing without recompiling the design. You must understand I/O
timing and what factors affect I/O timing paths in your design. The accuracy of the
output load specification of the output and bidirectional pins affects the I/O timing
results.

The Quartus Prime software supports three different methods of I/O timing analysis:

Table 36. I/O Timing Analysis Methods

I/O Timing Analysis Description

Advanced I/O timing
analysis

Analyze I/O timing with your board trace model to report accurate, “board-aware” simulation
models. Configures a complete board trace model for each I/O standard or pin. Timing
Analyzer applies simulation results of the I/O buffer, package, and board trace model to
generate accurate I/O delays and system level signal information. Use this information to
improve timing and signal integrity.

I/O timing analysis Analyze I/O timing with default or specified capacitive load without signal integrity analysis.
Timing Analyzer reports tCO to an I/O pin using a default or user-specified value for a
capacitive load.

Full board routing
simulation

Use Intel-provided or Quartus Prime software-generated IBIS or HSPICE I/O models for
simulation in Mentor Graphics* HyperLynx* and Synopsys HSPICE.

For more information about advanced I/O timing support, refer to the appropriate
device handbook for your target device. For more information about board-level signal
integrity and tips on how to improve signal integrity in your high-speed designs, refer
to the Signal Integrity and Power Integrity – Support Center website.

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For information about creating IBIS and HSPICE models with the Quartus Prime
software and integrating those models into HyperLynx and HSPICE simulations, refer
to the Signal Integrity Analysis with Third Party Tools chapter.

Related Information

Signal Integrity and Power Integrity – Support Center

3.5.1. Running Advanced I/O Timing

Advanced I/O timing analysis uses your board trace model and termination network
specification to report accurate output buffer-to-pin timing estimates, FPGA pin and
board trace signal integrity and delay values. Advanced I/O timing runs automatically
for supported devices during compilation.

3.5.1.1. Board Trace Models

The Quartus Prime software provides board trace model templates for various I/O
standards.

The following figure shows the template for a 2.5 V I/O standard. This model consists
of near-end and far-end board component parameters.

Near-end board trace modeling includes the elements which are close to the device.
Far-end modeling includes the elements which are at the receiver end of the link,
closer to the receiving device. Board trace model topology is conceptual and does not
necessarily match the actual board trace for every component. For example, near-end
model parameters can represent device-end discrete termination and breakout traces.
Far-end modeling can represent the bulk of the board trace to discrete external
memory components, and the far end termination network. You can analyze the same
circuit with near-end modeling of the entire board, including memory component
termination, and far-end modeling of the actual memory component.

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

93

https://www.intel.com/content/www/us/en/programmable/support/support-resources/support-centers/signal-integrity-support.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 77. 2.5-V I/O Standard Board Trace Model

The following figure shows the template for the LVDS I/O standard. The far-end
capacitance (Cf) represents the external-device or multiple-device capacitive load. If
you have multiple devices on the far-end, you must find the equivalent capacitance at
the far-end, taking into account all receiver capacitances. The far-end capacitance can
be the sum of all the receiver capacitances.

The Quartus Prime software models of transmission lines do not consider
transmission-line resistance (lossless models). You only need to specify distributed
inductance (L) and capacitance (C) values on a per-inch basis, which you can obtain
from the PCB vendor or manufacturer, the CAD Design tool, or a signal integrity tool,
such as the Mentor Graphics HyperLynx software.

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 78. LVDS Differential Board Trace Model

3.5.1.2. Defining the Board Trace Model

The board trace model describes a board trace and termination network as a set of
capacitive, resistive, and inductive parameters.

Advanced I/O Timing uses the model to simulate the output signal from the output
buffer to the far end of the board trace. You can define the capacitive load, any
termination components, and trace impedances in the board routing for any output pin
or bidirectional pin in output mode. You can configure an overall board trace model for
each I/O standard or for specific pins. Define an overall board trace model for each I/O
standard in your design. Use that model for all pins that use the I/O standard. You can
customize the model for specific pins using the Board Trace Model window in the Pin
Planner.

1. Click Assignments ➤ Device ➤ Device and Pin Options.

2. Click Board Trace Model and define board trace model values for each I/O
standard.

3. Click I/O Timing and define default I/O timing options at board trace near and
far ends.

4. Click Assignments ➤ Pin Planner and assign board trace model values to
individual pins.

Example 8. Specifying Board Trace Model

setting the near end series resistance model of sel_p output pin to 25 ohms
set_instance_assignment -name BOARD_MODEL_NEAR_SERIES_R 25 -to se1_p
Setting the far end capacitance model for sel_p output signal to 6 picofarads
set_instance_assignment -name BOARD_MODEL_FAR_C 6P -to se1_p

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.1.3. Modifying the Board Trace Model

To modify the board trace model, click View ➤ Board Trace Model in the Pin Planner.

You can modify any of the board trace model parameters within a graphical
representation of the board trace model.

The Board Trace Model window displays the routing and components for positive and
negative signals in a differential signal pair. Only modify the positive signal of the pair,
as the setting automatically applies to the negative signal. Use standard unit prefixes
such as p, n, and k to represent pico, nano, and kilo, respectively. Use the short or
open value to designate a short or open circuit for a parallel component.

3.5.1.4. Specifying Near-End vs Far-End I/O Timing Analysis

You can select a near-end or far-end point for I/O timing analysis. Near-end timing
analysis extends to the device pin. You can apply the set_output_delay constraint
during near-end analysis to account for the delay across the board.

With far-end I/O timing analysis, the advanced I/O timing analysis extends to the
external device input, at the far-end of the board trace. Whether you choose a near-
end or far-end timing endpoint, the board trace models are taken into account during
timing analysis.

3.5.1.5. Advanced I/O Timing Analysis Reports

The following reports show advanced I/O timing analysis information:

Table 37. Advanced I/O Timing Reports

I/O Timing Report Description

Timing Analyzer Report Reports signal integrity and board delay data.

Board Trace Model Assignments
report

Summarizes the board trace model component settings for each output and
bidirectional signal.

Signal Integrity Metrics report Contains all the signal integrity metrics calculated during advanced I/O timing analysis
based on the board trace model settings for each output or bidirectional pin. Includes
measurements at both the FPGA pin and at the far-end load of board delay, steady
state voltages, and rise and fall times.

Note: By default, the Timing Analyzer generates the Slow-Corner Signal Integrity Metrics
report. To generate a Fast-Corner Signal Integrity Metrics report you must change the
delay model by clicking Tools ➤ Timing Analyzer.

3.5.2. Adjusting I/O Timing and Power with Capacitive Loading

When calculating tCO and power for output and bidirectional pins, the Timing Analyzer
and the Power Analyzer use a bulk capacitive load. You can adjust the value of the
capacitive load per I/O standard to obtain more precise tCO and power measurements,
reflecting the behavior of the output or bidirectional net on your PCB. The Quartus
Prime software ignores capacitive load settings on input pins. You can adjust the
capacitive load settings per I/O standard, in picofarads (pF), for your entire design.
During compilation, the Compiler measures power and tCO measurements based on
your settings. You can also adjust the capacitive load on an individual pin with the
Output Pin Load logic option.

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.6. Viewing Routing and Timing Delays

Right-click any node and click Locate > Locate in Chip Planner to visualize and
adjust I/O timing delays and routing between user I/O pads and VCC, GND, and VREF
pads. The Chip Planner graphically displays logic placement, Logic Lock regions,
relative resource usage, detailed routing information, fan-in and fan-out, register
paths, and high-speed transceiver channels. You can view physical timing estimates,
routing congestion, and clock regions. Use the Chip Planner to change connections
between resources and make post-compilation changes to logic cell and I/O atom
placement. When you select items in the Pin Planner, the corresponding item is
highlighted in Chip Planner.

3.7. Scripting API

The Quartus Prime software allows you to access I/O management functions through
Tcl commands, rather than with the GUI. For detailed information about scripting
command options and Tcl API packages, type the following at a system command
prompt to view the Tcl API Help browser:

quartus_sh --qhelp

Related Information

Quartus Prime Pro Edition User Guide: Scripting

3.7.1. Generate Mapped Netlist

Enter the following in the Tcl console or in a Tcl script:

execute_module -tool map

The execute_module command is in the flow package.

Type the following at a system command prompt:

quartus_syn <project name>

3.7.2. Reserve Pins

Use the following Tcl command to reserve a pin:

set_instance_assignment -name RESERVE_PIN <value> -to <signal name>

Use one of the following valid reserved pin values:

• "AS BIDIRECTIONAL"

• "AS INPUT TRI STATED"

• "AS OUTPUT DRIVING AN UNSPECIFIED SIGNAL"

• "AS OUTPUT DRIVING GROUND"

• "AS SIGNALPROBE OUTPUT"

Note: You must include the quotation marks when specifying the reserved pin value.

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

97

https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.7.3. Set Location

Use the following Tcl command to assign a signal to a pin or device location:

set_location_assignment <location> -to <signal name>

Valid locations are pin locations, I/O bank locations, or edge locations. Pin locations
include pin names, such as PIN_A3. I/O bank locations include IOBANK_1 up to
IOBANK_ n, where n is the number of I/O banks in the device.

Use one of the following valid edge location values:

• EDGE_BOTTOM

• EDGE_LEFT

• EDGE_TOP

• EDGE_RIGHT

3.7.4. Exclusive I/O Group

The following Tcl command creates an exclusive I/O group assignment:

set_instance_assignment -name "EXCLUSIVE_IO_GROUP" -to pin

3.7.5. Slew Rate and Current Strength

Use the following Tcl commands to create a slew rate and drive strength assignments:

set_instance_assignment -name CURRENT_STRENGTH_NEW 8MA -to e[0]
set_instance_assignment -name SLEW_RATE 2 -to e[0]

3.8. Managing Device I/O Pins Revision History

The following table shows the revision history for this chapter:

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied initial Altera rebranding throughout.
• Updated Pin Planner screenshot in Importing and Exporting I/O Pin

Assignments topic for current list of file formats supported.

2023.12.04 23.4 • Updated Intel FPGA Device and I/O Terminology topic for removal of
VREF Groups and Edges highlight feature.

• Updated Pin Planner screenshot in Managing Device I/O Pins topic for
removal of VREF Groups and Edges highlight feature.

2023.10.02 23.3 • Added Assigning I/O Banks topic to describe color coding and saving
changes.

• Added Changing Pin Planner Highlight Colors topic to describe changing
report highlight coloring.

• Added Showing I/O Lanes topic to describe new Show I/O 12 Lanes
report.

2022.04.27 22.1 Made a minor fix.

continued...

3. Managing Device I/O Pins

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2020.11.04 19.3 Removed references to obsolete FPGA Xchange file (.fx) support from
"Integrating PCB Design Tools" and "Importing and Exporting I/O Pin
Assignments" topics.

2018.05.07 18.0 • First release as part of the stand-alone Design Constraints User Guide

2017.11.06 17.1 • Revised topic: I/O Planning Overview.
• Revised topic: Basic I/O Planning Flow with the Pin Planner and

renamed to Basic I/O Planning Flow with the Pin Planner.

2017.05.08 17.0 • Renamed command: Run I/O Assignment Analysis to Start Fitter (Plan).

2016.10.31 16.1 • Implemented Intel rebranding.

2015.11.02 15.1 • Removed early pin planning and Live I/O Check support from Quartus
Prime Pro Edition handbook

• Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1 • Updated Live I/O check device support to include only limited device
families.

2014.08.30 14.0a10 • Added link to information about special pin assignment features for
Arria 10 SoC devices.

2014.06.30 14.0 • Replaced MegaWizard Plug-In Manager information with IP Catalog.

November 2013 13.1 • Reorganization and conversion to DITA.

May 2013 13.0 • Added information about overriding I/O placement rules.

November 2012 12.1 • Updated Pin Planner description for new task and report windows.

June 2012 12.0.0 • Removed survey link.

November 2011 11.1 • Minor updates and corrections.
• Updated the document template.

December 2010 10.0 Template update

July 2010 10.0 • Reorganized and edited the chapter
• Added links to Help for procedural information previously included in

the chapter
• Added information on rules marked Inapplicable in the I/O Rules Matrix

Report
• Added information on assigning slew rate and drive strength settings to

pins to fix I/O assignment warnings

November 2009 9.1 • Reorganized entire chapter to include links to Help for procedural
information previously included in the chapter

• Added documentation on near-end and far-end advanced I/O timing

March 2009 9.0 • Updated “Pad View Window” on page 5–20
• Added new figures:
• Figure 5–15
• Figure 5–16
• Added new section “Viewing Simultaneous Switching Noise (SSN)

Results” on page 5–17
• Added new section “Creating Exclusive I/O Group Assignments” on

page 5–18

3. Managing Device I/O Pins

683143 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Design Constraints

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Quartus Prime Pro Edition User Guide: Design
Constraints Document Archives

For the latest and previous versions of this user guide, refer to Quartus Prime Pro
Edition User Guide: Design Constraints. If an IP or software version is not listed, the
user guide for the previous IP or software version applies.

683143 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel FPGA devices, and program CPLD and configuration
devices, via connection with an Intel FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683143 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

A. Quartus Prime Pro Edition User Guides

683143 | 2024.04.01

Quartus Prime Pro Edition User Guide: Design Constraints Send Feedback

102

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Constraints%20(683143%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Pro Edition User
Guide
PCB Design Tools

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q What's new in this version?
A What's New In This Version on page 5

Q Do you support IBIS or HSPICE models?
A I/O Model Selection on page 5

Q How do I obtain IBIS models?
A IBIS Model Access on page 9

Q How do I simulate with HSPICE Models?
A Simulation with HSPICE Models on page 21

Q How do I verify board level connections?
A Reviewing Circuit Board Schematics on page 44

Online Version

Send Feedback UG-20143

683768

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Signal Integrity Analysis with Third-Party Tools... 4
1.1. Signal Integrity Analysis with Third-Party Tools..4

1.1.1. What's New In This Version...5
1.1.2. Signal Integrity Simulations with HSPICE and IBIS Models.............................. 5

1.2. I/O Model Selection: IBIS or HSPICE.. 5
1.3. FPGA to Board Signal Integrity Analysis Flow...6

1.3.1. Create I/O and Board Trace Model Assignments... 7
1.3.2. Customize the Output Files... 8
1.3.3. Set Up and Run Simulations in Third-Party Tools.. 8
1.3.4. Interpret Simulation Results..8

1.4. Simulation with IBIS Models..9
1.4.1. IBIS Model Access and Customization Flows.. 9
1.4.2. Elements of an IBIS Model.. 10
1.4.3. Customizing IBIS Models...11
1.4.4. Design Simulation Using the Siemens EDA HyperLynx* Software....................14
1.4.5. Configuring LineSim to Use Intel IBIS Models...16
1.4.6. Integrating Intel IBIS Models into LineSim Simulations................................. 18
1.4.7. Running and Interpreting LineSim Simulations... 19

1.5. Simulation with HSPICE Models..21
1.5.1. Supported Devices and Signaling... 21
1.5.2. Accessing HSPICE Simulation Kits.. 21
1.5.3. The Double Counting Problem in HSPICE Simulations....................................22
1.5.4. HSPICE Writer Tool Flow... 24
1.5.5. Running an HSPICE Simulation.. 26
1.5.6. Interpreting the Results of an Output Simulation.. 27
1.5.7. Interpreting the Results of an Input Simulation.. 27
1.5.8. Viewing and Interpreting Tabular Simulation Results..................................... 27
1.5.9. Viewing Graphical Simulation Results..27
1.5.10. Making Design Adjustments Based on HSPICE Simulations...........................29
1.5.11. Sample Input for I/O HSPICE Simulation Deck... 31
1.5.12. Sample Output for I/O HSPICE Simulation Deck... 35
1.5.13. Advanced Topics...40

1.6. Signal Integrity Analysis with Third-Party Tools Document Revision History..................41

2. Reviewing Printed Circuit Board Schematics with the Quartus Prime Software.............44
2.1. Reviewing Quartus Prime Software Settings...44

2.1.1. Device and Pins Options Dialog Box Settings..45
2.2. Reviewing Device Pin-Out Information in the Fitter Report...46
2.3. Reviewing Compilation Error and Warning Messages... 48
2.4. Using Additional Quartus Prime Software Features..48
2.5. Using Additional Quartus Prime Software Tools...48

2.5.1. Pin Planner..49
2.6. Reviewing Printed Circuit Board Schematics with the Quartus Prime Software

Revision History..49

3. Siemens EDA PCB Design Tools Support..50
3.1. Integrating with DxDesigner..50

3.1.1. DxDesigner Project Settings.. 51

Contents

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.2. Creating Schematic Symbols in DxDesigner... 51
3.2. Siemens EDA PCB Design Tools Support Revision History...52

4. Cadence Board Design Tools Support..53
4.1. Cadence PCB Design Tools Support...53
4.2. Product Comparison... 54
4.3. FPGA-to-PCB Design Flow... 54

4.3.1. Integrating Intel FPGA Designs.. 56
4.4. Setting Up the Quartus Prime Software...57

4.4.1. Generating a .pin File... 57
4.5. FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software.......... 57

4.5.1. Creating Symbols...58
4.5.2. Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software.... 63

4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software................ 64
4.6.1. Creating a Cadence Allegro Design Entry CIS Project.................................... 65
4.6.2. Generating a Part...65
4.6.3. Generating Schematic Symbol... 66
4.6.4. Splitting a Part.. 66
4.6.5. Instantiating a Symbol in a Design Entry CIS Schematic................................68
4.6.6. Intel Libraries for the Cadence Allegro Design Entry CIS Software...................68

4.7. Cadence Board Design Tools Support Revision History...70

5. Quartus Prime Pro Edition User Guide: PCB Design Tools Document Archives...............71

A. Quartus Prime Pro Edition User Guides...72

Contents

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Signal Integrity Analysis with Third-Party Tools

1.1. Signal Integrity Analysis with Third-Party Tools

With the ever-increasing operating speed of interfaces in traditional FPGA design, the
timing and signal integrity margins between the FPGA and other devices on the board
must be within specification and tolerance before building a PCB.

If the board trace design is poor, or the route is too heavily loaded, noise in the signal
can cause data corruption, while overshoot and undershoot can potentially damage
input buffers over time.

As FPGA devices are used in high-speed applications, signal integrity and timing
margin between the FPGA and other devices on the PCB are important for proper
system operation. To avoid time-consuming and costly board respins, you must
simulate the topology and routing of critical signals. You must accurately model the
high-speed interfaces available on FPGA devices.

The Quartus® Prime software provides methodologies, resources, and tools to ensure
good signal integrity and timing margin between Intel® FPGA devices and other
components on the board. Three types of analysis are possible with the Quartus Prime
software:

• I/O timing with a default or user-specified capacitive load and no signal integrity
analysis (default)

• Full board routing simulation in third-party tools using Intel-provided or generated
Input/Output Buffer Information Specification (IBIS) or HSPICE I/O models

I/O timing using a specified capacitive test load requires no special configuration other
than setting the size of the load. The Quartus Prime Timing Analyzer generates I/O
timing reports based only on point-to-point delays within the I/O buffer. The Timing
Analyzer assumes the presence of the capacitive test load without specifying any other
details about the board. The default size of the load derives from the I/O standard
that you select for the pin. Timing analysis measures to the FPGA pin without signal
integrity analysis details.

The signal integrity information in this chapter refers to board-level signal integrity
based on I/O buffer configuration and board parameters, not simultaneous switching
noise (SSN).(1) SSN is a product of multiple output drivers switching at the same time,
causing an overall drop in the voltage of the chip’s power supply. This condition can
cause temporary glitches in the specified level of ground or VCC for the device.

(1) Also known as ground bounce or VCC sag.

683768 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

This chapter provides FPGA and board designers with the concepts and steps
necessary to perform signal integrity simulation and adjust designs to improve board-
level timing and signal integrity. This chapter also includes information about how to
obtain and customize simulation models, and how to use those models in simulation
software.

1.1.1. What's New In This Version

• The current version of the Quartus Prime Pro Edition software supports generation
of custom IBIS models for Agilex™ FPGA portfolio devices using the EDA Netlist
Writer GUI, as Generate Custom IBIS Models with the EDA Netlist Writer GUI
describes.

• The current version of the Quartus Prime Pro Edition software no longer includes
the Enable Advanced I/O Timing option, as reflected throughout this document.

1.1.2. Signal Integrity Simulations with HSPICE and IBIS Models

The Quartus Prime software can export accurate HSPICE models with the built-in
HSPICE Writer. You can run signal integrity simulations with these complete HSPICE
models in Synopsys* HSPICE. You can also easily create and customize IBIS models of
the FPGA I/O buffers in the Quartus Prime software.

You can run signal integrity simulations with these complete HSPICE models in
Synopsys HSPICE.

You can integrate IBIS models into any third-party simulation tool that supports IBIS
models. With the ability to create industry-standard model definition files quickly, you
can build accurate simulations that can provide data to help improve board-level
signal integrity.

Creating and running accurate simulations can be difficult and time consuming. The
Quartus Prime software tools automate the I/O model setup and creation process by
generating custom models for your design. These tools allow you to set up and run
accurate simulations that guide FPGA and board design.

For a more information about SSN and ways to prevent it, refer to AN 315: Guidelines
for Designing High-Speed FPGA PCBs.

For information about basic signal integrity concepts and signal integrity details
pertaining to Intel FPGA devices, visit the Intel Signal & Power Integrity Center.

Related Information

• AN 315: Guidelines for Designing High-Speed FPGA PCBs

• Intel Signal & Power Integrity Center

1.2. I/O Model Selection: IBIS or HSPICE

The Quartus Prime software can export two different types of I/O models that are
useful for different simulation situations, IBIS models and HSPICE models.

IBIS models define the behavior of input or output buffers through voltage-current (V-
I) and voltage-time (V-t) data tables. HSPICE models, or decks, include complete
physical descriptions of the transistors and parasitic capacitances that make up an I/O
buffer along with all the parameter settings that you require to run a simulation.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

5

http://www.altera.com/literature/an/an315.pdf
https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software generates HSPICE decks, and adds preconfigured I/O
standard, voltage, and pin loading settings for each pin in your design.

The choice of I/O model type is based on many factors.

Table 1. IBIS and HSPICE Model Comparison

Feature IBIS Model HSPICE Model

I/O Buffer
Description

Behavioral—I/O buffers are described by
voltage-current and voltage-time tables in
typical, minimum, and maximum supply
voltage cases.

Physical—I/O buffers and all components in a circuit are
described by their physical properties, such as transistor
characteristics and parasitic capacitances, as well as their
connections to one another.

Model
Customization

Simple and limited—The model completely
describes the I/O buffer and does not usually
have to be customized.

Fully customizable—Unless connected to an arbitrary
board description, the description of the board trace model
must be customized in the model file. All parameters of the
simulation are also adjustable.

Simulation Set Up
and Run Time

Fast—Simulations run quickly after set up
correctly.

Slow—Simulations take time to set up and take longer to
run and complete.

Simulation
Accuracy

Good—For most simulations, accuracy is
sufficient to make useful adjustments to the
FPGA or board design to improve signal
integrity.

Excellent—Simulations are highly accurate, making
HSPICE simulation almost a requirement for any high-speed
design where signal integrity and timing margins are tight.

Third-Party Tool
Support

Excellent—Almost all third-party board
simulation tools support IBIS.

Good—Most third-party tools that support SPICE support
HSPICE. However, Synopsys HSPICE is required for
simulations of Intel’s encrypted HSPICE models.

Related Information

AN 283: Simulating Intel Devices with IBIS Models

1.3. FPGA to Board Signal Integrity Analysis Flow

Board signal integrity analysis can take place at any point in the FPGA design process
and is often performed before and after board layout. If it is performed early in the
process as part of a pre-PCB layout analysis, the models used for simulations can be
more generic.

These models can be changed as much as required to see how adjustments improve
timing or signal integrity and help with the design and routing of the PCB. Simulations
and the resulting changes made at this stage allow you to analyze “what if” scenarios
to plan and implement your design better. To assist with early board signal integrity
analysis, you can download generic IBIS model files for each device family and obtain
HSPICE buffer simulation kits from the “Board Level Tools” section of the EDA Tool
Support Resource Center.

Typically, if board signal integrity analysis is performed late in the design, it is used for
a post-layout verification. The inputs and outputs of the FPGA are defined, and
required board routing topologies and constraints are known. Simulations can help you
find problems that might still exist in the FPGA or board design before fabrication and
assembly. In either case, a simple process flow illustrates how to create accurate IBIS
and HSPICE models from a design in the Quartus Prime software and transfer them to
third-party simulation tools.

Your design depends on the type of model, IBIS or HSPICE, that you use for your
simulations. When you understand the steps in the analysis flow, refer to the section
of this chapter that corresponds to the model type you are using.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

6

http://www.altera.com/literature/an/an283.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1. Third-Party Board Signal Integrity Analysis Flow

Make I/O Assignments

Download, Generate, or Access
IBIS or HSPICE Model Files

Customize IBIS or HSPICE Files

Configure Board Trace Models
in supported devices

(Optional)

IBIS or
HSPICE?

Apply Models to Buffers
in Board Model Simulations

Run Simulations as
Defined in HSPICE Deck

Run Simulation

Results
OK?

No Make Adjustments to
Models or Simulation Parameters

and Simulate Again

Yes

IBIS HSPICE

Yes

No
Changes

to FPGA I/O
required?

Create a Project

Continue Design with
Existing I/O Assignments

Related Information

EDA Tool Support Resource Center
For more information, generic IBIS model files for each device family, and to obtain
HSPICE buffer simulation kits.

1.3.1. Create I/O and Board Trace Model Assignments

You can configure a board trace model for output signals or for bidirectional signals in
output mode. You can then automatically transfer its description to HSPICE decks
generated by the HSPICE Writer. This helps improve simulation accuracy.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

7

https://www.altera.com/support/support-resources/design-software/eda-tool/sof-eda-tool-support.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To configure a board trace model, specify the board trace model assignment settings
for each I/O standard used in your design. You can add series or parallel termination,
specify the transmission line length, and set the value of the far-end capacitive load.
You can configure these parameters in the Board Trace Model view of the Pin Planner
(Assignments ➤ Pin Planner).

The Quartus Prime software can generate IBIS models and HSPICE decks without
having to configure a board trace model. Generated IBIS models ignore any board
trace model settings other than the far-end capacitive load. If any load value is set
other than the default, the delay given by IBIS models generated by the IBIS Writer
cannot be used to account correctly for the double counting problem.

The load value mismatch between the IBIS delay and the tCO measurement of the
Quartus Prime software prevents the delays from being safely added together.
Warning messages displayed when the EDA Netlist Writer runs indicate when this
mismatch occurs.

1.3.2. Customize the Output Files

You can readily customize the files that the IBIS Writer and HSPICE Writer generate.
You must customize any generic IBIS files with the correct RLC values for your specific
device package before running signal integrity simulations.

If you generate IBIS files with the EDA Netlist Writer or IBIS Writer script, the IBIS
Writer automatically customizes the files with the RLC values for the current target
device. For details, refer to Simulation with IBIS Models.

You can make additions or adjustments to the default simulation in the generated files
to change the parameters of the default simulation or to perform additional
measurements. For details, refer to Simulation with HSPICE Models.

1.3.3. Set Up and Run Simulations in Third-Party Tools

When you have generated the files, you can use them to perform simulations in your
selected simulation tool.

With IBIS models, you can apply them to input, output, or bidirectional buffer entities
and quickly set up and run simulations. For HSPICE decks, the simulation parameters
are included in the files. Open the files in Synopsys HSPICE and run simulations for
each pin as required.

With HSPICE decks generated from the HSPICE Writer, the double counting problem is
accounted for, which ensures that your simulations are accurate.

Simulations that involve IBIS models created with anything other than the default
loading settings in the Quartus Prime software must take into account the change in
the size of the load between the IBIS delay and the Quartus Prime tCO measurement.
Warning messages during compilation alert you to this change.

1.3.4. Interpret Simulation Results

If you encounter timing or signal integrity issues with your high-speed signals after
running simulations, you can make adjustments to I/O assignment settings in the
Quartus Prime software.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can adjust drive strength or I/O standard, or make changes to the board routing
or topology. After regenerating models in the Quartus Prime software based on the
changes you have made, rerun the simulations to check whether your changes
corrected the problem.

1.4. Simulation with IBIS Models

IBIS models provide a way to run accurate signal integrity simulations quickly. IBIS
models describe the behavior of I/O buffers with voltage-current and voltage-time
data curves.

Because of their behavioral nature, IBIS models do not have to include any
information about the internal circuit design of the I/O buffer. Intel provides free IBIS
models for use with Intel FPGA designs in signal integrity analysis simulation tools.
You can obtain and customize these models for signal integrity design simulation.

1.4.1. IBIS Model Access and Customization Flows

There are different methods of accessing and customizing the IBIS models, depending
on your target device family.

Table 2. IBIS Model Access and Customization

IBIS Model
Access and

Customization
Method

Stratix® 10 Devices
Arria® 10 Devices

Cyclone® 10 GX Devices

Agilex FPGA Portfolio Devices

Obtaining IBIS
Models

• Download generic device family IBIS models
from the Intel website to perform early
simulations of the I/O buffers you expect to
use in your design as part of a pre-layout
analysis at: IBIS Models for Intel FPGA
Devices. The downloaded models have the RLC
package values set to one particular device in
each device family.
Or

• Use the Quartus Prime EDA Netlist Writer GUI
to generate custom IBIS models that
accurately reflect your device and assignments.

• Quartus Prime Pro Edition installation includes
the IBIS models and IBIS Writer script for
Agilex FPGA portfolio devices in: /common/
misc/ibis_writer/

Or
• Download generic device family IBIS models

from the Intel website to perform early
simulations of the I/O buffers you expect to
use in your design as part of a pre-layout
analysis at: IBIS Models for Intel FPGA
Devices. The downloaded models have the RLC
package values set to one particular device in
each device family and require customization
for accurate simulation.

Customizing
IBIS Models

• For more accurate IBIS module simulation, you
must first customize any generic IBIS files that
you download from the Intel website with the
correct RLC values for the specific device
package you have selected for your design.
Or

• Generate custom IBIS files that with Quartus
Prime EDA Netlist Writer. IBIS files that you
generate with the EDA Netlist Writer
automatically include the RLC values for your
current target device.

Note: The ibis_writer.py script does not
support generation of IBIS model files for
Stratix 10 devices, Arria 10 devices, or
Cyclone 10 GX devices.

• For more accurate IBIS module simulation, you
must first customize the installed or
downloaded IBIS model files with the correct
RLC values for the specific target device
package using the IBIS Writer script in /
quartus/common/misc/ibis_writer/. The
README.txt file in this directory provides
complete instructions for using the script.

• Alternatively, you can generate custom IBIS
files by using the Quartus Prime software EDA
Netlist Writer GUI. IBIS files that you generate
with the EDA Netlist Writer automatically
include the RLC values for your current target
device.

Related Information

Generate Custom IBIS Models with the EDA Netlist Writer GUI on page 11

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

9

https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html?wapkw=IBIS%20models
https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html?wapkw=IBIS%20models
https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html?wapkw=IBIS%20models
https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html?wapkw=IBIS%20models
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.2. Elements of an IBIS Model

An IBIS model file (.ibs) is a text file that describes the behavior of an I/O buffer
across minimum, typical, and maximum temperature and voltage ranges with a
specified test load.

The tables and values specified in the IBIS file describe five basic elements of the I/O
buffer.

The following elements correspond to each numbered block.

1. Pulldown—A voltage-current table describes the current when the buffer is driven
low based on a pull-down voltage range of –VCC to 2 VCC.

2. Pullup—A voltage-current table describes the current when the buffer is driven
high based on a pull-up voltage range of –VCC to VCC.

3. Ground and Power Clamps—Voltage-current tables describe the current when
clamping diodes for electrostatic discharge (ESD) are present. The ground clamp
voltage range is –VCC to VCC, and the power clamp voltage range is –VCC to
ground.

4. Ramp and Rising/Falling Waveform—A voltage-time (dv/dt) ratio describes
the rise and fall time of the buffer during a logic transition. Optional rising and
falling waveform tables can be added to more accurately describe the
characteristics of the rising and falling transitions.

5. Total Output Capacitance and Package RLC—The total output capacitance
includes the parasitic capacitances of the output pad, clamp diodes (if present),
and input transistors. The package RLC is device package-specific and defines the
resistance, inductance, and capacitance of the bond wire and pin of the I/O.

Figure 2. Five Basic Elements of an I/O Buffer in IBIS Models

Rise
Fall L_pkg R_pkg

C_comp C_pkg
1

2

4

3

5

Related Information

AN 283: Simulating Intel Devices with IBIS Models
For more information about IBIS models and Intel-specific features, including links
to the official IBIS specification.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

10

http://www.altera.com/literature/an/an283.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.3. Customizing IBIS Models

There are different options for obtaining and customizing Intel FPGA IBIS models,
depending on your target device family, as IBIS Model Access and Customization
Flows describes. The following topics describe these different options for obtaining and
customizing Intel FPGA IBIS models.

The IBIS file that the Quartus Prime EDA Netlist Writer GUI generates contains models
of both input and output termination, and is supported for IBIS model versions of 4.2
and later.

The Quartus Prime IBIS dynamic OCT IBIS model names end in g50c_r50c. For
example : sstl15i_ctnio_g50c_r50c.

In the simulation tool, the IBIS model is attached to a buffer.

• When the buffer is assigned as an output, use the series termination r50c.

• When the buffer is assigned as an input, use the parallel termination g50c.

1.4.3.1. Generate Custom IBIS Models with the EDA Netlist Writer GUI

You can use the Quartus Prime EDA Netlist Writer GUI to generate custom IBIS
models.

IBIS files that you generate with the EDA Netlist Writer automatically include the RLC
values for your current target device.

Before generating the custom IBIS model, you can specify I/O constraints to define
things like drive strength, enabling of clamping diodes for ESD protection, and other
settings. The custom IBIS models that EDA Netlist Writer generates then reflect the
I/O assignments.

To generate custom IBIS models with the EDA Netlist Writer GUI, follow these steps:

1. To specify the format, version, and output location of the generated model files,
click Assignments ➤ Settings ➤ EDA Tool Settings.

2. Under Board Level signal integrity analysis, specify IBIS for the Format, the
supported IBIS version that you want, and the location of the Output directory
for the generated files.

3. Click Assignments ➤ Device. In the Device dialog box, click the Device and
Pin Options button and review and specify any optional IBIS settings, as Board
Level Signal Integrity Analysis Settings describes.

4. To run the EDA Netlist Writer to generate the custom IBIS model files, click
Processing ➤ Start ➤ Start EDA Netlist Writer.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Board Level Signal Integrity Analysis Settings

Related Information

• Intel IBIS models

• Generating IBIS Output Files with the Quartus Prime Software
In Quartus Prime Help

• AN 283: Simulating Intel Devices with IBIS Models

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

12

https://www.altera.com/support/support-resources/download/board-layout-test/ibis/ibs-ibis_index.html
http://quartushelp.altera.com/current/index.htm#eda/boardlevel/ibis/eda_pro_ibis_out.htm
http://www.altera.com/literature/an/an283.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.3.1.1. Board Level Signal Integrity Analysis Settings

The following settings are available for generation of custom IBIS models using the
EDA Netlist Writer GUI:

Table 3. Board Level Signal Integrity Analysis Settings

Setting Description

Format Specifies IBIS as the format for output generation of custom IBIS
models for board level signal integrity analysis in supported third-party
tools.

IBIS version Specifies the IBIS version 5.0 or 4.2 for the custom IBIS model you
generate. Only version 5.0 is available for Agilex FPGA portfolio devices.

Output directory Specifies the directory path for custom IBIS model generation. By
default, the path is <project>/board/ibis.

Enable model selector Enables the model selector feature that lists all the possible models for
each I/O cell in the design. This setting is turned off by default.

Enable extended model selector Enables the extended model selector feature. This setting is an extension
of the Enable model selector setting. The extension lists additional
models for I/O standards with Class I and II. This setting is turned off by
default.

Enable per pin RLC package model with
mutual coupling

Allows you to generate the per pin RLC package model with mutual
coupling. The lumped RLC package model information appears in the IBIS
output file. This setting is turned off by default except for Agilex FPGA
portfolio devices.

Enable IBIS-AMI (GPIO Only) Enables generation of IBIS-AMI models that you can use to model high-
speed serial and parallel links that include transmitter and receiver
equalization algorithms. This setting is available for only Agilex 5 devices
and Agilex 7 M-Series devices. This setting is turned off by default for all
applicable devices.

1.4.3.2. Customizing Downloaded or Installed IBIS Model Files for Agilex FPGA
Portfolio Devices

The current Quartus Prime Pro Edition software installation includes the Intel FPGA
IBIS models and IBIS writer script for Agilex FPGA portfolio devices in /quartus/
common/misc/ibis_writer/. In addition, you can download the latest models
(without the script) from: IBIS Models for Intel FPGA Devices.

The downloaded or installed IBIS models have the RLC package values set to only one
particular device in each device family. These generic models describe the full set of
models listed for and supported by each device family at: IBIS Models for Intel FPGA
Devices.

Alternatively, you can generate custom IBIS models for Agilex FPGA portfolio devices
by using the Quartus Prime EDA Netlist Writer GUI, as Generate Custom IBIS Models
with the EDA Netlist Writer GUI describes.

To simulate your design with the most accurate model, you must customize the .ibs
files to adjust the RLC values for accurate device package data using the IBIS Writer
script. Use the script to customize the IBIS model file to match the values for your
particular device package.

To use the IBIS Writer script, refer to the step by step instructions in the /quartus/
common/misc/ibis_writer/README.txt file.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

13

https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html?wapkw=ibis%20models
https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html?wapkw=ibis%20models
https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html?wapkw=ibis%20models
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.3.3. Customizing Downloaded IBIS Models for Stratix 10 Devices, Arria 10
Devices, and Cyclone 10 GX Devices

You can download the IBIS models for Stratix 10 devices, Arria 10 devices, and
Cyclone 10 GX devices from the Intel website. You can use these IBIS models directly
to perform early simulations of the I/O buffers that you expect to use in your design
as part of a pre-layout analysis.

These downloaded IBIS models have the RLC package values set to only one particular
device in each device family. These generic models describe only a certain set of
models listed for each device at: IBIS Models for Intel FPGA Devices.

To simulate your design with the most accurate model, you must customize the .ibs
files to adjust the RLC values for accurate device package data. Customize the IBIS
model file to match the values for your particular device package by performing the
following steps:

1. Download and expand the ZIP file (.zip) of the IBIS model for the device family
you are using for your design. The .zip file contains the .ibs file along with an
IBIS model user guide and a model data correlation report.

2. Download the Package RLC Values spreadsheet for the same device family.

3. Open the spreadsheet and locate the row that describes the device package used
in your design.

4. From the package’s I/O row, copy the minimum, maximum, and typical values of
resistance, inductance, and capacitance for your device package.

5. Open the .ibs file in a text editor and locate the [Package] section of the file.

6. Overwrite the listed values copied with the values from the spreadsheet and save
the file.

Related Information

IBIS Models for Intel FPGA Devices
For information about whether models for your selected device are available.

1.4.4. Design Simulation Using the Siemens EDA HyperLynx* Software

You must integrate IBIS models into board design simulations to accurately model
timing and signal integrity.

The Siemens EDA HyperLynx* software is an industry standard tool for PCB analysis
and simulation of high-speed designs. The HyperLynx software makes it easy to
integrate IBIS models into simulations.

The HyperLynx software consists of the LineSim and BoardSim products. LineSim is an
early simulation tool. Before any board routing takes place, you can use LineSim to
simulate “what if” scenarios that assist in creating routing rules and defining board
parameters.

BoardSim is a post-layout tool that you can use to analyze existing board routing. You
select one or more nets from a board layout file and BoardSim simulates those nets in
a manner similar to LineSim. With board and routing parameters, and surrounding
signal routing known, highly accurate simulations of the final fabricated PCB are
possible.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

14

https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html?wapkw=ibis%20models
https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This document section focuses on LineSim. Because the process of creating and
running simulations is very similar for both LineSim and BoardSim, the details of IBIS
model use in LineSim also apply to simulations in BoardSim.

You configure simulations in LineSim using a schematic GUI to create connections and
topologies between I/O buffers, route trace segments, and termination components.
LineSim provides two methods for creating routing schematics: cell-based and free-
form. Cell-based schematics are based on fixed cells consisting of typical placements
of buffers, trace impedances, and components. Parts of the grid-based cells are filled
with the desired objects to create the topology. A topology in a cell-based schematic is
limited by the available connections within and between the cells.

A more robust and expandable way to create a circuit schematic for simulation is to
use the free-form schematic format in LineSim. The free-form schematic format
makes it easy to place parts into any configuration and edit them as required. This
section describes the use of IBIS models with free-form schematics, but the process is
nearly identical for cell-based schematics.

Figure 4. HyperLynx LineSim Free-Form Schematic Editor

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you use HyperLynx software to perform simulations, you typically perform the
following steps:

1. Create a new LineSim free-form schematic document and set up the board
stackup for your PCB using the Stackup Editor. In this editor, specify board layer
properties including layer thickness, dielectric constant, and trace width.

2. Create a circuit schematic for the net you want to simulate. The schematic
represents all the parts of the routed net including source and destination I/O
buffers, termination components, transmission line segments, and representations
of impedance discontinuities such as vias or connectors.

3. Assign IBIS models to the source and destination I/O buffers to represent their
behavior during operation.

4. Attach probes from the digital oscilloscope that is built in to LineSim to points in
the circuit that you want to monitor during simulation. Typically, at least one probe
is attached to the pin of a destination I/O buffer. For differential signals, you can
attach a differential probe to both the positive and negative pins at the
destination.

5. Configure and run the simulation. You can simulate a rising or falling edge and
test the circuit under different drive strength conditions.

6. Interpret the results and make adjustments. Based on the waveforms captured in
the digital oscilloscope, you can adjust anything in the circuit schematic to correct
any signal integrity issues, such as overshoot or ringing. If necessary, you can
make I/O assignment changes in the Quartus Prime software, regenerate the IBIS
file with the IBIS Writer, and apply the updated IBIS model to the buffers in your
HyperLynx software schematic.

7. Repeat the simulations and circuit adjustments until you are satisfied with the
results.

8. When the operation of the net meets your design requirements, implement
changes to your I/O assignments in the Quartus Prime software and optionally
adjust your board routing constraints, component values, and placement to match
the simulation.

For more information about HyperLynx software, including schematic creation,
simulation setup, model usage, product support, licensing, and training, refer to the
Siemens EDA webpage.

Related Information

eda.sw.siemens.com

1.4.5. Configuring LineSim to Use Intel IBIS Models

You must configure LineSim to find and use the IBIS models for your design. To do
this, add the location of your .ibs file or files to the LineSim Model Library search
path. Next, you apply a selected model to a buffer in your schematic.

To add the Quartus Prime software’s default IBIS model location, <project directory>/
board/ibis, to the HyperLynx LineSim model library search path, perform the
following steps in LineSim:

1. From the Options menu, click Directories. The Set Directories dialog box
appears. The Model-library file path(s) list displays the order in which LineSim
searches file directories for model files.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. LineSim Set Directories Dialog Box

2. Click Edit. A dialog box appears where you can add directories and adjust the
order in which LineSim searches them.

Figure 6. LineSim Select Directories Dialog Box

3. Click Add

4. Browse to the default IBIS model location, <project directory>/board/ibis.
Click OK.

5. Click Up to move the IBIS model directory to the top of the list. Click Generate
Model Index to update LineSim’s model database with the models found in the
added directory.

6. Click OK. The IBIS model directory for your project is added to the top of the
Model-library file path(s) list.

7. To close the Set Directories dialog box, click OK.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.6. Integrating Intel IBIS Models into LineSim Simulations

When the location for IBIS files has been set, you can assign the downloaded or
generated IBIS models to the buffers in your schematic. To do this, perform the
following steps:

1. Double-click a buffer symbol in your schematic to open the Assign Models dialog
box. You can also click Assign Models from the buffer symbol’s right-click menu.

Figure 7. LineSim Assign Model Dialog Box

2. The pin of the buffer symbol you selected should be highlighted in the Pins list. If
you want to assign a model to a different symbol or pin, select it from the list.

3. Click Select. The Select IC Model dialog box appears.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. LineSim Select IC Model Dialog Box

4. To filter the list of available libraries to display only IBIS models, select .IBS.
Scroll through the Libraries list, and click the name of the library for your design.
By default, this is <project name>.ibs.

5. The device for your design should be selected as the only item in the Devices list.
If not, select your device from the list.

6. From the Signal list, select the name of the signal you want to simulate. You can
also choose to select by device pin number.

7. Click OK. The Assign Models dialog box displays the selected .ibs file and
signal.

8. If applicable to the signal you chose, adjust the buffer settings as required for the
simulation.

9. Select and configure other buffer pins from the Pins list in the same manner.

10. Click OK when all I/O models are assigned.

1.4.7. Running and Interpreting LineSim Simulations

You can run any simulation and make adjustments to the I/O assignments or
simulation parameters as required.

For example, if you see too much overshoot in the simulated signal at the destination
buffer after running a simulation, you can adjust the drive strength I/O assignment
setting to a lower value. Regenerate the .ibs file, and run the simulation again to
verify whether the change fixes the problem.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Example of Overshoot in HyperLynx with IBIS Models

If you see a discontinuity or other anomalies at the destination, such as slow rise and
fall times, adjust the termination scheme or termination component values. After
making these changes, rerun the simulation to check whether your adjustments
solved the problem. In this case, it is not necessary to regenerate the .ibs file.

Figure 10. Example of Signal Integrity Anomaly in HyperLynx with IBIS Models

For more information about board-level signal integrity, and to learn about ways to
improve it with simple changes to your design, visit the Intel FPGA Signal & Power
Integrity Support Center.

Related Information

Intel Signal & Power Integrity Center

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

20

https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5. Simulation with HSPICE Models

HSPICE decks are used to perform highly accurate simulations by describing the
physical properties of all aspects of a circuit precisely. HSPICE decks describe I/O
buffers, board components, and all the connections between them, as well as defining
the parameters of the simulation to be run.

By their nature, HSPICE decks are highly customizable and require a detailed
description of the circuit under simulation. The HSPICE decks generated by the
Quartus Prime HSPICE Writer automatically include board components and topology
defined in the Board Trace Model. Configure the board components and topology in the
Pin Planner or in the Board Trace Model tab of the Device and Pin Options dialog
box. All HSPICE decks generated by the Quartus Prime software include compensation
for the double count problem. You can simulate with the default simulation parameters
built in to the generated HSPICE decks or make adjustments to customize your
simulation.

Related Information

The Double Counting Problem in HSPICE Simulations on page 22

1.5.1. Supported Devices and Signaling

The HSPICE Writer in the Quartus Prime software supports Arria, Cyclone, and Stratix
devices for the creation of a board trace model in the Quartus Prime software for
automatic inclusion in an HSPICE deck.

The HSPICE files include the board trace description you create in the Board Trace
Model view in the Pin Planner or the Board Trace Model tab in the Device and Pin
Options dialog box.

Note: Note that for Arria 10 devices, you may need to download the Encrypted HSPICE
model from the Intel website.

Related Information

• I/O Management
For information about how to use the Enable Advanced I/O Timing option
and configure board trace models for the I/O standards used in your design.

• SPICE Models for Intel FPGAs
For more information about the Encrypted HSPICE model.

1.5.2. Accessing HSPICE Simulation Kits

You can access the available HSPICE models with the Quartus Prime software’s
HSPICE Writer tool and also at the Spice Models for Intel Devices web page.

The Quartus Prime software HSPICE Writer tool removes many common sources of
user error from the I/O simulation process. The HSPICE Writer tool automatically
creates preconfigured I/O simulation spice decks that only require the addition of a
user board model. All the difficult tasks required to configure the I/O modes and
interpret the timing results are handled automatically by the HSPICE Writer tool.

Related Information

SPICE Models for Intel FPGAs
For more information about the Encrypted HSPICE model.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

21

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/hspice.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/hspice.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.3. The Double Counting Problem in HSPICE Simulations

Simulating I/Os using accurate models is extremely helpful for finding and fixing FPGA
I/O timing and board signal integrity issues before any boards are built. However, the
usefulness of such simulations is directly related to the accuracy of the models used
and whether the simulations are set up and performed correctly.

To ensure accuracy in models and simulations created for FPGA output signals you
must consider the timing hand-off between tCO timing in the Quartus Prime software
and simulation-based board delay. If this hand-off is not handled correctly, the
calculated delay could either count some of the delay twice or even miss counting
some of the delay entirely.

1.5.3.1. Defining the Double Counting Problem

The double counting problem is inherent to the difference between the method to
analyze output timing in the Quartus Prime software versus the method HSPICE
models use. The timing analyzer tools in the Quartus Prime software measure delay
timing for an output signal from the core logic of the FPGA design through the output
buffer, ending at the FPGA pin with a default capacitive load or a specified value for
the I/O standard you selected. This measurement is the tCO timing variable.

Figure 11. Double Counting Problem
FPGA Core

Logic
FPGA Output

Buffer
FPGA Pin

HSPICE Reported Delay

Quartus Prime tCO

HSPICE tPD with
User Board Trace Model

Overlap (Double Counting)

Termination Network/
Trace Model

Signal
Destination

HSPICE models for board simulation measure tPD (propagation delay) from an
arbitrary reference point in the output buffer, through the device pin, out along the
board routing, and ending at the signal destination.
If you add these two delays, the delay between the output buffer and the device pin
appears twice in the calculation. A model or simulation that does not account for this
double count creates overly pessimistic simulation results, because the double-
counted delay can limit I/O performance artificially.

One approach to fix the problem is subtracting the overlap between tCO and tPD to
account for the double count. However, this adjustment is not accurate, because each
measurement considers a different load.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Input signals do not exhibit this problem, because the HSPICE models for inputs stop
at the FPGA pin instead of at the input buffer. In this case, adding the delays together
produces an accurate measurement of delay timing.

1.5.3.2. The Solution to Double Counting

To adjust the measurements to account for the double-counting, the delay between
the arbitrary point in the output buffer selected by the HSPICE model and the FPGA
pin must be subtracted from either tCO or tPD before adding the results together. The
subtracted delay must also be based on a common load between the two
measurements. This is done by repeating the HSPICE model measurement, but with
the same load used by the Quartus Prime software for the tCO measurement.

Figure 12. Common Test Loads Used for Output Timing
FPGA Core

Logic
FPGA Output

Buffer
FPGA Pin Quartus Prime

Test Load

HSPICE Netlist with
Quartus Prime Test Load

HSPICE tPD with User
Specified Board Trace Model

Quartus Prime tCO

HSPICE Netlist with
User Board Trace Model

Overlap (HSPICE Delay
with Test Load)

Total Delay

HSPICE tPD Adjusted by tTESTLOAD

Termination Network/
Trace Model

Signal
Destination

With tTESTLOAD known, the total delay is calculated for the output signal from the FPGA
logic to the signal destination on the board, accounting for the double count.

tdelay = tCO+(tPD-tTESTLOAD)

The preconfigured simulation files generated by the HSPICE Writer in the Quartus
Prime software are designed to account for the double-counting problem based on this
calculation automatically.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.4. HSPICE Writer Tool Flow

This section includes information to help you get started using the Quartus Prime
software HSPICE Writer tool. The information in this section assumes you have a basic
knowledge of the standard Quartus Prime software design flow, such as project and
assignment creation, compilation, and timing analysis.

1.5.4.1. Applying I/O Assignments

The first step in the HSPICE Writer tool flow is to configure the I/O standards and
modes for each of the pins in your design properly. In the Quartus Prime software,
these settings are represented by assignments that map I/O settings, such as pin
selection, and I/O standard and drive strength, to corresponding signals in your
design.

The Quartus Prime software provides multiple methods for creating these
assignments:

• Using the Pin Planner

• Using the assignment editor

• Manually editing the .qsf file

• By making assignments in a scripted Quartus Prime flow using Tcl

1.5.4.2. Enabling HSPICE Writer Using Assignments

You can also use HSPICE Writer in conjunction with a scripted Tcl flow. To enable
HSPICE Writer during a full compile, include the following lines in your Tcl script.

Enable HSPICE Writer

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
 "HSPICE (Signal Integrity)"
set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
 -section_id eda_board_design_signal_integrity
set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
 -section_id eda_board_design_signal_integrity

As with command-line invocation, specifying the output directory is optional. If not
specified, the output directory defaults to board/hspice.

1.5.4.3. Naming Conventions for HSPICE Files

HSPICE Writer automatically generates simulation files and names them using the
following naming convention: <device>_<pin #>_<pin_name>_<in/out>.sp.

For bidirectional pins, two spice decks are produced; one with the I/O buffer
configured as an input, and the other with the I/O buffer configured as an output.

The Quartus Prime software supports alphanumeric pin names that contain the
underscore (_) and dash (-) characters. Any illegal characters used in file names are
converted automatically to underscores.

Related Information

• Sample Output for I/O HSPICE Simulation Deck on page 35

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Sample Input for I/O HSPICE Simulation Deck on page 31

1.5.4.4. Invoking HSPICE Writer

After HSPICE Writer is enabled, the HSPICE simulation files are generated
automatically each time the project is completely compiled. The Quartus Prime
software also provides an option to generate a new set of simulation files without
having to recompile manually. In the Processing menu, click Start EDA Netlist
Writer to generate new simulation files automatically.

Note: You must perform both Analysis & Synthesis and Fitting on a design before invoking
the HSPICE Writer tool.

1.5.4.5. Invoking HSPICE Writer from the Command Line

If you use a script-based flow to compile your project, you can create HSPICE model
files by including the following commands in your Tcl script (.tcl file).

Create HSPICE Model Files

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
 "HSPICE (Signal Integrity)"
set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
 -section_ideda_board_design_signal_integrity
set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
 -section_id eda_board_design_signal_integrity

The <output_directory> option specifies the location where HSPICE model files are
saved. By default, the <project directory>/board/hspice directory is used.

Invoke HSPICE Writer

To invoke the HSPICE Writer tool through the command line, type:

quartus_eda.exe <project_name> --board_signal_integrity=on --format=HSPICE \
--output_directory=<output_directory>

<output_directory> specifies the location where the tool writes the generated spice
decks, relative to the design directory. This is an optional parameter and defaults to
board/hspice.

1.5.4.6. Customizing Automatically Generated HSPICE Decks

HSPICE models generated by the HSPICE Writer can be used for simulation as
generated.

A default board description is included, and a default simulation is set up to measure
rise and fall delays for both input and output simulations, which compensates for the
double counting problem. However, Intel recommends that you customize the board
description to more accurately represent your routing and termination scheme.

The sample board trace loading in the generated HSPICE model files must be replaced
by your actual trace model before you can run a correct simulation. To do this, open
the generated HSPICE model files for all pins you want to simulate and locate the
following section.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Sample Board Trace Section

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description

You must replace the example load with a load that matches the design of your PCB
board. This includes a trace model, termination resistors, and, for output simulations,
a receiver model. The spice circuit node that represents the pin of the FPGA package is
called pin. The node that represents the far pin of the external device is called load-
in (for output SPICE decks) and source-in (for input SPICE decks).

For an input simulation, you must also modify the stimulus portion of the spice file.
The section of the file that must be modified is indicated in the following comment
block.

 Sample Source Stimulus Section

* Sample source stimulus placeholder
* - Replace this with your I/O driver model

Replace the sample stimulus model with a model for the device that drives the FPGA.

1.5.5. Running an HSPICE Simulation

Because simulation parameters are configured directly in the HSPICE model files,
running a simulation requires only that you open an HSPICE file in the HSPICE user
interface and start the simulation.

Figure 13. HSPICE User Interface Window

Click Open and browse to the location of the HSPICE model files generated by the
Quartus Prime HSPICE Writer. The default location for HSPICE model files is <project
directory>/board/hspice. Select the .sp file generated by the HSPICE Writer for
the signal you want to simulate. Click OK.

To run the simulation, click Simulate. The status of the simulation is displayed in the
window and saved in an .lis file with the same name as the .sp file when the
simulation is complete. Check the .lis file if an error occurs during the simulation
requiring a change in the .sp file to fix.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.6. Interpreting the Results of an Output Simulation

By default, the automatically generated output simulation spice decks are set up to
measure three delays for both rising and falling transitions. Two of the measurements,
tpd_rise and tpd_fall, measure the double-counting corrected delay from the
FPGA pin to the load pin. To determine the complete clock-edge to load-pin delay, add
these numbers to the Quartus Prime software reported default loading tCO delay.

The remaining four measurements, tpd_uncomp_rise, tpd_uncomp_fall,
t_dblcnt_rise, and t_dblcnt_fall, are required for the double-counting
compensation process and are not required for further timing usage.

Related Information

Simulation Analysis on page 35

1.5.7. Interpreting the Results of an Input Simulation

By default, the automatically generated input simulation SPICE decks are set up to
measure delays from the source’s driver pin to the FPGA’s input pin for both rising and
falling transitions.

The propagation delay is reported by HSPICE measure statements as tpd_rise and
tpd_fall. To determine the complete source driver pin-to-FPGA register delay, add
these numbers to the Quartus Prime software reported TH and TSU input timing
numbers.

1.5.8. Viewing and Interpreting Tabular Simulation Results

The .lis file stores the collected simulation data in tabular form. The default
simulation configured by the HSPICE Writer produces delay measurements for rising
and falling transitions on both input and output simulations.

These measurements are found in the .lis file and named tpd_rise and
tpd_fall. For output simulations, these values are already adjusted for the double
count. To determine the complete delay from the FPGA logic to the load pin, add either
of these measurements to the Quartus Prime tCO delay. For input simulations, add
either of these measurements to the Quartus Prime tSU and tH delay values to
calculate the complete delay from the far end stimulus to the FPGA logic. Other values
found in the .lis file, such as tpd_uncomp_rise, tpd_uncomp_fall,
t_dblcnt_rise, and t_dblcnt_fall, are parts of the double count compensation
calculation. These values are not necessary for further analysis.

1.5.9. Viewing Graphical Simulation Results

You can view the results of the simulation quickly as a graphical waveform display
using the AvanWaves viewer included with HSPICE. With the default simulation
configured by the HSPICE Writer, you can view the simulated waveforms at both the
source and destination in input and output simulations.

To see the waveforms for the simulation, in the HSPICE user interface window, click
AvanWaves. The AvanWaves viewer opens and displays the Results Browser.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. HSPICE AvanWaves Results Browser

The Results Browser lets you select which waveform to view quickly in the main
viewing window. If multiple simulations are run on the same signal, the list at the top
of the Results Browser displays the results of each simulation. Click the simulation
description to select which simulation to view. By default, the descriptions are derived
from the first line of the HSPICE file, so the description might appear as a line of
asterisks.

Select the type of waveform to view, by performing the following steps:

1. To see the source and destination waveforms with the default simulation, from the
Types list, select Voltages.

2. On the Curves list, double-click the waveform you want to view. The waveform
appears in the main viewing window.

You can zoom in and out and adjust the view as desired.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15. AvanWaves Waveform Viewer

1.5.10. Making Design Adjustments Based on HSPICE Simulations

Based on the results of your simulations, you can make adjustments to the I/O
assignments or simulation parameters if required. For example, after you run a
simulation and see overshoot or ringing in the simulated signal at the destination
buffer, you can adjust the drive strength I/O assignment setting to a lower value.
Regenerate the HSPICE deck, and run the simulation again to verify that the change
fixed the problem.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16. Example of Overshoot in the AvanWaves Waveform Viewer

If there is a discontinuity or any other anomalies at the destination, adjust the board
description in the Quartus Prime Board Trace Model, or in the generated HSPICE model
files to change the termination scheme or adjust termination component values. After
making these changes, regenerate the HSPICE files if necessary, and rerun the
simulation to verify whether your adjustments solved the problem.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. Example of Signal Integrity Anomaly in the AvanWaves Waveform Viewer

For more information about board-level signal integrity and to learn about ways to
improve it with simple changes to your FPGA design, visit the Intel Signal & Power
Integrity Center

Related Information

Intel Signal & Power Integrity Center

1.5.11. Sample Input for I/O HSPICE Simulation Deck

The following sections examine a typical HSPICE simulation spice deck for an I/O of
type input. Each section presents the simulation file one block at a time.

1.5.11.1. Header Comment

The first block of an input simulation spice deck is the header comment. The purpose
of this block is to provide an easily readable summary of how the simulation file has
been automatically configured by the Quartus Prime software.

This block has two main components: The first component summarizes the I/O
configuration relevant information such as device, speed grade, and so on. The second
component specifies the exact test condition that the Quartus Prime software assumes
for the given I/O standard.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

31

https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 Sample Header Comment Block

* Intel Quartus Prime HSPICE Writer I/O Simulation Deck*
* This spice simulation deck was automatically generated by
* Quartus for the following IO settings:
*
* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Intel Quartus Prime’s default I/O timing delays assume the following slow
* corner simulation conditions.
*
* Specified Test Conditions For Intel Quartus Prime Tco
* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner **)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin (no parasitics)
*
* Warnings:

1.5.11.2. Simulation Conditions

The simulation conditions block loads the appropriate process corner models for the
transistors. This condition is automatically set up for the slow timing corner and is
modified only if other simulation corners are desired.

Simulation Conditions Block

* Process Settings
.options brief
.inc ‘sii_tt.inc’ * TT process corner

1.5.11.3. Simulation Options

The simulation options block configures the simulation temperature and configures
HSPICE with typical simulation options.

 Simulation Options Block

* Simulation Options
.options brief=0
.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0
+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For a detailed description of these options, consult your HSPICE manual.

1.5.11.4. Constant Definition

The constant definition block of the simulation file instantiates the voltage sources that
controls the configuration modes of the I/O buffer.

Constant Definition Block

* Constant Definition
voeb oeb 0 vc * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpcdp5 rpcdp5 0 rp5 * Set the IO standard
vpcdp4 rpcdp4 0 rp4
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 0

Where:

• Voltage source voeb controls the output enable of the buffer and is set to disabled
for inputs.

• vopdrain controls the open drain mode for the I/O.

• vrambh controls the bus hold circuitry in the I/O.

• vrpullup controls the weak pullup.

• The next 11 voltages sources control the I/O standard of the buffer and are
configured through a later library call.

• vdin is not used on input pins because it is the data pin for the output buffer.

1.5.11.5. Buffer Netlist

The buffer netlist block of the simulation spice deck loads all the load models required
for the corresponding input pin.

 Buffer Netlist Block

* IO Buffer Netlist
.include ‘vio_buffer.inc’

1.5.11.6. Drive Strength

The drive strength block of the simulation SPICE deck loads the configuration bits
necessary to configure the I/O into the proper I/O standard and drive strengths.

Although these settings are not relevant to an input buffer, they are provided to allow
the SPICE deck to be modifiable to support bidirectional simulations.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 Drive Strength Block

* Drive Strength Settings
.lib ‘drive_select_hio.lib’ 3p3ttl_12ma

1.5.11.7. I/O Buffer Instantiation

The I/O buffer instantiation block of the simulation SPICE deck instantiates the
necessary power supplies and I/O model components that are necessary to simulate
the given I/O.

 I/O Buffer Instantiation

I/O Buffer Instantiation
* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15
* Instantiate Power Supplies|
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage
* Instantiate I/O Buffer
xvio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp5 rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 vio_buf
* Internal Loading on Pad
* - No loading on this pad due to differential buffer/support
* circuitry
* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

1.5.11.8. Board Trace and Termination

The board trace and termination block of the simulation SPICE deck is provided only
as an example. Replace this block with your own board trace and termination models.

Board Trace and Termination Block

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description
wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x

1.5.11.9. Stimulus Model

The stimulus model block of the simulation spice deck is provided only as a place
holder example. Replace this block with your own stimulus model. Options for this
include an IBIS or HSPICE model, among others.

Stimulus Model Block

* Sample source stimulus placeholder
* - Replace this with your I/O driver model
Vsource source 0 pulse(0 vcn 0s 0.4ns 0.4ns 8.5ns 17.4ns)

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.11.10. Simulation Analysis

The simulation analysis block of the simulation file is configured to measure the
propagation delay from the source to the FPGA pin. Both the source and end point of
the delay are referenced against the 50% VCCN crossing point of the waveform.

Simulation Analysis Block

* Simulation Analysis Setup
* Print out the voltage waveform at both the source and the pin
.print tran v(source) v(pin)
.tran 0.020ns 17ns
* Measure the propagation delay from the source pin to the pin
* referenced against the 50% voltage threshold crossing point
.measure TRAN tpd_rise TRIG v(source) val=’vcn*0.5’ rise=1
+ TARG v(pin) val =’vcn*0.5’ rise=1
.measure TRAN tpd_fall TRIG v(source) val=’vcn*0.5’ fall=1
+ TARG v(pin) val =’vcn*0.5’ fall=1

1.5.12. Sample Output for I/O HSPICE Simulation Deck

A typical HSPICE simulation SPICE deck for an I/O-type output has several sections.
Each section presents the simulation file one block at a time.

1.5.12.1. Header Comment

The first block of an output simulation SPICE deck is the header comment. The
purpose of this block is to provide a readable summary of how the simulation file has
been automatically configured by the Quartus Prime software.

This block has two main components:

• The first component summarizes the I/O configuration relevant information such
as device, speed grade, and so on.

• The second component specifies the exact test condition that the Quartus Prime
software assumes when generating tCO delay numbers. This information is used as
part of the double-counting correction circuitry contained in the simulation file.

The SPICE decks are preconfigured to calculate the slow process corner delay but can
also be used to simulate the fast process corner as well. The fast corner conditions are
listed in the header under the notes section.

The final section of the header comment lists any warning messages that you must
consider when you use the SPICE decks.

 Header Comment Block

* Intel Quartus Prime HSPICE Writer I/O Simulation Deck
*
* This spice simulation deck was automatically generated by
* Intel Quartus Prime for the following IO settings:
*
* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Quartus’ default I/O timing delays assume the following slow
* corner simulation conditions.
* Specified Test Conditions For Intel Quartus Prime Tco

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
* For C3 devices, the TT transistor corner provides an
* approximation for worst case timing. However, for functionality
* simulations, it is recommended that the SS corner be simulated
* as well.
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner **)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin
* Warnings:

1.5.12.2. Simulation Conditions

The simulation conditions block loads the appropriate process corner models for the
transistors. This condition is automatically set up for the slow timing corner and must
be modified only if other simulation corners are desired.

Simulation Conditions Block

* Process Settings
.options brief
.inc ‘sii_tt.inc’ * typical-typical process corner

Note: Two separate corners cannot be simulated at the same time. Instead, simulate the
base case using the Quartus corner as one simulation and then perform a second
simulation using the desired customer corner. The results of the two simulations can
be manually added together.

1.5.12.3. Simulation Options

The simulation options block configures the simulation temperature and configures
HSPICE with typical simulation options.

Simulation Options Block

* Simulation Options
.options brief=0
.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0
+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85

Note: For a detailed description of these options, consult your HSPICE manual.

1.5.12.4. Constant Definition

The constant definition block of the output simulation SPICE deck instantiates the
voltage sources that controls the configuration modes of the I/O buffer.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Constant Definition Block

* Constant Definition
voeb oeb 0 0 * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpci rpci 0 0 * Set to vc to enable pci mode
vpcdp4 rpcdp4 0 rp4 * These control bits set the IO standard
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 pulse(0 vc 0s 0.2ns 0.2ns 8.5ns 17.4ns)

Where:

• Voltage source voeb controls the output enable of the buffer.

• vopdrain controls the open drain mode for the I/O.

• vrambh controls the bus hold circuitry in the I/O.

• vrpullup controls the weak pullup.

• vpci controls the PCI clamp.

• The next ten voltage sources control the I/O standard of the buffer and are
configured through a later library call.

• vdin is connected to the data input of the I/O buffer.

• The edge rate of the input stimulus is automatically set to the correct value by the
Quartus Prime software.

1.5.12.5. I/O Buffer Netlist

The I/O buffer netlist block loads all of the models required for the corresponding pin.
These include a model for the I/O output buffer, as well as any loads that might be
present on the pin.

 I/O Buffer Netlist Block

*IO Buffer Netlist
.include ‘hio_buffer.inc’
.include ‘lvds_input_load.inc’
.include ‘lvds_oct_load.inc’

1.5.12.6. Drive Strength

The drive strength block of the simulation spice deck loads the configuration bits for
configuring the I/O to the proper I/O standard and drive strength. These options are
set by the HSPICE Writer tool and are not changed for expected use.

Drive Strength Block

* Drive Strength Settings
.lib ‘drive_select_hio.lib’ 3p3ttl_12ma

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.12.7. Slew Rate and Delay Chain

Stratix and Cyclone devices have sections for configuring the slew rate and delay
chain settings.

 Slew Rate and Delay Chain Settings

* Programmable Output Delay Control Settings
.lib ‘lib/output_delay_control.lib’ no_delay
* Programmable Slew Rate Control Settings
.lib ‘lib/slew_rate_control.lib’ slow_slow

1.5.12.8. I/O Buffer Instantiation

The I/O buffer instantiation block of the output simulation spice deck instantiates the
necessary power supplies and I/O model components that are necessary to simulate
the given I/O.

 I/O Buffer Instantiation Block

* I/O Buffer Instantiation
* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15
* Instantiate Power Supplies
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage
* Instantiate I/O Buffer
xhio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 hio_buf
* Internal Loading on Pad
* - This pad has an LVDS input buffer connected to it, along
* with differential OCT circuitry. Both are disabled but
* introduce loading on the pad that is modeled below.
xlvds_input_load die vss vccn lvds_input_load
xlvds_oct_load die vss vccpd vccn vcpad0 vccn lvds_oct_load
* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

1.5.12.9. Board and Trace Termination

The board trace and termination block of the simulation SPICE deck is provided only
as an example. Replace this block with your specific board loading models.

Board Trace and Termination Block

* I/O Board Trace And Termination Description
* - Replace this with your board trace and termination description
wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.12.10. Double-Counting Compensation Circuitry

The double-counting compensation circuitry block of the simulation SPICE deck
instantiates a second I/O buffer that is used to measure double-counting. The buffer is
configured identically to the user I/O buffer but is connected to the Quartus Prime
software test load. The simulated delay of this second buffer can be interpreted as the
amount of double-counting between the Quartus Prime software and HSPICE Writer
simulated results.

As the amount of double-counting is constant for a given I/O standard on a given pin,
consider separating the double-counting circuitry from the simulation file. In doing so,
you can perform any number of I/O simulations while referencing the delay only once.

 (Part of)Double-Counting Compensation Circuitry Block

* Double Counting Compensation Circuitry
*
* The following circuit is designed to calculate the amount of
* double counting between Intel Quartus Prime and the HSPICE models. If
* you have not changed the default simulation temperature or
* transistor corner this spice deck automatically compensates the double
counting.
* In the event you wish to
* simulate an IO at a different temperature or transistor corner
* you need to remove this section of code and manually
* account for double counting. A description of Intel’s
* recommended procedure for this process can be found in the
* Intel Quartus Prime HSPICE Writer AppNote.
* Supply Voltages Settings
.param vcn_tl=3.135
.param vpd_tl=2.97
* Test Load Constant Definition
vopdrain_tl opdrain_tl 0 0
vrambh_tl rambh_tl 0 0
vrpullup_tl rpullup_tl 0 0
* Instantiate Power Supplies
vvccn_tl vccn_tl 0 vcn_tl
vvssn_tl vssn_tl 0 0
vvccpd_tl vccpd_tl 0 vpd_tl
* Instantiate I/O Buffer
xhio_testload din oeb opdrain_tl die_tl rambh_tl
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup_tl vccn_tl vccpd_tl vcpad0_tl hio_buf
* Internal Loading on Pad
xlvds_input_testload die_tl vss vccn_tl lvds_input_load
xlvds_oct_testload die_tl vss vccpd_tl vccn_tl vcpad0_tl vccn_tl
lvds_oct_load
* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg
* Default Intel Test Load
* - 3.3V LVTTL default test condition is an open load

Related Information

The Double Counting Problem in HSPICE Simulations on page 22

1.5.12.11. Simulation Analysis

The simulation analysis block is set up to measure double-counting corrected delays.
This is accomplished by measuring the uncompensated delay of the I/O buffer when
connected to the user load, and when subtracting the simulated amount of double-
counting from the test load I/O buffer.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulation Analysis Block

* Simulation Analysis Setup
*Print out the voltage waveform at both the pin and far end load
.print tran v(pin) v(load)
.tran 0.020ns 17ns
* Measure the propagation delay to the load pin. This value
* includes some double counting with Intel Quartus Prime’s Tco
.measure TRAN tpd_uncomp_rise TRIG v(din) val=’vc*0.5’ rise=1+ TARG v(load)
val=’vcn*0.5’ rise=1
.measure TRAN tpd_uncomp_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(load) val=’vcn*0.5’ fall=1
* The test load buffer can calculate the amount of double counting
.measure TRAN t_dblcnt_rise TRIG v(din) val=’vc*0.5’ rise=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ rise=1
.measure TRAN t_dblcnt_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ fall=1
* Calculate the true propagation delay by subtraction
.measure TRAN tpd_rise PARAM=’tpd_uncomp_rise-t_dblcnt_rise’
.measure TRAN tpd_fall PARAM=’tpd_uncomp_fall-t_dblcnt_fall’

1.5.13. Advanced Topics

The information in this section describes some of the more advanced topics and
methods employed when setting up and running HSPICE simulation files.

1.5.13.1. PVT Simulations

The automatically generated HSPICE simulation files are set up to simulate the slow
process corner using low voltage, high temperature, and slow transistors. To ensure a
fully robust link, Intel recommends that you run simulations over all process corners.

To perform process, voltage, and temperature (PVT) simulations, manually modify the
spice decks in a two step process:

1. Remove the double-counting compensation circuitry from the simulation file. This
is required as the amount of double-counting is dependent upon how the Quartus
Prime software calculates delays and is not based on which PVT corner is being
simulated. By default, the Quartus Prime software provides timing numbers using
the slow process corner.

2. Select the proper corner for the PVT simulation by setting the correct HSPICE
temperature, changing the supply voltage sources, and loading the correct
transistor models.

A more detailed description of HSPICE process corners can be found in the family-
specific HSPICE model documentation.

Related Information

Accessing HSPICE Simulation Kits on page 21

1.5.13.2. Hold Time Analysis

Intel recommends performing worst-case hold time analysis using the fast corner
models, which use fast transistors, high voltage, and low temperature. This involves
modifying the SPICE decks to select the correct temperature option, change the
supply voltage sources, and load the correct fast transistor models. The values of
these parameters are located in the header comment section of the corresponding
simulation deck files.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For a truly worst-case analysis, combine the HSPICE Writer hold time analysis results
with the Quartus Prime software fast timing model. This requires that you change the
double-counting compensation circuitry in the simulations files to also simulate the
fast process corners, as this is what the Quartus Prime software uses for the fast
timing model.

Note: This method of hold time analysis is recommended only for globally synchronous
buses. Do not apply this method of hold-time analysis to source synchronous buses.
This is because the source synchronous clocking scheme is designed to cancel out
some of the PVT timing effects. If this is not taken into account, the timing results are
not accurate. Proper source synchronous timing analysis is beyond the scope of this
document.

1.5.13.3. I/O Voltage Variations

Use each of the FPGA family datasheets to verify the recommended operating
conditions for supply voltages. For current FPGA families, the maximum recommended
voltage corresponds to the fast corner, while the minimum recommended voltage
corresponds to the slow corner. These voltage recommendations are specified at the
power pins of the FPGA and are not necessarily the same voltage that are seen by the
I/O buffers due to package IR drops.

The automatically generated HSPICE simulation files model this IR effect
pessimistically by including a 50-mV IR drop on the VCCPD supply when a high drive
strength standard is being used.

1.5.13.4. Correlation Report

Correlation reports for the HSPICE I/O models are located in the family-specific
HSPICE I/O buffer simulation kits.

Related Information

Accessing HSPICE Simulation Kits on page 21

1.6. Signal Integrity Analysis with Third-Party Tools Document
Revision History

Table 4. Document Revision History

Date Quartus Prime Version Changes

2024.04.01 24.1 • Updated throughout for initial Altera rebranding.
• Updated What's New In This Version topic for latest software

changes impacting this document.
• Updated Signal Integrity Analysis with Third-Party Tools topic for

removal of Enable Advanced I/O Timing option.
• Updated Create I/O and Board Trace Model Assignments topic for

removal of Enable Advanced I/O Timing option.
• Updated Customize the Output Files topic for removal of Enable

Advanced I/O Timing option.
• Updated IBIS Model Access and Customization Flows topic for EDA

Netlist Writer and Agilex FPGA portfolio device support.

continued...

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Quartus Prime Version Changes

• Updated Generate Custom IBIS Models with the EDA Netlist Writer
GUI topic to reflect Agilex FPGA portfolio device support.

• Updated Customizing Downloaded or Installed IBIS Model Files for
Agilex FPGA Portfolio Devices topic for EDA Netlist Writer IBIS
model generation support.

• Updated Simulation with HSPICE Models topic for removal of Enable
Advanced I/O Timing option.

2023.08.01 23.1 • Corrected junk characters in all code samples of Sample Input for
I/O HSPICE Simulation Deck section.

• Corrected junk characters in all code samples of Sample Output for
I/O HSPICE Simulation Deck section.

2023.04.03 23.1 • Added Top FAQs navigation to front cover.
• Added What's New In This Version section.
• Revised Third-Party Board Signal Integrity Analysis Flow diagram to

reflect new IBIS file methods.
• Revised Customize the Output Files topic to reflect new IBIS file

methods.
• Revised Simulation with IBIS Models topic to reflect new IBIS file

methods.
• Added IBIS Model Access and Customization topic.
• Revised Customizing IBIS Models topic to reflect new IBIS file

methods.
• Added new Customizing Downloaded IBIS Models for Stratix 10

Devices, Arria 10 Devices, and Cyclone 10 GX Devices topic.
• Added new Generate Custom IBIS Models with the EDA Netlist

Writer GUI for Stratix 10 Devices, Arria 10 Devices, and Cyclone 10
GX Devices topic.

• Added new Customizing IBIS Model Files for Agilex 7 Devices topic.
• Update Design Simulation Using the Siemens EDA HyperLynx

Software topic for vendor name.

2017.11.06 17.1 • Reorganized chapter introduction.

2016.10.31 16.1 • Implemented Intel rebranding.
• Corrected statement about timing simulation and double counting.

2015.11.02 15.1 • Changed instances of Quartus II to Quartus Prime.

June 2014 14.0 Updated format.

December 2010 10.0 Template update.

July 2010 10.0 Updated device support.

November 2009 9.1 No change to content.

March 2009 9.0 • Was volume 3, chapter 12 in the 8.1.0 release.
• No change to content.

November 2008 8.1 • Changed to 8-1/2 x 11 page size.
• Added information for Stratix III devices.
• Input signals for Cyclone III devices are supported.

May 2008 8.0 • Updated “Introduction” on page 12–1.
• Updated Figure 12–1.
• Updated Figure 12–3.
• Updated Figure 12–13.
• Updated “Output File Generation” on page 12–6.
• Updated “Simulation with HSPICE Models” on page 12–17.
• Updated “Invoking HSPICE Writer from the Command Line” on

page 12–22.
continued...

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Quartus Prime Version Changes

• Added “Sample Input for I/O HSPICE Simulation Deck” on page 12–
29.

• Added “Sample Output for I/O HSPICE Simulation Deck” on
page 12–33.

• Updated “Correlation Report” on page 12–41.
• Added hyperlinks to referenced documents and websites

throughout the chapter.
• Made minor editorial updates.

1. Signal Integrity Analysis with Third-Party Tools

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Reviewing Printed Circuit Board Schematics with the
Quartus Prime Software

Intel FPGAs and CPLDs offer a multitude of configurable options to allow you to
implement a custom application-specific circuit on your PCB.

Your Quartus Prime project provides important information specific to your
programmable logic design, which you can use in conjunction with the device
literature available on the Intel website to ensure that you implement the correct
board-level connections in your schematic.

Refer to the Settings dialog box options, the Fitter report, and Messages window
when creating and reviewing your PCB schematic. The Quartus Prime software also
provides the Pin Planner to assist you during your PCB schematic review process.

Related Information

Schematic Review Worksheets

2.1. Reviewing Quartus Prime Software Settings

Review these settings in the Quartus Prime software to help you review your PCB
schematic.

The Device dialog box in the Quartus Prime software allows you to specify device-
specific assignments and settings. You can use the Device dialog box to specify
general project-wide options, including specific device and pin options, which help you
to implement correct board-level connections in your PCB schematic.

The Device dialog box provides project-specific device information, including the
target device and any migration devices you specify. Using migration devices can
impact the number of available user I/O pins and internal resources, as well as require
connection of some user I/O pins to power/ground pins to support migration.

If you want to use vertical migration, which allows you to use different devices with
the same package, you can specify your list of migration devices in the Migration
Devices dialog box. The Fitter places the pins in your design based on your targeted
migration devices, and allows you to use only I/O pins that are common to all the
migration devices.

If a migration device has pins that are power or ground, but the pins are also user I/O
pins on a different device in the migration path, the Fitter ensures that these pins are
not used as user I/O pins. You must ensure that these pins are connected to the
appropriate plane on the PCB.

If you are migrating from a smaller device with NC (no-connect) pins to a larger
device with power or ground pins in the same package, you can safely connect the NC
pins to power or ground pins to facilitate successful migration.

683768 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/support/support-resources/download/board-layout-test/schematic-review-ws.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Related Information

Migration Devices Dialog Box
In Quartus Prime Help

2.1.1. Device and Pins Options Dialog Box Settings

You can set device and pin options and verify important design-specific data in the
Device and Pin Options dialog box, including options found on the General,
Configuration, Unused Pin, Dual-Purpose Pins, and Voltage pages.

2.1.1.1. Configuration Settings

The Configuration page of the Device and Pin Options dialog box specifies the
configuration scheme and configuration device for the target device. Use the
Configuration page settings to verify the configuration scheme with the MSEL pin
settings used on your PCB schematic and the I/O voltage of the configuration scheme.

Your specific configuration settings may impact the availability of some dual-purpose
I/O pins in user mode.

Related Information

Dual-Purpose Pins Settings on page 45

2.1.1.2. Unused Pin Settings

The Unused Pin page specifies the behavior of all unused pins in your design. Use the
Unused Pin page to ensure that unused pin settings are compatible with your PCB.

For example, if you reserve all unused pins as outputs driving ground, you must
ensure that you do not connect unused I/O pins to VCC pins on your PCB. Connecting
unused I/O pins to VCC pins may result in contention that could lead to higher than
expected current draw and possible device overstress.

The Reserve all unused pins list shows available unused pin state options for the
target device. The default state for each pin is the recommended setting for each
device family.

When you reserve a pin as output driving ground, the Fitter connects a ground signal
to the output pin internally. You should connect the output pin to the ground plane on
your PCB, although you are not required to do so. Connecting the output driving
ground to the ground plane is known as creating a virtual ground pin, which helps to
minimize simultaneous switching noise (SSN) and ground bounce effects.

2.1.1.3. Dual-Purpose Pins Settings

The Dual-Purpose Pins page specifies how configuration pins should be used after
device configuration completes. You can set the function of the dual-purpose pins by
selecting a value for a specific pin in the Dual-purpose pins list. Pin functions should
match your PCB schematic. The available options on the Dual-Purpose Pins page
may differ depending on the selected configuration mode.

2. Reviewing Printed Circuit Board Schematics with the Quartus Prime Software

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

45

http://quartushelp.altera.com/current/index.htm#comp/migrate/comp_db_migration.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.1.4. Voltage Settings

The Voltage page specifies the default VCCIO I/O bank voltage and the default I/O
bank voltage for the pins on the target device. VCCIO I/O bank voltage settings made
in the Voltage page are overridden by I/O standard assignments made on I/O pins in
their respective banks.

Ensure that the settings in the Voltage page match the settings in your PCB
schematic, especially if the target device includes transceivers.

The Voltage page settings requirements differ depending on the settings of the
transceiver instances in the design. Refer to the Fitter report for the required settings,
and verify that the voltage settings are correctly set up for your PCB schematic.

After verifying your settings in the Device and Settings dialog boxes, you can verify
your device pin-out with the Fitter report.

Related Information

Reviewing Device Pin-Out Information in the Fitter Report on page 46

2.1.1.5. Error Detection CRC Settings

The Error Detection CRC page specifies error detection cyclic redundancy check
(CRC) use for the target device. When Enable error detection CRC is turned on, the
device checks the validity of the programming data in the devices. Any changes made
in the data while the device is in operation generates an error.

Turning on the Enable open drain on CRC error pin option allows the CRC ERROR
pin to be set as an open-drain pin in some devices, which decouples the voltage level
of the CRC ERROR pin from VCCIO voltage. You must connect a pull-up resistor to the
CRC ERROR pin on your PCB if you turn on this option.

In addition to settings in the Device dialog box, you should verify settings in the
Voltage page of the Settings dialog box.

Related Information

Device and Pin Options Dialog Box
In Quartus Prime Help

2.2. Reviewing Device Pin-Out Information in the Fitter Report

After you compile your design, you can use the reports in the Resource section of the
Fitter report to check your device pin-out in detail.

The Input Pins, Output Pins, and Bidirectional Pins reports identify all the user I/O pins
in your design and the features enabled for each I/O pin. For example, you can find
use of weak internal pull-ups, PCI clamp diodes, and on-chip termination (OCT) pin
assignments in these sections of the Fitter report. You can check the pin assignments
reported in the Input Pins, Output Pins, and Bidirectional Pins reports against your
PCB schematic to determine whether your PCB requires external components.

These reports also identify whether you made pin assignments or if the Fitter
automatically placed the pins. If the Fitter changed your pin assignments, you should
make these changes user assignments because the location of pin assignments made
by the Fitter may change with subsequent compilations.

2. Reviewing Printed Circuit Board Schematics with the Quartus Prime Software

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

46

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_db_device_pin_options.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Resource Section Report
Open the Compilation Report tab with Ctrl+R,. In the Plan Stage folder under Fitter open the Input Pins
report. The following figure shows the pins the Fitter chose for the OCT external calibration resistor connections
(RUP/RDN) and the name of the associated termination block in the Input Pins report. You should make these
types of assignments user assignments.

The I/O Bank Usage report provides a high-level overview of the VCCIO and VREF
requirements for your design, based on your I/O assignments. Verify that the
requirements in this report match the settings in your PCB schematic. All unused I/O
banks, and all banks with I/O pins with undefined I/O standards, default the VCCIO
voltage to the voltage defined in the Voltage page of the Device and Pin Options
dialog box.

The All Package Pins report lists all the pins on your device, including unused pins,
dedicated pins and power/ground pins. You can use this report to verify pin
characteristics, such as the location, name, usage, direction, I/O standard and voltage
for each pin with the pin information in your PCB schematic. In particular, you should
verify the recommended voltage levels at which you connect unused dedicated inputs
and I/O and power pins, especially if you selected a migration device. Use the All
Package Pins report to verify that you connected all the device voltage rails to the
voltages reported.

Errors commonly reported include connecting the incorrect voltage to the predriver
supply (VCCPD) pin in a specific bank, or leaving dedicated clock input pins floating.
Unused input pins that should be connected to ground are designated as GND+ in the
Pin Name/Usage column in the All Package Pins report.

You can also use the All Package Pins report to check transceiver-specific pin
connections and verify that they match the PCB schematic. Unused transceiver pins
have the following requirements, based on the pin designation in the Fitter report:

• GXB_GND—Unused GXB receiver or dedicated reference clock pin. This pin must
be connected to GXB_GND through a 10k Ohm resistor.

• GXB_NC—Unused GXB transmitter or dedicated clock output pin. This pin must be
disconnected.

2. Reviewing Printed Circuit Board Schematics with the Quartus Prime Software

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Some transceiver power supply rails have dual voltage capabilities, such as VCCA_L/R
and VCCH_L/R, that depend on the settings you created for the ALTGX parameter
editor. Because these user-defined settings overwrite the default settings, you should
use the All Package Pins report to verify that these power pins on the device symbol in
the PCB schematics are connected to the voltage required by the transceiver. An
incorrect connection may cause the transceiver to function not as expected.

If your design includes a memory interface, the DQS Summary report provides an
overview of each DQ pin group. You can use this report to quickly confirm that the
correct DQ/DQS pins are grouped together.

Finally, the Fitter Device Options report summarizes some of the settings made in the
Device and Pin Options dialog box. Verify that these settings match your PCB
schematics.

2.3. Reviewing Compilation Error and Warning Messages

If your project does not compile without error or warning messages, you should
resolve the issues identified by the Compiler before signing off on your pin-out or PCB
schematic. Error messages often indicate illegal or unsupported use of the device
resources and IP.

Additionally, you should cross-reference fitting and timing analysis warnings with the
design implementation. Timing may be constrained due to nonideal pin placement.
You should investigate if you can reassign pins to different locations to prevent fitting
and timing analysis warnings. Ensure that you review each warning and consider its
potential impact on the design.

2.4. Using Additional Quartus Prime Software Features

You can generate IBIS files, which contain models specific to your design and selected
I/O standards and options, with the Quartus Prime software.

Because board-level simulation is important to verify, you should check for potential
signal integrity issues. You can turn on the Board-Level Signal Integrity feature in
the EDA Tool Settings page of the Settings dialog box.

Additionally, using advanced I/O timing allows you to enter physical PCB information
to accurately model the load seen by an output pin. This feature facilitates accurate
I/O timing analysis.

Related Information

• Signal Integrity Analysis with Third-Party Tools on page 4

• Managing Device I/O Pins

2.5. Using Additional Quartus Prime Software Tools

Use the Pin Planner to assist you with reviewing your PCB schematics.

2. Reviewing Printed Circuit Board Schematics with the Quartus Prime Software

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

48

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.1. Pin Planner

The Quartus Prime Pin Planner helps you visualize, plan, and assign device I/O pins in
a graphical view of the target device package. You can quickly locate various I/O pins
and assign them design elements or other properties to ensure compatibility with your
PCB layout.

You can use the Pin Planner to verify the location of clock inputs, and whether they
have been placed on dedicated clock input pins, which is recommended when your
design uses PLLs.

You can also use the Pin Planner to verify the placement of dedicated SERDES pins.
SERDES receiver inputs can be placed only on DIFFIO_RX pins, while SERDES
transmitter outputs can be placed only on DIFFIO_TX pins.

The Pin Planner gives a visual indication of signal-to-signal proximity in the Pad View
window, and also provides information about differential pin pair placement, such as
the placement of pseudo-differential signals.

Related Information

Managing Device I/O Pins

2.6. Reviewing Printed Circuit Board Schematics with the Quartus
Prime Software Revision History

Table 5. Document Revision History

Date Quartus Prime Version Changes

2018.09.24 18.1 • First release as part of the stand-alone Quartus Prime Standard
Edition User Guide

2016.10.31 16.1 • Implemented Intel rebranding.

2015.11.02 15.1 Changed instances of Quartus II to Quartus Prime.

June 2014 14.0 Template update.

November 2012 12.1 Minor update of Pin Planner description for task and report windows.

June 2012 12.0 Removed survey link.

November 2011 10.0 Template update.

December 2010 10.0 Changed to new document template. No change to content.

July 2010 10.0 Initial release.

2. Reviewing Printed Circuit Board Schematics with the Quartus Prime Software

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

49

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Siemens EDA PCB Design Tools Support
You can integrate the Siemens EDA DxDesigner* PCB design tool into the Quartus
Prime design flow.

With today’s large, high-pin-count and high-speed FPGA devices, good and correct
PCB design practices are essential to ensure correct system operation. The PCB design
takes place concurrently with the design and programming of the FPGA. The FPGA or
ASIC designer initially creates signal and pin assignments, and the board designer
must correctly transfer these assignments to the symbols in their system circuit
schematics and board layout. As the board design progresses, Intel recommends
reassigning pins to optimize the PCB layout. Ensure that you inform the FPGA designer
of the pin reassignments so that the new assignments are included in an updated
placement and routing of the design.

This chapter covers the following topics:

• Siemens EDA and Quartus Prime software integration flow

• Generating supporting files

• Creating DxDesigner symbols from the Quartus Prime output files

This chapter is intended for board design and layout engineers who want to start the
FPGA board integration while the FPGA is still in the design phase. Alternatively, the
board designer can plan the FPGA pin-out and routing requirements in the Siemens
EDA tools and pass the information back to the Quartus Prime software for placement
and routing. Part librarians can also benefit from this chapter by learning how to use
output from the Quartus Prime software to create new library parts and symbols.

The procedures in this chapter require the following software:

• The Quartus Prime software version 5.1 or later

• DxDesigner software version 2004 or later

Note: To obtain and license the Siemens EDA tools and for product information, support, and
training, refer to the Siemens EDA website.

3.1. Integrating with DxDesigner

You can integrate the Siemens EDA DxDesigner schematic capture tool into the
Quartus Prime design flow. Use DxDesigner to create flat circuit schematics or to
create hierarchical schematics that facilitate design reuse and a team-based design for
all PCB types.

If you use DxDesigner without the I/O Designer software, the design flow is one-way,
using only the .pin generated by the Quartus Prime software. You can only make
signal and pin assignment changes in the Quartus Prime software. You cannot back-
annotate changes made in a board layout tool or in a DxDesigner symbol to the
Quartus Prime software.

683768 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 19. DxDesigner-only Flow

DxDesigner

Instantiate in
Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.pin

3.1.1. DxDesigner Project Settings

DxDesigner new projects automatically create FPGA symbols by default. To enable the
DxBoardLink flow design configuration when creating a new DxDesigner project, follow
these steps:

1. Start the DxDesigner software.

2. Click File ➤ New, and then click the Project tab.

3. Click More. Turn on DxBoardLink. To enable the DxBoardLink Flow design
configuration for an existing project, click Design Configurations in the Design
Configuration toolbar and turn on DxBoardLink.

3.1.2. Creating Schematic Symbols in DxDesigner

You can create schematic symbols in the DxDesigner software manually or with the
Symbol wizard. The DxDesigner Symbol wizard is similar to the I/O Designer Symbol
wizard, but with fewer fracturing options. The DxDesigner Symbol wizard creates,
fractures, and edits FPGA symbols based on the specified Intel FPGA device. To create
a symbol with the Symbol wizard, follow these steps;

1. Start the DxDesigner software.

2. Click Symbol Wizard in the toolbar.

3. Type the new symbol name in the name field and click OK.

4. Specify creation of a new symbol or modification of an existing symbol. To modify
an existing symbol, specify the library path or alias, and select the existing
symbol. To create a new symbol, select DxBoardLink for the symbol source. The
DxDesigner block type defaults to Module because the FPGA design does not have
an underlying DxDesigner schematic. Choose whether or not to fracture the
symbol. Click Next.

5. Type a name for the symbol, an overall part name for all the symbol fractures, and
a library name for the new library created for this symbol. By default, the part and
library names are the same as the symbol name. Click Next.

6. Specify the appearance of the generated symbol in your DxDesigner project
schematic. After making your selections. Click Next.

3. Siemens EDA PCB Design Tools Support

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. In the FPGA vendor list, select Intel Quartus. In the Pin-Out file to import
field, select the .pin from your Quartus Prime project directory. You can also
specify Fracturing Scheme, Bus pin, and Power pin options. Click Next.

8. Select to create or modify symbol attributes for use in the DxDesigner software.
Click Next.

9. On the Pin Settings page, make any final adjustments to pin and label location
and information. Each tabbed spreadsheet represents a fracture of your symbol.
Click Save Symbol.
After creating the symbol, you can examine and place any fracture of the symbol
in your schematic. You can locate separate files of all the fractures you created in
the library you specified or created in the /sym directory in your DxDesigner
project. You can add the symbols to your schematics or you can manually edit the
symbols or with the Symbol wizard.

3.2. Siemens EDA PCB Design Tools Support Revision History

Table 6. Document Revision History

Date Quartus Prime
Version

Changes

2020.11.04 18.1 Removed references to unsupported .fx files and related tools.

2016.10.31 16.1 • Implemented Intel rebranding.

2015.11.02 15.1 • Changed instances of Quartus II to Quartus Prime.

2014.06.30 14.0 • Replaced MegaWizard Plug-In Manager information with IP Catalog.
• Added standard information about upgrading IP cores.
• Added standard installation and licensing information.
• Removed outdated device support level information. IP core device

support is now available in IP Catalog and parameter editor.

June 2012 12.0 • Removed survey link.

December 2010 10.1 • Changed to new document template.

3. Siemens EDA PCB Design Tools Support

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Cadence Board Design Tools Support

4.1. Cadence PCB Design Tools Support

The Quartus Prime software interacts with the following software to provide a
complete FPGA-to-board integration design workflow: the Cadence Allegro Design
Entry HDL software and the Cadence Allegro Design Entry CIS (Component
Information System) software (also known as OrCAD Capture CIS). The information is
useful for board design and layout engineers who want to begin the FPGA board
integration process while the FPGA is still in the design phase. Part librarians can also
benefit by learning the method to use output from the Quartus Prime software to
create new library parts and symbols.

With today’s large, high-pin-count and high-speed FPGA devices, good PCB design
practices are important to ensure the correct operation of your system. The PCB
design takes place concurrently with the design and programming of the FPGA. An
FPGA or ASIC designer initially creates the signal and pin assignments and the board
designer must transfer these assignments to the symbols used in their system circuit
schematics and board layout correctly. As the board design progresses, you must
perform pin reassignments to optimize the layout. You must communicate pin
reassignments to the FPGA designer to ensure the new assignments are processed
through the FPGA with updated placement and routing.

You require the following software:

• The Quartus Prime software version 5.1 or later

• The Cadence Allegro Design Entry HDL software or the Cadence Allegro Design
Entry CIS software version 15.2 or later

• The OrCAD Capture software with the optional CIS option version 10.3 or later
(optional)

Note: These programs are very similar because the Cadence Allegro Design Entry CIS
software is based on the OrCAD Capture software. Any procedural information can
also apply to the OrCAD Capture software unless otherwise noted.

Related Information

• www.cadence.com
For more information about obtaining and licensing the Cadence tools and for
product information, support, and training

• www.orcad.com
For more information about the OrCAD Capture software and the CIS option

• www.ema-eda.com
For more information about Cadence and OrCAD support and training.

683768 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.cadence.com/us/pages/default.aspx
http://www.orcad.com
http://www.ema-eda.com
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4.2. Product Comparison

Table 7. Cadence and OrCAD Product Comparison

Description Cadence Allegro Design Entry
HDL

Cadence Allegro Design
Entry CIS

OrCAD Capture CIS

Former Name Concept HDL Expert Capture CIS Studio —

History More commonly known by its
former name, Cadence
renamed all board design tools
in 2004 under the Allegro
name.

Based directly on OrCAD
Capture CIS, the Cadence
Allegro Design Entry CIS
software is still developed by
OrCAD but sold and
marketed by Cadence. EMA
provides support and
training.

The basis for Design Entry CIS
is still developed by OrCAD for
continued use by existing
OrCAD customers. EMA
provides support and training
for all OrCAD products.

Vendor Design Flow Cadence Allegro 600 series,
formerly known as the Expert
Series, for high-end, high-
speed design.

Cadence Allegro 200 series,
formerly known as the
Studio Series, for small- to
medium-level design.

—

Related Information

• www.cadence.com

• www.ema-eda.com

4.3. FPGA-to-PCB Design Flow

You can create a design flow integrating an Intel FPGA design from the Quartus Prime
software through a circuit schematic in the Cadence Allegro Design Entry HDL
software or the Cadence Allegro Design Entry CIS software.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

54

http://www.cadence.com
http://www.ema-eda.com
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Design Flow with the Cadence Allegro Design Entry HDL Software

Project Manager

Create or Open a Project

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Part Developer

Start FPGA Design Start PCB Design
(Allegro Design Entry HDL)

End

Quartus Prime Software

.pin

Create or Update FPGA Symbol

Edit Symbol

Instantiate Symbol in Schematic

F orward to Board Layout Tool

Board Layout Tool

Layout and Route FPGA

Import or Update Pin Assignments

Design Entry HDL

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. Design Flow with the Cadence Allegro Design Entry CIS Software

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus Prime Software

End

.pin

Instantiate Symbol in Schematic

Create or Open Project

Board Layout Tool

Layout and Route FPGA

Start FPGA Design Start PCB Design
(Allegro Design Entry CIS

Generate or Update Schematic

Edit or Fracture Symbol

Forward to Board Development Tool

To create FPGA symbols using the Cadence Allegro PCB Librarian Part Developer tool,
you must obtain the Cadence PCB Librarian Expert license. You can update symbols
with changes made to the FPGA design using any of these tools.

4.3.1. Integrating Intel FPGA Designs

To integrate an Intel FPGA design starting in the Quartus Prime software through to a
circuit schematic in the Cadence Allegro Design Entry HDL software or the Cadence
Allegro Design Entry CIS software, follow these steps:

1. In the Quartus Prime software, compile your design to generate a Pin-Out File
(.pin) to transfer the assignments to the Cadence software.

2. If you are using the Cadence Allegro Design Entry HDL software for your
schematic design, follow these steps:

a. Open an existing project or create a new project in the Cadence Allegro
Project Manager tool.

b. Construct a new symbol or update an existing symbol using the Cadence
Allegro PCB Librarian Part Developer tool.

c. With the Cadence Allegro PCB Librarian Part Developer tool, edit your symbol
or fracture it into smaller parts (optional).

d. Instantiate the symbol in your Cadence Allegro Design Entry HDL software
schematic and transfer the design to your board layout tool.

3. If you are using the Cadence Allegro Design Entry CIS software for your schematic
design, follow these steps:

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. Generate a new part in a new or existing Cadence Allegro Design Entry CIS
project, referencing the .pin output file from the Quartus Prime software. You
can also update an existing symbol with a new .pin.

b. Split the symbol into smaller parts as necessary.

c. Instantiate the symbol in your Cadence Allegro Design Entry CIS schematic
and transfer the design to your board layout tool.

4.4. Setting Up the Quartus Prime Software

You can transfer pin and signal assignments from the Quartus Prime software to the
Cadence design tools by generating the Quartus Prime project .pin. The .pin is an
output file generated by the Quartus Prime Fitter containing pin assignment
information. You can use the Quartus Prime Pin Planner to set and change the
assignments in the .pin and then transfer the assignments to the Cadence design
tools. You cannot, however, import pin assignment changes from the Cadence design
tools into the Quartus Prime software with the .pin.

The .pin lists all used and unused pins on your selected Intel device. The .pin also
provides the following basic information fields for each assigned pin on the device:

• Pin signal name and usage

• Pin number

• Signal direction

• I/O standard

• Voltage

• I/O bank

• User or Fitter-assigned

4.4.1. Generating a .pin File

To generate a .pin, follow these steps:

1. Compile your design.

2. Locate the .pin in your Quartus Prime project directory with the name <project
name>.pin.

4.5. FPGA-to-Board Integration with the Cadence Allegro Design
Entry HDL Software

The Cadence Allegro Design Entry HDL software is a schematic capture tool and is part
of the Cadence 600 series design flow. Use the Cadence Allegro Design Entry HDL
software to create flat circuit schematics for all types of PCB design. The Cadence
Allegro Design Entry HDL software can also create hierarchical schematics to facilitate
design reuse and team-based design. With the Cadence Allegro Design Entry HDL
software, the design flow from FPGA-to-board is one-way, using only the .pin
generated by the Quartus Prime software. You can only make signal and pin
assignment changes in the Quartus Prime software and these changes reflect as
updated symbols in a Cadence Allegro Design Entry HDL project.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about the design flow with the Cadence Allegro Design Entry
HDL software, refer to FPGA-to-PCB Design Flow.

Note: Routing or pin assignment changes made in a board layout tool or a Cadence Allegro
Design Entry HDL software symbol cannot be back-annotated to the Quartus Prime
software.

Related Information

www.cadence.com
Provides information about the Cadence Allegro Design Entry HDL software and the
Cadence Allegro PCB Librarian Part Developer tool, including licensing, support,
usage, training, and product updates.

4.5.1. Creating Symbols

In addition to circuit simulation, circuit board schematic creation is one of the first
tasks required when designing a new PCB. Schematics must understand how the PCB
works, and to generate a netlist for a board layout tool for board design and routing.
The Cadence Allegro PCB Librarian Part Developer tool allows you to create schematic
symbols based on FPGA designs exported from the Quartus Prime software.

You can create symbols for the Cadence Allegro Design Entry HDL project with the
Cadence Allegro PCB Librarian Part Developer tool, which is available in the Cadence
Allegro Project Manager tool. Intel recommends using the Cadence Allegro PCB
Librarian Part Developer tool to import FPGA designs into the Cadence Allegro Design
Entry HDL software.

You must obtain a PCB Librarian Expert license from Cadence to run the Cadence
Allegro PCB Librarian Part Developer tool. The Cadence Allegro PCB Librarian Part
Developer tool provides a GUI with many options for creating, editing, fracturing, and
updating symbols. If you do not use the Cadence Allegro PCB Librarian Part Developer
tool, you must create and edit symbols manually in the Symbol Schematic View in the
Cadence Allegro Design Entry HDL software.

Note: If you do not have a PCB Librarian Expert license, you can automatically create FPGA
symbols using the programmable IC (PIC) design flow found in the Cadence Allegro
Project Manager tool.

Before creating a symbol from an FPGA design, you must open a Cadence Allegro
Design Entry HDL project with the Cadence Allegro Project Manager tool. If you do not
have an existing Cadence Allegro Design Entry HDL project, you can create one with
the Cadence Allegro Design Entry HDL software. The Cadence Allegro Design Entry
HDL project directory with the name <project name>.cpm contains your Cadence
Allegro Design Entry HDL projects.

While the Cadence Allegro PCB Librarian Part Developer tool refers to symbol fractures
as slots, the other tools use different names to refer to symbol fractures.

Table 8. Symbol Fracture Naming Conventions

Cadence Allegro PCB
Librarian Part Developer

Tool

Cadence Allegro
Design Entry HDL

Software

Cadence Allegro
Design Entry CIS

Software

During symbol generation Slots — Sections

During symbol schematic instantiation — Versions Parts

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

58

http://www.cadence.com/us/pages/default.aspx
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

www.cadence.com
Provides information about using the PIC design flow.

4.5.1.1. Cadence Allegro PCB Librarian Part Developer Tool

You can create, fracture, and edit schematic symbols for your designs using the
Cadence Allegro PCB Librarian Part Developer tool. Symbols designed in the Cadence
Allegro PCB Librarian Part Developer tool can be split or fractured into several
functional blocks called slots, allowing multiple smaller part fractures to exist on the
same schematic page or across multiple pages.

4.5.1.1.1. Cadence Allegro PCB Librarian Part Developer Tool in the Design Flow

.pin
Import or Update Pin

Assignments

Create or Update FPGA
Symbol

Edit or Fracture Symbol

Part Developer

Instantiate Symbol
in Schematic

Forward to Board
Layout Tool

Layout and Route FPGA

Design Entry HDL

Board Layout Tool

End

These steps are not
part of the FPGA symbol
creation or update process.

To run the Cadence Allegro PCB Librarian Part Developer tool, you must open a
Cadence Allegro Design Entry HDL project in the Cadence Allegro Project Manager
tool. To open the Cadence Allegro PCB Librarian Part Developer tool, on the Flows
menu, click Library Management, and then click Part Developer.

Related Information

FPGA-to-PCB Design Flow on page 54

4.5.1.1.2. Import and Export Wizard

After starting the Cadence Allegro PCB Librarian Part Developer tool, use the Import
and Export wizard to import your pin assignments from the Quartus Prime software.

Note: Intel recommends using your PCB Librarian Expert license file. To point to your PCB
Librarian Expert license file, on the File menu, click Change Product and then select
the correct product license.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

59

http://www.cadence.com/us/pages/default.aspx
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To access the Import and Export wizard, follow these steps:

1. On the File menu, click Import and Export.

2. Select Import ECO-FPGA, and then click Next.

3. In the Select Source page of the Import and Export wizard, specify the
following settings:

a. In the Vendor list, select Altera.

b. In the PnR Tool list, select quartusII.

c. In the PR File box, browse to select the .pin in your Quartus Prime project
directory.

d. Click Simulation Options to select simulation input files.

e. Click Next.

4. In the Select Destination dialog box, specify the following settings:

a. Under Select Component, click Generate Custom Component to create a
new component in a library,

or

Click Use standard component to base your symbol on an existing
component.

Note: Intel recommends creating a new component if you previously created a
generic component for an FPGA device. Generic components can cause
some problems with your design. When you create a new component,
you can place your pin and signal assignments from the Quartus Prime
software on this component and reuse the component as a base when
you have a new FPGA design.

b. In the Library list, select an existing library. You can select from the cells in
the selected library. Each cell represents all the symbol versions and part
fractures for a particular part. In the Cell list, select the existing cell to use as
a base for your part.

c. In the Destination Library list, select a destination library for the
component. Click Next.

d. Review and edit the assignments you import into the Cadence Allegro PCB
Librarian Part Developer tool based on the data in the .pin and then click
Finish. The location of each pin is not included in the Preview of Import
Data page of the Import and Export wizard, but input pins are on the left
side of the created symbol, output pins on the right, power pins on the top,
and ground pins on the bottom.

4.5.1.1.3. Editing and Fracturing Symbol

After creating your new symbol in the Cadence Allegro PCB Librarian Part Developer
tool, you can edit the symbol graphics, fracture the symbol into multiple slots, and
add or change package or symbol properties.

The Part Developer Symbol Editor contains many graphical tools to edit the graphics of
a particular symbol. To edit the symbol graphics, select the symbol in the cell
hierarchy. The Symbol Pins tab appears. You can edit the preview graphic of the
symbol in the Symbol Pins tab.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Fracturing a Cadence Allegro PCB Librarian Part Developer package into separate
symbol slots is useful for FPGA designs. A single symbol for most FPGA packages
might be too large for a single schematic page. Splitting the part into separate slots
allows you to organize parts of the symbol by function, creating cleaner circuit
schematics. For example, you can create one slot for an I/O symbol, a second slot for
a JTAG symbol, and a third slot for a power/ground symbol.

Figure 22. Splitting a Symbol into Multiple Slots

newt

reset

d[7..0] yn_out[7..0]

Slot 1

filtref

filtref

filtref

Slot 2 Slot 3

clk

clkx2

yvalid

follow

VC
CIN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

VC
CIO

1

VC
CIO

2

VC
CIO

3

VC
CIO

4

- This diagram represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for other
devices or other configuration modes may have diff erent sets of configuration pins, but can be fractured in a similar manner.
- The power/ground slot shows only a representation of power and ground pins because the device contains a large number of power
and ground
pins.

To fracture a part into separate slots, or to modify the slot locations of pins on parts
fractured in the Cadence Allegro PCB Librarian Part Developer tool, follow these steps:

1. Start the Cadence Allegro Design Project Manager.

2. On the Flows menu, click Library Management.

3. Click Part Developer.

4. Click the name of the package you want to change in the cell hierarchy.

5. Click Functions/Slots. If you are not creating new slots but want to change the
slot location of some pins, proceed to Step 6. If you are creating new slots, click
Add. A dialog box appears, allowing you to add extra symbol slots. Set the
number of extra slots you want to add to the existing symbol, not the total
number of desired slots for the part. Click OK.

6. Click Distribute Pins. Specify the slot location for each pin. Use the checkboxes
in each column to move pins from one slot to another. Click OK.

7. After distributing the pins, click the Package Pin tab and click Generate
Symbol(s).

8. Select whether to create a new symbol or modify an existing symbol in each slot.
Click OK.

The newly generated or modified slot symbols appear as separate symbols in the
cell hierarchy. Each of these symbols can be edited individually.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Caution: The Cadence Allegro PCB Librarian Part Developer tool allows you to
remap pin assignments in the Package Pin tab of the main Cadence
Allegro PCB Librarian Part Developer window. If signals remap to
different pins in the Cadence Allegro PCB Librarian Part Developer tool,
the changes reflect only in regenerated symbols for use in your
schematics. You cannot transfer pin assignment changes to the Quartus
Prime software from the Cadence Allegro PCB Librarian Part Developer
tool, which creates a potential mismatch of the schematic symbols and
assignments in the FPGA design. If pin assignment changes are
necessary, make the changes in the Quartus Prime Pin Planner instead
of the Cadence Allegro PCB Librarian Part Developer tool, and update
the symbol as described in the following sections.

For more information about creating, editing, and organizing component
symbols with the Cadence Allegro PCB Librarian Part Developer tool,
refer to the Part Developer Help.

4.5.1.1.4. Updating FPGA Symbols

As the design process continues, you must make logic changes in the Quartus Prime
software, placing signals on different pins after recompiling the design, or use the
Quartus Prime Pin Planner to make changes manually. The board designer can request
such changes to improve the board routing and layout. To ensure signals connect to
the correct pins on the FPGA, you must carry forward these types of changes to the
circuit schematic and board layout tools. Updating the .pin in the Quartus Prime
software facilitates this flow.

Figure 23. Updating the FPGA Symbol in the Design Flow

Part Developer

End

.pin Import or Update Pin
Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

(2)

Grayed out steps are not part
of the FPGA symbol update
process.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To update the symbol using the Cadence Allegro PCB Librarian Part Developer tool
after updating the .pin, follow these steps:

1. On the File menu, click Import and Export. The Import and Export wizard
appears.

2. In the list of actions to perform, select Import ECO - FPGA. Click Next. The
Select Source dialog box appears.

3. Select the updated source of the FPGA assignment information. In the Vendor
list, select Altera. In the PnR Tool list, select quartusII. In the PR File field,
click browse to specify the updated .pin in your Quartus Prime project directory.
Click Next. The Select Destination window appears.

4. Select the source component and a destination cell for the updated symbol. To
create a new component based on the updated pin assignment data, select
Generate Custom Component. Selecting Generate Custom Component
replaces the cell listed under the Specify Library and Cell name header with a
new, nonfractured cell. You can preserve these edits by selecting Use standard
component and select the existing library and cell. Select the destination
library for the component and click Next. The Preview of Import Data dialog
box appears.

5. Make any additional changes to your symbol. Click Next. A list of ECO messages
appears summarizing the changes made to the cell. To accept the changes and
update the cell, click Finish.

6. The main Cadence Allegro PCB Librarian Part Developer window appears. You can
edit, fracture, and generate the updated symbols as usual from the main Cadence
Allegro PCB Librarian Part Developer window.

Note: If the Cadence Allegro PCB Librarian Part Developer tool is not set up to point to your
PCB Librarian Expert license file, an error message appears in red at the bottom of the
message text window of the Part Developer when you select the Import and Export
command. To point to your PCB Librarian Expert license, on the File menu, click
Change Product, and select the correct product license.

Related Information

FPGA-to-PCB Design Flow on page 54

4.5.2. Instantiating the Symbol in the Cadence Allegro Design Entry HDL
Software

To instantiate the symbol in your Cadence Allegro Design Entry HDL schematic after
saving the new symbol in the Cadence Allegro PCB Librarian Part Developer tool,
follow these steps:

1. In the Cadence Allegro Project Manager tool, switch to the board design flow.

2. On the Flows menu, click Board Design.

3. To start the Cadence Allegro Design Entry HDL software, click Design Entry.

4. To add the newly created symbol to your schematic, on the Component menu,
click Add. The Add Component dialog box appears.

5. Select the new symbol library location, and select the name of the cell you created
from the list of cells.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The symbol attaches to your cursor for placement in the schematic. To fracture the
symbol into slots, right-click the symbol and choose Version to select one of the
slots for placement in the schematic.

Related Information

www.cadence.com
Provides more information about the Cadence Allegro Design Entry HDL software,
including licensing, support, usage, training, and product updates.

4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry
CIS Software

The Cadence Allegro Design Entry CIS software is a schematic capture tool (part of
the Cadence 200 series design flow based on OrCAD Capture CIS). Use the Cadence
Allegro Design Entry CIS software to create flat circuit schematics for all types of PCB
design. You can also create hierarchical schematics to facilitate design reuse and
team-based design using the Cadence Allegro Design Entry CIS software. With the
Cadence Allegro Design Entry CIS software, the design flow from FPGA-to-board is
unidirectional using only the .pin generated by the Quartus Prime software. You can
only make signal and pin assignment changes in the Quartus Prime software. These
changes reflect as updated symbols in a Cadence Allegro Design Entry CIS schematic
project.

Figure 24. Design Flow with the Cadence Allegro Design Entry CIS Software

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus Prime Software

End

.pin

Instantiate Symbol in Schematic

Create or Open Project

Board Layout Tool

Layout and Route FPGA

Start FPGA Design Start PCB Design
(Allegro Design Entry CIS

Generate or Update Schematic

Edit or Fracture Symbol

Forward to Board Development Tool

Note: Routing or pin assignment changes made in a board layout tool or a Cadence Allegro
Design Entry CIS symbol cannot be back-annotated to the Quartus Prime software.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

64

http://www.cadence.com
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• www.cadence.com
For more information about the Cadence Allegro Design Entry CIS software,
including licensing, support, usage, training, and product updates.

• www.ema-eda.com
For more information about the Cadence Allegro Design Entry CIS software,
including licensing, support, usage, training, and product updates.

4.6.1. Creating a Cadence Allegro Design Entry CIS Project

The Cadence Allegro Design Entry CIS software has built-in support for creating
schematic symbols using pin assignment information imported from the Quartus Prime
software.

To create a new project in the Cadence Allegro Design Entry CIS software, follow these
steps:

1. On the File menu, point to New and click Project. The New Project wizard starts.

When you create a new project, you can select the PC Board wizard, the
Programmable Logic wizard, or a blank schematic.

2. Select the PC Board wizard to create a project where you can select which part
libraries to use, or select a blank schematic.

The Programmable Logic wizard only builds an FPGA logic design in the Cadence
Allegro Design Entry CIS software.

Your new project is in the specified location and consists of the following files:

• OrCAD Capture Project File (.opj)

• Schematic Design File (.dsn)

4.6.2. Generating a Part

After you create a new project or open an existing project in the Cadence Allegro
Design Entry CIS software, you can generate a new schematic symbol based on your
Quartus Prime FPGA design. You can also update an existing symbol. The Cadence
Allegro Design Entry CIS software stores component symbols in OrCAD Library File
(.olb). When you place a symbol in a library attached to a project, it is immediately
available for instantiation in the project schematic.

You can add symbols to an existing library or you can create a new library specifically
for the symbols generated from your FPGA designs. To create a new library, follow
these steps:

1. On the File menu, point to New and click Library in the Cadence Allegro Design
Entry CIS software to create a default library named library1.olb. This library
appears in the Library folder in the Project Manager window of the Cadence
Allegro Design Entry CIS software.

2. To specify a desired name and location for the library, right-click the new library
and select Save As. Saving the new library creates the library file.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

65

http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.6.3. Generating Schematic Symbol

You can now create a new symbol to represent your FPGA design in your schematic.

To generate a schematic symbol, follow these steps:

1. Start the Cadence Allegro Design Entry CIS software.

2. On the Tools menu, click Generate Part. The Generate Part dialog box appears.

3. To specify the .pin from your Quartus Prime design, in the Netlist/source file
type field, click Browse.

4. In the Netlist/source file type list, select Altera Pin File

5. Type the new part name.

6. Specify the Destination part library for the symbol. Failing to select an existing
library for the part creates a new library with a default name that matches the
name of your Cadence Allegro Design Entry CIS project.

7. To create a new symbol for this design, select Create new part. If you updated
your .pin in the Quartus Prime software and want to transfer any assignment
changes to an existing symbol, select Update pins on existing part in library.

8. Select any other desired options and set Implementation type to <none>. The
symbol is for a primitive library part based only on the .pin and does not require
special implementation. Click OK.

9. Review the Undo warning and click Yes to complete the symbol generation.

You can locate the generated symbol in the selected library or in a new library
found in the Outputs folder of the design in the Project Manager window. Double-
click the name of the new symbol to see its graphical representation and edit it
manually using the tools available in the Cadence Allegro Design Entry CIS
software.

Note: For more information about creating and editing symbols in the Cadence
Allegro Design Entry CIS software, refer to the Help in the software.

4.6.4. Splitting a Part

After saving a new symbol in a project library, you can fracture the symbol into
multiple parts called sections. Fracturing a part into separate sections is useful for
FPGA designs. A single symbol for most FPGA packages might be too large for a single
schematic page. Splitting the part into separate sections allows you to organize parts
of the symbol by function, creating cleaner circuit schematics. For example, you can
create one slot for an I/O symbol, a second slot for a JTAG symbol, and a third slot for
a power/ground symbol.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 25. Splitting a Symbol into Multiple Sections

newt

reset

d[7..0] yn_out[7..0]

Section 1

filtref

filtref

filtref

Section 2 Section 3

clk

clkx2

yvalid

follow

VC
CIN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

VC
CIO

1

VC
CIO

2

VC
CIO

3

VC
CIO

4

- This diagram represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for
other devices or other configuration modes might have diff erent sets of configuration pins, but can be fractured in a similar manner.
- The power/ground section shows only a representation of power and ground pins because the device contains a high number of
power and ground
pins.

Note: Although symbol generation in the Design Entry CIS software refers to symbol
fractures as sections, other tools use different names to refer to symbol fractures.

To split a part into sections, select the part in its library in the Project Manager window
of the Cadence Allegro Design Entry CIS software. On the Tools menu, click Split Part
or right-click the part and choose Split Part. The Split Part Section Input
Spreadsheet appears.

Figure 26. Split Part Section Input Spreadsheet

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each row in the spreadsheet represents a pin in the symbol. The Section column
indicates the section of the symbol to which each pin is assigned. You can locate all
pins in a new symbol in section 1. You can change the values in the Section column
to assign pins to various sections of the symbol. You can also specify the side of a
section on the location of the pin by changing the values in the Location column.
When you are ready, click Split. A new symbol appears in the same library as the
original with the name <original part name>_Split1.

View and edit each section individually. To view the new sections of the part, double-
click the part. The Part Symbol Editor window appears and the first section of the part
displays for editing. On the View menu, click Package to view thumbnails of all the
part sections. To edit the section of the symbol, double-click the thumbnail.

For more information about splitting parts into sections and editing symbol sections in
the Cadence Allegro Design Entry CIS software, refer to the Help in the software.

4.6.5. Instantiating a Symbol in a Design Entry CIS Schematic

After saving a new symbol in a library in your Cadence Allegro Design Entry CIS
project, you can instantiate the new symbol on a page in your schematic. Open a
schematic page in the Project Manager window of the Cadence Allegro Design Entry
CIS software. To add the new symbol to your schematic on the schematic page, on the
Place menu, click Part. The Place Part dialog box appears.

Figure 27. Place Part Dialog Box

Select the new symbol library location and the newly created part name. If you select
a part that is split into sections, you can select the section to place from the Part
menu. Click OK. The symbol attaches to your cursor for placement in the schematic.
To place the symbol, click the schematic page.

For more information about using the Cadence Allegro Design Entry CIS software,
refer to the Help in the software.

4.6.6. Intel Libraries for the Cadence Allegro Design Entry CIS Software

Intel provides downloadable .olb for many of its device packages. You can add these
libraries to your Cadence Allegro Design Entry CIS project and update the symbols
with the pin assignments contained in the .pin generated by the Quartus Prime
software. You can use the downloaded library symbols as a base for creating custom

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

schematic symbols with your pin assignments that you can edit or fracture. This
method increases productivity by reducing the amount of time it takes to create and
edit a new symbol.

4.6.6.1. Using the Intel-provided Libraries with your Cadence Allegro Design
Entry CIS Project

To use the Intel-provided libraries with your Cadence Allegro Design Entry CIS project,
follow these steps:

1. Download the library of your target device from the Download Center page found
through the Support page on the Intel website.

2. Create a copy of the appropriate .olb to maintain the original symbols. Place the
copy in a convenient location, such as your Cadence Allegro Design Entry CIS
project directory.

3. In the Project Manager window of the Cadence Allegro Design Entry CIS software,
click once on the Library folder to select it. On the Edit menu, click Project or
right-click the Library folder and choose Add File to select the copy of the
downloaded .olb and add it to your project. You can locate the new library in the
list of part libraries for your project.

4. On the Tools menu, click Generate Part. The Generate Part dialog box appears.

5. In the Netlist/source file field, click Browse to specify the .pin in your Quartus
Prime design.

6. From the Netlist/source file type list, select Altera Pin File.

7. For Part name, type the name of the target device the same as it appears in the
downloaded library file. For example, if you are using a device from the
CYCLONE06.OLB library, type the part name to match one of the devices in this
library such as ep1c6f256. You can rename the symbol in the Project Manager
window after updating the part.

8. Set the Destination part library to the copy of the downloaded library you
added to the project.

9. Select Update pins on existing part in library. Click OK.

10. Click Yes.

The symbol is updated with your pin assignments. Double-click the symbol in the
Project Manager window to view and edit the symbol. On the View menu, click
Package if you want to view and edit other sections of the symbol. If the symbol
in the downloaded library is fractured into sections, you can edit each section but
you cannot further fracture the part. You can generate a new part without using
the downloaded part library if you require additional sections.

For more information about creating, editing, and fracturing symbols in the
Cadence Allegro Design Entry CIS software, refer to the Help in the software.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.7. Cadence Board Design Tools Support Revision History

Table 9. Document Revision History

Date Quartus Prime Version Changes

2023.08.01 18.1 • Corrected junk characters in Cadence and OrCAD Product
Comparison table.

• Corrected junk characters in Symbol Fracture Naming Conventions
table.

• Corrected image scaling problem in Updating the FPGA Symbol in the
Design Flow figure.

2020.11.04 18.1 • Added "Intel" to "Quartus Prime" software reference in a figure.

2019.07.15 18.1 • Retitled Cadence chapter to "Cadence Board Tools Support."
• Restructured steps in "Integrating Intel FPGA Designs."
• Added document archive.

2018.09.24 18.1 • Document title renamed
• Other minor edits

2018.05.07 18.0 • First release as part of the stand-alone PCB Design Tools User Guide

2016.10.31 16.1 • Implemented Intel rebranding.

2015.11.02 15.1 • Changed instances of Quartus II to Quartus Prime.

June 2014 14.0 Converted to DITA format.

June 2012 12.0 Removed survey link.

November 2011 10.0 Template update.

December 2010 10.0 Template update.

July 2010 10.0 • General style editing.
• Removed Referenced Document Section.
• Added a link to Help in “Performing Simultaneous Switching Noise

(SSN) Analysis of Your FPGA” on page 9–5.

November 2009 9.1 • Added “Performing Simultaneous Switching Noise (SSN) Analysis of
Your FPGA” on page 9–5.

• General style editing.
• Edited Figure 9–4 on page 9–10 and Figure 9–8 on page 9–16.

March 2009 9.0 • Chapter 9 was previously Chapter 7 in the 8.1 software release.
• No change to content.

November 2008 8.1 Changed to 8-1/2 x 11 page size.

May 2008 8.0 Updated references.

4. Cadence Board Design Tools Support

683768 | 2024.04.01

Quartus Prime Pro Edition User Guide: PCB Design Tools Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Quartus Prime Pro Edition User Guide: PCB Design
Tools Document Archives

For the latest and previous versions of this user guide, refer to Quartus Prime Pro
Edition User Guide: PCB Design Tools. If an IP or software version is not listed, the
user guide for the previous IP or software version applies.

683768 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel FPGA devices, and program CPLD and configuration
devices, via connection with an Intel FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683768 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

A. Quartus Prime Pro Edition User Guides

683768 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: PCB Design Tools

73

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683768%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Pro Edition User
Guide
Scripting

Updated for Quartus® Prime Design Suite: 24.1

This document is part of a collection - Quartus® Prime Pro Edition User Guides - Combined PDF link

Answers to Top FAQs:
Q How can I view all scripting commands?
A Command-Line Scripting Help on page 6

Q Do you have executable script examples?
A Common Scripting Examples on page 11

Q How can I use a makefile with Quartus?
A Benefits of Command-Line Executables on page 5

Q What is Tcl?
A Tool Command Language on page 19

Q Does Quartus support Tcl scripting?
A Tcl Scripting on page 19

Q Do you have Tcl scripting examples?
A Tcl Scripting Basic Examples on page 44

Q How can I use scripting to debug my design?
A Debugging Designs with System Console

Online Version

Send Feedback UG-20144

683432

2024.04.01

https://www.intel.com/programmable/technical-pdfs/qpp-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Command Line Scripting... 5
1.1. Benefits of Command-Line Executables...5
1.2. Command-Line Scripting Help... 6
1.3. Project Settings with Command-Line Options...6

1.3.1. Option Precedence...7
1.4. Compilation with quartus_sh --flow..8

1.4.1. Resuming a Compilation with quartus_sh --flow...9
1.4.2. Temporarily Overriding the Compiler Optimization Mode..................................9

1.5. Text-Based Report Files.. 10
1.6. Using Command-Line Executables in Scripts.. 10
1.7. Common Scripting Examples.. 11

1.7.1. Create a Project and Apply Constraints... 11
1.7.2. Check Design File Syntax.. 12
1.7.3. Create a Project and Synthesize a Netlist Using Netlist Optimizations.............. 12
1.7.4. Archive and Restore Projects... 13
1.7.5. Update Memory Contents Without Recompiling.. 13
1.7.6. Create Device Configuration Files... 14
1.7.7. Fit a Design Using Multiple Seeds... 14

1.8. The QFlow Script... 15
1.8.1. --partition Option...16

1.9. Command-Line Scripting Revision History..17

2. Tcl Scripting..19
2.1. Tool Command Language.. 19
2.2. The Quartus Prime Tcl Console Window...20
2.3. Quartus Prime Tcl Packages...20

2.3.1. Loading Tcl Packages..22
2.3.2. Quartus Prime Tcl API Help..22

2.4. Tcl Design Flow Controls... 25
2.4.1. Creating Projects and Making Assignments.. 25
2.4.2. Compiling Designs... 26
2.4.3. Reporting..26
2.4.4. Timing Analysis... 27

2.5. Automating Script Execution..28
2.5.1. Execution Example...29
2.5.2. Controlling Processing.. 29
2.5.3. Displaying Messages...30

2.6. Other Scripting Features... 30
2.6.1. Natural Bus Naming... 30
2.6.2. Short Option Names...30
2.6.3. Collection Commands... 31
2.6.4. Node Finder Commands..32
2.6.5. The get_names Command...38
2.6.6. The post_message Command.. 41
2.6.7. Accessing Command-Line Arguments..41
2.6.8. The quartus() Array..43

2.7. The Quartus Prime Tcl Shell in Interactive Mode Example.. 43

Contents

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8. The tclsh Shell...44
2.9. Tcl Scripting Basic Examples..44

2.9.1. Hello World Example.. 44
2.9.2. Variables.. 45
2.9.3. Substitutions...45
2.9.4. Arithmetic...46
2.9.5. Lists...46
2.9.6. Arrays.. 46
2.9.7. Control Structures..47
2.9.8. Procedures..48
2.9.9. File I/O...48
2.9.10. Syntax and Comments..49
2.9.11. External References..50

2.10. Tcl Scripting Revision History... 50

3. TCL Commands and Packages... 52
3.1. TCL Commands and Packages Summary... 52

3.1.1. ::quartus::backannotate...73
3.1.2. ::quartus::board..76
3.1.3. ::quartus::bpps...86
3.1.4. ::quartus::chip_planner..110
3.1.5. ::quartus::dcmd_dni.. 120
3.1.6. ::quartus::design...141
3.1.7. ::quartus::device...154
3.1.8. ::quartus::dni_sdc... 158
3.1.9. ::quartus::drc... 191
3.1.10. ::quartus::eco... 206
3.1.11. ::quartus::external_memif_toolkit..225
3.1.12. ::quartus::fif... 248
3.1.13. ::quartus::flng...255
3.1.14. ::quartus::flow.. 271
3.1.15. ::quartus::insystem_memory_edit... 278
3.1.16. ::quartus::insystem_source_probe... 286
3.1.17. ::quartus::interactive_synthesis...291
3.1.18. ::quartus::ipdrc... 302
3.1.19. ::quartus::ipgen.. 306
3.1.20. ::quartus::iptclgen... 310
3.1.21. ::quartus::jtag...313
3.1.22. ::quartus::logic_analyzer_interface.. 326
3.1.23. ::quartus::misc..332
3.1.24. ::quartus::names...345
3.1.25. ::quartus::periph... 347
3.1.26. ::quartus::pfg..365
3.1.27. ::quartus::proj_asgn.. 365
3.1.28. ::quartus::project.. 373
3.1.29. ::quartus::project2...438
3.1.30. ::quartus::project_ui.. 441
3.1.31. ::quartus::qed...493
3.1.32. ::quartus::qmtf..535
3.1.33. ::quartus::qshm.. 536
3.1.34. ::quartus::report..540

Contents

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.35. ::quartus::sdc... 562
3.1.36. ::quartus::sdc_ext... 595
3.1.37. ::quartus::sta..615
3.1.38. ::quartus::stp..726
3.1.39. ::quartus::tdc..732

3.2. Tcl Commands and Packages Revision History.. 734

4. Quartus Prime Pro Edition User Guide Scripting Archives... 735

A. Quartus Prime Pro Edition User Guides...736

Contents

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Command Line Scripting
FPGA design software that easily integrates into your design flow saves time and
improves productivity. The Quartus® Prime software provides you with a command-
line executable for each step of the FPGA design flow to make the design process
customizable and flexible.

The command-line executables are completely interchangeable with the Quartus Prime
GUI, allowing you to use the exact combination of tools that best suits your needs.

Related Information

• Tcl Design Examples

• TCL Commands and Packages on page 52

1.1. Benefits of Command-Line Executables

Quartus Prime command-line executables give you precise control over each step of
the design flow, reduce memory requirements, and improve performance.

You can group Quartus Prime executable files into a script, batch file, or a makefile to
automate design flows. These scripting capabilities facilitate the integration of Quartus
Prime software and other EDA synthesis, simulation, and verification software.
Automatic design flows can perform on multiple computers simultaneously and easily
archive and restore projects.

Command-line executables add flexibility without sacrificing the ease-of-use of the
Quartus Prime GUI. You can use the Quartus Prime GUI and command-line
executables at different stages in the design flow. For example, you might use the
Quartus Prime GUI to edit the floorplan for the design, use the command-line
executables to perform place-and-route, and return to the Quartus Prime GUI to
perform debugging.

Command-line executables reduce the amount of memory required during each step
in the design flow. Since each executable targets only one step in the design flow, the
executables themselves are relatively compact, both in file size and the amount of
memory used during processing. This memory usage reduction improves performance,
and is particularly beneficial in design environments where heavy usage of computing
resources results in reduced memory availability.

Related Information

About Command-Line Executables
in Quartus Prime Help

683432 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/tcl.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#reference/scripting/tcl_view_com_line_executables.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1.2. Command-Line Scripting Help

Help for command-line executables is available through different methods. You can
access help built into the executables with command-line options. You can use the
Quartus Prime Command-Line and Tcl API Help browser for an easy graphical view of
the help information.

To use the Quartus Prime Command-Line and Tcl API Help browser, type the following
command:

quartus_sh --qhelp

This command starts the Quartus Prime Command-Line and Tcl API Help browser, a
viewer for information about the Quartus Prime Command-Line executables and Tcl
API.

Use the -h option with any of the Quartus Prime Command-Line executables to get a
description and list of supported options. Use the --help=<option name> option for
detailed information about each option.

Figure 1. Quartus Prime Command-Line and Tcl API Help Browser

1.3. Project Settings with Command-Line Options

The Quartus Prime software command-line executables accept arguments to set
project variables and access common settings.

To make assignments to an individual entity you can use the Quartus Prime Tcl
scripting API. On existing projects, you can also open the project in the Quartus Prime
GUI, change the assignment, and close the project. The changed assignment is
updated in the .qsf. Any command-line executables that are run after this update
use the updated assignment.

Related Information

• Compilation with quartus_sh --flow on page 8

• Quartus Prime Settings File (.qsf) Definition
in Quartus Prime Help

1. Command Line Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

6

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#reference/glossary/def_qsf.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Quartus Prime Pro Edition Settings File Reference Manual

1.3.1. Option Precedence

Project assignments follow a set of precedence rules. Assignments for a project can
exist in three places:

• Quartus Prime Settings File (.qsf)

• The compiler database

• Command-line options

The .qsf file contains all the project-wide and entity-level assignments and settings
for the current revision for the project. The compiler database contains the result of
the last compilation in the /db directory, and reflects the assignments at the moment
when the project was compiled. Updated assignments first appear in the compiler
database and later in the .qsf file.

Command-line options override any conflicting assignments in the .qsf file or the
compiler database files. To specify whether the .qsf or compiler database files take
precedence for any assignments not specified in the command-line, use the option --
read_settings_files.

Table 1. Precedence for Reading Assignments

Option Specified Precedence for Reading Assignments

--read_settings_files = on

(Default)
1. Command-line options
2. The .qsf for the project
3. Project database (db directory, if it exists)
4. Quartus Prime software defaults

--read_settings_files = off 1. Command-line options
2. Project database (db directory, if it exists)
3. Quartus Prime software defaults

The --write_settings_files command-line option lists the locations to which
assignments are written..

Table 2. Location for Writing Assignments

Option Specified Location for Writing Assignments

--write_settings_files = on (Default) .qsf file and compiler database

--write_settings_files = off Compiler database

Any assignment not specified as a command-line option or found in the .qsf file or
compiler database file is set to its default value.

Use the options --read_settings_files=off and --
write_settings_files=off (where appropriate) to optimize the way that the
Quartus Prime software reads and updates settings files.

1. Command Line Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

7

https://www.intel.com/content/www/us/en/docs/programmable/683296/current/settings-file-reference-manual.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4. Compilation with quartus_sh --flow

The figure shows a typical Quartus Prime FPGA design flow using command-line
executables.

Figure 2. Typical Design Flow

Quartus Shell
quartus_sh

Analysis & Synthesis

Fitter
quartus_fit

Assembler
quartus_asm

EDA Netlist Writer
quartus_eda

Programmer
quartus_pgm

Programming File
Converter

quartus_cpf

 Signal Tap Logic
Analyzer

quartus_stp

Power Analyzer
quartus_pow

Compiler Database
quartus_cdb

Output files for EDA tools,
including Verilog Output
Files (.vo), VDHL Output
Files (.vho), VQM Files
and Standard Delay
Format Output Files (.sdo)

Verilog Design Files (.v), VDHL Design Files (.vhd),
Verilog Quartus Mapping Files (.vqm),
Text Design Files (.tdf), Block Design Files (.bdf),
and EDIF Netlist Files (.edf) Files

Timing Analyzer
quartus_sta

quartus_syn

Use the quartus_sh executable with the --flow option to perform a complete
compilation flow with a single command. The --flow option supports the smart
recompile feature and efficiently sets command-line arguments for each executable in
the flow.

You can resume an interrupted compilation with the -resume argument of the
--flow option.

After you start a compilation flow with the quartus_sh executable, you can monitor
the progress of the compilation flow in the Quartus Prime Pro Edition GUI.

1. Command Line Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example runs analysis & synthesis, fitter, timing analysis, and
programming file generation with a single command:

quartus_sh --flow compile filtref

Tip: For information about specialized flows, type quartus_sh --help=flow at a
command prompt.

Related Information

• Resuming a Compilation with quartus_sh --flow on page 9

• Compilation Monitoring in Intel Quartus Prime Pro Edition User Guide: Design
Compilation

1.4.1. Resuming a Compilation with quartus_sh --flow

You can resume a compilation flow for a project from the last valid step completed in
the flow with the -resume option of the quartus_sh --flow command. If you want
to resume a compilation flow, ensure that no settings that affect the subsequent
compilation stages have changed from initial start of the compilation.

You can also use the -start and -stop options of quartus_sh --flow command
to start and stop a compilation flow at specific compilation tasks.

Resuming a compilation flow also updates the Compilation Dashboard to show how the
flow is progressing.

For command syntax and example of how to use the flow resume feature, run
quartus_sh --help=flow at a command prompt.

Related Information

Using the Compilation Dashboard

1.4.2. Temporarily Overriding the Compiler Optimization Mode

You can run a full compilation flow that temporarily overrides the compiler
optimization mode set in the Quartus settings file (.qsf) for your design. The
optimization mode set for your project in your settings file does not change and
remains the default compilation strategy for your project.

Overriding the compiler optimization mode set in your project can be helpful when
your project has long compile times and you want to quickly produce a bitstream for
on-chip testing.

The following temporary optimization mode compilation flow options are available for
the quartus_sh --flow, quartus_fit, and quartus_syn commands:

• -aggressive_compile_time

In the Aggressive Compile Time optimization mode, the Compiler reduces its
performance optimization efforts and performs minimal reporting to provide a
shorter compilation time.

• -fast_functional_test

In Fast Functional Test optimization mode, the Compiler minimizes its setup-timing
optimization efforts to provide an even shorter compilation time.

1. Command Line Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

9

https://www.intel.com/content/www/us/en/docs/programmable/683236/current/compilation-monitoring-mode.html
https://www.intel.com/content/www/us/en/docs/programmable/683236/current/compilation-monitoring-mode.html
https://www.intel.com/content/www/us/en/docs/programmable/683236/current/using-the-compilation-dashboard.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, to compile revision rev1 of project top with a temporary Fast Functional
Test optimization mode that overrides the compiler optimization mode set in the
project .qsf file, issue the following command:

quartus_sh --flow compile top -c rev1 -fast_functional_test

The selected optimization mode is enabled only for the duration of the compilation.
After the compilation completes, Quartus Prime returns to the compilation
optimization strategy that is set in the project settings.

Important: With these optimization modes, the clocks in the resulting compilation might not meet
setup. You might need to slow down the clocks on your design, such as by using PLL
ECOs post-compile, before generating the bitstream.

Related Information

• Full Compilation Flow with Temporary Optimization in Intel Quartus Prime Pro
Edition User Guide: Design Compilation

• Compiler Optimization Modes in Intel Quartus Prime Pro Edition User Guide:
Design Compilation

1.5. Text-Based Report Files

Each command-line executable creates a text report file when it is run. These files
report success or failure, and contain information about the processing performed by
the executable.

Report file names contain the revision name and the short-form name of the
executable that generated the report file, in the format
<revision>.<executable>.rpt. For example, using the quartus_fit executable
to place and route a project with the revision name design_top generates a report
file named design_top.fit.rpt. Similarly, using the quartus_sta executable to
perform timing analysis on a project with the revision name fir_filter generates a
report file named fir_filter.sta.rpt.

As an alternative to parsing text-based report files, you can use
the ::quartus::report Tcl package.

Related Information

• Text-Format Report File (.rpt) Definition
in Quartus Prime Help

• ::quartus::report
in Quartus Prime Help

1.6. Using Command-Line Executables in Scripts

You can use command-line executables in scripts that control other software, in
addition to Quartus Prime software. For example, if your design flow uses third-party
synthesis or simulation software, and you can run this other software at the command
prompt, you can group those commands with Quartus Prime executables in a single
script.

1. Command Line Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

10

https://www.intel.com/content/www/us/en/docs/programmable/683236/current/full-compilation-flow-with-temporary.html
https://www.intel.com/content/www/us/en/docs/programmable/683236/current/full-compilation-flow-with-temporary.html
https://www.intel.com/content/www/us/en/docs/programmable/683236/current/compiler-optimization-modes.html
https://www.intel.com/content/www/us/en/docs/programmable/683236/current/compiler-optimization-modes.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#reference/glossary/def_rpt.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#tafs/tafs/tcl_pkg_report_ver_2.1.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To set up a new project and apply individual constraints, such as pin location
assignments and timing requirements, you must use a Tcl script or the Quartus Prime
GUI.

Command-line executables are very useful for working with existing projects, for
making common global settings, and for performing common operations. For more
flexibility in a flow, use a Tcl script. Additionally, Tcl scripts simplify passing data
between different stages of the design flow.

For example, you can create a UNIX shell script to run a third-party synthesis
software, place-and-route the design in the Quartus Prime software, and generate
output netlists for other simulation software.

1.7. Common Scripting Examples

You can create scripts including command line executable to control common Quartus
Prime processes.

1.7.1. Create a Project and Apply Constraints

The command-line executables include options for common global project settings and
commands. You can use a Tcl script to apply constraints such as pin locations and
timing assignments. You can write a Tcl constraint file, or generate one for an existing
project by clicking Project ➤ Generate Tcl File for Project.

The example creates a project with a Tcl script and applies project constraints using
the tutorial design files in the <Quartus Prime installation directory>/qdesigns/
fir_filter/ directory.

project_new filtref -overwrite
Assign family, device, and top-level file
set_global_assignment -name FAMILY "Arria 10"
set_global_assignment -name DEVICE <Device>
set_global_assignment -name VERILOG_FILE filtref.v
Assign pins
set_location_assignment -to clk Pin_28
set_location_assignment -to clkx2 Pin_29
set_location_assignment -to d[0] Pin_139
set_location_assignment -to d[1] Pin_140
#
project_close

Save the script in a file called setup_proj.tcl and type the commands illustrated in
the example at a command prompt to create the design, apply constraints, compile
the design, and perform fast-corner and slow-corner timing analysis. Timing analysis
results are saved in two files, filtref_sta_1.rpt and filtref_sta_2.rpt.

quartus_sh -t setup_proj.tcl
quartus_syn filtref
quartus_fit filtref
quartus_asm filtref
quartus_sta filtref --model=fast --export_settings=off
mv filtref_sta.rpt filtref_sta_1.rpt
quartus_sta filtref --export_settings=off
mv filtref_sta.rpt filtref_sta_2.rpt

1. Command Line Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type the following commands to create the design, apply constraints, and compile the
design, without performing timing analysis:

quartus_sh -t setup_proj.tcl
quartus_sh --flow compile filtref

The quartus_sh --flow compile command performs a full compilation, and is
equivalent to clicking the Start Compilation button in the toolbar.

1.7.2. Check Design File Syntax

The .tcl script example below assumes the Quartus Prime software fir_filter tutorial
project exists in the current directory. You can find the fir_filter project in the
<Quartus Prime directory>/qdesigns/fir_filter directory unless the Quartus
Prime software tutorial files are not installed.

When options are not specified, the executable uses the project database values. If
not specified in the project database, the executable uses the Quartus Prime software
default values.

To run this script, save this script to a file such as check_syntax.tcl and then run
the following command from a command prompt: quartus_syn -t
check_syntax.tcl.

set dir [pwd]; # set dir to current working directory

assign quartus_files variable to all files within current working directory
asterisk (*) may be changed to specific file extensions (i.e. *.v, *.vhdl,
*.etc)
set quartus_files [glob -directory $dir *]

open project fir_filter with revision name filtref
project_open fir_filter -revision filtref

foreach file $quartus_files {
 post_message $file; # echo which file was analyzed
 analyze_files -files $file -library work; # analyze file for syntax
}

project_close; # close project

1.7.3. Create a Project and Synthesize a Netlist Using Netlist
Optimizations

This example creates a new Quartus Prime project with a file top.edf as the top-
level entity. The --enable_register_retiming=on and --
enable_wysiwyg_resynthesis=on options cause quartus_map to optimize the
design using gate-level register retiming and technology remapping.

The --part option causes quartus_syn to target a device. To create the project and
synthesize it using the netlist optimizations described above, type the command
shown in this example at a command prompt.

quartus_syn top --source=top.edf --enable_register_retiming=on
 --enable_wysiwyg_resynthesis=on --part=<part>

1. Command Line Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.4. Archive and Restore Projects

You can archive or restore an Quartus Prime Archive File (.qar) with a single
command. This makes it easy to take snapshots of projects when you use batch files
or shell scripts for compilation and project management.

Use the --archive or --restore options for quartus_sh as appropriate. Type the
command shown in the example at a command prompt to archive your project.

quartus_sh --archive <project name>

The archive file is automatically named <project name>.qar. If you want to use a
different name, type the command with the -output option as shown in example the
example.

quartus_sh --archive <project name> -output <filename>

To restore a project archive, type the command shown in the example at a command
prompt.

quartus_sh --restore <archive name>

The command restores the project archive to the current directory and overwrites
existing files.

Related Information

Managing Quartus Prime Projects

1.7.5. Update Memory Contents Without Recompiling

You can use two commands to update the contents of memory blocks in your design
without recompiling. Use the quartus_cdb executable with the --update_mif
option to update memory contents from .mif or .hexout files. Then, rerun the
assembler with the quartus_asm executable to regenerate the .sof, .pof, and any
other programming files.

quartus_cdb --update_mif <project name> [--rev=<revision name>]
quartus_asm <project name> [--rev=<revision name>]

The example shows the commands for a DOS batch file for this example. With a DOS
batch file, you can specify the project name and the revision name once for both
commands. To create the DOS batch file, paste the following lines into a file called
update_memory.bat.

quartus_cdb --update_mif %1 --rev=%2
quartus_asm %1 --rev=%2

To run the batch file, type the following command at a command prompt:

update_memory.bat <project name> <revision name>

1. Command Line Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

13

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409958212952
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.6. Create Device Configuration Files

You can use the quartus_cpf or quartus_pfg command line executables to
generate different types of device configuration files at the command line, depending
on your target device.

• quartus_pfg—controls the same programming file generation functions as the
Programming File Generator dialog box in the Quartus Prime software GUI, and
supports programming file generation for Stratix® 10 and Intel Agilex® 7 device
families.

Table 3. quartus_pfg Command Examples

Command Function Command Syntax

Specify the ASX4 operation
mode, convert .sof to .jic

quartus_pfg -c -o device=MT25QU512 -o mode=ASX4 -o flash_loader=1SG280HN3S3 \
 project.sof project.jic

Access full command-line syntax
help

quartus_pfg --help

• quartus_cpf—controls the same functions as the Convert Programming Files
dialog box in the Quartus Prime software GUI, and supports programming file
generation for all device families prior to the Stratix 10 device family.

Table 4. quartus_cpf Command Examples

Command Function Command Syntax

Create an option file that turns
on compression, type the
following command at a
command prompt

quartus_cpf -w <filename>.opt

Create a compressed .pof that
targets an EPCS64 device

quartus_cpf --convert --option=<filename>.opt --device=EPCS64 \
<file>.sof <file>.pof

Save configuration options in a
conversion setup file (.cof)

quartus_cpf --convert <file>.cof

Convert a .sof programming file
to CvP periphery image (*.jam)
file

quartus_cpf -c <filename>.sof <filename>.jam --cvp

Access full command-line syntax
help

quartus_cpf --help

Note: For complete Quartus Prime command line executable syntax and examples, refer to
Command-Line Scripting Help on page 6.

1.7.7. Fit a Design Using Multiple Seeds

This shell script example assumes that the Quartus Prime software tutorial project
called fir_filter exists in the current directory (defined in the file fir_filter.qpf).
If the tutorial files are installed on your system, this project exists in the <Quartus
Prime directory>/qdesigns<quartus_version_number> /fir_filter directory.

Because the top-level entity in the project does not have the same name as the
project, you must specify the revision name for the top-level entity with the --rev
option. The --seed option specifies the seeds to use for fitting.

1. Command Line Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A seed is a parameter that affects the random initial placement of the Quartus Prime
Fitter. Varying the seed can result in better performance for some designs.

After each fitting attempt, the script creates new directories for the results of each
fitting attempt and copies the complete project to the new directory so that the results
are available for viewing and debugging after the script has completed.

#!/bin/sh
ERROR_SEEDS=""
quartus_syn fir_filter --rev=filtref
Iterate over a number of seeds
for seed in 1 2 3 4 5
do
echo "Starting fit with seed=$seed"
Perform a fitting attempt with the specified seed
quartus_fit fir_filter --seed=$seed --rev=filtref
If the exit-code is non-zero, the fitting attempt was
successful, so copy the project to a new directory
if [$? -eq 0]
then
 mkdir ../fir_filter-seed_$seed
 mkdir ../fir_filter-seed_$seed/db
 cp * ../fir_filter-seed_$seed
 cp db/* ../fir_filter-seed_$seed/db
else
 ERROR_SEEDS="$ERROR_SEEDS $seed"
fi
done
if [-z "$ERROR_SEEDS"]
then
echo "Seed sweeping was successful"
exit 0
else
echo "There were errors with the following seed(s)"
echo $ERROR_SEEDS
exit 1
fi

Tip: Use Design Space Explorer II (DSE) included with the Quartus Prime software script
(by typing quartus_dse at a command prompt) to improve design performance by
performing automated seed sweeping.

1.8. The QFlow Script

A Tcl/Tk-based graphical interface called QFlow is included with the command-line
executables. You can use the QFlow interface to open projects, launch some of the
command-line executables, view report files, and make some global project
assignments.

1. Command Line Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The QFlow interface can run the following command-line executables:

• quartus_syn (Analysis and Synthesis)

• quartus_fit (Fitter)

• quartus_sta (Timing Analyzer)

• quartus_asm (Assembler)

• quartus_eda (EDA Netlist Writer)

To view floorplans or perform other GUI-intensive tasks, launch the Quartus Prime
software.

Start QFlow by typing the following command at a command prompt:

quartus_sh -g

Tip: The QFlow script is located in the <Quartus Prime directory>/common/tcl/
apps/qflow/ directory.

1.8.1. --partition Option

The --partition option is for the --simulation top-level argument for
quartus_eda. This option selects an individual partition as the netlist output.

--exclude_sub_partitions

The --exclude_sub_partitions flag limits the output to the netlist of this
partition only. This flag is only valid when you use the --partition option, this flag
outputs the netlist belonging to the partition specified. The software instantiates sub-
partitions as separate modules.

For no partition argument, the software writes the entire design out to a single file.
The partition argument takes a name of a partition in the design. The sub-option is a
flag only and takes no arguments.

When you specify the --exclude_sub_partitions flag, the software only writes
out the contents of the selected partition. Sub-partitions are instantiated as separate
modules. Each call of quartus_eda writes one netlist. If you write out the design one
partition at a time, excluding sub partitions, they need to call quartus_eda for each
partition in the design including the root.

root_partition

You can specify the root_partition flag to get the full design. You can provide the
partition option to write to a netlist file (.vo or .vho file). The file contains all the
logic and atoms corresponding the contents of the specified partition along with its
sub-partition.

--rename

Additionally, you have the option to rename a module name in the generated netlist
file using the --rename option. By default, the software uses the partition name as
the module name in the netlist file. This option is only valid when you use the partition
option. You can elect to rename any module using --module_name=abc=xyz --
module_name=def=prq. The generated file names format is: <revision>.<module

1. Command Line Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

or partition name>.<vo or vho> By default, the software writes the netlist file
to the simulation/<3rd party simulation tool> directory (for example,
simulation/modelsim), unless you specify an output_directory (using a
command line option or .qsf assignment).

1.9. Command-Line Scripting Revision History

The following revision history applies to this chapter:

Table 5. Document Revision History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied phase I Altera rebranding throughout.

2022.04.03 23.1 • Updated name of the Agilex 7 device family.

2022.09.26 22.3 • Added Top FAQs navigation to document cover.

2022.03.28 22.1 • Added "Temporarily Overriding the Compiler Optimization Mode"
• Added information about monitoring a compilation to "Compilation with

quartus_sh --flow"

2021.03.29 21.1 • Added "Resuming a Compilation with quartus_sh --flow"
• Revised "Check Design File Syntax".

2020.12.14 20.4 • Updated "Create Device Configuration Files" to include references to the
cvp command option and the quartus_pfg command.

2020.04.13 20.1 Added --partition option.

2017.05.08 17.0.0 • Reorganized content on topics: Benefits of Command-Line Executables
and Project Settings with Command-Line Options.

• Removed mentions to unsupported executables and options.
• Removed topics: Introductory Example and Common Scripting

Examples

2016.10.31 16.1.0 • Implemented Intel rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Remove descriptions of makefile support that was removed from software
in 14.0.

December 2014 14.1.0 Updated DSE II commands.

June 2014 14.0.0 Updated formatting.

November 2013 13.1.0 Removed information about -silnet qmegawiz command

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Corrected quartus_qpf example usage.
Updated examples.

December 2010 10.1.0 Template update.
Added section on using a script to regenerate megafunction variations.
Removed references to the Classic Timing Analyzer (quartus_tan).
Removed Qflow illustration.

July 2010 10.0.0 Updated script examples to use quartus_sta instead of quartus_tan, and
other minor updates throughout document.

continued...

1. Command Line Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

November 2009 9.1.0 Updated Table 2–1 to add quartus_jli and quartus_jbcc executables and
descriptions, and other minor updates throughout document.

March 2009 9.0.0 No change to content.

November 2008 8.1.0 Added the following sections:
• “The MegaWizard Plug-In Manager” on page 2–11

“Command-Line Support” on page 2–12
“Module and Wizard Names” on page 2–13
“Ports and Parameters” on page 2–14
“Invalid Configurations” on page 2–15
“Strategies to Determine Port and Parameter Values” on page 2–15
“Optional Files” on page 2–15
“Parameter File” on page 2–16
“Working Directory” on page 2–17
“Variation File Name” on page 2–17

• “Create a Compressed Configuration File” on page 2–21
• Updated “Option Precedence” on page 2–5 to clarify how to control

precedence
• Corrected Example 2–5 on page 2–8
• Changed Example 2–1, Example 2–2, Example 2–4, and Example 2–7

to use the EP1C12F256C6 device
• Minor editorial updates
• Updated entire chapter using 8½” × 11” chapter template

May 2008 8.0.0 • Updated “Referenced Documents” on page 2–20.
• Updated references in document.

1. Command Line Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Tcl Scripting
You can use Tcl scripts, as an alternative to the GUI, to control the function and
operation of Quartus Prime software.

For example, you can use Tcl scripts to perform the following tasks:

• Manage Quartus Prime projects

• Specify assignments and constraints

• Compile your design

• Perform timing analysis

• Generate and view reports about your project

You can also use Tcl scripts to migrate a project or project settings. For example, when
working with different projects targeting the same prototype or development board,
you can define a Tcl script to automate pin assignments for each project, rather than
entering the assignments individually in the GUI. You can automatically generate a Tcl
script based on current project assignments, which simplifies transferring the
assignments to another project.

The Quartus Prime software Tcl commands follow familiar EDA industry Tcl application
programming interface (API) standards for command-line options. If you encounter an
error with a command argument, the Tcl interpreter includes help information showing
correct usage.

This chapter includes sample Tcl scripts for automating tasks in the Quartus Prime
software, along with a complete reference of all supported Tcl commands and
arguments. You can modify the example scripts for use with your own designs. Refer
to Design Examples section of the Support area on the Intel website.

Related Information

• Tcl Design Examples

• TCL Commands and Packages on page 52

2.1. Tool Command Language

Tcl (pronounced “tickle”) stands for Tool Command Language, and is the industry-
standard scripting language. Tcl supports control structures, variables, network socket
access, and APIs.

With Tcl, you can work seamlessly across most development platforms. Synopsys*,
Mentor Graphics*, and Intel software products support the Tcl language.

By combining Tcl commands and Quartus Prime API functions, you can create your
own procedures and automate your design flow. Run Quartus Prime software in batch
mode, or execute individual Tcl commands interactively in the Quartus Prime Tcl shell.

683432 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/tcl.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Quartus Prime software supports Tcl/Tk version 8.5, supplied by the Tcl
DeveloperXchange.

2.2. The Quartus Prime Tcl Console Window

A Tcl Console Window is available in the Quartus Prime software GUI by clicking View
➤ Tcl Console. You can run Quartus Prime Tcl commands directly in the Tcl Console
window. The Quartus Prime Tcl shell interprets all Tcl commands that you type in the
Tcl Console.

In addition, when you run commands in the Quartus Prime GUI, the Tcl Console
displays the equivalent Tcl command. You can right-click in the Tcl Console and click
Save to File to save a log file of the Tcl commands in the Tcl Console.

Note: Some shell commands such as cd, ls, and others can be run in the Tcl Console
window, with the Tcl exec command. However, for best results, run shell commands
and Quartus Prime executables from a system command prompt outside of the
Quartus Prime software GUI.

Tcl messages appear in the System tab (Messages window). Errors and messages
written to stdout and stderr also are shown in the Quartus Prime Tcl Console
window.

2.3. Quartus Prime Tcl Packages

The Quartus Prime software groups Tcl commands into packages by function.

Note: Refer to TCL Commands and Packages on page 52 for a comprehensive reference of
all Quartus Prime Tcl packages and commands.

Table 6. Quartus Prime Tcl Packages

Package Name Package Description

backannotate Back-annotate the Compiler's assignments.

bpps Floorplan IP interfaces and other device resources in Interface Planner.

chip_planner Identify and modify resource usage and routing with the Chip Planner.

design Manipulate project databases, including the assignments database, to enable the
creation of instance assignments without modifying the .qsf file.

device Get device and family information from the device database.

dni_sdc Set false path, input delay, or output delay SDC constraints.

drc Interact with Design Assistant design rule checks.

eco Specify engineering change orders after design compilation.

external_memif_toolkit Interact with external memory interfaces and debug components.

fif Contains the set of Tcl functions for using the Fault Injection File (FIF) Driver

flng Query properties of generic objects.

flow Compile a project, run command-line executables, and other compilation flows.

help Tcl command help.

continued...

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Package Name Package Description

insystem_memory_edit Read and edit memory contents in Intel FPGA devices.

insystem_source_probe Interact with the In-System Sources and Probes tool in an Intel device.

interactive_synthesis Interactive synthesis controls.

ipgen IP generation controls.

iptclgen Memory IP generation controls.

jtag Control the JTAG chain.

logic_analyzer_interface Query and modify the Logic Analyzer Interface output pin state.

misc Perform miscellaneous tasks such as enabling natural bus naming, package loading,
and message posting.

names Gets or sets assignment names.

periph Interact with the interface pins.

pfg Controls the Programming File Generator.

project Create and manage projects and revisions, make any project assignments including
timing assignments.

project_ui Query the GUI.

qshm Client and server controls.

report Get information from report tables, create custom reports.

rtl Traverse and query the RTL netlist of your design.

sdc Specify constraints and exceptions to the Timing Analyzer.

sdc_ext Intel FPGA-specific SDC commands.

sta Contains the set of Tcl functions for obtaining advanced information from the Timing
Analyzer.

stp Run the Signal Tap Logic Analyzer.

tdc Obtain information from the Timing Analyzer.

To keep memory requirements as low as possible, only the minimum number of
packages load automatically with each Quartus Prime executable. To run commands
from other packages, load those packages beforehand.

Run your scripts with executables that include the packages you use in the scripts. For
example, to use commands in the sdc_ext package, you must use the quartus_sta
executable because quartus_sta is the only executable with support for the
sdc_ext package.

The following command prints lists of the packages loaded or available to load for an
executable, to the console:

<executable name> --tcl_eval help

For example, type the following command to list the packages loaded or available to
load by the quartus_fit executable:

quartus_fit --tcl_eval help

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Tcl Design Examples

• TCL Commands and Packages on page 52

2.3.1. Loading Tcl Packages

To load an Quartus Prime Tcl package, use the load_package command as follows:

load_package [-version <version number>] <package name>

This command is similar to package require, but it allows to alternate between
different versions of an Quartus Prime Tcl package.

2.3.2. Quartus Prime Tcl API Help

Quartus Prime Tcl help allows easy access to information about the Quartus Prime Tcl
commands.

• This command opens the Quartus Prime Command-Line and Tcl API help browser,
which documents all commands and options in the Quartus Prime Tcl API. At a
system command prompt, access the Quartus Prime Tcl API Help by typing:

quartus_sh --qhelp

• The Tcl API Help can be accessed from the Tcl console as well. At a Tcl prompt,
type

help

to access the help information. The output is:

The Tcl console provides help options that display specific information:

Table 7. Help Options Available in the Quartus Prime Tcl Environment

Help Command Description

help Displays complete list of available Quartus Prime Tcl
packages.

help -tcl Explains how to load Tcl packages and access command-line
help.

help -pkg <package_name -[-version <version number>] Displays help commands of the Quartus Prime package that
you specify, including the list of available Tcl commands.
• If you do not specify -version, the Quartus Prime

software loads the latest version of the package.
• If the package is not loaded, the Quartus Prime software

displays the help for the latest version of the package.
Examples:

help -pkg ::quartus::project

help -pkg project

help -pkg project -version 1.0

continued...

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

22

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/tcl.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Help Command Description

<command_name> -h

or

<command_name> -help

Displays the short help of a Quartus Prime Tcl command in a
loaded package. Examples:

project_open -h

project_open -help

package require ::quartus::<package name>[<version>] Loads a specific version of an Quartus Prime Tcl package. If
you do not specify -version, the Quartus Prime software
loads the latest version of the package.
Example:

package require ::quartus::project 1.0

This command is similar to the load_package command

load_package <package name> [-version <version number>] Allows you to alternate between different versions of the
same package.
Example:

load_package ::quartus::project -version 1.0

help -cmd <command_name>
 -[-version <version>]

or

<command_name> -long_help

Displays the complete help text for an Quartus Prime Tcl
command. If you do not specify -version, the Quartus
Prime software loads the latest version of the package.
Examples:

project_open -long_help

help -cmd project_open

help -cmd project_open -version 1.0

help -examples Displays examples of Quartus Prime Tcl usage.

help -quartus To view help on the predefined global Tcl array that contains
project information and information about the Quartus
Prime executable that is currently running.

quartus_sh --qhelp Launches the Tk viewer for Quartus Prime command-line
help and display help for the command-line executables and
Tcl API packages.

help -timequestinfo To view help on the predefined global

"TimeQuestInfo"

Tcl array that contains delay model information and speed
grade information of a Timing Analyzer design that is
currently running.

The Tcl API help is also available in Quartus Prime online help. Search for the
command or package name to find details about that command or package.

2.3.2.1. Command-Line Options

You can use any of the following command line options with executables that support
Tcl:

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8. Command-Line Options Supporting Tcl Scripting

Command-Line Option Description

--script=<script file> [<script args>] Run the specified Tcl script with optional arguments.

-t <script file> [<script args>] Run the specified Tcl script with optional arguments. The -t option is the
short form of the --script option.

--shell Open the executable in the interactive Tcl shell mode.

-s Open the executable in the interactive Tcl shell mode. The -s option is the
short form of the --shell option.

--tcl_eval <tcl command> Evaluate the remaining command-line arguments as Tcl commands. For
example, the following command displays help for the project package:
quartus_sh --tcl_eval help -pkg project

2.3.2.1.1. Run a Tcl Script

Running an executable with the -t option runs the specified Tcl script. You can also
specify arguments to the script. Access the arguments through the argv variable, or
use a package such as cmdline, which supports arguments of the following form:

-<argument name> <argument value>

The cmdline package is included in the <Quartus Prime directory>/common/tcl/
packages directory.

For example, to run a script called myscript.tcl with one argument, Stratix, type
the following command at a system command prompt:

quartus_sh -t myscript.tcl Stratix

2.3.2.1.2. Interactive Shell Mode

Running an executable with the -s option starts an interactive Tcl shell. For example,
to open the Quartus Prime Timing Analyzer executable in interactive shell mode, type:

quartus_sta -s

Commands you type in the Tcl shell are interpreted when you press Enter. To run a Tcl
script in the interactive shell type:

source <script name>

If a command is not recognized by the shell, it is assumed to be external and
executed with the exec command.

2.3.2.1.3. Evaluate as Tcl

Running an executable with the --tcl_eval option causes the executable to
immediately evaluate the remaining command-line arguments as Tcl commands. This
can be useful if you want to run simple Tcl commands from other scripting languages.

For example, the following command runs the Tcl command that prints out the
commands available in the project package.

quartus_sh --tcl_eval help -pkg project

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4. Tcl Design Flow Controls

You can use Tcl scripts to control all aspects of the design flow, including controlling
other software, when the other software also includes a scripting interface.

Typically, EDA tools include their own script interpreters that extend core language
functionality with tool-specific commands. For example, the Quartus Prime Tcl
interpreter supports all core Tcl commands, and adds numerous commands specific to
the Quartus Prime software. You can include commands in one Tcl script to run
another script, which allows you to combine or chain together scripts to control
different tools. Because scripts for different tools must be executed with different Tcl
interpreters, it is difficult to pass information between the scripts unless one script
writes information into a file and another script reads it.

Within the Quartus Prime software, you can perform many different operations in a
design flow (such as synthesis, fitting, and timing analysis) from a single script,
making it easy to maintain global state information and pass data between the
operations. However, there are some limitations on the operations you can perform in
a single script due to the various packages supported by each executable.

There are no limitations on running flows from any executable. Flows include
operations found in

Processing ➤ Start in the Quartus Prime GUI, and are also documented as options
for the execute_flow Tcl command. If you can make settings in the Quartus Prime
software and run a flow to get your desired result, you can make the same settings
and run the same flow in a Tcl script.

2.4.1. Creating Projects and Making Assignments

You can create a script that makes all the assignments for an existing project, and
then use the script at any time to restore your project settings to a known state.

Click Project ➤ Generate Tcl File for Project to automatically generate a .tcl file
containing your assignments. You can source this file to recreate your project, and you
can add other commands to this file, such as commands for compiling the design. This
file is a good starting point to learn about project management and assignment
commands.
To commit the assignments you create or modify to the .qsf file, you use the
export_assignments or project_close commands. However, when you run the
execute_flow command, Quartus Prime software automatically commits the
assignment changes to the .qsf file. To prevent this behavior, specify the -
dont_export_assignments logic option.

Related Information

• Quartus Prime Pro Edition Settings File Reference Manual

• Interactive Shell Mode on page 24

• Constraining Designs

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

25

https://www.intel.com/content/www/us/en/docs/programmable/683296/current/settings-file-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683143/current/constraining-designs.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.2. Compiling Designs

You can run the Quartus Prime command-line executables from Tcl scripts. Use the
included flow package to run various Quartus Prime compilation flows, or run each
executable directly.

2.4.2.1. The flow Package

The flow package includes two commands for running Quartus Prime command-line
executables, either individually or together in standard compilation sequence.

• The execute_module command allows you to run an individual Quartus Prime
command-line executable.

• The execute_flow command allows you to run some or all the executables in
commonly-used combinations.

Use the flow package instead of system calls to run Quartus Prime executables from
scripts or from the Quartus Prime Tcl Console.

2.4.2.2. Compile All Revisions

You can use a simple Tcl script to compile all revisions in your project. Save the
following script in a file called compile_revisions.tcl and type the following to
run it:

quartus_sh -t compile_revisions.tcl <project name>

Compile All Revisions

load_package flow project_open [lindex $quartus(args) 0] set original_revision
[get_current_revision] foreach revision [get_project_revisions]
{ set_current_revision $revision execute flow -compile } set_current_revision
$original_revision project_close

2.4.3. Reporting

You can extract information from the Compilation Report to evaluate results. The
Quartus Prime Tcl API provides easy access to report data so you do not have to write
scripts to parse the text report files.

If you know the exact report cell or cells you want to access, use the
get_report_panel_data command and specify the row and column names (or x
and y coordinates) and the name of the appropriate report panel. You can often
search for data in a report panel. To do this, use a loop that reads the report one row
at a time with the get_report_panel_row command.

Column headings in report panels are in row 0. If you use a loop that reads the report
one row at a time, start with row 1 to skip column headings. The
get_number_of_rows command returns the number of rows in the report panel,
including the column heading row. Since the number of rows includes the column
heading row, continue your loop if the loop index is less than the number of rows.

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Report panels are hierarchically arranged and each level of hierarchy is denoted by the
string “||“ in the panel name. For example, the name of the Fitter Settings report
panel is Fitter||Fitter Settings because it is in the Fitter folder. Panels at
the highest hierarchy level do not use the “||” string. For example, the Flow Settings
report panel is named Flow Settings.

The following Tcl code prints a list of all report panel names in your project. You can
run this code with any executable that includes support for the report package.

Print All Report Panel Names

load_package report
project_open myproject
load_report
set panel_names [get_report_panel_names]
foreach panel_name $panel_names {
post_message "$panel_name"
}

2.4.3.1. Saving Report Data in csv Format

You can create a Comma Separated Value (.csv) file from any Quartus Prime report
to open with a spreadsheet editor.

The following Tcl code shows a simple way to create a .csv file with data from the
Fitter panel in a report.

Create .csv Files from Reports

load_package report
project_open my-project
load_report
This is the name of the report panel to save as a CSV file
set panel_name "Fitter||Fitter Settings"
set csv_file "output.csv"
set fh [open $csv_file w]
set num_rows [get_number_of_rows -name $panel_name]
Go through all the rows in the report file, including the
row with headings, and write out the comma-separated data
for { set i 0 } { $i < $num_rows } { incr i } {
 set row_data [get_report_panel_row -name $panel_name \
 -row $i]
 puts $fh [join $row_data ","]
}
close $fh
unload_report

You can modify the script to use command-line arguments to pass in the name of the
project, report panel, and output file to use. You can run this script example with any
executable that supports the report package.

2.4.4. Timing Analysis

The Quartus Prime Timing Analyzer includes support for industry-standard SDC
commands in the sdc package.

The Quartus Prime software includes comprehensive Tcl APIs and SDC extensions for
the Timing Analyzer in the sta, and sdc_ext packages. The Quartus Prime software
also includes a tdc package that obtains information from the Timing Analyzer.

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Quartus Prime Pro Edition Settings File Reference Manual

2.5. Automating Script Execution

You can configure scripts to run automatically at various points during compilation.
Use this capability to automatically run scripts that perform custom reporting, make
specific assignments, and perform many other tasks.

The following three global assignments control when a script is run automatically:

• PRE_FLOW_SCRIPT_FILE —before a flow starts

• POST_MODULE_SCRIPT_FILE —after a module finishes

• POST_FLOW_SCRIPT_FILE —after a flow finishes

A module is another term for an Quartus Prime executable that performs one step in a
flow. For example, two modules are Analysis and Synthesis (quartus_syn), and
timing analysis (quartus_sta).

A flow is a series of modules that the Quartus Prime software runs with predefined
options. For example, compiling a design is a flow that typically consists of the
following steps (performed by the indicated module):

1. Analysis and Synthesis (quartus_syn)

2. Fitter (quartus_fit)

3. Assembler (quartus_asm)

4. Timing Analyzer (quartus_sta)

Other flows are described in the help for the execute_flow Tcl command. In
addition, many commands in the Processing menu of the Quartus Prime GUI
correspond to this design flow.

To make an assignment automatically run a script, add an assignment with the
following form to the .qsf for your project:

set_global_assignment -name <assignment name> <executable>:<script name>

The Quartus Prime software runs the scripts.

<executable> -t <script name> <flow or module name> <project name> <revision
name>

The first argument passed in the argv variable (or quartus(args) variable) is the
name of the flow or module being executed, depending on the assignment you use.
The second argument is the name of the project and the third argument is the name
of the revision.

The last process, current project, and current revision are passed to the script by the
Quartus Prime software and can be accessed by the following commands:

set process [lindex $quartus(args) 0]
set project [lindex $quartus(args) 1]
set revision [lindex $quartus(args) 2]

project_open $project -revision $revision

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

28

https://www.intel.com/content/www/us/en/docs/programmable/683296.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you use the POST_MODULE_SCRIPT_FILE assignment, the specified script is
automatically run after every executable in a flow. You can use a string comparison
with the module name (the first argument passed in to the script) to isolate script
processing to certain modules.

2.5.1. Execution Example

To illustrate how automatic script execution works in a complete flow, assume you
have a project called top with a current revision called rev_1, and you have the
following assignments in the .qsf for your project.

set_global_assignment -name PRE_FLOW_SCRIPT_FILE quartus_sh:first.tcl
set_global_assignment -name POST_MODULE_SCRIPT_FILE quartus_sh:next.tcl
set_global_assignment -name POST_FLOW_SCRIPT_FILE quartus_sh:last.tcl

When you compile your project, the PRE_FLOW_SCRIPT_FILE assignment causes the
following command to be run before compilation begins:

quartus_sh -t first.tcl compile top rev_1

Next, the Quartus Prime software starts compilation with analysis and synthesis,
performed by the quartus_syn executable. After the Analysis and Synthesis finishes,
the POST_MODULE_SCRIPT_FILE assignment causes the following command to run:

quartus_sh -t next.tcl quartus_syn top rev_1

Then, the Quartus Prime software continues compilation with the Fitter, performed by
the quartus_fit executable. After the Fitter finishes, the
POST_MODULE_SCRIPT_FILE assignment runs the following command:

quartus_sh -t next.tcl quartus_fit top rev_1

Corresponding commands are run after the other stages of the compilation. When the
compilation is over, the POST_FLOW_SCRIPT_FILE assignment runs the following
command:

quartus_sh -t last.tcl compile top rev_1

2.5.2. Controlling Processing

The POST_MODULE_SCRIPT_FILE assignment causes a script to run after every
module. Because the same script is run after every module, you might have to include
some conditional statements that restrict processing in your script to certain modules.

For example, if you want a script to run only after timing analysis, use a conditional
test like the following example. It checks the flow or module name passed as the first
argument to the script and executes code when the module is quartus_sta.

Restrict Processing to a Single Module

set module [lindex $quartus(args) 0]
if [string match "quartus_sta" $module] {
 # Include commands here that are run
 # after timing analysis
 # Use the post-message command to display

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 # messages
 post_message "Running after timing analysis"
}

2.5.3. Displaying Messages

Because of the way the Quartus Prime software runs the scripts automatically, you
must use the post_message command to display messages, instead of the puts
command. This requirement applies only to scripts that are run by the three
assignments listed in “Automating Script Execution”.

Related Information

• The post_message Command on page 41

• Automating Script Execution on page 28

2.6. Other Scripting Features

The Quartus Prime Tcl API includes other general-purpose commands and features
described in this section.

2.6.1. Natural Bus Naming

The Quartus Prime software supports natural bus naming. Natural bus naming allows
you to use square brackets to specify bus indexes in HDL, without including escape
characters to prevent Tcl from interpreting the square brackets as containing
commands. For example, one signal in a bus named address can be identified as
address[0] instead of address\[0\]. You can take advantage of natural bus
naming when making assignments.

set_location_assignment -to address[10] Pin_M20

The Quartus Prime software defaults to natural bus naming. You can turn off natural
bus naming with the disable_natural_bus_naming command. For more
information about natural bus naming, type the following at an Quartus Prime Tcl
prompt:

enable_natural_bus_naming -h

2.6.2. Short Option Names

You can use short versions of command options, if they are unambiguous. For
example, the project_open command supports two options: -current_revision
and -revision.

You can use any of the following abbreviations of the -revision option:

• -r

• -re

• -rev

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• -revi

• -revis

• -revisio

You can use an extremely short option such as -r because in the case of the
project_open command no other option starts with the letter r. However, the
report_timing command includes the options -recovery and -removal. You
cannot use -r or -re to shorten either of those options, because the abbreviation is
not unique.

2.6.3. Collection Commands

Some Quartus Prime Tcl functions return very large sets of data that are inefficient as
Tcl lists. These data structures are referred to as collections. The Quartus Prime Tcl
API uses a collection ID to access the collection.

There are two Quartus Prime Tcl commands for working with collections,
foreach_in_collection and get_collection_size. Use the set command to
assign a collection ID to a variable.

2.6.3.1. The foreach_in_collection Command

The foreach_in_collection command is similar to the foreach Tcl command.
Use it to iterate through all elements in a collection. The following example prints all
instance assignments in an open project.

foreach_in_collection Example

set all_instance_assignments [get_all_instance_assignments -name *]
foreach_in_collection asgn $all_instance_assignments {
 # Information about each assignment is
 # returned in a list. For information
 # about the list elements, refer to Help
 # for the get-all-instance-assignments command.
 set to [lindex $asgn 2]
 set name [lindex $asgn 3]
 set value [lindex $asgn 4]
 puts "Assignment to $to: $name = $value"
}

Related Information

foreach_in_collection (::quartus::misc)
In Quartus Prime Help

2.6.3.2. The get_collection_size Command

Use the get_collection_size command to get the number of elements in a
collection. The following example prints the number of global assignments in an open
project.

get_collection_size Example

set all_global_assignments [get_all_global_assignments -name *]
set num_global_assignments [get_collection_size $all_global_assignments]
puts "There are $num_global_assignments global assignments in your project"

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

31

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#tafs/tafs/tcl_pkg_misc_ver_1.0_cmd_foreach_in_collection.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.4. Node Finder Commands

The Node Finder allows you to find any node name in your project's compilation
database. You can then perform various actions on found nodes, such as specifying
constraints or assignments to those nodes. You can filter the search on various
criteria, and also use wildcard characters in the search string.

A complete set of Node Finder Tcl commands that support the equivalent Node Finder
filtering options is available for use in the scripted design flow environment.

The filtering options include the following default filters that appear in the filter combo
box in the Node Finder:

Design Entry (all names) Filter on page 32

Pins: assigned Filter on page 33

Pins: unassigned Filter on page 33

Pins: input Filter on page 33

Pins: output Filter on page 34

Pins: bidirectional Filter on page 34

Pins: virtual Filter on page 34

Pins: all Filter on page 35

Pins: all & Registers: post-fitting Filter on page 35

Ports: partition on page 35

Entity instance: pre-synthesis Filter on page 36

Registers: pre-synthesis Filter on page 36

Registers: post-fitting Filter on page 36

Post-synthesis Filter on page 37

Post-Compilation Filter on page 37

Signal Tap: pre-synthesis Filter on page 37

Signal Tap: post-fitting Filter on page 38

2.6.4.1. Design Entry (all names) Filter

This Node Finder filter finds all user-entered names in your design.

The following Tcl command demonstrates the use of the Design Entry (all
names) filtering option:

set name_ids_col [get_names -filter * -node_type all \
-observable_type pre_synthesis]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type pre_synthesis \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.4.2. Pins: assigned Filter

This Node Finder filter finds all pin names assigned locations or other pin-related
assignments.

The following Tcl command demonstrates the use of the Pins: assigned filtering
option:

set name_ids_col [get_names -filter * -node_type assigned \
-observable_type pre_synthesis]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type pre_synthesis \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.3. Pins: unassigned Filter

This Node Finder filter finds all pin names unassigned locations or other pin related
assignments.

The following Tcl command demonstrates the use of the Pins: unassigned filtering
option:

set name_ids_col [get_names -filter * -node_type unassigned \
-observable_type pre_synthesis]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type pre_synthesis \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.4. Pins: input Filter

This Node Finder filter finds all input pin names in your design files.

The following Tcl command demonstrates the use of the Pins: input filtering
option:

set name_ids_col [get_names -filter * -node_type input \
-observable_type pre_synthesis]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type pre_synthesis \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.4.5. Pins: output Filter

This Node Finder filter finds all output pin names in your design files.

The following Tcl command demonstrates the use of the Pins: output filtering
option:

set name_ids_col [get_names -filter * -node_type output \
-observable_type pre_synthesis]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type pre_synthesis \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.6. Pins: bidirectional Filter

This Node Finder filter finds all bidirectional pin names in your design files.

The following Tcl command demonstrates the use of the Pins: bidirectional
filtering option:

set name_ids_col [get_names -filter * -node_type bidir \
-observable_type pre_synthesis]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type pre_synthesis \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.7. Pins: virtual Filter

This Node Finder filter finds names of all I/O elements mapped to logic elements with
a Virtual Pin logic option assignment.

The following Tcl command demonstrates the use of the Pins: virtual filtering
option:

set name_ids_col [get_names -filter * -node_type virtual \
-observable_type pre_synthesis]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type pre_synthesis \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.4.8. Pins: all Filter

This Node Finder filter finds all pin names in your design files.

The following Tcl command demonstrates the use of the Pins: all filtering option:

set name_ids_col [get_names -filter * -node_type \
pin -observable_type pre_synthesis]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type pre_synthesis \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.9. Pins: all & Registers: post-fitting Filter

This Node Finder filter finds all pin names in your design along with all register names
from your design files that persist after physical synthesis and fitting. The Pins: all
& Registers: post-fitting filter is a combination of the Pins: all and
Registers: post-fitting filters.

The following Tcl command demonstrates the use of the Pins: all & Registers:
post-fitting filtering option:

set name_ids_col [get_names -filter * -node_type \
all_reg -observable_type post_fitter]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type post_fitter \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.10. Ports: partition

This Node Finder filter must be used after running the Fitter, to find nodes for post-fit
partition.

Note: When you run this filter before running the Fitter, a "No nodes available. Run Fitter."
message displays.

The following Tcl command demonstrates the use of the Ports: partition filtering
option:

set name_ids_col [get_names -filter * -node_type partition \
-observable_type post_fitter]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type post_fitter \
$name_id]
 append name ","

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.11. Entity instance: pre-synthesis Filter

This Node Finder filter finds a list of instances in the logical hierarchy for pre-synthesis
netlist.

The following Tcl command demonstrates the use of the Entity instance: pre-
synthesis filtering option:

set name_ids_col [get_names -filter * -node_type hierarchy \
-observable_type pre_synthesis]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type pre_synthesis \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.12. Registers: pre-synthesis Filter

This Node Finder filter finds all register names you entered in the design after Analysis
and Elaboration, but before physical synthesis performs any synthesis optimizations.

The following Tcl command demonstrates the use of the Registers: pre-
synthesis filtering option:

set name_ids_col [get_names -filter * -node_type reg \
-observable_type pre_synthesis]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type pre_synthesis \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.13. Registers: post-fitting Filter

This Node Finder filter finds all user-entered register names in your design files that
remain after physical synthesis and fitting.

The following Tcl command demonstrates the use of the Registers: post-fitting
filtering option:

set name_ids_col [get_names -filter * -node_type reg \
-observable_type post_fitter]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type post_fitter \

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.14. Post-synthesis Filter

This Node Finder filter finds all user-entered and synthesis-generated names that
remain in the design after design elaboration and physical synthesis.

The following Tcl command demonstrates the use of the Post-Synthesis filtering
option:

set name_ids_col [get_names -filter * -node_type all \
-observable_type post_synthesis]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type post_synthesis \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.15. Post-Compilation Filter

This Node Finder filter finds all user-centered and Compiler-generated names that
remain after fitting and do not have location assignments.

The following Tcl command demonstrates the use of the Post-Compilation filtering
option:

set name_ids_col [get_names -filter * -node_type all \
-observable_type post_fitter]
foreach_in_collection name_id $name_ids_col {
 set name [get_name_info -info full_path -observable_type post_fitter \
$name_id]
 append name ","
 append name [get_name_info -info node_type $name_id]
 puts $name
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.16. Signal Tap: pre-synthesis Filter

This Node Finder filter finds all internal device nodes in the pre-synthesis netlist that
can be analyzed by the Signal Tap Logic Analyzer.

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following Tcl command demonstrates the use of the Signal Tap: pre-
synthesis filtering option:

set name_ids_col [get_names -filter * -node_type all \
-observable_type pre_synthesis]
foreach_in_collection name_id $name_ids_col {
 set is_signaltap [get_name_info -info signaltapii -observable_type \
pre_synthesis $name_id]
 if {$is_signaltap == 1} {
 set name [get_name_info -use_cached_database -info full_path \
-observable_type pre_synthesis $name_id]
 append name ","
 append name [get_name_info -info node_type -observable_type \
pre_synthesis $name_id]
 puts $name
 }
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.4.17. Signal Tap: post-fitting Filter

This Node Finder filter finds all internal device nodes in the post fit netlist that can be
analyzed by the Signal Tap Logic Analyzer.

The following Tcl command demonstrates the use of the Signal Tap: post-
fitting filtering option:

set name_ids_col [get_names -filter * -node_type all \
-observable_type post_fitter]
foreach_in_collection name_id $name_ids_col {
 set is_signaltap [get_name_info -info signaltapii -observable_type \
post_fitter $name_id]
 if {$is_signaltap == 1} {
 set name [get_name_info -use_cached_database -info full_path \
-observable_type post_fitter $name_id]
 append name ","
 append name [get_name_info -info node_type -observable_type \
pre_synthesis $name_id]
 puts $name
 }
}

For more information about the get_names command, refer to The get_names
Command on page 38.

2.6.5. The get_names Command

To query a filtered output collection of all matching node name IDs found in a
compiled Quartus Prime project, use the get_names command.

To access each element of the output collection, use the Tcl command
foreach_in_collection. For get_names or foreach_in_collection command
example, type get_names -long_help or foreach_in_collection -
long_help.

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If the -node_type option is not specified, the default value is all.

• If the -observable_type option is not specified, the default value is all.

• The node type pin includes input, output, bidir, assigned, unassigned,
virtual, and pin.

• The node type qsf include names from the .qsf settings file.

• The node type all includes all node types.

• The node type all_reg includes all node types and registers post-fitting.

The value for -observable_type option can be one of the following:

Table 9. Values for observable_type Option

Observable Type Description

all Use post-Fitter information. If it is not available, post-
synthesis information is used. Else, pre-synthesis
information is used if it exists.

pre_synthesis Use pre-synthesis information.

post_synthesis Use post-synthesis information.

post_fitter Use post-Fitter information.

post_asm Use post-Assembler information. The post-Assembler
information is supported only for designs using the
HardCopy II device family.

stp_pre_synthesis Use Signal Tap pre-synthesis information.

Arguments

Following table lists the get_names command arguments:

Table 10. The get_names Command Arguments

Argument Description

-h | -help Displays a short help.

-long help Displays a long help with examples and possible return
values.

-entity<wildcard> Specifies the entity to get names from hierarchies
instantiated by the entity.

-filter<wildcard> Specifies the node's full path name and wildcard characters.

-node_type <all|comb|reg|pin|input|output|
bidir|hierarchy|mem|bus|qsf|state_machine|
assigned|unassigned|all_reg|partition|
virtual>

Filters based on the specified node type.

-observable_type <all|pre_synthesis|
post_synthesis|post_fitter|
stp_pre_synthesis>]

Filters based on the specified observable type.

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Values

Following table lists values returned by the get_names command:

Table 11. The get_names Command Return Values

Code Name Code String Returned

TCL_OK 0 INFO: operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is an open, active revision
name.

TCL_ERROR 1 ERROR: Get names cannot return <string> because the name was found in a partition
that's not the root partition. Refine your get_names search pattern to exclude child
partitions.

TCL_ERROR 1 ERROR: Compiler database does not exist for revision name: <string>. At the
minimum, run Analysis & Synthesis with the specified revision name before using this
Tcl command.

TCL_ERROR 1 ERROR: Illegal node type: <string>. Specify "all", "comb", "reg", "pin", "hierarchy", or
"bus".

TCL_ERROR 1 ERROR: Illegal observable type: <string>. Specify "all", "pre_synthesis",
"post_synthesis", or "post_fitter".

TCL_ERROR 1 ERROR: You must open a project before you can use this command.

Example Use

Search for a single post-Fitter pin with the name accel and make assignments
set accel_name_id [get_names -filter accel -node_type pin -observable_type
post_fitter]

foreach_in_collection name_id $accel_name_id {
 # Get the full path name of the node
 set target [get_name_info -info full_path $name_id]
 # Set multicycle assignment
 set_multicycle_assignment -to $target 2
 # Set location assignment
 set_location_assignment -to $target Pin_E22
 }
Search for nodes of any post-Fitter node type with name length <= 5. The
default node type is "all"
set name_ids [get_names -filter ????? -observable_type post_fitter]
foreach_in_collection name_id $name_ids {
 # Print the name id
 puts $name_id
 # Print the node type
 puts [get_name_info -info node_type $name_id]
 # Print the full path (which excludes the current focus entity from the path)
 puts [get_name_info -info full_path $name_id]
 }
Search for nodes of any post-Fitter node type that end in "eed".
The default node type is "all"
 set name_ids [get_names -filter *eed -observable_type post_fitter]
 foreach_in_collection name_id $name_ids {
 # Print the name id
 puts $name_id
 # Print the node type
 puts [get_name_info -info node_type $name_id]
 # Print the full path (which excludes the current
 # focus entity from the path)
 puts [get_name_info -info full_path $name_id]
 }

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.6. The post_message Command

To print messages that are formatted like Quartus Prime software messages, use the
post_message command. Messages printed by the post_message command appear
in the System tab of the Messages window in the Quartus Prime GUI, and are
written to standard output when scripts are run. Arguments for the post_message
command include an optional message type and a required message string.

The message type can be one of the following:

• info (default)

• extra_info

• warning

• critical_warning

• error

If you do not specify a type, Quartus Prime software defaults to info.

With the Quartus Prime software in Windows, you can color code messages displayed
at the system command prompt with the post_message command. Add the following
line to your quartus2.ini file:

DISPLAY_COMMAND_LINE_MESSAGES_IN_COLOR = on

The following example shows how to use the post_message command.

post_message -type warning "Design has gated clocks"

2.6.7. Accessing Command-Line Arguments

The global variable quartus(args) is a list of the arguments typed on the
command-line following the name of the Tcl script.

Example 1. Simple Command-Line Argument Access

The following Tcl example prints all the arguments in the quartus(args) variable:

set i 0
foreach arg $quartus(args) {
 puts "The value at index $i is $arg"
 incr i
}

Example 2. Passing Command-Line Arguments to Scripts

If you copy the script in the previous example to a file named print_args.tcl, it
displays the following output when you type the following at a command prompt.

quartus_sh -t print_args.tcl my_project 100MHz
The value at index 0 is my_project
The value at index 1 is 100MHz

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.7.1. The cmdline Package

You can use the cmdline package included with the Quartus Prime software for more
robust and self-documenting command-line argument passing. The cmdline package
supports command-line arguments with the form -<option><value>.

cmdline Package

package require cmdline
variable ::argv0 $::quartus(args)
set options {
 { "project.arg" "" "Project name" }
 { "frequency.arg" "" "Frequency" }
}
set usage "You need to specify options and values"
array set optshash [::cmdline::getoptions ::argv $options $usage]
puts "The project name is $optshash(project)"
puts "The frequency is $optshash(frequency)"

If you save those commands in a Tcl script called print_cmd_args.tcl you see the
following output when you type the following command at a command prompt.

Passing Command-Line Arguments for Scripts

quartus_sh -t print_cmd_args.tcl -project my_project -frequency 100MHz
The project name is my_project
The frequency is 100MHz

Virtually all Quartus Prime Tcl scripts must open a project. You can open a project, and
you can optionally specify a revision name with code like the following example. The
example checks whether the specified project exists. If it does, the example opens the
current revision, or the revision you specify.

Full-Featured Method to Open Projects

package require cmdline
variable ::argv0 $::quartus(args)
set options { \
{ "project.arg" "" "Project Name" } \
{ "revision.arg" "" "Revision Name" } \
}
array set optshash [::cmdline::getoptions ::argv0 $options]
Ensure the project exists before trying to open it
if {[project_exists $optshash(project)]} {
 if {[string equal "" $optshash(revision)]} {
 # There is no revision name specified, so default
 # to the current revision
 project_open $optshash(project) -current_revision
 } else {
 # There is a revision name specified, so open the
 # project with that revision
 project_open $optshash(project) -revision \
 $optshash(revision)
 }
} else {
 puts "Project $optshash(project) does not exist"
 exit 1
}
The rest of your script goes here

If you do not require this flexibility or error checking, you can use just the
project_open command.

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simple Method to Open Projects

set proj_name [lindex $argv 0]
project_open $proj_name

2.6.8. The quartus() Array

The global quartus() Tcl array includes other information about your project and the
current Quartus Prime executable that might be useful to your scripts. The scripts in
the preceding examples parsed command line arguments found in quartus(args).
For information on the other elements of the quartus() array, type the following
command at a Tcl prompt:

help -quartus

2.7. The Quartus Prime Tcl Shell in Interactive Mode Example

This section presents how to make project assignments and then compile the finite
impulse response (FIR) filter tutorial project with the quartus_sh interactive shell.

This example assumes you already have the fir_filter tutorial design files in a
project directory.

1. To run the interactive Tcl shell, type the following at the system command prompt:

quartus_sh -s

2. Create a new project called fir_filter, with a revision called filtref by
typing:

project_new -revision filtref fir_filter

Note: • If the project file and project name are the same, the Quartus Prime
software gives the revision the same name as the project.

• If a .qpf file for this project already exists, the Quartus Prime software
displays an error stating that the project already exists.

Because the revision named filtref matches the top-level file, all design files
are automatically picked up from the hierarchy tree.

3. Set a global assignment for the device:

set_global_assignment -name family <device family name>

To learn more about assignment names that you can use with the -name option,
refer to Quartus Prime Help.

Note: For assignment values that contain spaces, enclose the value in quotation
marks.

4. To compile a design, use the ::quartus::flow package, which properly exports
the new project assignments and compiles the design with the proper sequence of
the command-line executables. First, load the package:

load_package flow

It returns:

1.1

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. To perform a full compilation of the FIR filter design, use the execute_flow
command with the -compile option:

execute_flow -compile

This command compiles the FIR filter tutorial project, exporting the project
assignments and running quartus_syn, quartus_fit, quartus_asm, and
quartus_sta. This sequence of events is the same as selecting Processing ➤
Start Compilation in the Quartus Prime GUI.

6. When you are finished with a project, close it with the project_close
command.

7. To exit the interactive Tcl shell, type exit at a Tcl prompt.

2.8. The tclsh Shell

On the UNIX and Linux operating systems, the tclsh shell included with the Quartus
Prime software is initialized with a minimal PATH environment variable. As a result,
system commands might not be available within the tclsh shell because certain
directories are not in the PATH environment variable.

To include other directories in the path searched by the tclsh shell, set the
QUARTUS_INIT_PATH environment variable before running the tclsh shell. Directories
in the QUARTUS_INIT_PATH environment variable are searched by the tclsh shell
when you execute a system command.

2.9. Tcl Scripting Basic Examples

The core Tcl commands support variables, control structures, and procedures.
Additionally, there are commands for accessing the file system and network sockets,
and running other programs. You can create platform-independent graphical interfaces
with the Tk widget set.

Tcl commands are executed immediately as they are typed in an interactive Tcl shell.
You can also create scripts (including the examples in this chapter) in files and run
them with the Quartus Prime executables or with the tclsh shell.

2.9.1. Hello World Example

The following shows the basic “Hello world” example in Tcl:

puts "Hello world"

Use double quotation marks to group the words hello and world as one argument.
Double quotation marks allow substitutions to occur in the group. Substitutions can be
simple variable substitutions, or the result of running a nested command. Use curly
braces {} for grouping when you want to prevent substitutions.

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.2. Variables

Assign a value to a variable with the set command. You do not have to declare a
variable before using it. Tcl variable names are case-sensitive.

set a 1

To access the contents of a variable, use a dollar sign (“$”) before the variable name.
The following example prints "Hello world" in a different way.

set a Hello
set b world
puts "$a $b"

2.9.3. Substitutions

Tcl performs three types of substitution:

• Variable value substitution

• Nested command substitution

• Backslash substitution

2.9.3.1. Variable Value Substitution

Variable value substitution, refers to accessing the value stored in a variable with a
dollar sign (“$”) before the variable name.

2.9.3.2. Nested Command Substitution

Nested command substitution refers to how the Tcl interpreter evaluates Tcl code in
square brackets. The Tcl interpreter evaluates nested commands, starting with the
innermost nested command, and commands nested at the same level from left to
right. Each nested command result is substituted in the outer command.

set a [string length foo]

2.9.3.3. Backslash Substitution

Backslash substitution allows you to quote reserved characters in Tcl, such as dollar
signs (“$”) and braces (“[]”). You can also specify other special ASCII characters
like tabs and new lines with backslash substitutions. A backslash before a character
tells the TCL interpreter to treat the next character as a literal if the character is not
the last character on the line.

puts "This is a \$ special character"

puts "This is a\
$ special character and line continuation"

puts "This is backslash \is ignored"

puts "This is backslash\
 continued on next line"

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.4. Arithmetic

Use the expr command to perform arithmetic calculations. Use curly braces (“{ }”)
to group the arguments of this command for greater efficiency and numeric precision.

set a 5
set b [expr { $a + sqrt(2) }]

The Quartus Prime software supports all standard Tcl boolean and arithmetic
operators, such as && (AND), || (OR), ! (NOT), and comparison operators such as <
(less than), > (greater than), and == (equal to).

2.9.5. Lists

A Tcl list is a series of values. Supported list operations include creating lists,
appending lists, extracting list elements, computing the length of a list, sorting a list,
and more.

set a { 1 2 3 }

You can use the lindex command to extract information at a specific index in a list.
Indexes are zero-based. You can use the index end to specify the last element in the
list, or the index end-<n> to count from the end of the list. For example, to print the
second element (at index 1) in the list stored in a use the following code.

puts [lindex $a 1]

The llength command returns the length of a list.

puts [llength $a]

The lappend command appends elements to a list. If a list does not already exist, the
list you specify is created. The list variable name is not specified with a dollar sign
(“$”).

lappend a 4 5 6

2.9.6. Arrays

Arrays are similar to lists except that they use a string-based index. Tcl arrays are
implemented as hash tables. You can create arrays by setting each element
individually or with the array set command.

To set an element with an index of Mon to a value of Monday in an array called days,
use the following command:

set days(Mon) Monday

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The array set command requires a list of index/value pairs. This example sets the
array called days:

array set days { Sun Sunday Mon Monday Tue Tuesday\
 Wed Wednesday Thu Thursday Fri Friday Sat Saturday }

set day_abbreviation Mon
puts $days($day_abbreviation)

Use the array names command to get a list of all the indexes in a particular array.
The index values are not returned in any specified order. The following example is one
way to iterate over all the values in an array.

foreach day [array names days] {
 puts "The abbreviation $day corresponds to the day name $days($day)"
}

Arrays are a very flexible way of storing information in a Tcl script and are a good way
to build complex data structures.

2.9.7. Control Structures

Tcl supports common control structures, including if-then-else conditions and for,
foreach, and while loops. The position of the curly braces as shown in the following
examples ensures the control structure commands are executed efficiently and
correctly. The following example prints whether the value of variable a positive,
negative, or zero.

 If-Then-Else Structure

if { $a > 0 } { puts "The value is positive"
} elseif { $a < 0 } {
 puts "The value is negative"
} else {
 puts "The value is zero"
}

The following example uses a for loop to print each element in a list.

For Loop

set a { 1 2 3 }
for { set i 0 } { $i < [llength $a] } { incr i } {
 puts "The list element at index $i is [lindex $a $i]"
}

The following example uses a foreach loop to print each element in a list.

 foreach Loop

set a { 1 2 3 }
foreach element $a {
 puts "The list element is $element"
}

The following example uses a while loop to print each element in a list.

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

while Loop

set a { 1 2 3 }
set i 0
while { $i < [llength $a] } { puts "The list element at index $i is [lindex $a
$i]"
 incr i
}

You do not have to use the expr command in boolean expressions in control structure
commands because they invoke the expr command automatically.

2.9.8. Procedures

Use the proc command to define a Tcl procedure (known as a subroutine or function
in other scripting and programming languages). The scope of variables in a procedure
is local to the procedure. If the procedure returns a value, use the return command
to return the value from the procedure. The following example defines a procedure
that multiplies two numbers and returns the result.

 Simple Procedure

proc multiply { x y } {
 set product [expr { $x * $y }]
 return $product
}

The following example shows how to use the multiply procedure in your code. You
must define a procedure before your script calls it.

 Using a Procedure

proc multiply { x y } {
 set product [expr { $x * $y }]
 return $product
}
set a 1
set b 2
puts [multiply $a $b]

Define procedures near the beginning of a script. If you want to access global
variables in a procedure, use the global command in each procedure that uses a
global variable.

 Accessing Global Variables

proc print_global_list_element { i } {
 global my_data
 puts "The list element at index $i is [lindex $my_data $i]"
}
set my_data { 1 2 3}
print_global_list_element 0

2.9.9. File I/O

Tcl includes commands to read from and write to files. You must open a file before you
can read from or write to it, and close it when the read and write operations are done.

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To open a file, use the open command; to close a file, use the close command.
When you open a file, specify its name and the mode in which to open it. If you do not
specify a mode, Tcl defaults to read mode. To write to a file, specify w for write mode.

Open a File for Writing

set output [open myfile.txt w]

Tcl supports other modes, including appending to existing files and reading from and
writing to the same file.

The open command returns a file handle to use for read or write access. You can use
the puts command to write to a file by specifying a file handle.

Write to a File

set output [open myfile.txt w]
puts $output "This text is written to the file."
close $output

You can read a file one line at a time with the gets command. The following example
uses the gets command to read each line of the file and then prints it out with its line
number.

Read from a File

set input [open myfile.txt]
set line_num 1
while { [gets $input line] >= 0 } {
 # Process the line of text here
 puts "$line_num: $line"
 incr line_num
}
close $input

2.9.10. Syntax and Comments

Arguments to Tcl commands are separated by white space, and Tcl commands are
terminated by a newline character or a semicolon. You must use backslashes when a
Tcl command extends more than one line. The backslash (\) must be the last
character in the line to designate line extension. If the backslash is followed by any
other character including a space, that character is treated as a literal.

Tcl uses the hash or pound character (#) to begin comments. The # character must
begin a comment. If you prefer to include comments on the same line as a command,
be sure to terminate the command with a semicolon before the # character. The
following example is a valid line of code that includes a set command and a
comment.

set a 1;# Initializes a

Without the semicolon, the command is invalid because the set command does not
terminate until the new line after the comment.

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Tcl interpreter counts curly braces inside comments, which can lead to errors that
are difficult to track down. The following example causes an error because of
unbalanced curly braces.

if { $x > 0 } {
if { $y > 0 } {
 # code here
}

2.9.11. External References

For more information about Tcl, refer to the following sources:

• Brent B. Welch and Ken Jones, and Jeffery Hobbs, Practical Programming in Tcl
and Tk (Upper Saddle River: Prentice Hall, 2003)

• John Ousterhout and Ken Jones, Tcl and the Tk Toolkit (Boston: Addison-Wesley
Professional, 2009)

• Mark Harrison and Michael McLennan, Effective Tcl/Tk Programming: Writing
Better Programs in Tcl and Tk (Boston: Addison-Wesley Professional, 1997)

Related Information

www.tcl.tk
Tcl Developer Xchange

2.10. Tcl Scripting Revision History

The following revision history applies to this chapter:

Table 12. Document Revision History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied phase I Altera rebranding throughout.

2023.10.02 23.3 • Updated The Tcl Console Window topic for Tcl command echo and log
file save.

2022.04.03 23.1 • Updated name of Intel Agilex 7 device family.

2020.12.14 20.4 • Revised "Tcl Scripting" topic to include link to new "Tcl Commands and
Packages" reference.

• Revised "Tcl Packages" topic for latest supported packages.

2019.06.28 19.1 Minor correction in The get_names Command

2019.04.01 19.1 • Added Node Finder Tcl commands.
• Added the get_names command.
• Rectified code snippet formatting in Compile All Revisions, Arrays, and

Control Structures topics.

2018.05.07 18.0.0 • Removed deprecated options.
• External reference links updated.
• Corrected typos and made minor content fixes.

2016.10.31 16.1.0 • Implemented Intel rebranding.

continued...

2. Tcl Scripting

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

50

https://www.tcl.tk
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Quartus Prime
Version

Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.
• Updated the list of Tcl packages in the Quartus Prime Tcl Packages

section.
• Updated the Quartus Prime Tcl API Help section:

— Updated the Tcl Help Output

June 2014 14.0.0 Updated the format.

June 2012 12.0.0 • Removed survey link.

November 2011 11.0.1 • Template update
• Updated supported version of Tcl in the section “Tool Command

Language.”
• minor editorial changes

May 2011 11.0.0 Minor updates throughout document.

December 2010 10.1.0 Template update
Updated to remove tcl packages used by the Classic Timing Analyzer

July 2010 10.0.0 Minor updates throughout document.

November 2009 9.1.0 • Removed Logic Lock example.
• Added the incremental_compilation, insystem_source_probe, and rtl

packages to Table 3-1 and Table 3-2.
• Added quartus_map to table 3-2.

March 2009 9.0.0 • Removed the “EDA Tool Assignments” section
• Added the section “Compile All Revisions” on page 3–9
• Added the section “Using the tclsh Shell” on page 3–20

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 Updated references.

2. Tcl Scripting

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. TCL Commands and Packages

3.1. TCL Commands and Packages Summary

Tcl Command Tcl Package Package Version

get_back_annotation_assignments backannotate 1.1

logiclock_back_annotate backannotate 1.1

activate_link board 1.0

check_online_design_validity board 1.0

deploy_par_file board 1.0

download_par_file board 1.0

get_board_design_path board 1.0

get_board_devkits board 1.0

get_board_families board 1.0

get_board_info board 1.0

get_board_vendors board 1.0

get_design_description board 1.0

get_design_development_kits board 1.0

get_design_documents_info board 1.0

get_design_download_link board 1.0

get_design_families board 1.0

get_design_info board 1.0

get_design_quartus_versions board 1.0

get_design_rich_description board 1.0

get_ui_file board 1.0

launch_qsys board 1.0

load_design_info board 1.0

reset_board_info board 1.0

apply_assignments bpps 1.0

check_plan bpps 1.0

export_constraints_to_qsf bpps 1.0

continued...

683432 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Tcl Command Tcl Package Package Version

get_cell_info bpps 1.0

get_device bpps 1.0

get_hdbpath_from_id bpps 1.0

get_id_from_hdbpath bpps 1.0

get_location_info bpps 1.0

get_placement bpps 1.0

get_placement_info bpps 1.0

get_placements bpps 1.0

get_placements_of_group bpps 1.0

harden_cell bpps 1.0

harden_cells bpps 1.0

initialize bpps 1.0

load_floorplan bpps 1.0

place_cells bpps 1.0

read_tpl_placement bpps 1.0

remove_invalid_reports bpps 1.0

report_all bpps 1.0

report_cell_connectivity bpps 1.0

report_cell_placement_reasons bpps 1.0

report_cells bpps 1.0

report_clocks bpps 1.0

report_legal_cell_locations bpps 1.0

report_location_types bpps 1.0

report_locations bpps 1.0

report_regions bpps 1.0

report_summary bpps 1.0

reset_plan bpps 1.0

save_floorplan bpps 1.0

save_pin_assignments bpps 1.0

select_dr_ips bpps 1.0

set_mode bpps 1.0

shutdown bpps 1.0

soften_cell bpps 1.0

soften_cells bpps 1.0

undo_last_placement bpps 1.0

unplace_cells bpps 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

update_pdpw bpps 1.0

validate_placement bpps 1.0

write_plan bpps 1.0

write_tpl_placement bpps 1.0

check_node chip_planner 2.0

close_chip_planner chip_planner 2.0

design_has_ace_support chip_planner 2.0

design_has_encrypted_ip chip_planner 2.0

get_info_parameters chip_planner 2.0

get_iports chip_planner 2.0

get_node_by_name chip_planner 2.0

get_node_info chip_planner 2.0

get_nodes chip_planner 2.0

get_oports chip_planner 2.0

get_port_by_type chip_planner 2.0

get_port_info chip_planner 2.0

get_sp_pin_list chip_planner 2.0

get_tile_power_setting chip_planner 2.0

read_netlist chip_planner 2.0

set_batch_mode chip_planner 2.0

add_to_collection dcmd_dni 1.0

all_clocks dcmd_dni 1.0

all_fanin dcmd_dni 1.0

all_fanout dcmd_dni 1.0

all_inputs dcmd_dni 1.0

all_outputs dcmd_dni 1.0

all_registers dcmd_dni 1.0

append_to_collection dcmd_dni 1.0

color dcmd_dni 1.0

copy_collection dcmd_dni 1.0

create_clock dcmd_dni 1.0

current_design dcmd_dni 1.0

current_instance dcmd_dni 1.0

delete_stale_sandboxes dcmd_dni 1.0

filter_collection dcmd_dni 1.0

get_cells dcmd_dni 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

get_clocks dcmd_dni 1.0

get_designs dcmd_dni 1.0

get_generated_clocks dcmd_dni 1.0

get_nets dcmd_dni 1.0

get_pins dcmd_dni 1.0

get_ports dcmd_dni 1.0

get_property dcmd_dni 1.0

highlight dcmd_dni 1.0

index_collection dcmd_dni 1.0

is_dni_mode dcmd_dni 1.0

is_dni_mode_for_developer_testing dcmd_dni 1.0

list_properties dcmd_dni 1.0

load_design dcmd_dni 1.0

read_sdc dcmd_dni 1.0

remove_from_collection dcmd_dni 1.0

selection dcmd_dni 1.0

set_property dcmd_dni 1.0

set_time_format dcmd_dni 1.0

set_time_unit dcmd_dni 1.0

sizeof_collection dcmd_dni 1.0

sort_collection dcmd_dni 1.0

unload_design dcmd_dni 1.0

write_sdc dcmd_dni 1.0

commit_design design 1.0

convert_partition design 1.0

create_assignment design 1.0

delete_assignments design 1.0

disable_assignments design 1.0

enable_assignments design 1.0

export_design design 1.0

export_partition design 1.0

extract_metadata design 1.0

get_assignment_info design 1.0

get_assignment_names design 1.0

get_assignments design 1.0

get_entity_names design 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

get_instances design 1.0

import_design design 1.0

import_partition design 1.0

list_valid_snapshot_names design 1.0

load_design design 1.0

report_assignments design 1.0

set_assignment_info design 1.0

get_family_list device 1.0

get_part_info device 1.0

get_part_list device 1.0

report_device_info device 1.0

report_family_info device 1.0

report_part_info device 1.0

create_generated_clock dni_sdc 1.5

remove_clock_groups dni_sdc 1.5

remove_clock_latency dni_sdc 1.5

remove_clock_uncertainty dni_sdc 1.5

remove_disable_timing dni_sdc 1.5

remove_input_delay dni_sdc 1.5

remove_output_delay dni_sdc 1.5

set_clock_groups dni_sdc 1.5

set_clock_latency dni_sdc 1.5

set_clock_uncertainty dni_sdc 1.5

set_data_delay dni_sdc 1.5

set_disable_timing dni_sdc 1.5

set_false_path dni_sdc 1.5

set_input_delay dni_sdc 1.5

set_input_transition dni_sdc 1.5

set_max_delay dni_sdc 1.5

set_max_skew dni_sdc 1.5

set_max_time_borrow dni_sdc 1.5

set_min_delay dni_sdc 1.5

set_multicycle_path dni_sdc 1.5

set_net_delay dni_sdc 1.5

set_operating_conditions dni_sdc 1.5

set_output_delay dni_sdc 1.5

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

set_sense dni_sdc 1.5

set_timing_derate dni_sdc 1.5

add_check_op drc 1.0

add_check_parameter drc 1.0

add_object drc 1.0

add_object_with_properties drc 1.0

add_property drc 1.0

add_rule drc 1.0

add_rule_violation drc 1.0

add_violation_record drc 1.0

add_waiver drc 1.0

check_design drc 1.0

delete_waivers drc 1.0

get_objects drc 1.0

get_option drc 1.0

get_property drc 1.0

get_stage_info drc 1.0

get_waivers drc 1.0

list_properties drc 1.0

report_waivers drc 1.0

set_option drc 1.0

set_property drc 1.0

should_run_drc drc 1.0

update_check_op drc 1.0

update_rule drc 1.0

adjust_pll_refclk eco 1.0

create_new_node eco 1.0

create_wirelut eco 1.0

report_partitions eco 1.0

eco_reroute eco 1.0

eco_unload_design eco 1.0

fitter_report_timing eco 1.0

fitter_timing_summary eco 1.0

get_available_snapshots eco 1.0

get_eco_checkpoint eco 1.0

get_loaded_snapshot eco 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

get_lutmask_equation eco 1.0

get_node_location eco 1.0

make_connection eco 1.0

modify_io_current_strength eco 1.0

modify_io_delay_chain eco 1.0

modify_io_slew_rate eco 1.0

modify_lutmask eco 1.0

place_node eco 1.0

remove_connection eco 1.0

remove_node eco 1.0

report_connections eco 1.0

report_legal_locations eco 1.0

report_nodes_at_location eco 1.0

report_ports eco 1.0

report_routing eco 1.0

report_unplaced_nodes eco 1.0

restore_eco_checkpoint eco 1.0

unplace_node eco 1.0

update_mif_files eco 1.0

apply_setting external_memif_toolkit 1.0

calibrate_termination external_memif_toolkit 1.0

configure_driver external_memif_toolkit 1.0

create_connection_report external_memif_toolkit 1.0

create_toolkit_report external_memif_toolkit 1.0

driver_margining external_memif_toolkit 1.0

establish_connection external_memif_toolkit 1.0

generate_eye_diagram external_memif_toolkit 1.0

get_connection_commands external_memif_toolkit 1.0

get_connection_info external_memif_toolkit 1.0

get_connection_interfaces external_memif_toolkit 1.0

get_connection_report_info external_memif_toolkit 1.0

get_connection_report_types external_memif_toolkit 1.0

get_connection_types external_memif_toolkit 1.0

get_connections external_memif_toolkit 1.0

get_device_names external_memif_toolkit 1.0

get_hardware_names external_memif_toolkit 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

get_setting_types external_memif_toolkit 1.0

get_toolkit_report_types external_memif_toolkit 1.0

initialize_connections external_memif_toolkit 1.0

link_project_to_device external_memif_toolkit 1.0

read_setting external_memif_toolkit 1.0

reindex_connections external_memif_toolkit 1.0

reset_tg2 external_memif_toolkit 1.0

run_connection_command external_memif_toolkit 1.0

set_active_interface external_memif_toolkit 1.0

set_stress_pattern external_memif_toolkit 1.0

terminate_connection external_memif_toolkit 1.0

terminate_connections external_memif_toolkit 1.0

unlink_project_from_device external_memif_toolkit 1.0

write_connection_target_report external_memif_toolkit 1.0

check fif 1.0

dump fif 1.0

dump_cram_frame fif 1.0

dump_mem fif 1.0

dump_pr_bitstream fif 1.0

generate fif 1.0

get_frame_count fif 1.0

get_frame_size fif 1.0

get_sector_information_sdm_based_fp
ga

fif 1.0

get_sensitive_location fif 1.0

get_sensitive_location_sdm_based_fpg
a

fif 1.0

setup fif 1.0

setup_sdm_based_fpga fif 1.0

terminate fif 1.0

add_object flng 1.0

add_property flng 1.0

bind_flow flng 1.0

delete_object flng 1.0

get_default_flow_run_name flng 1.0

get_flow_list flng 1.0

get_next_available_id flng 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

get_object flng 1.0

get_objects flng 1.0

get_option flng 1.0

get_property flng 1.0

get_task_command flng 1.0

get_task_status_property flng 1.0

init_repository flng 1.0

list_properties flng 1.0

monitor_flow flng 1.0

run_flow flng 1.0

run_flow_command flng 1.0

set_option flng 1.0

set_property flng 1.0

write_task_assignment_digest flng 1.0

write_task_checkpoint_written flng 1.0

write_task_finished flng 1.0

write_task_started flng 1.0

execute_flow flow 1.1

execute_module flow 1.1

get_flow_templates flow 1.1

get_status_db_property flow 1.1

write_flow_assignment_digest flow 1.1

write_flow_finished flow 1.1

write_flow_started flow 1.1

write_flow_template flow 1.1

begin_memory_edit insystem_memory_edit 1.0

end_memory_edit insystem_memory_edit 1.0

get_editable_mem_instances insystem_memory_edit 1.0

read_content_from_memory insystem_memory_edit 1.0

save_content_from_memory_to_file insystem_memory_edit 1.0

update_content_to_memory_from_file insystem_memory_edit 1.0

write_content_to_memory insystem_memory_edit 1.0

end_insystem_source_probe insystem_source_probe 1.0

get_insystem_source_probe_instance_i
nfo

insystem_source_probe 1.0

read_probe_data insystem_source_probe 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

read_source_data insystem_source_probe 1.0

start_insystem_source_probe insystem_source_probe 1.0

write_source_data insystem_source_probe 1.0

analyze_files interactive_synthesis 1.0

check_rtl_connections interactive_synthesis 1.0

dissolve_rtl_partition interactive_synthesis 1.0

dynamic_report interactive_synthesis 1.0

elaborate interactive_synthesis 1.0

get_entities interactive_synthesis 1.0

get_rtl_partition_name interactive_synthesis 1.0

get_rtl_partitions interactive_synthesis 1.0

init_synthesis_constraints_propagation
_reporter

interactive_synthesis 1.0

link_rtl_design interactive_synthesis 1.0

print_ipxact interactive_synthesis 1.0

report_rtl_assignments interactive_synthesis 1.0

report_rtl_parameters interactive_synthesis 1.0

report_rtl_stats interactive_synthesis 1.0

reset_rtl_design interactive_synthesis 1.0

sasic interactive_synthesis 1.0

save_rtl_design interactive_synthesis 1.0

set_sasic_handoff_flow interactive_synthesis 1.0

synthesize interactive_synthesis 1.0

uniquify interactive_synthesis 1.0

write_rtl_report interactive_synthesis 1.0

get_device_speed ipdrc 1.0

get_ip_hpaths ipdrc 1.0

get_ip_name ipdrc 1.0

get_ip_pma_modulation ipdrc 1.0

get_ip_speed ipdrc 1.0

get_ip_type ipdrc 1.0

get_ip_xcvr_type ipdrc 1.0

set_ip_info ipdrc 1.0

clear_ip_generation_dirs ipgen 1.0

generate_ip_file ipgen 1.0

generate_project_ip_files ipgen 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

get_project_ip_files ipgen 1.0

compute_pll iptclgen 1.0

generate_vhdl_simgen_model iptclgen 1.0

parse_hdl iptclgen 1.0

parse_tcl iptclgen 1.0

close_device jtag 1.0

device_dr_shift jtag 1.0

device_ir_shift jtag 1.0

device_lock jtag 1.0

device_run_test_idle jtag 1.0

device_unlock jtag 1.0

device_virtual_dr_shift jtag 1.0

device_virtual_ir_shift jtag 1.0

get_device_names jtag 1.0

get_hardware_names jtag 1.0

open_device jtag 1.0

begin_logic_analyzer_interface_control logic_analyzer_interface 1.0

change_bank_to_output_pin logic_analyzer_interface 1.0

end_logic_analyzer_interface_control logic_analyzer_interface 1.0

get_current_state_of_output_pin logic_analyzer_interface 1.0

tristate_output_pin logic_analyzer_interface 1.0

checksum misc 1.0

disable_natural_bus_naming misc 1.0

enable_natural_bus_naming misc 1.0

escape_brackets misc 1.0

foreach_in_collection misc 1.0

get_collection_size misc 1.0

get_environment_info misc 1.0

get_message_count misc 1.0

init_tk misc 1.0

load misc 1.0

load_package misc 1.0

post_message misc 1.0

qerror misc 1.0

qexec misc 1.0

qexit misc 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

record_tcl_cmd misc 1.0

stopwatch misc 1.0

get_assignment names 1.0

set_assignment names 1.0

initialize periph 1.0

shutdown periph 1.0

check_plan periph 1.0

get_cell_info periph 1.0

get_cells periph 1.0

get_location_info periph 1.0

get_placement_info periph 1.0

get_placements periph 1.0

load_floorplan periph 1.0

place_cells periph 1.0

remove_invalid_reports periph 1.0

report_all periph 1.0

report_cell_connectivity periph 1.0

report_cell_placement_reasons periph 1.0

report_cells periph 1.0

report_clocks periph 1.0

report_legal_cell_locations periph 1.0

report_location_types periph 1.0

report_locations periph 1.0

report_noc_performance periph 1.0

report_regions periph 1.0

report_summary periph 1.0

reset_plan periph 1.0

save_floorplan periph 1.0

set_clock_type periph 1.0

undo_last_placement periph 1.0

unplace_cells periph 1.0

update_pdpw periph 1.0

update_plan periph 1.0

write_plan periph 1.0

test pfg 1.0

create_revision proj_asgn 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

generate_project_tcl proj_asgn 1.0

get_name_info proj_asgn 1.0

get_names proj_asgn 1.0

get_top_level_entity proj_asgn 1.0

is_fitter_in_qhd_mode proj_asgn 1.0

close_side_revision project 7.0

create_revision project 7.0

delete_revision project 7.0

execute_assignment_batch project 7.0

export_assignments project 7.0

generate_project_tcl project 7.0

get_all_assignment_names project 7.0

get_all_assignments project 7.0

get_all_global_assignments project 7.0

get_all_instance_assignments project 7.0

get_all_parameters project 7.0

get_all_quartus_defaults project 7.0

get_all_user_option_names project 7.0

get_assignment_info project 7.0

get_assignment_name_info project 7.0

get_current_project project 7.0

get_current_revision project 7.0

get_database_version project 7.0

get_global_assignment project 7.0

get_instance_assignment project 7.0

get_location_assignment project 7.0

get_name_info project 7.0

get_names project 7.0

get_parameter project 7.0

get_project_directory project 7.0

get_project_revisions project 7.0

get_revision_description project 7.0

get_top_level_entity project 7.0

get_user_option project 7.0

is_database_version_compatible project 7.0

is_fitter_in_qhd_mode project 7.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

is_project_open project 7.0

open_side_revision project 7.0

project_archive project 7.0

project_clean project 7.0

project_close project 7.0

project_exists project 7.0

project_new project 7.0

project_open project 7.0

project_restore project 7.0

remove_all_global_assignments project 7.0

remove_all_instance_assignments project 7.0

remove_all_parameters project 7.0

resolve_file_path project 7.0

revision_exists project 7.0

set_current_revision project 7.0

set_global_assignment project 7.0

set_high_effort_fmax_optimization_ass
ignments

project 7.0

set_instance_assignment project 7.0

set_io_assignment project 7.0

set_location_assignment project 7.0

set_parameter project 7.0

set_power_file_assignment project 7.0

set_revision_description project 7.0

set_user_option project 7.0

test_assignment_trait project 7.0

close_project project2 1.0

open_project project2 1.0

assignment_group project_ui 2.0

delete_revision project_ui 2.0

execute_assignment_batch project_ui 2.0

export_assignments project_ui 2.0

get_all_assignment_names project_ui 2.0

get_all_assignments project_ui 2.0

get_all_global_assignments project_ui 2.0

get_all_instance_assignments project_ui 2.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

get_all_parameters project_ui 2.0

get_all_quartus_defaults project_ui 2.0

get_all_user_option_names project_ui 2.0

get_assignment_info project_ui 2.0

get_assignment_name_info project_ui 2.0

get_current_project project_ui 2.0

get_current_revision project_ui 2.0

get_global_assignment project_ui 2.0

get_instance_assignment project_ui 2.0

get_location_assignment project_ui 2.0

get_parameter project_ui 2.0

get_project_directory project_ui 2.0

get_project_revisions project_ui 2.0

get_user_option project_ui 2.0

is_project_open project_ui 2.0

project_archive project_ui 2.0

project_close project_ui 2.0

project_exists project_ui 2.0

project_new project_ui 2.0

project_open project_ui 2.0

project_restore project_ui 2.0

remove_all_global_assignments project_ui 2.0

remove_all_instance_assignments project_ui 2.0

remove_all_parameters project_ui 2.0

resolve_file_path project_ui 2.0

revision_exists project_ui 2.0

set_current_revision project_ui 2.0

set_global_assignment project_ui 2.0

set_instance_assignment project_ui 2.0

set_io_assignment project_ui 2.0

set_location_assignment project_ui 2.0

set_parameter project_ui 2.0

set_power_file_assignment project_ui 2.0

set_user_option project_ui 2.0

test_assignment_trait project_ui 2.0

add_projects_from_archive qed 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

check_properties qed 1.0

check_properties_of_projects qed 1.0

compile qed 1.0

configure_local_compute_spec qed 1.0

configure_lsf_compute_spec qed 1.0

configure_pbspro_compute_spec qed 1.0

configure_slurm_compute_spec qed 1.0

configure_ssh_compute_spec qed 1.0

create_object qed 1.0

delete_object qed 1.0

delete_object_report_panel qed 1.0

disconnect qed 1.0

find_projects_under_directory qed 1.0

fork_new_revision qed 1.0

fork_new_seeds qed 1.0

generate_report qed 1.0

get_all_properties_dict qed 1.0

get_default_group_id qed 1.0

get_object_report_panel_contents qed 1.0

get_object_report_panel_names qed 1.0

get_objects qed 1.0

get_project_report_panel_names qed 1.0

get_property qed 1.0

get_property_of_projects qed 1.0

get_return_value qed 1.0

get_user_data qed 1.0

has_property qed 1.0

import_report_panel qed 1.0

import_report_panel_names qed 1.0

is_connected qed 1.0

is_workspace_open qed 1.0

launch_connection qed 1.0

list_properties qed 1.0

load_db_state qed 1.0

open_project qed 1.0

pop_from_property qed 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

push_to_property qed 1.0

refresh_reports qed 1.0

run_analysis qed 1.0

run_command qed 1.0

sanitize_workspace qed 1.0

set_properties qed 1.0

set_property qed 1.0

set_user_data qed 1.0

wait_for_ready qed 1.0

workspace_close qed 1.0

workspace_new qed 1.0

workspace_open qed 1.0

write_object_reports_to_file qed 1.0

test qmtf 1.0

qshm_connect_to_quartus qshm 1.0

qshm_disconnect_from_quartus qshm 1.0

qshm_dispose_client qshm 1.0

qshm_get_hub_key_prefix qshm 1.0

qshm_get_parent_hub_key qshm 1.0

qshm_obtain_client qshm 1.0

qshm_send_request qshm 1.0

qshm_send_server_state_query qshm 1.0

qshm_set_context qshm 1.0

add_row_to_table report 2.1

create_report_panel report 2.1

delete_report_panel report 2.1

get_fitter_resource_usage report 2.1

get_number_of_columns report 2.1

get_number_of_rows report 2.1

get_report_panel_column_index report 2.1

get_report_panel_data report 2.1

get_report_panel_id report 2.1

get_report_panel_names report 2.1

get_report_panel_row report 2.1

get_report_panel_row_index report 2.1

load_report report 2.1

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

read_xml_report report 2.1

refresh_report_window report 2.1

save_report_database report 2.1

unload_report report 2.1

write_report_panel report 2.1

write_xml_report report 2.1

all_clocks sdc 1.5

all_inputs sdc 1.5

all_outputs sdc 1.5

all_registers sdc 1.5

create_clock sdc 1.5

create_generated_clock sdc 1.5

derive_clocks sdc 1.5

get_cells sdc 1.5

get_clocks sdc 1.5

get_nets sdc 1.5

get_pins sdc 1.5

get_ports sdc 1.5

remove_clock_groups sdc 1.5

remove_clock_latency sdc 1.5

remove_clock_uncertainty sdc 1.5

remove_disable_timing sdc 1.5

remove_input_delay sdc 1.5

remove_output_delay sdc 1.5

reset_design sdc 1.5

set_clock_groups sdc 1.5

set_clock_latency sdc 1.5

set_clock_uncertainty sdc 1.5

set_disable_timing sdc 1.5

set_false_path sdc 1.5

set_input_delay sdc 1.5

set_input_transition sdc 1.5

set_max_delay sdc 1.5

set_max_time_borrow sdc 1.5

set_min_delay sdc 1.5

set_multicycle_path sdc 1.5

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

set_output_delay sdc 1.5

derive_clock_uncertainty sdc_ext 2.0

derive_pll_clocks sdc_ext 2.0

disable_min_pulse_width sdc_ext 2.0

get_active_clocks sdc_ext 2.0

get_fanins sdc_ext 2.0

get_fanouts sdc_ext 2.0

get_keepers sdc_ext 2.0

get_nodes sdc_ext 2.0

get_partitions sdc_ext 2.0

get_registers sdc_ext 2.0

remove_annotated_delay sdc_ext 2.0

remove_clock sdc_ext 2.0

reset_timing_derate sdc_ext 2.0

set_active_clocks sdc_ext 2.0

set_annotated_delay sdc_ext 2.0

set_data_delay sdc_ext 2.0

set_max_skew sdc_ext 2.0

set_net_delay sdc_ext 2.0

set_scc_mode sdc_ext 2.0

set_time_format sdc_ext 2.0

set_timing_derate sdc_ext 2.0

add_to_collection sta 1.0

check_timing sta 1.0

create_report_histogram sta 1.0

create_slack_histogram sta 1.0

create_timing_netlist sta 1.0

create_timing_summary sta 1.0

delete_sta_collection sta 1.0

delete_timing_netlist sta 1.0

enable_ccpp_removal sta 1.0

enable_sdc_extension_collections sta 1.0

get_available_operating_conditions sta 1.0

get_cell_info sta 1.0

get_clock_domain_info sta 1.0

get_clock_fmax_info sta 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

get_clock_info sta 1.0

get_clock_pair_info sta 1.0

get_datasheet sta 1.0

get_default_sdc_file_names sta 1.0

get_edge_info sta 1.0

get_entity_instances sta 1.0

get_min_pulse_width sta 1.0

get_net_info sta 1.0

get_node_info sta 1.0

get_object_info sta 1.0

get_operating_conditions sta 1.0

get_operating_conditions_info sta 1.0

get_partition_info sta 1.0

get_path sta 1.0

get_path_info sta 1.0

get_pin_info sta 1.0

get_point_info sta 1.0

get_port_info sta 1.0

get_register_info sta 1.0

get_timing_paths sta 1.0

import_sdc sta 1.0

is_post_syn_sta sta 1.0

locate sta 1.0

print_total_sdc_processing_time sta 1.0

query_collection sta 1.0

read_sdc sta 1.0

register_delete_timing_netlist_callback sta 1.0

remove_from_collection sta 1.0

report_advanced_io_timing sta 1.0

report_asynch_cdc sta 1.0

report_bottleneck sta 1.0

report_cdc_viewer sta 1.0

report_clock_fmax_summary sta 1.0

report_clock_network sta 1.0

report_clock_transfers sta 1.0

report_clocks sta 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

report_datasheet sta 1.0

report_ddr sta 1.0

report_exceptions sta 1.0

report_ini_usage sta 1.0

report_logic_depth sta 1.0

report_max_clock_skew sta 1.0

report_max_skew sta 1.0

report_metastability sta 1.0

report_min_pulse_width sta 1.0

report_neighbor_paths sta 1.0

report_net_delay sta 1.0

report_net_timing sta 1.0

report_partitions sta 1.0

report_path sta 1.0

report_pipelining_info sta 1.0

report_register_spread sta 1.0

report_register_statistics sta 1.0

report_retiming_restrictions sta 1.0

report_route_net_of_interest sta 1.0

report_rskm sta 1.0

report_sdc sta 1.0

report_skew sta 1.0

report_tccs sta 1.0

report_timing sta 1.0

report_timing_by_source_files sta 1.0

report_timing_tree sta 1.0

report_ucp sta 1.0

set_operating_conditions sta 1.0

timing_netlist_exist sta 1.0

update_timing_netlist sta 1.0

use_timing_analyzer_style_escaping sta 1.0

write_sdc sta 1.0

close_session stp 1.0

export_data_log stp 1.0

open_session stp 1.0

run stp 1.0

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Command Tcl Package Package Version

run_multiple_end stp 1.0

run_multiple_start stp 1.0

stop stp 1.0

is_place tdc 1.0

is_plan tdc 1.0

is_post_route tdc 1.0

3.1.1. ::quartus::backannotate

The following table displays information for the ::quartus::backannotate Tcl
package:

Tcl Package and Version ::quartus::backannotate 1.1

Description
This package contains the set of Tcl functions
for back-annotating assignments for a project.

Availability This package is available for loading in the following executables:

 qpro
 quartus
 quartus_cdb

Tcl Commands get_back_annotation_assignments (::quartus::backannotate) on page 73
logiclock_back_annotate (::quartus::backannotate) on page 74

3.1.1.1. get_back_annotation_assignments (::quartus::backannotate)

The following table displays information for the
get_back_annotation_assignments Tcl command:

Tcl Package and
Version

Belongs to ::quartus::backannotate on page 73

Syntax get_back_annotation_assignments [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns an output collection of back-annotation assignments.

Each element of the collection is a list with the following
format:
{ {<Source>} {<Destination>} {<Assignment name>} {<Assignment value>} {<Entity name>} }

Example Usage ## Print out all the back-annotation assignments
set asgn_col [get_back_annotation_assignments]
foreach_in_collection asgn $asgn_col {

 ## Each element in the collection has the following
 ## format:
 ## { {<Source>} {<Destination>} {<Assignment name>} {<Assignment value>} {<Entity name>} }
 set from [lindex $asgn 0]
 set to [lindex $asgn 1]
 set name [lindex $asgn 2]
 set value [lindex $asgn 3]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set entity [lindex $asgn 4]
 puts "$entity : $name ($from -> $to) = $value"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Back annotation failed -- design did not compile
properly. Run a successful compilation before performing
back-annotation.

TCL_ERROR 1 ERROR: Project has no active revision. Make sure there is
an open, active revision.

TCL_ERROR 1 ERROR: No project is currently open. Open an exising
project or create a new project.

TCL_ERROR 1 ERROR: Device or device family does not support node
location back annotation.

TCL_ERROR 1 ERROR: Device or device family does not support LogicLock
back annotation.

TCL_ERROR 1 ERROR: Wrong number of arguments. For correct syntax,
refer to help for the logiclock_back_annotate command.

3.1.1.2. logiclock_back_annotate (::quartus::backannotate)

The following table displays information for the logiclock_back_annotate Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::backannotate on page 73

Syntax logiclock_back_annotate [-h | -help] [-long_help] [-exclude_from] [-
exclude_to] [-from <source name>] [-lock] [-no_contents] [-no_delay_chain] [-
no_demote_lab] [-no_demote_mac] [-no_demote_pin] [-no_demote_ram] [-
no_dont_touch] [-path_exclude <path_exclude name>] [-region <region name>] [-
remove_assignments] [-resource_filter <resource_filter value>] [-routing] [-to
<destination name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exclude_from Option to exclude the source node

-exclude_to Option to exclude the destination node

-from <source name> Name (or wildcard expression) of the source node to be
back-annotated

-lock Option to lock back-annotated regions

-no_contents Option not to back-annotate contents

-no_delay_chain Option not to back-annotate delay chain settings

-no_demote_lab Option not to demote LAB or LE assignments

-no_demote_mac Option not to demote DSP block assignments

-no_demote_pin Option not to demote pin assignments

-no_demote_ram Option not to demote RAM assignments

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-no_dont_touch Option not to set the don't_touch flag for each back-
annotated node

-path_exclude <path_exclude
name>

Option to exclude the specified node from the path filter

-region <region name> Name (or wildcard expression) of region to be back-
annotated

-remove_assignments Option to remove matching assignments instead of creating
them

-resource_filter <resource_filter
value>

Option to use the resource filter

-routing Option to back-annotate the LogicLock region's routing

-to <destination name> Name (or wildcard expression) of the destination node to be
back-annotated

Description
Back-annotates a LogicLock region and its contents.

When you use the "-routing" option, you must use the "-lock"
and "-no_demote_lab" options, without the "-no_contents" option,
or use the"-remove_assignments" option.

The "-remove_assignments" option removes all matching region
contents. When you use the "-remove_assignments" option, the
demotion options, "-no_contents" and "-lock", are not applicable.

The "-resource_filter" option allows you to back-annotate
only specific resource types on the device. For example:

 logiclock_back_annotate -resource_filter "COMBINATORIAL"

This command back-annotates all combinatorial nodes in the
design. The complete set of options is:

 COMBINATORIAL combinatorial nodes
 REGISTER registered nodes
 MEGA M-RAMs
 MEDIUM M4K memory blocks
 SMALL M512 memory blocks
 IO I/O elements
 MAC DSP blocks

Intel recommends that you use a Verilog Quartus(R) Mapping
File (.vqm) as the source. When any of the advanced netlist
optimizations are enabled, it is possible for the Fitter
to create and rename nodes in the design during a place and
route operation. Back annotation requires that on subsequent
compilations the node names in the netlist match those in
the constraint file. Write out a VQM netlist and create a
new project using that netlist as its source. Copy all of
the existing constraint files into the new project directory
and remove all the design files except the new .vqm by using
the Add/Remove Files in a Project command (Project menu)
in the Quartus Prime GUI.

The Quartus Prime software will create a root region if you
back-annotate nodes that are not members of a LogicLock
region. The root region is device-size and locked. You can
make assignments to the root region but you cannot delete
it or modify its size or location.

Example Usage
Open the project "example_project"
project_open example_project

Compile the design
package require ::quartus::flow
execute_flow -compile

package require ::quartus::backannotate

Back annotate all nodes and routing in the region "one_region"
logiclock_back_annotate -routing -lock -no_demote_lab -region one_region

Back annotate the location of the nodes on all paths that
start with a node that matches the "Data_in*" wildcard

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

expression, and end with a node that matches the "Data_out*"
wildcard expression
logiclock_back_annotate -from Data_in* -to Data_out*

Back annotate the placement of all the registers in the design
logiclock_back_annotate -resource_filter "REGISTER"

Close the project
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Back annotation failed -- design did not compile
properly. Run a successful compilation before performing
back-annotation.

TCL_ERROR 1 ERROR: Project has no active revision. Make sure there is
an open, active revision.

TCL_ERROR 1 ERROR: No project is currently open. Open an exising
project or create a new project.

TCL_ERROR 1 ERROR: Device or device family does not support node
location back annotation.

TCL_ERROR 1 ERROR: The -routing option is used with incompatible
options. To use the -routing option, you must use the -lock
and -no_demote_lab options without the -no_contents
option, or use the -remove_assignments option.

TCL_ERROR 1 ERROR: Device or device family does not support LogicLock
back annotation.

TCL_ERROR 1 ERROR: Wrong number of arguments. For correct syntax,
refer to help for the logiclock_back_annotate command.

3.1.2. ::quartus::board

The following table displays information for the ::quartus::board Tcl package:

Tcl Package and Version ::quartus::board 1.0

Description
This package contains no general description.

Availability This package is loaded by default in the following executables:

 quartus
 quartus_sh

Tcl Commands activate_link (::quartus::board) on page 77
check_online_design_validity (::quartus::board) on page 77
deploy_par_file (::quartus::board) on page 77
download_par_file (::quartus::board) on page 78
get_board_design_path (::quartus::board) on page 78
get_board_devkits (::quartus::board) on page 79
get_board_families (::quartus::board) on page 79
get_board_info (::quartus::board) on page 79
get_board_vendors (::quartus::board) on page 80
get_design_description (::quartus::board) on page 80
get_design_development_kits (::quartus::board) on page 81
get_design_documents_info (::quartus::board) on page 81
get_design_download_link (::quartus::board) on page 82
get_design_families (::quartus::board) on page 82
get_design_info (::quartus::board) on page 83
get_design_quartus_versions (::quartus::board) on page 83
get_design_rich_description (::quartus::board) on page 84
get_ui_file (::quartus::board) on page 84
launch_qsys (::quartus::board) on page 85
load_design_info (::quartus::board) on page 85
reset_board_info (::quartus::board) on page 86

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.2.1. activate_link (::quartus::board)

The following table displays information for the activate_link Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax activate_link [-h | -help] [-long_help] -link <link>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-link <link> The URL

Description
This command will open the URL link from the default Browser.

Example Usage ::board::activate_link -link https://my_link.com

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.2. check_online_design_validity (::quartus::board)

The following table displays information for the check_online_design_validity
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax check_online_design_validity [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
The command will return '1' if the Board Package is allowed to load the online design examples.

Example Usage set valid [::board::check_online_design_validity]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.3. deploy_par_file (::quartus::board)

The following table displays information for the deploy_par_file Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax deploy_par_file [-h | -help] [-long_help] -design_path <design_path> -
destination_dir <destination_dir>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-design_path <design_path> The full path to the PAR file

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-destination_dir
<destination_dir>

The directory to extract the PAR file to

Description
This command will deploy the PAR file from the given design_path argument, and extract it to the
given destination_dir.

Example Usage ::board::deploy_par_file -design_path ./test_dir/top.par -destination_dir ./test_dir

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.4. download_par_file (::quartus::board)

The following table displays information for the download_par_file Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax download_par_file [-h | -help] [-long_help] -destination_dir <destination_dir> -
link <link>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-destination_dir
<destination_dir>

The directory to save the PAR file

-link <link> The URL to download the PAR file

Description
This commands will download the PAR file from the given link argument and save the downloaded
PAR file to the given destination_dir argument.

Example Usage ::board::download_par_file -link https://design_link.com -destination_dir ./test_dir

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.5. get_board_design_path (::quartus::board)

The following table displays information for the get_board_design_path Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_board_design_path [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command returns the path that contains the pre-installed designs.

Example Usage set path [::board::get_board_design_path]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.2.6. get_board_devkits (::quartus::board)

The following table displays information for the get_board_devkits Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_board_devkits [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command returns the unique development kits of all the boards.

Example Usage set devkits [::board::get_board_devkits]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.7. get_board_families (::quartus::board)

The following table displays information for the get_board_families Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_board_families [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command returns the unique device families of all the loaded boards.

Example Usage set families [::board::get_board_families]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.8. get_board_info (::quartus::board)

The following table displays information for the get_board_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_board_info [-h | -help] [-long_help] [-family <family>] [-name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-family <family> The device family that the board targeted to

-name <name> The name of the board

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
This command returns the information of boards that contain the given board name and device
family (case insensitive). If no argument is given, the command will return the information of
all the available boards.

Example Usage ::board::get_board_info

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.9. get_board_vendors (::quartus::board)

The following table displays information for the get_board_vendors Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_board_vendors [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command returns the unique vendors of all the boards.

Example Usage set vendors [::board::get_board_vendors]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.10. get_design_description (::quartus::board)

The following table displays information for the get_design_description Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_design_description [-h | -help] [-long_help] [-name <name>] [-source
<online|quartus|my_download|all>] [-version <version>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> The name of the design

-source <online|quartus|
my_download|all>

The Load From sources of the designs (Online, Pre-installed,
Downloaded or All)

-version <version> The version of the design

Description
This commands returns the text description information of designs that contain the given design
name. If no argument is supplied, the command will return the design description of all the
available designs.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage set description [::board::get_design_description -name pll]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.11. get_design_development_kits (::quartus::board)

The following table displays information for the get_design_development_kits Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_design_development_kits [-h | -help] [-long_help] [-source <online|quartus|
my_download|all>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-source <online|quartus|
my_download|all>

The Load From sources of the designs (Online, Pre-installed,
Downloaded or All)

Description
This command returns the unique development kits of the designs that are loaded from the source
argument. If source argument isn't specified, the command will return unique development kits of
all the loaded designs.

Example Usage set devkits [::board::get_design_development_kits]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.12. get_design_documents_info (::quartus::board)

The following table displays information for the get_design_documents_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_design_documents_info [-h | -help] [-long_help] [-name <name>] [-source
<online|quartus|my_download|all>] [-version <version>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> The name of the design

-source <online|quartus|
my_download|all>

The Load From sources of the designs (Online, Pre-installed,
Downloaded or All)

-version <version> The version of the design

Description
This commands returns the document title(s) and URL(s) of documentation(s) of designs that
contain the given design name. If no argument is supplied, the command will return the design
documentation of all the available designs.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage set docs [::board::get_design_documents_info -name memory]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.13. get_design_download_link (::quartus::board)

The following table displays information for the get_design_download_link Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_design_download_link [-h | -help] [-long_help] [-link_only] [-name
<name>] [-source <online|quartus|my_download|all>] [-version <version>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-link_only If this option is specified, only a list of download link will be
returned (instead of list of <design_name, download_link>
pair)

-name <name> The name of the design

-source <online|quartus|
my_download|all>

The Load From sources of the designs (Online, Pre-installed,
Downloaded or All)

-version <version> The version of the design

Description
This command returns the URL to download the designs that contain the given design name. If no
argument is supplied, the command will return the design download link of all the available
designs.

Example Usage set link [::board::get_design_download_link -link_only]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.14. get_design_families (::quartus::board)

The following table displays information for the get_design_families Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_design_families [-h | -help] [-long_help] [-source <online|quartus|
my_download|all>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-source <online|quartus|
my_download|all>

The Load From sources of the designs (Online, Pre-installed,
Downloaded or All)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
This command returns the unique device families of the designs that are loaded from the source
argument. If source argument isn't specified, the command will return unique device families of
all the loaded designs.

Example Usage set families [::board::get_design_families]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.15. get_design_info (::quartus::board)

The following table displays information for the get_design_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_design_info [-h | -help] [-long_help] [-family <family>] [-name <name>] [-
source <online|quartus|my_download|all>] [-version <version>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-family <family> The targeted device family of the design

-name <name> The name of the design

-source <online|quartus|
my_download|all>

The Load From sources of the designs (Online, Pre-installed,
Downloaded or All)

-version <version> The version of the design

Description
This command returns the information of designs that contain the given design name and device
family (case insensitive). If no argument is given, the command will return the information of
all the available designs.

Example Usage set designs [::board::get_design_info -name pll -family agilex -source online]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.16. get_design_quartus_versions (::quartus::board)

The following table displays information for the get_design_quartus_versions Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_design_quartus_versions [-h | -help] [-long_help] [-max_count
<max_count>] [-source <online|quartus|my_download|all>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-max_count <max_count> The maximum number of Quartus versions returned (the
last max_count from the latest Quartus version)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-source <online|quartus|
my_download|all>

The Load From sources of the designs (Online, Pre-installed,
Downloaded or All)

Description
This command returns the unique Quartus versions of the designs that are loaded from the source
argument. If source argument isn't specified, the command will return unique Quartus versions of
all the loaded designs.

Example Usage set quartus_versions [::board::get_design_quartus_versions -max_count 5]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.17. get_design_rich_description (::quartus::board)

The following table displays information for the get_design_rich_description Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_design_rich_description [-h | -help] [-long_help] [-name <name>] [-source
<online|quartus|my_download|all>] [-version <version>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> The name of the design

-source <online|quartus|
my_download|all>

The Load From sources of the designs (Online, Pre-installed,
Downloaded or All)

-version <version> The version of the design

Description
This commands returns the rich-text description information of designs that contain the given
design name. If no argument is supplied, the command will return the rich-text description of
all the available designs.

Example Usage set rich_description [::board::get_design_rich_description]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.18. get_ui_file (::quartus::board)

The following table displays information for the get_ui_file Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax get_ui_file [-h | -help] [-long_help] [-destination_dir <destination_dir>] [-
download_url <download_url>] [-name <name>] [-source <online|quartus|my_download|
all>] [-version <version>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-destination_dir
<destination_dir>

The directory to save the UI file

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-download_url <download_url> The download URL of the design

-name <name> The UI filename of the design

-source <online|quartus|
my_download|all>

The Load From sources of the designs (Online, Pre-installed,
Downloaded or All)

-version <version> The version of the design

Description
This commands returns the UI filename of designs that contain the given design name. If no
argument is supplied, the command will return the UI filename of all the available designs.

Example Usage set ui_file [::board::get_ui_file -name pll]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.19. launch_qsys (::quartus::board)

The following table displays information for the launch_qsys Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax launch_qsys [-h | -help] [-long_help] [-board <board>] [-qpf_file <qpf_file>] [-
qsf_file <qsf_file>] [-qsys_file <qsys_file>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-board <board> The name of the board (e.g. Intel Agilex F-Series
Transceiver-SoC Development Kit DK-SI-AGF014EA)

-qpf_file <qpf_file> The full path to the Quartus Project file (QPF, *.qpf file)

-qsf_file <qsf_file> The full path to the Quartus Setting file (QSF, *.qsf file)

-qsys_file <qsys_file> The full path to the Platform Designer System (QSYS,
*.qsys file)

Description
This command will launch Platform Designer application in GUI mode. With qsys_file, qpf_file and
board argument supplied, the Platform Designer will open the project and skip the Open System
dialog.

Example Usage ::board::launch_qsys

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.20. load_design_info (::quartus::board)

The following table displays information for the load_design_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax load_design_info [-h | -help] [-long_help] [-append] [-download_path
<download_path>] [-source <online|quartus|my_download>]

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-append If this option is specified, the designs information will be
appended to the existing loaded designs

-download_path <download_path> A list of paths that contains the PAR files. This argument will
be ignored for source = online | quartus option

-source <online|quartus|
my_download>

Load From sources of the designs (Online, Pre-installed or
Downloaded)

Description
The command loads the designs based on the source argument specified.

Example Usage ::board::load_design_info -source quartus
::board::load_design_info -source my_download -download_path ../project_dir -append

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.2.21. reset_board_info (::quartus::board)

The following table displays information for the reset_board_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::board on page 76

Syntax reset_board_info [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Clear the loaded board information.

Example Usage ::board::reset_board_info

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3. ::quartus::bpps

The following table displays information for the ::quartus::bpps Tcl package:

Tcl Package and Version ::quartus::bpps 1.0

Description
This package provides non-backend support for pin-planner mode in Interface Planner.

Availability This package is loaded by default in the following executables:

 qacv
 qppl
 qpro
 quartus
 quartus_bpps
 quartus_drc
 quartus_pdp
 quartus_pow
 quartus_sta
 quartus_staw

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Commands bpps::apply_assignments (::quartus::bpps) on page 87
bpps::check_plan (::quartus::bpps) on page 88
bpps::export_constraints_to_qsf (::quartus::bpps) on page 88
bpps::get_cell_info (::quartus::bpps) on page 89
bpps::get_device (::quartus::bpps) on page 90
bpps::get_hdbpath_from_id (::quartus::bpps) on page 90
bpps::get_id_from_hdbpath (::quartus::bpps) on page 91
bpps::get_location_info (::quartus::bpps) on page 91
bpps::get_placement (::quartus::bpps) on page 92
bpps::get_placement_info (::quartus::bpps) on page 92
bpps::get_placements (::quartus::bpps) on page 93
bpps::get_placements_of_group (::quartus::bpps) on page 93
bpps::harden_cell (::quartus::bpps) on page 94
bpps::harden_cells (::quartus::bpps) on page 95
bpps::initialize (::quartus::bpps) on page 95
bpps::load_floorplan (::quartus::bpps) on page 96
bpps::place_cells (::quartus::bpps) on page 96
bpps::read_tpl_placement (::quartus::bpps) on page 97
bpps::remove_invalid_reports (::quartus::bpps) on page 98
bpps::report_all (::quartus::bpps) on page 98
bpps::report_cell_connectivity (::quartus::bpps) on page 98
bpps::report_cell_placement_reasons (::quartus::bpps) on page 99
bpps::report_cells (::quartus::bpps) on page 99
bpps::report_clocks (::quartus::bpps) on page 100
bpps::report_legal_cell_locations (::quartus::bpps) on page 101
bpps::report_location_types (::quartus::bpps) on page 101
bpps::report_locations (::quartus::bpps) on page 102
bpps::report_regions (::quartus::bpps) on page 102
bpps::report_summary (::quartus::bpps) on page 103
bpps::reset_plan (::quartus::bpps) on page 103
bpps::save_floorplan (::quartus::bpps) on page 104
bpps::save_pin_assignments (::quartus::bpps) on page 104
bpps::select_dr_ips (::quartus::bpps) on page 105
bpps::set_mode (::quartus::bpps) on page 105
bpps::shutdown (::quartus::bpps) on page 105
bpps::soften_cell (::quartus::bpps) on page 106
bpps::soften_cells (::quartus::bpps) on page 106
bpps::undo_last_placement (::quartus::bpps) on page 107
bpps::unplace_cells (::quartus::bpps) on page 107
bpps::update_pdpw (::quartus::bpps) on page 108
bpps::validate_placement (::quartus::bpps) on page 108
bpps::write_plan (::quartus::bpps) on page 109
bpps::write_tpl_placement (::quartus::bpps) on page 109

3.1.3.1. bpps::apply_assignments (::quartus::bpps)

The following table displays information for the bpps::apply_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::apply_assignments [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 In classic mode, applies all changes to constraints and reloads them into Interface Planner.
After the platform has been
 updated with the constraints, placement operations can be performed.

 In pin planner mode, loads the QSF constraints related to pin
assignments.

Example Usage project_open onewire_nf

 blueprint::initialize
 bpps::update_plan
 blueprint::shutdown

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.2. bpps::check_plan (::quartus::bpps)

The following table displays information for the bpps::check_plan Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::check_plan [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 In classic mode, checks the legality of the current plan

 In pin planner mode, this will be a stub. Assignments are checked real
time, no backend engine to check legality of anything.

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 bpps::check_plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.3. bpps::export_constraints_to_qsf (::quartus::bpps)

The following table displays information for the
bpps::export_constraints_to_qsf Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::export_constraints_to_qsf [-h | -help] [-long_help] [-bb_locations] [-
close_pdp] [-disabled] [-pin_locations] [-tile_locations]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-bb_locations Write out building block location assignments

-close_pdp Send call back to PDPW to close after exporting is done

-disabled Write out disabled assignments

-pin_locations Write out pin location assignments

-tile_locations Write out tile location assignments

Description
 In Tile Planner mode, export constraints to qsf file

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 set io_cells [bpps::get_cells -unplaced -type IO_CLUSTER]
 bpps::place_cells -cells $io_cells

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 bpps::validate_placement

 bpps::export_constraints -disabled -tile_locations -bb_locations

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.4. bpps::get_cell_info (::quartus::bpps)

The following table displays information for the bpps::get_cell_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::get_cell_info [-h | -help] [-long_help] [-children] [-guide_cell_id] [-
ip_type] [-links] [-location] [-name] [-parent] [-type] <cell_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-children Return the the cell id of the children cells

-guide_cell_id Returns the guide cell's elem_id

-ip_type Returns the IP type if the cell is an IP cell or an empty
string otherwise

-links Return the given design element's connections to other cells

-location Returns the location ID if the cell is placed or an empty
string otherwise

-name Return the cell name of the cell id

-parent Return the the cell id of the parent cells

-type Return the the type of the cell

<cell_id> Single cell id

Description
Gets information about the specified cell (referenced by cell ID).
You can obtain cell using the periph::get_cells Tcl command.

Example Usage project_open onewire_nf

blueprint::initialize
periph::update_plan

foreach cell [periph::get_cells -type IO_CLUSTER] {
 puts "Found cell ID $cell named [periph::get_cell_info -name $cell]"
}

blueprint::shutdown
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.5. bpps::get_device (::quartus::bpps)

The following table displays information for the bpps::get_device Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::get_device [-h | -help] [-long_help] [-compress]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-compress Compress requested data

Description
 Internal function to get the device tree in json, this gets the complete device model.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.6. bpps::get_hdbpath_from_id (::quartus::bpps)

The following table displays information for the bpps::get_hdbpath_from_id Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::get_hdbpath_from_id [-h | -help] [-long_help] [-design_cell_id
<design_cell_id>] [-device_loc_id <device_loc_id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-design_cell_id <design_cell_id> design cell ID

-device_loc_id <device_loc_id> device location ID

Description
 In classic mode, load the floorplan from a Interface Planner floorplan file

 In pin planner mode, this is a stub.

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 bpps::place_cells -unplaced_cells
 bpps::save_floorplan -filename onewire_blueprint_floorplan.plan

 bpps::load_floorplan -filename onewire_blueprint_floorplan.plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.7. bpps::get_id_from_hdbpath (::quartus::bpps)

The following table displays information for the bpps::get_id_from_hdbpath Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::get_id_from_hdbpath [-h | -help] [-long_help] [-design_cell
<design_cell>] [-device_loc <device_loc>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-design_cell <design_cell> HDB Path of design cell

-device_loc <device_loc> HDB Path of device location

Description
 In classic mode, load the floorplan from a Interface Planner floorplan file

 In pin planner mode, this is a stub.

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 bpps::place_cells -unplaced_cells
 bpps::save_floorplan -filename onewire_blueprint_floorplan.plan

 bpps::load_floorplan -filename onewire_blueprint_floorplan.plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.8. bpps::get_location_info (::quartus::bpps)

The following table displays information for the bpps::get_location_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::get_location_info [-h | -help] [-long_help] [-children] [-gid] [-name] [-
parents] [-placed_cells] [-properties] [-type] <location_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-children Query the children location IDs

-gid Query the gid of the location IDs

-name Return the location name of the location id

-parents Query the parent location IDs

-placed_cells Return the placed cells at the location id

-properties Return the device location properties in json

-type Return the location type of the location id

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<location_id> location id

Description
Gets information about the specified location (referenced by location ID).
You can obtain location using the periph::get_locations Tcl command or
using the bpps::get_location_info -properties <loc_id> Tcl command

Example Usage project_open onewire_nf

blueprint::initialize
periph::update_plan

foreach cell [periph::get_cells -placed] {
 puts "Found cell ID $cell named [periph::get_cell_info -name $cell] placed in location
[periph::get_cell_info -location $cell] named [periph::get_location_info -name
[periph::get_cell_info -location $cell]]"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.9. bpps::get_placement (::quartus::bpps)

The following table displays information for the bpps::get_placement Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::get_placement [-h | -help] [-long_help] [-compress]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-compress Compress requested data

Description
 Return information about design placement

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.10. bpps::get_placement_info (::quartus::bpps)

The following table displays information for the bpps::get_placement_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::get_placement_info [-h | -help] [-long_help] [-placement] <placement_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-placement Return the placement as a list of cell/id pairs

<placement_id> Single placement id

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
 In classic mode, return information about a given placement

 In pin planner mode, looking up placement objects is not supported, no
such thing.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.11. bpps::get_placements (::quartus::bpps)

The following table displays information for the bpps::get_placements Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::get_placements [-h | -help] [-long_help] [-ips] <cell_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-ips Get placements for IPs only

<cell_id> Single cell id

Description
 In classic mode, returns a vector of placements for the supplied cell

 In pin planner mode, returns a vector of compatible locations for the
supplied pin

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied design pin ID <string> is invalid.

TCL_ERROR 1 ERROR: At least one pin ID must be supplied, but no IDs
were supplied

TCL_ERROR 1 ERROR: The supplied pin id <string> is not a placeable pin.

TCL_ERROR 1 ERROR: <string> IDs expected, but <string> were supplied

3.1.3.12. bpps::get_placements_of_group (::quartus::bpps)

The following table displays information for the bpps::get_placements_of_group
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::get_placements_of_group [-h | -help] [-long_help] -cells <cells> [-ips]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-cells <cells> One or more cell ids

-ips Get placements for IPs only

Description
 Given a list of design cell IDs, returns a vector of possible placement IDs
for all the cells.

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 bpps::place_cells -unplaced_cells

 bpps::check_plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied ID <string> is invalid.

TCL_ERROR 1 ERROR: At least one ID must be supplied, but no IDs were
supplied

TCL_ERROR 1 ERROR: <string> IDs expected, but <string> were supplied

3.1.3.13. bpps::harden_cell (::quartus::bpps)

The following table displays information for the bpps::harden_cell Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::harden_cell [-h | -help] [-long_help] -cell <cell>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cell <cell> Harden the existing placement of the specificed cell

Description
 In modes that support soft / hard placements (ie. Tile Planner mode),
hardens the existing placement of the specificed cell.
 If the cell is subsequently unplaced and placed again, the placement soft /
hard attribute will be based
 on the new placement action.

 For modes that do not support soft / hard placements, nothing is performed.

Example Usage bpps::harden_cell -cell <design_cell_id>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.14. bpps::harden_cells (::quartus::bpps)

The following table displays information for the bpps::harden_cells Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::harden_cells [-h | -help] [-long_help] -cells <cells>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cells <cells> Harden the existing placement of the specificed cells

Description
 In modes that support soft / hard placements (ie. Tile Planner mode),
hardens the existing placement of the specificed cell.
 If the cell is subsequently unplaced and placed again, the placement soft /
hard attribute will be based
 on the new placement action.

 For modes that do not support soft / hard placements, nothing is performed.

Example Usage bpps::harden_cells -cells [<design_cell_id>]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.15. bpps::initialize (::quartus::bpps)

The following table displays information for the bpps::initialize Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::initialize [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Replaces blueprint::initialize command. It will create the design and device models
without a backend separate-exe engine.

Example Usage project_open onewire_nf

 bpps::initialize
 bpps::update_plan
 bpps::shutdown

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.16. bpps::load_floorplan (::quartus::bpps)

The following table displays information for the bpps::load_floorplan Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::load_floorplan [-h | -help] [-long_help] -filename <filename>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filename <filename> Filename to load

Description
 In classic mode, load the floorplan from a Interface Planner floorplan file

 In pin planner mode, this is a stub.

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 bpps::place_cells -unplaced_cells
 bpps::save_floorplan -filename onewire_blueprint_floorplan.plan

 bpps::load_floorplan -filename onewire_blueprint_floorplan.plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.17. bpps::place_cells (::quartus::bpps)

The following table displays information for the bpps::place_cells Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::place_cells [-h | -help] [-long_help] [-cell_location <cell_location>] [-
cells <cells>] [-dont_revert_on_fail] [-fixed_cells] [-placement <placement>] [-
unplaced_cells]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cell_location <cell_location> Cell location id pair to place cells into

-cells <cells> One or more cell ids

-dont_revert_on_fail Option to specify that the best partial placement should be
saved on the undo stack upon a placement failure

-fixed_cells Place all unplaced cells

-placement <placement> Place cells according to a placement. A placement is a
special object that comes from the bpps::get_placements
Tcl command

-unplaced_cells Place all unplaced cells

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
 In classic mode, performs a placement on the supplied cells

 In pin planner mode, auto assigns all the pins in the design if possible.
 Only -cell_ids <cell_id_list> and -cell_location <(cell_id, loc_id)>
are actually used.
 If, exclusively, one of these are not specified, the command does
NOTHING.

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 bpps::place_cells -unplaced_cells

 bpps::check_plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied ID <string> is invalid.

TCL_ERROR 1 ERROR: At least one ID must be supplied, but no IDs were
supplied

TCL_ERROR 1 ERROR: <string> IDs expected, but <string> were supplied

3.1.3.18. bpps::read_tpl_placement (::quartus::bpps)

The following table displays information for the bpps::read_tpl_placement Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::read_tpl_placement [-h | -help] [-long_help] -filename <filename>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filename <filename> Filename to write to

Description
 In TilePlanner mode, read placement from a JSON file. Nothing happens (should not be
available in GUI) in other modes.

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 bpps::place_cells -unplaced_cells

 bpps::check_plan

 bpps::write_tpl_placement -filename onewire_blueprint_assignments.tcl

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Filename provided incorrectly

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.19. bpps::remove_invalid_reports (::quartus::bpps)

The following table displays information for the bpps::remove_invalid_reports
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::remove_invalid_reports [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 In classic mode, remove all invalid report

 In pin planner mode, this is a stub call.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.20. bpps::report_all (::quartus::bpps)

The following table displays information for the bpps::report_all Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::report_all [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 In classic mode, create all default summary reports.

 In pin planner mode, this is a stub call.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.21. bpps::report_cell_connectivity (::quartus::bpps)

The following table displays information for the
bpps::report_cell_connectivity Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::report_cell_connectivity [-h | -help] [-long_help] [-fanins] [-fanouts]
[-panel_name <name>] <cell_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-fanins Report only the fanins of the cell

-fanouts Report only the fanouts of the cell

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

<cell_id> Single cell id

Description
In classic mode, creates a report of the connectivity for a cell.

 In pin planner mode, this is a stub call.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.22. bpps::report_cell_placement_reasons (::quartus::bpps)

The following table displays information for the
bpps::report_cell_placement_reasons Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::report_cell_placement_reasons [-h | -help] [-long_help] [-panel_name
<name>] <cell_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

<cell_id> Single cell id

Description
In classic mode, creates a report of all the locations a particular cell can be placed and the
reasons
it cannot be placed there

 In pin planner mode, this is a stub call.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.23. bpps::report_cells (::quartus::bpps)

The following table displays information for the bpps::report_cells Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::report_cells [-h | -help] [-long_help] [-name <name>] [-panel_name
<name>] [-placed] [-type <type>] [-unplaced]

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-name <name> Filter the list of placed cells specifying a name. Wildcards
are supported.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-placed Report the list of placed cells

-type <type> Filter the list of placed cells specifying a list of types

-unplaced Report the list of unplaced cells

Description
In classic mode, returns a list of periphery cells based on the specified criteria.

 In pin planner mode, this is a stub call.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.24. bpps::report_clocks (::quartus::bpps)

The following table displays information for the bpps::report_clocks Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::report_clocks [-h | -help] [-long_help] [-panel_name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

Description
In classic mode, show the signals that are using low-skew routing networks (clock networks) in
the device.
If applicable, also show any signals that were considered for automatic clock network promotion,
but were not promoted.

 In pin planner mode, this is a stub call.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.25. bpps::report_legal_cell_locations (::quartus::bpps)

The following table displays information for the
bpps::report_legal_cell_locations Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::report_legal_cell_locations [-h | -help] [-long_help] [-panel_name
<name>] <cell_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

<cell_id> Single cell id

Description
In classic mode, creates a report of the legal periphery cell locations of a cell

 In pin planner mode, this is a stub call.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.26. bpps::report_location_types (::quartus::bpps)

The following table displays information for the bpps::report_location_types Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::report_location_types [-h | -help] [-long_help] [-panel_name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

Description
In classic mode, creates a report of the location types in the periphery

 In pin planner mode, this is a stub call.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.27. bpps::report_locations (::quartus::bpps)

The following table displays information for the bpps::report_locations Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::report_locations [-h | -help] [-long_help] [-panel_name <name>] <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

<type> location type to query

Description
In classic mode, Creates a report of the locations for the requested type in the periphery

 In pin planner mode, this is a stub call.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.28. bpps::report_regions (::quartus::bpps)

The following table displays information for the bpps::report_regions Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::report_regions [-h | -help] [-long_help] [-panel_name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

Description
 In pin planner mode, this is a stub call.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.29. bpps::report_summary (::quartus::bpps)

The following table displays information for the bpps::report_summary Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::report_summary [-h | -help] [-long_help] [-panel_name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

Description
 In pin planner mode, this is a stub call.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.30. bpps::reset_plan (::quartus::bpps)

The following table displays information for the bpps::reset_plan Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::reset_plan [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 In classic mode, reverts the current design to be unplaced and without assignments applied

 In pin planner mode, removes all the user created pin assignments. Keeps
the original assignments. (currently just a stub still)

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 bpps::reset_plan

 blueprint::shutdown

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.31. bpps::save_floorplan (::quartus::bpps)

The following table displays information for the bpps::save_floorplan Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::save_floorplan [-h | -help] [-long_help] -filename <filename>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filename <filename> Filename to write to

Description
 In classic mode, write the Interface Planner floorplan that can be reloaded in Interface
Planner

 In pin planner mode, write the user pin assignments as constraints to
QSF file. It is preferred to use the new save_pin_assignments call instead in pin planner mode.

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 set io_cells [bpps::get_cells -unplaced -type IO_CLUSTER]
 bpps::place_cells -cells $io_cells

 bpps::save_floorplan -filename onewire_blueprint_floorplan.plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.32. bpps::save_pin_assignments (::quartus::bpps)

The following table displays information for the bpps::save_pin_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::save_pin_assignments [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Write the Interface Planner floorplan that can be reloaded in Interface Planner

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 bpps::save_pin_assignments

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.33. bpps::select_dr_ips (::quartus::bpps)

The following table displays information for the bpps::select_dr_ips Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::select_dr_ips [-h | -help] [-long_help] [-deselect] [-ips <ips>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-deselect Deselects any selections previously made

-ips <ips> One or more ip ids that exist in DR groups

Description
Selects the DR ips. Any placement sync requests afterwards will only return placements for those
selected DR IPs. All other non-DR placements are still returned.
Any IP IDs passed over that are inside DR groups will be ignored.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.34. bpps::set_mode (::quartus::bpps)

The following table displays information for the bpps::set_mode Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::set_mode [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Internal use only for PDPW to set the mode of the middleware. Also defines what
plugins will be loaded

Example Usage DO NOT call this explicitly

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.35. bpps::shutdown (::quartus::bpps)

The following table displays information for the bpps::shutdown Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::shutdown [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
 Shutdown Interface Planner.

Example Usage project_open onewire_nf

 blueprint::initialize
 bpps::update_plan
 blueprint::shutdown

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.36. bpps::soften_cell (::quartus::bpps)

The following table displays information for the bpps::soften_cell Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::soften_cell [-h | -help] [-long_help] -cell <cell>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cell <cell> Soften the existing placement of the specificed cell

Description
 In modes that support soft / hard placements (ie. Tile Planner mode),
softens the existing placement of the specificed cell.
 If the cell is subsequently unplaced and placed again, the placement soft /
hard attribute will be based
 on the new placement action.

 For modes that do not support soft / hard placements, nothing is performed.

Example Usage bpps::soften_cell -cell <design_cell_id>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.37. bpps::soften_cells (::quartus::bpps)

The following table displays information for the bpps::soften_cells Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::soften_cells [-h | -help] [-long_help] [-cells <cells>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cells <cells> One or more cell ids to soften

Description
 In modes that support soft / hard placements (ie. Tile Planner mode),
softens the existing placement of the specificed cell.
 If the cell is subsequently unplaced and placed again, the placement soft /
hard attribute will be based

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 on the new placement action.

 For modes that do not support soft / hard placements, nothing is performed.

Example Usage bpps::soften_cells -cells [<design_cell_ids>]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.38. bpps::undo_last_placement (::quartus::bpps)

The following table displays information for the bpps::undo_last_placement Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::undo_last_placement [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 In classic mode, undo the last placement or unplacement operation.

 In classic mode, undo the last pin assignment or assignment removal operation.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.39. bpps::unplace_cells (::quartus::bpps)

The following table displays information for the bpps::unplace_cells Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::unplace_cells [-h | -help] [-long_help] [-cells <cells>] [-placed_cells]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cells <cells> One or more cell ids

-placed_cells Unplace all placed cells

Description
 In classic mode, removes the placement from the specified cells. Any constraints for the
cells remain, but the cell no longer has a placement.

 In pin planner mode, similar to classic mode, unassigns pin locations
made within this session.

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 bpps::unplace_cells -placed_cells

 bpps::check_plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.40. bpps::update_pdpw (::quartus::bpps)

The following table displays information for the bpps::update_pdpw Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::update_pdpw [-h | -help] [-long_help] [-assignments] [-placement]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-assignments Indicates assignment model needs updating

-placement Indicates placement needs updating

Description
 In classic mode, this command update everything that needs updating in pdpw. This
essentially sends a single TCL command to pdpw to update everything as needed. Used in the TCL
proc source wrapper only.

 In pin planner mode, this command is just a stub.

Example Usage project_open onewire_nf
 blueprint::initialize
 bpps::update_pdpw -pdp_state [blueprint_internal::get_pdp_state]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.41. bpps::validate_placement (::quartus::bpps)

The following table displays information for the bpps::validate_placement Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::validate_placement [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Removes the exception to ignore the given project assignments. The result is the project
assignments will take affect on the active design.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.42. bpps::write_plan (::quartus::bpps)

The following table displays information for the bpps::write_plan Tcl command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::write_plan [-h | -help] [-long_help] [-clocks] [-disabled] -filename
<filename> [-force] [-other_locations] [-pin_locations]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clocks Write out clock assignments

-disabled Write out disabled assignments

-filename <filename> Filename to write to

-force Force the creation of the plan

-other_locations Write out other location assignments

-pin_locations Write out pin location assignments

Description
 In classic mode, export the floorplan constraints Tcl script

 In pin planner mode, does nothing (we're not exporting to any TCL file,
instead we write to QSF directly in save_floorplan, or save_pin_assignments (recommended), calls.

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 bpps::place_cells -unplaced_cells

 bpps::check_plan

 bpps::write_plan -filename onewire_blueprint_assignments.tcl

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.3.43. bpps::write_tpl_placement (::quartus::bpps)

The following table displays information for the bpps::write_tpl_placement Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::bpps on page 86

Syntax bpps::write_tpl_placement [-h | -help] [-long_help] -filename <filename>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filename <filename> Filename to write to

Description
 In TilePlanner mode, write out the placement JSON file. Nothing happens (should not be
available in GUI) in other modes.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage project_open onewire_nf

 blueprint::initialize

 bpps::update_plan

 bpps::place_cells -unplaced_cells

 bpps::check_plan

 bpps::write_tpl_placement -filename onewire_blueprint_assignments.tcl

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Filename provided incorrectly

3.1.4. ::quartus::chip_planner

The following table displays information for the ::quartus::chip_planner Tcl
package:

Tcl Package and Version ::quartus::chip_planner 2.0

Description
This package contains the set of Tcl functions
for identifying and modifying resource usage
and routing with the Chip Planner.

Availability This package is available for loading in the following executables:

 qacv
 qpro
 quartus
 quartus_cdb

Tcl Commands check_node (::quartus::chip_planner) on page 110
close_chip_planner (::quartus::chip_planner) on page 111
design_has_ace_support (::quartus::chip_planner) on page 111
design_has_encrypted_ip (::quartus::chip_planner) on page 112
get_info_parameters (::quartus::chip_planner) on page 112
get_iports (::quartus::chip_planner) on page 113
get_node_by_name (::quartus::chip_planner) on page 114
get_node_info (::quartus::chip_planner) on page 114
get_nodes (::quartus::chip_planner) on page 115
get_oports (::quartus::chip_planner) on page 115
get_port_by_type (::quartus::chip_planner) on page 116
get_port_info (::quartus::chip_planner) on page 117
get_sp_pin_list (::quartus::chip_planner) on page 118
get_tile_power_setting (::quartus::chip_planner) on page 118
read_netlist (::quartus::chip_planner) on page 119
set_batch_mode (::quartus::chip_planner) on page 119

3.1.4.1. check_node (::quartus::chip_planner)

The following table displays information for the check_node Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax check_node [-h | -help] [-long_help] [-gen_id <gen id>] [-node <node id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-gen_id <gen id> Node generic ID

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-node <node id> Node ID

Description
Checks whether the specified node is legal.

Returns 1, if the node is legal. Returns 0, otherwise.

Even if a node is legal, you still must run the
check_netlist_and_save command to verify the node
legality within the netlist.

Example Usage check_node -node 3

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Conflicting arguments. Consult help for the Tcl
command for details.

TCL_ERROR 1 ERROR: Illegal node generic ID: %u. Specify a legal node
generic ID.

TCL_ERROR 1 ERROR: Illegal node ID: %u. Specify a legal node ID.

TCL_ERROR 1 ERROR: The node you specified is a legalization node.
Modification of legalization nodes is not supported.

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3.1.4.2. close_chip_planner (::quartus::chip_planner)

The following table displays information for the close_chip_planner Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax close_chip_planner [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Releases the chip planner netlist from use.

Example Usage close_chip_planner

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.4.3. design_has_ace_support (::quartus::chip_planner)

The following table displays information for the design_has_ace_support Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax design_has_ace_support [-h | -help] [-long_help]

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

Description
Determines whether Chip Planner operations can be performed on the
current design.

Example Usage design_has_ace_support

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3.1.4.4. design_has_encrypted_ip (::quartus::chip_planner)

The following table displays information for the design_has_encrypted_ip Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax design_has_encrypted_ip [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Determines whether the current design contains encrypted IP.

Returns 1, if the design contains encrypted IP. You may be
able to view or edit individual nodes of the design if they
are not part of an encrypted IP. To check individual nodes,
use the command "get_node_info -node <node id> -info encrypted".
Returns 0, otherwise.

Example Usage design_has_encrypted_ip

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3.1.4.5. get_info_parameters (::quartus::chip_planner)

The following table displays information for the get_info_parameters Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax get_info_parameters [-h | -help] [-long_help] [-file <file name>] [-for_chip]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-file <file name> Name of output file

-for_chip Option to display all of the chip info parameters

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Returns a Tcl list of information parameters.

When you use the -file option, the list is redirected
to the specified output file. If the output file already
exists, it is overwritten without warning.

Example Usage get_info_parameters
get_info_parameters -file the_list.txt

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.4.6. get_iports (::quartus::chip_planner)

The following table displays information for the get_iports Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax get_iports [-h | -help] [-long_help] [-as_gen_id] [-gen_id <gen id>] [-node
<node id>] [-src_gen_id <gen id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-as_gen_id Option to return results as generic ID

-gen_id <gen id> Node generic ID

-node <node id> Node id

-src_gen_id <gen id> Source port generic ID

Description
Returns a collection of input ports for the specified node.

You can use the collection with the "foreach_in_collection"
command.

Example Usage get_iports -node 3
get_iports -src_gen_id 5

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Conflicting arguments. Consult help for the Tcl
command for details.

TCL_ERROR 1 ERROR: Illegal node generic ID: %u. Specify a legal node
generic ID.

TCL_ERROR 1 ERROR: Illegal node ID: %u. Specify a legal node ID.

TCL_ERROR 1 ERROR: Illegal oport generic ID: %u. Specify a legal oport
generic ID.

TCL_ERROR 1 ERROR: The node you specified is a legalization node.
Modification of legalization nodes is not supported.

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.4.7. get_node_by_name (::quartus::chip_planner)

The following table displays information for the get_node_by_name Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax get_node_by_name [-h | -help] [-long_help] [-as_gen_id] -name <node name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-as_gen_id Option to return result as generic id

-name <node name> Node name

Description
Returns the node id of the specified node.

Returns -1 if the node cannot be found.

Example Usage get_node_by_name -name 3

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3.1.4.8. get_node_info (::quartus::chip_planner)

The following table displays information for the get_node_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax get_node_info [-h | -help] [-long_help] [-gen_id <gen id>] -info <information
type> [-node <node id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-gen_id <gen id> Node generic id

-info <information type> Type of information

-node <node id> Node id

Description
Returns the requested type of information for the
specified node.

To get available information types, use the
"get_info_parameters" command.

If the information type is legal for the specified
node, the result is the requested information.
Otherwise, the result is an empty string.

Example Usage get_node_info -node 3 -info name

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Conflicting arguments. Consult help for the Tcl
command for details.

TCL_ERROR 1 ERROR: <string> value <string> is not valid for the
specified node. Specify a legal value.

TCL_ERROR 1 ERROR: Illegal node generic ID: %u. Specify a legal node
generic ID.

TCL_ERROR 1 ERROR: Illegal node ID: %u. Specify a legal node ID.

TCL_ERROR 1 ERROR: The node you specified is a legalization node.
Modification of legalization nodes is not supported.

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3.1.4.9. get_nodes (::quartus::chip_planner)

The following table displays information for the get_nodes Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax get_nodes [-h | -help] [-long_help] -type <all|lcell|io|pll|dsp|ram>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-type <all|lcell|io|pll|dsp|ram> Type of nodes to return

Description
Returns a collection of nodes of the specified type.

You can use the collection with the foreach_in_collection
Tcl command.

Example Usage get_nodes -type all

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3.1.4.10. get_oports (::quartus::chip_planner)

The following table displays information for the get_oports Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax get_oports [-h | -help] [-long_help] [-as_gen_id] [-gen_id <gen id>] [-node
<node id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-as_gen_id Option to return results as generic id

-gen_id <gen id> Node generic id

-node <node id> Node id

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Returns a collection of output ports for the specified node.

You can use the collection with the foreach_in_collection
command.

Example Usage get_oports -node 3

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Conflicting arguments. Consult help for the Tcl
command for details.

TCL_ERROR 1 ERROR: Illegal node generic ID: %u. Specify a legal node
generic ID.

TCL_ERROR 1 ERROR: Illegal node ID: %u. Specify a legal node ID.

TCL_ERROR 1 ERROR: The node you specified is a legalization node.
Modification of legalization nodes is not supported.

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3.1.4.11. get_port_by_type (::quartus::chip_planner)

The following table displays information for the get_port_by_type Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax get_port_by_type [-h | -help] [-long_help] [-as_gen_id] [-gen_id <gen id>] [-
literal_index <literal index>] [-node <node id>] -port_type <port type> -type <iport|
oport>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-as_gen_id Option to return result as generic ID

-gen_id <gen id> Node generic id

-literal_index <literal index> Literal index

-node <node id> Node id

-port_type <port type> Port type

-type <iport|oport> Option to specify the port as an input or output port

Description
Returns the port index for the specified port type on
the specified node.

Returns -1 if the port is not in use or is invalid for
the specified node.

Example Usage get_port_by_type -node 0 -port_type SLOAD -type iport
get_port_by_type -node 0 -port_type EXTCLK -literal_index 2 -type oport

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Unable to find port type: <string>. Specify a
different port type.

TCL_ERROR 1 ERROR: Conflicting arguments. Consult help for the Tcl
command for details.

TCL_ERROR 1 ERROR: Illegal node generic ID: %u. Specify a legal node
generic ID.

TCL_ERROR 1 ERROR: Illegal node ID: %u. Specify a legal node ID.

TCL_ERROR 1 ERROR: Illegal port type: <string>. Specify a legal port
type.

TCL_ERROR 1 ERROR: The node you specified is a legalization node.
Modification of legalization nodes is not supported.

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3.1.4.12. get_port_info (::quartus::chip_planner)

The following table displays information for the get_port_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax get_port_info [-h | -help] [-long_help] [-gen_id <gen id>] -info <information
type> [-node <node id>] [-port_id <port id>] [-type <iport|oport>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-gen_id <gen id> Port generic ID

-info <information type> Type of information

-node <node id> Node ID

-port_id <port id> Port ID

-type <iport|oport> Option to specify the port as an input or output port

Description
Returns the requested type of information for
the specified port.

To get available information types, use the
get_info_parameters command.

If the information type is legal for the specified
port, the result is the requested information.
Otherwise, the result is an empty string.

Example Usage get_port_info -node 3 -port_id 2 -type iport -info port_name

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Unable to find port ID: %u. Specify a different port
ID.

TCL_ERROR 1 ERROR: Conflicting arguments. Consult help for the Tcl
command for details.

TCL_ERROR 1 ERROR: <string> value <string> is not valid for the
specified port. Specify a legal value.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Illegal node ID: %u. Specify a legal node ID.

TCL_ERROR 1 ERROR: Illegal port generic ID: %u. Specify a legal port
generic ID.

TCL_ERROR 1 ERROR: The node you specified is a legalization node.
Modification of legalization nodes is not supported.

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3.1.4.13. get_sp_pin_list (::quartus::chip_planner)

The following table displays information for the get_sp_pin_list Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax get_sp_pin_list [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns a list of the pins availible for use as signal probe output pins.;

Example Usage get_sp_pin_list

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.4.14. get_tile_power_setting (::quartus::chip_planner)

The following table displays information for the get_tile_power_setting Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax get_tile_power_setting [-h | -help] [-long_help] [-X <X location>] [-Y <Y
location>] [-gen_id <gen id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-X <X location> X location

-Y <Y location> Y location

-gen_id <gen id> Generic id

Description
Returns the High-Speed/Low Power setting of the tile at the specified location.

Example Usage get_tile_power_setting -gen_id 12345
get_tile_power_setting -X 12 -Y 5

Return Value Code Name Code String Return

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Conflicting arguments. Consult help for the Tcl
command for details.

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3.1.4.15. read_netlist (::quartus::chip_planner)

The following table displays information for the read_netlist Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax read_netlist [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Reads the Chip Planner netlist from the last compilation.

You must open a project before using this command.

Example Usage read_netlist

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Unable to create Chip Planner netlist. Current
device family does not support the Chip Planner. Specify
another device family and recompile the design.

TCL_ERROR 1 ERROR: Chip Planner (::quartus::chip_planner) is not
available from the Quartus Prime Tcl Console. Run the
quartus_cdb executable with commands from
the ::quartus::chip_planner package from a system
command prompt.

TCL_ERROR 1 ERROR: Chip Planner is unavailable with the current license.
Refer to the Licensing section of the Intel website to obtain
a valid Quartus Prime license file.

TCL_ERROR 1 ERROR: Unable to find an active revision. Make sure there is
an open, active revision.

TCL_ERROR 1 ERROR: No open project. Open an existing project or create
a new project.

TCL_ERROR 1 ERROR: Before running Chip Planner, run Analysis &
Synthesis (quartus_map) for read-only use and quartus_fit
to enable writable ECO changes.

3.1.4.16. set_batch_mode (::quartus::chip_planner)

The following table displays information for the set_batch_mode Tcl command:

Tcl Package and
Version

Belongs to ::quartus::chip_planner on page 110

Syntax set_batch_mode [-h | -help] [-long_help] <on|off>

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

<on|off> Option to turn batch mode on or off

Description
Sets the batch mode to On or Off.

Example Usage set_batch_mode on

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Unable to find Chip Planner netlist. Read the netlist
by using the read_netlist command.

3.1.5. ::quartus::dcmd_dni

The following table displays information for the ::quartus::dcmd_dni Tcl package:

Tcl Package and Version ::quartus::dcmd_dni 1.0

Description
This package contains no general description.

Availability This package is available for loading in the following executables:

 quartus
 quartus_sh
 quartus_sta
 quartus_syn

Tcl Commands dni::add_to_collection (::quartus::dcmd_dni) on page 121
dni::all_clocks (::quartus::dcmd_dni) on page 121
dni::all_fanin (::quartus::dcmd_dni) on page 121
dni::all_fanout (::quartus::dcmd_dni) on page 122
dni::all_inputs (::quartus::dcmd_dni) on page 122
dni::all_outputs (::quartus::dcmd_dni) on page 123
dni::all_registers (::quartus::dcmd_dni) on page 123
dni::append_to_collection (::quartus::dcmd_dni) on page 124
dni::color (::quartus::dcmd_dni) on page 124
dni::copy_collection (::quartus::dcmd_dni) on page 125
dni::create_clock (::quartus::dcmd_dni) on page 125
dni::current_design (::quartus::dcmd_dni) on page 126
dni::current_instance (::quartus::dcmd_dni) on page 126
dni::delete_stale_sandboxes (::quartus::dcmd_dni) on page 127
dni::filter_collection (::quartus::dcmd_dni) on page 127
dni::get_cells (::quartus::dcmd_dni) on page 128
dni::get_clocks (::quartus::dcmd_dni) on page 129
dni::get_designs (::quartus::dcmd_dni) on page 129
dni::get_generated_clocks (::quartus::dcmd_dni) on page 130
dni::get_nets (::quartus::dcmd_dni) on page 131
dni::get_pins (::quartus::dcmd_dni) on page 131
dni::get_ports (::quartus::dcmd_dni) on page 132
dni::get_property (::quartus::dcmd_dni) on page 133
dni::highlight (::quartus::dcmd_dni) on page 133
dni::index_collection (::quartus::dcmd_dni) on page 134
dni::is_dni_mode (::quartus::dcmd_dni) on page 134
dni::is_dni_mode_for_developer_testing (::quartus::dcmd_dni) on page 135
dni::list_properties (::quartus::dcmd_dni) on page 135
dni::load_design (::quartus::dcmd_dni) on page 135
dni::read_sdc (::quartus::dcmd_dni) on page 136
dni::remove_from_collection (::quartus::dcmd_dni) on page 136
dni::selection (::quartus::dcmd_dni) on page 137
dni::set_property (::quartus::dcmd_dni) on page 137
dni::set_time_format (::quartus::dcmd_dni) on page 138
dni::set_time_unit (::quartus::dcmd_dni) on page 138
dni::sizeof_collection (::quartus::dcmd_dni) on page 139
dni::sort_collection (::quartus::dcmd_dni) on page 139
dni::unload_design (::quartus::dcmd_dni) on page 140
dni::write_sdc (::quartus::dcmd_dni) on page 140

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.5.1. dni::add_to_collection (::quartus::dcmd_dni)

The following table displays information for the dni::add_to_collection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::add_to_collection [-h | -help] [-long_help] [-unique] <collection>
<object_spec>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-unique Only add non duplicated objects to the collection

<collection> The base collection

<object_spec> A list of objects to be added to collection

Description
Add objects to a collection, resulting in a new collection. The base collection remains
unchanged.

Example Usage ::dni::add_to_collection $collection [list $o1 $o2]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.2. dni::all_clocks (::quartus::dcmd_dni)

The following table displays information for the dni::all_clocks Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::all_clocks [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command creates a collection of all clocks in the design.

Example Usage dni::all_clocks

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.3. dni::all_fanin (::quartus::dcmd_dni)

The following table displays information for the dni::all_fanin Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::all_fanin [-h | -help] [-long_help] [-flat] [-insts_only] [-
startpoints_only] -to <to>

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-flat trace across the hierarchies

-insts_only returns a set of all instances in the timing fanin of the sink

-startpoints_only returns only the timing startpoints

-to <to> sink port or inst_port in the design

Description
This command reports the timing fanin of specified sink ports or inst_ports in the design

Example Usage dni::all_fanin -to [dni::get_ports {a[0]}]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.4. dni::all_fanout (::quartus::dcmd_dni)

The following table displays information for the dni::all_fanout Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::all_fanout [-h | -help] [-long_help] [-endpoints_only] [-flat] -from
<from> [-insts_only]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-endpoints_only returns only the timing endpoints

-flat trace across the hierarchies

-from <from> source port or inst_port in the design

-insts_only returns a set of all instances in the timing fanout of the
source

Description
This command reports the timing fanout of specified source ports or inst_ports in the design

Example Usage dni::all_fanout -from [dni::get_ports {a[0]}]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.5. dni::all_inputs (::quartus::dcmd_dni)

The following table displays information for the dni::all_inputs Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::all_inputs [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
This command creates a collection of all input ports in the current design.

Example Usage # List all input ports from top module in current design.
dni::all_inputs

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.6. dni::all_outputs (::quartus::dcmd_dni)

The following table displays information for the dni::all_outputs Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::all_outputs [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command creates a collection of all output ports in the current design.

Example Usage # List all output ports from top module in current design.
dni::all_outputs

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.7. dni::all_registers (::quartus::dcmd_dni)

The following table displays information for the dni::all_registers Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::all_registers [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command creates a collection of all register cells

Example Usage dni::all_registers

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.5.8. dni::append_to_collection (::quartus::dcmd_dni)

The following table displays information for the dni::append_to_collection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::append_to_collection [-h | -help] [-long_help] [-unique] <collection>
<object_spec>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-unique Only append non duplicated objects to the collection

<collection> TCL variable name pointing to a collection

<object_spec> A list of objects to be appended to collection

Description
Append objects to a collection and modifies a variable.

Example Usage ::dni::append_to_collection collection [list $o1 $o2]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.9. dni::color (::quartus::dcmd_dni)

The following table displays information for the dni::color Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::color [-h | -help] [-long_help] -action <action> [-append] [-checkpoint
<checkpoint name>] [-file <file>] [-name <name>] [-object <object>] [-set <set>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-action <action> color action

-append to append to existing file or overwrite

-checkpoint <checkpoint name> checkpoint name

-file <file> file name to save or restore color sets

-name <name> name for the colored set

-object <object> object to be colored

-set <set> a set containing colored objects

Description
Work with object color set.

Example Usage dni::color -action $action

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.5.10. dni::copy_collection (::quartus::dcmd_dni)

The following table displays information for the dni::copy_collection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::copy_collection [-h | -help] [-long_help] <collection>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<collection> The collection to be copied

Description
Duplicates the contents of a collection, resulting in a new collection. The base collection
remains unchanged.

Example Usage set copied_collection [::dni::copy_collection $collection]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.11. dni::create_clock (::quartus::dcmd_dni)

The following table displays information for the dni::create_clock Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::create_clock [-h | -help] [-long_help] [-add] [-comment <comment>] [-name
<name>] -period <period> [-waveform <waveform>] [<targets>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add whether to add

-comment <comment> comment for creating a clock

-name <name> name for creating a clock

-period <period> period for creating a clock

-waveform <waveform> waveform for creating a clock

<targets> target objects for creating a clock

Description
Defines a clock. If the -name option is not used, the clock name is
the same as the first target in the list or collection. The clock name
is used to refer to the clock in other commands.

The -period option specifies the clock period. It is also possible to
use this option to specify a frequency to define the clock period.
This can be done by using -period option followed by either
<frequency>MHz or "<frequency> MHz". Please note this is a convenience
extension and using it is non-standard SDC syntax.

The -waveform option specifies the rising and falling edges (duty
cycle) of the clock, and is specified as a list of two time values:
the first rising edge and the next falling edge. The rising edge must
be within the range [0, period]. The falling edge must be within one
clock period of the rising edge. The waveform defaults to (0,
period/2).

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If a clock with the same name is already assigned to a given target,
the create_clock command will return an error. If a clock with a
different name exists on the given target, the create_clock command
will be ignored unless the -add option is used. The -add option can be
used to assign multiple clocks to a pin or port.

If the target of the clock is internal (i.e. not an input port), the
source latency is zero by default.

If a clock is on a path after another clock, then it blocks or
overwrites the previous clock from that point forward.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type. The
values used must follow standard Tcl substitution rules.

Example Usage dni::create_clock $period

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.12. dni::current_design (::quartus::dcmd_dni)

The following table displays information for the dni::current_design Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::current_design [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command returns the current top module of the design. In Quartus,
top module cannot be changed.

Example Usage dni::current_design

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.13. dni::current_instance (::quartus::dcmd_dni)

The following table displays information for the dni::current_instance Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::current_instance [-h | -help] [-long_help] [<instance>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<instance> An instance name relative to the current instance

Description
This command sets the instance as current point of reference for
object names (e.g. relative path names) used in object query commands.
This command returns the new current instance hierarchy or empty if
current is design top.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If no instance name specified, the current instance is set to the
current design top. If instance name specified as ".", the current
instance is not changed. If instance name specified as "..", move
current instance one level up in the hierarchy.

The instance name can include any number of ".." (separated by
hierarchy separators '|') as well as hierarchy instance names.

The new current instance cannot be a leaf cell.

Example Usage move current instance up two levels
dni::current_instance ..|..

move current instance to foo under parent of current instance
dni::current_instance ..|foo

Save the current instance
set saved_ci [dni::current_instance .]

make the design top the new current instance
dni::current_instance

query top-level objects
set top_level_foo [dni::get_cells foo]

restore saved current instance
current_instance $saved_ci

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.14. dni::delete_stale_sandboxes (::quartus::dcmd_dni)

The following table displays information for the dni::delete_stale_sandboxes Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::delete_stale_sandboxes [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Removes stale sandbox directories on disk.

Example Usage project_open <revision name>
dni::delete_stale_sandboxes
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.15. dni::filter_collection (::quartus::dcmd_dni)

The following table displays information for the dni::filter_collection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::filter_collection [-h | -help] [-long_help] [-nocase] [-regexp] <collection>
<filter>

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-nocase Whether to perform case insensitive filter

-regexp Whether to apply regular expression when to filter

<collection> The base collection

<filter> Filter expression

Description
Filters an existing collection, resulting in a new collection. The base collection remains
unchanged.

Example Usage set filtered_collection [::dni::filter_collection $collection "name==\"speed\""]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.16. dni::get_cells (::quartus::dcmd_dni)

The following table displays information for the dni::get_cells Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::get_cells [-h | -help] [-long_help] [-exact] [-filter <expression>] [-
hierarchical] [-nocase] [-of_objects <objects>] [-quiet] [<patterns>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exact exact patterns to search for object. Exact patterns cannot
include wildcard characters "*" or "?" and escaped
characters "\".

-filter <expression> filter search by expression

-hierarchical search level-by-level down from current instance

-nocase perform case insensitive search

-of_objects <objects> search based on relationship to objects

-quiet Suppress error, warning, or information messages

<patterns> patterns to search for object. Patterns can include wildcard
characters "*" or "?". Wildcard characters do not match with
hierarchy separator

Description
This command creates a collection of instances from the current
design, relative to the current instance.

Example Usage # Suppose a design from top contains two hierchical instances.
instance name (module name)
| (top)
|-h1_i1 (mod_A)
| |-h2_i1 (mod_B)
|
|-h1_i2 (mod_A)
|-h2_i1 (mod_B)

Get instances from top module: {h1_1 h1_2}
dni::get_cells

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Get hierarchical instances with prefix h from top module: { h1_i1 h1_i1|h2_i1 h1_i2 h1_i2|
h2_i1 }
dni::get_cells h* -hierarchical

Get hierarchical instances with prefix h from |h1_i2 instance: { h1_i2|h2_i1 }
dni::current_instance h1_i2
dni::get_cells h* -hierarchical

Get instance of instance port
dni::get_cells -of_objects [dni::get_pins h1_i2|in1]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.17. dni::get_clocks (::quartus::dcmd_dni)

The following table displays information for the dni::get_clocks Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::get_clocks [-h | -help] [-long_help] [-filter <filter>] [-nocase] [-quiet]
[-regexp] [<patterns>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filter <filter> filter for getting clocks

-nocase whether to apply case insensitive on filter for getting clocks

-quiet quiet mode for getting clocks

-regexp whether to use regexp on filter for getting clocks

<patterns> patterns for getting clocks

Description
This command creates a collection of clocks from clocks that are
currently defined.

Example Usage dni::get_clocks

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.18. dni::get_designs (::quartus::dcmd_dni)

The following table displays information for the dni::get_designs Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::get_designs [-h | -help] [-long_help] [-exact <exact>] [-filter
<expression>] [-nocase] [-quiet] [<patterns>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exact <exact> exact patterns to search for object. Exact patterns cannot
include wildcard characters "*" or "?" and escaped
characters "\".

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-filter <expression> filter search by expression

-nocase perform case insensitive search

-quiet Suppress error, warning, or information messages

<patterns> patterns to search for object. Patterns can include wildcard
characters "*" or "?". Wildcard characters do not match with
hierarchy separator

Description
Creates a collection of one or more modules in the design.

Example Usage # Create a collection of all modules
dni::get_designs

Lookup by prefix name
dni::get_designs auto*

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.19. dni::get_generated_clocks (::quartus::dcmd_dni)

The following table displays information for the dni::get_generated_clocks Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::get_generated_clocks [-h | -help] [-long_help] [-exact] [-filter <filter>]
[-nocase] [-quiet] [-regexp] [<patterns>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exact whether to match filter exactly for getting generated clocks

-filter <filter> filter for getting generated clocks

-nocase whether to apply case insensitive on filter for getting
generated clocks

-quiet quiet mode for getting generated clocks

-regexp whether to use regexp on filter for getting generated clocks

<patterns> patterns for getting generated clocks

Description
This command creates a collection of all generated clocks in the design.

Example Usage dni::get_generated_clocks

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.5.20. dni::get_nets (::quartus::dcmd_dni)

The following table displays information for the dni::get_nets Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::get_nets [-h | -help] [-long_help] [-exact] [-filter <expression>] [-
hierarchical] [-nocase] [-of_objects <objects>] [-quiet] [<patterns>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exact exact patterns to search for object. Exact patterns cannot
include wildcard characters "*" or "?" and escaped
characters "\".

-filter <expression> filter search by expression

-hierarchical search level-by-level down from current instance

-nocase perform case insensitive search

-of_objects <objects> search based on relationship to objects

-quiet Suppress error, warning, or information messages

<patterns> patterns to search for object. Patterns can include wildcard
characters "*" or "?". Wildcard characters do not match with
hierarchy separator

Description
This command creates a collection of nets from the current design,
relative to the current instance.

Example Usage # Creates a collection of nets at hierarchy h1* from top module.
dni::get_nets h1*|*

Creates a collection of nets connected to instance port h1_i1|in?.
dni::get_nets -of_objects [dni::get_pins h1_i1|in?]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.21. dni::get_pins (::quartus::dcmd_dni)

The following table displays information for the dni::get_pins Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::get_pins [-h | -help] [-long_help] [-exact] [-filter <expression>] [-
hierarchical] [-nocase] [-of_objects <objects>] [-quiet] [<patterns>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exact exact patterns to search for object. Exact patterns cannot
include wildcard characters "*" or "?" and escaped
characters "\".

-filter <expression> filter search by expression

-hierarchical search level-by-level down from current instance

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-nocase perform case insensitive search

-of_objects <objects> search based on relationship to objects

-quiet Suppress error, warning, or information messages

<patterns> patterns to search for object. Patterns can include wildcard
characters "*" or "?". Wildcard characters do not match with
hierarchy separator

Description
This command creates a collection of instance ports from given search specifications.

Example Usage # Creates a collection of instance ports with prefix out from top module.
dni::get_pins out*

Creates a collection of instance ports connected to net h1_i1|n1.
dni::get_pins -of_objects [dni::get_nets h1_i1|n1]

Creates a collection of instance ports from hierarchy h1* with direction as input and name
prefix.
dni::get_pins h1*|* -filter {direction==input && name=~in*}]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.22. dni::get_ports (::quartus::dcmd_dni)

The following table displays information for the dni::get_ports Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::get_ports [-h | -help] [-long_help] [-exact] [-filter <expression>] [-
hierarchical] [-nocase] [-of_objects <objects>] [-quiet] [<patterns>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exact exact patterns to search for object. Exact patterns cannot
include wildcard characters "*" or "?" and escaped
characters "\".

-filter <expression> filter search by expression

-hierarchical search level-by-level down from current instance

-nocase perform case insensitive search

-of_objects <objects> search based on relationship to objects

-quiet Suppress error, warning, or information messages

<patterns> patterns to search for object. Patterns can include wildcard
characters "*" or "?". Wildcard characters do not match with
hierarchy separator

Description
This command creates a collection of ports from the current design,
relative to the current instance.

Example Usage # Creates a collection of ports from top module.
dni::get_ports

Creates a collection of ports filter by output direction.
dni::get_ports -filter {direction==output}

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creates a collection of ports connected to net n1.
dni::get_ports -of_objects [dni::get_nets n1]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.23. dni::get_property (::quartus::dcmd_dni)

The following table displays information for the dni::get_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::get_property [-h | -help] [-long_help] -name <name> -object <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> property name

-object <object> object from which to get property

Description
Command to get property.

Example Usage set mod_port_name [dni::get_property -object $mod_port -name name]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.24. dni::highlight (::quartus::dcmd_dni)

The following table displays information for the dni::highlight Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::highlight [-h | -help] [-long_help] -action <action> [-append] [-file
<file>] [-name <name>] [-object <object>] [-set <set>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-action <action> highlight action

-append to append to existing file or overwrite

-file <file> file name to save or restore highlight sets

-name <name> name for the highlight set

-object <object> object to be highlighted

-set <set> a set containing highlight objects

Description
Command for object highlight.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage dni::highlight -action find

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.25. dni::index_collection (::quartus::dcmd_dni)

The following table displays information for the dni::index_collection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::index_collection [-h | -help] [-long_help] <collection> <index> <index2>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<collection> The base collection

<index> The index to locate an object in the collection

<index2> The second index to locate an item in the collection. If
present, a list of objects between index and index2 in the
base collection will be used to create a new collection

Description
Given a collection and an index, if the index is in range, create a new collection containing
only the single object. Optionally a second index can be passed to create a new collection with
the objects between the two indices in the base collection.

Example Usage set new_collection [::dni::index_collection $collection 0 10]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.26. dni::is_dni_mode (::quartus::dcmd_dni)

The following table displays information for the dni::is_dni_mode Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::is_dni_mode [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Command to check if it is in DNI mode.

Example Usage dni::is_dni_mode

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.5.27. dni::is_dni_mode_for_developer_testing (::quartus::dcmd_dni)

The following table displays information for the
dni::is_dni_mode_for_developer_testing Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::is_dni_mode_for_developer_testing [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Command to check if it is in DNI mode for developer testing.

Example Usage dni::is_dni_mode_for_developer_testing

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.28. dni::list_properties (::quartus::dcmd_dni)

The following table displays information for the dni::list_properties Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::list_properties [-h | -help] [-long_help] -object <object> -type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-object <object> object from which to list properties

-type <type> type from which to list properties

Description
This command gets the list of property names of an object or a specific object type.

Example Usage set prop_list [dni::list_properties -type $type -object $object]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.29. dni::load_design (::quartus::dcmd_dni)

The following table displays information for the dni::load_design Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::load_design [-h | -help] [-long_help] -checkpoint <checkpoint name> [-mode
<mode>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-checkpoint <checkpoint name> checkpoint name

-mode <mode> Mode for open design

Description
Open the specified checkpoint into a sandbox and load the design from the sandbox.
The opened design becomes the default design used for Tcl commands query.

Example Usage dni::load_design -checkpoint "elaborated"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.30. dni::read_sdc (::quartus::dcmd_dni)

The following table displays information for the dni::read_sdc Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::read_sdc [-h | -help] [-long_help] [-replace] <sdc_file>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-replace Option to override existing constraints

<sdc_file> Sdc filename

Description
Command to source constraints from sdc file.

Example Usage dni::read_sdc top.sdc

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.31. dni::remove_from_collection (::quartus::dcmd_dni)

The following table displays information for the dni::remove_from_collection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::remove_from_collection [-h | -help] [-long_help] [-intersect] <collection>
<object_spec>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-intersect Removes objects from collection1 not found in object_spec.
Without this option, removes objects from collection1 that
are found in object_spec.

<collection> The base collection

<object_spec> A list of objects to be removed from the base collection

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Remove objects from a collection, resulting in a new collection. The base collection remains
unchanged.

Example Usage set new_collection [::dni::remove_from_collection $collection [list $o1 $o2]]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.32. dni::selection (::quartus::dcmd_dni)

The following table displays information for the dni::selection Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::selection [-h | -help] [-long_help] -action <action> [-object <object>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-action <action> selection action

-object <object> object to be selected

Description
Command for object selection.

Example Usage dni::selection -action clear

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.33. dni::set_property (::quartus::dcmd_dni)

The following table displays information for the dni::set_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::set_property [-h | -help] [-long_help] -name <name> -object <object> -
value <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> property name to set property

-object <object> object from which to set property

-value <value> property value to set property

Description
Command to set property.

Example Usage dni::set_property -object $mod_port -name name -value {new_name}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.5.34. dni::set_time_format (::quartus::dcmd_dni)

The following table displays information for the dni::set_time_format Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::set_time_format [-h | -help] [-long_help] [-decimal_places
<decimal_places>] [-unit <unit>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-decimal_places <decimal_places> Number of decimal places to use

-unit <unit> Default time unit to use

Description
Sets time format, including time unit and decimal places.

Time units are assumed to be nanoseconds (ns) by default. The "-unit"
option overrides the default time units. Legal time unit values are:
ps, ns, us, ms.

Time units are displayed with three decimal places by default. The
"-decimal_places" option overrides the default number of decimal
places to show.

The smallest resolution of all times units is one picosecond (ps). Any
additional specified precision will be truncated.

Example Usage # Create two clocks with a clock period of 8 nanoseconds.
create_clock -period 8.000 clk1

set_time_format -unit ps -decimal_places 0
create_clock -period 8000 clk2

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified number of decimal places is invalid.
Please specify an integral value >= 0.

TCL_ERROR 1 ERROR: The default time unit can be set to ms, us, ns, or
ps. Please specify one of these units instead.

3.1.5.35. dni::set_time_unit (::quartus::dcmd_dni)

The following table displays information for the dni::set_time_unit Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::set_time_unit [-h | -help] [-long_help] <unit>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<unit> Default time unit to use

Description
Time units are assumed to be nanoseconds (ns) by default unless
otherwise specified. Time or delay values are also displayed in
nanoseconds by default without time units. The dni::set_time_unit
COMMAND overrides the default time units assumed by the Timing
Analyzer.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Legal values are: ps, ns, us, ms

The smallest resolution of all times units is one picosecond (ps). Any
additional specified precision will be truncated.

Example Usage # Create two clocks with a clock period of 8 nanoseconds.
create_clock -period 8.000 clk1

dni::set_time_unit ps
create_clock -period 8000 clk2

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The default time unit can be set to ms, us, ns, or
ps. Please specify one of these units instead.

3.1.5.36. dni::sizeof_collection (::quartus::dcmd_dni)

The following table displays information for the dni::sizeof_collection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::sizeof_collection [-h | -help] [-long_help] [-categorize] <collection>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-categorize Return 0, 1, 2 indicating if the collection has 1, or or more
than 1 item

<collection> The base collection

Description
Returns the number of objects in a collection.

Example Usage set size [::dni::sizeof_collection $collection]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.37. dni::sort_collection (::quartus::dcmd_dni)

The following table displays information for the dni::sort_collection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::sort_collection [-h | -help] [-long_help] [-descending] [-dictionary] [-
limit <limit>] <collection> <criteria>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-descending Indicates that the collection is to be sorted in reverse order.
By default, the sort proceeds in ascending order

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

139

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-dictionary Sort strings dictionary order. For example "a30" would come
after "a4"

-limit <limit> Only return the first unique values from the primary sort
key

<collection> The base collection

<criteria> Specifies a list of one or more application or user-defined
attributes to use as sort keys

Description
 Sorts a collection based on one or more attributes, resulting in a new, sorted
collection. The sort is ascending by default.

Example Usage set size [::dni::sort_collection $collection {is_hierarchy}]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.38. dni::unload_design (::quartus::dcmd_dni)

The following table displays information for the dni::unload_design Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::unload_design [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Closes the design of the current opened sandbox and closes the sandbox.

Example Usage dni::load_design -checkpoint "elaborated"
...
dni::unload_design

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.5.39. dni::write_sdc (::quartus::dcmd_dni)

The following table displays information for the dni::write_sdc Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dcmd_dni on page 120

Syntax dni::write_sdc [-h | -help] [-long_help] [-command <command>] [-design
<design>] [-file <file>] [-include_file_info] [-line <line>] [-output_file
<output_file>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-command <command> Only output constraint statements defined with this
command

-design <design> Design for CDMS design related commands

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-file <file> Only output constraint statements defined in this file

-include_file_info Include the file name and line number where the constraint
is defined

-line <line> Only output constraint statements defined on this line
number

-output_file <output_file> Path to output file where constraint statements are written

Description
Write the SDC constraint statements currently loaded for this design.

Example Usage # Write the SDC constraints to the console
dni::write_sdc

Write the SDC constraints to a file
dni::write_sdc -output_file write_sdc_output.txt

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.6. ::quartus::design

The following table displays information for the ::quartus::design Tcl package:

Tcl Package and Version ::quartus::design 1.0

Description
This package contains the set of Tcl functions for manipulating databases including
the assignments database. Using this package makes it possible to create instance
assignments without modifying the Quartus Prime Settings File (.qsf).

Availability This package is loaded by default in the following executable:

 quartus_cdb

This package is available for loading in the following executables:

 qacv
 qpro
 qpro_sh
 quartus
 quartus_fit
 quartus_map
 quartus_pow
 quartus_sh
 quartus_sta
 quartus_syn

Tcl Commands design::commit_design (::quartus::design) on page 142
design::convert_partition (::quartus::design) on page 142
design::create_assignment (::quartus::design) on page 143
design::delete_assignments (::quartus::design) on page 143
design::disable_assignments (::quartus::design) on page 144
design::enable_assignments (::quartus::design) on page 145
design::export_design (::quartus::design) on page 145
design::export_partition (::quartus::design) on page 146
design::extract_metadata (::quartus::design) on page 147
design::get_assignment_info (::quartus::design) on page 147
design::get_assignment_names (::quartus::design) on page 148
design::get_assignments (::quartus::design) on page 148
design::get_entity_names (::quartus::design) on page 149
design::get_instances (::quartus::design) on page 150
design::import_design (::quartus::design) on page 150
design::import_partition (::quartus::design) on page 151
design::list_valid_snapshot_names (::quartus::design) on page 152
design::load_design (::quartus::design) on page 152
design::report_assignments (::quartus::design) on page 153
design::set_assignment_info (::quartus::design) on page 153

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.6.1. design::commit_design (::quartus::design)

The following table displays information for the design::commit_design Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::commit_design [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Commit any changes to the databases to disk.

Assignments created or modified on a design loaded as writeable are not saved to the databases
unless you explicitally call this command.

Example Usage project_open onewire_nf

design::load_design -latest_snapshot -writeable
design::delete_assignments [design::get_assignments -name location]
design::commit_design

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.6.2. design::convert_partition (::quartus::design)

The following table displays information for the design::convert_partition Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::convert_partition [-h | -help] [-long_help] -infile <QDB file name> -
outfile <QDB file name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-infile <QDB file name> Input file name of the QDB archive (version-compatible
format).

-outfile <QDB file name> Output file name of the QDB archive (current-version-only
format).

Description
Convert a partition's QDB file in version-compatible ASCII format into a QDB file in BINARY
format for current version of Quartus.

Example Usage # The input QDB file is created by running design::export_partition
from compiled source design with Quartus of older or current version

project_open onewire_nf
design::export_partition core_ptn -snapshot synthesized -file src_ip.qdb -compatible
project_close

Make sure you are using the same version of Quartus that will use to compile your design.

project_open onewire_nf
design::convert_partition -infile src_ip.qdb -outfile ip.qdb
project_close

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified archive <string> does not exist.

3.1.6.3. design::create_assignment (::quartus::design)

The following table displays information for the design::create_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::create_assignment [-h | -help] [-long_help] [-from <from>] -name
<name> -to <to> -value <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-from <from> The source name of the assignment

-name <name> The type name of the assignment

-to <to> The destination name of the assignment

-value <value> The value of the assignment

Description
Create a new assignment in the assignment database

Example Usage project_open onewire_nf

design::load_design -latest_snapshot -writeable
design::create_assignment -name location -to in1 -value PIN_A5
design::commit_design

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Both the -to or -from argument is required.

TCL_ERROR 1 ERROR: Either the -to or -from argument is required.

TCL_ERROR 1 ERROR: The -to argument is required.

TCL_ERROR 1 ERROR: The value of an assignment cannot be empty.

3.1.6.4. design::delete_assignments (::quartus::design)

The following table displays information for the design::delete_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::delete_assignments [-h | -help] [-long_help] <assignment>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<assignment> one or more assignment ids

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Delete one or more assignments from the assignment database

Example Usage project_open onewire_nf

design::load_design -latest_snapshot -writeable
design::delete_assignments [design::get_assignments -name location]
design::commit_design

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied assignment id <string> is invalid.

TCL_ERROR 1 ERROR: At least one periphery assignment ID must be
supplied, but no assignments IDs were supplied.

TCL_ERROR 1 ERROR: <string> assignment IDs were expected but
<string> were supplied.

3.1.6.5. design::disable_assignments (::quartus::design)

The following table displays information for the design::disable_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::disable_assignments [-h | -help] [-long_help] <assignment>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<assignment> one or more assignment ids

Description
Disables one or more assignments from the assignment database

Example Usage project_open onewire_nf

design::load_design -latest_snapshot -writeable
design::disable_assignments [design::get_assignments -name location]
design::commit_design

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied assignment id <string> is invalid.

TCL_ERROR 1 ERROR: At least one periphery assignment ID must be
supplied, but no assignments IDs were supplied.

TCL_ERROR 1 ERROR: <string> assignment IDs were expected but
<string> were supplied.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.6.6. design::enable_assignments (::quartus::design)

The following table displays information for the design::enable_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::enable_assignments [-h | -help] [-long_help] <assignment>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<assignment> one or more assignment ids

Description
Enables one or more assignments from the assignment database that were previously disabled

Example Usage project_open onewire_nf

design::load_design -latest_snapshot -writeable
design::enable_assignments [design::get_assignments -name location]
design::commit_design

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied assignment id <string> is invalid.

TCL_ERROR 1 ERROR: At least one periphery assignment ID must be
supplied, but no assignments IDs were supplied.

TCL_ERROR 1 ERROR: <string> assignment IDs were expected but
<string> were supplied.

3.1.6.7. design::export_design (::quartus::design)

The following table displays information for the design::export_design Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::export_design [-h | -help] [-long_help] -file <file> [-quartus_metadata
<quartus_metadata>] -snapshot <snapshot> [-user_metadata <user_metadata>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-file <file> The file.qdb to export to

-quartus_metadata
<quartus_metadata>

A space-separated list of Quartus Metadata to export. Valid
Quartus Metadata options include <none|
project_information|resource_utilization|all>.

-snapshot <snapshot> The snapshot you want to export. Valid snapshot
<synthesized|final>.

-user_metadata <user_metadata> The absolute or relative path to the User Metadata
configuration file.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Export the specified metadata and loaded databases for the open project and revision and
snapshot to <file>.qdb in a version-compatable format.

This command is available only in the quartus_cdb executable.

Example Usage project_open onewire_nf

design::export_design -file onewire.qdb -snapshot synthesized

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.6.8. design::export_partition (::quartus::design)

The following table displays information for the design::export_partition Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::export_partition [-h | -help] [-long_help] [-exclude_pr_subblocks] -
file <QDB file name> [-include_sdc_entity_in_partition] [-preserve_sdc] [-
quartus_metadata <quartus_metadata>] -snapshot <Snapshot(s) to be exported> [-
user_metadata <user_metadata>] <Partition to be exported>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exclude_pr_subblocks Exclude PR subpartitions

-file <QDB file name> File name of the QDB archive.

-
include_sdc_entity_in_partiti
on

Preserve SDC/TCL Entity files

-preserve_sdc Deprecated option to Preserve SDC/TCL Entity files

-quartus_metadata
<quartus_metadata>

A space-separated list of Quartus Metadata to export. Valid
Quartus Metadata options include <none|
project_information|resource_utilization|all>.

-snapshot <Snapshot(s) to be
exported>

Snapshot(s) to be exported. Valid snapshot options include
<synthesized|final>.

-user_metadata <user_metadata> The absolute or relative path to the User Metadata
configuration file.

<Partition to be exported> Name of the partition to be exported.

Description
Export the metadata and IP of the specified partition and snapshot.

Example Usage project_open onewire_nf
design::export_partition core_ptn -snapshot synthesized -file ip.qdb
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.6.9. design::extract_metadata (::quartus::design)

The following table displays information for the design::extract_metadata Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::extract_metadata [-h | -help] [-long_help] -dir <dir> -file <file> [-
overwrite] -type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-dir <dir> The extraction directory. This directory must exist prior to
invoking this command.

-file <file> The Partition Database File (.qdb) holding the metadata to
be extracted.

-overwrite Attempt to overwrite any existing files in the extraction
directory.

-type <type> The type of QDB metadata to be extracted. Legal QDB
metadata types include <quartus|user|all>.

Description
Extracts the specified metadata from the given Partition Database File (.qdb) file to the
provided extraction directory.

Example Usage # Create a Partition Database File (.qdb) with Quartus Metadata using the "synthesized"
snapshot.
project_open onewire_nf
design::export_design -file onewire.qdb -snapshot synthesized -quartus_metadata all
project_close

Create the extraction directory.
file mkdir "extract/dir"

Extract all the Quartus Metadata from "onewire.qdb" to the extraction directory located at
"extract/dir".
design::extract_metadata -file onewire.qdb -type quartus -dir "extract/dir"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.6.10. design::get_assignment_info (::quartus::design)

The following table displays information for the design::get_assignment_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::get_assignment_info [-h | -help] [-long_help] [-from] [-name] [-to] [-
value] <assignment>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-from Return the source name of the assignment id

-name Return the type name of the assignment id

-to Return the destination name of the assignment id

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-value Return the value of the assignment id

<assignment> assignment id

Description
Get information about a given assignent ID

Example Usage project_open onewire_nf

design::load_design -latest_snapshot
foreach asgn_id [design::get_assignments] {
 puts "Found assignment [design::get_assignment_info -name $asgn_id]
[design::get_assignment_info -to $asgn_id] = [design::get_assignment_info -value $asgn_id]"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied assignment id <string> is invalid.

TCL_ERROR 1 ERROR: At least one periphery assignment ID must be
supplied, but no assignments IDs were supplied.

TCL_ERROR 1 ERROR: <string> assignment IDs were expected but
<string> were supplied.

3.1.6.11. design::get_assignment_names (::quartus::design)

The following table displays information for the design::get_assignment_names
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::get_assignment_names [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Get a list of valid assignment type names

Example Usage project_open onewire_nf

design::load_design -latest_snapshot
puts "Valid assignment type names:"
foreach asgn_type [lsort [design::get_assignment_names]] {
 puts $asgn_type
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.6.12. design::get_assignments (::quartus::design)

The following table displays information for the design::get_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::get_assignments [-h | -help] [-long_help] [-deleted] [-disabled] [-
enabled] [-ignored] [-name <name>]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-deleted Return only deleted assignments

-disabled Return only disabled assignments

-enabled Return only enabled assignments

-ignored Return only ignored assignments

-name <name> Return only assignments of the provided type name

Description
Get a list of assignment IDs for the currently loaded design.

Example Usage project_open onewire_nf

design::load_design -latest_snapshot
foreach asgn_id [design::get_assignments] {
 puts "Found assignment [design::get_assignment_info -name $asgn_id]
[design::get_assignment_info -to $asgn_id] = [design::get_assignment_info -value $asgn_id]"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The assignment with id <string> is not enabled.

TCL_ERROR 1 ERROR: The supplied assignment type name <string> is
invalid.

TCL_ERROR 1 ERROR: At least one assignment type name must be
supplied, but no type namess were supplied.

TCL_ERROR 1 ERROR: <string> assignment type names were expected
but <string> were supplied.

3.1.6.13. design::get_entity_names (::quartus::design)

The following table displays information for the design::get_entity_names Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::get_entity_names [-h | -help] [-long_help] [<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<filter> Object filter

Description
Get a list of entity names in the loaded design

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.6.14. design::get_instances (::quartus::design)

The following table displays information for the design::get_instances Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::get_instances [-h | -help] [-long_help] [-entity <entity>] [<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity> Return only instance names that have the supplied entity
name

<filter> Object filter

Description
Get a list of instances in the loaded design

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.6.15. design::import_design (::quartus::design)

The following table displays information for the design::import_design Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::import_design [-h | -help] [-long_help] -file <file> [-overwrite] [-
timing_analysis_mode]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-file <file> The file.qdb to import from

-overwrite overwrites the databases in the active qdb directory

-timing_analysis_mode Import the design for Timing Analysis. User will not be able
to generate programming file after importing design with
this option. See -timing_analysis_mode option description
below.

Description
Import all the databases from the specified <file>.qdb.

If overwrite is specified then databases will be overwritten in the active qdb
directory.

The database revision in the <file>.qdb must match the active revision.

This command is available only in the quartus_cdb executable.

OPTIONS DESCRIPTION

-timing_analysis_mode

 Import the design for Timing Analysis. This option disables legality checks
 for certain configuration rules which may have changed from prior versions

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 of Quartus Prime Pro.
 Use this option only if you were unable to successfully import your design
 without this option. After a design has been imported in timing analysis mode,
 the imported database will not be able to be used to generate programming files.

Example Usage # For the pro/quartus/sys/dsgn tests we need to export
a design first so there's a design to import
project_open onewire_nf
design::export_design -file onewire.qdb -snapshot synthesized
project_close

project_open onewire_nf
design::import_design -file onewire.qdb -overwrite
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified archive <string> does not exist.

TCL_ERROR 1 ERROR: Databases already exist for the specified revision
<string>. Use -overwrite to overwrite them.

3.1.6.16. design::import_partition (::quartus::design)

The following table displays information for the design::import_partition Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::import_partition [-h | -help] [-long_help] -file <QDB file name> [-
no_overwrite] <Partition to be imported>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-file <QDB file name> File name of the QDB archive.

-no_overwrite Don't delete existing snapshots when importing partition

<Partition to be imported> Partition name at which the imported IP will be rooted.

Description
Import a partition into the current design.

Example Usage # You need to run design::export_partition from a source design
so that there's a partition to import from

project_open onewire_nf
design::export_partition root_partition -snapshot synthesized -file ip.qdb
project_close

The imported DB file can be used as root_partition

project_open onewire_nf
design::import_partition root_partition -file ip.qdb
project_close

Or non-root_partition

project_open onewire_nf
design::import_partition ip_sub -file ip.qdb
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified archive <string> does not exist.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.6.17. design::list_valid_snapshot_names (::quartus::design)

The following table displays information for the
design::list_valid_snapshot_names Tcl command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::list_valid_snapshot_names [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns the list of the valid design snapshot names.

Example Usage puts "Valid design snapshot names: [design::list_valid_snapshot_names]"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.6.18. design::load_design (::quartus::design)

The following table displays information for the design::load_design Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::load_design [-h | -help] [-long_help] [-flat_only] [-latest_snapshot]
[-snapshot <snapshot>] [-writeable]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-flat_only Indicates that databases should be loaded only from the flat
partition.

-latest_snapshot Load the latest snapshot for the design

-snapshot <snapshot> Snapshot name to load database(s) from

-writeable Loads databases in a writeable mode.

Description
Load the databases for the currently opened project. The databases are by default loaded in read-
only mode
and must be loaded with the -writeable option if manipulation to the databases is desired.

Example Usage project_open onewire_nf

design::load_design -latest_snapshot
foreach asgn_id [design::get_assignments] {
 puts "Found assignment [design::get_assignment_info -name $asgn_id]
[design::get_assignment_info -to $asgn_id] = [design::get_assignment_info -value $asgn_id]"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The specified snapshot name, <string>, is invalid.

TCL_ERROR 1 ERROR: At least one snapshot must be supplied, but no
snapshots were supplied.

TCL_ERROR 1 ERROR: <string> snapshots were expected but <string>
were supplied.

3.1.6.19. design::report_assignments (::quartus::design)

The following table displays information for the design::report_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::report_assignments [-h | -help] [-long_help] [-deleted] [-disabled] [-
enabled] [-ignored] [-name <name>] [-panel_name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-deleted Report only deleted assignments

-disabled Report only disabled assignments

-enabled Return only enabled assignments

-ignored Report only ignored assignments

-name <name> The type name of the assignments to report

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

Description
Create a report of all instance assignments in the loaded design

Example Usage project_open onewire_nf
design::load_design -latest_snapshot
design::report_assignments -name location

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.6.20. design::set_assignment_info (::quartus::design)

The following table displays information for the design::set_assignment_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::design on page 141

Syntax design::set_assignment_info [-h | -help] [-long_help] [-disable] [-enable] [-
value <value>] <assignment>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-disable Disable the assignment

-enable Enable the assignment

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

153

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-value <value> Set the assignment value

<assignment> assignment id

Description
Set information for a given assignent ID

Example Usage project_open onewire_nf

design::load_design -latest_snapshot
set asgn_id [lindex [design::get_assignments -name location] 0]
 puts "Setting location of [design::get_assignment_info -to $asgn_id] to PIN_A5"
 design::set_assignment_info -value PIN_A5 $asgn_id
 puts "New location of [design::get_assignment_info -to $asgn_id] is
[design::get_assignment_info -value $asgn_id]"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied assignment id <string> is invalid.

TCL_ERROR 1 ERROR: The supplied assignment value <string> is invalid.

TCL_ERROR 1 ERROR: At least one periphery assignment ID must be
supplied, but no assignments IDs were supplied.

TCL_ERROR 1 ERROR: Either the -to or -from argument is required.

TCL_ERROR 1 ERROR: The value of an assignment cannot be empty.

TCL_ERROR 1 ERROR: <string> assignment IDs were expected but
<string> were supplied.

3.1.7. ::quartus::device

The following table displays information for the ::quartus::device Tcl package:

Tcl Package and Version ::quartus::device 1.0

Description
This package contains the set of Tcl functions
for accessing information from the Quartus Prime
device database.

Availability This package is loaded by default in the following executables:

 qpro_sh
 quartus_cdb
 quartus_eda
 quartus_fit
 quartus_ipgenerate
 quartus_sh
 quartus_sim
 quartus_sta
 quartus_syn

This package is available for loading in the following executables:

 qpro
 quartus
 quartus_si

Tcl Commands get_family_list (::quartus::device) on page 155
get_part_info (::quartus::device) on page 155
get_part_list (::quartus::device) on page 156
report_device_info (::quartus::device) on page 157
report_family_info (::quartus::device) on page 157
report_part_info (::quartus::device) on page 158

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.7.1. get_family_list (::quartus::device)

The following table displays information for the get_family_list Tcl command:

Tcl Package and
Version

Belongs to ::quartus::device on page 154

Syntax get_family_list [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns a list of available families.

Example Usage get_family_list

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal or missing <string> value, '<string>'.
Specify a legal value.

3.1.7.2. get_part_info (::quartus::device)

The following table displays information for the get_part_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::device on page 154

Syntax get_part_info [-h | -help] [-long_help] [-default_voltage] [-device] [-
device_group] [-family] [-family_variant] [-fast_grade_revision] [-
grade_revision] [-hssi_speed_grade] [-iobank_revision] [-package] [-
pdn_model_status] [-pin_count] [-pof_id] [-power_model] [-power_model_status] [-
rohs_grade] [-sip_tile] [-speed_grade] [-subdevice_id_code] [-
subdevice_id_mask] [-temperature_grade] <part>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-default_voltage Option to get the default core voltage (such as 0.9V or
1.1V)

-device Option to get device name (such as EP1S25 or EP1S80)

-device_group Option to get the device_group

-family Option to get family name (such as Stratix or Cyclone)

-family_variant Option to get family variant (such as Base, E or GX)

-fast_grade_revision Option to get the fast_grade_revision

-grade_revision Option to get the grade_revision

-hssi_speed_grade Option to get the hssi speed grade

-iobank_revision Option to get the iobank_revision

-package Option to get package name (such as FBGA or BGA)

-pdn_model_status Option to get the power distribution network (PDN) model
status (such as ADVANCE, PRELIMINARY, or FINAL)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-pin_count Option to get total number of pins in the package

-pof_id Option to get the pof_id

-power_model Option to get the power model (such as STANDARD or LOW)

-power_model_status Option to get the power model status (such as
PRELIMINARY or FINAL)

-rohs_grade Option to get the ROHS grade (ROHS5, ROHS6, Leaded)

-sip_tile Option to get SiP tile (such as L-tile, H-tile, E-tile)

-speed_grade Option to get speed grade (such as 5, 6, or 7)

-subdevice_id_code Option to get the subdevice_id_code

-subdevice_id_mask Option to get the subdevice_id_mask

-temperature_grade Option to get temperature grade of the package (such as
COMMERCIAL or INDUSTRIAL)

<part> Part name

Description
Returns part characteristics for the specified part.

If you use multiple options, the command returns a list
in the following order:
 <family> <device> <package> <pin_count> <speed grade> <temperature_grade> <family_variant>
<power_model_status> <hssi_speed_grade> <power_model> <rohs_grade>

Example Usage tcl> get_part_info -family EP1S25F780C5
tcl> Stratix

tcl> get_part_info -family -device EP1S25F780C5
tcl> Stratix EP1S25

tcl> get_part_info -device -package -pin_count -speed_grade EP1S25F780C5
tcl> EP1S25 FBGA 780 5

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal die location name: <string>. Specify a legal
die location name.

TCL_ERROR 1 ERROR: Illegal resource name: <string>. Specify a legal
resource name.

3.1.7.3. get_part_list (::quartus::device)

The following table displays information for the get_part_list Tcl command:

Tcl Package and
Version

Belongs to ::quartus::device on page 154

Syntax get_part_list [-h | -help] [-long_help] [-device <value>] [-family <value>] [-
package <value>] [-pin_count <value>] [-speed_grade <value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-device <value> Option to match device name

-family <value> Option to match family name

-package <value> Option to match package name

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-pin_count <value> Option to match pin count

-speed_grade <value> Option to match speed grade

Description
Returns a list of available parts based on the options
that are specified. Examples are as follows:
 Return a list of all supported parts
 get_part_list
 Return a list of all supported parts for Cyclone
 get_part_list -family Cyclone
 Return a list of all supported parts with the FBGA
 package and 780 pins
 get_part_list -package fbga -pin_count 780

Example Usage get_part_list -family "Stratix IV"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal or missing <string> value, '<string>'.
Specify a legal value.

3.1.7.4. report_device_info (::quartus::device)

The following table displays information for the report_device_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::device on page 154

Syntax report_device_info [-h | -help] [-long_help] <device>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<device> Device name

Description
Returns a string value containing the report with information
about the specified device, such as the following:
 Available parts
 Some additional information specific to the device

Example Usage set report [report_device_info APEX20K1000E]
puts $report

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal device name: <string>. Specify a legal
device name.

3.1.7.5. report_family_info (::quartus::device)

The following table displays information for the report_family_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::device on page 154

Syntax report_family_info [-h | -help] [-long_help] <family>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<family> Family name

Description
Returns a string value containing the report with information
about the specified family, such as the following:
 Available devices
 Available packages
 Available speed grades
 Available pin counts
 Some additional information specific to the family

Example Usage set report [report_family_info Stratix]
puts $report

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal family name: <string>. Specify a legal
family name.

3.1.7.6. report_part_info (::quartus::device)

The following table displays information for the report_part_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::device on page 154

Syntax report_part_info [-h | -help] [-long_help] <part>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<part> Part name

Description
Returns a string value containing the report with information
about the specified part, such as the following:
 Family name
 Device name
 Package name
 Pin count
 Speed grade
 Any additional information

Example Usage set report [report_part_info EPM1270F256I5]
puts $report

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal part name: <string>. Specify a legal part
name. Use report_family_info, report_device_info, or
get_part_list to find available parts.

3.1.8. ::quartus::dni_sdc

The following table displays information for the ::quartus::dni_sdc Tcl package:

Tcl Package and Version ::quartus::dni_sdc 1.5

Description
This package contains no general description.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Availability This package is available for loading in the following executables:

 qpro
 quartus
 quartus_cdb
 quartus_sh
 quartus_syn

Tcl Commands dni::create_generated_clock (::quartus::dni_sdc) on page 159
dni::remove_clock_groups (::quartus::dni_sdc) on page 161
dni::remove_clock_latency (::quartus::dni_sdc) on page 162
dni::remove_clock_uncertainty (::quartus::dni_sdc) on page 163
dni::remove_disable_timing (::quartus::dni_sdc) on page 164
dni::remove_input_delay (::quartus::dni_sdc) on page 164
dni::remove_output_delay (::quartus::dni_sdc) on page 165
dni::set_clock_groups (::quartus::dni_sdc) on page 166
dni::set_clock_latency (::quartus::dni_sdc) on page 167
dni::set_clock_uncertainty (::quartus::dni_sdc) on page 168
dni::set_data_delay (::quartus::dni_sdc) on page 170
dni::set_disable_timing (::quartus::dni_sdc) on page 172
dni::set_false_path (::quartus::dni_sdc) on page 173
dni::set_input_delay (::quartus::dni_sdc) on page 174
dni::set_input_transition (::quartus::dni_sdc) on page 176
dni::set_max_delay (::quartus::dni_sdc) on page 177
dni::set_max_skew (::quartus::dni_sdc) on page 179
dni::set_max_time_borrow (::quartus::dni_sdc) on page 180
dni::set_min_delay (::quartus::dni_sdc) on page 181
dni::set_multicycle_path (::quartus::dni_sdc) on page 183
dni::set_net_delay (::quartus::dni_sdc) on page 185
dni::set_operating_conditions (::quartus::dni_sdc) on page 186
dni::set_output_delay (::quartus::dni_sdc) on page 188
dni::set_sense (::quartus::dni_sdc) on page 189
dni::set_timing_derate (::quartus::dni_sdc) on page 190

3.1.8.1. dni::create_generated_clock (::quartus::dni_sdc)

The following table displays information for the dni::create_generated_clock Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::create_generated_clock [-h | -help] [-long_help] [-add] [-combinational]
[-comment <string>] [-divide_by <factor>] [-duty_cycle <percent>] [-edge_shift
<shift_list>] [-edges <edge_list>] [-invert] [-master_clock <clock>] [-multiply_by
<factor>] [-name <clock_name>] [-offset <time>] [-phase <degrees>] [-preinvert]
[-source <clock_source>] [<targets>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add Add clock to existing clock node

-combinational Specifies that the source latency paths for this type of
generated clock only includes the logic where the master
clock propagates along combinational paths

-comment <string> Comment string

-divide_by <factor> Division factor

-duty_cycle <percent> Specifies the duty cycle as a percentage of the clock
period--accepts floating point values

-edge_shift <shift_list> List of edge shifts

-edges <edge_list> List of edge values

-invert Invert the clock waveform

-master_clock <clock> Specifies clock of the source node

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-multiply_by <factor> Multiplication factor

-name <clock_name> Name of generated clock

-offset <time> Specifies the offset as an absolute time shift

-phase <degrees> Specifies the phase shift in degrees

-preinvert Preinvert the clock waveform

-source <clock_source> Source pin for the generated clock

<targets> List or collection of targets

Description
Defines an internally generated clock. If -name is not specified, the
clock name is the same as the first target in the list or collection.
The clock name is used to refer to the clock in other commands.

If a clock with the same name is already assigned to a given target,
the create_generated_clock command overwrites the existing clock. If a
clock with a different name exists on the given target, the
create_generated_clock command is ignored unless the -add option is
used. The -add option can be used to assign multiple clocks to a pin
or port, and is recommended be used with -master_clock option.

The master clock must be defined on (or must propagate to) the port or
pin specified in -source. The waveform of the generated clock is
computed based on the master clock's waveform as observed at that port
or pin, including inversions that may occur between the master clock
source and that pin.

The source latency of the generated clock is based on the clock
network of the generated clock, and not the clock network of the node
specified using -source. This latency is added to any source latency
of the master clock.

If no target is specified, the clock is treated as a virtual clock. In
that case, the source latency of the generated clock will be equal to
the source latency of the master clock, plus any added latency
specified with set_clock_latency.

The -divide_by, -multiply_by, -invert, -duty_cycle, -edges, and
-edge_shift options modify the waveform relative to the waveform at
the source node.

Clock division and multiplication, using -divide_by and -multiply_by,
is performed relative to the first rising edge. Clock division is
based on edges in the master clock waveform, and scaled if the
division is an odd number. Use the -duty_cycle option to specify the
new duty cycle for clock multiplication. Use the -invert option to
invert the generated waveform. The -duty_cycle option may be
specified as a decimal value (e.g. 22.5) or as a ratio of two numbers
(e.g. 45/2). The latter form may improve Timing Analyzer accuracy when
detecting relationships between related clocks.

Clock generation can also be specified with the -edges and -edge_shift
options. The -edges option accepts a list of three numbers specifying
the master clock edges to use for the first rising edge, the next
falling edge, and next rising edge. Edges of the master clock are
labeled according to the first rising edge (1), next falling edge (2),
next rising edge (3), etc. For example, a basic clock divider can be
specified equivalently with -divide_by 2 or -edges {1 3 5}. The
-edge_shift option accepts a list of three time values, the amount to
shift each of the three edges.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type.

Note -preinvert and -combinational options are not supported.

Example Usage # Create a clock and a divide-by-2 generated clock
create_clock -period 10 [get_ports clk]
create_generated_clock -divide_by 2 -source [get_ports clk] -name clkdiv [get_cells clkdiv]

An equivalent generated clock
create_generated_clock -edges {1 3 5} -source [get_ports clk] -name clkdiv [get_cells clkdiv]

Specify a clock multipler with a 60% duty cycle
create_generated_clock -multiply_by 2 -source [get_ports clk] -duty_cycle 60 [get_pins clkmult|
combout]

Specify an inverted divide-by-2 clock relative to the output of the source clock

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

create_generated_clock -divide_by 2 -invert -source [get_ports clk] -name nclkdiv [get_cells
clkdiv]

Specify a divide-by-2 clock
create_generated_clock -divide_by 2 -source [get_ports clk] -name clkdiv [get_cells clkdiv]

Create a divide-by-2 generated clock generated off the falling edge of the source clock
create_generated_clock -edges {2 4 6} -source [get_ports clk] -name clkfall_div [get_cells
clkfall_div]

Assign two clocks to an input port that are switched externally,
along with an internal clock divider.
create_clock -period 10 -name clk100Mhz [get_ports clk]
create_clock -period 6.667 -name clk150Mhz -add [get_ports clk]
create_generated_clock -divide_by 2 -name clk50Mhz -source [get_ports clk] -master_clock
clk100Mhz -add [get_cells clkdiv]
create_generated_clock -divide_by 2 -name clk75Mhz -source [get_ports clk] -master_clock
clk150Mhz -add [get_cells clkdiv]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.2. dni::remove_clock_groups (::quartus::dni_sdc)

The following table displays information for the dni::remove_clock_groups Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::remove_clock_groups [-h | -help] [-long_help] -all [-asynchronous] [-
logically_exclusive] [-physically_exclusive] [<name_list>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all Specify remove all clock group settings

-asynchronous Specify mutually exclusive clocks (such as groups of
primary clocks)

-logically_exclusive Specify logically exclusive clocks (meaning they are not
actively used at the same time)

-physically_exclusive Specify physically exclusive clocks (meaning they are not
physically present at the same time)

<name_list> Clock group name list

Description
Remove all clock group assignments. This command removes any clock
groups that have been previously set. There is no way to remove
specific groups yet, therefore the -all option has to be given. All
other options are supported.

Example Usage project_open top
create_timing_netlist
create_clock -period 10.000 -name clkA [get_ports sysclk[0]]
create_clock -period 10.000 -name clkB [get_ports sysclk[1]]

Set clkA and clkB to be mutually exclusive clocks.
set_clock_groups -exclusive -group {clkA} -group {clkB}
set_clock_groups -exclusive -group {clkC} -group {clkD}

Remove clock groups A, B, C, and D. Result is that there
are no longer any mutually exclusive clocks.
remove_clock_groups -all

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.8.3. dni::remove_clock_latency (::quartus::dni_sdc)

The following table displays information for the dni::remove_clock_latency Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::remove_clock_latency [-h | -help] [-long_help] [-early] [-fall] [-late] [-
max] [-min] [-rise] -source <object_list>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-early Specifies the early clock latency

-fall Specifies the falling transition clock latency

-late Specifies the late clock latency

-max Specifies the clock latency at the worst-case operation
condition

-min Specifies the clock latency at the best-case operation
condition

-rise Specifies the rising transition clock latency

-source Specifies the source clock latency

<object_list> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Removes clock latency for a given clock or clock target.

There are two types of latency: network and source. Network latency is
the clock network delay between the clock and register clock pins.
Source latency is the clock network delay between the clock and its
source (e.g., a system clock or a base clock of a generated clock).

The Timing Analyzer automatically computes network latencies for all
register and generated clocks. Overriding clock network latencies is
not supported by the Timing Analyzer. Therefore, the -source option
must always be specified. Remove_clock_latency requires this option as
well.

You can apply clock latency to a clock, which affects all targets of
the clock, or to a specific clock target. Therefore, you can remove
clock latency from a collection of clocks, or from a collection of
target nodes. remove_clock_latency removes all latencies from a clock
or node, so removing a node's clock latency with respect to a
particular clock, or removing only latencies with particular
conditions is not supported.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type.

Example Usage create_clock -name SYSCLK -period 10.000 [get_ports inclk]
create_generated_clock -name OUTCLK -divide_by 1 -source [get_ports inclk] [get_ports outclk]
create_generated_clock -name FDBKCLK -divide_by 1 -source [get_ports outclk] [get_ports
fdbkclk]

Apply a simple 2.000 ns source latency to the system clock.
set_clock_latency -source 2.000 [get_clocks SYSCLK]

Specify feedback clock latencies between output port outclk
and the output port fdbkclk.
set_clock_latency -source -late -rise 0.800 [get_clocks FDBKCLK]
set_clock_latency -source -late -fall 0.750 [get_clocks FDBKCLK]
set_clock_latency -source -early -rise 0.500 [get_clocks FDBKCLK]
set_clock_latency -source -early -fall 0.460 [get_clocks FDBKCLK]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Remove all clock latency from FDBKCLK
remove_clock_latency -source [get_clocks FDBKCLK]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.4. dni::remove_clock_uncertainty (::quartus::dni_sdc)

The following table displays information for the dni::remove_clock_uncertainty
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::remove_clock_uncertainty [-h | -help] [-long_help] [-fall] [-fall_from
<fall_from_clock>] [-fall_to <fall_to_clock>] [-from <from_clock>] [-hold] [-rise] [-
rise_from <rise_from_clock>] [-rise_to <rise_to_clock>] [-setup] [-to <to_clock>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-fall Indicates that the uncertainty applies to only the falling
edge of the destination clock

-fall_from <fall_from_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-fall_to <fall_to_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-from <from_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-hold Only apply the uncertainty value to hold and removal
checks

-rise Indicates that the uncertainty applies to only the rising edge
of the destination clock

-rise_from <rise_from_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-rise_to <rise_to_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-setup Only apply the uncertainty value to setup and recovery
checks

-to <to_clock> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Removes clock uncertainty from a collection of clocks to a collection
of clocks. The source and destination clocks can be any arbitrary
collection of clocks. This command removes all uncertainty between two
clocks. If there does not exist uncertainty between two clocks
specified in remove_clock_uncertainty, the command does nothing for
those two clocks but continues to attempt to remove uncertainty
between other clocks specified.

The values of the -from and -to options are either collections or a
Tcl list of wildcards used to create collections of appropriate types.

Note -rise and -fall options are not supported yet.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage set_clock_uncertainty -setup -rise_from {clk1 clk2} -fall_to {clk3 clk4} 200ps
set_clock_uncertainty -from {clk5 clk6} -to {clk7 clk8} 300ps
remove_clock_uncertainty -from {clk3 clk5} -to {clk4 clk7}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.5. dni::remove_disable_timing (::quartus::dni_sdc)

The following table displays information for the dni::remove_disable_timing Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::remove_disable_timing [-h | -help] [-long_help] [-all_loop_breaking] [-
from <name>] [-to <name>] <cells>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all_loop_breaking Re-enables all stored loop-breaking timing arcse

-from <name> Valid source pin suffix

-to <name> Valid destination pin suffix

<cells> List of cells

Description
Adds a previously disabled edge (arc) back to a given cell(s). If no
-from/-to value is specified, the missing value is substituted by a
"*".

The values of the -from and -to are valid pin suffixes.

Note -all_loop_breaking option is not supported yet.

Example Usage remove_disable_timing -from datain -to combout A|B
remove_disable_timing -from carryin *

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.6. dni::remove_input_delay (::quartus::dni_sdc)

The following table displays information for the dni::remove_input_delay Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::remove_input_delay [-h | -help] [-long_help] [-clock <name>] [-
clock_fall] [-fall] [-level_sensitive] [-max] [-min] [-rise] <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clock <name> Clock name

-clock_fall Specifies that input delay is relative to the falling edge of
the clock

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-fall Specifies the falling input delay at the port

-level_sensitive Specifies that input delay is relative to a level-sensitive
latch

-max Applies value as maximum data arrival time

-min Applies value as minimum data arrival time

-rise Specifies the rising input delay at the port

<targets> Collection or list of input ports

Description
Removes input delay from a port. For each input port specified,
removes all input delays for that port. This means that rise, fall,
max, and min delays for each clock and reference pin on the input port
are all removed.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type.

Example Usage # Simple input delay with the same value for min/max and rise/fall
set_input_delay -clock clk 1.5 [get_ports {in1 in2}]
set_input_delay -clock clk2 1.5 [get_ports {in1 in2}]
set_input_delay -clock clk 1.6 [get_ports {in3 in4}]

Remove input delay on ports in1 and in4,
for all flags and reference ports and flags
remove_input_delay [get_ports {in1 in4}]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.7. dni::remove_output_delay (::quartus::dni_sdc)

The following table displays information for the dni::remove_output_delay Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::remove_output_delay [-h | -help] [-long_help] [-clock <name>] [-
clock_fall] [-fall] [-max] [-min] [-rise] <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clock <name> Clock name

-clock_fall Specifies that input delay is relative to the falling edge of
the clock

-fall Specifies the falling input delay at the port

-max Applies value as maximum data arrival time

-min Applies value as minimum data arrival time

-rise Specifies the rising input delay at the port

<targets> Collection or list of output ports

Description
Removes output delay from a port. For each output port specified,
removes all output delays for that port. Rise, fall, max, and min
delays for each clock and reference pin on the output port are all
removed.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type. The
values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See help for the use_timing_analyzer_style_escaping
command for details.

Example Usage # Simple output delay with the same value for min/max and rise/fall
set_output_delay -clock clk 1.5 [get_ports {out1 out2}]
set_output_delay -clock clk2 1.5 [get_ports {out1 out2}]
set_output_delay -clock clk 1.6 [get_ports {out3 out4}]

Remove input delay on ports out1 and out4,
for all flags and reference ports and flags
remove_output_delay [get_ports {out1 out4}]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.8. dni::set_clock_groups (::quartus::dni_sdc)

The following table displays information for the dni::set_clock_groups Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_clock_groups [-h | -help] [-long_help] [-allow_paths] [-asynchronous]
[-comment <string>] [-exclusive] -group <names> [-logically_exclusive] [-name
<name>] [-physically_exclusive]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-allow_paths Enables timing analysis between the specified clock groups

-asynchronous Specify mutually exclusive clocks (such as groups of
primary clocks)

-comment <string> Comment string

-exclusive Specify mutually exclusive clocks (an alias for the -
logically_exclusive option). Exists for backwards
compatibility.

-group <names> Valid destinations (string patterns are matched using Tcl
string matching)

-logically_exclusive Specify logically exclusive clocks (meaning they are not
actively used at the same time)

-name <name> Clock group name

-physically_exclusive Specify physically exclusive clocks (meaning they are not
physically present at the same time)

Description
Clock groups provide a quick and convenient way to specify which
clocks are not related. Asynchronous clocks are those that are
completely unrelated (e.g., have different ideal clock sources).
Logically exclusive clocks are not actively used in the design at the
same time (e.g., multiplexed clocks), but the clock signals may
physically exist on-chip at the same time and therefore may still
influence each other through crosstalk effects. Physically exclusive
clocks, in contrast, cannot be physically present in the device at the
same time (e.g., multiple clocks defined on the same clock pin).

The Timing Analyzer does not currently analyze crosstalk explicitly.
Instead, the timing models use extra guard bands to account for any
potential crosstalk-induced delays. As a result, the Timing Analyzer

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

currently treats asynchronous, logically_exclusive, and
physically_exclusive clock groups the same. However, different parts
of the Timing Analyzer may treat asynchronous and exclusive groups
differently. Any commands that are affected by clock groups will say
so in their help text. But, no distinction is made between logically
and physically exclusive clock groups, since the only difference
between them is how they affect crosstalk.

The result of set_clock_groups is that all clocks in any group are cut
from all clocks in every other group. The use of a single -group
option tells the Timing Analyzer to cut this group of clocks from all
other clocks in the design, including clocks that are created in the
future. This command is similar to calling set_false_path from each
clock in every group to each clock in every other group and vice
versa, making set_clock_groups easier to specify for cutting clock
domains. However, cutting clocks with set_clock_groups also affects
the results of some other commands. Any commands that are affected by
clock groups will say so in their help text.

Note -allow_paths is not supported yet.

Example Usage project_open top
create_timing_netlist
create_clock -period 10.000 -name clkA [get_ports sysclk[0]]
create_clock -period 10.000 -name clkB [get_ports sysclk[1]]

Set clkA and clkB to be mutually exclusive clocks.
dni::set_clock_groups -logically_exclusive -group {clkA} -group {clkB}

The previous line is equivalent to the following two commands.
set_false_path -from [get_clocks clkA] -to [get_clocks clkB]
set_false_path -from [get_clocks clkB] -to [get_clocks clkA]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.9. dni::set_clock_latency (::quartus::dni_sdc)

The following table displays information for the dni::set_clock_latency Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_clock_latency [-h | -help] [-long_help] [-clock <clock_list>] [-dynamic
<jitter>] [-early] [-fall] [-late] [-max] [-min] [-rise] -source <delay> <object_list>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clock <clock_list> Valid clock destinations (string patterns are matched using
Tcl string matching)

-dynamic <jitter> Specifies the dynamic component of the clock latency, which
represents the amount of jitter in the original clock source

-early Specifies the early clock latency

-fall Specifies the falling transition clock latency

-late Specifies the late clock latency

-max Specifies the clock latency at the worst-case operation
condition

-min Specifies the clock latency at the best-case operation
condition

-rise Specifies the rising transition clock latency

-source Specifies the source clock latency

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<delay> Latency delay value

<object_list> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Specifies clock latency for a given clock or clock target.

There are two types of latency: network and source. Network latency is
the clock network delay between the clock and register clock pins.
Source latency is the clock network delay between the clock and its
source (e.g., the system clock or base clock of a generated clock).

The Timing Analyzer automatically computes network latencies for all
register and generated clocks. Overriding clock network latencies is
not supported by the Timing Analyzer. Therefore, the -source option
must always be specified.

You can apply clock latency to a clock, which affects all targets of
the clock, or to a specific clock target. If you specify a specific
clock target that is driven by more than one clock, use the -clock
option to specify which clock to use.Latencies assigned to a clock
target override any latencies assigned to a clock.

Different clock latencies can be specified for early (-early) and late
(-late) latencies, as well as for rising edges (-rise) and falling
edges (-fall). If only some combinations are specified, the other
combinations are used by default. For example, if only a -rise -early
latency and a -fall -early latency are specified, then the -rise -late
latency is assumed to be the same as the -rise -early latency and the
-fall -late latency is assumed to be the same as the -fall -early
latency. If neither -rise nor -fall are used or neither -early nor
-late are used, then the latency applies to both conditions.

Source latency can also be assigned to generated clocks. This may be
useful for specifying board level delays from a clock output port to a
clock input port when the clock input port is acting as a feedback
clock.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type.

Note -dynamic is not supported yet.

Example Usage create_clock -name SYSCLK -period 10.000 [get_ports inclk]
create_generated_clock -name OUTCLK -divide_by 1 -source [get_ports inclk] [get_ports outclk]
create_generated_clock -name FDBKCLK -divide_by 1 -source [get_ports outclk] [get_ports
fdbkclk]

Apply a simple 2.000 ns source latency to the system clock.
set_clock_latency -source 2.000 [get_clocks SYSCLK]

Specify feedback clock latencies between output port outclk
and the input port fdbkclk.
set_clock_latency -source -late -rise 0.800 [get_clocks FDBKCLK]
set_clock_latency -source -late -fall 0.750 [get_clocks FDBKCLK]
set_clock_latency -source -early -rise 0.500 [get_clocks FDBKCLK]
set_clock_latency -source -early -fall 0.460 [get_clocks FDBKCLK]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.10. dni::set_clock_uncertainty (::quartus::dni_sdc)

The following table displays information for the dni::set_clock_uncertainty Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_clock_uncertainty [-h | -help] [-long_help] [-add] [-
enable_same_physical_edge] [-fall] [-fall_from <fall_from_clock>] [-fall_to
<fall_to_clock>] [-from <from_clock>] [-hold] [-rise] [-rise_from <rise_from_clock>]
[-rise_to <rise_to_clock>] [-setup] [-to <to_clock>] <uncertainty>

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-add Specifies that this assignment is an addition to the clock
uncertainty derived by derive_clock_uncertainty call

-enable_same_physical_edge Enable setting uncertainty value for same physical clock
edge

-fall Indicates that the uncertainty applies to only the falling
edge of the destination clock

-fall_from <fall_from_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-fall_to <fall_to_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-from <from_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-hold Only apply the uncertainty value to hold and removal
checks

-rise Indicates that the uncertainty applies to only the rising edge
of the destination clock

-rise_from <rise_from_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-rise_to <rise_to_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-setup Only apply the uncertainty value to setup and recovery
checks

-to <to_clock> Valid destinations (string patterns are matched using Tcl
string matching)

<uncertainty> Uncertainty

Description
Specifies clock uncertainty or skew for clocks for clock-to-clock
transfers. You can specify uncertainty separately for setup and hold,
and you can specify separate rising and falling clock transitions. If
you omit to specify -setup or -hold, the uncertainty value will be
applied to both analysis types. Similarly, if you omit to specify
rising or falling clock transitions, the uncertainty value will be
applied to both transitions. The setup uncertainty is subtracted from
the data required time for each applicable path, and the hold
uncertainty is added to the data required time for each applicable
path.

Intel Quartus Prime software computes clock uncertainty for every
clock transfer. For particular transfers, you can use the
set_clock_uncertainty assignment to override the automatically derived
value. If multiple set_clock_uncertainty assignments apply to the same
clock transfer, the later value overrides the earlier ones.

Note: The Timing Analyzer does not apply clock uncertainty to
transfers involving the same physical launch and latch edge (that is,
the latch and launch edges are the same edge of a clock source and
occur at the same time) by default. Such transfers typically occur in
hold analysis, but may also occur in setup analysis with a multicycle
value of 0.You can use the -enable_same_physical_edge option to
override this behavior.

The values for -from, -to, and similar options are either collections
or a Tcl list of wildcards used to create collections of appropriate
types.

Note -rise and -fall options are not supported yet.

Example Usage set_clock_uncertainty -setup -rise_from clk1 -fall_to clk2 200ps

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.8.11. dni::set_data_delay (::quartus::dni_sdc)

The following table displays information for the dni::set_data_delay Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_data_delay [-h | -help] [-long_help] [-add_latch_clock] [-
add_launch_clock] [-allow_destination_borrowing] [-fall_from <names>] [-
fall_to <names>] [-from <names>] [-get_value_from_clock_period
<src_clock_period|dst_clock_period|min_clock_period|max_clock_period>] [-no_synchronizer]
[-override] [-rise_from <names>] [-rise_to <names>] [-through <names>] [-to
<names>] [-value_multiplier <multiplier>] [<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add_latch_clock Include the latch clock path in timing analysis

-add_launch_clock Include the launch clock path in timing analysis

-allow_destination_borrowing Allow time borrowing at the destination

-fall_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-get_value_from_clock_period
<src_clock_period|dst_clock_period|
min_clock_period|max_clock_period>

Compute constraint as a multiple of the clock period

-no_synchronizer Prevent this data delay from triggering a synchronizer

-override Make this constraint override non-datapath-only setup
constraints, instead of applying it in addition to them
(equivalent to set_data_delay & set_false_path -setup -
no_synchronizer, unless -add_launch_clock is used as well)

-rise_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-value_multiplier <multiplier> Value by which the clock period should be multiplied to
compute requirement

<value> Time Value

Description
Specifies a maximum datapath delay exception for a given path.

The maximum delay analysis includes Tco of the launching register,
and Tsu of the latching register. By default, it does not include
clock arrival times at the launching or latching register. To include
launch clock arrival times, use the -allow_launch_clock option. To
include latch clock arrival times, use the -allow_latch_clock option.
If the path starts or ends at a port, the analysis does not

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

include delays due to set_input_delay or set_output_delay.

Use -get_value_from_clock_period to set the delay requirement
for each path to be equal to the launching or latching clock period,
or whichever of the two has a smaller or larger period.
If -value_multiplier is used, the requirement will be multiplied by
that value. If there are no clocks clocking the endpoints
of the path (such as if the path begins or ends at an unconstrained I/O),
the constraint will be ignored.

The datapath delay constraint is applied in addition to other constraints on
the given path, including the default constraint. Furthermore, the datapath delay
constraint is analyzed independently from other SDC constraints, including
set_false_path and set_clock_groups, and cannot be overridden by other SDC constraints.
For example, you can use set_data_delay to specify an upper limit on logic and routing
delay for paths cut by set_false_path.

To both cut a path for (clock-aware) timing and constrain its datapath delay, the path
must be constrained with both set_false_path and set_data_delay.

 The -from and -to values are collections of clocks, ports, pins, or
 cells in the design.

Applying exceptions between clocks applies the exception from all
register or ports driven by the -from clock to all registers or ports
driven by the -to clock.

If pin names or collections are used, the -from value must be a clock
pin and the -to value must be any non-clock input pin to a register.
Assignments from clock pins or to and from cells apply to all
registers in the cell or driven by the clock pin.

The -through values are collections of pins or nets in the design. An
exception applied through a node in the design applies only to paths
through the specified node.
the Timing Analyzer allows you to specify the -through argument multiple times to
describe paths that go through multiple points.
For instance, users can select all paths that go through node X, and then go through node Y.
This helps you narrow down and select the specific paths that you are interested in.

The -rise_from and -fall_from options can be used in place of the
-from destination nodes. The rise or fall value of the option
indicates that the "from" nodes are driven by the rising or falling
edge of the clock that feeds this node taking into consideration any
logical inversions along the clock path. The "-from" option is the
combination of both rising and falling "from" nodes. If the "from"
collection is a clock collection, the assignment applies to those
nodes that are driven by the respective rising or falling clock edge.

The -rise_to and -fall_to options behave similarly to the "from"
options described previously. These assignments restrict the given
assignment to only those nodes or clocks that correspond to the
specified rise or fall value taking into consideration any logical
inversions that are along the clock path.

The values of the -from, -to, -through, and other similar options are
either collections or a Tcl list of wildcards used to create
collections of appropriate types. The values used must follow standard
Tcl or Timing Analyzer-extension substitution rules. See help for the
use_timing_analyzer_style_escaping command for details.

If the source of a path with a set_data_delay constraint has any time
borrowed, the delay budget will be reduced by the time borrowed.

By default, the delay budget will not be increased by time borrowed at the
destination of a path constrained by a set_data_delay constraint, and
negative slack on a set_data_delay constraint will not cause time borrowing
to happen. To change this behavior, use the -allow_destination_borrowing
option.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage # Apply a 10ns max data delay on paths between two unrelated clocks
set_data_delay -from [get_clocks clkA] -to [get_clocks clkB] 10.000

Apply a 2ns max data delay from an input port to any valid destination
set_data_delay -from [get_ports in[*]] -to * 2.000

Require net delay to be at most 90% of the period of the clock driving the inst9 register
set_data_delay -get_value_from_clock_period dst_clock_period -value_multiplier 0.9 -from
[get_clocks clk] -to [get_cells inst9]

Apply a 2ns max data delay for an input port only to nodes driven by
the rising edge of clock CLK
set_data_delay -from [get_ports in[*]] -rise_to [get_clocks CLK] 2.000

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.12. dni::set_disable_timing (::quartus::dni_sdc)

The following table displays information for the dni::set_disable_timing Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_disable_timing [-h | -help] [-long_help] [-from <name>] [-restore]
[-to <name>] <cells>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-from <name> Valid source pin suffix

-restore Restores the specified arcs so that they are no longer
disabled

-to <name> Valid destination pin suffix

<cells> List of cells

Description
Disables a timing edge (arc) from inside a given cell or cells.
Disabling a timing edge prevents timing analysis through that edge. If
either -from or -to (or both) are unspecified, the missing value or
values are replaced by a "*" character.

The values of the -from and -to are valid pin suffixes.

Note -restore option is not supported yet.

Example Usage set_disable_timing -from datain -to combout A|B
set_disable_timing -from carryin *

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.8.13. dni::set_false_path (::quartus::dni_sdc)

The following table displays information for the dni::set_false_path Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_false_path [-h | -help] [-long_help] [-comment <string>] [-fall] [-
fall_from <names>] [-fall_through <names>] [-fall_to <names>] [-from
<names>] [-hold] [-latency_insensitive] [-reset_path] [-rise] [-rise_from
<names>] [-rise_through <names>] [-rise_to <names>] [-setup] [-through
<names>] [-to <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <string> Comment string

-fall Marks falling delays false, as measured on the path
endpoint

-fall_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-hold Specifies the false_path value (applies only to clock hold or
removal checks)

-latency_insensitive Mark this false path as one that should still be optimized

-reset_path Removes existing point-to-point exception information on
the specified paths

-rise Marks rising delays false, as measured on the path endpoint

-rise_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Specifies the false_path value (applies only to clock setup or
recovery checks)

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Specifies a false-path exception, removing (or cutting) paths from
timing analysis.

The -from and -to values are collections of clocks, registers, ports,
pins, or cells in the design. If the -from or -to values are not
specified, the collection is converted automatically into [get_keepers
*]. It is worth noting that if the counterpart of the unspecified

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

collection is a clock collection, it is more efficient to explicitly
specify this collection as a clock collection only if the clock
collection also generates the desired assignment.

Applying exceptions between clocks applies the exception from all
register or ports driven by the -from clock to all registers or ports
driven by the -to clock. Applying exceptions between a pair of clocks
is more efficient than for specific node to node or node to clock
paths.

If pin names or collections are used, the -from value must be a clock
pin and the -to value must be any non-clock input pin to a register.
Assignments from clock pins or to and from cells applies to all
registers in the cell or driven by the clock pin.

The -through values are collections of pins or nets in the design. An
exception applied through a node in the design applies only to paths
through the specified node. The Timing Analyzer allows you to specify
the -through argument multiple times to describe paths that go through
multiple points. For instance, users can select all paths that go
through node X, and then go through node Y. This helps you narrow down
and select the specific paths that you are interested in.

The -rise_from and -fall_from options can be used in place of the
-from destination nodes. The rise or fall value of the option
indicates that the "from" nodes are driven by the rising or falling
edge of the clock that feeds this node, taking into consideration any
logical inversions along the clock path. The -from option is the
combination of both rising and falling "from" nodes. If the "from"
collection is a clock collection, the assignment applies to those
nodes that are driven by the respective rising or falling clock edge.

The -rise_to and -fall_to options behave similarly to the "from"
options described previously. These assignments restrict the given
assignment to only those nodes or clocks that correspond to the
specified rise or fall value, taking into consideration any logical
inversions that are along the clock path.

The -setup and -hold options allow the false path to only be applied
to the corresponding setup/recovery or hold/removal checks. The
default if neither value is specified is to apply the false path to
both -setup and -hold.

The values of the -from, -to, -through, and other similar options are
either collections or a Tcl list of wildcards used to create
collections of appropriate types.

Note -rise, -fall, -rise_through, -fall_through and -reset_path
options are not supported yet.

Example Usage # Set a false-path between two unrelated clocks
set_false_path -from [get_clocks clkA] -to [get_clocks clkB]

Set a false-path for a specific path
set_false_path -from [get_pins regA|clk] -to [get_pins regB|aclr]

Set a false-path from a node to a falling clock
set_false_path -from [get_pins regA|clk] -fall_to [get_clocks clkB]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.14. dni::set_input_delay (::quartus::dni_sdc)

The following table displays information for the dni::set_input_delay Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_input_delay [-h | -help] [-long_help] [-add_delay] -clock <name> [-
clock_fall] [-fall] [-level_sensitive] [-max] [-min] [-network_latency_included]
[-reference_pin <name>] [-rise] [-source_latency_included] <delay> <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-add_delay Create additional delay constraint instead of overriding
previous constraints

-clock <name> Clock name

-clock_fall Specifies that input delay is relative to the falling edge of
the clock

-fall Specifies the falling input delay at the port

-level_sensitive Specifies that input delay is relative to a level-sensitive
latch

-max Applies value as maximum data arrival time

-min Applies value as minimum data arrival time

-network_latency_included Specifies that input delay includes added network latency

-reference_pin <name> Specifies a pin or port in the design to which the input delay
is relative

-rise Specifies the rising input delay at the port

-source_latency_included Specifies that input delay includes added source latency

<delay> Time value

<targets> List of input port type objects

Description
Specifies the data arrival times at the specified input ports relative
the clock specified by the -clock option. The clock must refer to a
clock name in the design.

Input delays can be specified relative to the rising edge (default) or
falling edge (-clock_fall) of the clock.

Input delays can be specified relative to a pin or a port (-reference_pin)
in the clock network. Clock arrival times to the reference pin or port
are added to data arrival times.

Input delays can already include clock source latency. By default the
clock source latency of the related clock is added to the input delay
value, but when the -source_latency_included option is specified, the
clock source latency is not added because it was factored into the
input delay value.

The maximum input delay (-max) is used for clock setup checks or
recovery checks and the minimum input delay (-min) is used for clock
hold checks or removal checks. If only -min or -max (or neither) is
specified for a given port, the same value is used for both.

Separate rising (-rise) and falling (-fall) arrival times at the port
can be specified. If only one of -rise and -fall are specified for a
given port, the same value is used for both.

By default, set_input_delay removes any other input delays to the port
except for those with the same -clock, -clock_fall, and -reference_pin
combination. Multiple input delays relative to different clocks, clock
edges, or reference pins can be specified using the -add_delay option.
Future input delays relative to different clocks, clock edges, or
reference pins that do not specify the -add_delay option will still
remove previous input delays that specified the -add_delay option.

Note that -level_sensitive and -network_latency_included are not
supported yet.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type.

Example Usage # Simple input delay with the same value for min/max and rise/fall:
1) set on ports with names of the form myin*
set_input_delay -clock clk 1.5 [get_ports myin*]
2) set on all input ports
set_input_delay -clock clk 1.5 [all_inputs]

Input delay with respect to the falling edge of clock
set_input_delay -clock clk -clock_fall 1.5 [get_ports myin*]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Input delays for different min/max and rise/fall combinations
set_input_delay -clock clk -max -rise 1.4 [get_ports myin*]
set_input_delay -clock clk -max -fall 1.5 [get_ports myin*]
set_input_delay -clock clk -min -rise 0.7 [get_ports myin*]
set_input_delay -clock clk -min -fall 0.8 [get_ports myin*]

Adding multiple input delays with respect to more than one clock
set_input_delay -clock clkA -min 1.2 [get_ports myin*]
set_input_delay -clock clkA -max 1.8 [get_ports myin*]
set_input_delay -clock clkA -clock_fall 1.6 [get_ports myin*] -add_delay
set_input_delay -clock clkB -min 2.1 [get_ports myin*] -add_delay
set_input_delay -clock clkB -max 2.5 [get_ports myin*] -add_delay

This is a common mistake where input delays are accidentally removed
set_input_delay -clock clkA -min 0.2 [get_ports myout*]
set_input_delay -clock clkB -min 1.1 [get_ports myout*] -add_delay
The following removes the clkB entry. You need to always use -add_delay
when more than one clock, clock_fall or reference_pin exists
set_input_delay -clock clkA -max 0.8 [get_ports myout*]
The following removes the clkA entry. You need to always use -add_delay
when more than one clock, clock_fall or reference_pin exists
set_input_delay -clock clkB -max 1.5 [get_ports myout*]

Specifying an input delay relative to an external clock output port
set_input_delay -clock clk -reference_pin [get_ports clkout] 0.8 [get_ports myin*]

Specifying an input delay relative to the clock pin of a register
set_input_delay -clock clk -reference_pin [get_pins regA|clk] 0.8 [get_ports myin*]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.15. dni::set_input_transition (::quartus::dni_sdc)

The following table displays information for the dni::set_input_transition Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_input_transition [-h | -help] [-long_help] [-clock <name>] [-
clock_fall] [-fall] [-max] [-min] [-rise] <transition> <ports>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clock <name> Clock name

-clock_fall Specifies that input delay is relative to the falling edge of
the clock

-fall Specifies the falling output delay at the port

-max Applies value as maximum data required time

-min Applies value as minimum data required time

-rise Specifies the rising output delay at the port

<transition> Time value

<ports> Collection or list of input or bidir ports

Description
This constraint does not affect calculations performed by the Timing
Analyzer. It only affects PrimeTime analysis.
If you set this constraint in the Timing Analyzer the constraint is
written out to the SDC file when you call write_sdc.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage dni::set_input_transition 50 [all_inputs]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.16. dni::set_max_delay (::quartus::dni_sdc)

The following table displays information for the dni::set_max_delay Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_max_delay [-h | -help] [-long_help] [-comment <string>] [-fall] [-
fall_from <names>] [-fall_through <names>] [-fall_to <names>] [-from
<names>] [-ignore_clock_latency] [-reset_path] [-rise] [-rise_from <names>] [-
rise_through <names>] [-rise_to <names>] [-through <names>] [-to <names>]
<value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <string> Comment string

-fall Marks falling delays false, as measured on the path
endpoint

-fall_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-ignore_clock_latency Indicates that the launch and capture clock latencies are to
be ignored when computing slack on the specified paths

-reset_path Removes existing point-to-point exception information on
the specified paths

-rise Marks rising delays false, as measured on the path endpoint

-rise_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

<value> Time Value

Description
Specifies a maximum delay exception for a given path.

The maximum delay is similar to changing the setup relationship

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

(latching clock edge - launching clock edge), except that it can be
applied to input or output ports without input or output delays
assigned to them. Maximum delays are always relative to any clock
network delays (if the source or destination is a register) or any
input or output delays (if the source or destination is a port).
Therefore, input delays and clock latencies are added to the data
arrival times. Clock latencies also added to data required times and
output delays are subtracted from data required times.

The -from and -to values are collections of clocks, registers, ports,
pins, or cells in the design. If the -from or -to values are not
specified, the collection is converted automatically into [get_cells
*]. It is worth noting that if the counterpart to the unspecified
collection is a clock collection, it is more efficient to explicitly
specify this collection as a clock collection but only if the clock
collection also generates the desired assignment.

Applying exceptions between clocks applies the exception from all
register or ports driven by the -from clock to all registers or ports
driven by the -to clock. Applying exceptions between a pair of clocks
is more efficient than for specific node to node or node to clock
paths.

If pin names or collections are used, the -from value must be a clock
pin and the -to value must be any non-clock input pin to a register.
Assignments from clock pins or to and from cells applies to all
registers in the cell or driven by the clock pin.

The -through values are collections of pins or nets in the design. An
exception applied through a node in the design applies only to paths
through the specified node. The Timing Analyzer allows you to specify
the -through argument multiple times to describe paths that go through
multiple points. For instance, users can select all paths that go
through node X, and then go through node Y. This helps you narrow down
and select the specific paths that you are interested in.

The -rise_from and -fall_from options can be used in place of the
-from destination nodes. The rise or fall value of the option
indicates that the "from" nodes are driven by the rising or falling
edge of the clock that feeds this node taking into consideration any
logical inversions along the clock path. The "-from" option is the
combination of both rising and falling "from" nodes. If the "from"
collection is a clock collection, the assignment applies to those
nodes that are driven by the respective rising or falling clock edge.

The -rise_to and -fall_to options behave similarly to the "from"
options described previously. These assignments restrict the given
assignment to only those nodes or clocks that correspond to the
specified rise or fall value taking into consideration any logical
inversions that are along the clock path.

The values of the -from, -to, -through, and other similar options are
either collections or a Tcl list of wildcards used to create
collections of appropriate types.

Note -rise, -fall, -rise_through, -fall_through, -ignore_clock_latency
and -reset_path options are not supported yet.

Example Usage # Apply a 10ns max delay between two unrelated clocks
set_max_delay -from [get_clocks clkA] -to [get_clocks clkB] 10.000

Apply a 2ns max delay for an input port (TSU)
set_max_delay -from [get_ports in[*]] -to [get_cells *] 2.000

Apply a 2ns max delay for an output port (TCO)
set_max_delay -from [get_cells *] -to [get_ports out[*]] 2.000

Apply a 2ns max delay for an input port to an output port (TPD)
set_max_delay -from [get_ports in[*]] -to [get_ports out[*]] 2.000

Apply a 2ns max delay for an input port only to nodes driven by
the rising edge of clock CLK
set_max_delay -from [get_ports in[*]] -rise_to [get_clocks CLK] 2.000

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

178

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.8.17. dni::set_max_skew (::quartus::dni_sdc)

The following table displays information for the dni::set_max_skew Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_max_skew [-h | -help] [-long_help] [-fall_from_clock <names>] [-
fall_to_clock <names>] [-from <names>] [-from_clock <names>] [-
get_skew_value_from_clock_period <src_clock_period|dst_clock_period|min_clock_period>]
[-rise_from_clock <names>] [-rise_to_clock <names>] [-skew_value_multiplier
<multiplier>] [-to <names>] [-to_clock <names>] [<skew>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-
get_skew_value_from_clock_per
iod <src_clock_period|
dst_clock_period|min_clock_period>

Compute skew constraint as a multiple of the clock period

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-skew_value_multiplier
<multiplier>

Value by which the clock period should be multiplied to
compute skew requirement

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

<skew> Required skew

Description
Use the set_max_skew constraint to perform maximum
allowable skew analysis between sets of registers or
ports. In order to constrain skew across multiple
paths, all such paths must be defined within a single
set_max_skew constraint. The set_max_skew timing
constraint is not affected by the set_max_delay,
set_min_delay, and set_multicycle_path constraints,
but is affected by the set_clock_groups -exclusive
constraint. Paths between exclusive clocks are not
analyzed for skew, and no two paths are compared for
skew if their clocks are exclusive to each other.
However, paths whose clocks are asynchronous are
still analyzed for skew.

Legal values for the -from and -to options are
collections of clocks, ports, pins, or cells in a design.

Applying maximum skew constraints between clocks
applies the constraint from all register or ports
driven by the clock specified with the -from option to
all registers or ports driven by the clock specified
with the -to option.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

179

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If pin names or collections are used, the -from value
must be a clock pin and the -to value must be any
non-clock input pin to a register. Assignments from
clock pins or to and from cells apply to all registers
contained in the cell or driven by the clock pin.
Similarly, -to and -from partition specifications
apply to all registers in the specified partition.

Max skew analysis includes data arrival times, clock arrival times,
register micro parameters, clock uncertainty, on-die variation and
ccpp removal.

Use -get_skew_value_from_clock_period to set the skew
requirement to be equal to the launching or latching clock
period, or whichever of the two has a smaller period.
If -skew_value_multiplier is used, the requirement is multiplied
by that value. If this option is used, then the positional
skew option may not be set. If the set of skew paths is
clocked by more than one clock, the Timing Analyzer will use the
one with the smallest period to compute the skew constraint.

When this constraint is used, results of max skew
analysis are displayed in the Report Max Skew
(report_max_skew) report from the Timing Analyzer.
Since skew is defined between two or more paths, no
results are displayed if the -from/-from_clock and
-to/-to_clock filters satisfy fewer than two paths.

Example Usage # Constrain the skew on an input port to all registers it feeds
set_max_skew -from [get_ports din] 0.200

Constrain the skew on output bus dout[*]
set_max_skew -to [get_ports dout\[*\]] 0.200

Constrain skew to be less than 90% of the period of any clock in the source
register set
set_max_skew -to [get_cells inst1|*] -get_skew_value_from_clock_period src_clock_period -
skew_value_multiplier 0.900

Report the results of max skew assignments
report_max_skew -panel_name "Report Max Skew" -npaths 10 -detail path_only

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.18. dni::set_max_time_borrow (::quartus::dni_sdc)

The following table displays information for the dni::set_max_time_borrow Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_max_time_borrow [-h | -help] [-long_help] <value> <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<value> Time Value

<targets> Collection or list of latches

Description
Specifies the maximum borrowed time for level-sensitive latches. The
actual borrowed time will be determined automatically, but will never
exceed the amount you specify. For any latches without a
set_max_time_borrow constraint, no limit will apply (except for the
physical limit of what is possible on the device, as described below).

Time borrowing is specified with respect to the earliest possible time
a signal can be clocked into the latch node. For example, for a
positive latch, if the earliest possible arrival time of the rising
clock edge is 1.025ns, then a signal that has an arrival time of
1.035ns (where this arrival time already includes the micro-setup time

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

180

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

of the latch) will require at least 0.010ns of time borrowing.

Regardless of how the borrowed time is determined (automatically
without a limit or automatically with a set_max_time_borrow
constraint), the borrowed time can never exceed what is physically
possible to borrow on the device. The maximum amount that can be
borrowed is the period of time when the latch is open (e.g. half the
clock period if the clock has a 50% duty cycle), but this time is
reduced by clock propagation time spread and clock uncertainty between
the latch-opening and latch-closing clock edges, and is further
reduced by the closing-edge setup time of the latch. Some of these
factors vary from corner to corner, as well as from clock to clock (if
multiple clocks drive the latch).

Time borrowing analysis will only occur in the Timing Analysis
(Signoff) stage, or when manually running the Timing Analyzer. The
Fitter will not utilize time borrowing information and will assume
zero time borrowed. Thus, the use of level-sensitive latches with
high-speed clocks is not recommended, unless other constraints (such
as set_max_delay) are manually set to ensure optimal Fitter behavior.

The targets of this command must be level-sensitive latches (all other
targets will be ignored).

The targets can be specified as either a collections or a Tcl list of
wildcards used to create collections of appropriate types.

Example Usage # Borrow at most 3ns at all "lat*" latches:
set_max_time_borrow 3 [get_cells lat*]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.19. dni::set_min_delay (::quartus::dni_sdc)

The following table displays information for the dni::set_min_delay Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_min_delay [-h | -help] [-long_help] [-comment <string>] [-fall] [-
fall_from <names>] [-fall_through <names>] [-fall_to <names>] [-from
<names>] [-ignore_clock_latency] [-reset_path] [-rise] [-rise_from <names>] [-
rise_through <names>] [-rise_to <names>] [-through <names>] [-to <names>]
<value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <string> Comment string

-fall Marks falling delays false, as measured on the path
endpoint

-fall_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-ignore_clock_latency Indicates that the launch and capture clock latencies are to
be ignored when computing slack on the specified paths

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-reset_path Removes existing point-to-point exception information on
the specified paths

-rise Marks rising delays false, as measured on the path endpoint

-rise_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

<value> Time Value

Description
Specifies a minimum delay exception for a given path.

The minimum delay is similar to changing the hold relationship
(launching clock edge - latching clock edge), except that it can be
applied to input or output ports without input or output delays
assigned to them. Minimum delays are always relative to any clock
network delays (if the source or destination is register) or any input
or output delays (if the source or destination is a port). Therefore,
input delays and clock latencies are added to the data arrival times.
Clock latencies also added to data required times and output delays
are subtracted from data required times.

The -from and -to values are collections of clocks, registers, ports,
pins, or cells in the design. If the -from or -to values are not
specified, the collection is converted automatically into [get_cells
*]. It is worth noting that if the counterpart of the unspecified
collection is a clock collection, it is more efficient to explicitly
specify this collection as a clock collection, but only if the clock
collection also generates the desired assignment.

Applying exceptions between clocks applies the exception from all
register or ports driven by the -from clock to all registers or ports
driven by the -to clock. Also, applying exceptions between a pair of
clocks is more efficient than for specific node to node or node to
clock paths.

If pin names or collections are used, the -from value must be a clock
pin and the -to value must be any non-clock input pin to a register.
Assignments from clock pins or to and from cells applies to all
registers in the cell or driven by the clock pin.

The -through values are collections of pins or nets in the design. An
exception applied through a node in the design applies only to paths
through the specified node. The Timing Analyzer allows you to specify
the -through argument multiple times to describe paths that go through
multiple points. For instance, users can select all paths that go
through node X, and then go through node Y. This helps you narrow down
and select the specific paths that you are interested in.

The -rise_from and -fall_from options can be used in place of the
destination nodes specified using the -from option. The rise or fall
value of the option indicates that the "from" nodes are driven by the
rising or falling edge of the clock that feeds this node taking into
consideration any logical inversions along the clock path. The -from
option is the combination of both rising and falling "from" nodes. If
the -from collection is a clock collection, the assignment applies to
those nodes that are driven by the respective rising or falling clock
edge.

The -rise_to and -fall_to options behave similarly to the "from"
options described previously. These assignments restrict the given
assignment to only those nodes or clocks that correspond to the
specified rise or fall value taking into consideration any logical
inversions that are along the clock path.

The values of the -from, -to, -through, and other similar options are
either collections or a Tcl list of wildcards used to create
collections of appropriate types.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

182

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note -rise, -fall, -rise_through, -fall_through, -ignore_clock_latency
and -reset_path options are not supported yet.

Example Usage # Apply a 0ns min delay between two unrelated clocks
set_min_delay -from [get_clocks clkA] -to [get_clocks clkB] 0.000

Apply a 0ns min delay for an input port (TH)
set_min_delay -from [get_ports in[*]] -to [get_cells *] -.000

Apply a 0.5ns min delay for an output port (MIN_TCO)
set_min_delay -from [get_cells *] -to [get_ports out[*]] 0.500

Apply a 0.5ns min delay for an input port to an output port (MIN_TPD)
set_min_delay -from [get_ports in[*]] -to [get_ports out[*]] 0.500

Apply a 0.5ns min delay for an input port only to nodes driven by
the falling edge of clock CLK
set_max_delay -from [get_ports in[*]] -fall_to [get_clocks CLK] 0.500

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.20. dni::set_multicycle_path (::quartus::dni_sdc)

The following table displays information for the dni::set_multicycle_path Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_multicycle_path [-h | -help] [-long_help] [-comment <string>] [-end]
[-fall] [-fall_from <names>] [-fall_through <names>] [-fall_to <names>] [-
from <names>] [-hold] [-reset_path] [-rise] [-rise_from <names>] [-
rise_through <names>] [-rise_to <names>] [-setup] [-start] [-through
<names>] [-to <names>] <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <string> Comment string

-end Specifies that the multicycle is relative to the destination
clock waveform (default)

-fall Marks falling delays false, as measured on the path
endpoint

-fall_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-hold Specifies that the multicycle value applies to clock hold or
removal checks

-reset_path Removes existing point-to-point exception information on
the specified paths

-rise Marks rising delays false, as measured on the path endpoint

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

183

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-rise_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Specifies that the multicycle value applies to clock setup or
recovery checks (default)

-start Specifies that the multicycle is relative to the source clock
waveform

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

<value> Number of clock cycles

Description
Specifies a multicycle exception for a given set of paths.

Multicycles can be specified relative to the source clock (-start) or
destination clock (-end). This is useful when the source clock and
destination clock are operating at different frequencies. For
example, if the source clock is twice as fast (half period) as the
destination clock, a -start multicycle of 2 is usually required.

Hold multicycles (-hold) are computed relative to setup multicycles
(-setup). The value of the hold multicycle represents the number clock
edges away from the default hold multicycle. The default hold
multicycle value is 0.

The -from and -to values are collections of clocks, registers, ports,
pins, or cells in the design. If the -from or -to values are not
specified, the collection is converted automatically into [get_cells
*]. It is worth noting that if the counterpart of the unspecified
collection is a clock collection, it is more efficient to explicitly
specify this collection as a clock collection but only if the clock
collection also generates the desired assignment.

Applying exceptions between clocks applies the exception from all
register or ports driven by the -from clock to all registers or ports
driven by the -to clock. Also, applying exceptions between a pair of
clocks is more efficient than for specific node to node or node to
clock paths.

If pin names or collections are used, the -from value must be a clock
pin and the -to value must be any non-clock input pin to a register.
Assignments from clock pins or to and from cells applies to all
registers in the cell or driven by the clock pin.

The -through values are collections of pins or nets in the design. An
exception applied through a node in the design applies only to paths
through the specified node. The Timing Analyzer allows you to specify
the -through argument multiple times to describe paths that go through
multiple points. For instance, users can select all paths that go
through node X, and then go through node Y. This helps you narrow down
and select the specific paths that you are interested in.

The -rise_from and -fall_from options can be used in place of the
"-from" destination nodes. The rise or fall value of the option
indicates that the "from" nodes are driven by the rising or falling
edge of the clock that feeds this node taking into consideration any
logical inversions along the clock path. The "-from" option is the
combination of both rising and falling "from" nodes. If the "from"
collection is a clock collection, the assignment applies to those
nodes that are driven by the respective rising or falling clock edge.

The -rise_to and -fall_to options behave similarly to the "from"
options described previously. These assignments restrict the given
assignment to only those nodes or clocks that correspond to the
specified rise or fall value taking into consideration any logical
inversions that are along the clock path.

The values of the -from, -to, -through, and similar options are either
collections or a Tcl list of wildcards used to create collections of
appropriate types.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note -rise, -fall, -rise_through, -fall_through and -reset_path
options are not supported yet.

Example Usage create_clock -period 10.000 -name CLK [get_ports clk]
create_generated_clock -divide_by 2 -source [get_ports clk] -name CLKDIV2 [get_cells clkdiv]

Apply a source multicycle of 2 with a hold multicycle of 1 for all
paths from the CLK domain to the CLKDIV2 domain.
set_multicycle_path -start -setup -from [get_clocks CLK] -to [get_clocks CLKDIV2] 2
set_multicycle_path -start -hold -from [get_clocks CLK] -to [get_clocks CLKDIV2] 1

Apply a multicycle constraint of 3 (with a default hold multicycle of 0) for a
specific path in the design.
set_multicycle_path -end -setup -from [get_pins rega|clk] -to [get_pins regb|*] 3

Apply a multicycle constraint of 2 to a given cell, except for the reset pin.
set_multicycle_path -end -setup -to [get_cells regb] 2
set_multicycle_path -end -setup -to [get_pins regb|aclr] 1

#Apply a multicycle constraint of 3 rising from a clock and falling to a node
set_multicycle_path -end -setup -rise_from [get_clocks CLK] -fall_to [get_pins regb|datab] 3

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.21. dni::set_net_delay (::quartus::dni_sdc)

The following table displays information for the dni::set_net_delay Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_net_delay [-h | -help] [-long_help] [-allow_ipin_as_to_target] -from
<names> [-get_value_from_clock_period <src_clock_period|dst_clock_period|
min_clock_period|max_clock_period>] [-max] [-min] [-to <names>] [-value_multiplier
<multiplier>] [<delay>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-allow_ipin_as_to_target Allows input pins as the -to target

-from <names> Valid source pins, ports, or nets (string patterns are
matched using Tcl string matching)

-get_value_from_clock_period
<src_clock_period|dst_clock_period|
min_clock_period|max_clock_period>

Compute net delay constraint as a multiple of the clock
period

-max Specifies maximum delay

-min Specifies minimum delay

-to <names> Valid destination pins, ports, or nets (string patterns are
matched using Tcl string matching)

-value_multiplier <multiplier> Value by which the clock period should be multiplied to
compute net delay requirement

<delay> Required delay

Description
Use the set_net_delay command to query the net delays
and perform minimum or maximum timing analysis across
nets. The -from and -to options can be string patterns
or pin, port, or net collections. When a pin
or net collection is used, the collection should
include output pins or nets.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the -to option is unused or if the -to filter is an
"*" character, all the output pins and registers on
timing netlist become valid destination points.

When you use the -min option, slack is calculated by
looking at the minimum delay on the edge. If you use the
-max option, slack is calculated with the maximum edge
delay.

Use -get_value_from_clock_period to set the net delay requirement
to be equal to the launching or latching clock period,
or whichever of the two has a smaller or larger period.
If -value_multiplier is used, the requirement will be multiplied by
that value. If the set of nets is clocked by more than one clock,
the Timing Analyzer will use the one with the smallest period to compute
the constraint for a -max constraint, and the largest period for
a -min constraint. If there are no clocks clocking the endpoints
of the net (e.g. if the endpoints of the nets are not registers or
constrained ports), then the net delay constraint will be ignored.

Example Usage project_open my_project
create_timing_netlist
read_sdc
update_timing_netlist

add min delay constraint
set_net_delay -min 0.160 -from [get_pins inst9|combout] -to [get_pins *|dataf]

add max delay constraint
set_net_delay -max 0.500 -from [get_pins inst8|combout]

this is same as the previous call
set_net_delay -max 0.500 -from inst8|combout -to *

Require net delay to be at most 90% of the period of the clock driving the inst9 register
set_net_delay -max -get_value_from_clock_period dst_clock_period -value_multiplier 0.9 -from
[get_pins inst8|combout] -to [get_pins inst9|q]

update_timing_netlist

report_net_delay -panel "Net Delay"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.22. dni::set_operating_conditions (::quartus::dni_sdc)

The following table displays information for the dni::set_operating_conditions
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_operating_conditions [-h | -help] [-long_help] [-analysis_type
<bc_wc|on_chip_variation|single>] [-condition <condition>] [-force_dat] [-grade <c|i|
m|e|a>] [-library <lib>] [-max <max_condition>] [-max_library <max_lib>] [-
max_phys <max_proc>] [-min <min_condition>] [-min_library <min_lib>] [-min_phys
<min_proc>] [-model <fast|slow>] [-object_list <object_list>] [-speed <speed>] [-
temperature <value_in_C>] [-voltage <value_in_mV>] [<list_of_operating_conditions>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-analysis_type <bc_wc|
on_chip_variation|single>

Specifies how to use the operating conditions

-condition <condition> Specifies conditions that define environmental
characteristics to use during maximum and minimum delay
analysis

-force_dat Option to force delay annotation (only done when selecting
an unanalyzed corner)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-grade <c|i|m|e|a> Option to specify temperature grade

-library <lib> Specifies the library containing definitions of the operating
conditions for both maximum and minimum delay analysis

-max <max_condition> Specifies the operating condition to use for maximum delay
analysis

-max_library <max_lib> Specifies the library containing definitions of the operating
conditions for maximum delay analysis

-max_phys <max_proc> Specifies the name of the process resource to search for the
resistance and capacitance values for maximum delay
analysis

-min <min_condition> Specifies the operating condition to use for minimum delay
analysis

-min_library <min_lib> Specifies the library containing definitions of the operating
conditions for minimum delay analysis

-min_phys <min_proc> Specifies the name of the process resource to search for the
resistance and capacitance values for minimum delay
analysis

-model <fast|slow> Option to specify timing model

-object_list <object_list> Specifies the cells or ports on which to set operating
conditions

-speed <speed> Speed grade

-temperature <value_in_C> Operating temperature

-voltage <value_in_mV> Operating voltage

<list_of_operating_conditions> list or collection of Operating conditions Tcl objects or
names

Description
Use this command to specify operating conditions different from the
initial conditions used to create the timing netlist. When a timing
model is not specified, the slow model is used.

Voltage and temperature options must be used together. These two
options are not available for all devices. The
get_available_operating_conditions command returns the list of
available operating conditions for your device.

Use the -speed option to analyze the design at a different speed grade
of the selected device.

Use the -grade option to analyze the design at a different temperature
grade. This option is provided to support what-if analysis and is not
recommended for final sign-off analysis.

By default, delay annotation is skipped if previously performed. Use
-force_dat to rerun delay annotation.

Note -analysis_type, -min, -max, -min_library, -max_library,
-min_phys, -max_phys, -library, -object_list and condition options are
not supported yet,

Example Usage #do report timing for different operating conditions one by one
foreach_in_collection op [get_available_operating_conditions] {
 set_operating_conditions $op
 update_timing_netlist
 report_timing
}

#set aggregated report timing for all operating conditions when corner aggregation is enabled
set_operating_conditions [get_available_operating_conditions]
report_timing

#manually set operating conditions
set_operating_conditions -model fast -temperature 85 -voltage 1200
update_timing_netlist

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

#change device speed grade and set operating conditions
set_operating_conditions -speed 3 -model slow -temperature 0 -voltage 1100
update_timing_netlist

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.23. dni::set_output_delay (::quartus::dni_sdc)

The following table displays information for the dni::set_output_delay Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_output_delay [-h | -help] [-long_help] [-add_delay] -clock <name> [-
clock_fall] [-fall] [-max] [-min] [-network_latency_included] [-reference_pin
<name>] [-rise] [-source_latency_included] <delay> <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add_delay Create additional delay constraint instead of overriding
previous constraints

-clock <name> Clock name

-clock_fall Specifies output delay relative to the falling edge of the
clock

-fall Specifies the falling output delay at the port

-max Applies value as maximum data required time

-min Applies value as minimum data required time

-network_latency_included Specifies that input delay includes added network latency

-reference_pin <name> Specifies a pin or port in the design to which the output
delay is relative

-rise Specifies the rising output delay at the port

-source_latency_included Specifies input delay already includes added source latency

<delay> Time value

<targets> Collection or list of output ports

Description
Specifies the data required times at the specified output ports
relative the clock specified by the -clock option. The clock must
refer to a clock name in the design.

Output delays can be specified relative to the rising edge (default)
or falling edge (-clock_fall) of the clock.

Output delays can be specified relative to a pin or a port (-reference_pin)
in the clock network. Clock arrival times to the reference pin or port
are added to the data required time.

Output delays can include clock source latency. By default the clock
source latency of the related clock is added to the output delay
value, but when the -source_latency_included option is specified, the
clock source latency is not added because it was factored into the
output delay value.

The maximum output delay (-max) is used for clock setup checks or
recovery checks and the minimum output delay (-min) is used for clock
hold checks or removal checks. If only one of -min and -max (or

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

neither) is specified for a given port, the same value is used for
both.

Separate rising (-rise) and falling (-fall) required times at the port
can be specified. If only one of -rise and -fall are specified for a
given port, the same value is used for both.

By default, set_output_delay removes any other output delays to the port
except for those with the same -clock, -clock_fall, and -reference_pin
combination. Multiple output delays relative to different clocks, clock
edges, or reference pins can be specified using the -add_delay option.
Future output delays relative to different clocks, clock edges, or
reference pins that do not specify the -add_delay option will still
remove previous output delays that specified the -add_delay option.

Note that -network_latency_included is not supported yet.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type.

Example Usage # Simple output delay with the same value for min/max and rise/fall:
1) set on ports with names of the form myout*
set_output_delay -clock clk 0.5 [get_ports myout*]
2) set on all output ports
set_output_delay -clock clk 0.5 [all_outputs]

Output delay with respect to the falling edge of clock
set_output_delay -clock clk -clock_fall 0.5 [get_ports myout*]

Output delays for different min/max and rise/fall combinations
set_output_delay -clock clk -max -rise 0.5 [get_ports myout*]
set_output_delay -clock clk -max -fall 0.4 [get_ports myout*]
set_output_delay -clock clk -min -rise 0.4 [get_ports myout*]
set_output_delay -clock clk -min -fall 0.3 [get_ports myout*]

Adding multiple output delays with respect to more than one clock
set_output_delay -clock clkA -min 0.2 [get_ports myout*]
set_output_delay -clock clkA -max 0.8 [get_ports myout*]
set_output_delay -clock clkA -clock_fall 0.6 [get_ports myout*] -add_delay
set_output_delay -clock clkB -min 1.1 [get_ports myout*] -add_delay
set_output_delay -clock clkB -max 1.5 [get_ports myout*] -add_delay

This is a common mistake where output delays are accidentally removed
set_output_delay -clock clkA -min 0.2 [get_ports myout*]
set_output_delay -clock clkB -min 1.1 [get_ports myout*] -add_delay
The following removes the clkB entry. You need to always use -add_delay
when more than one clock, clock_fall or reference_pin exists
set_output_delay -clock clkA -max 0.8 [get_ports myout*]
The following removes the clkA entry. You need to always use -add_delay
when more than one clock, clock_fall or reference_pin exists
set_output_delay -clock clkB -max 1.5 [get_ports myout*]

Specifying an output delay relative to an external clock output port
set_output_delay -clock clk -reference_pin [get_ports clkout] 0.8 [get_ports myout*]

Specifying an output delay relative to the clock pin of a register
set_output_delay -clock clk -reference_pin [get_pins regA|clk] 0.8 [get_ports myout*]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.24. dni::set_sense (::quartus::dni_sdc)

The following table displays information for the dni::set_sense Tcl command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_sense [-h | -help] [-long_help] [-clocks <clock_list>] [-negative] [-
positive] [-pulse <pulse_type>] [-stop_propagation] [-type <type>] <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clocks <clock_list> Clock objects to which the assignment applies

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

189

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-negative Apply negative unate sense

-positive Apply positive unate sense

-pulse <pulse_type> Specifies the type of pulse clock applied to all pins in the
target variable with respect to clock source

-stop_propagation Stops the propagation of specified clocks from the specified
pins or cell timing arcs

-type <type> Specifies whether the type of sense being applied refers to
clock networks or data networks

<targets> List or collection of targets

Description
Restrict unateness at a pin on a clock path, with respect to the clock
source.

If the -clocks option is used, the assignment will only apply to
analysis of the specified clock domains. Otherwise, it applies to all
clocks passing through the given pins.

If the specified sense does not exist at the given pin, the assignment
is ignored.

Note -type, -pulse and -stop_propagation options are not supported.

Example Usage set_sense -positive Mux|combout
set_sense -negative -clocks [get_clocks clk] XOR|combout

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.8.25. dni::set_timing_derate (::quartus::dni_sdc)

The following table displays information for the dni::set_timing_derate Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::dni_sdc on page 158

Syntax dni::set_timing_derate [-h | -help] [-long_help] [-cell_check] [-cell_delay] [-
clock] [-data] [-early] [-fall] [-late] [-max] [-min] [-net_delay] [-
operating_conditions <operating_conditions>] [-pocvm_coefficient_scale_factor] [-
pocvm_guardband] [-rise] <derate_value> [<cells>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cell_check Applies the derating value to the setup and hold time
requirements of cells

-cell_delay Specifies that derating factors are only to apply to cell
delays

-clock Applies the derating value only to elements in the clock
network

-data Applies the derating value only to elements in the data
network

-early Specifies the minimum derating factor. This factor specifies
how early the signal can arrive

-fall Applies the derating value only to the delays of paths that
have a falling transition at the specified objects

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-late Specifies the maximum derating factor. This factor specifies
how late the signal can arrive

-max Applies the derating value only to the maximum operating
condition

-min Applies the derating value only to the minimum operating
condition

-net_delay Specifies that derating factors are only to apply to net
delays

-operating_conditions
<operating_conditions>

Operating conditions Tcl object

-
pocvm_coefficient_scale_facto
r

This option applies only to the parametric on-chip variation
(POCV) context

-pocvm_guardband This option applies only to the parametric on-chip variation
(POCV) context

-rise Applies the derating value only to the delays of paths that
have a rising transition at the specified objects

<derate_value> Timing derate value

<cells> List of cell type objects

Description
Sets the global derate factors for the current design. The maxmimum
and minimum delays of all timing arcs in the design are multiplied by
the factors specified with the -late and -early options respectively.
Only positive derate factors are allowed. If neither the -cell_delay
nor -net_delay option is used, the derating factors apply to both cell
and net delays. For net delay derates, the derate factor is applied to
nets driven by matching cells.

Specifying a derate value of less than 1.0 for the -late option or a
derate value of greater than 1.0 for the -early option reduces delay
pessimisim, which might lead to optimistic results from timing
analysis.

The effect of set_timing_derate command is deferred until the next
time update_timing_netlist is called. To reset derate factors to
original values, use the reset_timing_derate command.

This assignment is for timing analysis only, and is not considered
during timing-driven compilation.

Note -min, -max, -data, -clock, -rise, -fall, -cell_check,
-pocvm_guardband and -pocvm_coefficient_scale_factor options are not
supported yet.

Example Usage set_timing_derate -early 0.9 [get_cells *]
set_timing_derate -late 1.1 [get_cells *]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.9. ::quartus::drc

The following table displays information for the ::quartus::drc Tcl package:

Tcl Package and Version ::quartus::drc 1.0

Description
This package contains no general description.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Availability This package is available for loading in the following executables:

 qacv
 qpro
 quartus
 quartus_cdb
 quartus_fit
 quartus_sta
 quartus_syn
 quartus_tlg

Tcl Commands drc::add_check_op (::quartus::drc) on page 192
drc::add_check_parameter (::quartus::drc) on page 193
drc::add_object (::quartus::drc) on page 194
drc::add_object_with_properties (::quartus::drc) on page 194
drc::add_property (::quartus::drc) on page 195
drc::add_rule (::quartus::drc) on page 196
drc::add_rule_violation (::quartus::drc) on page 197
drc::add_violation_record (::quartus::drc) on page 197
drc::add_waiver (::quartus::drc) on page 198
drc::check_design (::quartus::drc) on page 198
drc::delete_waivers (::quartus::drc) on page 199
drc::get_objects (::quartus::drc) on page 199
drc::get_option (::quartus::drc) on page 200
drc::get_property (::quartus::drc) on page 200
drc::get_stage_info (::quartus::drc) on page 201
drc::get_waivers (::quartus::drc) on page 202
drc::list_properties (::quartus::drc) on page 202
drc::report_waivers (::quartus::drc) on page 203
drc::set_option (::quartus::drc) on page 203
drc::set_property (::quartus::drc) on page 204
drc::should_run_drc (::quartus::drc) on page 204
drc::update_check_op (::quartus::drc) on page 205
drc::update_rule (::quartus::drc) on page 205

3.1.9.1. drc::add_check_op (::quartus::drc)

The following table displays information for the drc::add_check_op Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::add_check_op [-h | -help] [-long_help] -bind_to_tcl_execute <per_rule|
per_operation> [-device_families <device_families>] -exec_proc_name
<exec_proc_name> [-executables <executables>] [-finalize_proc_name
<finalize_proc_name>] -name <name> [-setup_proc_name <setup_proc_name>] [-stages
<stages>] [-tcl_proc_source <tcl_proc_source>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-bind_to_tcl_execute <per_rule|
per_operation>

Check operation to rule binding mode

-device_families
<device_families>

Device family, check operation is valid for

-exec_proc_name
<exec_proc_name>

Check Operation execution proc name

-executables <executables> Allowed executables, check operation could be invoked from

-finalize_proc_name
<finalize_proc_name>

Check Operation cleanup proc name

-name <name> Check Operation name

-setup_proc_name
<setup_proc_name>

Check Operation intialization proc name

-stages <stages> Allowed stages, check operation could be invoked from

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

192

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-tcl_proc_source
<tcl_proc_source>

Check operation proc source file name

Description
Add Check Operation .

Example Usage add_check_op -name {TEST} -bind_to_tcl_execute {per_operation} -exec_proc_name
{TEST_EXEC_PROC}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.9.2. drc::add_check_parameter (::quartus::drc)

The following table displays information for the drc::add_check_parameter Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::add_check_parameter [-h | -help] [-long_help] -check_op <check_op> [-
is_user <is_user>] [-param_description <param_description>] -param_name
<param_name> [-param_range <param_range>] -param_value <param_value> -
value_type <integer|double|string|string_list|bool>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-check_op <check_op> Check Operation name

-is_user <is_user> Is parameter user visible

-param_description
<param_description>

Parameter description

-param_name <param_name> Parameter name

-param_range <param_range> Legal range for parameter

-param_value <param_value> Default value for parameter

-value_type <integer|double|string|
string_list|bool>

Parameter value type integer|double|string|string_list|bool

Description
Add Check Operation .

Example Usage add_check_parameter -check_op {TEST} -param_name {TEST_PARAM} -value_type {string} -
param_value {TEST_VALUE}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.9.3. drc::add_object (::quartus::drc)

The following table displays information for the drc::add_object Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::add_object [-h | -help] [-long_help] [-bind_to_tcl_execute
<bind_to_tcl_execute>] [-category <category>] [-name <name>] [-number <number>]
[-parent <parent>] -type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-bind_to_tcl_execute
<bind_to_tcl_execute>

Specifies the Tcl execution mode of the new
check_operation DRC object (none / per_rule /
per_operation).

-category <category> The category of the new DRC object.

-name <name> The name of the new check_operation/rule_set DRC object.

-number <number> The numeric part of the new DRC object's name.

-parent <parent> The parent object of the new violation_record DRC object.

-type <type> The type of the new DRC object.

Description
Adds a new DRC object.

Example Usage drc::add_object -type rule -category CLK -number 1

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to add DRC object.

TCL_ERROR 1 ERROR: Invalid object type '<string>'.

TCL_ERROR 1 ERROR: Category is needed for finding RULE or VIOLATION.

TCL_ERROR 1 ERROR: Object name is needed.

TCL_ERROR 1 ERROR: Object number is needed.

TCL_ERROR 1 ERROR: Parent object is needed for violation record.

3.1.9.4. drc::add_object_with_properties (::quartus::drc)

The following table displays information for the
drc::add_object_with_properties Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::add_object_with_properties [-h | -help] [-long_help] [-
bind_to_tcl_execute <bind_to_tcl_execute>] [-category <category>] [-name <name>]
[-number <number>] [-parent <parent>] -properties <properties> -type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

194

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-bind_to_tcl_execute
<bind_to_tcl_execute>

Specifies the Tcl execution mode of the new
check_operation DRC object (none / per_rule /
per_operation).

-category <category> The category of the new DRC object.

-name <name> The name of the new check_operation/rule_set DRC object.

-number <number> The numeric part of the new DRC object's name.

-parent <parent> The parent object of the new violation_record DRC object.

-properties <properties> The property list of the new violation_record DRC object.

-type <type> The type of the new DRC object.

Description
Adds a new DRC object with properties.

Example Usage drc::add_object_with_properties -type violation_record -name <violation> -parent
<result_record_id> -properties [list [list "fields" [list "HighFanout_DRV1", "1530"]], [list
"fields:1:location_schema" "mod_A|mod_A_1|out"]]
drc::add_object_with_properties -type violation_record -name <violation> -parent
<result_record_id> -properties {{"fields" {"HighFanout_DRV1", "1530"}}
{"fields:1:location_schema" "mod_A|mod_A_1|out"}}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to add DRC object.

TCL_ERROR 1 ERROR: Invalid object type '<string>'.

TCL_ERROR 1 ERROR: Property list should consist of name-value pairs.

TCL_ERROR 1 ERROR: Category is needed for finding RULE or VIOLATION.

TCL_ERROR 1 ERROR: Object name is needed.

TCL_ERROR 1 ERROR: Object number is needed.

TCL_ERROR 1 ERROR: Parent object is needed for violation record.

3.1.9.5. drc::add_property (::quartus::drc)

The following table displays information for the drc::add_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::add_property [-h | -help] [-long_help] -name <name> -object <object> -
value <value> [-value_type <value_type>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> property name.

-object <object> The DRC object to which the new property belongs.

-value <value> property value.

-value_type <value_type> property value type.

Description
Add a property (a name/value pair) to a generic DRC object

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

195

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage drc::add_property -object <DRC object> -name <property name> -value <property value> -
value_type <value type>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to add object property.

TCL_ERROR 1 ERROR: Invalid DRC object '%'s.

TCL_ERROR 1 ERROR: Invalid property value.

TCL_ERROR 1 ERROR: Invalid property value type.

TCL_ERROR 1 ERROR: Property '<string>' already exists. Cannot be
added.

3.1.9.6. drc::add_rule (::quartus::drc)

The following table displays information for the drc::add_rule Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::add_rule [-h | -help] [-long_help] -category <category> -check_operation
<check_operation> [-description <description>] -id <id> [-is_default <is_default>] [-
recommendation <recommendation>] -severity <severity> [-short_description
<short_description>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-category <category> Rule category

-check_operation
<check_operation>

Check operation associated

-description <description> Detailed description

-id <id> Rule ID

-is_default <is_default> Is Default Rule

-recommendation
<recommendation>

Detailed recommendation

-severity <severity> Rule Severity

-short_description
<short_description>

Rule title

Description
Add Check Operation .

Example Usage add_rule -category {TEST} -id {TEST_ID} -check_operation {TEST_CHECK_OP} -severity
{TEST_SEVERITY}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.9.7. drc::add_rule_violation (::quartus::drc)

The following table displays information for the drc::add_rule_violation Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::add_rule_violation [-h | -help] [-long_help] [-argument_spec
<argument_spec>] [-category <category>] [-format_msg <format_msg>] [-id <id>]
[-num_args <num_args>] [-object <rule_object>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-argument_spec <argument_spec> Argument specifications {{type name description
[sort_method] [order]}...}

-category <category> Rule category for violation

-format_msg <format_msg> Violation message format

-id <id> Rule ID for violation

-num_args <num_args> Number of arguments

-object <rule_object> Rule object for violation

Description
Add Rule Violation.

Example Usage add_rule_violation

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.9.8. drc::add_violation_record (::quartus::drc)

The following table displays information for the drc::add_violation_record Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::add_violation_record [-h | -help] [-long_help] -parent <parent>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-parent <parent> Parent result record for violation

Description
Add Violation Record.

Example Usage add_violation_record -parent {PARENT_RESULT_RECORD_ID}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.9.9. drc::add_waiver (::quartus::drc)

The following table displays information for the drc::add_waiver Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::add_waiver [-h | -help] [-long_help] -description <description> [-no_warn] -
owner <owner> -query_string <query_string> -rule_id <rule_id> [-stages <stages>]
[-tag <tag>] [-timestamp <timestamp>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-description <description> Waiver description, explaining the rationale of the waiver, as
to why violations waived by this waiver are irrelevant or
should be ignored.

-no_warn Display no warning for adding waiver which will be applied
to the next DA run.

-owner <owner> User ID of creator. Meant for waiver audit trail.

-query_string <query_string> Query string uses one ore more violation column arguments
to define patterns of violations that should be ignored.

-rule_id <rule_id> Alpha-numeric rule ID pattern to define the scope of this
waiver.

-stages <stages> one or more stage(s) where rules are defined, for which the
waiver can be applied to.

-tag <tag> User-specified tags for tracking different types of violations
across the whole project.

-timestamp <timestamp> The input timestamp when to add the waiver.

Description
Creates a waiver for a given rule pattern with a specific query string.

Example Usage ::drc::add_waiver -description {a waiver} -rule_id {TMC-20004} -query_string {Slack < -5.14 &&
"Start Point" =~ 'dir'} -stages [list analysis_planned_quartus_sta Plan] -tag {test} -owner
{owner}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.9.10. drc::check_design (::quartus::drc)

The following table displays information for the drc::check_design Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::check_design [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Run the specified rule set on a snapshot for the open project.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

198

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage drc::check_design [-rule_set my_ruleset (if missing, the rule set is default)] [-executable
quartus_sta (if missing, the default is the current process name)] [-rpt_file <DA DRC ASCII
report file path>]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to complete checks.

3.1.9.11. drc::delete_waivers (::quartus::drc)

The following table displays information for the drc::delete_waivers Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::delete_waivers [-h | -help] [-long_help] [-all] [-owner <owner>] [-
query_string <query_string>] [-rule_id <rule_id>] [-stages <stages>] [-tag <tag>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all The flag needed explicitly for deleting all the waivers
without other arguments

-owner <owner> User ID of creator. Meant for waiver audit trail.

-query_string <query_string> Query string uses one ore more violation column arguments
to define patterns of violations that should be ignored.

-rule_id <rule_id> Alpha-numeric rule ID pattern to define the scope of this
waiver.

-stages <stages> one or more stage(s) where rules are defined, for which the
waiver can be applied to.

-tag <tag> User-specified tags for tracking different types of violations
across the whole project.

Description
Delete waivers based on the input arguments

Example Usage # This delete all the waivers.
::drc::delete_waivers

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.9.12. drc::get_objects (::quartus::drc)

The following table displays information for the drc::get_objects Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::get_objects [-h | -help] [-long_help] [-category <category>] [-name
<name>] [-number <number>] [-parent <parent>] -type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

199

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-category <category> The category of the rule/violation DRC objects to be
retrieved.

-name <name> The literal name of the check_operation/rule_set DRC
objects to be retrieved.

-number <number> The numerical part of the name of the rule/violation DRC
objects to be retrieved.

-parent <parent> The parent object of the violation_record DRC object to be
retrieved.

-type <type> The type of DRC objects to be retrieved.

Description
Get a list of specific existing DRC objects

Example Usage drc::get_objects -type rule

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to get DRC objects.

TCL_ERROR 1 ERROR: Parent object is needed for violation record.

3.1.9.13. drc::get_option (::quartus::drc)

The following table displays information for the drc::get_option Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::get_option [-h | -help] [-long_help] -name <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> option name.

Description
Get option for the DRC system

Example Usage drc::get_option -name <option name>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: DRC option '<string>' is invalid.

3.1.9.14. drc::get_property (::quartus::drc)

The following table displays information for the drc::get_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::get_property [-h | -help] [-long_help] -name <name> -object <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

200

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-name <name> property name.

-object <object> The DRC object to which the property belongs.

Description
Get the value of a generic DRC object's property.

Example Usage drc::get_property -object <DRC object> -name <property name>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid DRC object '%'s.

TCL_ERROR 1 ERROR: Property '<string>' is invalid.

3.1.9.15. drc::get_stage_info (::quartus::drc)

The following table displays information for the drc::get_stage_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::get_stage_info [-h | -help] [-long_help] [-executable <executable>] [-
rule_set <rule_set>] [-snapshot <snapshot>] [-stage <stage>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-executable <executable> The executable name to find stages.

-rule_set <rule_set> The rule set name to find stages.

-snapshot <snapshot> The snapshot name to find stages.

-stage <stage> The stage name to get exectuable, snapshot, and rule set.

Description
The Utility to find stage info in terms of all available stages, and executables and snapshots
associate with snapshots. No error info provided.

Example Usage # Get all the stage names
::drc::get_stage_info

Get executable and snapshot for a stage
::drc::get_stage_info -stage $stage_name

Get stages with the input executable name
::drc::get_stage_info -executable $executable_name

Get stages with the input snapshot name
::drc::get_stage_info -snapshot $snapshot_name

Get stage with the input snapshot and executable name
::drc::get_stage_info -snapshot $snapshot_name -executable $executable_name

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

201

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.9.16. drc::get_waivers (::quartus::drc)

The following table displays information for the drc::get_waivers Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::get_waivers [-h | -help] [-long_help] [-owner <owner>] [-query_string
<query_string>] [-rule_id <rule_id>] [-stages <stages>] [-tag <tag>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-owner <owner> User ID of creator. Meant for waiver audit trail.

-query_string <query_string> Query string uses one ore more violation column arguments
to define patterns of violations that should be ignored.

-rule_id <rule_id> Alpha-numeric rule ID pattern to define the scope of this
waiver.

-stages <stages> one or more stage(s) where rules are defined, for which the
waiver can be applied to.

-tag <tag> User-specified tags for tracking different types of violations
across the whole project.

Description
List all the waiver objects found in the memory filtered based on the input arguments.

Example Usage set waiver_objs [::drc::get_waivers]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.9.17. drc::list_properties (::quartus::drc)

The following table displays information for the drc::list_properties Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::list_properties [-h | -help] [-long_help] -object <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-object <object> The DRC object whose properties are returned as a list of
property names.

Description
Get the list of property names from a generic DRC object

Example Usage drc::list_properties -object <DRC object>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid DRC object '%'s.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

202

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.9.18. drc::report_waivers (::quartus::drc)

The following table displays information for the drc::report_waivers Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::report_waivers [-h | -help] [-long_help] -file <file> [-force] [-owner
<owner>] [-query_string <query_string>] [-rule_id <rule_id>] [-stages <stages>]
[-tag <tag>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-file <file> The file where to store all the waivers found in the memory

-force the flag which can force to update
DESIGN_ASSISTANT_WAIVER_FILE

-owner <owner> User ID of creator. Meant for waiver audit trail.

-query_string <query_string> Query string uses one ore more violation column arguments
to define patterns of violations that should be ignored.

-rule_id <rule_id> Alpha-numeric rule ID pattern to define the scope of this
waiver.

-stages <stages> one or more stage(s) where rules are defined, for which the
waiver can be applied to.

-tag <tag> User-specified tags for tracking different types of violations
across the whole project.

Description
Output the definition of all the waivers in the memory to a file filtered based on the input
arguments.

Example Usage ::drc::report_waivers -file waivers.dawf

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.9.19. drc::set_option (::quartus::drc)

The following table displays information for the drc::set_option Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::set_option [-h | -help] [-long_help] -name <name> -value <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> option name.

-value <value> option value.

Description
Set options for the DRC system

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

203

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage drc::set_option -name <option name> -value <option value>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: DRC option '<string>' is invalid.

3.1.9.20. drc::set_property (::quartus::drc)

The following table displays information for the drc::set_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::set_property [-h | -help] [-long_help] -name <name> -object <object> -
value <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> property name.

-object <object> The DRC object to which the property belongs.

-value <value> property value.

Description
Update property in term of name/value pair to a generic DRC object

Example Usage drc::set_property -object <DRC object> -name <property name> -value <property value>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid DRC object '%'s.

TCL_ERROR 1 ERROR: Property '<string>' is invalid.

3.1.9.21. drc::should_run_drc (::quartus::drc)

The following table displays information for the drc::should_run_drc Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::should_run_drc [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Determine if DRC should run.

Example Usage should_run_drc

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

204

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.9.22. drc::update_check_op (::quartus::drc)

The following table displays information for the drc::update_check_op Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::update_check_op [-h | -help] [-long_help] [-device_families
<device_families>] [-executables <executables>] -name <name> [-stages <stages>] [-
tcl_proc_source <tcl_proc_source>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-device_families
<device_families>

Device family, check operation is valid for

-executables <executables> Allowed executables, check operation could be invoked from

-name <name> Check operation name

-stages <stages> Allowed stages, check operation could be invoked from

-tcl_proc_source
<tcl_proc_source>

Check operation proc source file name

Description
Add Check Operation .

Example Usage update_check_op -name {TEST}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.9.23. drc::update_rule (::quartus::drc)

The following table displays information for the drc::update_rule Tcl command:

Tcl Package and
Version

Belongs to ::quartus::drc on page 191

Syntax drc::update_rule [-h | -help] [-long_help] -category <category> [-description
<description>] [-exec_proc <exec_proc>] [-finalize_proc <finalize_proc>] -id <id> [-
is_user <is_user>] [-param_description <param_description>] [-param_value
<param_value>] [-parameter <parameter>] [-recommendation <recommendation>] [-
setup_proc <setup_proc>] [-short_description <short_description>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-category <category> Rule category

-description <description> Rule description

-exec_proc <exec_proc> Execution proc for the rule

-finalize_proc <finalize_proc> Cleanup proc for the rule

-id <id> Rule ID

-is_user <is_user> Is rule parameter user visible

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

205

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-param_description
<param_description>

Parameter description

-param_value <param_value> Parameter default value

-parameter <parameter> Parameter for the rule

-recommendation
<recommendation>

Rule recommendation

-setup_proc <setup_proc> Initialization proc for the rule

-short_description
<short_description>

Rule title

Description
Update Check Operation.

Example Usage update_rule -category {TEST} -id {TEST_ID}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10. ::quartus::eco

The following table displays information for the ::quartus::eco Tcl package:

Tcl Package and Version ::quartus::eco 1.0

Description
This package contains commands to perform Engineering Change Orders on
a Post-Fit netlist.

ECO compilations are supported on Intel Stratix 10 and Intel Agilex device families.

Availability This package is available for loading in the following executable:

 quartus_fit

Tcl Commands adjust_pll_refclk (::quartus::eco) on page 207
create_new_node (::quartus::eco) on page 207
create_wirelut (::quartus::eco) on page 208
eco::report_partitions (::quartus::eco) on page 221
eco_reroute (::quartus::eco) on page 209
eco_unload_design (::quartus::eco) on page 209
fitter_report_timing (::quartus::eco) on page 210
fitter_timing_summary (::quartus::eco) on page 211
get_available_snapshots (::quartus::eco) on page 211
get_eco_checkpoint (::quartus::eco) on page 212
get_loaded_snapshot (::quartus::eco) on page 212
get_lutmask_equation (::quartus::eco) on page 212
get_node_location (::quartus::eco) on page 213
make_connection (::quartus::eco) on page 213
modify_io_current_strength (::quartus::eco) on page 215
modify_io_delay_chain (::quartus::eco) on page 215
modify_io_slew_rate (::quartus::eco) on page 216
modify_lutmask (::quartus::eco) on page 216
place_node (::quartus::eco) on page 217
remove_connection (::quartus::eco) on page 218
remove_node (::quartus::eco) on page 219
report_connections (::quartus::eco) on page 219
report_legal_locations (::quartus::eco) on page 220
report_nodes_at_location (::quartus::eco) on page 221
report_ports (::quartus::eco) on page 222
report_routing (::quartus::eco) on page 222
report_unplaced_nodes (::quartus::eco) on page 223
restore_eco_checkpoint (::quartus::eco) on page 223
unplace_node (::quartus::eco) on page 224
update_mif_files (::quartus::eco) on page 224

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

206

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.10.1. adjust_pll_refclk (::quartus::eco)

The following table displays information for the adjust_pll_refclk Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax adjust_pll_refclk [-h | -help] [-long_help] -refclk <refclk_freq> -to <iopll_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-refclk <refclk_freq> New refclk frequency value in MHz

-to <iopll_name> Instance name of upstream IOPLL to be adjusted

Description
The adjust_pll_refclk command can change IOPLL frequencies by modifying the input reference
clock frequency.

Assumptions and Limitations:
 - The original refclk/outclk ratios will be maintained
 - None of the IOPLLs being reconfigured can generate IP clocks (the frequencies of the LVDS,
PhyLite and EMIF clocks cannot change)
 - Cascaded IOPLLs must be connected directly (no clock gates in between them)
 - IOPLLs cannot be in 'nondedicated' compensation modes
 - For all IOPLL outclks duty cycle = 50 and phase shift = 0

Example Usage load_package eco
 adjust_pll_refclk -to "*pll_main*" -refclk 100

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.2. create_new_node (::quartus::eco)

The following table displays information for the create_new_node Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax create_new_node [-h | -help] [-long_help] -name <node_name> -type <lut|ff>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <node_name> Name of the new node

-type <lut|ff> Node type

Description
The create_new_node command will create a new node with the specified type and return its id.
The node name is hierarchical based,
and the ECO Fitter will try to infer the name hierarchy. For example, if a node a|b|c|d needs to
be created,
users should make sure that hierarchy a|b|c exists in the netlist. If a|b|c lies under a
partition, the new
node will be created under that partition.

To connect to the created node, use make_connection command to connect to
the LUT's DATAA/B/C/D/E/F input ports, and use modify_lutmask command to
change its LUT-mask. The new node needs to be placed with place_node command
and then new connections will be routed right after.

Example Usage create_new_node -name eco_new_lut -type lut
make_connection -from src_a -to eco_new_lut -port DATAA
make_connection -from src_b -to eco_new_lut -port DATAB

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

207

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

make_connection -from eco_new_lut -to dst_reg -port D
modify_lutmask -to eco_new_lut -eqn A&B
place_node -name eco_new_lut

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.3. create_wirelut (::quartus::eco)

The following table displays information for the create_wirelut Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax create_wirelut [-h | -help] [-long_help] [-from <source_output_net_name>] [-
from_node <from_node>] [-from_port <from_port>] [-location <location>] -name
<node_name> [-port <dest_node_port>] [-to <dest_node_name>] [-to_node
<to_node>] [-to_port <to_port>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-from <source_output_net_name> Source of the connection

-from_node <from_node> ID of the source node

-from_port <from_port> ID of the source port

-location <location> PLACE_REGION assignment type location

-name <node_name> Name of the new node

-port <dest_node_port> Input port name of the destination node

-to <dest_node_name> Name of the destination node

-to_node <to_node> ID of the destination node

-to_port <to_port> ID of the destination port

Description
The create_wirelut command will create and insert a wire LUT node in the specified connection.
The ECO Fitter will place the newly created LUT and route the modified connections automatically,
if -location argument is specified.
Otherwise, the new wire LUT should be placed with place_node command.

The name for the new node is hierarchy based, and the ECO Fitter will try to infer the name
hierarchy.
For example, if a node a|b|c|d needs to be created, users should make sure that hierarchy a|b|c
exists in the netlist. If the source or destination node lies under a partition, the new wire
LUT will
be inserted under that partition.

Example Usage create_wirelut -name my_wirelut -from src_output -to dest_node -port D -location "X136 Y63
X149 Y82"

create_wirelut -name my_wirelut -from src_output -to dest_node -port D
place_node -name my_wirelut

set to_node_id [get_netlist_node_id -name my_node]
set iports [get_netlist_ports -node $to_node_id -type iport]
set iport 0
foreach_in_collection i $iports {
 set iport $i
 break

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

208

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

}
create_wirelut -name my_wirelut -from ~GND -to_node $to_node_id -to_port $iport
place_node -name my_wirelut

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.4. eco_reroute (::quartus::eco)

The following table displays information for the eco_reroute Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax eco_reroute [-h | -help] [-long_help] [-hold_slack <hold_slack>] [-keep_best] -
node <node> -port <port> [-setup_slack <setup_slack>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-hold_slack <hold_slack> targeted hold slack (ns)

-keep_best keep best attempted slack if target slack not met

-node <node> node name

-port <port> port name

-setup_slack <setup_slack> targeted setup slack (ns)

Description
The eco_reroute command reroutes the iterm with user specified slacks.

Example Usage eco_reroute -node <node_name> -port <port_name>
eco_reroute -node <node_name> -port <port_name> -setup_slack <setup_slack> -hold_slack
<hold_slack> -max_iteration <max_iteration> -keep_best
eco_reroute -node ff -port D -hold_slack 0.3 -setup_slack -2 -max_iteration 10

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.5. eco_unload_design (::quartus::eco)

The following table displays information for the eco_unload_design Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax eco_unload_design [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
The eco_unload_design command unloads the current design. It also discards all changes that were
made but not committed.

Example Usage eco_unload_design

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

209

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.10.6. fitter_report_timing (::quartus::eco)

The following table displays information for the fitter_report_timing Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax fitter_report_timing [-h | -help] [-long_help] [-detail <summary|path_only|
path_and_clock|full_path>] [-extra_info <basic|all|none>] [-from <names>] [-
from_clock <names>] [-hold] [-npaths <number>] [-panel_name <name>] [-
recovery] [-removal] [-setup] [-through <names>] [-to <names>] [-to_clock
<names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-detail <summary|path_only|
path_and_clock|full_path>

Option to determine how much detail should be shown in
the path report

-extra_info <basic|all|none> Option to determine how much detail should be shown in
the Extra Info report

-from <names> Valid destinations (string patterns are matched using Tcl
string matching)

-from_clock <names> Valid destinations (string patterns are matched using Tcl
string matching)

-hold Option to report clock hold paths

-npaths <number> Specifies the number of paths to report (default=1)

-panel_name <name> Sends the results to the timing report

-recovery Option to report recovery paths

-removal Option to report removal paths

-setup Option to report clock setup paths

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destinations (string patterns are matched using Tcl
string matching)

Description
 Reports the worst-case paths and associated slack.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

210

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.10.7. fitter_timing_summary (::quartus::eco)

The following table displays information for the fitter_timing_summary Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax fitter_timing_summary [-h | -help] [-long_help] [-hold] [-panel_name <name>]
[-recovery] [-removal] [-setup]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-hold Option to report clock hold paths

-panel_name <name> Sends the results to the timing summary

-recovery Option to report recovery paths

-removal Option to report removal paths

-setup Option to report clock setup paths

Description
 Reports the worst-case Clock Setup and Clock Hold
 slacks and endpoint TNS (total negative slack) per
 clock domain. Total negative slack is the sum of all
 slacks less than zero for either destination registers
 or ports in the clock domain.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.8. get_available_snapshots (::quartus::eco)

The following table displays information for the get_available_snapshots Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax get_available_snapshots [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
The get_available_snapshots command reports all available snapshots.

Example Usage get_available_snapshots

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

211

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.10.9. get_eco_checkpoint (::quartus::eco)

The following table displays information for the get_eco_checkpoint Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax get_eco_checkpoint [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
The get_eco_checkpoint command prints the current checkpoint id in the console. It also returns
the checkpoint id in a tcl object.

Example Usage get_eco_checkpoint

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.10. get_loaded_snapshot (::quartus::eco)

The following table displays information for the get_loaded_snapshot Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax get_loaded_snapshot [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
The get_loaded_snapshot command gets the loaded snapshot.

Example Usage get_loaded_snapshot

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.11. get_lutmask_equation (::quartus::eco)

The following table displays information for the get_lutmask_equation Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax get_lutmask_equation [-h | -help] [-long_help] [-name <name>] [-node
<node_id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> name of the lut

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

212

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-node <node_id> Node ID

Description
The get_lutmask_equation command reports the LUT equation of a given LUT.

Example Usage get_lutmask_equation -name <name_string>

print lutmask equation of all nodes of type lcell_comb
project_open top
eco_load_design
set nodes [get_netlist_nodes -type lcell_comb]
foreach_in_collection i $nodes {
 get_lutmask_equation -node $i
}
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.12. get_node_location (::quartus::eco)

The following table displays information for the get_node_location Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax get_node_location [-h | -help] [-long_help] [-name <node_name>] [-node
<node_id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <node_name> Name of node to get location for

-node <node_id> Node ID

Description
The get_node_location command will print the location of the node in the console
and return the location in a tcl object.
If the node is not placed, then the string "Unplaced" will be printed and returned.

Example Usage get_node_location -name node

print location of nodes of type FF
project_open top
eco_load_design
set nodes [get_netlist_nodes -type FF]
foreach_in_collection i $nodes {
 puts "Location = [get_node_location -node $i]"
}
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.13. make_connection (::quartus::eco)

The following table displays information for the make_connection Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax make_connection [-h | -help] [-long_help] [-from <output_net_name>] [-from_node
<from_node>] [-from_port <from_port>] [-port <dest_node_port>] [-tieoff <VCC|
GND>] [-to <dest_node_name>] [-to_node <to_node>] [-to_port <to_port>]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

213

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-from <output_net_name> Source of the connection

-from_node <from_node> ID of the source node

-from_port <from_port> ID of the source port

-port <dest_node_port> Input port name of the destination node

-tieoff <VCC|GND> VCC or GND tieoff

-to <dest_node_name> Name of the destination node

-to_node <to_node> ID of the destination node

-to_port <to_port> ID of the destination port

Description
The make_connection command will connect the source signal to the destination block port. If the
port has an existing connection, the command will remove the previous connection
and connect it to the specified signal.

make_connection expects a source and destination through:
from - output net of the source block of the new connection, OR
from_node AND from_port - node ID and output port ID of source, OR
tieoff - tieoff value

to AND port - name of the destination node and the input port name, OR
to_node AND to_port - node ID and input port ID of the destination

Note that the changed path will be routed immediately. If the path contains a node that is
created during
ECO compilation, then the paths will be routed after the node is placed with place_node command.

Example Usage make_connection -from top|a_out -to top|x -port D

This example will connect top|a_out to the D input port of node top|x.

make_connection -tieoff VCC -to top|x -port D

This example will tie the D port of node top|x to VCC, either internally or via lcell.

load_package netlist
load_package eco
project_open top
set from_node [get_netlist_node_id -name my_node]
set oports [get_netlist_ports -node $from_node -type oport]
set oport 0
foreach_in_collection i $oports {
 set oport $i
 break
}
set to_node [get_netlist_node_id -name my_ff]
set iports [get_netlist_ports -node $to_node -type iport]
set iport 0
foreach_in_collection i $iports {
 set iport $i
 break
}
make_connection -ARG(from_node) $from_node -ARG(from_port) $oport -ARG(to_node) $to_node -
ARG(to_port) $iport

This example iterates over the netlist and node ports, then makes a connection between
the first oport of my_node and the first iport of my_ff

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

214

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.10.14. modify_io_current_strength (::quartus::eco)

The following table displays information for the modify_io_current_strength Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax modify_io_current_strength [-h | -help] [-long_help] -to <dest_pin_name>
<current_strength>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-to <dest_pin_name> Name of the destination pin node

<current_strength> Current strength value

Description
The modify_io_current_strength command will modify the current strength of the targeted pin.

modify_io_current_strength expects 1 positional argument and an option argument:
to - the name of the destination pin

Example Usage modify_io_current_strength 3mA -to top|ipin

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.15. modify_io_delay_chain (::quartus::eco)

The following table displays information for the modify_io_delay_chain Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax modify_io_delay_chain [-h | -help] [-long_help] -to <dest_pin_name> -type
<input|output|oe|io_12_lane_input_data|io_12_lane_input_strobe> <delay_chain>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-to <dest_pin_name> Name of the destination pin node

-type <input|output|oe|
io_12_lane_input_data|
io_12_lane_input_strobe>

Type of the pin

<delay_chain> Delay chain value

Description
The modify_io_delay_chain command will modify the delay chain setting of the targeted pin with
the specified type.

modify_io_delay_chain expects 1 positional argument and 2 option arguments:
to - the name of the destination pin
type - the type of the pin

Example Usage modify_io_delay_chain 3 -to top|ipin -type INPUT

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

215

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.10.16. modify_io_slew_rate (::quartus::eco)

The following table displays information for the modify_io_slew_rate Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax modify_io_slew_rate [-h | -help] [-long_help] -to <dest_pin_name> <slew_rate>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-to <dest_pin_name> Name of the destination pin node

<slew_rate> Slew rate value

Description
The modify_io_slew_rate command will modify the slew rate of the targeted pin.

modify_io_slew_rate expects 1 positional argument and an option argument:
to - the name of the destination pin

Example Usage modify_io_slew_rate 1 -to top|ipin

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.17. modify_lutmask (::quartus::eco)

The following table displays information for the modify_lutmask Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax modify_lutmask [-h | -help] [-long_help] [-eqn <equation>] [-mask <mask>] [-
num <num_of_inputs>] -to <dest_node_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-eqn <equation> LUT equation

-mask <mask> New lutmask

-num <num_of_inputs> Number of inputs

-to <dest_node_name> Name of the destination node

Description
The modify_lutmask command will modify the LUT-mask of the matching node,
with LUT-mask value in binary or hexadecimal, or with equivalent LUT-mask value
computed from specified logical equation.

modify_lutmask expects 2 arguments (1 from mask or eqn):
to - name of the destination atom
mask - the LUT-mask value to be modified - in binary or hexadecimal
eqn - the logical equation of the inputs (A, B, C, D, E, F)
 - the supported lexical tokens include AND('&'), OR('|'), XOR('^'), NOT('!'),
OPEN_BRACE('('), CLOSE_BRACE(')')

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

216

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage modify_lutmask -to top|lut_a -mask 0xFF00FF00
modify_lutmask -to top|lut_b -mask 0b111111111001010
modify_lutmask -to top|lut_c -eqn {a&b&c}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.18. place_node (::quartus::eco)

The following table displays information for the place_node Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax place_node [-h | -help] [-long_help] [-force] [-location <location>] [-name
<node_name>] [-node <node_id>] [-sample <sample>] [-timing_driven]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-force Force overwriting existing location constraint on the node

-location <location> Exact location or region

-name <node_name> Name of the new node

-node <node_id> Node ID

-sample <sample> Number of locations to try to place the node

-timing_driven Try to place the node at a location meeting timing

Description
The place_node command will place the specified node either automatically,
or within the region if -location is specified. If -sample is specified,
then the command will randomly pick locations and place the node at the first valid
location found. If -timing_driven is specified then the command will try to place
the node at a location that meets timing. If none of the locations meet timing,
then the node will be placed at the location with the highest slacks.
The place_node command can be used on nodes that have been placed.

-location argument takes in an exact location (-location "X20 Y20"),
a region (-location "X20 Y20 X30 Y30"), or an ALM sublocation (-location "FF_X20_Y20_N10").

-force argument will force overwrite existing location constraints on the node, if any.
-force will not overwrite Partial Reconfiguration regions.

Example Usage place_node -name eco_new_lut -location "X136 Y63 X149 Y82"
place_node -name eco_new_lut -location "X5 Y10"
place_node -name eco_new_lut -location "X5 Y10" -timing_driven
place_node -name eco_new_ff -location "FF_X20_Y20_N10"
place_node -name eco_new_ff -location "FF_X20_Y20_N10" -force
place_node -name eco_new_lut -location "X5 Y10 X100 Y200" -sample 10
place_node -name eco_new_ff -location "X5 Y10 X100 Y200" -sample 100 -timing_driven

place all FFs
project_open top
eco_load_design
set nodes [get_netlist_nodes -type FF]
foreach_in_collection i $nodes {
 place_node -node $i
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

217

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.10.19. remove_connection (::quartus::eco)

The following table displays information for the remove_connection Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax remove_connection [-h | -help] [-long_help] [-from <output_net_name>] [-
from_node <from_node>] [-from_port <from_port>] [-port <dest_node_port>] [-to
<dest_node_name>] [-to_node <to_node>] [-to_port <to_port>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-from <output_net_name> Source of the connection

-from_node <from_node> ID of the source node

-from_port <from_port> ID of the source port

-port <dest_node_port> Input port name of the destination node

-to <dest_node_name> Name of the destination node

-to_node <to_node> ID of the destination node

-to_port <to_port> ID of the destination port

Description
The remove_connection command will disconnect the source signal from the destination block port,
and set the input port to a disconnected state.

remove_connection expects a source and destination through:
from - output net of the source block of the new connection, OR
from_node AND from_port - node ID and output port ID of source

to AND port - name of the destination node and the input port name, OR
to_node AND to_port - node ID and input port ID of the destination

Note:
Connection path containing Hyper Registers is not allowed to be removed.

Example Usage remove_connection -from top|a_out -to top|x -port D

This example will disconnect top|a_out from the D input port of node top|x,
and set top|x:D to a disconnected state.

load_package netlist
load_package eco
project_open top
set from_node [get_netlist_node_id -name my_node]
set oports [get_netlist_ports -node $from_node -type oport]
set oport 0
foreach_in_collection i $oports {
 set oport $i
 break
}
set to_node [get_netlist_node_id -name my_ff]
set iports [get_netlist_ports -node $to_node -type iport]
set iport 0
foreach_in_collection i $iports {
 set iport $i
 break
}
remove_connection -ARG(from_node) $from_node -ARG(from_port) $oport -ARG(to_node) $to_node -
ARG(to_port) $iport

This example iterates over the netlist and node ports, then removes the connection between
the first oport of my_node and the first iport of my_ff

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

218

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.10.20. remove_node (::quartus::eco)

The following table displays information for the remove_node Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax remove_node [-h | -help] [-long_help] [-name <node_name>] [-node <node_id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <node_name> Name of the node to remove

-node <node_id> Node ID

Description
The remove_node command will remove the specified node from final netlist.
The node's source and destination signals will be disconnected.

Example Usage remove_node -name my_ff

remove all nodes of type FF
project_open top
eco_load_design
set nodes [get_netlist_nodes -type FF]
foreach_in_collection i $nodes {
 remove_node -node $i
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.21. report_connections (::quartus::eco)

The following table displays information for the report_connections Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax report_connections [-h | -help] [-long_help] [-from <from>] [-from_port
<from_port>] [-limit <limit>] [-return_result] [-timing] [-to <to>] [-to_port
<to_port>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-from <from> Name of the source node

-from_port <from_port> Name of the source port

-limit <limit> Limit number of output connections reported

-return_result Return the result in a tcl object

-timing Report slacks

-to <to> Name of the destination node

-to_port <to_port> Name of the destination port

Description
The report_connections command will report connections between one of the following:
 - (-from) report all connections from a node
 - (-from -from_port) report connections form a port of a node
 - (-to) report all connections to a node

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

219

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 - (-to -to_port) report connection to a port of a node
 - (-from -to) report connection between 2 nodes
By default, 100 connections will be reported.
In command-line mode, the result will be posted as info messages to the console.
If -return_result is specified then the result will also be returned as a
tcl object.

Example Usage report_connections -from my_ff
report_connections -from my_ff -from_port Q
report_connections -to my_ff
report_connections -to my_ff -to_port D
report_connections -from my_ff -to my_ff1

report_connections -from my_ff -from_port Q -limit 10
report_connections -from my_ff -from_port Q -return_result

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.22. report_legal_locations (::quartus::eco)

The following table displays information for the report_legal_locations Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax report_legal_locations [-h | -help] [-long_help] [-check_routing] -location
<location> [-name <node_name>] [-node <node_id>] [-patient] [-report_illegal] [-
return_result]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-check_routing Try to legalize the location by checking routing

-location <location> Region to search for legal locations

-name <node_name> Name of node to check legal locations for

-node <node_id> Node ID

-patient Override restriction on search region size

-report_illegal Report illegal locations and reasons within the search region

-return_result Return the result in a tcl object

Description
The report_legal_locations command will search for all legal locations within the
region specified by -location for the specified node to be placed.
The command can be used on nodes that have or have not been placed.
Specify -patient to override the restriction on the search region size.
Specify -report_illegal to report illegal location reasons.
In command-line mode, the result will be posted as info messages to the console.
If -return_result is specified then the result will also be returned as a
tcl object.
If -check_routing is specified then a location will be determined illegal if the
legalization step fails and slacks will be reported for legal locations.
Otherwise the legalization step will be skipped. Note that the -check_routing option
is only supported when all nodes but the target have been placed.
The report_legal_locations command does not work in "quartus_fit --eco" mode.

Example Usage report_legal_locations -name node -location "X136 Y63 X145 Y72"
report_legal_locations -name node -location "X5 Y10 X5 Y10"
report_legal_locations -name node -location "X5 Y10 X5 Y10" -report_illegal
report_legal_locations -name node -location "X5 Y10 X5 Y10" -return_result
report_legal_locations -name node -location "X5 Y10 X5 Y10" -check_routing
report_legal_locations -name node -location "X136 Y63 X149 Y82" -patient
report_legal_locations -name node -location "X136 Y63 X149 Y82" -patient -return_result

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

220

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

check legal locations of multiple FFs in a specified region
project_open top
eco_load_design
set nodes [get_netlist_nodes -type FF]
foreach_in_collection i $nodes {
 report_legal_locations -node $i -location "X136 Y63 X145 Y72"
}
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.23. report_nodes_at_location (::quartus::eco)

The following table displays information for the report_nodes_at_location Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax report_nodes_at_location [-h | -help] [-long_help] -location <location>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-location <location> location string to search

Description
The report_nodes_at_location command reports the nodes at a given location.

Example Usage report_nodes_at_location -location <location_string>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.24. eco::report_partitions (::quartus::eco)

The following table displays information for the eco::report_partitions Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax eco::report_partitions [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command currently contains no help description.

Example Usage eco::report_partitions

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

221

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.10.25. report_ports (::quartus::eco)

The following table displays information for the report_ports Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax report_ports [-h | -help] [-long_help] [-name <node_name>] [-node <node_id>]
[-return_result] [-timing]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <node_name> Name of the node to query

-node <node_id> Node ID

-return_result Return the result in a tcl object

-timing Report the slacks on each port

Description
The report_ports command will report all input ports of a node.
In command-line mode, the result will be posted as info messages to the console.
If -timing is specified then the slacks on each port will be reported.
If -return_result is specified then the result will also be returned as a
tcl object.

Example Usage report_ports -name my_ff
report_ports -name my_ff -timing
report_ports -name my_ff -return_result

get input ports of a FF
project_open top
eco_load_design
set node [get_netlist_node_id -name my_ff]
report_ports -node $node
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.26. report_routing (::quartus::eco)

The following table displays information for the report_routing Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax report_routing [-h | -help] [-long_help] [-return_result] -to <to> -to_port
<to_port>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-return_result Return the result in a tcl object

-to <to> Name of the destination node

-to_port <to_port> Name of the destination port

Description
The report_connections command will report routing between a connection.
In command-line mode, the result will be posted as info messages to the console.
If -return_result is specified then the result will also be returned as a
tcl object.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

222

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage report_routing -to my_ff1 -to_port D

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.27. report_unplaced_nodes (::quartus::eco)

The following table displays information for the report_unplaced_nodes Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax report_unplaced_nodes [-h | -help] [-long_help] [-return_result]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-return_result Return the result in a tcl object

Description
The report_unplaced_nodes command will report all unplaced nodes.
In command-line mode, the result will be posted as info messages to the console.
If -return_result is specified then the result will also be returned as a
tcl object.

Example Usage report_unplaced_nodes
report_unplaced_nodes -return_result

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.28. restore_eco_checkpoint (::quartus::eco)

The following table displays information for the restore_eco_checkpoint Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax restore_eco_checkpoint [-h | -help] [-long_help] <cid>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<cid> Checkpoint ID of a change

Description
The restore_eco_checkpoint command reverts the design back to the targeted checkpoint.

Example Usage restore_eco_checkpoint 12345

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

223

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.10.29. unplace_node (::quartus::eco)

The following table displays information for the unplace_node Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax unplace_node [-h | -help] [-long_help] [-name <node_name>] [-node <node_id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <node_name> Name of the node to unplace

-node <node_id> Node ID

Description
The unplace_node command will unplace a given node.

Example Usage unplace_node -name my_ff

unplace all nodes of type FF
project_open top
eco_load_design
set nodes [get_netlist_nodes -type FF]
foreach_in_collection i $nodes {
 unplace_node -node $i
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.10.30. update_mif_files (::quartus::eco)

The following table displays information for the update_mif_files Tcl command:

Tcl Package and
Version

Belongs to ::quartus::eco on page 206

Syntax update_mif_files [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Update memory contents from the Memory Initialization
File (.mif) or Hexadecimal (Intel-Format) File (.hex) for all
RAM or CAM atoms.

Example Usage load_package eco
 update_mif_files

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

224

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.11. ::quartus::external_memif_toolkit

The following table displays information for the ::quartus::external_memif_toolkit
Tcl package:

Tcl Package and Version ::quartus::external_memif_toolkit 1.0

Description
This package contains the set of Tcl functions for interacting with external memory
interfaces and debug components

Availability This package is available for loading in the following executables:

 qpro_sh
 quartus_sh

Tcl Commands apply_setting (::quartus::external_memif_toolkit) on page 225
calibrate_termination (::quartus::external_memif_toolkit) on page 226
configure_driver (::quartus::external_memif_toolkit) on page 227
create_connection_report (::quartus::external_memif_toolkit) on page 227
create_toolkit_report (::quartus::external_memif_toolkit) on page 228
driver_margining (::quartus::external_memif_toolkit) on page 229
establish_connection (::quartus::external_memif_toolkit) on page 230
generate_eye_diagram (::quartus::external_memif_toolkit) on page 231
get_connection_commands (::quartus::external_memif_toolkit) on page 232
get_connection_info (::quartus::external_memif_toolkit) on page 232
get_connection_interfaces (::quartus::external_memif_toolkit) on page 233
get_connection_report_info (::quartus::external_memif_toolkit) on page 234
get_connection_report_types (::quartus::external_memif_toolkit) on page 235
get_connection_types (::quartus::external_memif_toolkit) on page 236
get_connections (::quartus::external_memif_toolkit) on page 236
get_device_names (::quartus::external_memif_toolkit) on page 237
get_hardware_names (::quartus::external_memif_toolkit) on page 237
get_setting_types (::quartus::external_memif_toolkit) on page 238
get_toolkit_report_types (::quartus::external_memif_toolkit) on page 239
initialize_connections (::quartus::external_memif_toolkit) on page 239
link_project_to_device (::quartus::external_memif_toolkit) on page 240
read_setting (::quartus::external_memif_toolkit) on page 241
reindex_connections (::quartus::external_memif_toolkit) on page 242
reset_tg2 (::quartus::external_memif_toolkit) on page 243
run_connection_command (::quartus::external_memif_toolkit) on page 243
set_active_interface (::quartus::external_memif_toolkit) on page 244
set_stress_pattern (::quartus::external_memif_toolkit) on page 245
terminate_connection (::quartus::external_memif_toolkit) on page 245
terminate_connections (::quartus::external_memif_toolkit) on page 246
unlink_project_from_device (::quartus::external_memif_toolkit) on page 247
write_connection_target_report (::quartus::external_memif_toolkit) on page 247

3.1.11.1. apply_setting (::quartus::external_memif_toolkit)

The following table displays information for the apply_setting Tcl command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax apply_setting [-h | -help] [-long_help] -id <name> [-index <index>] [-rank
<rank>] -type <type> -value <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

-index <index> Index of the target setting within the connection

-rank <rank> Rank (shadow register) of the target setting within the
connection

-type <type> The type of setting on the EMIF interface

-value <value> Value to apply

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

225

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
 Applies the specified memory interface setting for the specified target connection.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 foreach conn [get_connections] {
 foreach type [get_setting_types -id $conn] {
 apply_setting -id $conn -type $type -index 0 -value 0
 }
 }

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The specified setting type <string> is illegal. Please
specify a valid setting type. The list of valid types is
available by running get_setting_types.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: The specified setting is outside the legal range.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.2. calibrate_termination (::quartus::external_memif_toolkit)

The following table displays information for the calibrate_termination Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax calibrate_termination [-h | -help] [-long_help] -id <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

Description
 Test termination settings on the interface.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

226

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.3. configure_driver (::quartus::external_memif_toolkit)

The following table displays information for the configure_driver Tcl command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax configure_driver [-h | -help] [-long_help] [-data <data>] -id <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-data <data> Address/data pairs to be written to the driver configuration
block

-id <name> The connection ID to communicate with

Description
 Configures the traffic generator.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.4. create_connection_report (::quartus::external_memif_toolkit)

The following table displays information for the create_connection_report Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax create_connection_report [-h | -help] [-long_help] -id <name> -report_type
<name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

-report_type <name> The report type to generate

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

227

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
 Create a report of the specified type for the connection id.

 The resulting report is then available for query using the report TCL package.

Example Usage load_package external_memif_toolkit
 load_package report

 project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 set conn [lindex [get_connections -type emif] 0]
 establish_connection -id $conn

 create_connection_report -id $conn -report_type summary

 load_report_database -type emit

 set report_panel_names [get_report_panel_names]
 post_message -type info "Found the following report panels:"
 foreach panel_name $report_panel_names {
 post_message -type info " $panel_name"
 }

 unload_report

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: An error occurred trying to create the report
<string> for the target <string>.

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The specified report type <string> is illegal. The
legal report types are: <string> .

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.5. create_toolkit_report (::quartus::external_memif_toolkit)

The following table displays information for the create_toolkit_report Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax create_toolkit_report [-h | -help] [-long_help] -report_type <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-report_type <name> The report type to generate

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

228

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
 Create a toolkit report of the specified type. These reports are general toolkit reports,
not connection specific reports.

 The resulting report is then available for query using the report TCL package.

Example Usage load_package external_memif_toolkit
 load_package report

 project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 create_toolkit_report -report_type discovered_connections
 create_toolkit_report -report_type detailed_connections

 load_report_database -type emit

 set report_panel_names [get_report_panel_names]
 post_message -type info "Found the following report panels:"
 foreach panel_name $report_panel_names {
 post_message -type info " $panel_name"
 }

 unload_report

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: An error occurred trying to create the report
<string> for the target <string>.

TCL_ERROR 1 ERROR: The specified report type <string> is illegal. The
legal report types are: <string> .

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.6. driver_margining (::quartus::external_memif_toolkit)

The following table displays information for the driver_margining Tcl command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax driver_margining [-h | -help] [-long_help] [-adjust_delays] -fail_id <fail_id> -
id <name> -pass_id <pass_id> -pnf_ids <pnf_ids> -resetn_id <resetn_id> [-skip_dm]
[-skip_read] [-skip_write] [-step_size <step_size>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-adjust_delays Adjust delays on the interface based on driver margining
results

-fail_id <fail_id> Connection ID of the In-System Probe which controls the
fail signal from the driver

-id <name> The connection ID to communicate with

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

229

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-pass_id <pass_id> Connection ID of the In-System Probe which controls the
pass signal from the driver

-pnf_ids <pnf_ids> TCL list of PNF (pass not fail) connection IDs of In-System
Probes from the driver

-resetn_id <resetn_id> Connection ID of the In-System Source which controls the
resetn for the driver

-skip_dm Skip driver margining on dm

-skip_read Skip driver margining on read

-skip_write Skip driver margining on write

-step_size <step_size> Granularity of the driver margining operation, in terms of
delay settings. Smaller values are more precise, but
consume more time.

Description
 Performs read and write driver margining on the selected EMIF connection.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.7. establish_connection (::quartus::external_memif_toolkit)

The following table displays information for the establish_connection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax establish_connection [-h | -help] [-long_help] [-connection_name <name>] -id
<name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-connection_name <name> Optional nickname to use for a connection.

-id <name> The connection ID to communicate with

Description
 Establishes a connection to a connection target.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

230

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set conn [lindex [get_connections -type emif] 0]
 establish_connection -id $conn

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Could not establish a connection to target
<string>.

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The specified connection name <string> is illegal as
a connection already exists with that name. Please specify a
valid connection name.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.8. generate_eye_diagram (::quartus::external_memif_toolkit)

The following table displays information for the generate_eye_diagram Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax generate_eye_diagram [-h | -help] [-long_help] -id <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

Description
 Generates eye diagrams for the selected EMIF connection.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

231

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.11.9. get_connection_commands (::quartus::external_memif_toolkit)

The following table displays information for the get_connection_commands Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax get_connection_commands [-h | -help] [-long_help] -id <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

Description
 Returns a TCL list of supported commands for the specific target connection.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 foreach conn [get_connections] {
 puts "Connection : $conn"
 foreach cmd [get_connection_commands -id $conn] {
 puts " Command : $cmd"
 }
 }

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.10. get_connection_info (::quartus::external_memif_toolkit)

The following table displays information for the get_connection_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax get_connection_info [-h | -help] [-long_help] [-hpath] -id <name> [-sld_type]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-hpath Queries the hierarchy name of the connection

-id <name> The connection ID to communicate with

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

232

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-sld_type Queries SLD type of a connection

Description
 Queries information about a connection target.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 foreach conn [get_connections] {
 puts "Connection : $conn"
 puts " Hierarchy Path : [get_connection_info -id $conn -hpath]"
 }

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: No information about the connection ID was
queried. Please specify one query parameter.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.11. get_connection_interfaces (::quartus::external_memif_toolkit)

The following table displays information for the get_connection_interfaces Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax get_connection_interfaces [-h | -help] [-long_help] -id <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

Description
 Returns the interfaces available for the specified connection id.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 set conn [lindex [get_connections -type emif] 0]
 establish_connection -id $conn

 get_connection_interfaces -id $conn

 terminate_connections

 project_close

Return Value Code Name Code String Return
continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

233

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.12. get_connection_report_info (::quartus::external_memif_toolkit)

The following table displays information for the get_connection_report_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax get_connection_report_info [-h | -help] [-long_help] -id <name> [-name] -
report_type <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

-name Queries the name of the report

-report_type <name> The report type to generate

Description
 Queries info about a report type.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 foreach conn [get_connections] {
 puts "Connection : $conn"
 foreach rpt [get_connection_report_types -id $conn] {
 puts " Report : $rpt"
 puts " Report name : [get_connection_report_info -id $conn -report_type $rpt -
name]"
 }
 }

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

234

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The specified report type <string> is illegal. The
legal report types are: <string> .

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.13. get_connection_report_types (::quartus::external_memif_toolkit)

The following table displays information for the get_connection_report_types Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax get_connection_report_types [-h | -help] [-long_help] -id <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

Description
 Returns a TCL list of supported report types for the specific target connection.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 foreach conn [get_connections] {
 puts "Connection : $conn"
 puts " Supported report types: [get_connection_report_types -id $conn]"
 }

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

235

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.11.14. get_connection_types (::quartus::external_memif_toolkit)

The following table displays information for the get_connection_types Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax get_connection_types [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Returns a list of valid connection target types.

Example Usage puts "Valid connection types are: [get_connection_types]"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.11.15. get_connections (::quartus::external_memif_toolkit)

The following table displays information for the get_connections Tcl command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax get_connections [-h | -help] [-long_help] [-type <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-type <name> The type of the connection to connect to

Description
 Returns a TCL list of connection IDs for connections.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 foreach conn [get_connections] {
 puts "Connection : $conn"
 puts " Hierarchy Path : [get_connection_info -id $conn -hpath]"
 }

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Supplying hardware_name and device_name is
mutually exclusive to supplying type

TCL_ERROR 1 ERROR: Both hardware_name and device_name must be
supplied if either is supplied

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

236

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Connection type <string> is not a recognized
connection type.

TCL_ERROR 1 ERROR: No device name called <string> could be found on
hardware named <string>.

TCL_ERROR 1 ERROR: No hardware name called <string> could be found.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.16. get_device_names (::quartus::external_memif_toolkit)

The following table displays information for the get_device_names Tcl command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax get_device_names [-h | -help] [-long_help] -hardware_name <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-hardware_name <name> The name of the hardware connection to use

Description
 Returns a list of device names found for the given hardware.

Example Usage project_open dut

 initialize_connections

 foreach hw_name [get_hardware_names] {
 foreach dev_name [get_device_names -hardware_name $hw_name] {
 puts "Found device name $dev_name on hardware $hw_name"
 }
 }

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No hardware name called <string> could be found.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.17. get_hardware_names (::quartus::external_memif_toolkit)

The following table displays information for the get_hardware_names Tcl command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax get_hardware_names [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

237

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
 Returns a list of hardware names found.

Example Usage project_open dut

 initialize_connections

 foreach hw_name [get_hardware_names] {
 puts "Found hardware name $hw_name"
 }

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.18. get_setting_types (::quartus::external_memif_toolkit)

The following table displays information for the get_setting_types Tcl command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax get_setting_types [-h | -help] [-long_help] -id <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

Description
 Returns a TCL list of supported memory interface setting types for the specific target
connection.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 foreach conn [get_connections] {
 puts "Connection : $conn"
 puts " Supported setting types: [get_setting_types -id $conn]"
 }

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

238

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.11.19. get_toolkit_report_types (::quartus::external_memif_toolkit)

The following table displays information for the get_toolkit_report_types Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax get_toolkit_report_types [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Returns a TCL list of supported toolkit report types. These reports are general toolkit
reports, not connection specific reports.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 puts "Supported toolkit report types: [get_toolkit_report_types]"

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.20. initialize_connections (::quartus::external_memif_toolkit)

The following table displays information for the initialize_connections Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax initialize_connections [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Initializes the internal data structures of the toolkit.
 This command must be run before any other toolkit commands
 are executed.

Example Usage project_open dut

 initialize_connections

 terminate_connections

 project_close

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

239

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Unable to find active revision. Specify an active
revision name using set_current_revision <revision name>.

TCL_ERROR 1 ERROR: The current project specifies a part that cannot be
loaded. Verify the device family is correctly installed.

TCL_ERROR 1 ERROR: The connection to the hardware drivers could not
be established.

TCL_ERROR 1 ERROR: Illegal connections detected

TCL_ERROR 1 ERROR: The current project settings are invalid. Verify that
all project settings are valid.

TCL_ERROR 1 ERROR: The JTAG Debug Information (.jdi) file called
<string> could not be found. Ensure this file exists or run
quartus_asm to create it.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Could not initialize System Console. <string>

TCL_ERROR 1 ERROR: Toolkit has already been initialized. Use
terminate_connections to de-initialize the toolkit.

3.1.11.21. link_project_to_device (::quartus::external_memif_toolkit)

The following table displays information for the link_project_to_device Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax link_project_to_device [-h | -help] [-long_help] -device_name <name> -
hardware_name <name> [-jdi_file <name>] [-sof_file <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-device_name <name> The name of the device to connect to

-hardware_name <name> The name of the hardware connection to use

-jdi_file <name> Specifies the JTAG Debugging Information file to use when
creating the design link.

-sof_file <name> Specifies the SOF file to use when creating the design link.

Description
 Links the currently opened project to the specified target device on the specified hardware.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 terminate_connections

 project_close

Return Value Code Name Code String Return
continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

240

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: An error occurred while linking the project to the
device.

TCL_ERROR 1 ERROR: No device name called <string> could be found on
hardware named <string>.

TCL_ERROR 1 ERROR: No hardware name called <string> could be found.

TCL_ERROR 1 ERROR: The JTAG Debug Information (.jdi) file called
<string> could not be found. Ensure this file exists or run
quartus_asm to create it.

TCL_ERROR 1 ERROR: A JTAG Debug Information (.jdi) file or a SOF file
(.sof) is required for linking a project to a device, but no file
was supplied. Ensure this file exists or run quartus_asm to
create it.

TCL_ERROR 1 ERROR: The currently opened project has already been
linked to a device. Use unlink_project_from_device to unlink
the project from a device.

TCL_ERROR 1 ERROR: The SOF (.sof) file called <string> could not be
found. Ensure this file exists or run quartus_asm to create
it.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.22. read_setting (::quartus::external_memif_toolkit)

The following table displays information for the read_setting Tcl command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax read_setting [-h | -help] [-long_help] -id <name> [-index <index>] [-rank
<rank>] -type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

-index <index> Index of the target setting within the connection

-rank <rank> Rank (shadow register) of the target setting within the
connection

-type <type> The type of setting on the EMIF interface

Description
 Reads the specified memory interface setting for the specified target connection.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 foreach conn [get_connections] {
 foreach type [get_setting_types -id $conn] {
 read_setting -id $conn -type $type -index 0
 }
 }

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

241

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The specified setting type <string> is illegal. Please
specify a valid setting type. The list of valid types is
available by running get_setting_types.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: The specified setting is outside the legal range.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.23. reindex_connections (::quartus::external_memif_toolkit)

The following table displays information for the reindex_connections Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax reindex_connections [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Reinitializes the list of known hardware connections.

Example Usage project_open dut

 initialize_connections

 foreach hw_name [get_hardware_names] {
 puts "Found hardware name $hw_name"
 }

 reindex_connections

 foreach hw_name [get_hardware_names] {
 puts "Found hardware name $hw_name"
 }

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

242

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.11.24. reset_tg2 (::quartus::external_memif_toolkit)

The following table displays information for the reset_tg2 Tcl command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax reset_tg2 [-h | -help] [-long_help] -resetn_id <resetn_id> -tg2_id <tg2_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-resetn_id <resetn_id> Connection ID of the resetn

-tg2_id <tg2_id> Connection ID of the Traffic Generator 2.0 associated with
this interface

Description
 Resets a Traffic Generator 2.0 instance.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.25. run_connection_command (::quartus::external_memif_toolkit)

The following table displays information for the run_connection_command Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax run_connection_command [-h | -help] [-long_help] -command_name <name> -id
<name> [-payload <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-command_name <name> The command name to execute

-id <name> The connection ID to communicate with

-payload <name> TCL list of parameter data to use when executing the
command

Description
 Executes a command of the specified type and for the connection id.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

243

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 set conn [lindex [get_connections -type emif] 0]
 establish_connection -id $conn

 run_connection_command -id $conn -command_name nop

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: An error occurred trying to execute the command
<string> for the target <string>.

TCL_ERROR 1 ERROR: The specified command name <string> is illegal.
The legal command names are: <string> .

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: No information about the report was queried.
Please specify one query parameter.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.26. set_active_interface (::quartus::external_memif_toolkit)

The following table displays information for the set_active_interface Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax set_active_interface [-h | -help] [-long_help] -id <name> -interface_id
<name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

-interface_id <name> The interface ID to communicate with

Description
 Selects the active interface to debug for the specified connection id.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

244

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The specified interface ID <string> is illegal. Please
specify a valid interface ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.27. set_stress_pattern (::quartus::external_memif_toolkit)

The following table displays information for the set_stress_pattern Tcl command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax set_stress_pattern [-h | -help] [-long_help] -id <name> -value <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

-value <value> 1 to enable stress pattern in calibration, 0 to disable

Description
 Enable or disable the stress pattern for future calibrations.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.28. terminate_connection (::quartus::external_memif_toolkit)

The following table displays information for the terminate_connection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax terminate_connection [-h | -help] [-long_help] -id <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <name> The connection ID to communicate with

Description
 Terminates a connection to a connection target.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

245

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 set conn [lindex [get_connections -type emif] 0]
 establish_connection -id $conn

 terminate_connection -id $conn

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Connection ID <string> could not be terminated
because the connection was not established.

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.29. terminate_connections (::quartus::external_memif_toolkit)

The following table displays information for the terminate_connections Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax terminate_connections [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Deletes the internal data structures of the toolkit.

Example Usage project_open dut

 puts "Preparing to initialize connections"
 initialize_connections

 puts "Preparing to delete connections"
 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

246

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.11.30. unlink_project_from_device (::quartus::external_memif_toolkit)

The following table displays information for the unlink_project_from_device Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax unlink_project_from_device [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Unlinks the currently opened project from the currently linked target device on the
specified hardware.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 unlink_project_from_device

 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The JTAG Debug Information (.jdi) file called
<string> could not be found. Ensure this file exists or run
quartus_asm to create it.

TCL_ERROR 1 ERROR: The currently opened project has not been linked to
a device. Run link_project_to_device to link a project to a
device.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.11.31. write_connection_target_report (::quartus::external_memif_toolkit)

The following table displays information for the
write_connection_target_report Tcl command:

Tcl Package and
Version

Belongs to ::quartus::external_memif_toolkit on page 225

Syntax write_connection_target_report [-h | -help] [-long_help] -file <name> -id
<name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-file <name> File name of report to write

-id <name> The connection ID to communicate with

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

247

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
 Writes the reports for the given connection target to a filename.

Example Usage project_open dut

 initialize_connections

 set hw_name [lindex [get_hardware_names] 0]
 set dev_name [lindex [get_device_names -hardware_name $hw_name] 0]
 link_project_to_device -hardware_name $hw_name -device_name $dev_name -sof_file dut.sof

 set conn [lindex [get_connections] 0]
 write_connection_target_report -id $conn -file report.rpt

 terminate_connections

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified connection ID <string> is illegal.
Please specify a valid connection ID.

TCL_ERROR 1 ERROR: No reports for connection ID <string> have been
generated. Please run create_report_for_target before
writing reports to file.

TCL_ERROR 1 ERROR: Toolkit has not been initialized. Use
initialize_connections to initialize the toolkit.

3.1.12. ::quartus::fif

The following table displays information for the ::quartus::fif Tcl package:

Tcl Package and Version ::quartus::fif 1.0

Description
This package contains the set of Tcl functions
for using the Fault Injection File (FIF) Driver.

Availability This package is loaded by default in the following executable:

 quartus_fif

Tcl Commands check (::quartus::fif) on page 248
dump (::quartus::fif) on page 249
dump_cram_frame (::quartus::fif) on page 249
dump_mem (::quartus::fif) on page 250
dump_pr_bitstream (::quartus::fif) on page 250
generate (::quartus::fif) on page 251
get_frame_count (::quartus::fif) on page 251
get_frame_size (::quartus::fif) on page 252
get_sector_information_sdm_based_fpga (::quartus::fif) on page 252
get_sensitive_location (::quartus::fif) on page 253
get_sensitive_location_sdm_based_fpga (::quartus::fif) on page 253
setup (::quartus::fif) on page 254
setup_sdm_based_fpga (::quartus::fif) on page 254
terminate (::quartus::fif) on page 255

3.1.12.1. check (::quartus::fif)

The following table displays information for the check Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax check [-h | -help] [-long_help] -frame <frame> -index <index>

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

248

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-frame <frame> CRAM frame ID

-index <index> CRAM frame bit location

Description
 Check is the specified location contains sensitive bit.
 Returns 1, if the specified location contains sensitive bit.
 Returns 0, otherwise.

Example Usage check -frame 3 -index 100

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver has not been setup. Use setup command
to setup the FIF driver.

3.1.12.2. dump (::quartus::fif)

The following table displays information for the dump Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax dump [-h | -help] [-long_help] [-all]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all Option to display all information

Description
 Dump FIF driver contents.

Example Usage dump
 dump -all

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver operation failed with error <string>.

TCL_ERROR 1 ERROR: FIF driver has not been setup. Use setup command
to setup the FIF driver.

3.1.12.3. dump_cram_frame (::quartus::fif)

The following table displays information for the dump_cram_frame Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax dump_cram_frame [-h | -help] [-long_help] [-all] -frame <frame>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

249

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-all Option to display all information

-frame <frame> CRAM Frame ID

Description
 Dump CRAM frame information.

Example Usage dump_cram_frame -frame 3

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver operation failed with error <string>.

TCL_ERROR 1 ERROR: FIF driver has not been setup. Use setup command
to setup the FIF driver.

3.1.12.4. dump_mem (::quartus::fif)

The following table displays information for the dump_mem Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax dump_mem [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Dump memory usage.

Example Usage dump_mem

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.12.5. dump_pr_bitstream (::quartus::fif)

The following table displays information for the dump_pr_bitstream Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax dump_pr_bitstream [-h | -help] [-long_help] -id <id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <id> Static PR Bitstream ID

Description
 Dump static PR bitstream.

Example Usage dump_pr_bitstream -id 3

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

250

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: FIF driver operation failed with error <string>.

TCL_ERROR 1 ERROR: FIF driver has not been setup. Use setup command
to setup the FIF driver.

TCL_ERROR 1 ERROR: Parameter <string> has exceeded range.

TCL_ERROR 1 ERROR: <string> mismatch. <string>

3.1.12.6. generate (::quartus::fif)

The following table displays information for the generate Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax generate [-h | -help] [-long_help] [-error_count <error_count>] [-error_index
<error_index>] -frame <frame> -output <output>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-error_count <error_count> Number of errors to be injected

-error_index <error_index> CRAM frame error bit locations

-frame <frame> CRAM frame ID

-output <output> Output file name

Description
 Generates PR RBF file. Specifies the 'error_count' and 'error_index' to
 generate a PR RBF file with fault injected. Otherwise, the command will
 generate a PR RBF file without fault for external scrubbing.

Example Usage generate -frame 3 -output scrub.rbf
 generate -frame 3 -output inject.rbf -error_count 1 -error_index 100
 generate -frame 3 -output inject.rbf -error_count 2 -error_index 100 200

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver operation failed with error <string>.

TCL_ERROR 1 ERROR: FIF driver has not been setup. Use setup command
to setup the FIF driver.

TCL_ERROR 1 ERROR: Missing parameter <string>.

TCL_ERROR 1 ERROR: Parameter <string> has exceeded range.

TCL_ERROR 1 ERROR: <string> mismatch. <string>

TCL_ERROR 1 ERROR: Error writing to file (<string>).

3.1.12.7. get_frame_count (::quartus::fif)

The following table displays information for the get_frame_count Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax get_frame_count [-h | -help] [-long_help]

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

251

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

Description
 Returns total frame count.

Example Usage get_frame_count

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver operation failed with error <string>.

TCL_ERROR 1 ERROR: FIF driver has not been setup. Use setup command
to setup the FIF driver.

3.1.12.8. get_frame_size (::quartus::fif)

The following table displays information for the get_frame_size Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax get_frame_size [-h | -help] [-long_help] -frame <frame>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-frame <frame> CRAM frame ID

Description
 Returns frame size of the specific frame.

Example Usage get_frame_size -frame 3

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver operation failed with error <string>.

TCL_ERROR 1 ERROR: FIF driver has not been setup. Use setup command
to setup the FIF driver.

3.1.12.9. get_sector_information_sdm_based_fpga (::quartus::fif)

The following table displays information for the
get_sector_information_sdm_based_fpga Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax get_sector_information_sdm_based_fpga [-h | -help] [-long_help] -sector_index
<sector_index>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-sector_index <sector_index> Sector Index

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

252

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
 Query information about sector with given index number.

Example Usage get_sector_information_sdm_based_fpga -sector_index 25

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver operation failed with error <string>.

TCL_ERROR 1 ERROR: FIF driver has not been setup. Use setup command
to setup the FIF driver.

TCL_ERROR 1 ERROR: Missing parameter <string>.

3.1.12.10. get_sensitive_location (::quartus::fif)

The following table displays information for the get_sensitive_location Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax get_sensitive_location [-h | -help] [-long_help] [-count <count>] -frame
<frame>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-count <count> Option to return specific number of indexes

-frame <frame> CRAM frame ID

Description
 Returns a list of sensitive locations of the specific frame.

Example Usage get_sensitive_location -frame 3
 get_sensitive_location -frame 3 -count 10

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver operation failed with error <string>.

TCL_ERROR 1 ERROR: FIF driver has not been setup. Use setup command
to setup the FIF driver.

3.1.12.11. get_sensitive_location_sdm_based_fpga (::quartus::fif)

The following table displays information for the
get_sensitive_location_sdm_based_fpga Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax get_sensitive_location_sdm_based_fpga [-h | -help] [-long_help] -bit_index
<bit_index> -frame_index <frame_index> -sector_index <sector_index>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

253

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-bit_index <bit_index> Bit Index

-frame_index <frame_index> Frame Index

-sector_index <sector_index> Sector Index

Description
 Check if the bit is sensitive or not at specific location.

Example Usage get_sensitive_location_sdm_based_fpga -sector_index 25 -frame_index 4 -bit_index 3

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver operation failed with error <string>.

TCL_ERROR 1 ERROR: FIF driver has not been setup. Use setup command
to setup the FIF driver.

3.1.12.12. setup (::quartus::fif)

The following table displays information for the setup Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax setup [-h | -help] [-long_help] -fif <fif> -rbf <rbf>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-fif <fif> FIF filename

-rbf <rbf> RBF filename

Description
 Setup FIF driver.

Example Usage setup -fif test.fif -rbf test.rbf

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver operation failed with error <string>.

TCL_ERROR 1 ERROR: FIF driver has already been setup.

3.1.12.13. setup_sdm_based_fpga (::quartus::fif)

The following table displays information for the setup_sdm_based_fpga Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax setup_sdm_based_fpga [-h | -help] [-long_help] -fif <fif>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

254

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-fif <fif> FIF filename

Description
 Setup FIF driver for SDM based FPGA.

Example Usage setup_sdm_based_fpga -fif test.fif

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver operation failed with error <string>.

TCL_ERROR 1 ERROR: FIF driver has already been setup.

TCL_ERROR 1 ERROR: FIF file is not compatible.

3.1.12.14. terminate (::quartus::fif)

The following table displays information for the terminate Tcl command:

Tcl Package and
Version

Belongs to ::quartus::fif on page 248

Syntax terminate [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Terminate FIF driver.

Example Usage terminate

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FIF driver has not been setup. Use setup command
to setup the FIF driver.

3.1.13. ::quartus::flng

The following table displays information for the ::quartus::flng Tcl package:

Tcl Package and Version ::quartus::flng 1.0

Description
This package contains no general description.

Availability This package is loaded by default in the following executables:

 hdb_debug
 qpro
 qpro_sh
 quartus
 quartus_cdb
 quartus_eda
 quartus_fit
 quartus_ipgenerate
 quartus_map
 quartus_sh
 quartus_syn
 quartus_tlg
 qunb

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

255

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Commands flng::add_object (::quartus::flng) on page 256
flng::add_property (::quartus::flng) on page 257
flng::bind_flow (::quartus::flng) on page 257
flng::delete_object (::quartus::flng) on page 258
flng::get_default_flow_run_name (::quartus::flng) on page 258
flng::get_flow_list (::quartus::flng) on page 259
flng::get_next_available_id (::quartus::flng) on page 259
flng::get_object (::quartus::flng) on page 260
flng::get_objects (::quartus::flng) on page 260
flng::get_option (::quartus::flng) on page 261
flng::get_property (::quartus::flng) on page 261
flng::get_task_command (::quartus::flng) on page 262
flng::get_task_status_property (::quartus::flng) on page 262
flng::init_repository (::quartus::flng) on page 263
flng::list_properties (::quartus::flng) on page 264
flng::monitor_flow (::quartus::flng) on page 264
flng::run_flow (::quartus::flng) on page 265
flng::run_flow_command (::quartus::flng) on page 265
flng::set_option (::quartus::flng) on page 266
flng::set_property (::quartus::flng) on page 267
flng::write_task_assignment_digest (::quartus::flng) on page 267
flng::write_task_checkpoint_written (::quartus::flng) on page 268
flng::write_task_finished (::quartus::flng) on page 269
flng::write_task_started (::quartus::flng) on page 270

3.1.13.1. flng::add_object (::quartus::flng)

The following table displays information for the flng::add_object Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::add_object [-h | -help] [-long_help] [-name <name>] [-number <number>]
-type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> The name of the new flow or task object.

-number <number> The numeric part of the new FLNG object's name.

-type <type> The type of the new FLNG object.

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to add object.

TCL_ERROR 1 ERROR: Invalid object type '<string>'.

TCL_ERROR 1 ERROR: Object name is needed.

TCL_ERROR 1 ERROR: Object number is needed.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

256

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.13.2. flng::add_property (::quartus::flng)

The following table displays information for the flng::add_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::add_property [-h | -help] [-long_help] -name <name> -object <object> -
value <value> [-value_type <value_type>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> property name.

-object <object> The object to which the new property belongs.

-value <value> property value.

-value_type <value_type> property value type.

Description
Add a property (a name/value pair) to a generic object

Example Usage flng::add_property -object <object> -name <property name> -value <property value> -value_type
<value type>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to add object property: '<string>'.

TCL_ERROR 1 ERROR: Invalid object '%'s.

TCL_ERROR 1 ERROR: Invalid property value.

TCL_ERROR 1 ERROR: Invalid property value type.

TCL_ERROR 1 ERROR: Property '<string>' already exists. Cannot be
added.

3.1.13.3. flng::bind_flow (::quartus::flng)

The following table displays information for the flng::bind_flow Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::bind_flow [-h | -help] [-long_help] [-end <end>] -flow <flow> [-start
<start>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-end <end> The name of the last task to bind in a flow.

-flow <flow> The name of the flow to bind qsf.

-start <start> The name of the first task to bind in a flow

Description
This command currently contains no help description.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

257

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage flng::bind_flow -flow flowname

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.13.4. flng::delete_object (::quartus::flng)

The following table displays information for the flng::delete_object Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::delete_object [-h | -help] [-long_help] -object <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-object <object> Object to delete

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to delete object.

3.1.13.5. flng::get_default_flow_run_name (::quartus::flng)

The following table displays information for the
flng::get_default_flow_run_name Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::get_default_flow_run_name [-h | -help] [-long_help] -flow <flow>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-flow <flow> The flow name

Description
Get the default flow run name.

Example Usage flng::get_default_flow_run

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to get object.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

258

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.13.6. flng::get_flow_list (::quartus::flng)

The following table displays information for the flng::get_flow_list Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::get_flow_list [-h | -help] [-long_help] -project <project> -project_path
<project_path> -revision <revision>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-project <project> The name of the project

-project_path <project_path> The project path

-revision <revision> The name of the revision

Description
This command currently contains no help description.

Example Usage flng::get_flow_list -project project -revision revision

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.13.7. flng::get_next_available_id (::quartus::flng)

The following table displays information for the flng::get_next_available_id Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::get_next_available_id [-h | -help] [-long_help] -type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-type <type> The type of the FLNG object.

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to get next available id

TCL_ERROR 1 ERROR: Invalid object type '<string>'.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

259

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.13.8. flng::get_object (::quartus::flng)

The following table displays information for the flng::get_object Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::get_object [-h | -help] [-long_help] [-name <name>] [-number <number>]
[-properties <properties>] -type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> The literal name of the objects to be retrieved.

-number <number> The numerical part of the name of the objects to be
retrieved.

-properties <properties> Find object matching the specified properties.

-type <type> The type of objects to be retrieved.

Description
Find a flow engine object matching type and name.

Example Usage flng::get_object -type task -name synthesis

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to get object.

3.1.13.9. flng::get_objects (::quartus::flng)

The following table displays information for the flng::get_objects Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::get_objects [-h | -help] [-long_help] [-name <name>] [-number
<number>] [-properties <properties>] -type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> The literal name of the objects to be retrieved.

-number <number> The numerical part of the name of the objects to be
retrieved.

-properties <properties> Include only objects that the specified properties

-type <type> The type of objects to be retrieved.

Description
Get a list of specific existing Flow Engine objects

Example Usage flng::get_objects -type task

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Fail to get objects.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

260

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.13.10. flng::get_option (::quartus::flng)

The following table displays information for the flng::get_option Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::get_option [-h | -help] [-long_help] -name <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> option name.

Description
Get option for the Flow Engine system

Example Usage flng::get_option -name <option name>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FLOW option '<string>' is invalid.

3.1.13.11. flng::get_property (::quartus::flng)

The following table displays information for the flng::get_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::get_property [-h | -help] [-long_help] -name <name> -object <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> property name.

-object <object> The object to which the property belongs.

Description
Get the value of a generic object's property.

Example Usage flng::get_property -object <object> -name <property name>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid object '%'s.

TCL_ERROR 1 ERROR: Property '<string>' is invalid.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

261

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.13.12. flng::get_task_command (::quartus::flng)

The following table displays information for the flng::get_task_command Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::get_task_command [-h | -help] [-long_help] -task_instance <task_instance>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-task_instance <task_instance> The name of the task_instance

Description
This command currently contains no help description.

Example Usage flng::get_task_command -task_instance task_instance

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.13.13. flng::get_task_status_property (::quartus::flng)

The following table displays information for the
flng::get_task_status_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::get_task_status_property [-h | -help] [-long_help] -property_name
<property_name> -task_name <ip_generation|tile_ip_generation|design_analysis|
logic_generation|pcc_generation|create_pcc_ip_projects|pcc_run_all_dynamic_tasks|
analysis_and_synthesis|analysis_and_elaboration|synthesis|sta_early|eda_netlist_writer|fitter|
fitter_implement|fitter_plan|fitter_place|fitter_route|fitter_fastforward_timing|fitter_retime|
fitter_finalize|sta_signoff|power_analysis|assembler|sasic_handoff_flow|countermeasures_flow|
rdm_handoff_flow|ds_tool|dr_tool|simulation|analysis_and_elaboration_lint>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-property_name <property_name> The name of the property to lookup

-task_name <ip_generation|
tile_ip_generation|design_analysis|
logic_generation|pcc_generation|
create_pcc_ip_projects|
pcc_run_all_dynamic_tasks|
analysis_and_synthesis|
analysis_and_elaboration|synthesis|
sta_early|eda_netlist_writer|fitter|
fitter_implement|fitter_plan|
fitter_place|fitter_route|
fitter_fastforward_timing|fitter_retime|
fitter_finalize|sta_signoff|
power_analysis|assembler|
sasic_handoff_flow|
countermeasures_flow|
rdm_handoff_flow|ds_tool|dr_tool|
simulation|
analysis_and_elaboration_lint>

The name of the task

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

262

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Returns the task status property of the specified task.
 The valid property_name values are:
 status:
 The status the task. The possible status are: no_status, scheduled, running and done.
 success:
 If task status is done, success indictes whether it completed successfully.
 errors:
 Returns the number of error messages.
 critical_warnings:
 Returns the number of critical warning messages.
 elapsed_time:
 Returns number seconds it the task has taken.
 id
 A internal id for the object
 run
 The name of the run
 name
 A user friendly name of the object
 process_id
 The process id that running the task
 hostname
 The name of the machine running the task
 percent
 The percent completed
 start_time
 The time the task started
 last_updated
 The time the task posted a progress update.
 end_time
 The time the task finished
 result
 The result of the execution.
 outdated
 Returns true if the task has been updated by either assignments or source file.
 dni
 Indicates if DNI database engine was active
 assignment_digest
 Internal hash of all the assignments.
 checkpoint
 Indicates if a checkpoint has been written out.
 imported_checkpoint
 Indicates if the checkpoint was imported

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid status db property name

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: No revision is currently open. Open a revsion.

TCL_ERROR 1 ERROR: No task with the specified name exists.

3.1.13.14. flng::init_repository (::quartus::flng)

The following table displays information for the flng::init_repository Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::init_repository [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command currently contains no help description.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

263

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage flng::init_repository

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.13.15. flng::list_properties (::quartus::flng)

The following table displays information for the flng::list_properties Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::list_properties [-h | -help] [-long_help] -object <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-object <object> The object whose properties are returned as a list of
property names.

Description
Get the list of property names from a generic object

Example Usage flng::list_properties -object <object>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid object '%'s.

3.1.13.16. flng::monitor_flow (::quartus::flng)

The following table displays information for the flng::monitor_flow Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::monitor_flow [-h | -help] [-long_help] -flow <flow>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-flow <flow> The name of the flow to run.

Description
This command currently contains no help description.

Example Usage flng::monitor_flow -flow flowname

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

264

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.13.17. flng::run_flow (::quartus::flng)

The following table displays information for the flng::run_flow Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::run_flow [-h | -help] [-long_help] [-enable_heartbeat <enable_heartbeat>]
[-end <end>] -flow <flow> [-print_only] [-resume] [-start <start>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-enable_heartbeat
<enable_heartbeat>

Output a regular heartbeat for Quartus to monitor this flow
using Monitor Mode.

-end <end> The name of the last task to run in a flow.

-flow <flow> The name of the flow to run.

-print_only Print what will be run and do not execute.

-resume Resume executing flow from where it left off.

-start <start> The name of the first task to run in a flow

Description
This command currently contains no help description.

Example Usage flng::run_flow -flow flowname

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.13.18. flng::run_flow_command (::quartus::flng)

The following table displays information for the flng::run_flow_command Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::run_flow_command [-h | -help] [-long_help] [-command <command>] [-end
<end>] -flow <flow> [-print_only] [-resume] [-start <start>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-command <command> The command is used by "Custom" flow execution

-end <end> The name of the last task to run in a flow.

-flow <flow> The name of the flow to run.

-print_only Print what will be run and do not execute.

-resume Resume executing flow from where it left off.

-start <start> The name of the first task to run in a flow

Description
This command currently contains no help description.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

265

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage flng::run_flow_command -flow flowname

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: run_flow_command with specified flow '<string>'
completed successfully.

TCL_OK 0 WARNING: Option -command should be used with Custom
flow. The option is ignored.

TCL_ERROR 1 ERROR: Option -command <command> is needed for
Custom flow

TCL_ERROR 1 ERROR: Failed to create a specified flow '<string>'.

TCL_ERROR 1 ERROR: Failed to initialize the flow repository.

TCL_ERROR 1 ERROR: Failed to run compilation flow <string>. The
expected compilation flow name is <string> for current
opened project.

TCL_ERROR 1 ERROR: Cannot find the end task '<string>'. Specify an
existing task name.

TCL_ERROR 1 ERROR: Cannot find the flow definition for specified flow
'<string>'.

TCL_ERROR 1 ERROR: Cannot find the start task '<string>'. Specify an
existing task name.

TCL_ERROR 1 ERROR: Please open Quartus project before executing the
command.

TCL_ERROR 1 ERROR: run_flow_command with specified flow '<string>'
failed: <string>.

3.1.13.19. flng::set_option (::quartus::flng)

The following table displays information for the flng::set_option Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::set_option [-h | -help] [-long_help] -name <name> -value <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> option name.

-value <value> option value.

Description
Set options for the Flow Engine system

Example Usage flng::set_option -name <option name> -value <option value>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: FLOW option '<string>' is invalid.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

266

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.13.20. flng::set_property (::quartus::flng)

The following table displays information for the flng::set_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::set_property [-h | -help] [-long_help] -name <name> -object <object> -
value <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> property name.

-object <object> The object to which the property belongs.

-value <value> property value.

Description
Update property in term of name/value pair to a generic flow object

Example Usage flng::set_property -object <object> -name <property name> -value <property value>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid object '%'s.

TCL_ERROR 1 ERROR: Property '<string>' is invalid.

3.1.13.21. flng::write_task_assignment_digest (::quartus::flng)

The following table displays information for the
flng::write_task_assignment_digest Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::write_task_assignment_digest [-h | -help] [-long_help] [-digest
<digest>] -task_name <ip_generation|tile_ip_generation|design_analysis|logic_generation|
pcc_generation|create_pcc_ip_projects|pcc_run_all_dynamic_tasks|analysis_and_synthesis|
analysis_and_elaboration|synthesis|sta_early|eda_netlist_writer|fitter|fitter_implement|fitter_plan|
fitter_place|fitter_route|fitter_fastforward_timing|fitter_retime|fitter_finalize|sta_signoff|
power_analysis|assembler|sasic_handoff_flow|countermeasures_flow|rdm_handoff_flow|ds_tool|
dr_tool|simulation|analysis_and_elaboration_lint>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-digest <digest> The assignment digest. If not specified, gets current digest.

-task_name <ip_generation|
tile_ip_generation|design_analysis|
logic_generation|pcc_generation|
create_pcc_ip_projects|
pcc_run_all_dynamic_tasks|
analysis_and_synthesis|
analysis_and_elaboration|synthesis|
sta_early|eda_netlist_writer|fitter|
fitter_implement|fitter_plan|
fitter_place|fitter_route|
fitter_fastforward_timing|fitter_retime|

The name of the task

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

267

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

fitter_finalize|sta_signoff|
power_analysis|assembler|
sasic_handoff_flow|
countermeasures_flow|
rdm_handoff_flow|ds_tool|dr_tool|
simulation|
analysis_and_elaboration_lint>

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: No revision is currently open. Open a revsion.

TCL_ERROR 1 ERROR: No task with the specified name exists.

TCL_ERROR 1 ERROR: Unable to access status db

3.1.13.22. flng::write_task_checkpoint_written (::quartus::flng)

The following table displays information for the
flng::write_task_checkpoint_written Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::write_task_checkpoint_written [-h | -help] [-long_help] [-checkpoint
<checkpoint>] -task_name <ip_generation|tile_ip_generation|design_analysis|logic_generation|
pcc_generation|create_pcc_ip_projects|pcc_run_all_dynamic_tasks|analysis_and_synthesis|
analysis_and_elaboration|synthesis|sta_early|eda_netlist_writer|fitter|fitter_implement|fitter_plan|
fitter_place|fitter_route|fitter_fastforward_timing|fitter_retime|fitter_finalize|sta_signoff|
power_analysis|assembler|sasic_handoff_flow|countermeasures_flow|rdm_handoff_flow|ds_tool|
dr_tool|simulation|analysis_and_elaboration_lint>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-checkpoint <checkpoint> name of checkpoint that has been written.

-task_name <ip_generation|
tile_ip_generation|design_analysis|
logic_generation|pcc_generation|
create_pcc_ip_projects|
pcc_run_all_dynamic_tasks|
analysis_and_synthesis|
analysis_and_elaboration|synthesis|
sta_early|eda_netlist_writer|fitter|
fitter_implement|fitter_plan|
fitter_place|fitter_route|
fitter_fastforward_timing|fitter_retime|
fitter_finalize|sta_signoff|
power_analysis|assembler|
sasic_handoff_flow|
countermeasures_flow|
rdm_handoff_flow|ds_tool|dr_tool|
simulation|
analysis_and_elaboration_lint>

The name of the task

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

268

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Failed to write to status db.

TCL_ERROR 1 ERROR: No revision is currently open. Open a revsion.

TCL_ERROR 1 ERROR: No task with the specified name exists.

TCL_ERROR 1 ERROR: Unable to access status db

3.1.13.23. flng::write_task_finished (::quartus::flng)

The following table displays information for the flng::write_task_finished Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::write_task_finished [-h | -help] [-long_help] [-critical_warnings
<critical_warnings>] -dni <dni> [-errors <errors>] -success <success> -task
<ip_generation|tile_ip_generation|design_analysis|logic_generation|pcc_generation|
create_pcc_ip_projects|pcc_run_all_dynamic_tasks|analysis_and_synthesis|
analysis_and_elaboration|synthesis|sta_early|eda_netlist_writer|fitter|fitter_implement|fitter_plan|
fitter_place|fitter_route|fitter_fastforward_timing|fitter_retime|fitter_finalize|sta_signoff|
power_analysis|assembler|sasic_handoff_flow|countermeasures_flow|rdm_handoff_flow|ds_tool|
dr_tool|simulation|analysis_and_elaboration_lint>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-critical_warnings
<critical_warnings>

Set critical warnings message count

-dni <dni> Set to 1 if task runs in dni

-errors <errors> Set error message count

-success <success> Set to 1 if task finished successfully

-task <ip_generation|
tile_ip_generation|design_analysis|
logic_generation|pcc_generation|
create_pcc_ip_projects|
pcc_run_all_dynamic_tasks|
analysis_and_synthesis|
analysis_and_elaboration|synthesis|
sta_early|eda_netlist_writer|fitter|
fitter_implement|fitter_plan|
fitter_place|fitter_route|
fitter_fastforward_timing|fitter_retime|
fitter_finalize|sta_signoff|
power_analysis|assembler|
sasic_handoff_flow|
countermeasures_flow|
rdm_handoff_flow|ds_tool|dr_tool|
simulation|
analysis_and_elaboration_lint>

Specifies a task name

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

269

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
 flng::write_task_finished -task analysis_and_synthesis -success 1 -errors 0 -
critical_warnings 0 -dni 1

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Cannot process -critical_warnigns argument.

TCL_ERROR 1 ERROR: Cannot process -dni argument. Value should be 0
or 1

TCL_ERROR 1 ERROR: Cannot process -errors argument.

TCL_ERROR 1 ERROR: Cannot process -success argument. Value should
be 0 or 1

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: No revision is currently open. Open a revsion.

TCL_ERROR 1 ERROR: No task with the specified name exists.

TCL_ERROR 1 ERROR: Unable to access status db

3.1.13.24. flng::write_task_started (::quartus::flng)

The following table displays information for the flng::write_task_started Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flng on page 255

Syntax flng::write_task_started [-h | -help] [-long_help] -dni <dni> -task
<ip_generation|tile_ip_generation|design_analysis|logic_generation|pcc_generation|
create_pcc_ip_projects|pcc_run_all_dynamic_tasks|analysis_and_synthesis|
analysis_and_elaboration|synthesis|sta_early|eda_netlist_writer|fitter|fitter_implement|fitter_plan|
fitter_place|fitter_route|fitter_fastforward_timing|fitter_retime|fitter_finalize|sta_signoff|
power_analysis|assembler|sasic_handoff_flow|countermeasures_flow|rdm_handoff_flow|ds_tool|
dr_tool|simulation|analysis_and_elaboration_lint>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-dni <dni> Set to 1 if task runs in dni

-task <ip_generation|
tile_ip_generation|design_analysis|
logic_generation|pcc_generation|
create_pcc_ip_projects|
pcc_run_all_dynamic_tasks|
analysis_and_synthesis|
analysis_and_elaboration|synthesis|
sta_early|eda_netlist_writer|fitter|
fitter_implement|fitter_plan|
fitter_place|fitter_route|
fitter_fastforward_timing|fitter_retime|
fitter_finalize|sta_signoff|
power_analysis|assembler|
sasic_handoff_flow|
countermeasures_flow|

Specifies a task name

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

270

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

rdm_handoff_flow|ds_tool|dr_tool|
simulation|
analysis_and_elaboration_lint>

Description
 flng::write_task_started -task analysis_and_synthesis -dni 1

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Cannot process -dni argument. Value should be 0
or 1

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: No revision is currently open. Open a revsion.

TCL_ERROR 1 ERROR: Unable to access status db

3.1.14. ::quartus::flow

The following table displays information for the ::quartus::flow Tcl package:

Tcl Package and Version ::quartus::flow 1.1

Description
This package contains the set of Tcl functions
for running flows or command-line executables.

Availability This package is loaded by default in the following executables:

 qpro
 qpro_sh
 quartus
 quartus_cdb
 quartus_sh

This package is available for loading in the following executables:

 hdb_debug
 quartus_drc
 quartus_eda
 quartus_fit
 quartus_ipgenerate
 quartus_map
 quartus_si
 quartus_sim
 quartus_sta
 quartus_stp
 quartus_syn
 quartus_tlg

Tcl Commands execute_flow (::quartus::flow) on page 272
execute_module (::quartus::flow) on page 274
get_flow_templates (::quartus::flow) on page 275
get_status_db_property (::quartus::flow) on page 276
write_flow_assignment_digest (::quartus::flow) on page 276
write_flow_finished (::quartus::flow) on page 277
write_flow_started (::quartus::flow) on page 277
write_flow_template (::quartus::flow) on page 278

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

271

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.14.1. execute_flow (::quartus::flow)

The following table displays information for the execute_flow Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flow on page 271

Syntax execute_flow [-h | -help] [-long_help] [-analysis_and_elaboration] [-
check_ios] [-check_netlist] [-compile] [-dni] [-dont_export_assignments] [-eco
<value>] [-export_database] [-finalize] [-flow_args <Tcl list of name value pairs args
to pass to the flow>] [-generate_functional_sim_netlist] [-implement] [-
import_database] [-incremental_compilation_export] [-
incremental_compilation_import] [-ip_upgrade] [-quick_elaboration] [-
signalprobe] [-simulation]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-analysis_and_elaboration Option to run Analysis & Elaboration

-check_ios Option to run I/O assignment analysis

-check_netlist Option to run Check and Save Netlist

-compile Option to run a full compilation

-dni Option to request flow be executed in DNI mode.

-dont_export_assignments Option not to export assignments to file. By default, this
command exports assignments before running command-
line executables.

-eco <value> Option to run a Fitter ECO compilation

-export_database Option to export a version-compatible database

-finalize Option to run algorithms to prepare design for
programming.

-flow_args <Tcl list of name value
pairs args to pass to the flow>

Option to specify flow args

-
generate_functional_sim_netli
st

Option to generate a functional simulation netlist

-implement Option to run compilation up to route stage and skipping all
time intensive algorithms after.

-import_database Option to import a version-compatible database

-
incremental_compilation_expor
t

Option to export a design partition into a Quartus Prime
Exported Partition (QXP) file

-
incremental_compilation_impor
t

Option to import one or more Quartus Prime Exported
Partition (QXP) files into the design partitions of the current
project

-ip_upgrade Option to run a ip upgrade

-quick_elaboration Option to run Quick Elaboration

-signalprobe Option to run a Signal Probe compilation

-simulation Option to run simulation

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

272

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

Runs one or more of the command-line executables using one of the
predefined flows, such as "-compile" or "-signalprobe". You can run
only one flow at a time, so you must use only one option.

Some flows have limited device support or other limitations based on
the features used. See documentation for the features in question for
details.

The "-export_database" and "-import_database" options use the value of
the VER_COMPATIBLE_DB_DIR assignment for the version-compatible
database files directory, defaulting to "export_db".

The "-incremental_compilation_export" option uses the value of the
INCREMENTAL_COMPILATION_EXPORT_FILE global assignment for the path of
the Quartus Prime Exported Partition (QXP) file to be created. The value
of the INCREMENTAL_COMPILATION_EXPORT_PARTITION_NAME global assignment
should specify the name of the partition to be exported. The value of
the INCREMENTAL_COMPILATION_EXPORT_NETLIST_TYPE global assignment
(which can either have value POST_SYNTH or POST_FIT) determines
whether post-synthesis or post-fitting results should be
exported. Finally, the value of the
INCREMENTAL_COMPILATION_EXPORT_ROUTING global assignment specifies
whether routing should be exported when a post-fit netlist is
generated.

The "-incremental_compilation_import" option uses the following
partition assignments to determine the location of the QXP files, and
how importation should be performed, on a per-partition basis:

PARTITION_IMPORT_FILE
PARTITION_IMPORT_PROMOTE_ASSIGNMENTS
PARTITION_IMPORT_NEW_ASSIGNMENTS
PARTITION_IMPORT_EXISTING_ASSIGNMENTS
PARTITION_IMPORT_EXISTING_LOGICLOCK_REGIONS

All assignments are exported first automatically, as if you
called the "export_assignments" command first, unless the
-dont_export_assignments option is specified.

You must use the Tcl command "catch" to determine whether the
predefined flow ran successfully or not, as in the following example:

if {[catch {execute_flow -compile} result]} {
 puts "\nResult: $result\n"
 puts "ERROR: Compilation failed. See report files.\n"
} else {
 puts "\nINFO: Compilation was successful.\n"
}

Example Usage # To run quartus_map, quartus_fit, quartus_sta, quartus_asm
or other executables based on options. (Refer to "Using
Compilation Flows," "Compiling Designs," and "Specifying
Compiler Settings" in Quartus Prime online Help for more
information.)
execute_flow -compile

To determine if compilation was successful or not
and print out a personalized message.
if {[catch {execute_flow -compile} result]} {
 puts "\nResult: $result\n"
 puts "ERROR: Compilation failed. See report files.\n"
} else {
 puts "\nINFO: Compilation was successful.\n"
}

 # To perform a full compilation
 execute_flow -compile
 # To perform a ip_upgrade with flow_args to specify variation_files
 execute_flow -ip_upgrade -flow_args "variation_files=\"a.ip;b.ip\""

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't run multiple flows simultaneously. Wait for
current flow to complete.

TCL_ERROR 1 ERROR: Flow doesn't exist: <string>. Make sure the
specified flow exists.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

273

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The flow args are invalid. It should be a legal Tcl
list.

TCL_ERROR 1 ERROR: Only one flow option is allowed. Only one flow can
be run for a single command call. If multiple flows are
required, use multiple commands.

TCL_ERROR 1 ERROR: Can't find active revision. Make sure there is an
open, active revision name. Use the -revision option of
project_open, project_new, or use set_current_revision.

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: Error(s) found while running an executable. See
report file(s) for error message(s). Message log indicates
which executable was run last.

TCL_ERROR 1 ERROR: Option -<string> is illegal in the Quartus Prime
User Interface. Specify a different option or use a similar
command from the Processing menu.

TCL_ERROR 1 ERROR: At least one option is required. Specify at least one
option.

3.1.14.2. execute_module (::quartus::flow)

The following table displays information for the execute_module Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flow on page 271

Syntax execute_module [-h | -help] [-long_help] [-args <arguments>] [-classic] [-dni]
[-dont_export_assignments] [-tool <asm|cdb|drc|eda|fit|map|syn|pow|sta|stp|sim|si|cpf|
ipg|pfg|qtlg|quick_elaboration>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-args <arguments> Option to specify arguments for the executable

-classic Option to request flow be executed in Classic mode.

-dni Option to request tool option be executed in DNI mode.

-dont_export_assignments Option not to export assignments to file. By default, this
command exports assignments before running command-
line executables.

-tool <asm|cdb|drc|eda|fit|map|
syn|pow|sta|stp|sim|si|cpf|ipg|pfg|
qtlg|quick_elaboration>

Option to run the specified executable

Description
Runs one of the command-line executables, such as quartus_map or
quartus_fit. If the -args option is specified, the arguments are
passed to the command-line executable.

All assignments are exported automatically first, as if the
"export_assignments" command was called first, unless
-dont_export_assignments option is specified.

You must use the Tcl command "catch" to determine whether the
command-line executable ran successfully or not, as in the following
example:

if {[catch {execute_module -tool map} result]} {
 puts "\nResult: $result\n"
 puts "ERROR: Analysis & Synthesis failed. See the report file.\n"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

274

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

} else {
 puts "\nINFO: Analysis & Synthesis was successful.\n"
}

Example Usage # Run quartus_map using device family Stratix and device part EP1S10B672C6.
execute_module -tool map -args "--family=Stratix --part=EP1S10B672C6"

Compile using a set of executables
execute_module -tool map
execute_module -tool fit
execute_module -tool sta
execute_module -tool asm
execute_module -tool eda

To determine if Analysis & Synthesis was successful or not
and print out a personalized message.
if {[catch {execute_module -tool map} result]} {
 puts "\nResult: $result\n"
 puts "ERROR: Analysis & Synthesis failed. See the report file.\n"
} else {
 puts "\nINFO: Analysis & Synthesis was successful.\n"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't run multiple flows simultaneously. Wait for
current flow to complete.

TCL_ERROR 1 ERROR: Can't find active revision. Make sure there is an
open, active revision name. Use the -revision option of
project_open, project_new, or use set_current_revision.

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: Error(s) found while running an executable. See
report file(s) for error message(s). Message log indicates
which executable was run last.

TCL_ERROR 1 ERROR: Option is required: -tool. Specify the -tool option.

3.1.14.3. get_flow_templates (::quartus::flow)

The following table displays information for the get_flow_templates Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flow on page 271

Syntax get_flow_templates [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

275

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.14.4. get_status_db_property (::quartus::flow)

The following table displays information for the get_status_db_property Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flow on page 271

Syntax get_status_db_property [-h | -help] [-long_help] -property_name <property_name>
-task_name <task_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-property_name <property_name> The name of the property to lookup

-task_name <task_name> The name of the task

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid status db property name

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: No revision is currently open. Open a revsion.

TCL_ERROR 1 ERROR: No task with the specified name exists.

3.1.14.5. write_flow_assignment_digest (::quartus::flow)

The following table displays information for the write_flow_assignment_digest
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flow on page 271

Syntax write_flow_assignment_digest [-h | -help] [-long_help] [-digest <digest>] -
flow_name <flow_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-digest <digest> The assignment digest. If not specified, gets current digest.

-flow_name <flow_name> The name of the flow that started

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

276

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: No revision is currently open. Open a revsion.

TCL_ERROR 1 ERROR: Unable to load status db

3.1.14.6. write_flow_finished (::quartus::flow)

The following table displays information for the write_flow_finished Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flow on page 271

Syntax write_flow_finished [-h | -help] [-long_help] [-critical_warnings
<critical_warnings>] [-errors <errors>] -flow_name <flow_name> -success <success>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-critical_warnings
<critical_warnings>

Set critical warnings message count

-errors <errors> Set error message count

-flow_name <flow_name> The name of the flow that finished

-success <success> Set to 1 if flow finished successfully

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: No revision is currently open. Open a revsion.

3.1.14.7. write_flow_started (::quartus::flow)

The following table displays information for the write_flow_started Tcl command:

Tcl Package and
Version

Belongs to ::quartus::flow on page 271

Syntax write_flow_started [-h | -help] [-long_help] -flow_name <flow_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-flow_name <flow_name> The name of the flow that started

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

277

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: No revision is currently open. Open a revsion.

3.1.14.8. write_flow_template (::quartus::flow)

The following table displays information for the write_flow_template Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::flow on page 271

Syntax write_flow_template [-h | -help] [-long_help] [-directory <directory>] -
flow_name <flow_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-directory <directory> Optional name to use as destination for flow template
directory

-flow_name <flow_name> The name of the flow template to write

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

3.1.15. ::quartus::insystem_memory_edit

The following table displays information for the ::quartus::insystem_memory_edit
Tcl package:

Tcl Package and Version ::quartus::insystem_memory_edit 1.0

Description
This package contains the set of Tcl functions for reading and
editing the contents of memory in an Intel device using the
In-System Memory Content Editor.

Availability This package is loaded by default in the following executables:

 quartus_stp
 quartus_stp_tcl

Tcl Commands begin_memory_edit (::quartus::insystem_memory_edit) on page 279
end_memory_edit (::quartus::insystem_memory_edit) on page 279
get_editable_mem_instances (::quartus::insystem_memory_edit) on page 280
read_content_from_memory (::quartus::insystem_memory_edit) on page 281
save_content_from_memory_to_file (::quartus::insystem_memory_edit) on page 282
update_content_to_memory_from_file (::quartus::insystem_memory_edit) on page 283
write_content_to_memory (::quartus::insystem_memory_edit) on page 284

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

278

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.15.1. begin_memory_edit (::quartus::insystem_memory_edit)

The following table displays information for the begin_memory_edit Tcl command:

Tcl Package and
Version

Belongs to ::quartus::insystem_memory_edit on page 278

Syntax begin_memory_edit [-h | -help] [-long_help] -device_name <device name> -
hardware_name <hardware name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-device_name <device name> Name of the device that holds the editable memory
instances

-hardware_name <hardware name> Name of the hardware that connects to the JTAG chain

Description
Start the memory editing sequence. The editing
sequence should be terminated with end_memory_edit.
The sequence does not have to be terminated unless the
device configuration is changed or a different device
is edited.

The hardware and device name can be obtained with the
get_hardware_names and get_device_names commands from
the jtag package.

Example Usage # Instance 0 is configured as {0 1024 8 RW ROM/RAM mem0}

Initiate a editing sequence
begin_memory_edit -hardware_name "USB-Blaster \[USB-0\]" -device_name "@1: EP1S25/
_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"

Write memory content using binary string
write_content_to_memory -instance_index 0 -start_address 575 -word_count 2 -content
"0000001011011100"

Read back memory content in binary string written
puts [read_content_from_memory -instance_index 0 -start_address 575 -word_count 2]

Write memory content using hexadecimal string
write_content_to_memory -instance_index 0 -start_address 575 -word_count 2 -content "E2F1" -
content_in_hex

Read back memory content in hexadecimal string written
puts [read_content_from_memory -instance_index 0 -start_address 575 -word_count 2 -
content_in_hex]

End the editing sequence
end_memory_edit

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: A memory edit sequence has been started. End it
first before starting a another one.

TCL_ERROR 1 ERROR: The specified hardware is not found.

3.1.15.2. end_memory_edit (::quartus::insystem_memory_edit)

The following table displays information for the end_memory_edit Tcl command:

Tcl Package and
Version

Belongs to ::quartus::insystem_memory_edit on page 278

Syntax end_memory_edit [-h | -help] [-long_help]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

279

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Terminate the memory editing sequence. The sequence does not have to be
terminated unless the device configuration is changed or a different
device is edited.

Example Usage # Instance 0 is configured as {0 1024 8 RW ROM/RAM mem0}

Initiate a editing sequence
begin_memory_edit -hardware_name "USB-Blaster \[USB-0\]" -device_name "@1: EP1S25/
_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"

Write memory content using binary string
write_content_to_memory -instance_index 0 -start_address 575 -word_count 2 -content
"0000001011011100"

Read back memory content in binary string written
puts [read_content_from_memory -instance_index 0 -start_address 575 -word_count 2]

Write memory content using hexadecimal string
write_content_to_memory -instance_index 0 -start_address 575 -word_count 2 -content "E2F1" -
content_in_hex

Read back memory content in hexadecimal string written
puts [read_content_from_memory -instance_index 0 -start_address 575 -word_count 2 -
content_in_hex]

End the editing sequence
end_memory_edit

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: A memory edit sequence has not been started.

3.1.15.3. get_editable_mem_instances (::quartus::insystem_memory_edit)

The following table displays information for the get_editable_mem_instances Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::insystem_memory_edit on page 278

Syntax get_editable_mem_instances [-h | -help] [-long_help] -device_name <device name>
-hardware_name <hardware name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-device_name <device name> Name of the device that holds the editable memory
instances

-hardware_name <hardware name> Name of the hardware that connects to the JTAG chain

Description
Retrieve a list of editable memory, ROM, or
lpm_constant instances.

A list is returned, each element of which shows the
configuration of each instance. This element is an
another list that specifies the configuration in the
following order: <instance index> <depth> <width>
<read/write mode> <instance type> <instance name>. The
<read/write mode> can be either "RW" or "W"; <instance
type> can be either "ROM/RAM" or "CONSTANT". An
example showing a list of two instances of different
types is shown below:

{0 1024 8 RW ROM/RAM mem0} {1 1 32 RW CONSTANT con0}

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

280

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The hardware and device name can be obtained with the
get_hardware_names and get_device_names commands from
the jtag package.

It is recommended that you call this command before
the TCL command, begin_memory_edit. Within a memory
edit sequence, this command can be applied only to the
same device, on which the memory edit sequence has
started.

Example Usage # List information of all editable memories
puts "Information on all editable memories:"
puts "index,depth,width,mode,type,name"
foreach instance [get_editable_mem_instances -hardware_name "USB-Blaster \[USB-0\]" -
device_name "@1: EP1S25/_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"] {
 puts "[lindex $instance 0],[lindex $instance 1],[lindex $instance 2],[lindex $instance 3],
[lindex $instance 4],[lindex $instance 5]"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: The specified hardware is not found.

TCL_ERROR 1 ERROR: The TCL command get_editable_mem_instances is
called within a memory edit sequence for a different device.
End the memory edit first.

TCL_ERROR 1 ERROR: An internal TCL interpreter error occurred.

3.1.15.4. read_content_from_memory (::quartus::insystem_memory_edit)

The following table displays information for the read_content_from_memory Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::insystem_memory_edit on page 278

Syntax read_content_from_memory [-h | -help] [-long_help] [-content_in_hex] -
instance_index <instance index> -start_address <starting address> [-timeout
<timeout>] -word_count <word count>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-content_in_hex The memory content string is represented in hexadecimal
format

-instance_index <instance index> Index of the editable memory instance to read

-start_address <starting address> The lowest memory address to be read

-timeout <timeout> amount of time in milliseconds allocated before read times
out. Defaults to 10 seconds

-word_count <word count> The number of contiguous memory words to be read

Description
Retrieves the memory content represented in the bit
stream from the specified editable memory instance
starting from the specified address.

The memory content string is in the same format as the
input content string in the TCL command
write_content_to_memory.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

281

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage # Instance 0 is configured as {0 1024 8 RW ROM/RAM mem0}

Initiate a editing sequence
begin_memory_edit -hardware_name "USB-Blaster \[USB-0\]" -device_name "@1: EP1S25/
_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"

Write memory content using binary string
write_content_to_memory -instance_index 0 -start_address 575 -word_count 2 -content
"0000001011011100"

Read back memory content in binary string written
puts [read_content_from_memory -instance_index 0 -start_address 575 -word_count 2 -timeout
30000]

Write memory content using hexadecimal string
write_content_to_memory -instance_index 0 -start_address 575 -word_count 2 -content "E2F1" -
content_in_hex

Read back memory content in hexadecimal string written
puts [read_content_from_memory -instance_index 0 -start_address 575 -word_count 2 -
content_in_hex]

End the editing sequence
end_memory_edit

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: A memory edit sequence has not been started.

TCL_ERROR 1 ERROR: The specified word count and the starting address
exceeds the specified memory buffer size.

TCL_ERROR 1 ERROR: The specified editable memory instance index is
invalid.

TCL_ERROR 1 ERROR: JTAG communication error is detected. It can be
caused by the hardware failure or poor signal integrity in
the JTAG chain.

TCL_ERROR 1 ERROR: The device is locked by another application.

3.1.15.5. save_content_from_memory_to_file
(::quartus::insystem_memory_edit)

The following table displays information for the
save_content_from_memory_to_file Tcl command:

Tcl Package and
Version

Belongs to ::quartus::insystem_memory_edit on page 278

Syntax save_content_from_memory_to_file [-h | -help] [-long_help] -instance_index
<instance index> -mem_file_path <path> -mem_file_type <type> [-timeout <timeout>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-instance_index <instance index> Index of the editable memory instance to read

-mem_file_path <path> Path to the memory file in which to save the memory
content

-mem_file_type <type> Type of the memory file such as "mif" or "hex"

-timeout <timeout> amount of time in milliseconds allocated before read times
out. Defaults to 10 seconds

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

282

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Retrieves the entire memory contents from the
specified editable memory instance starting from
address 0 and saves it into the specified memory file.

Example Usage # Initiate a editing sequence
begin_memory_edit -hardware_name "USB-Blaster \[USB-0\]" -device_name "@1: EP1S25/
_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"

Write memory content using the hex memory file
update_content_to_memory_from_file -instance_index 0 -mem_file_path "image_8x1024.hex" -
mem_file_type hex

Read memory content and save back to a hex memory file
save_content_from_memory_to_file -instance_index 0 -mem_file_path "exported_image_8x1024.hex" -
mem_file_type hex

Write memory content using the mif memory file
update_content_to_memory_from_file -instance_index 0 -mem_file_path
"exported_image_8x1024.mif" -mem_file_type mif

Read memory content and save back to a mif memory file
save_content_from_memory_to_file -instance_index 0 -mem_file_path "image_8x1024.mif" -
mem_file_type mif -timeout 30000

End the editing sequence
end_memory_edit

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: A memory edit sequence has not been started.

TCL_ERROR 1 ERROR: The specified memory file cannot be written to.

TCL_ERROR 1 ERROR: The specified file type is either invalid or
unsupported by this command.

TCL_ERROR 1 ERROR: The specified editable memory instance index is
invalid.

TCL_ERROR 1 ERROR: JTAG communication error is detected. It can be
caused by the hardware failure or poor signal integrity in
the JTAG chain.

TCL_ERROR 1 ERROR: The device is locked by another application.

3.1.15.6. update_content_to_memory_from_file
(::quartus::insystem_memory_edit)

The following table displays information for the
update_content_to_memory_from_file Tcl command:

Tcl Package and
Version

Belongs to ::quartus::insystem_memory_edit on page 278

Syntax update_content_to_memory_from_file [-h | -help] [-long_help] -instance_index
<instance index> -mem_file_path <path> -mem_file_type <file type> [-timeout
<timeout>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-instance_index <instance index> Index of the editable memory instance to modify

-mem_file_path <path> Path to the memory file to load the memory content

-mem_file_type <file type> Type of the memory file such as "mif" or "hex"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

283

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-timeout <timeout> amount of time in milliseconds allocated before write times
out. Defaults to 10 seconds

Description
 Writes the data stored in the memory file into the
specified memory instance starting from address 0.

Example Usage # Initiate a editing sequence
begin_memory_edit -hardware_name "USB-Blaster \[USB-0\]" -device_name "@1: EP1S25/
_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"

Write memory content using the hex memory file
update_content_to_memory_from_file -instance_index 0 -mem_file_path "image_8x1024.hex" -
mem_file_type hex

Read memory content and save back to a hex memory file
save_content_from_memory_to_file -instance_index 0 -mem_file_path "exported_image_8x1024.hex" -
mem_file_type hex

Write memory content using the mif memory file
update_content_to_memory_from_file -instance_index 0 -mem_file_path
"exported_image_8x1024.mif" -mem_file_type mif -timeout 30000

Read memory content and save back to a mif memory file
save_content_from_memory_to_file -instance_index 0 -mem_file_path "image_8x1024.mif" -
mem_file_type mif

End the editing sequence
end_memory_edit

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: A memory edit sequence has not been started.

TCL_ERROR 1 ERROR: The specified memory file cannot be read because
the content is corrupt or the configuration does not match
the memory to be updated.

TCL_ERROR 1 ERROR: The specified memory file cannot be opened.

TCL_ERROR 1 ERROR: The specified file type is either invalid or
unsupported by this command.

TCL_ERROR 1 ERROR: The specified editable memory instance index is
invalid.

TCL_ERROR 1 ERROR: JTAG communication error is detected. It can be
caused by the hardware failure or poor signal integrity in
the JTAG chain.

TCL_ERROR 1 ERROR: The device is locked by another application.

3.1.15.7. write_content_to_memory (::quartus::insystem_memory_edit)

The following table displays information for the write_content_to_memory Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::insystem_memory_edit on page 278

Syntax write_content_to_memory [-h | -help] [-long_help] -content <content string> [-
content_in_hex] -instance_index <instance index> -start_address <starting address> [-
timeout <timeout>] -word_count <word count>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-content <content string> A string that represents all word values concatenated
together in order in either binary or hexadecimal format

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

284

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-content_in_hex The memory content string is represented in hexadecimal
format

-instance_index <instance index> Index of the editable memory instance to modify

-start_address <starting address> The lowest memory address to be modified

-timeout <timeout> amount of time in milliseconds allocated before write times
out. Defaults to 10 seconds

-word_count <word count> The number of contiguous memory words to be modified

Description
 Writes the data represented in the bit stream into the
specified editable memory instance starting from the
specified address. It returns the number of successful writes.

The bit stream should be ordered by word from high
address to low address, contiguously without gaps or
delimiters. If the starting address is ADDR, and word
count is N, the order is <word @ ADDR + N - 1>
... <word @ ADDR + 1><word @ ADDR> In each word, the
MSB is on the left, LSB is on the right. The bit
stream can be in either binary or hexadecimal. For
example, if the word width is 8, and two words, 1 and
128, are written to address 0 and 1 respectively, the
bitstream should be "1000000000000001" in binary or
"8001" in hexadecimal. The TCL command is
write_content_to_memory -instance_index 0
-start_address 0 -word_count 2 -content
"1000000000000001" or write_content_to_memory
-instance_index 0 -start_address 0 -word_count 2
-content "8001" -content_in_hex

Example Usage # Instance 0 is configured as {0 1024 8 RW ROM/RAM mem0}

Initiate a editing sequence
begin_memory_edit -hardware_name "USB-Blaster \[USB-0\]" -device_name "@1: EP1S25/
_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"

Write memory content using binary string
write_content_to_memory -instance_index 0 -start_address 575 -word_count 2 -content
"0000001011011100" -timeout 30000

Read back memory content in binary string written
puts [read_content_from_memory -instance_index 0 -start_address 575 -word_count 2]

Write memory content using hexadecimal string
write_content_to_memory -instance_index 0 -start_address 575 -word_count 2 -content "E2F1" -
content_in_hex

Read back memory content in hexadecimal string written
puts [read_content_from_memory -instance_index 0 -start_address 575 -word_count 2 -
content_in_hex]

End the editing sequence
end_memory_edit

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Data specified in the string does not match the
number of bits to update the memory of the specified
number of words.

TCL_ERROR 1 ERROR: A memory edit sequence has not been started.

TCL_ERROR 1 ERROR: The specified word count and the starting address
exceeds the specified memory buffer size.

TCL_ERROR 1 ERROR: The specified editable memory instance index is
invalid.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

285

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The specified editable memory instance index is
invalid.

TCL_ERROR 1 ERROR: JTAG communication error is detected. It can be
caused by the hardware failure or poor signal integrity in
the JTAG chain.

TCL_ERROR 1 ERROR: The device is locked by another application.

3.1.16. ::quartus::insystem_source_probe

The following table displays information for the ::quartus::insystem_source_probe
Tcl package:

Tcl Package and Version ::quartus::insystem_source_probe 1.0

Description
This package contains the set of Tcl functions for
using the In-System Sources and Probes feature to
interact with your design in an Intel device.

Availability This package is loaded by default in the following executables:

 quartus_stp
 quartus_stp_tcl

Tcl Commands end_insystem_source_probe (::quartus::insystem_source_probe) on page 286
get_insystem_source_probe_instance_info (::quartus::insystem_source_probe) on page 287
read_probe_data (::quartus::insystem_source_probe) on page 288
read_source_data (::quartus::insystem_source_probe) on page 288
start_insystem_source_probe (::quartus::insystem_source_probe) on page 289
write_source_data (::quartus::insystem_source_probe) on page 290

3.1.16.1. end_insystem_source_probe (::quartus::insystem_source_probe)

The following table displays information for the end_insystem_source_probe Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::insystem_source_probe on page 286

Syntax end_insystem_source_probe [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command releases the JTAG chain. Use when
finished performing In-System Sources and Probes
transactions.

Example Usage #List probe data of instance 0
start_insystem_source_probe -hardware_name "USB-Blaster \[USB-0\]" -device_name "@1: EP1S25/
_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"
puts "probe data of instance 0"
puts [read_probe_data -instance_index 0]
end_insystem_source_probe

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: The specified hardware is not found.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

286

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: An internal Tcl interpreter error occurred.

TCL_ERROR 1 ERROR: No In-System Sources and Probes instance was
found.

TCL_ERROR 1 ERROR: The In-System Sources and Probes instance was
not started. This command cannot be used unless the In-
System Sources and Probes trasaction is started.

3.1.16.2. get_insystem_source_probe_instance_info
(::quartus::insystem_source_probe)

The following table displays information for the
get_insystem_source_probe_instance_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::insystem_source_probe on page 286

Syntax get_insystem_source_probe_instance_info [-h | -help] [-long_help] -device_name
<device name> -hardware_name <hardware name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-device_name <device name> Name of the device programmed with the design that
includes In-System Sources and Probes instances

-hardware_name <hardware name> Name of the hardware that connects to the JTAG chain

Description
Returns a list of the available In-System Sources and
Probes instances and their configuration.
{instance_index source_width probe_width
instance_name}

Example:

{0 4 3 src1} {1 5 5 src2} {2 3 6 none}

Example Usage # List information of all In-System Sources and Probes instances
puts "Information on all In-System Sources and Probes instances:"
puts "index,source_width,probe_width,name"
foreach instance [get_insystem_source_probe_instance_info -hardware_name "USB-Blaster \
[USB-0\]" -device_name "@1: EP1S25/_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"] {
 puts "[lindex $instance 0],[lindex $instance 1],[lindex $instance 2],[lindex $instance 3]"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: The specified hardware is not found.

TCL_ERROR 1 ERROR: An internal Tcl interpreter error occurred.

TCL_ERROR 1 ERROR: JTAG communication error detected. Errors can be
caused by hardware failure or poor signal integrity in the
JTAG chain.

TCL_ERROR 1 ERROR: No In-System Sources and Probes instance was
found.

TCL_ERROR 1 ERROR: There is already an active In-System Sources and
Probes session started. Unable to start another session.

TCL_ERROR 1 ERROR: The device is locked by another application.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

287

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.16.3. read_probe_data (::quartus::insystem_source_probe)

The following table displays information for the read_probe_data Tcl command:

Tcl Package and
Version

Belongs to ::quartus::insystem_source_probe on page 286

Syntax read_probe_data [-h | -help] [-long_help] -instance_index <instance_index> [-
value_in_hex]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-instance_index <instance_index> Index of the In-System Sources and Probes instance to
communicate with

-value_in_hex Specifies that the value string is represented in hexadecimal
format

Description
Retrieves the current value of the probes.

A string is returned specifying the status of each
probe, with the MSB on the left and LSB on the
right. By default, the value is represented as a
binary string. Optionally, the option -value_in_hex
makes the value a hex string.

Example Usage #List probe data of instance 0
start_insystem_sourc_probe -hardware_name "USB-Blaster \[USB-0\]" -device_name "@1: EP1S25/
_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"
puts "probe data of instance 0"
puts [read_probe_data -instance_index 0]
end_insystem_source_probe

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: The specified hardware is not found.

TCL_ERROR 1 ERROR: An internal Tcl interpreter error occurred.

TCL_ERROR 1 ERROR: The specified In-System Sources and Probes
instance index is invalid.

TCL_ERROR 1 ERROR: No In-System Sources and Probes instance was
found.

3.1.16.4. read_source_data (::quartus::insystem_source_probe)

The following table displays information for the read_source_data Tcl command:

Tcl Package and
Version

Belongs to ::quartus::insystem_source_probe on page 286

Syntax read_source_data [-h | -help] [-long_help] -instance_index <instance_index> [-
value_in_hex]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-instance_index <instance_index> Index of the In-System Sources and Probes instance to
communicate with

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

288

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-value_in_hex Specifies that the value string is represented in hexadecimal
format

Description
Retrieves the current value of the sources.

A string is returned specifying the status of each
source, with the MSB on the left and LSB on the
right. By default, the value is represented as a
binary string. Optionally, the option -value_in_hex
makes the value a hex string.

Example Usage #List source data of instance 0
start_insystem_source_probe -hardware_name "USB-Blaster \[USB-0\]" -device_name "@1: EP1S25/
_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"
puts "source data of instance 0"
puts [read_source_data -instance_index 0]
end_insystem_source_probe

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: The specified hardware is not found.

TCL_ERROR 1 ERROR: An internal Tcl interpreter error occurred.

TCL_ERROR 1 ERROR: The specified In-System Sources and Probes
instance index is invalid.

TCL_ERROR 1 ERROR: No In-System Sources and Probes instance was
found.

3.1.16.5. start_insystem_source_probe (::quartus::insystem_source_probe)

The following table displays information for the start_insystem_source_probe Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::insystem_source_probe on page 286

Syntax start_insystem_source_probe [-h | -help] [-long_help] -device_name <device
name> -hardware_name <hardware name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-device_name <device name> Name of the device that holds the In-System Sources and
Probes instances

-hardware_name <hardware name> Name of programming hardware connected to the JTAG
chain

Description
Use this command before beginning any In-System
Sources and Probes transactions

Example Usage #List probe data of instance 0
start_insystem_source_probe -hardware_name "USB-Blaster \[USB-0\]" -device_name "@1: EP1S25/
_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"
puts "probe data of instance 0"
puts [read_probe_data -instance_index 0]
end_insystem_source_probe

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

289

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: The specified hardware is not found.

TCL_ERROR 1 ERROR: An internal Tcl interpreter error occurred.

TCL_ERROR 1 ERROR: JTAG communication error detected. Errors can be
caused by hardware failure or poor signal integrity in the
JTAG chain.

TCL_ERROR 1 ERROR: No In-System Sources and Probes instance was
found.

TCL_ERROR 1 ERROR: There is already an active In-System Sources and
Probes session started. Unable to start another session.

TCL_ERROR 1 ERROR: The device is locked by another application.

3.1.16.6. write_source_data (::quartus::insystem_source_probe)

The following table displays information for the write_source_data Tcl command:

Tcl Package and
Version

Belongs to ::quartus::insystem_source_probe on page 286

Syntax write_source_data [-h | -help] [-long_help] -instance_index <instance_index> -
value <value> [-value_in_hex]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-instance_index <instance_index> Index of the In-System Sources and Probes instance to
communicate with

-value <value> Value for the source

-value_in_hex Specify that the value string is represented in hexadecimal
format

Description
 Sets values for the sources.

A value string is sent to the source values. MSB is
on the left and LSB is on the right. The value string
is is truncated on the left (MSB) side if necessary.

By default, the values are represented as a binary
string. Optionally, the option -value_in_hex makes
the values hex strings.

Example Usage #List probe data of instance 0
start_insystem_source_probe -hardware_name "USB-Blaster \[USB-0\]" -device_name "@1: EP1S25/
_HARDCOPY_FPGA_PROTOTYPE (0x020030DD)"
puts "write source data 10010"
write_source_data -instance_index 0 -value "10010"
puts "source data of instance 0"
puts [read_source_data -instance_index 0]
end_insystem_source_probe

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: The specified hardware is not found.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

290

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: An internal Tcl interpreter error occurred.

TCL_ERROR 1 ERROR: The specified In-System Sources and Probes
instance index is invalid.

TCL_ERROR 1 ERROR: No In-System Sources and Probes instance was
found.

3.1.17. ::quartus::interactive_synthesis

The following table displays information for the ::quartus::interactive_synthesis Tcl
package:

Tcl Package and Version ::quartus::interactive_synthesis 1.0

Description
This package contains no general description.

Availability This package is loaded by default in the following executables:

 quartus
 quartus_syn

Tcl Commands analyze_files (::quartus::interactive_synthesis) on page 291
check_rtl_connections (::quartus::interactive_synthesis) on page 292
dissolve_rtl_partition (::quartus::interactive_synthesis) on page 292
dynamic_report (::quartus::interactive_synthesis) on page 293
elaborate (::quartus::interactive_synthesis) on page 294
get_entities (::quartus::interactive_synthesis) on page 295
get_rtl_partition_name (::quartus::interactive_synthesis) on page 295
get_rtl_partitions (::quartus::interactive_synthesis) on page 296
init_synthesis_constraints_propagation_reporter (::quartus::interactive_synthesis) on
page 296
link_rtl_design (::quartus::interactive_synthesis) on page 296
print_ipxact (::quartus::interactive_synthesis) on page 297
report_rtl_assignments (::quartus::interactive_synthesis) on page 297
report_rtl_parameters (::quartus::interactive_synthesis) on page 298
report_rtl_stats (::quartus::interactive_synthesis) on page 298
reset_rtl_design (::quartus::interactive_synthesis) on page 299
sasic (::quartus::interactive_synthesis) on page 299
save_rtl_design (::quartus::interactive_synthesis) on page 300
set_sasic_handoff_flow (::quartus::interactive_synthesis) on page 300
synthesize (::quartus::interactive_synthesis) on page 301
uniquify (::quartus::interactive_synthesis) on page 301
write_rtl_report (::quartus::interactive_synthesis) on page 302

3.1.17.1. analyze_files (::quartus::interactive_synthesis)

The following table displays information for the analyze_files Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax analyze_files [-h | -help] [-long_help] [-files <files_value>] [-library
<libray_value>] [-lint]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-files <files_value> Specifies the list of files to analyze

-library <libray_value> Specifies the target library for design units

-lint Enables lint

Description
This command currently contains no help description.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

291

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage # Compile foo.sv into the default library
analyze_files -files foo.sv

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3.1.17.2. check_rtl_connections (::quartus::interactive_synthesis)

The following table displays information for the check_rtl_connections Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax check_rtl_connections [-h | -help] [-long_help] [-panel_name
<panel_name_value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <panel_name_value> Specifies the name of the Check Connections report panel

Description
This command currently contains no help description.

Example Usage # Report RTL connection issues to "Check RTL Connections"
check_rtl_connections -panel_name "Check RTL Connections"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.17.3. dissolve_rtl_partition (::quartus::interactive_synthesis)

The following table displays information for the dissolve_rtl_partition Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax dissolve_rtl_partition [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

TCL_ERROR 1 ERROR: Partition <string> not found

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

292

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.17.4. dynamic_report (::quartus::interactive_synthesis)

The following table displays information for the dynamic_report Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax dynamic_report [-h | -help] [-long_help] [-dump_all] [-dump_lines
<dumplines_value>] [-filename <filename_value>] [-html] [-query <query_value>] -
report <report_value> [-summary] [-xml]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-dump_all dump the entire target report

-dump_lines <dumplines_value> dump first # of lines of the target report

-filename <filename_value> Name of output file to be generated

-html Option to generate output file in HTML format

-query <query_value> Specifies the SQLite query

-report <report_value> Specifies a target report to begin action with

-summary give a summary of the target report

-xml Option to generate output file in XML format

Description

API that allows user to act with a full report which is limited on showing items in GUI.
The report is a dynamic reporting infrastructure from SQLite report database, independent of
synthesis compilation.
Use "-report" to target a report. This option is mandatory as further action depends on a
certain report.
Current available "report" values are:
 Value Report name in compilation Database stored
 ------------------ ------------------------------------
--
 "registers removed" Registers Removed During Synthesis ./dynamic_report/
registers_removed.sqlite
Use "-summary" to get a summary of the target report such as table name, column name that can be
used in query.
The format of the summary would be shown as:
 ===
 Database name: <name of the database that the target report is saved>
 Table name: <table in the database that target report content locates>
 Total size: <total size of the report>
 Column: <1st column name of the report>
 Column: <2nd column name of the report>
 ...
 ===
Use "-query" to take a whole SQLite query as an argument.
For example -query "SELECT * FROM <table> WHERE <column> = <...>" to get SELECT result from the
database.
If query command is incorrect, an error message with details will be issued.
Use "-dump_all" to dump all content in the report.
Use "-dump_lines" with a non-negative integer to dump first <non-negative integer> of lines in
the report.
The result of "-query", "-dump_all" and "-dump_lines" will be sent to an output file stored in
local design directory.
Use "-filename" to specify output filename. If no filename entered, output file will be named as
report value.
If the "-html" option is specified, the output file is generated in HTML format.
If the "-xml" option is specified, the output file is generated in XML format.
Otherwise, the output file is generated in ASCII format.
"-html" option and "-xml" option are mutually exclusive. Please only specify one option.

Example Usage dynamic_report -report <report name> -query <SQLite query> -filename <output file name> -xml
dynamic_report -report <report name> -dump_all -filename <output file name>
dynamic_report -report <report name> -dump_lines <number of lines> -filename <output file
name> -html
dynamic_report -report <report name> -summary

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

293

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: No specified filename provided. Use <string> as the
default output file name

TCL_OK 0 INFO: Successfully generated output file: <string>.
<string> lines reported.

TCL_OK 0 INFO: The report's database summary is shown as the
following:\n<string>

TCL_OK 0 WARNING: Summary content directly returns from terminal,
further options(filename, html, and xml) are ignored.

TCL_ERROR 1 ERROR: Can't create or overwrite file: <string>.

TCL_ERROR 1 ERROR: Failed to open the SQLite database. Make sure you
are running tcl command in the top level design directory
not dynamic_report directory.\n If the SQLite database is
not generated during compilation, please turn ON the qsf:
synth_rpt_enable_dynamic_report and rerun synthesis
compilation

TCL_ERROR 1 ERROR: Invalid filename input. Make sure your input is not
empty and does not contain any special characters or
spaces.

TCL_ERROR 1 ERROR: Illegal value: <string>. Specify a non-negative
integer ranging from 1 to 999999999 for the option -
dump_lines.

TCL_ERROR 1 ERROR: The referred sqlite database does not exist. There's
no Registers Removed During Synthesis report table
generated in your design.

TCL_ERROR 1 ERROR: This report name: <string> is currently not
supported for dynamic reporting.\nPlease use
dynamic_report -help to see current supported report.

TCL_ERROR 1 ERROR: SQLite error: <string>

3.1.17.5. elaborate (::quartus::interactive_synthesis)

The following table displays information for the elaborate Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax elaborate [-h | -help] [-long_help] [-lint] [-recompile]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-lint Enables linting

-recompile Enables recompile

Description
This command currently contains no help description.

Example Usage # Elaborate from the top-level hierarchy
elaborate

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

294

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3.1.17.6. get_entities (::quartus::interactive_synthesis)

The following table displays information for the get_entities Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax get_entities [-h | -help] [-long_help] [-library <library_value>] [-name
<name_value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-library <library_value> Specifies the library filter

-name <name_value> Specifies the name filter

Description
This command currently contains no help description.

Example Usage # Get all "cpu" entities defined in all libraries
set cpus [get_entities -entity cpu]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3.1.17.7. get_rtl_partition_name (::quartus::interactive_synthesis)

The following table displays information for the get_rtl_partition_name Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax get_rtl_partition_name [-h | -help] [-long_help] [-name <name_value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name_value> Specifies the name filter

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

295

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.17.8. get_rtl_partitions (::quartus::interactive_synthesis)

The following table displays information for the get_rtl_partitions Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax get_rtl_partitions [-h | -help] [-long_help] [-name <name_value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name_value> Specifies the name filter

Description
This command currently contains no help description.

Example Usage # Get partitions matching filter pr_region*
set pr_regions [get_rtl_partitions -name pr_region*]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3.1.17.9. init_synthesis_constraints_propagation_reporter
(::quartus::interactive_synthesis)

The following table displays information for the
init_synthesis_constraints_propagation_reporter Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax init_synthesis_constraints_propagation_reporter [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command currently contains no help description.

Example Usage # Initialize constraints propagation reporter for synthesis
init_synthesis_constraints_propagation_reporter

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3.1.17.10. link_rtl_design (::quartus::interactive_synthesis)

The following table displays information for the link_rtl_design Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax link_rtl_design [-h | -help] [-long_help] [-snapshot <snapshot_value>]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

296

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-snapshot <snapshot_value> Specifies input snapshot

Description
This command currently contains no help description.

Example Usage # Link the RTL design for the current revision
link_rtl_design

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3.1.17.11. print_ipxact (::quartus::interactive_synthesis)

The following table displays information for the print_ipxact Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax print_ipxact [-h | -help] [-long_help] -print_ipxact_file <file_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-print_ipxact_file <file_name> Specifies the source file to print

Description
This command currently contains no help description.

Example Usage # Generate the IP-XACT for foo.v
print_ipxact -print_ipxact_file foo.v

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3.1.17.12. report_rtl_assignments (::quartus::interactive_synthesis)

The following table displays information for the report_rtl_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax report_rtl_assignments [-h | -help] [-long_help] [-instance <instance_name>] [-
panel_name <panel_name_value>] [-partition <partition_value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-instance <instance_name> Specifies the hierarchy path of the instance to report
(supports wildcards)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

297

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-panel_name <panel_name_value> Specifies the name of the report panel

-partition <partition_value> Specifies the hierarchy path of the partition(s) to report
(supports wildcards)

Description
This command currently contains no help description.

Example Usage report_rtl_assignments -panel_name "Source Assignments for Top partition" -partition |

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.17.13. report_rtl_parameters (::quartus::interactive_synthesis)

The following table displays information for the report_rtl_parameters Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax report_rtl_parameters [-h | -help] [-long_help] [-instance <instance_name>] [-
panel_name <panel_name_value>] [-partition <partition_value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-instance <instance_name> Specifies the hierarchy path of the instance to report
(supports wildcards)

-panel_name <panel_name_value> Specifies the name of the report panel

-partition <partition_value> Specifies the hierarchy path of the partition(s) to report
(supports wildcards)

Description
This command currently contains no help description.

Example Usage report_rtl_parameters -panel_name "RTL Parameters for Top partition" -partition |

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.17.14. report_rtl_stats (::quartus::interactive_synthesis)

The following table displays information for the report_rtl_stats Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax report_rtl_stats [-h | -help] [-long_help] [-filename <filename_value>] -
partition <partition_value> [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filename <filename_value> Specifies the output filename for the RTL report

-partition <partition_value> Specifies the hierarchy path of the partition to synthesize

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

298

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-stdout Report to standard output

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.17.15. reset_rtl_design (::quartus::interactive_synthesis)

The following table displays information for the reset_rtl_design Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax reset_rtl_design [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command currently contains no help description.

Example Usage # Resets the current RTL design. This must be
called prior to calling link_rtl_design again
reset_rtl_design

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3.1.17.16. sasic (::quartus::interactive_synthesis)

The following table displays information for the sasic Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax sasic [-h | -help] [-long_help] [-handoff]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-handoff Runs SASIC handoff flow

Description
This command currently contains no help description.

Example Usage # Run SASIC handoff
sasic -handoff

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

299

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.17.17. save_rtl_design (::quartus::interactive_synthesis)

The following table displays information for the save_rtl_design Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax save_rtl_design [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command currently contains no help description.

Example Usage # Saves the current RTL design for partition Top
save_rtl_design -partition |

Saves all partitions in the current RTL design at a particular snapshot
Currently only allow partitioned and synthesized snapshot
save_rtl_design -snapshot synthesized

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Snapshot <string> is invalid for save

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

TCL_ERROR 1 ERROR: Partition <string> not found

3.1.17.18. set_sasic_handoff_flow (::quartus::interactive_synthesis)

The following table displays information for the set_sasic_handoff_flow Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax set_sasic_handoff_flow [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command currently contains no help description.

Example Usage # Set SASIC handoff flow
set_sasic_handoff_flow

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

300

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.17.19. synthesize (::quartus::interactive_synthesis)

The following table displays information for the synthesize Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax synthesize [-h | -help] [-long_help] -partition <partition_value> [-recompile]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-partition <partition_value> Specifies the hierarchy path of the partition to synthesize

-recompile Enables incremental resynthesis algorithm

Description
This command currently contains no help description.

Example Usage # Run synthesis on Top partition
synthesize -partition |
Run a re-synthesis on Top partition
synthesize -partition | -recompile
Run a synthesis on ocs partition
synthesize -partition | -techmap
Run high-level synthesis on Top partition
synthesize -partition | -flow hls
Run post-high-level synthesis on Top partition
synthesize -partition | -flow post_hls
 # This is the default and is equivalent to "synthesize -partition |"
synthesize -partition | -flow full

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

TCL_ERROR 1 ERROR: Partition <string> not found

3.1.17.20. uniquify (::quartus::interactive_synthesis)

The following table displays information for the uniquify Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax uniquify [-h | -help] [-long_help] [-analysis_and_elab_report] [-recompile]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-analysis_and_elab_report Print synthesis reports after analysis and elaboration

-recompile Enables recompile

Description
This command currently contains no help description.

Example Usage # Run uniquify on all partitions as required
uniquify

Run uniquify on one specific partition
uniquify -partition cpu_left

Return Value Code Name Code String Return
continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

301

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

TCL_ERROR 1 ERROR: Current design not found

TCL_ERROR 1 ERROR: Partition <string> not found

3.1.17.21. write_rtl_report (::quartus::interactive_synthesis)

The following table displays information for the write_rtl_report Tcl command:

Tcl Package and
Version

Belongs to ::quartus::interactive_synthesis on page 291

Syntax write_rtl_report [-h | -help] [-long_help] [-ascii] [-filename <filename_value>]
[-qdb] [-xml]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-ascii Spcefies ASCII as the output format

-filename <filename_value> Specifies the output filename for the RTL report

-qdb Specifies binary as the output format

-xml Specifies XML as the output format

Description
This command currently contains no help description.

Example Usage # Write the RTL report to the QDB database in binary forat
write_rtl_report -qdb

Write the RTL report to the default ASCII report file
write_rtl_report -ascii

Write the RTL report to the XML file
write_rtl_report -xml -filename report.xml

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command

3.1.18. ::quartus::ipdrc

The following table displays information for the ::quartus::ipdrc Tcl package:

Tcl Package and Version ::quartus::ipdrc 1.0

Description
This package contains no general description.

Availability This package is available for loading in the following executables:

 quartus_cdb
 quartus_syn

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

302

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Commands ipdrc::get_device_speed (::quartus::ipdrc) on page 303
ipdrc::get_ip_hpaths (::quartus::ipdrc) on page 303
ipdrc::get_ip_name (::quartus::ipdrc) on page 304
ipdrc::get_ip_pma_modulation (::quartus::ipdrc) on page 304
ipdrc::get_ip_speed (::quartus::ipdrc) on page 305
ipdrc::get_ip_type (::quartus::ipdrc) on page 305
ipdrc::get_ip_xcvr_type (::quartus::ipdrc) on page 305
ipdrc::set_ip_info (::quartus::ipdrc) on page 306

3.1.18.1. ipdrc::get_device_speed (::quartus::ipdrc)

The following table displays information for the ipdrc::get_device_speed Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::ipdrc on page 302

Syntax ipdrc::get_device_speed [-h | -help] [-long_help] -core <core> -hpath <hpath> -
xcvr <xcvr>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-core <core> Core speed grade of the target device

-hpath <hpath> Hierarchical path of an instance

-xcvr <xcvr> Transceiver speed grade of the target device

Description
IPDRC get device speed --This command returns the max speed of a device given core grade (1~4)
and transceiver grade (1~3)

Example Usage ipdrc::get_device_speed -hpath $hpath -core $core -xcvr $xcvr

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.18.2. ipdrc::get_ip_hpaths (::quartus::ipdrc)

The following table displays information for the ipdrc::get_ip_hpaths Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::ipdrc on page 302

Syntax ipdrc::get_ip_hpaths [-h | -help] [-long_help] [-filter <filter>] [-ip_name
<ip_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filter <filter> Filter searches against parameters stored in the JSON file.
Format: {param_id value} 2 strings connected by 1 space

-ip_name <ip_name> IP name to search for

Description
IPDRC get IP hpaths --This command returns a list of IP hpaths based on prescribed filterings;
by default returns every existing hpath

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

303

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage ipdrc::get_ip_hpaths -ip_name $ip_name -filter $filter

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.18.3. ipdrc::get_ip_name (::quartus::ipdrc)

The following table displays information for the ipdrc::get_ip_name Tcl command:

Tcl Package and
Version

Belongs to ::quartus::ipdrc on page 302

Syntax ipdrc::get_ip_name [-h | -help] [-long_help] -type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-type <type> Identifier representing an IP type

Description
IPDRC get IP name --This command returns the actual IP name corresponding to a given IP type

Example Usage ipdrc::get_ip_name -type $type

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.18.4. ipdrc::get_ip_pma_modulation (::quartus::ipdrc)

The following table displays information for the ipdrc::get_ip_pma_modulation
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::ipdrc on page 302

Syntax ipdrc::get_ip_pma_modulation [-h | -help] [-long_help] -hpath <hpath>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-hpath <hpath> Hierarchical path of an instance

Description
IPDRC get IP PMA modulation --This command returns the PMA modulation mode of an IP instance

Example Usage ipdrc::get_ip_pma_modulation -hpath $hpath

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

304

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.18.5. ipdrc::get_ip_speed (::quartus::ipdrc)

The following table displays information for the ipdrc::get_ip_speed Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::ipdrc on page 302

Syntax ipdrc::get_ip_speed [-h | -help] [-long_help] -hpath <hpath>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-hpath <hpath> Hierarchical path of an instance

Description
IPDRC get IP speed --This command returns the transceiver speed of an IP instance

Example Usage ipdrc::get_ip_speed -hpath $hpath

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.18.6. ipdrc::get_ip_type (::quartus::ipdrc)

The following table displays information for the ipdrc::get_ip_type Tcl command:

Tcl Package and
Version

Belongs to ::quartus::ipdrc on page 302

Syntax ipdrc::get_ip_type [-h | -help] [-long_help] -hpath <hpath>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-hpath <hpath> Hierarchical path of an instance

Description
IPDRC get IP type --This command returns the IP type of an instance

Example Usage ipdrc::get_ip_type -hpath $hpath

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.18.7. ipdrc::get_ip_xcvr_type (::quartus::ipdrc)

The following table displays information for the ipdrc::get_ip_xcvr_type Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::ipdrc on page 302

Syntax ipdrc::get_ip_xcvr_type [-h | -help] [-long_help] -hpath <hpath>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

305

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-hpath <hpath> Hierarchical path of an instance

Description
IPDRC get IP XCVR type --This command returns the XCVR type of an IP instance

Example Usage ipdrc::get_ip_xcvr_type -hpath $hpath

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.18.8. ipdrc::set_ip_info (::quartus::ipdrc)

The following table displays information for the ipdrc::set_ip_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::ipdrc on page 302

Syntax ipdrc::set_ip_info [-h | -help] [-long_help] -file <file>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-file <file> JSON file containing instances information of the design

Description
IPDRC set IP info --This command initializes the content of the static IPDRC_CHECK_UTILS object
with the given JSON file

Example Usage ipdrc::set_ip_info -file $file

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.19. ::quartus::ipgen

The following table displays information for the ::quartus::ipgen Tcl package:

Tcl Package and Version ::quartus::ipgen 1.0

Description
This package contains no general description.

Availability This package is loaded by default in the following executable:

 quartus_ipgenerate

Tcl Commands clear_ip_generation_dirs (::quartus::ipgen) on page 307
generate_ip_file (::quartus::ipgen) on page 307
generate_project_ip_files (::quartus::ipgen) on page 308
get_project_ip_files (::quartus::ipgen) on page 310

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

306

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.19.1. clear_ip_generation_dirs (::quartus::ipgen)

The following table displays information for the clear_ip_generation_dirs Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::ipgen on page 306

Syntax clear_ip_generation_dirs [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command removes all the generation directories for the Platform Designer IP files in the
opened project.
 All the content in the generation directories will be removed.

Example Usage # Remove all the generation directories for the Platform Designer IP files in the opened
project
project_open my_project
clear_ip_generation_dirs

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: The command failed with an unknown error.

3.1.19.2. generate_ip_file (::quartus::ipgen)

The following table displays information for the generate_ip_file Tcl command:

Tcl Package and
Version

Belongs to ::quartus::ipgen on page 306

Syntax generate_ip_file [-h | -help] [-long_help] [-clean] [-
clear_ip_generation_dirs] [-modelsim_flow <qrun|traditional>] [-simulation
<verilog|vhdl>] [-simulator <modelsim|vcs|vcsmx|riviera|xcelium>] [-synthesis <verilog|
vhdl>] <file>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clean Specify whether pre-existing generation directories should
be cleared before generation.

-clear_ip_generation_dirs Specify whether pre-existing generation directories should
be cleared before generation.

-modelsim_flow <qrun|traditional> Specifies the Modelsim flow used for simulation script
generation. Valid values are qrun or traditional.

-simulation <verilog|vhdl> Set the simulation target type. Valid values are verilog or
vhdl.

-simulator <modelsim|vcs|vcsmx|
riviera|xcelium>

Set the simulator target type. Valid values are modelsim,
vcs, vcsmx, riviera, and/or xcelium.

-synthesis <verilog|vhdl> Set the synthesis target type. Valid values are verilog or
vhdl.

<file> A Platform Designer IP file path. -file="path1;path2"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

307

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
This command generates the files for a specified Platform Designer IP in the opened project.

 --synthesis <value>: Specify the synthesis target type. Valid values are verilog
or vhdl.
 This is not a required option. When not specified, it
defaults to verilog.

 --simulation <value>: Specify the simulation target type. Valid values are
verilog or vhdl.
 This is not a required option. When not specified, no
simulation files are generated.

 --simulator <value>: Specify the simulator target type. Valid values are
modelsim, vcs, vcsmx, riviera, xcelium.
 This is not a required option. When not specified,
simulation files for all simulators are generated.

 --modelsim_flow <value>: Specify the Modelsim flow used for simulation script
generation. Valid values are qrun or traditional.
 This is not a required option. When not specified, it
defaults to qrun.

 --clear_ip_generation_dirs: Specify whether pre-existing generation directories should
be cleared before generation.
 This is not a required option. When not specified, the
generation directories will not be cleared.

 --clean: Specify whether pre-existing generation directories should
be cleared before generation.
 This option is a short version of the
clear_ip_generation_dirs option.
 This is not a required option. When not specified, the
generation directories will not be cleared.

Example Usage # generate the specified Platform Designer IP in the project with the specified targets.
Clear any pre-existing
 # generation directories before performing the generation.
project_open my_project
generate_ip_file my_ip_file.qsys -synthesis verilog -simulation verilog -simulator modelsim -
clear_ip_generation_dirs

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The file <string> does not exist in project.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: The command failed with an unknown error.

3.1.19.3. generate_project_ip_files (::quartus::ipgen)

The following table displays information for the generate_project_ip_files Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::ipgen on page 306

Syntax generate_project_ip_files [-h | -help] [-long_help] [-clean] [-
clear_ip_generation_dirs] [-modelsim_flow <qrun|traditional>] [-parallel <on|off>]
[-simulation <verilog|vhdl>] [-simulator <modelsim|vcs|vcsmx|riviera|xcelium>] [-
synthesis <verilog|vhdl>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clean Specify whether pre-existing generation directories should
be cleared before generation.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

308

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-clear_ip_generation_dirs Specify whether pre-existing generation directories should
be cleared before generation.

-modelsim_flow <qrun|traditional> Specifies the Modelsim flow used for simulation script
generation. Valid values are qrun or traditional.

-parallel <on|off> Specify whether to allow parallel IP generation. Specify off
to disable parallel

-simulation <verilog|vhdl> Set the simulation target type. Valid values are verilog or
vhdl.

-simulator <modelsim|vcs|vcsmx|
riviera|xcelium>

Set the simulator target type. Valid values are modelsim,
vcs, vcsmx, riviera, and/or xcelium.

-synthesis <verilog|vhdl> Set the synthesis target type. Valid values are verilog or
vhdl.

Description
This command generates the files for all Platform Designer IP in the opened project.
 If no option is specified, this command generates the verilog synthesis target only.

 --synthesis <value>: Specify the synthesis target type. Valid values are verilog
or vhdl.
 This is not a required option. When not specified, it
defaults to verilog.

 --simulation <value>: Specify the simulation target type. Valid values are
verilog or vhdl.
 This is not a required option. When not specified, no
simulation files are generated.

 --simulator <value>: Specify the simulator target type. Valid values are
modelsim, vcs, vcsmx, riviera, and/or xcelium.
 This is not a required option. When not specified,
simulation files for all simulators are generated.

 --modelsim_flow <value>: Specify the Modelsim flow used for simulation script
generation. Valid values are qrun or traditional.
 This is not a required option. When not specified, it
defaults to qrun.

 --clear_ip_generation_dirs: Specify whether pre-existing generation directories should
be cleared before generation.
 This is not a required option. When not specified, the
generation directories will not be cleared.

 --clean: Specify whether pre-existing generation directories should
be cleared before generation.
 This option is a short version of the
clear_ip_generation_dirs option.
 This is not a required option. When not specified, the
generation directories will not be cleared.

 --parallel <on,off>: Specify whether to allow parallel IP generation. When this
is on, parallel
 processing will be enable if project or global Quartus
setting is enabled.
 When this setting is off, parallel is disabled regardless
of project or global
 Quartus settings.

Example Usage # generate all the Platform Designer IP in the project with the specified targets. Clear any
pre-existing
 # generation directories before performing the generation.
project_open my_project
generate_project_ip_files -synthesis verilog -simulation verilog -simulator modelsim -
clear_ip_generation_dirs

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The file <string> does not exist in project.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: The command failed with an unknown error.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

309

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.19.4. get_project_ip_files (::quartus::ipgen)

The following table displays information for the get_project_ip_files Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::ipgen on page 306

Syntax get_project_ip_files [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This command returns a Tcl list containing the full path of the Platform Designer IP files
(.qsys or .ip) found in the opened project.

Example Usage
project_open my_project
get_project_ip_files

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: The command failed with an unknown error.

3.1.20. ::quartus::iptclgen

The following table displays information for the ::quartus::iptclgen Tcl package:

Tcl Package and Version ::quartus::iptclgen 1.0

Description
This package contains the set of Tcl functions for generating
Memory IP.

Availability This package is available for loading in the following executables:

 qpro
 qpro_sh
 quartus
 quartus_cdb
 quartus_sh

Tcl Commands compute_pll (::quartus::iptclgen) on page 310
generate_vhdl_simgen_model (::quartus::iptclgen) on page 311
parse_hdl (::quartus::iptclgen) on page 312
parse_tcl (::quartus::iptclgen) on page 313

3.1.20.1. compute_pll (::quartus::iptclgen)

The following table displays information for the compute_pll Tcl command:

Tcl Package and
Version

Belongs to ::quartus::iptclgen on page 310

Syntax compute_pll [-h | -help] [-long_help] -family <family> -input_freq <input_freq> -
output_freqs <output_freqs> -output_phases <output_phases> -pll_type <pll_type> -
speed_grade <speed_grade> -temp_dir <temp_dir>

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

310

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-family <family> Device family

-input_freq <input_freq> input frequency in Mhz

-output_freqs <output_freqs> desired output frequencys

-output_phases <output_phases> desired output phase shifts

-pll_type <pll_type> pll type

-speed_grade <speed_grade> Device speed grade

-temp_dir <temp_dir> temporary directory

Description
Parses the HDL file specified and saves output to the file name specified.

Example Usage compute_pll -family "stratix iii" -pll_type "fast_pll" -input_freq 100 -output_freqs "100,
200, 333"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid Intel FPGA IP Name: <string>. Specify a
legal port type.

TCL_ERROR 1 ERROR: Illegal number of arguments. Specify %u
argument(s) for option <string>.

TCL_ERROR 1 ERROR: No open project. Open an existing project or create
a new project.

3.1.20.2. generate_vhdl_simgen_model (::quartus::iptclgen)

The following table displays information for the generate_vhdl_simgen_model Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::iptclgen on page 310

Syntax generate_vhdl_simgen_model [-h | -help] [-long_help] -blackbox <blackbox> -
family <family> -files <files> -result_dir <result_dir> -temp_dir <temp_dir> -
top_level_name <top_level_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-blackbox <blackbox> comma-separated list of modules that should be blackboxed

-family <family> family name

-files <files> comma seperated list of files

-result_dir <result_dir> result directory for .vho file. Must already exist

-temp_dir <temp_dir> temp_dir

-top_level_name
<top_level_name>

top level entity name

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

311

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Creates a temporary project in the temporary
directory, creates the simgen model and copies the
model to result_dir.

Example Usage generate_vhdl_simgen_model -family "stratix iii" -files "mycore.v,subcore.v" -top_level_name
"mycore.v" -temp_dir "c:/temp" -result_dir "c:/outdir" -blackbox "blackboxme"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No open project. Open an existing project or create
a new project.

3.1.20.3. parse_hdl (::quartus::iptclgen)

The following table displays information for the parse_hdl Tcl command:

Tcl Package and
Version

Belongs to ::quartus::iptclgen on page 310

Syntax parse_hdl [-h | -help] [-long_help] -core_params <core_params> -indir_name
<indir_name> -inhdl_files <inhdl_files> [-module_list <module_list>] -module_name
<module_name> -outdir_name <outdir_name> -supported_params <supported_params>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-core_params <core_params> Comma-delimited list of core parameters

-indir_name <indir_name> input directory of hdl files

-inhdl_files <inhdl_files> input hdl name

-module_list <module_list> list of modules to uniquify name

-module_name <module_name> toplevel module name

-outdir_name <outdir_name> output directory of hdl files

-supported_params
<supported_params>

Comma-delimited list of supported core parameters

Description
Parses the HDL file specified and saves output to the file name specified.

Example Usage parse_hdl -inhdl_files rldram_dev.v -core_params "USE_CLK, STRATIXIII" -outdir_name "/project/
hdl"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid Intel FPGA IP Name: <string>. Specify a
legal port type.

TCL_ERROR 1 ERROR: Illegal number of arguments. Specify %u
argument(s) for option <string>.

TCL_ERROR 1 ERROR: No open project. Open an existing project or create
a new project.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

312

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.20.4. parse_tcl (::quartus::iptclgen)

The following table displays information for the parse_tcl Tcl command:

Tcl Package and
Version

Belongs to ::quartus::iptclgen on page 310

Syntax parse_tcl [-h | -help] [-long_help] [-core_params <core_params>] [-
core_sub_params <core_sub_params>] -indir_name <indir_name> -intcl_files
<intcl_files> -module_name <module_name> -outdir_name <outdir_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-core_params <core_params> Comma-delimited list of core parameters

-core_sub_params
<core_sub_params>

map of parameter-to-value pairs to replace

-indir_name <indir_name> input directory of tcl files

-intcl_files <intcl_files> input tcl name

-module_name <module_name> toplevel module name

-outdir_name <outdir_name> output directory of tcl files

Description
Parses the HDL file specified and saves output to the file name specified.

Example Usage parse_tcl -intcl_files rldram_dev.v -core_params "USE_CLK, STRATIXIII" -outdir_name "/project/
tcl"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid Intel FPGA IP Name: <string>. Specify a
legal port type.

TCL_ERROR 1 ERROR: Illegal number of arguments. Specify %u
argument(s) for option <string>.

TCL_ERROR 1 ERROR: No open project. Open an existing project or create
a new project.

3.1.21. ::quartus::jtag

The following table displays information for the ::quartus::jtag Tcl package:

Tcl Package and Version ::quartus::jtag 1.0

Description
This package contains the set of Tcl functions for
controlling the JTAG chain using Intel programming
hardware.

Availability This package is loaded by default in the following executables:

 quartus_stp
 quartus_stp_tcl

Tcl Commands close_device (::quartus::jtag) on page 314
device_dr_shift (::quartus::jtag) on page 315
device_ir_shift (::quartus::jtag) on page 316
device_lock (::quartus::jtag) on page 317

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

313

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

device_run_test_idle (::quartus::jtag) on page 318
device_unlock (::quartus::jtag) on page 319
device_virtual_dr_shift (::quartus::jtag) on page 320
device_virtual_ir_shift (::quartus::jtag) on page 322
get_device_names (::quartus::jtag) on page 323
get_hardware_names (::quartus::jtag) on page 324
open_device (::quartus::jtag) on page 325

3.1.21.1. close_device (::quartus::jtag)

The following table displays information for the close_device Tcl command:

Tcl Package and
Version

Belongs to ::quartus::jtag on page 313

Syntax close_device [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
End the shared communication with the opened device.

Example Usage # List all available programming hardwares, and select the USBBlaster.
(Note: this example assumes only one USBBlaster connected.)
puts "Programming Hardwares:"
foreach hardware_name [get_hardware_names] {
 puts $hardware_name
 if { [string match "USB-Blaster*" $hardware_name] } {
 set usbblaster_name $hardware_name
 }
}
puts "\nSelect JTAG chain connected to $usbblaster_name.\n";

List all devices on the chain, and select the first device on the chain.
puts "\nDevices on the JTAG chain:"
foreach device_name [get_device_names -hardware_name $usbblaster_name] {
 puts $device_name
 if { [string match "@1*" $device_name] } {
 set test_device $device_name
 }
}
puts "\nSelect device: $test_device.\n";

Open device
open_device -hardware_name $usbblaster_name -device_name $test_device

Retrieve device id code.
IDCODE instruction value is 6; The ID code is 32 bits long.

IR and DR shift should be locked together to ensure that other applications
will not change the instruction register before the id code value is shifted
out while the instruction register is still holding the IDCODE instruction.
device_lock -timeout 10000
device_ir_shift -ir_value 6 -no_captured_ir_value
puts "IDCODE: 0x[device_dr_shift -length 32 -value_in_hex]"
device_unlock

Close device
close_device

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No device has been opened.

TCL_ERROR 1 ERROR: A device was locked.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

314

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.21.2. device_dr_shift (::quartus::jtag)

The following table displays information for the device_dr_shift Tcl command:

Tcl Package and
Version

Belongs to ::quartus::jtag on page 313

Syntax device_dr_shift [-h | -help] [-long_help] [-dr_value <data register value>] -
length <data register length> [-no_captured_dr_value] [-value_in_hex]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-dr_value <data register value> Value of string operand type in either default binary or
hexadecimal format to be written into the data register in
the JTAG tap controller of the open device

-length <data register length> Length of the data register in the JTAG tap controller in the
open device

-no_captured_dr_value Option not to return the data instruction register value. If
this is specified, this DR scan may be packed together with
the subsequent IR or DR scan until the device is unlocked or
a captured value is requested

-value_in_hex Option to specify that the value string is represented in
hexadecimal format

Description
Writes the specified value into the data register of
the JTAG tap controller of the open device. Returns
the captured data register value. The captured value
return can be disabled to improve the JTAG
communication speed by packing multiple IR or DR scans
together.

The value is specified using either a binary string or
a hexadecimal string. The bit on the left most side is
the first bit shifted in. For example, using binary
string "010001", the first bit shifted into the dr
register is 1; the last bit is 0. The same string can
be represented in hexadecimal as "11".

The device must be locked before you can perform this
operation.

Example Usage # List all available programming hardware, and select the USB-Blaster.
(Note: this example assumes only one USB-Blaster is connected.)
puts "Programming Hardware:"
foreach hardware_name [get_hardware_names] {
 puts $hardware_name
 if { [string match "USB-Blaster*" $hardware_name] } {
 set usbblaster_name $hardware_name
 }
}
puts "\nSelect JTAG chain connected to $usbblaster_name.\n";

List all devices on the chain, and select the first device on the chain.
puts "\nDevices on the JTAG chain:"
foreach device_name [get_device_names -hardware_name $usbblaster_name] {
 puts $device_name
 if { [string match "@1*" $device_name] } {
 set test_device $device_name
 }
}
puts "\nSelect device: $test_device.\n";

Open device
open_device -hardware_name $usbblaster_name -device_name $test_device

Retrieve device id code.
IDCODE instruction value is 6; The ID code is 32 bits long.

IR and DR shift should be locked together to ensure that other applications
will not change the instruction register before the id code value is shifted
out while the instruction register is still holding the IDCODE instruction.
device_lock -timeout 10000

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

315

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

device_ir_shift -ir_value 6 -no_captured_ir_value
puts "IDCODE: 0x[device_dr_shift -length 32 -value_in_hex]"
device_unlock

Close device
close_device

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Captured value cannot be disabled at the time
when no value is shifted into data register.

TCL_ERROR 1 ERROR: A device has not been locked; exclusive
communication must be obtained first.

TCL_ERROR 1 ERROR: A device has been locked by another application;
exclusive communication cannot be granted within the
specified timeout period.

TCL_ERROR 1 ERROR: The length of the value string specified does not
match the length parameter specified.

3.1.21.3. device_ir_shift (::quartus::jtag)

The following table displays information for the device_ir_shift Tcl command:

Tcl Package and
Version

Belongs to ::quartus::jtag on page 313

Syntax device_ir_shift [-h | -help] [-long_help] -ir_value <instruction register value> [-
no_captured_ir_value]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-ir_value <instruction register
value>

Value to be written into the instruction register in the JTAG
tap controller of the open device. Operand must be of a TCL
numerical type such as decimal (10), hexadecimal (0xa), or
octal number (012)

-no_captured_ir_value Option to not return the captured instruction register value.
If this is specified, this IR scan may be packed together with
the subsequent IR or DR scan until the device is unlocked or
a captured value is requested

Description
 Writes the specified value into the instruction
register of the JTAG tap controller of the open
device. Returns the captured instruction register
value. The captured value return can be disabled to
improve the JTAG communication speed by packing
multiple IR or DR scans together.

The instruction register length is determined
automatically by the Quartus Prime JTAG server.

The device must be locked first before this operation.

Example Usage # List all available programming hardware, and select the USB-Blaster.
(Note: this example assumes only one USB-Blaster is connected.)
puts "Programming Hardware:"
foreach hardware_name [get_hardware_names] {
 puts $hardware_name
 if { [string match "USB-Blaster*" $hardware_name] } {
 set usbblaster_name $hardware_name
 }
}
puts "\nSelect JTAG chain connected to $usbblaster_name.\n";

List all devices on the chain, and select the first device on the chain.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

316

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

puts "\nDevices on the JTAG chain:"
foreach device_name [get_device_names -hardware_name $usbblaster_name] {
 puts $device_name
 if { [string match "@1*" $device_name] } {
 set test_device $device_name
 }
}
puts "\nSelect device: $test_device.\n";

Open device
open_device -hardware_name $usbblaster_name -device_name $test_device

Retrieve device id code.
IDCODE instruction value is 6; The ID code is 32 bits long.

IR and DR shift should be locked together to ensure that other applications
will not change the instruction register before the id code value is shifted
out while the instruction register is still holding the IDCODE instruction.
device_lock -timeout 10000
device_ir_shift -ir_value 6 -no_captured_ir_value
puts "IDCODE: 0x[device_dr_shift -length 32 -value_in_hex]"
device_unlock

Close device
close_device

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: A device has not been locked; exclusive
communication must be obtained first.

TCL_ERROR 1 ERROR: A device has been locked by another application;
exclusive communication cannot be granted within the
specified timeout period.

3.1.21.4. device_lock (::quartus::jtag)

The following table displays information for the device_lock Tcl command:

Tcl Package and
Version

Belongs to ::quartus::jtag on page 313

Syntax device_lock [-h | -help] [-long_help] -timeout <timeout>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-timeout <timeout> The amount of time in millisecond to wait for the access to
the device.

Description
Obtain an exclusive JTAG communication to the device
 for the subsequent IR and DR shift operations. The
 device must be locked before any instruction and/or
 data register shift operation.

This should be used as little time as possible as it
 denies the access of other applications to this
 chain. The command, unlock, should be called as soon
 as possible to allow other applications to access the
 device.

Example Usage # List all available programming hardwares, and select the USBBlaster.
(Note: this example assumes only one USBBlaster connected.)
puts "Programming Hardwares:"
foreach hardware_name [get_hardware_names] {
 puts $hardware_name
 if { [string match "USB-Blaster*" $hardware_name] } {
 set usbblaster_name $hardware_name
 }
}
puts "\nSelect JTAG chain connected to $usbblaster_name.\n";

List all devices on the chain, and select the first device on the chain.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

317

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

puts "\nDevices on the JTAG chain:"
foreach device_name [get_device_names -hardware_name $usbblaster_name] {
 puts $device_name
 if { [string match "@1*" $device_name] } {
 set test_device $device_name
 }
}
puts "\nSelect device: $test_device.\n";

Open device
open_device -hardware_name $usbblaster_name -device_name $test_device

Retrieve device id code.
IDCODE instruction value is 6; The ID code is 32 bits long.

IR and DR shift should be locked together to ensure that other applications
will not change the instruction register before the id code value is shifted
out while the instruction register is still holding the IDCODE instruction.
device_lock -timeout 10000
device_ir_shift -ir_value 6 -no_captured_ir_value
puts "IDCODE: 0x[device_dr_shift -length 32 -value_in_hex]"
device_unlock

Close device
close_device

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No device has been opened.

TCL_ERROR 1 ERROR: JTAG communication error is detected. It can be
caused by the hardware failure and signal integrity in the
JTAG chain. Try to restart.

TCL_ERROR 1 ERROR: A device was locked.

TCL_ERROR 1 ERROR: A device has been locked by another application;
exclusive communication cannot be granted within the
specified timeout period.

3.1.21.5. device_run_test_idle (::quartus::jtag)

The following table displays information for the device_run_test_idle Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::jtag on page 313

Syntax device_run_test_idle [-h | -help] [-long_help] [-num_clocks <state cycle count>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-num_clocks <state cycle count> The number of times the Run_Test_Idle state is cycled
through. If not specified, this value is 1

Description
Drive the JTAG controller into the Run_Test_Idle state
for a number cycles specified with the -num_clocks
option.

The device must be locked before you can perform this
operation.

Example Usage # List all available programming hardware, and select the USB-Blaster.
(Note: this example assumes only one USB-Blaster is connected.)
puts "Programming Hardware:"
foreach hardware_name [get_hardware_names] {
 puts $hardware_name
 if { [string match "USB-Blaster*" $hardware_name] } {
 set usbblaster_name $hardware_name
 }

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

318

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

}
puts "\nSelect JTAG chain connected to $usbblaster_name.\n";

List all devices on the chain, and select the first device on the chain.
puts "\nDevices on the JTAG chain:"
foreach device_name [get_device_names -hardware_name $usbblaster_name] {
 puts $device_name
 if { [string match "@1*" $device_name] } {
 set test_device $device_name
 }
}
puts "\nSelect device: $test_device.\n";

Open device
open_device -hardware_name $usbblaster_name -device_name $test_device

Retrieve device id code.
IDCODE instruction value is 6; The ID code is 32 bits long.

IR and DR shift should be locked together to ensure that other applications
will not change the instruction register before the id code value is shifted
out while the instruction register is still holding the IDCODE instruction.
device_lock -timeout 10000
device_ir_shift -ir_value 6 -no_captured_ir_value
puts "IDCODE: 0x[device_dr_shift -length 32 -value_in_hex]"

Goto the Run_Test_Idle state and stay there for 8 cycles.
device_run_test_idle -num_clocks 8
device_unlock

Close device
close_device

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: A device has not been locked; exclusive
communication must be obtained first.

TCL_ERROR 1 ERROR: A device has been locked by another application;
exclusive communication cannot be granted within the
specified timeout period.

3.1.21.6. device_unlock (::quartus::jtag)

The following table displays information for the device_unlock Tcl command:

Tcl Package and
Version

Belongs to ::quartus::jtag on page 313

Syntax device_unlock [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Release the exclusive JTAG communication lock on the device.

Example Usage # List all available programming hardwares, and select the USBBlaster.
(Note: this example assumes only one USBBlaster connected.)
puts "Programming Hardwares:"
foreach hardware_name [get_hardware_names] {
 puts $hardware_name
 if { [string match "USB-Blaster*" $hardware_name] } {
 set usbblaster_name $hardware_name
 }
}
puts "\nSelect JTAG chain connected to $usbblaster_name.\n";

List all devices on the chain, and select the first device on the chain.
puts "\nDevices on the JTAG chain:"
foreach device_name [get_device_names -hardware_name $usbblaster_name] {
 puts $device_name
 if { [string match "@1*" $device_name] } {
 set test_device $device_name

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

319

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 }
}
puts "\nSelect device: $test_device.\n";

Open device
open_device -hardware_name $usbblaster_name -device_name $test_device

Retrieve device id code.
IDCODE instruction value is 6; The ID code is 32 bits long.

IR and DR shift should be locked together to ensure that other applications
will not change the instruction register before the id code value is shifted
out while the instruction register is still holding the IDCODE instruction.
device_lock -timeout 10000
device_ir_shift -ir_value 6 -no_captured_ir_value
puts "IDCODE: 0x[device_dr_shift -length 32 -value_in_hex]"
device_unlock

Close device
close_device

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No device has been opened.

TCL_ERROR 1 ERROR: JTAG communication error is detected. It can be
caused by the hardware failure and signal integrity in the
JTAG chain. Try to restart.

TCL_ERROR 1 ERROR: A device has not been locked; exclusive
communication must be obtained first.

3.1.21.7. device_virtual_dr_shift (::quartus::jtag)

The following table displays information for the device_virtual_dr_shift Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::jtag on page 313

Syntax device_virtual_dr_shift [-h | -help] [-long_help] [-dr_value <data register
value>] -instance_index <instance index> -length <data register length> [-
no_captured_dr_value] [-show_equivalent_device_ir_dr_shift] [-value_in_hex]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-dr_value <data register value> Value of string operand type in either default binary or
hexadecimal format to be written into the data register in
this instance

-instance_index <instance index> The index of the virtual JTAG instance

-length <data register length> Length of the data register in this instance

-no_captured_dr_value Option to not return the data instruction register value

-
show_equivalent_device_ir_dr_
shift

Option to show equivalent device ir dr shifts performed by
this command

-value_in_hex Option to specify that the value string is represented in
hexadecimal format

Description
 Writes the specified value into the data register of
the JTAG tap controller of the open device. Returns
the captured data register value. The captured value
return can be disabled to improve the JTAG
communication speed by packing multiple IR or DR scans

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

320

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

together.

The value is specified using either a binary string or
a hexadecimal string. The bit on the left most side is
the first bit shifted in. For example, using the
binary string "010001", the first bit shifted into the
dr register is 1; the last bit is 0. The same string
can be represented in hexadecimal as "11".

The device must be locked first, and the target
instance must be activated using the
device_virtual_ir_shift command before this
operation. Moreover, the device should be locked
before the virtual IR shift operation to prevent
another application from activating another instance.

Example Usage # List all available programming hardware, and select the USB-Blaster.
(Note: this example assumes only one USB-Blaster is connected.)
puts "Programming Hardware:"
foreach hardware_name [get_hardware_names] {
 puts $hardware_name
 if { [string match "USB-Blaster*" $hardware_name] } {
 set usbblaster_name $hardware_name
 }
}
puts "\nSelect JTAG chain connected to $usbblaster_name.\n";

List all devices on the chain, and select the first device on the chain.
puts "\nDevices on the JTAG chain:"
foreach device_name [get_device_names -hardware_name $usbblaster_name] {
 puts $device_name
 if { [string match "@1*" $device_name] } {
 set test_device $device_name
 }
}
puts "\nSelect device: $test_device.\n";

Open device
open_device -hardware_name $usbblaster_name -device_name $test_device

The follow virtual JTAG IR and DR shift sequence engage with
the example virtual JTAG instance.

Two instructions: SAMPLE (1) FEED (2)
SAMPLE instruction samples a 8-bit bus; the captured value shows the number of sample
performed.
FEED instruction supplies a 8-bit value to the logic connected to this instance.
Both data registers corresponding to the IR are 8 bit wide.

Send SAMPLE instruction to IR, read captured IR for the sampling number.
Capture the DR register for the current sampled value.
device_lock -timeout 10000
puts "Current LED Value (sample #[device_virtual_ir_shift -instance_index 0 -ir_value 1]):
[device_virtual_dr_shift -instance_index 0 -length 8 -value_in_hex]"
device_unlock

Send FEED instruction to IR, read a two-digit hex string from the console,
then send the new value to the DR register.
puts "\nType in 2 digits in hexadecimal to update the LED:"
gets stdin update_value

device_lock -timeout 10000
device_virtual_ir_shift -instance_index 0 -ir_value 2 -no_captured_ir_value
device_virtual_dr_shift -instance_index 0 -length 8 -dr_value $update_value -value_in_hex -
no_captured_dr_value
device_unlock

Close device
close_device

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Captured value cannot be disabled at the time
when no value is shifted into data register.

TCL_ERROR 1 ERROR: The specified virtual JTAG instance cannot be
found.

TCL_ERROR 1 ERROR: One of the options, mfg_id, type_id and version is
specified, but not all. All of them are required.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

321

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: A device has not been locked; exclusive
communication must be obtained first.

TCL_ERROR 1 ERROR: A device has been locked by another application;
exclusive communication cannot be granted within the
specified timeout period.

TCL_ERROR 1 ERROR: The length of the value string specified does not
match the length parameter specified.

3.1.21.8. device_virtual_ir_shift (::quartus::jtag)

The following table displays information for the device_virtual_ir_shift Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::jtag on page 313

Syntax device_virtual_ir_shift [-h | -help] [-long_help] -instance_index <instance
index> -ir_value <instruction register value> [-no_captured_ir_value] [-
show_equivalent_device_ir_dr_shift]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-instance_index <instance index> The index of the virtual JTAG instance

-ir_value <instruction register
value>

Value to be written into the instruction register in this
instance. Operand must be of a TCL numerical type such as
decimal (10), hexadecimal (0xa), or octal number (012)

-no_captured_ir_value Option to not return the captured instruction register value.
If this is specified, this IR scan may be packed together with
the subsequent IR or DR scan until the device is unlocked or
a captured value is requested

-
show_equivalent_device_ir_dr_
shift

Option to show equivalent device ir and dr shifts performed
by this command

Description
 Writes the specified value into the instruction
register of the specified virtual JTAG instance in the
open device. Returns the captured instruction register
value. You can disable the captured value return to
improve the JTAG communication speed by packing
multiple IR or DR scans together.

The command also activates the target instance such
that the consequent virtual DR shift operations are
applied to this instance before the device is
unlocked. Before any virtual DR shift operation, this
command must be executed first to activate the
instance.

The device must be locked first before this operation.

Example Usage # List all available programming hardwares, and select the USBBlaster.
(Note: this example assumes only one USBBlaster connected.)
puts "Programming Hardwares:"
foreach hardware_name [get_hardware_names] {
 puts $hardware_name
 if { [string match "USB-Blaster*" $hardware_name] } {
 set usbblaster_name $hardware_name
 }
}
puts "\nSelect JTAG chain connected to $usbblaster_name.\n";

List all devices on the chain, and select the first device on the chain.
puts "\nDevices on the JTAG chain:"
foreach device_name [get_device_names -hardware_name $usbblaster_name] {
 puts $device_name

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

322

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 if { [string match "@1*" $device_name] } {
 set test_device $device_name
 }
}
puts "\nSelect device: $test_device.\n";

Open device
open_device -hardware_name $usbblaster_name -device_name $test_device

The follow virtual JTAG IR and DR shift sequence engage with
the example virtual JTAG instance.

Two instructions: SAMPLE (1) FEED (2)
SAMPLE instruction samples a 8-bit bus; the captured value shows the number of sample
performed.
FEED instruction supplies a 8-bit value to the logic connected to this instance.
Both data registers corresponding to the IR are 8 bit wide.

Send SAMPLE instruction to IR, read captured IR for the sampling number.
Capture the DR register for the current sampled value.
device_lock -timeout 10000
puts "Current LED Value (sample #[device_virtual_ir_shift -instance_index 0 -ir_value 1]):
[device_virtual_dr_shift -instance_index 0 -length 8 -value_in_hex]"
device_unlock

Send FEED instruction to IR, read a two-digit hex string from the console,
then send the new value to the DR register.
puts "\nType in 2 digits in hexadecimal to update the LED:"
gets stdin update_value
device_lock -timeout 10000
device_virtual_ir_shift -instance_index 0 -ir_value 2 -no_captured_ir_value
device_virtual_dr_shift -instance_index 0 -length 8 -dr_value $update_value -value_in_hex -
no_captured_dr_value
device_unlock

Close device
close_device

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The specified virtual JTAG instance cannot be
found.

TCL_ERROR 1 ERROR: One of the options, mfg_id, type_id and version is
specified, but not all. All of them are required.

TCL_ERROR 1 ERROR: A device has not been locked; exclusive
communication must be obtained first.

3.1.21.9. get_device_names (::quartus::jtag)

The following table displays information for the get_device_names Tcl command:

Tcl Package and
Version

Belongs to ::quartus::jtag on page 313

Syntax get_device_names [-h | -help] [-long_help] -hardware_name <hardware name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-hardware_name <hardware name> The name of the programming hardware that connects to
the JTAG chain. The name can be obtained from command:
get_hardware_names.

Description
 Retrieves a list of names of the devices on the JTAG
chain to which the specified programming hardware is
connected.

The name of the device is in the following format:
<number on circuit board>: <JTAG ID code>: <device
name>. For example, in the device name @1:
0x082000DD: EP20K200C, @1 indicates that it is the

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

323

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

first device on the circuit board, 0x082000DD is the
JTAG ID code for the device, and EP20K200C is the
device name.

Example Usage # List all available programming hardwares, and select the USBBlaster.
(Note: this example assumes only one USBBlaster connected.)
puts "Programming Hardwares:"
foreach hardware_name [get_hardware_names] {
 puts $hardware_name
 if { [string match "USB-Blaster*" $hardware_name] } {
 set usbblaster_name $hardware_name
 }
}
puts "\nSelect JTAG chain connected to $usbblaster_name.\n";

List all devices on the chain, and select the first device on the chain.
puts "\nDevices on the JTAG chain:"
foreach device_name [get_device_names -hardware_name $usbblaster_name] {
 puts $device_name
 if { [string match "@1*" $device_name] } {
 set test_device $device_name
 }
}
puts "\nSelect device: $test_device.\n";

Open device
open_device -hardware_name $usbblaster_name -device_name $test_device

Retrieve device id code.
IDCODE instruction value is 6; The ID code is 32 bits long.

IR and DR shift should be locked together to ensure that other applications
will not change the instruction register before the id code value is shifted
out while the instruction register is still holding the IDCODE instruction.
device_lock -timeout 10000
device_ir_shift -ir_value 6 -no_captured_ir_value
puts "IDCODE: 0x[device_dr_shift -length 32 -value_in_hex]"
device_unlock

Close device
close_device

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No device is detected in the specified JTAG chain.

TCL_ERROR 1 ERROR: The specified hardware is not found.

3.1.21.10. get_hardware_names (::quartus::jtag)

The following table displays information for the get_hardware_names Tcl command:

Tcl Package and
Version

Belongs to ::quartus::jtag on page 313

Syntax get_hardware_names [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Retrieves a list of the names of the programming
hardware attached to and configured for the JTAG
server.

The hardware name is in the following format:
<hardware type> [<port>].

 For example, in the hardware name USB-Blaster [USB-0],
USB-Blaster is the name of the programming hardware,
and USB-0 is the name of the port to which the
hardware is connected.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

324

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage # List all available programming hardware, and select the USB-Blaster.
(Note: this example assumes only one USB-Blaster is connected.)
puts "Programming Hardware:"
foreach hardware_name [get_hardware_names] {
 puts $hardware_name
 if { [string match "USB-Blaster*" $hardware_name] } {
 set usbblaster_name $hardware_name
 }
}
puts "\nSelect JTAG chain connected to $usbblaster_name.\n";

List all devices on the chain, and select the first device on the chain.
puts "\nDevices on the JTAG chain:"
foreach device_name [get_device_names -hardware_name $usbblaster_name] {
 puts $device_name
 if { [string match "@1*" $device_name] } {
 set test_device $device_name
 }
}
puts "\nSelect device: $test_device.\n";

Open device
open_device -hardware_name $usbblaster_name -device_name $test_device

Retrieve device id code.
IDCODE instruction value is 6; The ID code is 32 bits long.

IR and DR shift should be locked together to ensure that other applications
will not change the instruction register before the id code value is shifted
out while the instruction register is still holding the IDCODE instruction.
device_lock -timeout 10000
device_ir_shift -ir_value 6 -no_captured_ir_value
puts "IDCODE: 0x[device_dr_shift -length 32 -value_in_hex]"
device_unlock

Close device
close_device

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No programming hardware is attached to the JTAG
server or it is not configured properly.

3.1.21.11. open_device (::quartus::jtag)

The following table displays information for the open_device Tcl command:

Tcl Package and
Version

Belongs to ::quartus::jtag on page 313

Syntax open_device [-h | -help] [-long_help] -device_name <device name> -hardware_name
<hardware name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-device_name <device name> The name of the device on the JTAG chain. The name can
be obtained from command: get_device_names

-hardware_name <hardware name> The name of the programming hardware that connects to
the JTAG chain. The name can be obtained from command:
get_hardware_names

Description
Initiate a shared JTAG communication with the device.
 The command, close_device, is called to end the
 communication with the device.

Only one device can be opened per process. Multiple
 devices can be opened in multiple processes.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

325

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage # List all available programming hardwares, and select the USBBlaster.
(Note: this example assumes only one USBBlaster connected.)
puts "Programming Hardwares:"
foreach hardware_name [get_hardware_names] {
 puts $hardware_name
 if { [string match "USB-Blaster*" $hardware_name] } {
 set usbblaster_name $hardware_name
 }
}
puts "\nSelect JTAG chain connected to $usbblaster_name.\n";

List all devices on the chain, and select the first device on the chain.
puts "\nDevices on the JTAG chain:"
foreach device_name [get_device_names -hardware_name $usbblaster_name] {
 puts $device_name
 if { [string match "@1*" $device_name] } {
 set test_device $device_name
 }
}
puts "\nSelect device: $test_device.\n";

Open device
open_device -hardware_name $usbblaster_name -device_name $test_device

Retrieve device id code.
IDCODE instruction value is 6; The ID code is 32 bits long.

IR and DR shift should be locked together to ensure that other applications
will not change the instruction register before the id code value is shifted
out while the instruction register is still holding the IDCODE instruction.
device_lock -timeout 10000
device_ir_shift -ir_value 6 -no_captured_ir_value
puts "IDCODE: 0x[device_dr_shift -length 32 -value_in_hex]"
device_unlock

Close device
close_device

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: A device was opened. Only one device can be open
at a time within this process. Close previously opened
device first.

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: The specified hardware is not found.

3.1.22. ::quartus::logic_analyzer_interface

The following table displays information for
the ::quartus::logic_analyzer_interface Tcl package:

Tcl Package and Version ::quartus::logic_analyzer_interface 1.0

Description
This package contains the set of Tcl functions for
querying and modifying the Logic Analyzer Interface
output pin state in an Intel device.

Availability This package is loaded by default in the following executables:

 quartus_stp
 quartus_stp_tcl

Tcl Commands begin_logic_analyzer_interface_control (::quartus::logic_analyzer_interface) on page
327
change_bank_to_output_pin (::quartus::logic_analyzer_interface) on page 328
end_logic_analyzer_interface_control (::quartus::logic_analyzer_interface) on page 329
get_current_state_of_output_pin (::quartus::logic_analyzer_interface) on page 330
tristate_output_pin (::quartus::logic_analyzer_interface) on page 331

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

326

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.22.1. begin_logic_analyzer_interface_control
(::quartus::logic_analyzer_interface)

The following table displays information for the
begin_logic_analyzer_interface_control Tcl command:

Tcl Package and
Version

Belongs to ::quartus::logic_analyzer_interface on page 326

Syntax begin_logic_analyzer_interface_control [-h | -help] [-long_help] -device_name
<device name> -file_path <file path> -hardware_name <hardware name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-device_name <device name> Name of the device to be controlled

-file_path <file path> Path of the Logic Analyzer Interface (.lai) file

-hardware_name <hardware name> Name of the hardware that connects to the JTAG chain

Description
 Starts the Logic Analyzer Interface control sequence
to query the Logic Analyzer Interface output pin state
and change output pins state. The control sequence
should be terminated with
end_logic_analyzer_interface_control.

The hardware and device name can be obtained by using
get_hardware_names and get_device_names respectively
from the jtag package.

Example Usage # Start a new control sequence.
begin_logic_analyzer_interface_control -hardware_name "USB-Blaster \[USB-0\]" -device_name
"@1: EP1C20 (0x020840DD)" -file_path "lai_demo.lai"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Change input bank source to the output pins
change_bank_to_output_pin -instance_name "auto_lai_0" -bank_name "Bank 1"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Change input bank source to the output pins
change_bank_to_output_pin -instance_name "auto_lai_0" -bank_index 0

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Tristate the output pins
tristate_output_pin -instance_name "auto_lai_0"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

End the control sequence.
end_logic_analyzer_interface_control

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: A Logic Analyzer Interface control sequence has
been started already.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

327

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: The Logic Analyzer Interface file (.lai) cannot be
opened, or it is an invalid file.

TCL_ERROR 1 ERROR: The specified hardware is not found.

3.1.22.2. change_bank_to_output_pin (::quartus::logic_analyzer_interface)

The following table displays information for the change_bank_to_output_pin Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::logic_analyzer_interface on page 326

Syntax change_bank_to_output_pin [-h | -help] [-long_help] [-bank_index <bank index>]
[-bank_name <bank name>] -instance_name <instance name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-bank_index <bank index> Index of the bank on the mux to be used as the source of
the output pins

-bank_name <bank name> Name of the bank to be used as the source of the output
pins

-instance_name <instance name> Name of the Logic Analyzer Interface instance to change

Description
 Change the Logic Analyzer Interface output pin's
 source on the specified instance to use the specified
 bank.

Example Usage # Start a new control sequence.
begin_logic_analyzer_interface_control -hardware_name "USB-Blaster \[USB-0\]" -device_name
"@1: EP1C20 (0x020840DD)" -file_path "lai_demo.lai"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Change input bank source to the output pins
change_bank_to_output_pin -instance_name "auto_lai_0" -bank_name "Bank 1"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Change input bank source to the output pins
change_bank_to_output_pin -instance_name "auto_lai_0" -bank_index 0

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Tristate the output pins
tristate_output_pin -instance_name "auto_lai_0"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

End the control sequence.
end_logic_analyzer_interface_control

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No Logic Analyzer Interface control sequence has
been started.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

328

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: The specified hardware is not found.

TCL_ERROR 1 ERROR: The specified Logic Analyzer Interface instance in
the file is not compatible with the instance in the device.

TCL_ERROR 1 ERROR: JTAG communication error is detected. It can be
caused by the hardware failure or poor signal integrity in
the JTAG chain.

TCL_ERROR 1 ERROR: The specified bank cannot be found in the Logic
Analyzer Interface instance.

TCL_ERROR 1 ERROR: The specified Logic Analyzer Interface instance
cannot be found.

TCL_ERROR 1 ERROR: The version of the specified Logic Analyzer
Interface instance is not supported in this release of
software.

3.1.22.3. end_logic_analyzer_interface_control
(::quartus::logic_analyzer_interface)

The following table displays information for the
end_logic_analyzer_interface_control Tcl command:

Tcl Package and
Version

Belongs to ::quartus::logic_analyzer_interface on page 326

Syntax end_logic_analyzer_interface_control [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Terminate the Logic Analyzer Interface control sequence.

Example Usage # Start a new control sequence.
begin_logic_analyzer_interface_control -hardware_name "USB-Blaster \[USB-0\]" -device_name
"@1: EP1C20 (0x020840DD)" -file_path "lai_demo.lai"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Change input bank source to the output pins
change_bank_to_output_pin -instance_name "auto_lai_0" -bank_name "Bank 1"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Change input bank source to the output pins
change_bank_to_output_pin -instance_name "auto_lai_0" -bank_index 0

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Tristate the output pins
tristate_output_pin -instance_name "auto_lai_0"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

End the control sequence.
end_logic_analyzer_interface_control

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

329

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No Logic Analyzer Interface control sequence has
been started.

3.1.22.4. get_current_state_of_output_pin (::quartus::logic_analyzer_interface)

The following table displays information for the
get_current_state_of_output_pin Tcl command:

Tcl Package and
Version

Belongs to ::quartus::logic_analyzer_interface on page 326

Syntax get_current_state_of_output_pin [-h | -help] [-long_help] -instance_name
<instance name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-instance_name <instance name> Name of the Logic Analyzer Interface instance to change

Description
Query the device to get the current state of the
output pins of the specified instance.

The result is either the bank name or "tristated".

Example Usage # Start a new control sequence.
begin_logic_analyzer_interface_control -hardware_name "USB-Blaster \[USB-0\]" -device_name
"@1: EP1C20 (0x020840DD)" -file_path "lai_demo.lai"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Change input bank source to the output pins
change_bank_to_output_pin -instance_name "auto_lai_0" -bank_name "Bank 1"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Change input bank source to the output pins
change_bank_to_output_pin -instance_name "auto_lai_0" -bank_index 0

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Tristate the output pins
tristate_output_pin -instance_name "auto_lai_0"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

End the control sequence.
end_logic_analyzer_interface_control

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No Logic Analyzer Interface control sequence has
been started.

TCL_ERROR 1 ERROR: The specified device is not found.

TCL_ERROR 1 ERROR: The specified hardware is not found.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

330

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The specified Logic Analyzer Interface instance in
the file is not compatible with the instance in the device.

TCL_ERROR 1 ERROR: JTAG communication error is detected. It can be
caused by the hardware failure or poor signal integrity in
the JTAG chain.

TCL_ERROR 1 ERROR: The specified Logic Analyzer Interface instance
cannot be found.

TCL_ERROR 1 ERROR: The version of the specified Logic Analyzer
Interface instance is not supported in this release of
software.

3.1.22.5. tristate_output_pin (::quartus::logic_analyzer_interface)

The following table displays information for the tristate_output_pin Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::logic_analyzer_interface on page 326

Syntax tristate_output_pin [-h | -help] [-long_help] -instance_name <instance name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-instance_name <instance name> Name of the Logic Analyzer Interface instance to change

Description
Tristate the output pins of the specified Logic Analyzer Interface instance.

Example Usage # Start a new control sequence.
begin_logic_analyzer_interface_control -hardware_name "USB-Blaster \[USB-0\]" -device_name
"@1: EP1C20 (0x020840DD)" -file_path "lai_demo.lai"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Change input bank source to the output pins
change_bank_to_output_pin -instance_name "auto_lai_0" -bank_name "Bank 1"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Change input bank source to the output pins
change_bank_to_output_pin -instance_name "auto_lai_0" -bank_index 0

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

Tristate the output pins
tristate_output_pin -instance_name "auto_lai_0"

Query the output pin state.
puts "Current output pin state of instance auto_lai_0:"
puts [get_current_state_of_output_pin -instance_name "auto_lai_0"]

End the control sequence.
end_logic_analyzer_interface_control

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No Logic Analyzer Interface control sequence has
been started.

TCL_ERROR 1 ERROR: The specified device is not found.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

331

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The specified hardware is not found.

TCL_ERROR 1 ERROR: The specified Logic Analyzer Interface instance in
the file is not compatible with the instance in the device.

TCL_ERROR 1 ERROR: JTAG communication error is detected. It can be
caused by the hardware failure or poor signal integrity in
the JTAG chain.

TCL_ERROR 1 ERROR: The specified Logic Analyzer Interface instance
cannot be found.

TCL_ERROR 1 ERROR: The version of the specified Logic Analyzer
Interface instance is not supported in this release of
software.

3.1.23. ::quartus::misc

The following table displays information for the ::quartus::misc Tcl package:

Tcl Package and Version ::quartus::misc 1.0

Description
This package contains a set of Tcl functions for performing
miscellaneous tasks.

Availability This package is loaded by default in the following executables:

 hdb_debug
 qacv
 qpro
 qpro_sh
 quartus
 quartus_cdb
 quartus_drc
 quartus_eda
 quartus_fit
 quartus_ipc
 quartus_ipd
 quartus_ipgenerate
 quartus_map
 quartus_sh
 quartus_si
 quartus_sim
 quartus_sta
 quartus_stp

Tcl Commands checksum (::quartus::misc) on page 333
disable_natural_bus_naming (::quartus::misc) on page 333
enable_natural_bus_naming (::quartus::misc) on page 334
escape_brackets (::quartus::misc) on page 335
foreach_in_collection (::quartus::misc) on page 336
get_collection_size (::quartus::misc) on page 338
get_environment_info (::quartus::misc) on page 339
get_message_count (::quartus::misc) on page 339
init_tk (::quartus::misc) on page 340
load (::quartus::misc) on page 340
load_package (::quartus::misc) on page 341
post_message (::quartus::misc) on page 342
qerror (::quartus::misc) on page 343
qexec (::quartus::misc) on page 343
qexit (::quartus::misc) on page 344
record_tcl_cmd (::quartus::misc) on page 344
stopwatch (::quartus::misc) on page 345

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

332

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.23.1. checksum (::quartus::misc)

The following table displays information for the checksum Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax checksum [-h | -help] [-long_help] [-algorithm <crc32|adler32>] <input_file>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-algorithm <crc32|adler32> Option to specify the checksum algorithm. Uses the CRC-32
algorithm by default.

<input_file> Option to specify the input file

Description
Returns the checksum value in hexadecimal format based on the
specified algorithm which defaults to crc32.

Example Usage set file "one_wire.sof"
 # Use CRC-32
puts "$file -> [checksum $file]"
puts "$file -> [checksum $file -algorithm crc32]"
 # Use ADLER-32
puts "$file -> [checksum $file -algorithm adler32]"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't read file: <string>. Make sure the file exists
and is not a directory, and you have permission to read the
file.

3.1.23.2. disable_natural_bus_naming (::quartus::misc)

The following table displays information for the disable_natural_bus_naming Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax disable_natural_bus_naming [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Disables natural bus naming.

You may choose to disable natural bus naming to string match patterns
such as "in\[024\]". In this example, you are string matching the
names "in0", "in2", and "in4".

Note that if you disable natural bus naming, then square brackets must
be escaped twice (\\\[or \\\]) so that the strings are interpreted as
bus names during a string match, such as:

set bus_name "address\[0\]" string match [escape_brackets $bus_name]
$bus_name

The "escape_brackets" command escapes "address\[0\]" into
"address\\\[0\\\]".

To enable natural bus naming again, type "enable_natural_bus_naming".

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

333

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about natural bus naming, type
"enable_natural_bus_naming -h".

Example Usage # Disables natural bus naming
disable_natural_bus_naming

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.23.3. enable_natural_bus_naming (::quartus::misc)

The following table displays information for the enable_natural_bus_naming Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax enable_natural_bus_naming [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Enables natural bus naming so that square brackets for bus names do
not have to be escaped to prevent Tcl from interpreting them as
sub-commands.

Bus names have the following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters. The
<bus index> portion is an integer greater than or equal to zero or it
can be the character "*" used for string matching. Notice that the
<bus index> is enclosed by the square brackets "[" and "]". For
example, "a[0]" and "a[*]" are supported bus names.

Many Quartus Prime Tcl commands allow bus names in their arguments, such
as:

set_location_assignment -to address[10] Pin_M20

If natural bus naming is enabled, you can just use address[10] instead
of having to excape the square brackets into address\[10\].

There are also Quartus Prime Tcl commands that take Tcl string match
patterns in their arguments, such as:

get_all_instance_assignments -name location -to address[10]

Since Tcl string matching take string patterns containing special
characters from the set "*?\[]" as values, address[10] would be
interpreted incorrectly. By enabling natural bus naming, these Tcl
commands will automatically detect address[10] as a bus name so that
you don't have to doubly escape the brackets into address\\\[10\\\].

To disable natural bus naming, type
"disable_natural_bus_naming".

For more information on the effects of disabling natural bus naming,
type "disable_natural_bus_naming -h".

Example Usage # Enables natural bus naming
enable_natural_bus_naming

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

334

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.23.4. escape_brackets (::quartus::misc)

The following table displays information for the escape_brackets Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax escape_brackets [-h | -help] [-long_help] <str>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<str> String to escape

Description
Escapes square brackets in bus name patterns for use in string
matching. Also escapes the escape character; for example, the string
"\" is escaped into "\\".

Note that natural bus naming is supported by default. This means that
bus names, not bus name patterns, are automatically detected and do
not need to be escaped by using this command. Bus names have the
following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters. The
<bus index> portion is an integer greater than or equal to zero or it
can be the character "*" used for string matching. Notice that the
<bus index> is enclosed by the square brackets "[" and "]". For
example, "a[0]" and "a[*]" are supported bus names.

All other uses of square brackets must be escaped if you do not intend
to use the brackets as part of a string pattern in a string match. For
example, the bus name pattern "a\[0-2\]" must be escaped using this
"escape_brackets" command since the "0-2" does not satisfy the <bus
index> requirement to be a bus name.

Many Quartus Prime Tcl commands allow string matching in option
arguments. A common error is using bus name patterns in these
arguments, such as:

address\[0-2\]

Square brackets for bus name patterns must already be preceded by an
escape character (\[or \]) to prevent Tcl from interpreting them as
sub-commands. String matching, however, also uses square brackets to
match any character between the brackets. The previous example, when
used as a string match pattern, searches for the string patterns
address0, address1, and address2. It does not search for address[0],
address[1], and address[2].

Therefore, for arguments that support string matching, square brackets
must be escaped twice (\\\[or \\\]) so that the strings are
interpreted as bus name patterns. For example, to search for
address[0], address[0], and address[2], type the following string
match pattern:

address\\\[\[0-2\]\\\]

or, equivalently,

"address[escape_brackets \[]\[0-2\][escape_brackets \]]"

Quartus Prime Tcl commands do not convert bus name patterns
automatically, since they cannot determine if the string is intended
as a bus name pattern or a regular string match pattern. Therefore,
"escape_brackets" is provided for your convenience.

You may choose to disable natural bus naming in order to string match
patterns such as "in\[024\]". In this example, you are string matching
the names "in0", "in2", and "in4".

To disable natural bus naming, type
"disable_natural_bus_naming".

Note that if you disable natural bus naming, then square brackets must
be escaped twice (\\\[or \\\]) so that the strings are interpreted as
bus names during a string match, such as:

set bus_name "address\[0\]"
string match [escape_brackets $bus_name] $bus_name

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

335

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The "escape_brackets" command escapes "address\[0\]" into
"address\\\[0\\\]".

To enable natural bus naming again, type
"enable_natural_bus_naming".

For more information about natural bus naming, type
"enable_natural_bus_naming -h".

Example Usage # Get all location assignments for bus address[]
set address_names address[*]
set address_locations [get_all_instance_assignments -to $address_names] -name LOCATION

Get location assignment for bus address[0]
set address_names address[0]
set address_locations [get_all_instance_assignments -to $address_names] -name LOCATION

Get location assignments for bus address[0],
address[1], and address[2]
set address_names address[0-2]
set address_locations [get_all_instance_assignments -to [escape_brackets $address_names]] -
name LOCATION

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.23.5. foreach_in_collection (::quartus::misc)

The following table displays information for the foreach_in_collection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax foreach_in_collection [-h | -help] [-long_help] <variable_name> <collection>
<body>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<variable_name> Variable name

<collection> Collection

<body> Body

Description
Accesses each element of a collection.

Some Tcl commands return a collection. The following table shows
examples of commands that return a collection:

Tcl package Tcl commands (returning a collection)
-------------------------- --
::quartus::project get_all_quartus_defaults
 get_all_global_assignments
 get_all_instance_assignments
 get_all_parameters
 get_names
 assignment_group (only for the "-get_members"
 and "-get_exceptions" options)

::quartus::chip_editor get_nodes
 get_iports
 get_oports

The command is used in the following format:

foreach_in_collection <variable name> <collection> {

 # This is the body of "foreach_in_collection"
 ...
}

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

336

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Unlike a Tcl list, a collection is a container specific to the Quartus
II software, whose elements can be accessed by using the
"foreach_in_collection" command.

Example Usage ## Get a collection of global assignments
set collection_of_global_assignments [get_all_global_assignments -name *]
Display the collection string representation
puts $collection_of_global_assignments
Iterate through the collection and display
the information for each global assignment
foreach_in_collection global $collection_of_global_assignments {

 set sect_id [lindex $global 0]
 set name [lindex $global 1]
 set value [lindex $global 2]

 ## Now, display the content of the global assignment
 puts "Section ID ($sect_id)"
 puts "Assignment Name ($name)"
 puts "Assignment Value ($value)"
}

Get a collection of instance assignments
set collection_of_instance_assignments [get_all_instance_assignments -name *]
Display the collection string representation
puts $collection_of_instance_assignments
Iterate through the collection and display
the information for each instance assignment
foreach_in_collection instance $collection_of_instance_assignments {

 set sect_id [lindex $instance 0]
 set src [lindex $instance 1]
 set dest [lindex $instance 2]
 set name [lindex $instance 3]
 set value [lindex $instance 4]

 ## Now, display the content of the instance assignment
 puts "Section ID ($sect_id)"
 puts "Source ($src)"
 puts "Destination ($dest)"
 puts "Assignment Name ($name)"
 puts "Assignment Value ($value)"
}

Get a collection of parameters
set collection_of_parameters [get_all_parameters -name *]
Display the collection string representation
puts $collection_of_parameters
Iterate through the collection and display
the information for each parameter
foreach_in_collection parameter $collection_of_parameters {

 set dest [lindex $parameter 0]
 set name [lindex $parameter 1]
 set value [lindex $parameter 2]

 ## Now, display the content of the parameter
 puts "Destination ($dest)"
 puts "Parameter Name ($name)"
 puts "Parameter Value ($value)"
}

Get a collection of all node name ids from a successful
compilation
set collection_of_name_ids [get_names -filter *]
Display the collection string representation
puts $collection_of_name_ids
Iterate through the collection and display
the information for each name id
foreach_in_collection name_id $collection_of_name_ids {

 set parent_name_id [get_name_info -info parent_name_id $name_id]
 set base_name [get_name_info -info base_name $name_id]
 set entity_name [get_name_info -info entity_name $name_id]
 set instance_name [get_name_info -info instance_name $name_id]
 set full_path [get_name_info -info full_path $name_id]
 set short_full_path [get_name_info -info short_full_path $name_id]
 set node_type [get_name_info -info node_type $name_id]
 set creator [get_name_info -info creator $name_id]
 set signaltapii [get_name_info -info signaltapii $name_id]
 set file_location [get_name_info -info file_location $name_id]

 ## Now, display information about the name
 puts "Parent Name Id ($parent_name_id)"
 puts "Base Name ($base_name)"
 puts "Entity Name ($entity_name)"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

337

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 puts "Instance Name ($instance_name)"
 puts "Full Path ($full_path)"
 puts "Short Full Path ($short_full_path)"
 puts "Node Type ($node_type)"
 puts "Creator ($creator)"
 puts "Signaltapii ($signaltapii)"
 puts "File location ($file_location)"
}

Display the members of a particular assignment group named "tg1"
foreach_in_collection member [assignment_group "tg1" -get_members] {

 # Print the name of the member
 puts $member
}

Display the exception to a particular assignment group named "tg1"
foreach_in_collection exception [assignment_group "tg1" -get_exceptions] {

 # Print the name of the exception
 puts $exception
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.23.6. get_collection_size (::quartus::misc)

The following table displays information for the get_collection_size Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax get_collection_size [-h | -help] [-long_help] [<collection>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<collection> Collection

Description
Returns the size of a collection.

Unlike a Tcl list, a collection is a container specific to the
Quartus Prime software, whose elements can be accessed by using the
"foreach_in_collection" command.

Example Usage ## Displays the number of global assignments
project_open chiptrip
set num_global_asgns [get_collection_size [get_all_global_assignments -name {*}]]
puts $num_global_asgns
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Collection does not exist with name: <string>.
Specify the collection name returned by a Tcl command that
supports foreach_in_collection. Note a valid collection name
can become invalid if the variable holding the collection
goes out of scope, as well as a result of some built-in TCL
commands, for example 'string length'.

TCL_ERROR 1 ERROR: Nested calls to foreach_in_collection with the same
collection name <string> are not allowed. Specify a
different collection name for the other collection.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

338

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.23.7. get_environment_info (::quartus::misc)

The following table displays information for the get_environment_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax get_environment_info [-h | -help] [-long_help] [-num_logical_processors] [-
num_physical_processors] [-operating_system]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-num_logical_processors Option to return the number of available logical processors
(cores including hyper-threading)

-num_physical_processors Option to return the number of available physical processors
(sockets)

-operating_system Option to return the operating system name

Description
 Returns information about the system environment depending on the
options specified.

Example Usage # Get the number of physical processors available on my computer.
get_environment_info -num_physical_processors

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: At least one option is required. Specify at least one
option.

TCL_ERROR 1 ERROR: Multiple options used. Choose only one option for
this command.

3.1.23.8. get_message_count (::quartus::misc)

The following table displays information for the get_message_count Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax get_message_count [-h | -help] [-long_help] -type <info|extra_info|warning|
critical_warning|error>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-type <info|extra_info|warning|
critical_warning|error>

Type of message

Description
 Get a count of messages of a specific message type.

The message type can be "info", "warning",
"critical_warning", or "error".

Example Usage # Get count of error messages
get_message_count -type error

Get count of warning messages
get_message_count -type warning

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

339

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Get count of critical warning messages
get_message_count -type critical_warning

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal message type: <string>. Specify info,
warning, critical_warning, or error.

TCL_ERROR 1 ERROR: Missing required positional argument: <string>.
Specify the <string> argument.

TCL_ERROR 1 ERROR: You specified <string> arguments to the -args
option. However, you can pass a maximum of <string>
arguments.

3.1.23.9. init_tk (::quartus::misc)

The following table displays information for the init_tk Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax init_tk [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description

Initializes a Tk window. If you are using Tk functionality in Tcl, you
must run this command first before running any Tcl scripts.

Example Usage # Initialize the Tk library
init_tk

Create a top level and add a title
toplevel .top
wm title .top "Hello World"

Add widgets
button .top.hello -text Hello -command {puts stdout "Hello, World!"}
pack .top.hello -padx 20 -pady 10

Without "tkwait", the script finishes at this point and the
window is destroyed. The "tkwait" command prevents the
script from finishing until the you close the window.
tkwait window .top

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.23.10. load (::quartus::misc)

The following table displays information for the load Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax load [-h | -help] [-long_help] <load_args>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

340

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<load_args> Arguments to load

Description
Loads machine code and initializes new commands.

This command works exactly like Tcl's native "load" command.

Example Usage Refer to documentation for Tcl's native "load" command
at the Tcl/Tk web site at www.tcl.tk.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't load library: <string>. The operating system
reports the following error: <string>

3.1.23.11. load_package (::quartus::misc)

The following table displays information for the load_package Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax load_package [-h | -help] [-long_help] [-version <version number>] <package
name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-version <version number> Option to specify the Quartus Prime Tcl package version to
load

<package name> Name of Quartus Prime Tcl package to load

Description
Loads the specified Quartus Prime Tcl package with the specified
version number. If you do not specify the "-version" option, the
latest version is loaded by default.

The Quartus Prime Tcl package names have the "::quartus::" prefix, such
as "::quartus::project". For convenience, you can omit the
"::quartus::" prefix when you use the <package name> argument.

This command is similar to the "package require" command. The
advantage of using "load_package" is that you can alternate freely
between different versions of the same package.

For example, if you loaded version 2.0, and now want to load version
1.0, you can type:

"load_package -version 1.0 <package name>".

Example Usage # Load version 1.0 of the ::quartus::project package
load_package project -version 1.0

Load version 2.0 of the ::quartus::project package
load_package project -version 2.0

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Tcl package <string> does not exist. Specify an
available Quartus Prime Tcl package. Type help for a list of
available Quartus Prime Tcl packages.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

341

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Tcl package <string> version <string> does not
exist. Specify an available Quartus Prime Tcl package. Type
help for a list of available Quartus Prime Tcl packages.

TCL_ERROR 1 ERROR: Tcl package <string> is only available in Quartus
Pro Edition

TCL_ERROR 1 ERROR: Tcl package <string> is only available in Quartus
Standard Edition

3.1.23.12. post_message (::quartus::misc)

The following table displays information for the post_message Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax post_message [-h | -help] [-long_help] [-type <info|extra_info|warning|
critical_warning|error>] [<string>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-type <info|extra_info|warning|
critical_warning|error>

Type of message to display

<string> Message to be displayed

Description
Displays messages and sub-messages of the specified
type.

The message type can be "info", "warning",
"critical_warning", or "error".

If you do not use the -type option, the default message
type is "info".

The "extra_info" type is deprecated. Messages with this
type will not be displayed. Use the "info" type instead.

Use the -submsgs option to group messages indented
under a message. The -submsgs option posts each string
in a Tcl list of strings as a sub-message. The
sub-messages have the same message type as the main
message.

Example Usage # Display an error message
post_message -type error "Can't open file test.tcl"

Display an info message
post_message "Generated output file: test.out"
OR
post_message -type info "Generated output file: test.out"

Display an info message with a sub-message
post_message "Generated output file: test.out" -submsgs [list "Ouput file saved in project
directory"]

Display a warning message
post_message -type warning "Defaulting fmax to 155.55mhz"

Display a critical warning message
post_message -type critical_warning "Invalid fmax was specified - defaulting to 155.55mhz"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Error(s) found while processing handle: <string>.
Make sure you specified a valid Quartus Prime message
handle for the -<string> option and passed the correct

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

342

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

number of arguments to the -<string> option. Also check
that you passed the correct message type to the -<string>
option.

TCL_ERROR 1 ERROR: Illegal message type: <string>. Specify info,
warning, critical_warning, or error.

TCL_ERROR 1 ERROR: Missing required positional argument: <string>.
Specify the <string> argument.

TCL_ERROR 1 ERROR: You specified <string> arguments to the -args
option. However, you can pass a maximum of <string>
arguments.

3.1.23.13. qerror (::quartus::misc)

The following table displays information for the qerror Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax qerror [-h | -help] [-long_help] [-error_null] [-over_malloc] [-qt_segfault] [-
std_segfault]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-error_null Option to error by dereferencing null

-over_malloc Option to error by malloc'ing INT_MAX

-qt_segfault Accesses an element at an invalid index in a QT container

-std_segfault Accesses an element at an invalid index in a std container

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.23.14. qexec (::quartus::misc)

The following table displays information for the qexec Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax qexec [-h | -help] [-long_help] <command>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<command> Command

Description
Runs the specified shell command from within a Tcl
shell or script.

Usage for this command is as follows:
 qexec "<command>"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

343

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage qexec ls

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.23.15. qexit (::quartus::misc)

The following table displays information for the qexit Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax qexit [-h | -help] [-long_help] [-error] [-success]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-error Option to exit with an equivalent Quartus Prime error code

-success Option to exit with an equivalent Quartus Prime success
code

Description
Exits the Quartus Prime software.

The Quartus Prime Tcl command "qexit" is equivalent to the Tcl command
"exit".

When used with a particular option, this command exits the Quartus Prime
software with the corresponding Quartus Prime exit code. For example,
typing "qexit -success" is equivalent to typing "exit 0". When the
"-success" option is specified, the corresponding Quartus Prime exit code
is "0".

If no option is specified, the default exit code is the same as for
the "-success" option.

Example Usage 1) To exit the Quartus Prime software with an equivalent
 Quartus Prime success code, type:

 qexit -success

2) To exit the Quartus Prime software with an equivalent
 Quartus Prime error code, type:

 qexit -error

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.23.16. record_tcl_cmd (::quartus::misc)

The following table displays information for the record_tcl_cmd Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax record_tcl_cmd [-h | -help] [-long_help] [-filename <file name>] <start_end>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filename <file name> Option to specify an user filename

<start_end> To start or end recording

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

344

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Start or end to record Tcl commands.

Example Usage 1) Type "record_tcl_cmd" start -filename user.rec
To start record Tcl commands with filename "user.rec"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.23.17. stopwatch (::quartus::misc)

The following table displays information for the stopwatch Tcl command:

Tcl Package and
Version

Belongs to ::quartus::misc on page 332

Syntax stopwatch [-h | -help] [-long_help] [-lap_time] [-number_format] [-reset] [-
start]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-lap_time Option to get the lap time

-number_format Option to show the lap time in seconds without appending
the "s", i.e. seconds, character

-reset Option to reset the stopwatch

-start Option to start the stopwatch

Description
Provides a stopwatch interface.

Example Usage # Begin the stopwatch
stopwatch -start
exec sleep 1
 # Get the lap time
puts [stopwatch -lap_time]
exec sleep 1
 # Get the lap time
puts [stopwatch -lap_time]
 # Reset the stopwatch
stopwatch -reset

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.24. ::quartus::names

The following table displays information for the ::quartus::names Tcl package:

Tcl Package and Version ::quartus::names 1.0

Description
This package contains no general description.

Availability This package is available for loading in the following executables:

 qpro_sh
 quartus_asm
 quartus_cdb
 quartus_eda

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

345

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 quartus_fit
 quartus_map
 quartus_pow
 quartus_sh
 quartus_sta
 quartus_syn

Tcl Commands get_assignment (::quartus::names) on page 346
set_assignment (::quartus::names) on page 346

3.1.24.1. get_assignment (::quartus::names)

The following table displays information for the get_assignment Tcl command:

Tcl Package and
Version

Belongs to ::quartus::names on page 345

Syntax get_assignment [-h | -help] [-long_help] -dict -name <ASSIGNMENT_NAME> [-to
<ASSIGNMENT_TO>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-dict Indicates this command should return it's result as a Tcl dict
object.

-name <ASSIGNMENT_NAME> The assignment name to get the value of.

-to <ASSIGNMENT_TO> The node to retrieve the assignment value from (omitting
this will retrieve the global assignment value, if any).

Description
Gets the assignment's value. If -to is specified, tries to get the assignment value on
the given node, as long as the assignment targeted the node using it's -to field. If -to
is not specified, the global value is returned (if any).

If the assignment is not found, a Tcl error is produced. If the assignment is found and
the -dict option is given, a Tcl dict object is returned with the assignment 'name' (the
given input), and the 'value' retrieved from the found assignment. In addition, if the
assignment has a 'to' or 'from' field, those fields will also exist in the returned dict.

Example Usage # Returns fitter seed
get_assignment SEED

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No assignment matching the name <string> was
found.

3.1.24.2. set_assignment (::quartus::names)

The following table displays information for the set_assignment Tcl command:

Tcl Package and
Version

Belongs to ::quartus::names on page 345

Syntax set_assignment [-h | -help] [-long_help] -name <ASSIGNMENT_NAME> [-to
<INSTANCE_NAME>] -value <VALUE>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <ASSIGNMENT_NAME> The assignment name to set.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

346

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-to <INSTANCE_NAME> The node to which the assignment should be applied.

-value <VALUE> The value to set the assignment to.

Description
Sets the assignment to the given value. If -to is specified, tries to set
the assignment value to the given node. If -to is not specified, this
applies to global assignments.

Example Usage set_assignment SEED 9

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No assignment matching the name <string> was
found.

3.1.25. ::quartus::periph

The following table displays information for the ::quartus::periph Tcl package:

Tcl Package and Version ::quartus::periph 1.0

Description
This package contains the set of Tcl functions for interacting with the Interface
Planner plans.

Availability This package is available for loading in the following executable:

 quartus_fit

Tcl Commands blueprint::initialize (::quartus::periph) on page 352
blueprint::shutdown (::quartus::periph) on page 362
periph::check_plan (::quartus::periph) on page 348
periph::get_cell_info (::quartus::periph) on page 348
periph::get_cells (::quartus::periph) on page 349
periph::get_location_info (::quartus::periph) on page 350
periph::get_placement_info (::quartus::periph) on page 351
periph::get_placements (::quartus::periph) on page 352
periph::load_floorplan (::quartus::periph) on page 353
periph::place_cells (::quartus::periph) on page 353
periph::remove_invalid_reports (::quartus::periph) on page 354
periph::report_all (::quartus::periph) on page 355
periph::report_cell_connectivity (::quartus::periph) on page 355
periph::report_cell_placement_reasons (::quartus::periph) on page 356
periph::report_cells (::quartus::periph) on page 356
periph::report_clocks (::quartus::periph) on page 357
periph::report_legal_cell_locations (::quartus::periph) on page 357
periph::report_location_types (::quartus::periph) on page 358
periph::report_locations (::quartus::periph) on page 358
periph::report_noc_performance (::quartus::periph) on page 359
periph::report_regions (::quartus::periph) on page 359
periph::report_summary (::quartus::periph) on page 360
periph::reset_plan (::quartus::periph) on page 360
periph::save_floorplan (::quartus::periph) on page 361
periph::set_clock_type (::quartus::periph) on page 361
periph::undo_last_placement (::quartus::periph) on page 362
periph::unplace_cells (::quartus::periph) on page 363
periph::update_pdpw (::quartus::periph) on page 363
periph::update_plan (::quartus::periph) on page 364
periph::write_plan (::quartus::periph) on page 364

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

347

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.25.1. periph::check_plan (::quartus::periph)

The following table displays information for the periph::check_plan Tcl command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::check_plan [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Checks the legality of the current plan

Example Usage project_open onewire_nf

 blueprint::initialize

 periph::update_plan

 periph::check_plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.2. periph::get_cell_info (::quartus::periph)

The following table displays information for the periph::get_cell_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::get_cell_info [-h | -help] [-long_help] [-children] [-guide_cell_id] [-
ip_type] [-links] [-location] [-name] [-parent] [-type] <cell_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-children Return the the cell id of the children cells

-guide_cell_id Returns the guide cell's elem_id

-ip_type Returns the IP type if the cell is an IP cell or an empty
string otherwise

-links Return the given design element's connections to other cells

-location Returns the location ID if the cell is placed or an empty
string otherwise

-name Return the cell name of the cell id

-parent Return the the cell id of the parent cells

-type Return the the type of the cell

<cell_id> Single cell id

Description
Gets information about the specified cell (referenced by cell ID).
You can obtain cell using the periph::get_cells Tcl command.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

348

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage project_open onewire_nf

blueprint::initialize
periph::update_plan

foreach cell [periph::get_cells -type IO_CLUSTER] {
 puts "Found cell ID $cell named [periph::get_cell_info -name $cell]"
}

blueprint::shutdown
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied cell id <string> is invalid.

TCL_ERROR 1 ERROR: At least one cell ID must be supplied, but no cell
IDs were supplied

TCL_ERROR 1 ERROR: <string> cell IDs were expected but <string> were
supplied

3.1.25.3. periph::get_cells (::quartus::periph)

The following table displays information for the periph::get_cells Tcl command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::get_cells [-h | -help] [-long_help] [-atom_only] [-instance_only] [-
ip_only] [-num_location <num_location>] [-physical_only] [-placed] [-
toplevel_only] [-type <type>] [-unplaced] [<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-atom_only Return only atom cells

-instance_only Return only instance cells

-ip_only Return only instance cells that are IP instances

-num_location <num_location> Specify a specific number of available locations the cell
should have

-physical_only Return only physical cells

-placed Return only placed cells

-toplevel_only Return only toplevel cells

-type <type> Return only cells of the given types

-unplaced Return only unplaced cells

<filter> Object filter

Description
Returns a list of cells IDs in the design. All cell names in the
collection match the specified pattern. Wildcards can be used to
select multiple cells at once.

When you use the wildcard matching, use pipe characters to
separate one hierarchy level from the next. They are treated as
special characters and are taken into account when string matching
with wildcards is performed. When this matching scheme is enabled, the
specified pattern is matched against absolute cell names: the names
that include the entire hierarchical path. A full cell name can
contain multiple pipe characters in it to reflect the hierarchy. All

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

349

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hierarchy levels in the pattern are matched level by level. Any
included wildcards refer to only one hierarchical level. For example,
"*" and "*|*" produce different collections since they refer to the
highest hierarchical level and second highest hierarchical level
respectively.

Example Usage project_open onewire_nf

blueprint::initialize
periph::update_plan

foreach cell [periph::get_cells -type IO_CLUSTER] {
 puts "Found cell ID $cell named [periph::get_cell_info -name $cell]"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied number of locations <string> is
invalid.

TCL_ERROR 1 ERROR: <string> number of locations were expected but
<string> were supplied

3.1.25.4. periph::get_location_info (::quartus::periph)

The following table displays information for the periph::get_location_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::get_location_info [-h | -help] [-long_help] [-children] [-gid] [-name]
[-parents] [-placed_cells] [-properties] [-type] <location_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-children Query the children location IDs

-gid Query the gid of the location IDs

-name Return the location name of the location id

-parents Query the parent location IDs

-placed_cells Return the placed cells at the location id

-properties Return the device location properties in json

-type Return the location type of the location id

<location_id> location id

Description
Gets information about the specified location (referenced by location ID).
You can obtain location using the periph::get_locations Tcl command or
using the periph::get_cell_info -location Tcl command

Example Usage project_open onewire_nf

blueprint::initialize
periph::update_plan

foreach cell [periph::get_cells -placed] {
 puts "Found cell ID $cell named [periph::get_cell_info -name $cell] placed in location

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

350

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

[periph::get_cell_info -location $cell] named [periph::get_location_info -name
[periph::get_cell_info -location $cell]]"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied location id <string> is invalid.

TCL_ERROR 1 ERROR: The supplied type <string> is invalid.

TCL_ERROR 1 ERROR: At least one device location ID must be supplied,
but no location IDs were supplied

TCL_ERROR 1 ERROR: At least one type must be supplied, but no types
were supplied

TCL_ERROR 1 ERROR: <string> location IDs were expected but <string>
were supplied

TCL_ERROR 1 ERROR: <string> types were expected but <string> were
supplied

3.1.25.5. periph::get_placement_info (::quartus::periph)

The following table displays information for the periph::get_placement_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::get_placement_info [-h | -help] [-long_help] [-placement] <placement_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-placement Return the placement as a list of cell/id pairs

<placement_id> Single placement id

Description
 Return information about a given placement

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied placement id <string> is invalid.

TCL_ERROR 1 ERROR: At least one placement ID must be supplied, but no
placement IDs were supplied

TCL_ERROR 1 ERROR: <string> placement IDs were expected but
<string> were supplied

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

351

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.25.6. periph::get_placements (::quartus::periph)

The following table displays information for the periph::get_placements Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::get_placements [-h | -help] [-long_help] <cell_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<cell_id> Single cell id

Description
 Returns a vector of placements for the supplied cell

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied cell id <string> is not a placeable cell.

TCL_ERROR 1 ERROR: The supplied cell id <string> is invalid.

TCL_ERROR 1 ERROR: At least one cell ID must be supplied, but no cell
IDs were supplied

TCL_ERROR 1 ERROR: <string> cell IDs were expected but <string> were
supplied

3.1.25.7. blueprint::initialize (::quartus::periph)

The following table displays information for the blueprint::initialize Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax blueprint::initialize [-h | -help] [-long_help] [-load_compiler_snapshot] [-
read_settings_files <on|off>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-load_compiler_snapshot Initialize the Interface Planner placement state with the
latest compiler snapshot. Use
periph::compiler_snapshot_exists to check if a compiler
snapshot can be loaded

-read_settings_files <on|off> Option to identify that settings files should be read from
disk

Description
 Initialize the Interface Planner planning engine. Initialization consists
 of loading all required databases from disk for the design and device.
 Once initialization is complete, the constraints have not yet been
 applied and must be done before placement can begin.

 After the assignments have been created, they can be applied to the
 project by running the plan::update_platform Tcl command.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

352

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage project_open onewire_nf

 blueprint::initialize
 periph::update_plan
 blueprint::shutdown

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.8. periph::load_floorplan (::quartus::periph)

The following table displays information for the periph::load_floorplan Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::load_floorplan [-h | -help] [-long_help] -filename <filename>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filename <filename> Filename to load

Description
 Load the floorplan from a Interface Planner floorplan file

Example Usage project_open onewire_nf

 blueprint::initialize

 periph::update_plan

 periph::place_cells -unplaced_cells
 periph::save_floorplan -filename onewire_blueprint_floorplan.plan

 periph::load_floorplan -filename onewire_blueprint_floorplan.plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.9. periph::place_cells (::quartus::periph)

The following table displays information for the periph::place_cells Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::place_cells [-h | -help] [-long_help] [-cell_location <cell_location>] [-
cells <cells>] [-dont_revert_on_fail] [-fixed_cells] [-placement <placement>] [-
unplaced_cells]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cell_location <cell_location> Cell location id pair to place cells into

-cells <cells> One or more cell ids

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

353

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-dont_revert_on_fail Option to specify that the best partial placement should be
saved on the undo stack upon a placement failure

-fixed_cells Place all unplaced cells

-placement <placement> Place cells according to a placement. A placement is a
special object that comes from the periph::get_placements
Tcl command

-unplaced_cells Place all unplaced cells

Description
 Performs a placement on the supplied cells

Example Usage project_open onewire_nf

 blueprint::initialize

 periph::update_plan

 periph::place_cells -unplaced_cells

 periph::check_plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied cell id <string> is invalid.

TCL_ERROR 1 ERROR: The supplied cell id / location id pair <string> is
invalid.

TCL_ERROR 1 ERROR: The supplied location id <string> is invalid.

TCL_ERROR 1 ERROR: The supplied placement id <string> is invalid.

TCL_ERROR 1 ERROR: At least one cell ID must be supplied, but no cell
IDs were supplied

TCL_ERROR 1 ERROR: At least one device location ID must be supplied,
but no location IDs were supplied

TCL_ERROR 1 ERROR: At least one placement ID must be supplied, but no
placement IDs were supplied

TCL_ERROR 1 ERROR: <string> cell IDs were expected but <string> were
supplied

TCL_ERROR 1 ERROR: <string> location IDs were expected but <string>
were supplied

TCL_ERROR 1 ERROR: <string> placement IDs were expected but
<string> were supplied

3.1.25.10. periph::remove_invalid_reports (::quartus::periph)

The following table displays information for the
periph::remove_invalid_reports Tcl command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::remove_invalid_reports [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

354

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
 Remove all invalid report

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.11. periph::report_all (::quartus::periph)

The following table displays information for the periph::report_all Tcl command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::report_all [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Create all default summary reports

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.12. periph::report_cell_connectivity (::quartus::periph)

The following table displays information for the
periph::report_cell_connectivity Tcl command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::report_cell_connectivity [-h | -help] [-long_help] [-fanins] [-
fanouts] [-panel_name <name>] <cell_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-fanins Report only the fanins of the cell

-fanouts Report only the fanouts of the cell

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

<cell_id> Single cell id

Description
Creates a report of the connectivity for a cell.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

355

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.25.13. periph::report_cell_placement_reasons (::quartus::periph)

The following table displays information for the
periph::report_cell_placement_reasons Tcl command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::report_cell_placement_reasons [-h | -help] [-long_help] [-panel_name
<name>] <cell_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

<cell_id> Single cell id

Description
Creates a report of all the locations a particular cell can be placed and the reasons
it cannot be placed there

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.14. periph::report_cells (::quartus::periph)

The following table displays information for the periph::report_cells Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::report_cells [-h | -help] [-long_help] [-name <name>] [-panel_name
<name>] [-placed] [-type <type>] [-unplaced]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> Filter the list of placed cells specifying a name. Wildcards
are supported.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-placed Report the list of placed cells

-type <type> Filter the list of placed cells specifying a list of types

-unplaced Report the list of unplaced cells

Description
Returns a list of periphery cells based on the specified criteria.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

356

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.25.15. periph::report_clocks (::quartus::periph)

The following table displays information for the periph::report_clocks Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::report_clocks [-h | -help] [-long_help] [-panel_name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

Description
Show the signals that are using low-skew routing networks (clock networks) in the device.
If applicable, also show any signals that were considered for automatic clock network promotion,
but were not promoted.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.16. periph::report_legal_cell_locations (::quartus::periph)

The following table displays information for the
periph::report_legal_cell_locations Tcl command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::report_legal_cell_locations [-h | -help] [-long_help] [-panel_name
<name>] <cell_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

<cell_id> Single cell id

Description
Creates a report of the legal periphery cell locations of a cell

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

357

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.25.17. periph::report_location_types (::quartus::periph)

The following table displays information for the periph::report_location_types
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::report_location_types [-h | -help] [-long_help] [-panel_name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

Description
Creates a report of the location types in the periphery

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.18. periph::report_locations (::quartus::periph)

The following table displays information for the periph::report_locations Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::report_locations [-h | -help] [-long_help] [-panel_name <name>]
<type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

<type> location type to query

Description
Creates a report of the locations for the requested type in the periphery

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

358

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.25.19. periph::report_noc_performance (::quartus::periph)

The following table displays information for the
periph::report_noc_performance Tcl command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::report_noc_performance [-h | -help] [-long_help] [-iniu_freq
<iniu_freq>] [-panel_name <name>] [-tniu_freq <tniu_freq>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-iniu_freq <iniu_freq> Specify the INIU frequency used in the report

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-tniu_freq <tniu_freq> Specify the TNIU frequency used in the report

Description
Show the performance of the NoC given the current placement of the NoC elements.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.20. periph::report_regions (::quartus::periph)

The following table displays information for the periph::report_regions Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::report_regions [-h | -help] [-long_help] [-panel_name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

359

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.25.21. periph::report_summary (::quartus::periph)

The following table displays information for the periph::report_summary Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::report_summary [-h | -help] [-long_help] [-panel_name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.22. periph::reset_plan (::quartus::periph)

The following table displays information for the periph::reset_plan Tcl command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::reset_plan [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Reverts the current design to be unplaced and without assignments applied

Example Usage project_open onewire_nf

 blueprint::initialize

 periph::update_plan

 periph::reset_plan

 blueprint::shutdown

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

360

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.25.23. periph::save_floorplan (::quartus::periph)

The following table displays information for the periph::save_floorplan Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::save_floorplan [-h | -help] [-long_help] -filename <filename>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filename <filename> Filename to write to

Description
 Write the Interface Planner floorplan that can be reloaded in Interface Planner

Example Usage project_open onewire_nf

 blueprint::initialize

 periph::update_plan

 set io_cells [periph::get_cells -unplaced -type IO_CLUSTER]
 periph::place_cells -cells $io_cells

 periph::save_floorplan -filename onewire_blueprint_floorplan.plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.24. periph::set_clock_type (::quartus::periph)

The following table displays information for the periph::set_clock_type Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::set_clock_type [-h | -help] [-long_help] [-cell_id <cell_id>] [-
cell_name <cell_name>] -type <type>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cell_id <cell_id> Single cell id

-cell_name <cell_name> Cell name, returned from periph::get_cell_info -name

-type <type> The type of the clock type

Description
This command currently contains no help description.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The supplied clock cell id <string> is invalid.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

361

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The supplied clock type <string> is invalid.

TCL_ERROR 1 ERROR: At least one clock type must be supplied, but no
clock types were supplied

TCL_ERROR 1 ERROR: <string> clock types were expected but <string>
were supplied

3.1.25.25. blueprint::shutdown (::quartus::periph)

The following table displays information for the blueprint::shutdown Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax blueprint::shutdown [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Shutdown Interface Planner.

Example Usage project_open onewire_nf

 blueprint::initialize
 periph::update_plan
 blueprint::shutdown

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.26. periph::undo_last_placement (::quartus::periph)

The following table displays information for the periph::undo_last_placement Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::undo_last_placement [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Undo the last placement or unplacement operation

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

362

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.25.27. periph::unplace_cells (::quartus::periph)

The following table displays information for the periph::unplace_cells Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::unplace_cells [-h | -help] [-long_help] [-cells <cells>] [-
placed_cells]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cells <cells> One or more cell ids

-placed_cells Unplace all placed cells

Description
 Removes the placement from the specified cells. Any constraints for the cells remain, but
the cell no longer has a placement.

Example Usage project_open onewire_nf

 blueprint::initialize

 periph::update_plan

 periph::unplace_cells -placed_cells

 periph::check_plan

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.28. periph::update_pdpw (::quartus::periph)

The following table displays information for the periph::update_pdpw Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::update_pdpw [-h | -help] [-long_help] [-assignments] [-placement]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-assignments Indicates assignment model needs updating

-placement Indicates placement needs updating

Description
 Update everything that needs updating in pdpw. This essentially sends a single TCL command
to pdpw to update everything as needed. Used in the TCL proc source wrapper only.

Example Usage project_open onewire_nf
 blueprint::initialize
 periph::update_pdpw -pdp_state [blueprint_internal::get_pdp_state]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

363

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.25.29. periph::update_plan (::quartus::periph)

The following table displays information for the periph::update_plan Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::update_plan [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Applies all changes to constraints and reloads them into Interface Planner. After the
platform has been
 updated with the constraints, placement operations can be performed.

Example Usage project_open onewire_nf

 blueprint::initialize
 periph::update_plan
 blueprint::shutdown

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.25.30. periph::write_plan (::quartus::periph)

The following table displays information for the periph::write_plan Tcl command:

Tcl Package and
Version

Belongs to ::quartus::periph on page 347

Syntax periph::write_plan [-h | -help] [-long_help] [-clocks] [-disabled] -filename
<filename> [-force] [-other_locations] [-pin_locations]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clocks Write out clock assignments

-disabled Write out disabled assignments

-filename <filename> Filename to write to

-force Force the creation of the plan

-other_locations Write out other location assignments

-pin_locations Write out pin location assignments

Description
 Export the floorplan constraints Tcl script

Example Usage project_open onewire_nf

 blueprint::initialize

 periph::update_plan

 periph::place_cells -unplaced_cells

 periph::check_plan

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

364

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 periph::write_plan -filename onewire_blueprint_assignments.tcl

 project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.26. ::quartus::pfg

The following table displays information for the ::quartus::pfg Tcl package:

Tcl Package and Version ::quartus::pfg 1.0

Description
This package contains the set of Tcl functions
for using the Programming File Generator (PFG).

Availability This package is loaded by default in the following executable:

 quartus_pfg

Tcl Commands test (::quartus::pfg) on page 365

3.1.26.1. test (::quartus::pfg)

The following table displays information for the test Tcl command:

Tcl Package and
Version

Belongs to ::quartus::pfg on page 365

Syntax test [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
 Dispaly general information

Example Usage test

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.27. ::quartus::proj_asgn

The following table displays information for the ::quartus::proj_asgn Tcl package:

Tcl Package and Version ::quartus::proj_asgn 1.0

Description
This package contains the set of Tcl functions for making
project-wide assignments.

In versions before 4.0 of this package, the full path of
the source file assignment was returned when you accessed
the assignment through the "get_global_assignment" or
"get_all_global_assignments" command.

In version 4.0 of this package, the actual value of the source
file assignment stored in the Quartus Prime Settings File (.qsf)
is returned. To get the resolved full path of the file, use

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

365

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the "resolve_file_path" command. For more information about
resolving file names and view an example, type
"resolve_file_path -long_help".

In version 5.0 of this package, two new Tcl commands
"get_all_assignments" and "get_assignment_info" have been
introduced to replace the following commands:

 get_all_quartus_defaults
 get_all_global_assignments
 get_all_instance_assignments
 get_all_parameters

These two new commands simplify the interface to retrieve
information about Quartus Prime Settings File (.qsf) and
Quartus Prime Default Settings File (.qdf) assignments.

In addition, the new "assignment_group" command replaces
the deprecated "timegroup" command.

In version 6.0, all Tcl commands designed to process
Timing Analyzer assignments have been moved to the
::quartus::timing_assignment package.

Availability This package is loaded by default in the following executables:

 qpro
 quartus

Tcl Commands create_revision (::quartus::proj_asgn) on page 366
generate_project_tcl (::quartus::proj_asgn) on page 367
get_name_info (::quartus::proj_asgn) on page 368
get_names (::quartus::proj_asgn) on page 370
get_top_level_entity (::quartus::proj_asgn) on page 372
is_fitter_in_qhd_mode (::quartus::proj_asgn) on page 373

3.1.27.1. create_revision (::quartus::proj_asgn)

The following table displays information for the create_revision Tcl command:

Tcl Package and
Version

Belongs to ::quartus::proj_asgn on page 365

Syntax create_revision [-h | -help] [-long_help] [-based_on <revision_name>] [-
copy_results] [-new_rev_type <revision_type>] [-root_partition_qdb_file
<qdb_file>] [-set_current] <revision_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-based_on <revision_name> Revision name on which new revision bases its settings

-copy_results Option to copy results from "based_on" revision

-new_rev_type <revision_type> The type of the newly created revision

-root_partition_qdb_file
<qdb_file>

The Partition Database (.qdb) file for the root partition

-set_current Option to set new revision as current revision

<revision_name> Revision name

Description
Creates the specified revision. If the revision is not
included in the current project, a new revision is
created in the project with default settings.

If you specify the "-set_current" option, this command
sets the newly created revision as the current revision.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

366

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you specify the "-based_on" option, the command creates
a new revision in the project based on the settings of the
based-on revision specified by the option.

Example Usage ## Create a new revision called "tmp"
create_revision tmp

Create a new revision called "tmp"
and set it as the current revision
create_revision tmp -set_current
This method is the same as
create_revision tmp
set_current_revision tmp

Create a new revision called "speed_ch"
with settings based on "chiptrip"
and set it as the current revision
create_revision speed_ch -based_on chiptrip -set_current

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 WARNING: Revision is already the current revision:
<string>. No action is required.

TCL_ERROR 1 ERROR: Based-on revision is not included in the current
project: <string>. Make sure the based-on revision name is
spelled correctly and included in the current project.

TCL_ERROR 1 ERROR: Can't create revision because the current project
uses the device family: <string>. Change the device family
or create the revision in another project that uses a
different device family.

TCL_ERROR 1 ERROR: Can't create file: <string>. Make sure you have
permission to write to the specified file.

TCL_ERROR 1 ERROR: Unable to create a new 'Persona Implementation'
revision based on an existing 'Persona Implementation'
revision. Specify another revision type or change the base
revision.

TCL_ERROR 1 ERROR: Can't create revision: <string>. Specify a legal
revision name.

TCL_ERROR 1 ERROR: Can't remove file: <string>. Make sure the file is
not read-only and you have permission to write to the
specified file.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Didn't create revision because it is already included
in current project: <string>. If you want a new revision,
specify a different revision name.

3.1.27.2. generate_project_tcl (::quartus::proj_asgn)

The following table displays information for the generate_project_tcl Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::proj_asgn on page 365

Syntax generate_project_tcl [-h | -help] [-long_help] -filename <filename> [-
include_default_assignments] [-overwrite]

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

367

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-filename <filename> Tcl Filename

-include_default_assignments Option to include default assignments in the tcl file.

-overwrite Option to overwrite an existing tcl file

Description
With currently opened, write a tcl file that can create the
 project and populate it current set of assignments in the qsf.

Example Usage ## Generate a tcl file to create the current project.
generate_project_tcl -filename create_project.tcl

 ## Generate a tcl file to create the current project and
 ## also include the default assignments.
generate_project_tcl -filename create_project.tcl -include_default_assignments

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Failed when attempting to read qsf file.

TCL_ERROR 1 ERROR: Failed when attempting to write tcl file.

TCL_ERROR 1 ERROR: Project is not open, and path and project name was
not specified. Open an existing project, or specify the path
and project name in the command.

TCL_ERROR 1 ERROR: Tcl file already exist. Please use -overwrite option
to overwrite

3.1.27.3. get_name_info (::quartus::proj_asgn)

The following table displays information for the get_name_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::proj_asgn on page 365

Syntax get_name_info [-h | -help] [-long_help] [-info <parent_name_id|base_name|
entity_name|entity_definition|instance_name|full_path|short_full_path|node_type|creator|signaltapii|
file_location|library|children|parameters>] [-observable_type <all|pre_synthesis|
post_synthesis|post_fitter|post_asm|stp_pre_synthesis>] <name_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-info <parent_name_id|base_name|
entity_name|entity_definition|
instance_name|full_path|
short_full_path|node_type|creator|
signaltapii|file_location|library|
children|parameters>

Option to specify the type of information to display.

-observable_type <all|
pre_synthesis|post_synthesis|
post_fitter|post_asm|
stp_pre_synthesis>

Option to specify the observable type of the name ID

<name_id> Option to specify the node name ID

Description
Displays the specified type of information for the specified node
name id. Type "get_names -long_help" to view how to get a collection
of node name IDs.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

368

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the "-observable_type" option is not specified, the default
value is "all". The specified observable type must have the same
observable type as specified in the "get_names" Tcl command which
returned the currently specified node name id.

The value for "-observable_type" option can be one of
the following:

Observable Type Description
--------------- -----------------------------------
all Use post-Fitter information. If it is
 not available, post-synthesis
 information is used. Otherwise,
 pre-synthesis information is used if it
 exists.
pre_synthesis Use pre-synthesis information.
post_synthesis Use post-synthesis information.
post_fitter Use post-Fitter information.
post_asm Use post-Assembler information. The
 post-Assembler information is only supported
 for designs using the HardCopy II device family.
stp_pre_synthesis Use Signal Tap pre-synthesis information.

The info type for the "-info" option can be one of
the following:

Info Type Description
-------------- -----------------------------------
parent_name_id The name id for the node's parent.
base_name The node name, which consists of an
 entity name and/or an instance name
 separated by a colon if necessary.
entity_name The entity name.
entity_definition The entity definition.
instance_name The instance name.
full_path The full hierarchy path name, which
 consists of entity name(s) and/or the
 instance name(s). This path name
 excludes the current focus entity.
 If there is nothing shown, the
 name id is the current focus entity's
 name id.
short_full_path The short full hierarchy path name,
 which consists of the instance name(s).
 This path name excludes the current
 focus entity. If nothing is
 shown, the name id is the
 current focus entity's name id.
node_type The node type, which can be one of
 the types supported by "get_names",
 namely, "input", "output", "bidirectional",
 "register", "combinational",
 "hierarchy", "memory", or "bus".
 If "pin" type was specified for
 "get_names" command, the node type shown
 here is expanded to be "input", "output", or
 "bidirectional".
 Node type value of "qsf" indicates name
 originates from qsf settings file.
creator The creator of the node, which is either
 "user_entered" or "compiler_generated".
signaltapii If this node can be connected to a
 Signal Tap embedded logic analyzer,
 1 is shown. Otherwise, 0 is shown.
file_location The source file location. For example,
 the source file location for the entity
 chiptrip is "chiptrip.v". To get the full
 path to the source file, use the command
 "resolve_file_path" which exists only in
 version 4.0 or later of ::quartus::project
 package.
library Library associated with the instance name.
children Collection of all the children names of the
 specified name. The children will include all
 the names in the specified hierarchy.
parameters Collection of parameters associated with the name.
 Each element of the collection is a triplet that contains
 the name, value and the type of the parameter.

Example Usage # Get the name id of the current focus entity
set current_focus_entity_id [get_top_level_entity]

The full path name of the current focus entity
is empty because the full path excludes the
current focus entity
set msg "Full path of the current focus entity => ("

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

369

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

append msg [get_name_info -info full_path $current_focus_entity_id]
append msg ")"
puts $msg
puts ""

Get the node type of the current focus entity
The node type should be a hierarchy type
set msg "Node type of the current focus entity => ("
append msg [get_name_info -info node_type $current_focus_entity_id]
append msg ")"
puts $msg

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Compiler database does not exist for revision
name: <string>. At the minimum, run Analysis & Synthesis
(quartus_map) with the specified revision name before
using this Tcl command.

TCL_ERROR 1 ERROR: Illegal info type: <string>. Specify
parent_name_id, base_name, entity_name, instance_name,
full_path, short_full_path, node_type, creator, or signaltapii.

TCL_ERROR 1 ERROR: Illegal name id: <string>. Specify a name id that
exists in a compiled Quartus Prime project.

TCL_ERROR 1 ERROR: Invalid name id for top level entity: <string>.
Specify a valid top level entity id value. In Quartus Prime
Pro, get_name_info query through integer value is only
supported for get_top_level_entity TCL command. For other
names query, please refer to get_names TCL command.

TCL_ERROR 1 ERROR: Invalid name id: <string>. Specify an integer
greater than or equal to zero.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Post-Assembler compiler database does not exist
for revision name: <string>. Run Assembler (quartus_asm)
with the specified revision name before using this Tcl
command.

3.1.27.4. get_names (::quartus::proj_asgn)

The following table displays information for the get_names Tcl command:

Tcl Package and
Version

Belongs to ::quartus::proj_asgn on page 365

Syntax get_names [-h | -help] [-long_help] [-entity <wildcard>] -filter <wildcard> [-
library <wildcard>] [-node_type <all|comb|reg|pin|input|output|bidir|hierarchy|mem|bus|
qsf|state_machine|assigned|unassigned|all_reg|partition|virtual>] [-observable_type <all|
pre_synthesis|post_synthesis|post_fitter|post_asm|stp_pre_synthesis>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <wildcard> Option to specify the entity to get names from hierarchies
instantiated by the entity

-filter <wildcard> Option to specify the node's full path name and/or wildcard
character(s)

-library <wildcard> Option to specify the containing library

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

370

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-node_type <all|comb|reg|pin|
input|output|bidir|hierarchy|mem|bus|
qsf|state_machine|assigned|
unassigned|all_reg|partition|virtual>

Option to filter based on the specified node type.

-observable_type <all|
pre_synthesis|post_synthesis|
post_fitter|post_asm|
stp_pre_synthesis>

Option to filter based on the specified observable type

Description
Returns a filtered output collection of all matching
node name IDs found in a compiled Quartus Prime project.

To access each element of the output collection, use the Tcl
command "foreach_in_collection". To see example usage, type
"get_names -long_help" or "foreach_in_collection -long_help".

If the "-node_type" option is not specified, the default
value is "all". Similarly, if the "-observable_type" option
is not specified, the default value is "all".

The node type "pin" includes "input", "output", "bidir", "assinged" and "unassigned".
The node type "qsf" include names from qsf settings file.
The node type "all" includes all node types.
The node type "all_reg" includes all node types and register post-fitting

The value for "-observable_type" option can be one of
the following:

Observable Type Description
--------------- -----------------------------------
all Use post-Fitter information. If it is
 not available, post-Synthesis
 information is used. Otherwise,
 pre-synthesis information is used if it
 exists.
pre_synthesis Use pre-synthesis information.
post_synthesis Use post-synthesis information.
post_fitter Use post-Fitter information.
post_asm Use post-Assembler information. The
 post-Assembler information is only supported
 for designs using the HardCopy II device family.
stp_pre_synthesis Use Signal Tap pre-synthesis information.

Example Usage # Search for a single post-Fitter pin with the name accel and
make assignments
set accel_name_id [get_names -filter accel -node_type pin -observable_type post_fitter]
foreach_in_collection name_id $accel_name_id {

 # Get the full path name of the node
 set target [get_name_info -info full_path $name_id]

 # Set multicycle assignment
 set_multicycle_assignment -to $target 2

 # Set location assignment
 set_location_assignment -to $target Pin_E22
}
Search for nodes of any post-Fitter node type with name length <= 5
The default node type is "all"
set name_ids [get_names -filter ????? -observable_type post_fitter]
foreach_in_collection name_id $name_ids {

 # Print the name id
 puts $name_id

 # Print the node type
 puts [get_name_info -info node_type $name_id]

 # Print the full path (which excludes the current
 # focus entity from the path)
 puts [get_name_info -info full_path $name_id]
}
Search for nodes of any post-Fitter node type that end in "eed".
The default node type is "all"
set name_ids [get_names -filter *eed -observable_type post_fitter]
foreach_in_collection name_id $name_ids {

 # Print the name id
 puts $name_id

 # Print the node type
 puts [get_name_info -info node_type $name_id]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

371

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 # Print the full path (which excludes the current
 # focus entity from the path)
 puts [get_name_info -info full_path $name_id]
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Get names cannot return <string> because the
name was found in a partition that's not the root partition.
Refine your get_names search pattern to exclude child
partitions

TCL_ERROR 1 ERROR: Compiler database does not exist for revision
name: <string>. At the minimum, run Analysis & Synthesis
(quartus_map) with the specified revision name before
using this Tcl command.

TCL_ERROR 1 ERROR: Illegal node type: <string>. Specify all, comb, reg,
pin, hierarchy, or bus.

TCL_ERROR 1 ERROR: Illegal observable type: <string>. Specify all,
pre_synthesis, post_synthesis, or post_fitter.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Post-Assembler compiler database does not exist
for revision name: <string>. Run Assembler (quartus_asm)
with the specified revision name before using this Tcl
command.

3.1.27.5. get_top_level_entity (::quartus::proj_asgn)

The following table displays information for the get_top_level_entity Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::proj_asgn on page 365

Syntax get_top_level_entity [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns the name id for the current focus entity.

Example Usage # Get the name id of the current focus entity
set current_focus_entity_id [get_top_level_entity]

Print out the entity name of the current focus entity
set msg "Entity name of the current focus entity => ("
append msg [get_name_info -info entity_name $current_focus_entity_id]
append msg ")"
puts ""
puts $msg

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

372

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Compiler database does not exist for revision
name: <string>. At the minimum, run Analysis & Synthesis
(quartus_map) with the specified revision name before
using this Tcl command.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.27.6. is_fitter_in_qhd_mode (::quartus::proj_asgn)

The following table displays information for the is_fitter_in_qhd_mode Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::proj_asgn on page 365

Syntax is_fitter_in_qhd_mode [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns true if we're running in QHD mode

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.28. ::quartus::project

The following table displays information for the ::quartus::project Tcl package:

Tcl Package and Version ::quartus::project 7.0

Description
This package contains the set of Tcl functions for making
project-wide assignments.

In versions before 4.0 of this package, the full path of
the source file assignment was returned when you accessed
the assignment through the "get_global_assignment" or
"get_all_global_assignments" command.

In version 4.0 of this package, the actual value of the source
file assignment stored in the Quartus Prime Settings File (.qsf)
is returned. To get the resolved full path of the file, use
the "resolve_file_path" command. For more information about
resolving file names and view an example, type
"resolve_file_path -long_help".

In version 5.0 of this package, two new Tcl commands
"get_all_assignments" and "get_assignment_info" have been
introduced to replace the following commands:

 get_all_quartus_defaults
 get_all_global_assignments
 get_all_instance_assignments
 get_all_parameters

These two new commands simplify the interface to retrieve
information about Quartus Prime Settings File (.qsf) and
Quartus Prime Default Settings File (.qdf) assignments.

In addition, the new "assignment_group" command replaces
the deprecated "timegroup" command.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

373

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In version 6.0, all Tcl commands designed to process
Timing Analyzer assignments have been moved to the
::quartus::timing_assignment package.

Availability This package is loaded by default in the following executables:

 hdb_debug
 qpro_sh
 quartus_asm
 quartus_bpps
 quartus_cdb
 quartus_design
 quartus_eda
 quartus_fit
 quartus_idb
 quartus_ipd
 quartus_ipgenerate
 quartus_map
 quartus_sh
 quartus_si
 quartus_sim
 quartus_sta
 quartus_stp
 quartus_syn
 quartus_tlg

Tcl Commands close_side_revision (::quartus::project) on page 375
create_revision (::quartus::project) on page 375
delete_revision (::quartus::project) on page 377
execute_assignment_batch (::quartus::project) on page 377
export_assignments (::quartus::project) on page 378
generate_project_tcl (::quartus::project) on page 379
get_all_assignment_names (::quartus::project) on page 380
get_all_assignments (::quartus::project) on page 381
get_all_global_assignments (::quartus::project) on page 384
get_all_instance_assignments (::quartus::project) on page 386
get_all_parameters (::quartus::project) on page 389
get_all_quartus_defaults (::quartus::project) on page 391
get_all_user_option_names (::quartus::project) on page 393
get_assignment_info (::quartus::project) on page 393
get_assignment_name_info (::quartus::project) on page 394
get_current_project (::quartus::project) on page 395
get_current_revision (::quartus::project) on page 395
get_database_version (::quartus::project) on page 396
get_global_assignment (::quartus::project) on page 396
get_instance_assignment (::quartus::project) on page 398
get_location_assignment (::quartus::project) on page 399
get_name_info (::quartus::project) on page 400
get_names (::quartus::project) on page 402
get_parameter (::quartus::project) on page 404
get_project_directory (::quartus::project) on page 405
get_project_revisions (::quartus::project) on page 405
get_revision_description (::quartus::project) on page 406
get_top_level_entity (::quartus::project) on page 407
get_user_option (::quartus::project) on page 407
is_database_version_compatible (::quartus::project) on page 408
is_fitter_in_qhd_mode (::quartus::project) on page 408
is_project_open (::quartus::project) on page 409
open_side_revision (::quartus::project) on page 409
project_archive (::quartus::project) on page 410
project_clean (::quartus::project) on page 411
project_close (::quartus::project) on page 412
project_exists (::quartus::project) on page 413
project_new (::quartus::project) on page 413
project_open (::quartus::project) on page 415
project_restore (::quartus::project) on page 416
remove_all_global_assignments (::quartus::project) on page 417
remove_all_instance_assignments (::quartus::project) on page 419
remove_all_parameters (::quartus::project) on page 421
resolve_file_path (::quartus::project) on page 423
revision_exists (::quartus::project) on page 424
set_current_revision (::quartus::project) on page 425
set_global_assignment (::quartus::project) on page 425
set_high_effort_fmax_optimization_assignments (::quartus::project) on page 428
set_instance_assignment (::quartus::project) on page 428
set_io_assignment (::quartus::project) on page 430
set_location_assignment (::quartus::project) on page 432
set_parameter (::quartus::project) on page 433
set_power_file_assignment (::quartus::project) on page 435
set_revision_description (::quartus::project) on page 436
set_user_option (::quartus::project) on page 437
test_assignment_trait (::quartus::project) on page 437

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

374

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.1. close_side_revision (::quartus::project)

The following table displays information for the close_side_revision Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax close_side_revision [-h | -help] [-long_help] <revision_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<revision_name> Revision name

Description
Closes the specified revision name, if it has already been
 opened as a side revision. Closing the revision will causes
any changed assignments to be written to disk, and must be
done before the revision can be set again as the current
revision.

Example Usage ## Create and open "new_rev" as a side revision. Apply an assignment and close the revision.
create_revision new_rev -based_on my_rev -copy_results
open_side_revision new_rev
set_global_assignment -name OPTIMIZATION_TECHNIQUE "Area" -revision new_rev
close_side_revision new_rev

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 WARNING: Revision is already the current revision:
<string>. No action is required.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Revision file does not exist: <string>.qsf. Use
delete_revision to delete the revision from the current
project. Then use create_revision to create the revision and
its .qsf before setting <string> as the current revision.

TCL_ERROR 1 ERROR: Revision is not included in the current project:
<string> . Use the create_revision command to create the
revision.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.28.2. create_revision (::quartus::project)

The following table displays information for the create_revision Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax create_revision [-h | -help] [-long_help] [-based_on <revision_name>] [-
copy_results] [-new_rev_type <revision_type>] [-root_partition_qdb_file
<qdb_file>] [-set_current] <revision_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-based_on <revision_name> Revision name on which new revision bases its settings

-copy_results Option to copy results from "based_on" revision

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

375

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-new_rev_type <revision_type> The type of the newly created revision

-root_partition_qdb_file
<qdb_file>

The Partition Database (.qdb) file for the root partition

-set_current Option to set new revision as current revision

<revision_name> Revision name

Description
Creates the specified revision. If the revision is not
included in the current project, a new revision is
created in the project with default settings.

If you specify the "-set_current" option, this command
sets the newly created revision as the current revision.

If you specify the "-based_on" option, the command creates
a new revision in the project based on the settings of the
based-on revision specified by the option.

Example Usage ## Create a new revision called "tmp"
create_revision tmp

Create a new revision called "tmp"
and set it as the current revision
create_revision tmp -set_current
This method is the same as
create_revision tmp
set_current_revision tmp

Create a new revision called "speed_ch"
with settings based on "chiptrip"
and set it as the current revision
create_revision speed_ch -based_on chiptrip -set_current

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 WARNING: Revision is already the current revision:
<string>. No action is required.

TCL_ERROR 1 ERROR: Based-on revision is not included in the current
project: <string>. Make sure the based-on revision name is
spelled correctly and included in the current project.

TCL_ERROR 1 ERROR: Can't create revision because the current project
uses the device family: <string>. Change the device family
or create the revision in another project that uses a
different device family.

TCL_ERROR 1 ERROR: Can't create file: <string>. Make sure you have
permission to write to the specified file.

TCL_ERROR 1 ERROR: Unable to create a new 'Persona Implementation'
revision based on an existing 'Persona Implementation'
revision. Specify another revision type or change the base
revision.

TCL_ERROR 1 ERROR: Can't create revision: <string>. Specify a legal
revision name.

TCL_ERROR 1 ERROR: Can't remove file: <string>. Make sure the file is
not read-only and you have permission to write to the
specified file.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Didn't create revision because it is already included
in current project: <string>. If you want a new revision,
specify a different revision name.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

376

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.3. delete_revision (::quartus::project)

The following table displays information for the delete_revision Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax delete_revision [-h | -help] [-long_help] [-remove_results] <revision_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-remove_results Option to delete the database files

<revision_name> Revision name

Description
Deletes the specified revision from the current project. The corresponding
<revision name>.qsf file is deleted as well.

Example Usage ## Delete the revision called "tmp"
delete_revision tmp

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't delete the current revision: <string>. Specify
a different revision name.

TCL_ERROR 1 ERROR: Can't delete revision because it is not included in
the current project: <string> . Specify a revision name that
is included in the project.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.28.4. execute_assignment_batch (::quartus::project)

The following table displays information for the execute_assignment_batch Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax execute_assignment_batch [-h | -help] [-long_help] <tcl commands>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<tcl commands> Tcl list of Tcl commands

Description
Iterates through the specified Tcl list of Tcl commands and executes
each command sequentially in batch mode.

In batch mode, Tcl commands that set Quartus Prime Settings File
(.qsf) assignments are optimized to prevent them from repeatedly
write-locking and write-unlocking the QSF during consecutive calls,
thereby slowing down the execution.

Currently, only the following commands are supported:

 assignment_group
 remove_all_global_assignments
 remove_all_instance_assignments
 remove_all_parameters
 set_global_assignment

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

377

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set_instance_assignment
 set_io_assignment
 set_location_assignment
 set_parameter
 set_power_file_assignment

Example Usage project_open one_wire
set tcl_cmds [list [list set_global_assignment -name FAMILY StratixII] \
 [list set_global_assignment -name DEVICE AUTO] \
 [list set_global_assignment -name TOP_LEVEL_ENTITY one_wire] \
 [list set_global_assignment -name SAVE_DISK_SPACE OFF] \
 [list set_location_assignment PIN_1 -to in1] \
 [list set_instance_assignment -name MULTICYCLE 4 -from in1 -to out1] \
 [list set_parameter -name STYLE FAST]]
execute_assignment_batch $tcl_cmds
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Unsupported Tcl command: <string>. Specify one
of the supported Tcl commands listed in the help description
for <string> -h.

3.1.28.5. export_assignments (::quartus::project)

The following table displays information for the export_assignments Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax export_assignments [-h | -help] [-long_help] [-reorganize] [-
report_write_failure]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-reorganize Option to reorganize the Quartus Prime Settings File (.qsf)

-report_write_failure Option to report error if write fail

Description
Exports assignments for the current revision to the Quartus Prime
Settings File (.qsf).

Assignments created or modified during an open project are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## The most common use of export_assignments is to
call it before doing a system call
to call a compiler command-line executable
project_open $project_name
set_global_assignment -name FAMILY Stratix

Before calling quartus_map,
write out the FAMILY assignment
export_assignments

Now, call quartus_map
qexec "[file join $::quartus(binpath) quartus_map] $project_name"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

378

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't write settings file *.qsf. Make sure the *.qsf
file is writeable.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.28.6. generate_project_tcl (::quartus::project)

The following table displays information for the generate_project_tcl Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax generate_project_tcl [-h | -help] [-long_help] -filename <filename> [-
include_default_assignments] [-overwrite]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filename <filename> Tcl Filename

-include_default_assignments Option to include default assignments in the tcl file.

-overwrite Option to overwrite an existing tcl file

Description
With currently opened, write a tcl file that can create the
 project and populate it current set of assignments in the qsf.

Example Usage ## Generate a tcl file to create the current project.
generate_project_tcl -filename create_project.tcl

 ## Generate a tcl file to create the current project and
 ## also include the default assignments.
generate_project_tcl -filename create_project.tcl -include_default_assignments

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Failed when attempting to read qsf file.

TCL_ERROR 1 ERROR: Failed when attempting to write tcl file.

TCL_ERROR 1 ERROR: Project is not open, and path and project name was
not specified. Open an existing project, or specify the path
and project name in the command.

TCL_ERROR 1 ERROR: Tcl file already exist. Please use -overwrite option
to overwrite

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

379

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.7. get_all_assignment_names (::quartus::project)

The following table displays information for the get_all_assignment_names Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_all_assignment_names [-h | -help] [-long_help] [-family <family>] [-module
<all|ip_generate|map|tlg|fit|tan|asm|eda|drc|power|generic>] [-type <all|global|instance>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-family <family> Option to filter based on the specified device family.
Defaults to all families.

-module <all|ip_generate|map|tlg|
fit|tan|asm|eda|drc|power|generic>

Option to filter based on the specified flow module. Defaults
to all.

-type <all|global|instance> Option to filter based on the specified assignment type.
Defaults to all.

Description
Returns a filtered output list of all available, matching
assignment names.

The module option takes one of the following values:

Module Description
-------- -------------------------------------
ip_generate IP Generation assignment names
tlg Support Logic Generation assignment names
map Analysis & Synthesis assignment names
fit Fitter assignment names
asm Assembler assignment names
eda EDA Netlist Writer assignment names
drc Design Assistant assignment names
power Power Analyzer assignment names
generic Other assignment names not included in any
 of the above flow modules
all All assignment names

Example Usage ## Print out all available global assignments
foreach i [get_all_assignment_names -type global] {
 puts $i
}

Print out all available global assignments
for the Stratix family
foreach i [get_all_assignment_names -type global -family Stratix] {
 puts $i
}

Print out all available global assignments
for the Stratix family required
by the Analysis & Synthesis module
foreach i [get_all_assignment_names -type global -family Stratix -module map] {
 puts $i
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Assignment <string> is not supported in this edition
of the Quartus Prime software.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

380

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Illegal flow module: <string>. Specify <string>,
<string>, <string>, <string>, <string>, <string>,
<string>, or <string>.

TCL_ERROR 1 ERROR: Illegal type: <string>. Specify <string>, <string>,
or <string>.

TCL_ERROR 1 ERROR: Illegal device family: <string>. Specify a legal
device family.

3.1.28.8. get_all_assignments (::quartus::project)

The following table displays information for the get_all_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_all_assignments [-h | -help] [-long_help] [-entity <entity_name>] [-fall]
[-from <source>] -name <name> [-rise] [-section_id <section id>] [-tag <data>]
[-to <destination>] -type <global|instance|parameter|default>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity name

-fall Option applies to falling edge

-from <source> Source name (string pattern is matched using Tcl string
matching)

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

-to <destination> Destination name (string pattern is matched using Tcl string
matching)

-type <global|instance|parameter|
default>

Option to specify the type of assignments to return

Description
Returns a collection of all matching global, instance, parameter,
or default assignment ids. To iterate through each assignment id
in this collection, use the Tcl command "foreach_in_collection".

To view details for the assignment that is associated with the
assignment id, use the Tcl command "get_assignment_info".

The "get_all_assignments" command is easier to use than the
deprecated commands listed in Table 1.

* Table 1. The -type Option

Value for
-type Option Deprecated Tcl command Description
------------ ---------------------- -----------
default get_all_quartus_defaults Returns only default assignments.

global get_all_global_assignments Returns only global assignments.

instance get_all_instance_assignments Returns only instance assignments.

parameter get_all_parameters Returns only parameter assignments.

The "-name" option is not case sensitive.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

381

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The "-to" and "-from" options are case sensitive.

These options can take string patterns containing special
characters from the set "*?\[]" as values. The values are
matched using Tcl string matching. Note that bus names are
automatically detected and do not need to be escaped. Bus
names have the following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters.
The <bus index> portion is an integer greater than or equal to
zero or it can be the character "*" used for string matching.
Notice that the <bus index> is enclosed by the square
brackets "[" and "]". For example, "a[0]" and "a[*]" are
supported bus names and can be used as follows:

To match index 0 of bus "a", type:
get_all_assignments -type instance -name LOCATION -to a[0]

To match all indices of bus "a", type:
get_all_assignments -type instance -name LOCATION -to a[*]

All other uses of square brackets must be escaped if you do
not intend to use them as string patterns. For example,
to match indices 0, 1, and 2 of the bus "a", type:

get_all_assignments -type instance LOCATION -to "a[escape_brackets \[]\[0-2\][escape_brackets
\]]"

For more information about escaping square brackets, type
"escape_brackets -h".

This Tcl command reads in the global, instance, and parameter
assignments found in the Quartus Prime Settings File (.qsf) and
reads in the default assignments found inside the
Quartus Prime Default Settings File (.qdf).

If you tagged data by making assignments with the -tag option,
then the information can be searched using the -tag option.

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one clock section
each containing its own set of clock assignments. To uniquely
identify sections of this type, use the -section_id option.

For entity-specific assignments, use the "-entity" option to
retrieve assignments from a specific entity. If the
"-entity" option is not specified, the value for the
FOCUS_ENTITY_NAME assignment is used. If the FOCUS_ENTITY_NAME
value is not found, the revision name is used.

Example Usage ## View all the timing requirements using wildcards
 ## to match TSU_REQUIREMENT, TCO_REQUIREMENT,
 ## and others.
foreach_in_collection asgn_id [get_all_assignments -type instance -name *_REQUIREMENT] {

 set from [get_assignment_info $asgn_id -from]
 set to [get_assignment_info $asgn_id -to]
 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]
 set entity [get_assignment_info $asgn_id -entity]
 set sid [get_assignment_info $asgn_id -section_id]
 set tag [get_assignment_info $asgn_id -tag]

 puts "$entity: $name ($from -> $to) = $value"
}

 ## View all global assignments
foreach_in_collection asgn_id [get_all_assignments -type global -name *] {

 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]
 set entity [get_assignment_info $asgn_id -entity]
 set sid [get_assignment_info $asgn_id -section_id]
 set tag [get_assignment_info $asgn_id -tag]

 puts "$entity: $name = $value"
}

 ## View all project-wide default parameter values
foreach_in_collection asgn_id [get_all_assignments -type parameter -name *] {

 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

382

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set tag [get_assignment_info $asgn_id -tag]

 puts "$name = $value"
}

 ## View all entity-specific parameter values
foreach_in_collection asgn_id [get_all_assignments -type parameter -name * -to *] {

 set dest [get_assignment_info $asgn_id -to]
 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]
 set tag [get_assignment_info $asgn_id -tag]

 puts "$name (-> $dest) = $value"
}

 ## View all default assignments
foreach_in_collection asgn_id [get_all_assignments -type default -name * -to *] {

 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]

 puts "$name = $value"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Assignment <string> is not supported in this edition
of the Quartus Prime software.

TCL_ERROR 1 ERROR: Assignment is not an instance assignment:
<string> -- it is a global assignment. Specify an instance
assignment name or use the global assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Illegal assignment type: <string>. Specify
<string>, <string>, <string>, or <string>.

TCL_ERROR 1 ERROR: Illegal option <string>. The specified option is
illegal for <string> assignments.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Ignored assignment: <string>. The assignment is
no longer supported.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

383

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.28.9. get_all_global_assignments (::quartus::project)

The following table displays information for the get_all_global_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_all_global_assignments [-h | -help] [-long_help] [-entity <entity_name>] [-
fall] -name <name> [-rise] [-section_id <section id>] [-tag <data>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-fall Option applies to falling edge

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

Description
Returns a filtered output collection of all matching global
assignment values. To access each element of the output
collection, use the Tcl command "foreach_in_collection". To
see example usage, type "foreach_in_collection -long_help".

In version 5.0 of the ::quartus::project package, two new
Tcl commands "get_all_assignments" and "get_assignment_info"
have been introduced to replace the "get_all_global_assignments"
command. These two new commands simplify the interface to retrieve
information about Quartus Prime Settings File (.qsf) assignments.
The "get_all_global_assignments" command is still supported for
backward compatibility.

The "-name" option is not case sensitive. This option can take
string patterns containing special characters from the set
"*?\[]" as the value. The value is matched using Tcl string
matching.

This Tcl command reads the global assignments found in
the Quartus Prime Settings File (.qsf). This Tcl command filters
the assignment data in the .qsf and outputs the data based
on the values given by the "-name" option.

Each element of the collection is a list with the following
format:
{ {<Section Id>} {<Assignment name>} {<Assignment value>} {<Entity name>} {<Tag data>} }

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one CLOCK section
each containing its own set of clock assignments. To uniquely
identify sections of this type, a <Section Id> is used.
<Section Id> can be one of three types. It can be the same as
the revision name, or it can be some unique name. The
following is a list of sections requiring a <Section Id> and
the associated <Section Id> description:

Section Id Description

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

384

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

--------------------------- ------------------------------
CHIP Same as revision name
LOGICLOCK_REGION A unique name
EDA_TOOL_SETTINGS A unique name
CLIQUE A unique name
BREAKPOINT A unique name
CLOCK A unique name
AUTO_INSERT_SLD_NODE_ENTITY A unique name

If you tagged data by making assignments with the -tag option,
then the information will be displayed in the <Tag data> field.

For entity-specific assignments, use the "-entity" option to
retrieve the assignment(s) from the specified entity. If the
"-entity" option is not specified, the value for the
FOCUS_ENTITY_NAME assignment is used. If the FOCUS_ENTITY_NAME
value is not found, the revision name is used.

Example Usage ## Print out all the registered source files
using the foreach_in_collection method
set file_asgn_col [get_all_global_assignments -name SOURCE_FILE]
foreach_in_collection file_asgn $file_asgn_col {

 ## Each element in the collection has the following
 ## format: {} {SOURCE_FILE} {<file_name>} {} {}
 puts [lindex $file_asgn 2]
}

Print out all global assignments
set asgn_col [get_all_global_assignments -name *]

foreach_in_collection asgn $asgn_col {

 ## Each element in the collection has the following
 ## format: { {} {<Assignment name>} {<Assignment value>} {<Entity name>} {<Tag data>} }
 set name [lindex $asgn 1]
 set value [lindex $asgn 2]
 set entity [lindex $asgn 3]
 set tag [lindex $asgn 4]

 puts "$entity: $name = $value"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Assignment <string> is not supported in this edition
of the Quartus Prime software.

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Option -<string> for <string> assignment is illegal.
Specify a legal option or remove the option.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

385

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Ignored assignment: <string>. The assignment is
no longer supported.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.28.10. get_all_instance_assignments (::quartus::project)

The following table displays information for the get_all_instance_assignments
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_all_instance_assignments [-h | -help] [-long_help] [-entity <entity_name>]
[-fall] [-from <source>] -name <name> [-rise] [-section_id <section id>] [-tag
<data>] [-to <destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-fall Option applies to falling edge

-from <source> Source of assignment (string pattern is matched using Tcl
string matching)

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

-to <destination> Destination of assignment (string pattern is matched using
Tcl string matching)

Description
Returns a filtered output collection of all matching instance
assignment values. To access each element of this output
collection, use the Tcl command "foreach_in_collection". To
see example usage, type "foreach_in_collection -long_help".

In version 5.0 of the ::quartus::project package, two new
Tcl commands "get_all_assignments" and "get_assignment_info"
have been introduced to replace the "get_all_instance_assignments"
command. These two new commands simplify the interface to retrieve
information about Quartus Prime Settings File (.qsf) assignments.
The "get_all_instance_assignments" command is still supported
for backward compatibility.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

386

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The "-name" option is not case sensitive.
The "-to" and "-from" options are case sensitive.

These options can take string patterns containing special
characters from the set "*?\[]" as values. The values are
matched using Tcl string matching. Note that bus names are
automatically detected and do not need to be escaped. Bus
names have the following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters.
The <bus index> portion is an integer greater than or equal to
zero or it can be the character "*" used for string matching.
Notice that the <bus index> is enclosed by the square
brackets "[" and "]". For example, "a[0]" and "a[*]" are
supported bus names and can be used as follows:

To match index 0 of bus "a", type:
get_all_instance_assignments -name LOCATION -to a[0]

To match all indices of bus "a", type:
get_all_instance_assignments -name LOCATION -to a[*]

All other uses of square brackets must be escaped if you do
not intend to use them as string patterns. For example,
to match indices 0, 1, and 2 of the bus "a", type:

get_all_instance_assignments -name LOCATION -to "a[escape_brackets \[]\[0-2\][escape_brackets
\]]"

For more information about escaping square brackets, type
"escape_brackets -h".

This Tcl command reads in the instance assignments found in
the Quartus Prime Settings File (.qsf). The command filters
the assignments data found in the .qsf and outputs the
data based on the values specified by the "-name", "-from",
and "-to" options.

Each element of the collection is a list with the following
format:
{ {<Section Id>} {<Source>} {<Destination>} {<Assignment name>} {<Assignment value>} {<Entity
name>} {<Tag data>} }

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one CLOCK section
each containing its own set of clock assignments. To uniquely
identify sections of this type, a <Section Id> is used.
<Section Id> can be one of three types. It can be the same as
the revision name, or it can be some unique name. The
following is a list of sections requiring a <Section Id> and
the associated <Section Id> description:

Section Id Description
--------------------------- ------------------------------
CHIP Same as revision name
LOGICLOCK_REGION A unique name
EDA_TOOL_SETTINGS A unique name
CLIQUE A unique name
BREAKPOINT A unique name
CLOCK A unique name
AUTO_INSERT_SLD_NODE_ENTITY A unique name

If you tagged data by making assignments with the -tag option,
then the information will be displayed in the <Tag data> field.

For entity-specific assignments, use the "-entity" option to
retrieve the assignment(s) from the specified entity. If the
"-entity" option is not specified, the value for the
FOCUS_ENTITY_NAME assignment is used. If the FOCUS_ENTITY_NAME
value is not found, the revision name is used.

Example Usage ## Print out all the timing requirements
using the foreach_in_collection method.
Use wildcards to catch TSU_REQUIREMENT, TCO_REQUIREMENT,
and others.
set asgn_col [get_all_instance_assignments -name *_REQUIREMENT]

foreach_in_collection asgn $asgn_col {

 ## Each element in the collection has the following
 ## format: { {} {<Source>} {<Destination>} {<Assignment name>} {<Assignment value>}
{<Entity name>} {<Tag data>} }
 set from [lindex $asgn 1]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

387

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set to [lindex $asgn 2]
 set name [lindex $asgn 3]
 set value [lindex $asgn 4]
 set entity [lindex $asgn 5]
 set tag [lindex $asgn 6]

 puts "$entity: $name ($from -> $to) = $value"
}

Get all the location assignments with
the destination bus name "timeo".
set bus_name "timeo"
set location_asgns [get_all_instance_assignments -name LOCATION -to $bus_name[*]]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Assignment is not an instance assignment:
<string> -- it is a global assignment. Specify an instance
assignment name or use the global assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Ignored assignment: <string>. The assignment is
no longer supported.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

388

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.11. get_all_parameters (::quartus::project)

The following table displays information for the get_all_parameters Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_all_parameters [-h | -help] [-long_help] [-entity <entity_name>] [-fall] -
name <name> [-rise] [-tag <data>] [-to <destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which parameter belongs

-fall Option applies to falling edge

-name <name> Parameter name (string pattern is matched using Tcl string
matching)

-rise Option applies to rising edge

-tag <data> Option to tag data to this assignment

-to <destination> Destination of the parameter (string pattern is matched
using Tcl string matching)

Description
Returns a filtered output collection of all matching parameter
values. To access each element of this output collection, use
the Tcl command "foreach_in_collection". To see example usage,
type "foreach_in_collection -long_help".

In version 5.0 of ::quartus::project package, two new
Tcl commands "get_all_assignments" and "get_assignment_info"
have been introduced to replace the "get_all_parameters"
command. These two new commands simplify the interface to retrieve
information about Quartus Prime Settings File (.qsf) assignments.
The "get_all_parameters" command is still supported for backward
compatibility.

The "-name" option is not case sensitive.
The "-to" option is case sensitive.

If the "-to" argument is specified, the function returns
the parameter values for the current entity. The values are
retrieved from the PARAMETERS section of the entity. Otherwise,
the function returns the project-wide default parameter values
obtained from the DEFAULT_PARAMETERS section.

This Tcl command filters the parameter data found in the
Quartus Prime Settings File (.qsf) and outputs the data based on
the values specified by the "-name" and "-to" options. These
options can take string patterns containing special characters
from the set "*?\[]" as values. The values are matched using
Tcl string matching. Note that bus names are automatically
detected and do not need to be escaped. Bus names have the
following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters.
The <bus index> portion is an integer greater than or equal to
zero or it can be the character "*" used for string matching.
Notice that the <bus index> is enclosed by the square
brackets "[" and "]". For example, "a[0]" and "a[*]" are
supported bus names and can be used as follows:

To match index 0 of bus "a", type:
get_all_parameters -name * -to a[0]

To match all indices of bus "a", type:
get_all_parameters -name * -to a[*]

All other uses of square brackets must be escaped if you do
not intend to use them as string patterns. For example,
to match indices 0, 1, and 2 of the bus "a", type:

get_all_parameters -name * -to "a[escape_brackets \[]\[0-2\][escape_brackets \]]"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

389

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about escaping square brackets, type
"escape_brackets -h".

Each element of the collection is a list with the following
format:
{ {<Destination>} {<Parameter name>} {<Parameter value>} {<Entity name>} {<Tag data>} }

If you tagged data by making assignments with the -tag option,
then the information will be displayed in the <Tag data> field.

Use the "-entity" option to retrieve the parameter values from
the specified entity. If the "-entity" option is not specified,
the value for the FOCUS_ENTITY_NAME assignment is used. If the
FOCUS_ENTITY_NAME value is not found, the revision name is used.

Example Usage ## Display all project-wide default parameter values
set parameter_col [get_all_parameters -name *]

foreach_in_collection parameter $parameter_col {

 ## Each element in the collection has the following
 ## format: { {} {<Parameter name>} {<Parameter value>} {} {} }
 set name [lindex $parameter 1]
 set value [lindex $parameter 2]

 ## Now, display the content of the parameter
 puts "Parameter Name ($name)"
 puts "Parameter Value ($value)"
}

Display all entity-specific parameter values
foreach_in_collection parameter [get_all_parameters -name * -to *] {

 ## Each element in the collection has the following
 ## format: { {Destination} {<Parameter name>} {<Parameter value>} {} {} }
 set dest [lindex $parameter 0]
 set name [lindex $parameter 1]
 set value [lindex $parameter 2]

 ## Now, display the content of the parameter
 puts "Destination ($dest)"
 puts "Parameter Name ($name)"
 puts "Parameter Value ($value)"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Illegal default parameter: <string>. Specify a legal
default parameter name.

TCL_ERROR 1 ERROR: Illegal parameter: <string>. Specify a legal
parameter name.

TCL_ERROR 1 ERROR: An unknown error has occured.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

390

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.12. get_all_quartus_defaults (::quartus::project)

The following table displays information for the get_all_quartus_defaults Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_all_quartus_defaults [-h | -help] [-long_help] [-fall] [-name <name>] [-
rise] [-section_id <section id>] [-tag <data>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-fall Option applies to falling edge

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

Description
Returns a filtered output collection of all matching default
assignment values. To access each element of the output
collection, use the Tcl command "foreach_in_collection". To
see example usage, type "foreach_in_collection -long_help".

In version 5.0 of ::quartus::project package, two new
Tcl commands "get_all_assignments" and "get_assignment_info"
have been introduced to replace the "get_all_quartus_defaults"
command. These two new commands simplify the interface to retrieve
information about Quartus Prime Settings File (.qsf) assignments.
The "get_all_quartus_defaults" command is still supported
for backward compatibility.

The "-name" option is not case sensitive. This option can take
string patterns containing special characters from the set
"*?\[]" as the value. The value is matched using Tcl string
matching.

This Tcl command reads in the default assignments found inside
the Quartus Prime Default Settings File (.qdf). It filters the
assignments data found inside the .qdf and outputs the data
based on the values specified by the "-name" option.

Each element of the collection is a list with the following
format:
{ {<Section Id>} {<Assignment name>} {<Assignment value>} }

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one CLOCK section
each containing its own set of clock assignments. To uniquely
identify sections of this type, a <Section Id> is used.
<Section Id> can be one of three types. It can be the same as
the revision name, or it can be some unique name. The
following is a list of sections requiring a <Section Id> and
the associated <Section Id> description:

Section Id Description
--------------------------- ------------------------------
CHIP Same as revision name
LOGICLOCK_REGION A unique name
EDA_TOOL_SETTINGS A unique name
CLIQUE A unique name
BREAKPOINT A unique name
CLOCK A unique name
AUTO_INSERT_SLD_NODE_ENTITY A unique name

Example Usage ## Print out all the default assignments using
the foreach_in_collection method

set default_asgns_col [get_all_quartus_defaults]
foreach_in_collection default $default_asgns_col {

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

391

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set sect_id [lindex $default 0]
 set name [lindex $default 1]
 set value [lindex $default 2]

 ## Now, display the content of the assignment
 puts "Section ID ($sect_id)"
 puts "Assignment Name ($name)"
 puts "Assignment Value ($value)"
}

Using wildcards
set default_asgns_col [get_all_quartus_defaults -name *]
foreach_in_collection default $default_asgns_col {
 set sect_id [lindex $default 0]
 set name [lindex $default 1]
 set value [lindex $default 2]

 ## Now, display the content of the assignment
 puts "Section ID ($sect_id)"
 puts "Assignment Name ($name)"
 puts "Assignment Value ($value)"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Ignored assignment: <string>. The assignment is
no longer supported.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

392

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.13. get_all_user_option_names (::quartus::project)

The following table displays information for the get_all_user_option_names Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_all_user_option_names [-h | -help] [-long_help] [-name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> User option name (string pattern is matched using Tcl string
matching)

Description
Returns a filtered output list of all available, matching
user option names.

If the "-name" option is not specified, all available user
option names are returned. Otherwise, only the matching
user option names are returned.

The "-name" option is not case sensitive. This option can take
string patterns containing special characters from the set
"*?\[]" as the value. The value is matched using Tcl string
matching.

Example Usage ## Print out all available user option names
foreach i [get_all_user_option_names] {
 puts $i
}

Display all user option names that contain
the word "talkback" and also display the
value for each of the user option names
foreach i [get_all_user_option_names -name *talkback*] {
 set name $i
 set value [get_user_option -name $i]
 puts "$name = $value"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.28.14. get_assignment_info (::quartus::project)

The following table displays information for the get_assignment_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_assignment_info [-h | -help] [-long_help] [-comments] [-entity] [-from] [-
get_tcl_command] [-name] [-section_id] [-tag] [-to] [-value] <asgn_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comments Option to get the assignment comment

-entity Option to get the assignment entity

-from Option to get the assignment source

-get_tcl_command Option to get the tcl command that sets the assignment

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

393

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-name Option to get the assignment name

-section_id Option to get the assignment section id

-tag Option to get the assignment tag

-to Option to get the assignment destination

-value Option to get the assignment value

<asgn_id> Assignment id

Description
Returns information for the assignment id based on the
specified option.

The assignment id is obtained from the "get_all_assignments"
Tcl command.

Example Usage ## View all the instance assignments
foreach_in_collection asgn_id [get_all_assignments -type instance -name *] {

 set from [get_assignment_info $asgn_id -from]
 set to [get_assignment_info $asgn_id -to]
 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]
 set entity [get_assignment_info $asgn_id -entity]
 set tag [get_assignment_info $asgn_id -tag]

 puts "$entity: $name ($from -> $to) = $value"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal assignment id: <string>. Specify a legal
assignment id that was retrieved from the Tcl command
get_all_assignments.

3.1.28.15. get_assignment_name_info (::quartus::project)

The following table displays information for the get_assignment_name_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_assignment_name_info [-h | -help] [-long_help] <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<name> Assignment name

Description
Returns information for the specified assignment name.

Example Usage ## View information for all assignment names
foreach name [get_all_assignment_names] {
 puts [get_assignment_name_info $name]
}

Return Value Code Name Code String Return
continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

394

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Assignment <string> is not supported in this edition
of the Quartus Prime software.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

3.1.28.16. get_current_project (::quartus::project)

The following table displays information for the get_current_project Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_current_project [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns the name of the current project.

Example Usage # Get the current name for
the currently open project "chiptrip"
project_open chiptrip
set project_name [get_current_project]
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.28.17. get_current_revision (::quartus::project)

The following table displays information for the get_current_revision Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_current_revision [-h | -help] [-long_help] [<project_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<project_name> Project name

Description
Returns the name of the current revision for the specified
project. If the project name is not specified, the current
project name is used.

Example Usage # Get the current revision name for
the currently open project "chiptrip"
project_open chiptrip
set revision_name [get_current_revision]
project_close

Get the current revision name for
a project that is not currently open
set revision_name [get_current_revision chiptrip]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

395

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Project does not exist or has illegal name
characters: <string>. Specify a legal project name.

TCL_ERROR 1 ERROR: Project name was not specified or open project
does not exist. Open an existing project or specify the
project name.

3.1.28.18. get_database_version (::quartus::project)

The following table displays information for the get_database_version Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_database_version [-h | -help] [-long_help] <project_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<project_name> Project name

Description
Return the project's database version. This is the version of software that
the database was created.

Example Usage ## Print message on database version
set db_version [get_database_version chiptrip]
post_message "The database is created from \"$db_version\""

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The input project <string> is not found.

3.1.28.19. get_global_assignment (::quartus::project)

The following table displays information for the get_global_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_global_assignment [-h | -help] [-long_help] [-entity <entity_name>] [-fall]
[-front] -name <name> [-rise] [-section_id <section id>] [-tag <data>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-fall Option applies to falling edge

-front Option to return the first assignment if there is more than
one assignment found

-name <name> Assignment name

-rise Option applies to rising edge

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

396

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

Description
Returns the value of the global assignment.

The "-name" option is not case sensitive.

For entity-specific assignments, use the "-entity"
option to retrieve the assignment from the specified
entity. If the "-entity" option is not specified, the
value for the FOCUS_ENTITY_NAME assignment is used. If
the FOCUS_ENTITY_NAME value is not found, the revision
name is used.

Example Usage ## Get the value of the FAMILY assignment
get_global_assignment -name FAMILY

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Assignment <string> is not supported in this edition
of the Quartus Prime software.

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Option -<string> for <string> assignment is illegal.
Specify a legal option or remove the option.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Ignored assignment: <string>. The assignment is
no longer supported.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

TCL_ERROR 1 ERROR: Assignment <string> has multiple values. Use the
<string> command to get all values or use the <string> -
front command to get the first value.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

397

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.20. get_instance_assignment (::quartus::project)

The following table displays information for the get_instance_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_instance_assignment [-h | -help] [-long_help] [-entity <entity_name>] [-
fall] [-from <source>] [-front] -name <name> [-rise] [-section_id <section id>]
[-tag <data>] [-to <destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-fall Option applies to falling edge

-from <source> Source of assignment

-front Option to return the first assignment if there is more than
one assignment found

-name <name> Assignment name

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

-to <destination> Destination of assignment

Description
Returns the value of the instance assignment.

The "-name" option is not case sensitive. The
"-entity", "-to", and "-from" options are case
sensitive.

For entity-specific assignments, use the "-entity"
option to retrieve the assignment from the specified
entity. If the "-entity" option is not specified, the
value for the FOCUS_ENTITY_NAME assignment is used. If
the FOCUS_ENTITY_NAME value is not found, the revision
name is used.

Example Usage ## Get the TSU_REQUIREMENT from mypin to any register
set value [get_instance_assignment -from "mypin" -to * -name TSU_REQUIREMENT]
puts "TSU_REQUIREMENT(mypin->*) = $value"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Assignment is not an instance assignment:
<string> -- it is a global assignment. Specify an instance
assignment name or use the global assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

398

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Ignored assignment: <string>. The assignment is
no longer supported.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

TCL_ERROR 1 ERROR: Assignment <string> has multiple values. Use the
<string> command to get all values or use the <string> -
front command to get the first value.

3.1.28.21. get_location_assignment (::quartus::project)

The following table displays information for the get_location_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_location_assignment [-h | -help] [-long_help] [-fall] [-rise] [-tag
<data>] -to <destination>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-fall Option applies to falling edge

-rise Option applies to rising edge

-tag <data> Option to tag data to this assignment

-to <destination> Destination of assignment

Description
Returns the value of a location assignment.

The "-chip" option is not case sensitive.
The "-to" option is case sensitive.

Example Usage get_location_assignment -to dst

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

399

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.28.22. get_name_info (::quartus::project)

The following table displays information for the get_name_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_name_info [-h | -help] [-long_help] [-info <parent_name_id|base_name|
entity_name|entity_definition|instance_name|full_path|short_full_path|node_type|creator|signaltapii|
file_location|library|children|parameters>] [-observable_type <all|pre_synthesis|
post_synthesis|post_fitter|post_asm|stp_pre_synthesis>] <name_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-info <parent_name_id|base_name|
entity_name|entity_definition|
instance_name|full_path|
short_full_path|node_type|creator|
signaltapii|file_location|library|
children|parameters>

Option to specify the type of information to display.

-observable_type <all|
pre_synthesis|post_synthesis|
post_fitter|post_asm|
stp_pre_synthesis>

Option to specify the observable type of the name ID

<name_id> Option to specify the node name ID

Description
Displays the specified type of information for the specified node
name id. Type "get_names -long_help" to view how to get a collection
of node name IDs.

If the "-observable_type" option is not specified, the default
value is "all". The specified observable type must have the same
observable type as specified in the "get_names" Tcl command which
returned the currently specified node name id.

The value for "-observable_type" option can be one of
the following:

Observable Type Description
--------------- -----------------------------------
all Use post-Fitter information. If it is
 not available, post-synthesis
 information is used. Otherwise,
 pre-synthesis information is used if it
 exists.
pre_synthesis Use pre-synthesis information.
post_synthesis Use post-synthesis information.
post_fitter Use post-Fitter information.
post_asm Use post-Assembler information. The
 post-Assembler information is only supported
 for designs using the HardCopy II device family.
stp_pre_synthesis Use Signal Tap pre-synthesis information.

The info type for the "-info" option can be one of
the following:

Info Type Description
-------------- -----------------------------------
parent_name_id The name id for the node's parent.
base_name The node name, which consists of an
 entity name and/or an instance name

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

400

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 separated by a colon if necessary.
entity_name The entity name.
entity_definition The entity definition.
instance_name The instance name.
full_path The full hierarchy path name, which
 consists of entity name(s) and/or the
 instance name(s). This path name
 excludes the current focus entity.
 If there is nothing shown, the
 name id is the current focus entity's
 name id.
short_full_path The short full hierarchy path name,
 which consists of the instance name(s).
 This path name excludes the current
 focus entity. If nothing is
 shown, the name id is the
 current focus entity's name id.
node_type The node type, which can be one of
 the types supported by "get_names",
 namely, "input", "output", "bidirectional",
 "register", "combinational",
 "hierarchy", "memory", or "bus".
 If "pin" type was specified for
 "get_names" command, the node type shown
 here is expanded to be "input", "output", or
 "bidirectional".
 Node type value of "qsf" indicates name
 originates from qsf settings file.
creator The creator of the node, which is either
 "user_entered" or "compiler_generated".
signaltapii If this node can be connected to a
 Signal Tap embedded logic analyzer,
 1 is shown. Otherwise, 0 is shown.
file_location The source file location. For example,
 the source file location for the entity
 chiptrip is "chiptrip.v". To get the full
 path to the source file, use the command
 "resolve_file_path" which exists only in
 version 4.0 or later of ::quartus::project
 package.
library Library associated with the instance name.
children Collection of all the children names of the
 specified name. The children will include all
 the names in the specified hierarchy.
parameters Collection of parameters associated with the name.
 Each element of the collection is a triplet that contains
 the name, value and the type of the parameter.

Example Usage # Get the name id of the current focus entity
set current_focus_entity_id [get_top_level_entity]

The full path name of the current focus entity
is empty because the full path excludes the
current focus entity
set msg "Full path of the current focus entity => ("
append msg [get_name_info -info full_path $current_focus_entity_id]
append msg ")"
puts $msg
puts ""

Get the node type of the current focus entity
The node type should be a hierarchy type
set msg "Node type of the current focus entity => ("
append msg [get_name_info -info node_type $current_focus_entity_id]
append msg ")"
puts $msg

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Compiler database does not exist for revision
name: <string>. At the minimum, run Analysis & Synthesis
(quartus_map) with the specified revision name before
using this Tcl command.

TCL_ERROR 1 ERROR: Illegal info type: <string>. Specify
parent_name_id, base_name, entity_name, instance_name,
full_path, short_full_path, node_type, creator, or signaltapii.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

401

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Illegal name id: <string>. Specify a name id that
exists in a compiled Quartus Prime project.

TCL_ERROR 1 ERROR: Invalid name id for top level entity: <string>.
Specify a valid top level entity id value. In Quartus Prime
Pro, get_name_info query through integer value is only
supported for get_top_level_entity TCL command. For other
names query, please refer to get_names TCL command.

TCL_ERROR 1 ERROR: Invalid name id: <string>. Specify an integer
greater than or equal to zero.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Post-Assembler compiler database does not exist
for revision name: <string>. Run Assembler (quartus_asm)
with the specified revision name before using this Tcl
command.

3.1.28.23. get_names (::quartus::project)

The following table displays information for the get_names Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_names [-h | -help] [-long_help] [-entity <wildcard>] -filter <wildcard> [-
library <wildcard>] [-node_type <all|comb|reg|pin|input|output|bidir|hierarchy|mem|bus|
qsf|state_machine|assigned|unassigned|all_reg|partition|virtual>] [-observable_type <all|
pre_synthesis|post_synthesis|post_fitter|post_asm|stp_pre_synthesis>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <wildcard> Option to specify the entity to get names from hierarchies
instantiated by the entity

-filter <wildcard> Option to specify the node's full path name and/or wildcard
character(s)

-library <wildcard> Option to specify the containing library

-node_type <all|comb|reg|pin|
input|output|bidir|hierarchy|mem|bus|
qsf|state_machine|assigned|
unassigned|all_reg|partition|virtual>

Option to filter based on the specified node type.

-observable_type <all|
pre_synthesis|post_synthesis|
post_fitter|post_asm|
stp_pre_synthesis>

Option to filter based on the specified observable type

Description
Returns a filtered output collection of all matching
node name IDs found in a compiled Quartus Prime project.

To access each element of the output collection, use the Tcl
command "foreach_in_collection". To see example usage, type
"get_names -long_help" or "foreach_in_collection -long_help".

If the "-node_type" option is not specified, the default
value is "all". Similarly, if the "-observable_type" option
is not specified, the default value is "all".

The node type "pin" includes "input", "output", "bidir", "assinged" and "unassigned".
The node type "qsf" include names from qsf settings file.
The node type "all" includes all node types.
The node type "all_reg" includes all node types and register post-fitting

The value for "-observable_type" option can be one of

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

402

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the following:

Observable Type Description
--------------- -----------------------------------
all Use post-Fitter information. If it is
 not available, post-Synthesis
 information is used. Otherwise,
 pre-synthesis information is used if it
 exists.
pre_synthesis Use pre-synthesis information.
post_synthesis Use post-synthesis information.
post_fitter Use post-Fitter information.
post_asm Use post-Assembler information. The
 post-Assembler information is only supported
 for designs using the HardCopy II device family.
stp_pre_synthesis Use Signal Tap pre-synthesis information.

Example Usage # Search for a single post-Fitter pin with the name accel and
make assignments
set accel_name_id [get_names -filter accel -node_type pin -observable_type post_fitter]
foreach_in_collection name_id $accel_name_id {

 # Get the full path name of the node
 set target [get_name_info -info full_path $name_id]

 # Set multicycle assignment
 set_multicycle_assignment -to $target 2

 # Set location assignment
 set_location_assignment -to $target Pin_E22
}
Search for nodes of any post-Fitter node type with name length <= 5
The default node type is "all"
set name_ids [get_names -filter ????? -observable_type post_fitter]
foreach_in_collection name_id $name_ids {

 # Print the name id
 puts $name_id

 # Print the node type
 puts [get_name_info -info node_type $name_id]

 # Print the full path (which excludes the current
 # focus entity from the path)
 puts [get_name_info -info full_path $name_id]
}
Search for nodes of any post-Fitter node type that end in "eed".
The default node type is "all"
set name_ids [get_names -filter *eed -observable_type post_fitter]
foreach_in_collection name_id $name_ids {

 # Print the name id
 puts $name_id

 # Print the node type
 puts [get_name_info -info node_type $name_id]

 # Print the full path (which excludes the current
 # focus entity from the path)
 puts [get_name_info -info full_path $name_id]
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Get names cannot return <string> because the
name was found in a partition that's not the root partition.
Refine your get_names search pattern to exclude child
partitions

TCL_ERROR 1 ERROR: Compiler database does not exist for revision
name: <string>. At the minimum, run Analysis & Synthesis
(quartus_map) with the specified revision name before
using this Tcl command.

TCL_ERROR 1 ERROR: Illegal node type: <string>. Specify all, comb, reg,
pin, hierarchy, or bus.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

403

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Illegal observable type: <string>. Specify all,
pre_synthesis, post_synthesis, or post_fitter.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Post-Assembler compiler database does not exist
for revision name: <string>. Run Assembler (quartus_asm)
with the specified revision name before using this Tcl
command.

3.1.28.24. get_parameter (::quartus::project)

The following table displays information for the get_parameter Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_parameter [-h | -help] [-long_help] [-entity <entity_name>] [-fall] -name
<name> [-rise] [-tag <data>] [-to <destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which parameter belongs

-fall Option applies to falling edge

-name <name> Parameter name

-rise Option applies to rising edge

-tag <data> Option to tag data to this assignment

-to <destination> Destination of parameter

Description
Returns the value of the parameter.

The "-name" option is not case sensitive.
The "-to" option is case sensitive.

If the "-to" argument is specified, the function returns the
parameter value for the current entity. The value is retrieved
from the PARAMETERS section of the entity. Otherwise, the
function returns the project-wide default parameter value
obtained from the DEFAULT_PARAMETERS section.

Use the "-entity" option to retrieve the parameter from the
specified entity. If the "-entity" option is not specified,
the value for the FOCUS_ENTITY_NAME assignment is used. If the
FOCUS_ENTITY_NAME value is not found, the revision name is used.

Example Usage ## Get project-wide, default parameter value
get_parameter -name WIDTH

Get entity-specific parameter value
get_parameter -name inst1 -to SIZE

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

404

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Illegal default parameter: <string>. Specify a legal
default parameter name.

TCL_ERROR 1 ERROR: Illegal parameter: <string>. Specify a legal
parameter name.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.28.25. get_project_directory (::quartus::project)

The following table displays information for the get_project_directory Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_project_directory [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns the project directory for currently open project.

Example Usage project_open one_wire
Print the current project directory
puts [get_project_directory]
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.28.26. get_project_revisions (::quartus::project)

The following table displays information for the get_project_revisions Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_project_revisions [-h | -help] [-long_help] [<project_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<project_name> Project name

Description
Returns a list of revisions included in the specified project.
If the project name is not specified, the current project name
is used by default.

The first element in the list of revisions is the current
revision and is the same as the return value for the
"get_current_revision" command.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

405

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage # Set the device family assignment to Stratix
for all revisions
project_open chiptrip
set original_revision [get_current_revision]

foreach revision [get_project_revisions] {
 puts "$revision"
 set_current_revision $revision
 set_global_assignment -name FAMILY Stratix
 export_assignments
}

set_current_revision $original_revision
project_close

Open the project with the first available revision
and set the device family assignment to Stratix
set revision [lindex [get_project_revisions chiptrip] 0]
open_project -revision $revision chiptrip
set_global_assignment -name FAMILY Stratix
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Project does not exist or has illegal name
characters: <string>. Specify a legal project name.

TCL_ERROR 1 ERROR: Project name was not specified or open project
does not exist. Open an existing project or specify the
project name.

3.1.28.27. get_revision_description (::quartus::project)

The following table displays information for the get_revision_description Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_revision_description [-h | -help] [-long_help] [<revision_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<revision_name> Revision name

Description
Returns the description for the specified revision.

Example Usage ## Get the description for the current revision
project_open chiptrip
set revision_name [get_current_revision]
get_revision_description $revision_name
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Revision is not included in the current project:
<string> . Use the create_revision command to create the
revision.

TCL_ERROR 1 ERROR: Project name was not specified or open project
does not exist. Open an existing project or specify the
project name.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

406

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.28. get_top_level_entity (::quartus::project)

The following table displays information for the get_top_level_entity Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_top_level_entity [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns the name id for the current focus entity.

Example Usage # Get the name id of the current focus entity
set current_focus_entity_id [get_top_level_entity]

Print out the entity name of the current focus entity
set msg "Entity name of the current focus entity => ("
append msg [get_name_info -info entity_name $current_focus_entity_id]
append msg ")"
puts ""
puts $msg

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Compiler database does not exist for revision
name: <string>. At the minimum, run Analysis & Synthesis
(quartus_map) with the specified revision name before
using this Tcl command.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.28.29. get_user_option (::quartus::project)

The following table displays information for the get_user_option Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax get_user_option [-h | -help] [-long_help] -name <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> User option name

Description
Returns the user option value for the name specified by
the "-name" option.

To get a list of all available user option names, use
the "get_all_user_option_names" command.

Example Usage ## Get the value for the user option
"TALKBACK_ENABLED"
set value [get_user_option -name TALKBACK_ENABLED]
puts "TALKBACK_ENABLED = $value"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

407

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal user option name: <string>. Specify a legal
user option name. To get a list of legal names, use the
get_all_user_option_names command.

3.1.28.30. is_database_version_compatible (::quartus::project)

The following table displays information for the
is_database_version_compatible Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax is_database_version_compatible [-h | -help] [-long_help] <project_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<project_name> Project name

Description
Checks whether a project's database is compatible with current version of the software.
Returns 1, if the database is compatible; returns 0, otherwise.

Mainly this check is for databases that are restored from another
version of the software

Example Usage ## Check project database version compatibility
if [is_database_version_compatible chiptrip] {
 # proceed if compatible
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.28.31. is_fitter_in_qhd_mode (::quartus::project)

The following table displays information for the is_fitter_in_qhd_mode Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax is_fitter_in_qhd_mode [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns true if we're running in QHD mode

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

408

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.32. is_project_open (::quartus::project)

The following table displays information for the is_project_open Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax is_project_open [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Checks whether a project is currently open. Returns 1, if a
project is currently open; returns 0, otherwise.

Example Usage ## Close the project if open
if [is_project_open] {
 project_close
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.28.33. open_side_revision (::quartus::project)

The following table displays information for the open_side_revision Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax open_side_revision [-h | -help] [-long_help] <revision_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<revision_name> Revision name

Description
Loads the specified revision name into memory, without making it
 the current revision. Required step before assignments can
be modified on the side with the use of the -revision option in
get/set/remove assignments.

Changes are not saved until close_side_revision is called.

The specified revision cannot be the current revision, and once
opened, cannot be made the current revision until it is closed.

Example Usage ## Create and open "new_rev" as a side revision. Apply an assignment and close the revision.

create_revision new_rev -based_on my_rev -copy_results
open_side_revision new_rev
set_global_assignment -name OPTIMIZATION_TECHNIQUE "Area" -revision new_rev
close_side_revision new_rev

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 WARNING: Revision is already the current revision:
<string>. No action is required.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

409

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Revision file does not exist: <string>.qsf. Use
delete_revision to delete the revision from the current
project. Then use create_revision to create the revision and
its .qsf before setting <string> as the current revision.

TCL_ERROR 1 ERROR: Revision is not included in the current project:
<string> . Use the create_revision command to create the
revision.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.28.34. project_archive (::quartus::project)

The following table displays information for the project_archive Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax project_archive [-h | -help] [-long_help] [-all_revisions] [-
include_libraries] [-include_outputs] [-overwrite] [-use_file_set <file_set>] [-
version_compatible_database] <archive_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all_revisions Option to archive all revisions

-include_libraries Option to include related system libraries

-include_outputs Option to include output files in archive

-overwrite Option to overwrite any currently existing archive file

-use_file_set <file_set> Option to create the archive using the specified file set

-version_compatible_database Option to include version-compatible database if supported

<archive_name> Archive file name

Description
Archives an open project and its related files into a
Quartus Prime Archive File (.qar).

The description of operations is as follows:

Option Description
------ -------------------------
use_file_set Creates the archive using the specified
 file set. By default, the 'basic'
 file set is used. For more information
 about file sets, type:

 quartus_sh --archive -list_file_sets

all_revisions Archives all revisions.

overwrite Overwrites existing archive file.

include_outputs Includes output files in archive.

include_libraries Includes related Megafunction and
 IP library files.

version_compatible_database Includes version-compatible database
 if supported.

Example Usage ## Default mode: Archive current revisions without output files or libraries
project_archive chiptrip.qar

Archive all revisions without output files or libraries
project_archive chiptrip.qar -all_revisions

Archive current revision with version-compatible database if supported

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

410

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

project_archive chiptrip.qar -version_compatible_database

Same as first one, but overwrite any existing archive file
project_archive chiptrip.qar -overwrite

Include output files and libraries
project_archive chiptrip.qar -include_outputs -include_libraries

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Error(s) found while archiving the project. See
error message(s) for details.

TCL_ERROR 1 ERROR: Project archive failed. Some files could not be
processed. Refer to the Quartus Prime Archive Log File
(<archive_name>.qarlog).

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.28.35. project_clean (::quartus::project)

The following table displays information for the project_clean Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax project_clean [-h | -help] [-long_help] [-current_version] [-revision
<revision_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-current_version Only clean project files for the current Quartus version.

-revision <revision_name> Revision to clean (if omitted, all revisions of the open
project are cleaned). Revision name can contain wildcards
(i.e., '*').

Description
Cleans database and compiler-generated output for the specified
revision (or all revisions if no revision is specified). Cleaning
revisions removes database and other files generated by the Quartus Prime
software, including report and programming files.

This command closes the currently open project before cleaning.

Specifically, this cleans all of the following files/folders (for all matching revisions):

<revision>.*.rpt
<revision>.*.rpt.htm
<revision>.*.rpt.htm_files
<revision>.*.msf
<revision>.*.smsg
<revision>.*.summary
<revision>.jdi
<revision>.pin
<revision>.pof
<revision>.sof
<revision>.done
<revision>.sld
(all revision files in the qdb and persona directories)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

411

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage project_clean -revision "foo" # Cleans revision "foo"
project_clean -revision "foo*" # Cleans all revisions starting with "foo" (e.g., "foo",
"foobar")
project_clean # Cleans all revisions in project

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Failed when attempting to remove database files in
<string> for revision <string>.

TCL_ERROR 1 ERROR: Failed when attempting to remove file <string> for
revision <string>.

TCL_ERROR 1 ERROR: Couldn't delete file or folder named '<string>'.

TCL_ERROR 1 ERROR: Couldn't open configuration settings...the settings
object is currently locked.

TCL_ERROR 1 ERROR: Can't access revision '<string>'. The revision may
not exist, or there may be an error in the revision settings.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.28.36. project_close (::quartus::project)

The following table displays information for the project_close Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax project_close [-h | -help] [-long_help] [-dont_export_assignments]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-dont_export_assignments Do not export assignments to file

Description
Closes an open project.

The assignments created or modified during an open project
are committed to the Quartus Prime Settings File (.qsf) during a
"project_close", unless you use the "-dont_export_assignments"
option.

Example Usage ## Close the project if open
if [is_project_open] {
 project_close
}
Close the project if open
and do not export the assignments
if [is_project_open] {
 project_close -dont_export_assignments
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

412

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Failed when attempting to write assignments back
to QSF.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.28.37. project_exists (::quartus::project)

The following table displays information for the project_exists Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax project_exists [-h | -help] [-long_help] <project_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<project_name> Project name

Description
Checks whether a project exists. Returns 1, if a project exists;
returns 0, otherwise.

Example Usage ## Create project if one does not exist.
Open existing project otherwise.
if [project_exists chiptrip] {
 project_open chiptrip
} else {
 project_new chiptrip
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.28.38. project_new (::quartus::project)

The following table displays information for the project_new Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax project_new [-h | -help] [-long_help] [-family <family>] [-overwrite] [-part
<part>] [-revision <revision_name>] <project_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-family <family> Family name

-overwrite Option to overwrite existing project and revision

-part <part> Part name

-revision <revision_name> Revision name

<project_name> Project name

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

413

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Creates and opens a new project with the specified project name.

If the "-revision" option is not specified, the project name
is used to create the revision.

Assignments created or modified by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## Create project "chiptrip" and revision "chiptrip"
project_new chiptrip

Create project "chiptrip" and revision "auto_max"
project_new -revision auto_max chiptrip

Create project "chiptrip" and revision "chiptrip"
Overwrite any Quartus Prime Settings File (.qsf) if it exists
project_new chiptrip -overwrite

Create project "chiptrip" and revision "chiptrip"
Set the FAMILY assignment to Stratix
project_new chiptrip -family Stratix

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The -<string> option must also be used when you
use the -<string> option. Specify both options.

TCL_ERROR 1 ERROR: Can't create project: <string>. Specify a legal
project name.

TCL_ERROR 1 ERROR: Can't create revision: <string>. Specify a legal
revision name using the -<string> option.

TCL_ERROR 1 ERROR: Can't create revision: <string>. Specify a legal
revision name.

TCL_ERROR 1 ERROR: Can't create settings files for project: <string>.
Make sure the .psf, .csf, and .ssf files are writeable.

TCL_ERROR 1 ERROR: Can't open project: <string>

TCL_ERROR 1 ERROR: Can't remove Quartus Prime Settings File:
<string>. Make sure the file is writeable.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Project already exists: <string>. Specify a different
project name or use the -overwrite option.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

414

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.39. project_open (::quartus::project)

The following table displays information for the project_open Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax project_open [-h | -help] [-long_help] [-current_revision] [-force] [-
preserve_revision_order] [-revision <revision_name>] <project_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-current_revision Option to open the current revision automatically

-force Option to open the project and overwrite the compilation
database if the database version is incompatible.

-preserve_revision_order Option to not move the revision to top in the qpf file and
preserve existing revision ordering

-revision <revision_name> Revision name

<project_name> Project name

Description
Opens an existing project. To create a new project, use the
project_new command.

If the -revision option is not specified, the project name is
specified as the revision name.

The project_open command gives an error when the compilation database
version is not compatible with the current version of Quartus Prime
software. You may specify the "-force" option to avoid the error and
overwrite the database.

Example Usage ## Open project "chiptrip" and revision "chiptrip"
project_open chiptrip

Open project "chiptrip" and revision "auto_max"
project_open -revision auto_max chiptrip

Get the current revision before opening
the project with the current revision
set project_name chiptrip
set current_revision [get_current_revision $project_name]
project_open -revision $current_revision $project_name
puts [get_global_assignment -name FAMILY]
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 WARNING: Project is already open: <string>

TCL_ERROR 1 ERROR: Can't open project: <string>. First close the
currently open project: <string>.

TCL_ERROR 1 ERROR: Can't open project: <string>

TCL_ERROR 1 ERROR: Can't set revision: <string>. Make sure there is an
open, active revision name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

415

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Cannot open project: <string>. The project is not
compatible with the installed version of the Quartus Prime
software. Opening the project will overwrite the old project
database. If you wish to overwrite the old project database,
make sure to specify the -<string> option.

TCL_ERROR 1 ERROR: Can't open revision: <string> (project: <string>).
The revision is not compatible with the installed version of
the Quartus Prime software. Opening the revision will
overwrite the old revision database. If you wish to overwrite
the old revision database, make sure to specify the -
<string> option.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Revision does not exist: <string>. Specify a legal
revision name using the -<string> option.

TCL_ERROR 1 ERROR: Project does not exist or has illegal name
characters: <string>. Specify a legal project name.

3.1.28.40. project_restore (::quartus::project)

The following table displays information for the project_restore Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax project_restore [-h | -help] [-long_help] [-destination <directory>] [-
overwrite] [-update_included_file_info] <archive_file>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-destination <directory> Directory where restored files are placed

-overwrite Option to overwrite files in destination directory

-update_included_file_info Option to update included file information

<archive_file> Archive file name

Description
Restores a Quartus Prime Archive File (.qar) that contains
the project and its related files.

By default, the archive is restored into the current
directory. Use the "-destination" option to restore the
files into a new directory.

By default, the command fails if the archive already
contains files in the destination directory. Use the
"-overwrite" option to overwrite any existing files
in the destination directory.

Example Usage ## Restore archive and expand files into current directory
project_restore chiptrip.qar
or
project_restore chiptrip.qar -destination

Restore archive. Expand files into current directory,
but overwrite any existing files in "."
project_restore chiptrip.qar -destination . -overwrite

Restore project into a "restored" sub-directory
project_restore chiptrip.qar -destination "restored" -overwrite

Return Value Code Name Code String Return
continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

416

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Error(s) found while restoring the archive. See
error message(s) for details.

3.1.28.41. remove_all_global_assignments (::quartus::project)

The following table displays information for the remove_all_global_assignments
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax remove_all_global_assignments [-h | -help] [-long_help] [-entity
<entity_name>] [-fall] -name <name> [-rise] [-section_id <section id>] [-tag
<data>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-fall Option applies to falling edge

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

Description
Removes all matching global assignments.

The "-name" option is not case sensitive. This option can take
string patterns containing special characters from the set
"*?\[]" as the value. The value is matched using Tcl string
matching.

This Tcl command reads the global assignments found in
the Quartus Prime Settings File (.qsf). This Tcl command filters
the assignments data found in the .qsf and removes the data
based on the values specified by the "-name" option.

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one CLOCK section
each containing its own set of clock assignments. To uniquely
identify sections of this type, a <Section Id> is used.
<Section Id> can be one of three types. It can be the same as
the revision name, or it can be some unique name. The
following is a list of sections requiring a <Section Id> and
the associated <Section Id> description:

Section Id Description
--------------------------- ------------------------------
CHIP Same as revision name
LOGICLOCK_REGION A unique name
EDA_TOOL_SETTINGS A unique name
CLIQUE A unique name
BREAKPOINT A unique name
CLOCK A unique name
AUTO_INSERT_SLD_NODE_ENTITY A unique name

For entity-specific assignments, use the "-entity" option to
remove the assignment(s) from the specified entity. If the
"-entity" option is not specified, the value for the

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

417

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FOCUS_ENTITY_NAME assignment is used. If the FOCUS_ENTITY_NAME
value is not found, the revision name is used.

Assignments removed by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## Remove all the registered source files

remove_all_global_assignments -name SOURCE_FILE

Using wildcards
remove_all_global_assignments -name SOURCE*

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: <string> global assignment(s) were removed

TCL_OK 0 WARNING: Ignored assignment: <string>. The assignment
is no longer supported.

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Option -<string> for <string> assignment is illegal.
Specify a legal option or remove the option.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

418

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.28.42. remove_all_instance_assignments (::quartus::project)

The following table displays information for the
remove_all_instance_assignments Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax remove_all_instance_assignments [-h | -help] [-long_help] [-entity
<entity_name>] [-fall] [-from <source>] -name <name> [-rise] [-section_id
<section id>] [-tag <data>] [-to <destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-fall Option applies to falling edge

-from <source> Source of the assignment (string pattern is matched using
Tcl string matching)

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

-to <destination> Destination of the assignment (string pattern is matched
using Tcl string matching)

Description
Removes all matching instance assignment values.

The "-name" option is not case sensitive.
The "-to" and "-from" options are case sensitive.

These options can take string patterns containing special
characters from the set "*?\[]" as values. The values are
matched using Tcl string matching. Note that bus names are
automatically detected and do not need to be escaped. Bus
names have the following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters.
The <bus index> portion is an integer greater than or equal to
zero or it can be the character "*" used for string matching.
Notice that the <bus index> is enclosed by the square
brackets "[" and "]". For example, "a[0]" and "a[*]" are
supported bus names and can be used as follows:

To match index 0 of bus "a", type:
remove_all_instance_assignments -name LOCATION -to a[0]

To match all indices of bus "a", type:
remove_all_instance_assignments -name LOCATION -to a[*]

All other uses of square brackets must be escaped if you do
not intend to use them as string patterns. For example,
to match indices 0, 1, and 2 of the bus "a", type:

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

419

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

remove_all_instance_assignments -name LOCATION -to "a[escape_brackets \[]\[0-2\][escape_brackets
\]]"

For more information about escaping square brackets, type
"escape_brackets -h".

This Tcl command reads the instance assignments found in
the Quartus Prime Settings File (.qsf) and removes this data based
on the values specified by the "-name", "-from", and "-to"
options.

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one CLOCK section
each containing its own set of clock assignments. To uniquely
identify sections of this type, a <Section Id> is used.
<Section Id> can be one of three types. It can be the same as
the revision name, or it can be some unique name. The
following is a list of sections requiring a <Section Id> and
the associated <Section Id> description:

Section Id Description
--------------------------- ------------------------------
CHIP Same as revision name
LOGICLOCK_REGION A unique name
EDA_TOOL_SETTINGS A unique name
CLIQUE A unique name
BREAKPOINT A unique name
CLOCK A unique name
AUTO_INSERT_SLD_NODE_ENTITY A unique name

For entity-specific assignments, use the "-entity" option to
remove the assignment(s) from the specified entity. If the
"-entity" option is not specified, the value for the
FOCUS_ENTITY_NAME assignment is used. If the FOCUS_ENTITY_NAME
value is not found, the revision name is used.

Assignments removed by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## Remove all the timing requirements
Use wildcards to catch TSU_REQUIREMENT, TCO_REQUIREMENT,
and others
remove_all_instance_assignments -name *_REQUIREMENT

Remove all the location assignments with
the destination bus name "timeo".
set bus_name "timeo"
remove_all_instance_assignments -name LOCATION -to $bus_name[*]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: <string> instance assignment(s) were removed

TCL_OK 0 WARNING: Ignored assignment: <string>. The assignment
is no longer supported.

TCL_ERROR 1 ERROR: Assignment is not an instance assignment:
<string> -- it is a global assignment. Specify an instance
assignment name or use the global assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

420

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.28.43. remove_all_parameters (::quartus::project)

The following table displays information for the remove_all_parameters Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax remove_all_parameters [-h | -help] [-long_help] [-entity <entity_name>] [-fall]
-name <name> [-rise] [-tag <data>] [-to <destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which parameter belongs

-fall Option applies to falling edge

-name <name> Parameter name (string pattern is matched using Tcl string
matching)

-rise Option applies to rising edge

-tag <data> Option to tag data to this assignment

-to <destination> Destination of the parameter (string pattern is matched
using Tcl string matching)

Description
Removes all matching parameters.

The "-name" option is not case sensitive.
The "-to" option is case sensitive.

If the "-to" argument is specified, the function removes
the parameters from the current entity. The parameters are

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

421

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

removed from the PARAMETERS section of the entity. Otherwise,
the function removes the project-wide default parameters
obtained from the DEFAULT_PARAMETERS section.

This Tcl command filters the parameter data found in the
Quartus Prime Settings File (.qsf) and removes the data based on
the values specified by the "-name" and "-to" options. These
options can take string patterns containing special characters
from the set "*?\[]" as values. The values are matched using
Tcl string matching. Note that bus names are automatically
detected and do not need to be escaped. Bus names have the
following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters.
The <bus index> portion is an integer greater than or equal to
zero or it can be the character "*" used for string matching.
Notice that the <bus index> is enclosed by the square
brackets "[" and "]". For example, "a[0]" and "a[*]" are
supported bus names and can be used as follows:

To match index 0 of bus "a", type:
remove_all_parameters -name * -to a[0]

To match all indices of bus "a", type:
remove_all_parameters -name * -to a[*]

All other uses of square brackets must be escaped if you do
not intend to use them as string patterns. For example,
to match indices 0, 1, and 2 of the bus "a", type:

remove_all_parameters -name * -to "a[escape_brackets \[]\[0-2\][escape_brackets \]]"

For more information about escaping square brackets, type
"escape_brackets -h".

Use the "-entity" option to remove the parameters from the
specified entity. If the "-entity" option is not specified,
the value for the FOCUS_ENTITY_NAME assignment is used. If the
FOCUS_ENTITY_NAME value is not found, the revision name is used.

The parameters removed by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## The following 3 examples remove project-wide,
default parameter values
remove_all_parameters -name WIDTH
remove_all_parameters -name *ID*
remove_all_parameters -name *

The following 3 examples remove entity-specific
parameter values
remove_all_parameters -name inst1 -to SIZE
remove_all_parameters -name inst1 -to *IZ*
remove_all_parameters -name inst1 -to *

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: <string> parameter(s) were removed

TCL_OK 0 INFO: Removed parameter: <string>

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

422

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Parameter does not exist and cannot be removed:
<string>. Specify an existing parameter name.

TCL_ERROR 1 ERROR: Illegal default parameter: <string>. Specify a legal
default parameter name.

TCL_ERROR 1 ERROR: Illegal parameter: <string>. Specify a legal
parameter name.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.28.44. resolve_file_path (::quartus::project)

The following table displays information for the resolve_file_path Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax resolve_file_path [-h | -help] [-long_help] <file_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<file_name> Option to specify the file name

Description
Returns the resolved full path of the specified file name.
If the file does not exist, the original file name is
returned.

The Quartus Prime software resolves relative paths by searching
for the file in the following directories in the following
order:

1) Project directory, which is the directory where the
 Quartus Prime Settings File (.qsf) is found.
2) Project database directory, which is the "db" directory
 found under the project directory.
3) Project library directories, which are the directories
 containing the user-specified libraries that are used
 only by the current project.
4) User library directories, which are the directories
 containing the user-specified libraries that are
 used by all Quartus Prime projects.
5) Quartus Prime library directory, which is the directory
 containing Quartus Prime libraries.

Example Usage project_new chiptrip -overwrite

Set one Verilog source file assignment
set_global_assignment -name VERILOG_FILE chiptrip.v

Display the resolved full path of the Verilog
source file assignment
set filename [get_global_assignment -name VERILOG_FILE]
set resolved_fullpath [resolve_file_path $filename]

puts "Full Path: $resolved_fullpath"

Set more Verilog source file assignments
set_global_assignment -name VERILOG_FILE auto_max.v
set_global_assignment -name VERILOG_FILE speed_ch.v
set_global_assignment -name VERILOG_FILE tick_cnt.v
set_global_assignment -name VERILOG_FILE time_cnt.v

Display the resolved full path of all the Verilog
source file assignments
set file_asgns [get_all_global_assignments -name VERILOG_FILE]
foreach_in_collection file_asgn $file_asgns {

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

423

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 ## Each element in the collection has the following
 ## format: {} {VERILOG_FILE} {<file_name>}

 set filename [lindex $file_asgn 2]
 set resolved_fullpath [resolve_file_path $filename]

 puts "Full Path: $resolved_fullpath"
}

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.28.45. revision_exists (::quartus::project)

The following table displays information for the revision_exists Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax revision_exists [-h | -help] [-long_help] [-project <project_name>]
<revision_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-project <project_name> Project name

<revision_name> Revision name

Description
Checks whether the revision exists for the specified project
or currently open project.

Returns 1, if the revision exists; returns 0, otherwise.

Example Usage ## Check if the specified revision exists
in the specified project
if [revision_exists -ARG(project) chiptrip speed_ch] {
 puts "Revision exists"
} else {
 puts "Revision does not exist"
}

Create revision for the currently open
project if it does not exist
Set the current revision otherwise
project_open chiptrip
if [revision_exists speed_ch] {
 set_current_revision speed_ch
} else {
 create_revision speed_ch
}
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Project does not exist or has illegal name
characters: <string>. Specify a legal project name.

TCL_ERROR 1 ERROR: Project name was not specified or open project
does not exist. Open an existing project or specify the
project name.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

424

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.46. set_current_revision (::quartus::project)

The following table displays information for the set_current_revision Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax set_current_revision [-h | -help] [-long_help] [-force] <revision_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-force Option to open the revision and overwrite the compilation
database if the database version is incompatible.

<revision_name> Revision name

Description
Sets the specified revision name as the current revision. All
assignments created or modified during an open project will also be
saved to the Quartus Prime Settings File (.qsf).

In 8.1 or later versions of Quartus Prime software, set_current_revision
gives an error when the compilation database version is not
compatible with the current version of Quartus Prime software.
You may specify the "-force" option to avoid the error
and overwrite the database.

Example Usage ## Sets "auto_max" as the current revision
set_current_revision auto_max

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 WARNING: Revision is already the current revision:
<string>. No action is required.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Revision file does not exist: <string>.qsf. Use
delete_revision to delete the revision from the current
project. Then use create_revision to create the revision and
its .qsf before setting <string> as the current revision.

TCL_ERROR 1 ERROR: Revision is not included in the current project:
<string> . Use the create_revision command to create the
revision.

3.1.28.47. set_global_assignment (::quartus::project)

The following table displays information for the set_global_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax set_global_assignment [-h | -help] [-long_help] [-comment <comment>] [-
disable] [-entity <entity_name>] [-fall] -name <name> [-remove] [-rise] [-
section_id <section id>] [-tag <data>] [<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

425

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-comment <comment> Comment

-disable Option to disable assignment

-entity <entity_name> Entity to which to add assignment

-fall Option applies to falling edge

-name <name> Assignment name

-remove Option to remove assignment

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

<value> Assignment value

Description
Sets or removes a global assignment.

Assignments created or modified by using this Tcl command are not
saved to the Quartus Prime Settings File (.qsf) unless you explicitly
call one of the following two Tcl commands (from the
::quartus::project Tcl package):

1) export_assignments
2) project_close (unless -dont_export_assignments is specified as an
argument to project_close)

You must save assignment changes before you run Quartus Prime
command-line executables. Note, however, that the Tcl commands
execute_flow and execute_module (from the ::quartus::flow Tcl
package) call "export_assignments" before they run
command-line executables.

For entity-specific assignments, use the -entity option to force the
assignment to specified entity. If the -entity option is not
specified, the value for the FOCUS_ENTITY_NAME assignment is used. If
the FOCUS_ENTITY_NAME value is not found, the revision name is used.

If the Quartus Prime Settings File contains a USER_LIBRARIES assignment
and you call set_global_assignment to set a SEARCH_PATH or
USER_LIBRARIES assignment, the existing USER_LIBRARIES assignment
expands into one or more SEARCH_PATH assignments.

Note that values that begin with a dash ("-") should be enclosed in a
backslash followed by a quote. In the following example, -02 is
enclosed by \" at the beginning and the end.

set_global_assignment -name ARM_CPP_COMMAND_LINE \"-O2\"

Example Usage ## Specify Stratix as the family to use when compiling
set_global_assignment -name FAMILY Stratix

If the family name has empty spaces, use quotes
set_global_assignment -name FAMILY "Stratix GX"

or remove any empty space
set_global_assignment -name FAMILY StratixGX

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Assignment <string> is not supported in this edition
of the Quartus Prime software.

TCL_OK 0 WARNING: Ignored assignment: <string>. The assignment
is no longer supported.

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

426

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: The assignment <string> is from Design Template
and can't be changed/removed.

TCL_ERROR 1 ERROR: File name <string> exceeds maximum of <string>
characters. Specify a file name with fewer characters.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Option -<string> for <string> assignment is illegal.
Specify a legal option or remove the option.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Value <string> for <string> assignment is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: The -<string> option is not required but was
specified with the value: <string>. Delete the option.

TCL_ERROR 1 ERROR: The -<string> option is required but was not
specified. Specify the required option.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

TCL_ERROR 1 ERROR: Assignment <string> cannot be removed -- it has
multiple values. Specify one value to remove or use the
<string> command to remove all values for the assignment.

TCL_ERROR 1 ERROR: Missing <<string>> for <string> assignment.
Specify the required <string>.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

427

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.48. set_high_effort_fmax_optimization_assignments (::quartus::project)

The following table displays information for the
set_high_effort_fmax_optimization_assignments Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax set_high_effort_fmax_optimization_assignments [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Sets assignments that together implement the
high-effort fmax optimization flow. This Tcl command
only sets the assignments but does not run a
compilation.

Example Usage ## Open the project
project_open $project_name

Set assignments that implement the high-effort
fmax optimization flow
set_high_effort_fmax_optimization_assignments

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Set global assignment <string> to <string>.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.28.49. set_instance_assignment (::quartus::project)

The following table displays information for the set_instance_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax set_instance_assignment [-h | -help] [-long_help] [-comment <comment>] [-
disable] [-entity <entity_name>] [-fall] [-from <source>] -name <name> [-
remove] [-rise] [-section_id <section id>] [-tag <data>] [-to <destination>]
[<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <comment> Comment

-disable Option to disable assignment

-entity <entity_name> Entity to which to add assignment

-fall Option applies to falling edge

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

428

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-from <source> Source of assignment

-name <name> Assignment name

-remove Option to remove assignment

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

-to <destination> Destination of assignment

<value> Assignment value

Description
Sets or removes an instance assignment.

Assignments created or modified by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

For entity-specific assignments, use the "-entity" option to
force the assignment to specified entity. If the "-entity"
option is not specified, the value for the FOCUS_ENTITY_NAME
assignment is used. If the FOCUS_ENTITY_NAME value is not found,
the revision name is used.

Example Usage ## Specify a TSU_REQUIREMENT of 2ns from mypin to any register
set_instance_assignment -from "mypin" -to * -name TSU_REQUIREMENT 2ns

Remove the TSU_REQUIREMENT from mypin to all registers
set_instance_assignment -from "mypin" -to * -name TSU_REQUIREMENT -remove

Specify the entity to which the assignment is added,
use the -entity option
This is needed if the top-level entity name is other than
that of the project name
The following command generates a top_level entity
set_instance_assignment -from "mypin" -to * -entity top_level -name TSU_REQUIREMENT 2ns

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 WARNING: Ignored assignment: <string>. The assignment
is no longer supported.

TCL_ERROR 1 ERROR: Assignment is not an instance assignment:
<string> -- it is a global assignment. Specify an instance
assignment name or use the global assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

429

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The assignment <string> is from Design Template
and can't be changed/removed.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Value <string> for <string> assignment is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: The -<string> option is not required but was
specified with the value: <string>. Delete the option.

TCL_ERROR 1 ERROR: The -<string> option is required but was not
specified. Specify the required option.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

TCL_ERROR 1 ERROR: Assignment <string> cannot be removed -- it has
multiple values. Specify one value to remove or use the
<string> command to remove all values for the assignment.

TCL_ERROR 1 ERROR: Missing <<string>> for <string> assignment.
Specify the required <string>.

3.1.28.50. set_io_assignment (::quartus::project)

The following table displays information for the set_io_assignment Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax set_io_assignment [-h | -help] [-long_help] [-comment <comment>] [-disable] [-
fall] [-io_standard <io standard>] -name <name> [-remove] [-rise] [-tag <data>]
[<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <comment> Comment

-disable Option to disable assignment

-fall Option applies to falling edge

-io_standard <io standard> Option to specify the io standard

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

430

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-name <name> Assignment name

-remove Option to remove assignment

-rise Option applies to rising edge

-tag <data> Option to tag data to this assignment

<value> Assignment value

Description
Sets or removes an io assignment.

Assignments created or modified by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## Specify LVTTL as the IO Standard for OUTPUT_PIN_LOAD assignment
set_io_assignment 30 -name OUTPUT_PIN_LOAD -io_standard LVTTL

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 WARNING: Ignored assignment: <string>. The assignment
is no longer supported.

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: File name <string> exceeds maximum of <string>
characters. Specify a file name with fewer characters.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Option -<string> for <string> assignment is illegal.
Specify a legal option or remove the option.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Value <string> for <string> assignment is illegal.
Specify a legal value.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

431

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: The -<string> option is not required but was
specified with the value: <string>. Delete the option.

TCL_ERROR 1 ERROR: The -<string> option is required but was not
specified. Specify the required option.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: Assignment <string> cannot be removed -- it has
multiple values. Specify one value to remove or use the
<string> command to remove all values for the assignment.

TCL_ERROR 1 ERROR: Missing <<string>> for <string> assignment.
Specify the required <string>.

3.1.28.51. set_location_assignment (::quartus::project)

The following table displays information for the set_location_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax set_location_assignment [-h | -help] [-long_help] [-comment <comment>] [-
disable] [-fall] [-remove] [-rise] [-tag <data>] -to <destination> [<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <comment> Comment

-disable Option to disable assignment

-fall Option applies to falling edge

-remove Option to remove assignment

-rise Option applies to rising edge

-tag <data> Option to tag data to this assignment

-to <destination> Destination of assignment

<value> Assignment value

Description
Sets or removes a location assignment.

 Valid location assignments, and settings for those
 assignments for your design are determined by the
 target device, package type, and pin count.

 To explore possible assignments and settings for your
 design and device, in the Quartus Prime Assignment
 Editor, specify Location for Assignment Name, and then
 click Browse in the Value column. In the Location
 dialog box, explore assignable device resources in the
 Element list, and then use the lists that appear
 (based on the element selected) to determine locations

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

432

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 of resources that can be specified as the value for
 the assignment.

Assignments created or modified by using this Tcl
command are not saved to the Quartus Prime Settings File
(.qsf) unless you explicitly call one of the following
two Tcl commands:

1) export_assignments

 2) project_close (unless "-dont_export_assignments" is
 specified)

These two Tcl commands reside in the
::quartus::project Tcl package. You must save
assignment changes before you run Quartus Prime
command-line executables. Note, however, that the Tcl
commands "execute_flow" and "execute_module" (part of
the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line
executables.

Example Usage set_location_assignment -to dst LOC

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: The assignment <string> is from Design Template
and can't be changed/removed.

TCL_ERROR 1 ERROR: Value <string> for <string> assignment is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Missing <<string>> for <string> assignment.
Specify the required <string>.

3.1.28.52. set_parameter (::quartus::project)

The following table displays information for the set_parameter Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax set_parameter [-h | -help] [-long_help] [-comment <comment>] [-disable] [-
fall] -name <name> [-remove] [-rise] [-tag <data>] [<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <comment> Comment

-disable Option to disable parameter

-fall Option applies to falling edge

-name <name> Parameter name

-remove Option to remove parameter

-rise Option applies to rising edge

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

433

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-tag <data> Option to tag data to this assignment

<value> Parameter value

Description
Sets or removes the specified parameter name.

The "-name" option is not case sensitive.

The parameters created or modified by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

set_parameter can be used to overwrite the parameters in the top-level
entity of the design. A warning will be given if the parameter
can not be applied.

set_parameter assignments with "-entity" and "-to" are ignored and
a critical warning is given if they are used.

Example Usage ## Set project-wide, default WIDTH parameter value
set_parameter -name WIDTH 8

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Removed parameter: <string>

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for <string> assignment is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: The -<string> option is not required but was
specified with the value: <string>. Delete the option.

TCL_ERROR 1 ERROR: The -<string> option is required but was not
specified. Specify the required option.

TCL_ERROR 1 ERROR: Parameter does not exist and cannot be removed:
<string>. Specify an existing parameter name.

TCL_ERROR 1 ERROR: An unknown error has occured.

TCL_ERROR 1 ERROR: Missing <<string>> for <string> assignment.
Specify the required <string>.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

434

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.53. set_power_file_assignment (::quartus::project)

The following table displays information for the set_power_file_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax set_power_file_assignment [-h | -help] [-long_help] [-remove] [-saf_file
<saf_file>] [-section_id <section_id>] [-to <to>] [-vcd_end_time <vcd_end_time>]
[-vcd_file <vcd_file>] [-vcd_start_time <vcd_start_time>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-remove Option to remove assignment

-saf_file <saf_file> SAF file name

-section_id <section_id> Section id

-to <to> Entity to which to apply power input file

-vcd_end_time <vcd_end_time> End time for VCD file parsing

-vcd_file <vcd_file> VCD file name

-vcd_start_time <vcd_start_time> Start time for VCD file parsing

Description
Sets or removes a power input file assignment. Power input file
assignments are specified using multiple global assignments, and
a single instance assignment as illustrated in the following
example:

set_global_assignment -name POWER_INPUT_FILE_NAME "test.vcd" -section_id test.vcd
set_global_assignment -name POWER_INPUT_FILE_TYPE VCD -section_id test.vcd
set_global_assignment -name POWER_VCD_FILE_START_TIME "10 ns" -section_id test.vcd
set_global_assignment -name POWER_VCD_FILE_END_TIME "1000 ns" -section_id test.vcd
set_instance_assignment -name POWER_READ_INPUT_FILE test.vcd -to test_design

The power input file assignment serves as a wrapper for all of the
above assignments. If the "-remove" setting is not set, the
set_power_file_assignment will also make the following assignment
to enable the use of input files:

set_global_assignment -name POWER_USE_INPUT_FILES ON

If you do not specify a "-section_id", a new section identifier is
created for the input file assignment. If a "-section_id" is
specified and it does not already exist, it is used as the new
section identifier. If a "-section_id" is specified and it does
exist, the existing input file assignments are removed and a new
input file assignment is created using the given parameters and
section identifier.

If an entity name given by "-to" is not specified, the input file
assignment applys to the top level design entity.

If the "-remove" setting is used, the input file assignment given
by the "-section_id", "-vcd_file", or "-saf_file" is removed
from the project.

Assignments created or modified by using this Tcl command are
saved to the Quartus Prime Settings File (.qsf).

Example Usage ## Specify an input SAF file applied to the top level entity
A default section will be created
set_power_file_assignment -saf_file test.saf

Specify an input VCD file applied to design_top|counter1
Use the given section_id to create a new section
set_power_file_assignment -vcd_file test.vcd -to design_top|counter1 -section_id test.vcd

Update the previous input VCD file assignment to specify a
start and end time

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

435

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_power_file_assignment -vcd_file test.vcd -to design_top|counter1 -vcd_start_time 10ns -
vcd_end_time 100ns -section_id test.vcd

Remove the input SAF file assignment using the file name
set_power_file_assignment -saf_file test.saf -remove

Remove the input VCD file assignment using the section identifier
set_power_file_assignment -section_id test.vcd -remove

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Compiler database does not exist for revision
name: <string>. At the minimum, run Analysis & Synthesis
(quartus_map) with the specified revision name before
using this Tcl command.

TCL_ERROR 1 ERROR: Exactly one of the following file name options must
be specified: -<string> or -<string>.

TCL_ERROR 1 ERROR: If -<string> is set, exactly one of the following
options must be specified: -<string>, -<string> or -
<string>. All other options must not be set.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: -<string> and -<string> cannot be used with -
<string> option.

3.1.28.54. set_revision_description (::quartus::project)

The following table displays information for the set_revision_description Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax set_revision_description [-h | -help] [-long_help] -description <description>
[<revision_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-description <description> Revision description

<revision_name> Revision name

Description
Sets the description for the specified revision.

Example Usage ## Create a description for the revision "auto_max"
set_revision_description auto_max -description "I am auto_max"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Revision is not included in the current project:
<string> . Use the create_revision command to create the
revision.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

436

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.28.55. set_user_option (::quartus::project)

The following table displays information for the set_user_option Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax set_user_option [-h | -help] [-long_help] -name <name> [<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> User option name

<value> User option value

Description
Sets the user option value for the name specified by
the "-name" option. The user option is written to
the quartus2.ini file.

To get a list of all available user option names, use
the "get_all_user_option_names" command.

Example Usage ## Set TALKBACK_ENABLED to "on"
set_user_option -name TALKBACK_ENABLED on

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal user option name: <string>. Specify a legal
user option name. To get a list of legal names, use the
get_all_user_option_names command.

TCL_ERROR 1 ERROR: Illegal user option value: <string>. Specify a legal
user option value.

3.1.28.56. test_assignment_trait (::quartus::project)

The following table displays information for the test_assignment_trait Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project on page 373

Syntax test_assignment_trait [-h | -help] [-long_help] -name <name> -trait
<trait_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> Assignment name

-trait <trait_name> Trait name

Description
Checks whether the assignment name has the specified trait.
Returns 1, if the assignment name has the trait;
returns 0, otherwise.

Example Usage ## Test if the assignment name is case-sensitive
if {[test_assignment_trait -name VHDL_FILE -trait CASE_SENSITIVE]} {
 puts "VHDL_FILE assignment is case-sensitive."

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

437

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

} else {
 puts "VHDL_FILE assignment is not case-sensitive."
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Assignment <string> is not supported in this edition
of the Quartus Prime software.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Ignored assignment: <string>. The assignment is
no longer supported.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: Illegal trait: <string>. Specify a legal trait name.

3.1.29. ::quartus::project2

The following table displays information for the ::quartus::project2 Tcl package:

Tcl Package and Version ::quartus::project2 1.0

Description
This package contains no general description.

Availability This package is loaded by default in the following executables:

 hdb_debug
 qpro
 qpro_sh
 quartus
 quartus_asm
 quartus_bpps
 quartus_cdb
 quartus_design
 quartus_eda
 quartus_fit
 quartus_idb
 quartus_ipd
 quartus_ipgenerate
 quartus_map
 quartus_sh
 quartus_si
 quartus_sim
 quartus_sta
 quartus_stp
 quartus_syn
 quartus_tlg

Tcl Commands quartus::close_project (::quartus::project2) on page 439
quartus::open_project (::quartus::project2) on page 439

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

438

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.29.1. quartus::close_project (::quartus::project2)

The following table displays information for the quartus::close_project Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project2 on page 438

Syntax quartus::close_project [-h | -help] [-long_help] [-dont_export_assignments]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-dont_export_assignments Do not export assignments to file

Description
Closes an open project.

The assignments created or modified during an open project
are committed to the Quartus Prime Settings File (.qsf) during a
"project_close", unless you use the "-dont_export_assignments"
option.

Example Usage ## Close the project if open
if [is_project_open] {
 quartus::close_project
}
Close the project if open
and do not export the assignments
if [is_project_open] {
 quartus::close_project -dont_export_assignments
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Failed when attempting to write assignments back
to QSF.

TCL_ERROR 1 ERROR: Can't write settings file *.qsf. Make sure the *.qsf
file is writeable.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.29.2. quartus::open_project (::quartus::project2)

The following table displays information for the quartus::open_project Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project2 on page 438

Syntax quartus::open_project [-h | -help] [-long_help] [-current_revision] [-force] [-
preserve_revision_order] [-revision <revision_name>] <project_name>

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

439

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-current_revision Option to open the current revision automatically

-force Option to open the project and overwrite the compilation
database if the database version is incompatible.

-preserve_revision_order Option to not move the revision to top in the qpf file and
preserve existing revision ordering

-revision <revision_name> Revision name

<project_name> Project name

Description
Opens an existing project. To create a new project, use the
"project_new" command.

If the "-revision" option is not specified, the project name
is used to open the revision.

The project_open command gives an error when the compilation database
version is not compatible with the current version of Quartus Prime
software. You may specify the "-force" option to avoid the error and
overwrite the database.

Example Usage ## Open project "chiptrip" and revision "chiptrip"
quartus::open_project chiptrip

Open project "chiptrip" and revision "auto_max"
quartus::open_project -revision auto_max chiptrip

Get the current revision before opening
the project with the current revision
set project_name chiptrip
set current_revision [get_current_revision $project_name]
quartus::open_project -revision $current_revision $project_name
puts [get_global_assignment -name FAMILY]
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 WARNING: Specified values of options -<string> and -
<string> differ. Ignored value of -<string> option. No
action is required.

TCL_OK 0 WARNING: Project is already open: <string>

TCL_ERROR 1 ERROR: Can't open project: <string>. First close the
currently open project: <string>.

TCL_ERROR 1 ERROR: Can't open project: <string>

TCL_ERROR 1 ERROR: Can't set revision: <string>. Make sure there is an
open, active revision name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Cannot open project: <string>. The project is not
compatible with the installed version of the Quartus Prime
software. Opening the project will overwrite the old project
database. If you wish to overwrite the old project database,
make sure to specify the -<string> option.

TCL_ERROR 1 ERROR: Can't open revision: <string> (project: <string>).
The revision is not compatible with the installed version of
the Quartus Prime software. Opening the revision will

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

440

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

overwrite the old revision database. If you wish to overwrite
the old revision database, make sure to specify the -
<string> option.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Revision does not exist: <string>. Specify a legal
revision name using the -<string> option.

TCL_ERROR 1 ERROR: Project does not exist or has illegal name
characters: <string>. Specify a legal project name.

TCL_ERROR 1 ERROR: Project name was not specified or open project
does not exist. Open an existing project or specify the
project name.

3.1.30. ::quartus::project_ui

The following table displays information for the ::quartus::project_ui Tcl package:

Tcl Package and Version ::quartus::project_ui 2.0

Description
This package contains no general description.

Availability This package is loaded by default in the following executables:

 qpro
 quartus

Tcl Commands assignment_group (::quartus::project_ui) on page 442
delete_revision (::quartus::project_ui) on page 444
execute_assignment_batch (::quartus::project_ui) on page 444
export_assignments (::quartus::project_ui) on page 445
get_all_assignment_names (::quartus::project_ui) on page 446
get_all_assignments (::quartus::project_ui) on page 447
get_all_global_assignments (::quartus::project_ui) on page 450
get_all_instance_assignments (::quartus::project_ui) on page 452
get_all_parameters (::quartus::project_ui) on page 454
get_all_quartus_defaults (::quartus::project_ui) on page 456
get_all_user_option_names (::quartus::project_ui) on page 458
get_assignment_info (::quartus::project_ui) on page 458
get_assignment_name_info (::quartus::project_ui) on page 459
get_current_project (::quartus::project_ui) on page 460
get_current_revision (::quartus::project_ui) on page 460
get_global_assignment (::quartus::project_ui) on page 461
get_instance_assignment (::quartus::project_ui) on page 462
get_location_assignment (::quartus::project_ui) on page 463
get_parameter (::quartus::project_ui) on page 464
get_project_directory (::quartus::project_ui) on page 465
get_project_revisions (::quartus::project_ui) on page 465
get_user_option (::quartus::project_ui) on page 466
is_project_open (::quartus::project_ui) on page 467
project_archive (::quartus::project_ui) on page 467
project_close (::quartus::project_ui) on page 468
project_exists (::quartus::project_ui) on page 469
project_new (::quartus::project_ui) on page 470
project_open (::quartus::project_ui) on page 471
project_restore (::quartus::project_ui) on page 472
remove_all_global_assignments (::quartus::project_ui) on page 473
remove_all_instance_assignments (::quartus::project_ui) on page 475
remove_all_parameters (::quartus::project_ui) on page 477
resolve_file_path (::quartus::project_ui) on page 479
revision_exists (::quartus::project_ui) on page 480
set_current_revision (::quartus::project_ui) on page 481
set_global_assignment (::quartus::project_ui) on page 482
set_instance_assignment (::quartus::project_ui) on page 484
set_io_assignment (::quartus::project_ui) on page 486
set_location_assignment (::quartus::project_ui) on page 488
set_parameter (::quartus::project_ui) on page 489
set_power_file_assignment (::quartus::project_ui) on page 490
set_user_option (::quartus::project_ui) on page 492
test_assignment_trait (::quartus::project_ui) on page 493

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

441

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.30.1. assignment_group (::quartus::project_ui)

The following table displays information for the assignment_group Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax assignment_group [-h | -help] [-long_help] [-add_exception <name>] [-
add_member <name>] [-comment <comment>] [-disable] [-fall] [-get_exceptions]
[-get_members] [-overwrite] [-remove] [-remove_exception <name>] [-
remove_member <name>] [-rise] [-tag <data>] <group_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add_exception <name> Tcl list of exception names to add

-add_member <name> Tcl list of member names to add

-comment <comment> Comment

-disable Option to disable assignment

-fall Option applies to falling edge

-get_exceptions Option to get collection of assignment group exceptions

-get_members Option to get collection of assignment group members

-overwrite Option to overwrite existing assignment group with the
same group name

-remove Option to remove assignment group

-remove_exception <name> Tcl list of exception names to remove

-remove_member <name> Tcl list of member names to remove

-rise Option applies to rising edge

-tag <data> Option to tag data to this assignment

<group_name> Assignment group name

Description
Adds, removes, gets members of, or gets exceptions to an
assignment group.

The "assignment_group" command replaces the deprecated
"timegroup" command.

An assignment group is a custom group of registers and pins. You can
use the "-add_member" option to specify register or pin names
you want to include in the assignment group. You can use the
"-add_exception" option to specify names you want to exclude
from the assignment group.

You can specify the names using wildcards, that is, using "?"
or "*". For example, to add all registers and pins that start
with a "b" except those that start with "b|c|" to a particular
assignment group named "group_b", type:

assignment_group "group_b" -add_member "b*" -add_exception "b|c|*"

To remove members or exceptions from a assignment group, use the
"-remove_member" or "-remove_exception" options respectively.

The "-get_members" option returns a collection of members in
the assignment group. The "-get_exceptions" option returns a collection
of exceptions to the assignment group. To access each element of the
collection, use the Tcl command "foreach_in_collection". To see
example usage, type "assignment_group -long_help" or
"foreach_in_collection -long_help".

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

442

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specifying registers and pins in terms of an assignment group
allows you to set timing constraints easily. For example, to make
a multicycle assignment from nodes "a1" and "a2" to nodes "b1",
"b2", and "b3", type the following:

assignment_group "group_a" -add_member [list "a1" "a2"]
assignment_group "group_b" -add_member [list "b1" "b2" "b3"]

set_multicycle_assignment -from "group_a" -to "group_b" 2

This command sets a multicycle assignment from every member of
"group_a" to every member of "group_b". Quartus Prime timing
analysis is optimized to use assignment groups in handling timing
constraints.

To disable assignment group assignments for the entire group,
use the "-disable" option, for example:

assignment_group "group_a" -disable

To disable a particular assignment group assignment, use the
"-disable" option with the "-add_member" or "-add_exception"
options, for example:

assignment_group "group_a" -add_member "m1" -disable
assignment_group "group_a" -add_exception "e1" -disable

Assignments created or modified by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage # Make timing cut assignment from nodes starting
with "r" except those starting with "r|s|"
and except those starting with "r|t|"
to nodes "t1", "t2", and "t3"
assignment_group "tg1" -add_member "r*" -add_exception "r|s|*"
assignment_group "tg1" -add_exception "r|t|*"

assignment_group "tg2" -add_member [list "t1" "t2" "t3"]

set_timing_cut_assignment -from "group_a" -to "group_b" 2

Remove the "t1" from a particular assignment group named "tg2"
assignment_group "tg2" -remove_member "t1"

Display the members of a particular assignment group named "tg1"
foreach_in_collection member [assignment_group "tg1" -get_members] {

 # Print the name of the member
 puts $member
}

Display the exceptions to a particular assignment group named "tg1"
foreach_in_collection exception [assignment_group "tg1" -get_exceptions] {

 # Print the name of the exception
 puts $exception
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't set revision: <string>. Make sure there is an
open, active revision name.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

443

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Revision does not exist: <string>. Specify a legal
revision name using the -<string> option.

3.1.30.2. delete_revision (::quartus::project_ui)

The following table displays information for the delete_revision Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax delete_revision [-h | -help] [-long_help] <revision_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<revision_name> Revision name

Description
Deletes the specified revision from the current project. The corresponding <revision name>.qsf
file is deleted as well.

Example Usage ## Delete the revision called "tmp"
delete_revision tmp

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't delete the current revision: <string>. Specify
a different revision name.

TCL_ERROR 1 ERROR: Can't delete revision because it is not included in
the current project: <string> . Specify a revision name that
is included in the project.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.30.3. execute_assignment_batch (::quartus::project_ui)

The following table displays information for the execute_assignment_batch Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax execute_assignment_batch [-h | -help] [-long_help] <tcl commands>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<tcl commands> Tcl list of Tcl commands

Description
Iterates through the specified Tcl list of Tcl commands and executes
each command sequentially in batch mode.

In batch mode, Tcl commands that set Quartus Prime Settings File
(.qsf) assignments are optimized to prevent them from repeatedly

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

444

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

write-locking and write-unlocking the QSF during consecutive calls,
thereby slowing down the execution.

Currently, only the following commands are supported:

 assignment_group
 remove_all_global_assignments
 remove_all_instance_assignments
 remove_all_parameters
 set_global_assignment
 set_instance_assignment
 set_io_assignment
 set_location_assignment
 set_parameter
 set_power_file_assignment

Example Usage project_open one_wire
set tcl_cmds [list [list set_global_assignment -name FAMILY StratixII] \
 [list set_global_assignment -name DEVICE AUTO] \
 [list set_global_assignment -name TOP_LEVEL_ENTITY one_wire] \
 [list set_global_assignment -name SAVE_DISK_SPACE OFF] \
 [list set_location_assignment PIN_1 -to in1] \
 [list set_instance_assignment -name MULTICYCLE 4 -from in1 -to out1] \
 [list set_parameter -name STYLE FAST]]
execute_assignment_batch $tcl_cmds
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Unsupported Tcl command: <string>. Specify one
of the supported Tcl commands listed in the help description
for <string> -h.

3.1.30.4. export_assignments (::quartus::project_ui)

The following table displays information for the export_assignments Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax export_assignments [-h | -help] [-long_help] [-reorganize]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-reorganize Option to reorganize the Quartus Prime Settings File (.qsf)

Description
Exports assignments for the current revision to the Quartus Prime
Settings File (.qsf).

Assignments created or modified during an open project are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## The most common use of export_assignments is to
call it before doing a system call
to call a compiler command-line executable
project_open $project_name
set_global_assignment -name FAMILY Stratix

Before calling quartus_map,

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

445

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

write out the FAMILY assignment
export_assignments

Now, call quartus_map
qexec "[file join $::quartus(binpath) quartus_map] $project_name"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.30.5. get_all_assignment_names (::quartus::project_ui)

The following table displays information for the get_all_assignment_names Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_all_assignment_names [-h | -help] [-long_help] [-family <family>] [-module
<all|ip_generate|map|tlg|fit|tan|asm|eda|drc|power|generic>] [-type <all|global|instance>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-family <family> Option to filter based on the specified device family.
Defaults to all families.

-module <all|ip_generate|map|tlg|
fit|tan|asm|eda|drc|power|generic>

Option to filter based on the specified flow module. Defaults
to all.

-type <all|global|instance> Option to filter based on the specified assignment type.
Defaults to all.

Description
Returns a filtered output list of all available, matching
assignment names.

The module option takes one of the following values:

Module Description
-------- -------------------------------------
ip_generate IP Generation assignment names
tlg Support Logic Generation assignment names
map Analysis & Synthesis assignment names
fit Fitter assignment names
asm Assembler assignment names
eda EDA Netlist Writer assignment names
drc Design Assistant assignment names
power Power Analyzer assignment names
generic Other assignment names not included in any
 of the above flow modules
tan Classic Timing Analyzer assignment names
all All assignment names

Example Usage ## Print out all available global assignments
foreach i [get_all_assignment_names -type global] {
 puts $i
}

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

446

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Print out all available global assignments
for the Stratix family
foreach i [get_all_assignment_names -type global -family Stratix] {
 puts $i
}

Print out all available global assignments
for the Stratix family required
by the Analysis & Synthesis module
foreach i [get_all_assignment_names -type global -family Stratix

-module map] {
 puts $i
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal flow module: <string>. Specify <string>,
<string>, <string>, <string>, <string>, <string>,
<string>, or <string>.

TCL_ERROR 1 ERROR: Illegal type: <string>. Specify <string>, <string>,
or <string>.

TCL_ERROR 1 ERROR: Illegal device family: <string>. Specify a legal
device family.

3.1.30.6. get_all_assignments (::quartus::project_ui)

The following table displays information for the get_all_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_all_assignments [-h | -help] [-long_help] [-entity <entity_name>] [-fall]
[-from <source>] -name <name> [-rise] [-section_id <section id>] [-tag <data>]
[-to <destination>] -type <global|instance|parameter|default>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity name

-fall Option applies to falling edge

-from <source> Source name (string pattern is matched using Tcl string
matching)

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

-to <destination> Destination name (string pattern is matched using Tcl string
matching)

-type <global|instance|parameter|
default>

Option to specify the type of assignments to return

Description
Returns a collection of all matching global, instance, parameter,
or default assignment ids. To iterate through each assignment id
in this collection, use the Tcl command "foreach_in_collection".

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

447

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To view details for the assignment that is associated with the
assignment id, use the Tcl command "get_assignment_info".

The "get_all_assignments" command is easier to use than the
deprecated commands listed in Table 1.

* Table 1. The -type Option

Value for
-type Option Deprecated Tcl command Description
------------ ---------------------- -----------
default get_all_quartus_defaults Returns only default assignments.

global get_all_global_assignments Returns only global assignments.

instance get_all_instance_assignments Returns only instance assignments.

parameter get_all_parameters Returns only parameter assignments.

The "-name" option is not case sensitive.
The "-to" and "-from" options are case sensitive.

These options can take string patterns containing special
characters from the set "*?\[]" as values. The values are
matched using Tcl string matching. Note that bus names are
automatically detected and do not need to be escaped. Bus
names have the following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters.
The <bus index> portion is an integer greater than or equal to
zero or it can be the character "*" used for string matching.
Notice that the <bus index> is enclosed by the square
brackets "[" and "]". For example, "a[0]" and "a[*]" are
supported bus names and can be used as follows:

To match index 0 of bus "a", type:
get_all_assignments -type instance -name LOCATION -to a[0]

To match all indices of bus "a", type:
get_all_assignments -type instance -name LOCATION -to a[*]

All other uses of square brackets must be escaped if you do
not intend to use them as string patterns. For example,
to match indices 0, 1, and 2 of the bus "a", type:

get_all_assignments -type instance LOCATION -to "a[escape_brackets \[]\[0-2\][escape_brackets
\]]"

For more information about escaping square brackets, type
"escape_brackets -h".

This Tcl command reads in the global, instance, and parameter
assignments found in the Quartus Prime Settings File (.qsf) and
reads in the default assignments found inside the
Quartus Prime Default Settings File (.qdf).

If you tagged data by making assignments with the -tag option,
then the information can be searched using the -tag option.

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one clock section
each containing its own set of clock assignments. To uniquely
identify sections of this type, use the -section_id option.

For entity-specific assignments, use the "-entity" option to
retrieve assignments from a specific entity. If the
"-entity" option is not specified, the value for the
FOCUS_ENTITY_NAME assignment is used. If the FOCUS_ENTITY_NAME
value is not found, the revision name is used.

Example Usage ## View all the timing requirements using wildcards
 ## to match TSU_REQUIREMENT, TCO_REQUIREMENT,
 ## and others.
foreach_in_collection asgn_id [get_all_assignments -type instance -name *_REQUIREMENT] {

 set from [get_assignment_info $asgn_id -from]
 set to [get_assignment_info $asgn_id -to]
 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]
 set entity [get_assignment_info $asgn_id -entity]
 set sid [get_assignment_info $asgn_id -section_id]
 set tag [get_assignment_info $asgn_id -tag]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

448

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 puts "$entity: $name ($from -> $to) = $value"
}

 ## View all global assignments
foreach_in_collection asgn_id [get_all_assignments -type global -name *] {

 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]
 set entity [get_assignment_info $asgn_id -entity]
 set sid [get_assignment_info $asgn_id -section_id]
 set tag [get_assignment_info $asgn_id -tag]

 puts "$entity: $name = $value"
}

 ## View all project-wide default parameter values
foreach_in_collection asgn_id [get_all_assignments -type parameter -name *] {

 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]
 set tag [get_assignment_info $asgn_id -tag]

 puts "$name = $value"
}

 ## View all entity-specific parameter values
foreach_in_collection asgn_id [get_all_assignments -type parameter -name * -to *] {

 set dest [get_assignment_info $asgn_id -to]
 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]
 set tag [get_assignment_info $asgn_id -tag]

 puts "$name (-> $dest) = $value"
}

 ## View all default assignments
foreach_in_collection asgn_id [get_all_assignments -type default -name * -to *] {

 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]

 puts "$name = $value"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Assignment is not an instance assignment:
<string> -- it is a global assignment. Specify an instance
assignment name or use the global assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Illegal assignment type: <string>. Specify
<string>, <string>, <string>, or <string>.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

449

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Illegal option <string>. The specified option is
illegal for <string> assignments.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.30.7. get_all_global_assignments (::quartus::project_ui)

The following table displays information for the get_all_global_assignments Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_all_global_assignments [-h | -help] [-long_help] [-entity <entity_name>] -
name <name> [-section_id <section id>] [-tag <data>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

Description
Returns a filtered output collection of all matching global
assignment values. To access each element of the output
collection, use the Tcl command "foreach_in_collection". To
see example usage, type "foreach_in_collection -long_help".

The "-name" option is not case sensitive. This option can take
string patterns containing special characters from the set
"*?\[]" as the value. The value is matched using Tcl string
matching.

This Tcl command reads the global assignments found in
the Quartus Prime Settings File (.qsf). This Tcl command filters
the assignment data in the .qsf and outputs the data based
on the values given by the "-name" option.

Each element of the collection is a list with the following
format:
{ {<Section Id>} {<Assignment name>} {<Assignment value>} }

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one CLOCK section
each containing its own set of clock assignments. To uniquely
identify sections of this type, a <Section Id> is used.
<Section Id> can be one of three types. It can be the same as
the revision name, or it can be some unique name. The
following is a list of sections requiring a <Section Id> and

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

450

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the associated <Section Id> description:

Section Id Description
--------------------------- ------------------------------
CHIP Same as revision name
LOGICLOCK_REGION A unique name
EDA_TOOL_SETTINGS A unique name
CLIQUE A unique name
BREAKPOINT A unique name
CLOCK A unique name
AUTO_INSERT_SLD_NODE_ENTITY A unique name

For entity-specific assignments, use the "-entity" option to
retrieve the assignment(s) from the specified entity. If the
"-entity" option is not specified, the value for the
FOCUS_ENTITY_NAME assignment is used. If the FOCUS_ENTITY_NAME
value is not found, the revision name is used.

Example Usage ## Print out all the registered source files
using the foreach_in_collection method
set file_asgn_col [get_all_global_assignments -name SOURCE_FILE]
foreach_in_collection file_asgn $file_asgn_col {

 ## Each element in the collection has the following
 ## format: {} {SOURCE_FILE} {<file_name>}
 puts [lindex $file_asgn 2]
}

Using wildcards
get_all_global_assignments -name SOURCE*

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Option -<string> for <string> assignment is illegal.
Specify a legal option or remove the option.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

451

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.30.8. get_all_instance_assignments (::quartus::project_ui)

The following table displays information for the get_all_instance_assignments
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_all_instance_assignments [-h | -help] [-long_help] [-entity <entity_name>]
[-from <source>] -name <name> [-section_id <section id>] [-tag <data>] [-to
<destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-from <source> Source of assignment (string pattern is matched using Tcl
string matching)

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

-to <destination> Destination of assignment (string pattern is matched using
Tcl string matching)

Description
Returns a filtered output collection of all matching instance
assignment values. To access each element of this output
collection, use the Tcl command "foreach_in_collection". To
see example usage, type "foreach_in_collection -long_help".

The "-name" option is not case sensitive.
The "-to" and "-from" options are case sensitive.

These options can take string patterns containing special
characters from the set "*?\[]" as values. The values are
matched using Tcl string matching. Note that bus names are
automatically detected and do not need to be escaped. Bus
names have the following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters.
The <bus index> portion is an integer greater than or equal to
zero or it can be the character "*" used for string matching.
Notice that the <bus index> is enclosed by the square
brackets "[" and "]". For example, "a[0]" and "a[*]" are
supported bus names and can be used as follows:

To match index 0 of bus "a", type:
get_all_instance_assignments -name LOCATION -to a[0]

To match all indices of bus "a", type:
get_all_instance_assignments -name LOCATION -to a[*]

All other uses of square brackets must be escaped if you do
not intend to use them as string patterns. For example,
to match indices 0, 1, and 2 of the bus "a", type:

get_all_instance_assignments -name LOCATION -to "a[escape_brackets \[]\[0-2\][escape_brackets

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

452

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

\]]"

For more information about escaping square brackets, type
"escape_brackets -h".

This Tcl command reads in the instance assignments found in
the Quartus Prime Settings File (.qsf). This Tcl command filters
the assignments data found in the .qsf and outputs the
data based on the values specified by the "-name", "-from",
and "-to" options.

Each element of the collection is a list with the following
format:
{ {<Section Id>} {<Source>} {<Destination>} {<Assignment name>} {<Assignment value>} }

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one CLOCK section
each containing its own set of clock assignments. To uniquely
identify sections of this type, a <Section Id> is used.
<Section Id> can be one of three types. It can be the same as
the revision name, or it can be some unique name. The
following is a list of sections requiring a <Section Id> and
the associated <Section Id> description:

Section Id Description
--------------------------- ------------------------------
CHIP Same as revision name
LOGICLOCK_REGION A unique name
EDA_TOOL_SETTINGS A unique name
CLIQUE A unique name
BREAKPOINT A unique name
CLOCK A unique name
AUTO_INSERT_SLD_NODE_ENTITY A unique name

For entity-specific assignments, use the "-entity" option to
retrieve the assignment(s) from the specified entity. If the
"-entity" option is not specified, the value for the
FOCUS_ENTITY_NAME assignment is used. If the FOCUS_ENTITY_NAME
value is not found, the revision name is used.

Example Usage ## Print out all the timing requirements
using the foreach_in_collection method
Use wildcards to catch TSU_REQUIREMENT, TCO_REQUIREMENT,
and others
set asgn_col [get_all_instance_assignments -name *_REQUIREMENT]
foreach_in_collection asgn $asgn_col {

 ## Each element in the collection has the following
 ## format: { {} {<Source>} {<Destination>} {<Assignment name>} {<Assignment value>} }
 set from [lindex $asgn 1]
 set to [lindex $asgn 2]
 set name [lindex $asgn 3]
 set value [lindex $asgn 4]
 puts "$name ($from -> $to) = $value"
}

Print out all the location assignments with
the destination bus name "timeo".
set bus_name "timeo"
get_all_instance_assignments -name LOCATION -to $bus_name[*]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Assignment is not an instance assignment:
<string> -- it is a global assignment. Specify an instance
assignment name or use the global assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

453

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.30.9. get_all_parameters (::quartus::project_ui)

The following table displays information for the get_all_parameters Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_all_parameters [-h | -help] [-long_help] [-entity <entity_name>] -name
<name> [-tag <data>] [-to <destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which parameter belongs

-name <name> Parameter name (string pattern is matched using Tcl string
matching)

-tag <data> Option to tag data to this assignment

-to <destination> Destination of the parameter (string pattern is matched
using Tcl string matching)

Description
Returns a filtered output collection of all matching parameter
values. To access each element of this output collection, use
the Tcl command "foreach_in_collection". To see example usage,
type "foreach_in_collection -long_help".

The "-name" option is not case sensitive.
The "-to" option is case sensitive.

If the "-to" argument is specified, the function returns
the parameter values for the current entity. The values are
retrieved from the PARAMETERS section of the entity. Otherwise,
the function returns the project-wide default parameter values
obtained from the DEFAULT_PARAMETERS section.

This Tcl command filters the parameter data found in the
Quartus Prime Settings File (.qsf) and outputs the data based on
the values specified by the "-name" and "-to" options. These

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

454

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

options can take string patterns containing special characters
from the set "*?\[]" as values. The values are matched using
Tcl string matching. Note that bus names are automatically
detected and do not need to be escaped. Bus names have the
following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters.
The <bus index> portion is an integer greater than or equal to
zero or it can be the character "*" used for string matching.
Notice that the <bus index> is enclosed by the square
brackets "[" and "]". For example, "a[0]" and "a[*]" are
supported bus names and can be used as follows:

To match index 0 of bus "a", type:
get_all_parameters -name * -to a[0]

To match all indices of bus "a", type:
get_all_parameters -name * -to a[*]

All other uses of square brackets must be escaped if you do
not intend to use them as string patterns. For example,
to match indices 0, 1, and 2 of the bus "a", type:

get_all_parameters -name * -to "a[escape_brackets \[]\[0-2\][escape_brackets \]]"

For more information about escaping square brackets, type
"escape_brackets -h".

Each element of the collection is a list with the following
format:
{ {<Destination>} {<Parameter name>} {<Parameter value>} }

Use the "-entity" option to retrieve the parameter values from
the specified entity. If the "-entity" option is not specified,
the value for the FOCUS_ENTITY_NAME assignment is used. If the
FOCUS_ENTITY_NAME value is not found, the revision name is used.

Example Usage ## Display all project-wide default parameter values
foreach_in_collection parameter [get_all_parameters -name *] {

 set name [lindex $parameter 1]
 set value [lindex $parameter 2]

 ## Now, display the content of the parameter
 puts "Parameter Name ($name)"
 puts "Parameter Value ($value)"
}

Display all entity-specific parameter values
foreach_in_collection parameter [get_all_parameters -name * -to *] {

 set dest [lindex $parameter 0]
 set name [lindex $parameter 1]
 set value [lindex $parameter 2]

 ## Now, display the content of the parameter
 puts "Destination ($dest)"
 puts "Parameter Name ($name)"
 puts "Parameter Value ($value)"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

455

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Illegal default parameter: <string>. Specify a legal
default parameter name.

TCL_ERROR 1 ERROR: Illegal parameter: <string>. Specify a legal
parameter name.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.30.10. get_all_quartus_defaults (::quartus::project_ui)

The following table displays information for the get_all_quartus_defaults Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_all_quartus_defaults [-h | -help] [-long_help] [-name <name>] [-
section_id <section id>] [-tag <data>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

Description
Returns a filtered output collection of all matching default
assignment values. To access each element of the output
collection, use the Tcl command "foreach_in_collection". To
see example usage, type "foreach_in_collection -long_help".

The "-name" option is not case sensitive. This option can take
string patterns containing special characters from the set
"*?\[]" as the value. The value is matched using Tcl string
matching.

This Tcl command reads in the default assignments found inside
the Quartus Prime Default Settings File (.qdf). It filters the
assignments data found inside the .qdf and outputs the data
based on the values specified by the "-name" option.

Each element of the collection is a list with the following
format:
{ {<Section Id>} {<Assignment name>} {<Assignment value>} }

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one CLOCK section
each containing its own set of clock assignments. To uniquely
identify sections of this type, a <Section Id> is used.
<Section Id> can be one of three types. It can be the same as
the revision name, or it can be some unique name. The
following is a list of sections requiring a <Section Id> and
the associated <Section Id> description:

Section Id Description
--------------------------- ------------------------------
CHIP Same as revision name
LOGICLOCK_REGION A unique name
EDA_TOOL_SETTINGS A unique name
CLIQUE A unique name
BREAKPOINT A unique name
CLOCK A unique name
AUTO_INSERT_SLD_NODE_ENTITY A unique name

Example Usage ## Print out all the default assignments using
the foreach_in_collection method

set default_asgns_col [get_all_quartus_defaults]
foreach_in_collection default $default_asgns_col {
 set sect_id [lindex $default 0]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

456

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set name [lindex $default 1]
 set value [lindex $default 2]

 ## Now, display the content of the assignment
 puts "Section ID ($sect_id)"
 puts "Assignment Name ($name)"
 puts "Assignment Value ($value)"
}

Using wildcards
set default_asgns_col [get_all_quartus_defaults -name *]
foreach_in_collection default $default_asgns_col {
 set sect_id [lindex $default 0]
 set name [lindex $default 1]
 set value [lindex $default 2]

 ## Now, display the content of the assignment
 puts "Section ID ($sect_id)"
 puts "Assignment Name ($name)"
 puts "Assignment Value ($value)"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

457

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.30.11. get_all_user_option_names (::quartus::project_ui)

The following table displays information for the get_all_user_option_names Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_all_user_option_names [-h | -help] [-long_help] [-name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> User option name (string pattern is matched using Tcl string
matching)

Description
Returns a filtered output list of all available, matching
user option names.

If the "-name" option is not specified, all available user
option names are returned. Otherwise, only the matching
user option names are returned.

The "-name" option is not case sensitive. This option can take
string patterns containing special characters from the set
"*?\[]" as the value. The value is matched using Tcl string
matching.

Example Usage ## Print out all available user option names
foreach i [get_all_user_option_names] {
 puts $i
}

Display all user option names that contain
the word "talkback" and also display the
value for each of the user option names
foreach i [get_all_user_option_names -name *talkback*] {
 set name $i
 set value [get_user_option -name $i]
 puts "$name = $value"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.30.12. get_assignment_info (::quartus::project_ui)

The following table displays information for the get_assignment_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_assignment_info [-h | -help] [-long_help] [-comments] [-entity] [-from] [-
get_tcl_command] [-name] [-section_id] [-tag] [-to] [-value] <asgn_id>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comments Option to get the assignment comment

-entity Option to get the assignment entity

-from Option to get the assignment source

-get_tcl_command Option to get the tcl command that sets the assignment

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

458

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-name Option to get the assignment name

-section_id Option to get the assignment section id

-tag Option to get the assignment tag

-to Option to get the assignment destination

-value Option to get the assignment value

<asgn_id> Assignment id

Description
Returns information for the assignment id based on the
specified option.

The assignment id is obtained from the "get_all_assignments"
Tcl command.

Example Usage ## View all the instance assignments
foreach_in_collection asgn_id [get_all_assignments -type instance -name *] {

 set from [get_assignment_info $asgn_id -from]
 set to [get_assignment_info $asgn_id -to]
 set name [get_assignment_info $asgn_id -name]
 set value [get_assignment_info $asgn_id -value]
 set entity [get_assignment_info $asgn_id -entity]
 set tag [get_assignment_info $asgn_id -tag]

 puts "$entity: $name ($from -> $to) = $value"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal assignment id: <string>. Specify a legal
assignment id that was retrieved from the Tcl command
get_all_assignments.

3.1.30.13. get_assignment_name_info (::quartus::project_ui)

The following table displays information for the get_assignment_name_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_assignment_name_info [-h | -help] [-long_help] <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<name> Assignment name

Description
Returns information for the specified assignment name.

Example Usage ## View information for all assignment names
foreach name [get_all_assignment_names] {
 puts [get_assignment_name_info $name]
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

459

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.30.14. get_current_project (::quartus::project_ui)

The following table displays information for the get_current_project Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_current_project [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns the name of the current project.

Example Usage # Get the current name for
the currently open project "chiptrip"
project_open chiptrip
set project_name [get_current_project]
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.30.15. get_current_revision (::quartus::project_ui)

The following table displays information for the get_current_revision Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_current_revision [-h | -help] [-long_help] [<project_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<project_name> Project name

Description
Returns the name of the current revision for the specified
project. If the project name is not specified, the current
project name is used.

Example Usage # Get the current revision name for
the currently open project "chiptrip"
project_open chiptrip
set revision_name [get_current_revision]
project_close

Get the current revision name for
a project that is not currently open
set revision_name [get_current_revision chiptrip]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Project does not exist or has illegal name
characters: <string>. Specify a legal project name.

TCL_ERROR 1 ERROR: Project name was not specified or open project
does not exist. Open an existing project or specify the
project name.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

460

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.30.16. get_global_assignment (::quartus::project_ui)

The following table displays information for the get_global_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_global_assignment [-h | -help] [-long_help] [-entity <entity_name>] [-
front] -name <name> [-section_id <section id>] [-tag <data>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-front Option to return the first assignment if there is more than
one assignment found

-name <name> Assignment name

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

Description
Returns the value of the global assignment.

The "-name" option is not case sensitive.

For entity-specific assignments, use the "-entity"
option to retrieve the assignment from the specified
entity. If the "-entity" option is not specified, the
value for the FOCUS_ENTITY_NAME assignment is used. If
the FOCUS_ENTITY_NAME value is not found, the revision
name is used.

Example Usage ## Get the value of the FAMILY assignment
get_global_assignment -name FAMILY

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Option -<string> for <string> assignment is illegal.
Specify a legal option or remove the option.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

461

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

TCL_ERROR 1 ERROR: Assignment <string> has multiple values. Use the
<string> command to get all values or use the <string> -
front command to get the first value.

3.1.30.17. get_instance_assignment (::quartus::project_ui)

The following table displays information for the get_instance_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_instance_assignment [-h | -help] [-long_help] [-entity <entity_name>] [-
from <source>] [-front] -name <name> [-section_id <section id>] [-tag <data>] [-
to <destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-from <source> Source of assignment

-front Option to return the first assignment if there is more than
one assignment found

-name <name> Assignment name

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

-to <destination> Destination of assignment

Description
Returns the value of the instance assignment.

The "-name" option is not case sensitive. The
"-entity", "-to", and "-from" options are case
sensitive.

For entity-specific assignments, use the "-entity"
option to retrieve the assignment from the specified
entity. If the "-entity" option is not specified, the
value for the FOCUS_ENTITY_NAME assignment is used. If
the FOCUS_ENTITY_NAME value is not found, the revision
name is used.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

462

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage ## Get the TSU_REQUIREMENT from mypin to any register
set value [get_instance_assignment -from "mypin" -to * -name TSU_REQUIREMENT]
puts "TSU_REQUIREMENT(mypin->*) = $value"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Assignment is not an instance assignment:
<string> -- it is a global assignment. Specify an instance
assignment name or use the global assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

TCL_ERROR 1 ERROR: Assignment <string> has multiple values. Use the
<string> command to get all values or use the <string> -
front command to get the first value.

3.1.30.18. get_location_assignment (::quartus::project_ui)

The following table displays information for the get_location_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_location_assignment [-h | -help] [-long_help] [-tag <data>] -to
<destination>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-tag <data> Option to tag data to this assignment

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

463

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-to <destination> Destination of assignment

Description
Returns the value of a location assignment.

The "-chip" option is not case sensitive.
The "-to" option is case sensitive.

Example Usage get_location_assignment -to dst

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.30.19. get_parameter (::quartus::project_ui)

The following table displays information for the get_parameter Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_parameter [-h | -help] [-long_help] [-entity <entity_name>] -name <name>
[-tag <data>] [-to <destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which parameter belongs

-name <name> Parameter name

-tag <data> Option to tag data to this assignment

-to <destination> Destination of parameter

Description
Returns the value of the parameter.

The "-name" option is not case sensitive.
The "-to" option is case sensitive.

If the "-to" argument is specified, the function returns the
parameter value for the current entity. The value is retrieved
from the PARAMETERS section of the entity. Otherwise, the
function returns the project-wide default parameter value
obtained from the DEFAULT_PARAMETERS section.

Use the "-entity" option to retrieve the parameter from the
specified entity. If the "-entity" option is not specified,
the value for the FOCUS_ENTITY_NAME assignment is used. If the
FOCUS_ENTITY_NAME value is not found, the revision name is used.

Example Usage ## Get project-wide, default parameter value
get_parameter -name WIDTH

Get entity-specific parameter value
get_parameter -name inst1 -to SIZE

Return Value Code Name Code String Return
continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

464

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Illegal default parameter: <string>. Specify a legal
default parameter name.

TCL_ERROR 1 ERROR: Illegal parameter: <string>. Specify a legal
parameter name.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.30.20. get_project_directory (::quartus::project_ui)

The following table displays information for the get_project_directory Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_project_directory [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns the project directory for currently open project.

Example Usage project_open one_wire
 # Print the current project directory
puts [get_project_directory]
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.30.21. get_project_revisions (::quartus::project_ui)

The following table displays information for the get_project_revisions Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_project_revisions [-h | -help] [-long_help] [<project_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<project_name> Project name

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

465

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Returns a list of revisions included in the specified project.
If the project name is not specified, the current project name
is used by default.

The first element in the list of revisions is the current
revision and is the same as the return value for the
"get_current_revision" command.

Example Usage # Set the device family assignment to Stratix
for all revisions
project_open chiptrip
set original_revision [get_current_revision]

foreach revision [get_project_revisions] {
 puts "$revision"
 set_current_revision $revision
 set_global_assignment -name FAMILY Stratix
 export_assignments
}

set_current_revision $original_revision
project_close

Open the project with the first available revision
and set the device family assignment to Stratix
set revision [lindex [get_project_revisions chiptrip] 0]
open_project -revision $revision chiptrip
set_global_assignment -name FAMILY Stratix
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Project does not exist or has illegal name
characters: <string>. Specify a legal project name.

TCL_ERROR 1 ERROR: Project name was not specified or open project
does not exist. Open an existing project or specify the
project name.

3.1.30.22. get_user_option (::quartus::project_ui)

The following table displays information for the get_user_option Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax get_user_option [-h | -help] [-long_help] -name <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> User option name

Description
Returns the user option value for the name specified by
the "-name" option.

To get a list of all available user option names, use
the "get_all_user_option_names" command.

Example Usage ## Get the value for the user option
"TALKBACK_ENABLED"
set value [get_user_option -name TALKBACK_ENABLED]
puts "TALKBACK_ENABLED = $value"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

466

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal user option name: <string>. Specify a legal
user option name. To get a list of legal names, use the
get_all_user_option_names command.

3.1.30.23. is_project_open (::quartus::project_ui)

The following table displays information for the is_project_open Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax is_project_open [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Checks whether a project is currently open. Returns 1, if a
project is currently open; returns 0, otherwise.

Example Usage ## Close the project if open
if [is_project_open] {
 project_close
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.30.24. project_archive (::quartus::project_ui)

The following table displays information for the project_archive Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax project_archive [-h | -help] [-long_help] [-all_revisions] [-
include_libraries] [-include_outputs] [-overwrite] [-use_file_set <file_set>] [-
version_compatible_database] <archive_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all_revisions Option to archive all revisions

-include_libraries Option to include related system libraries

-include_outputs Option to include output files in archive

-overwrite Option to overwrite any currently existing archive file

-use_file_set <file_set> Option to create the archive using the specified file set

-version_compatible_database Option to include version-compatible database if supported

<archive_name> Archive file name

Description
Archives an open project and its related files into a
Quartus Prime Archive File (.qar).

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

467

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The description of operations is as follows:

Option Description
------ -------------------------
use_file_set Creates the archive using the specified
 file set. By default, the 'basic'
 file set is used. For more information
 about file sets, type: quartus_sh --archive -list_file_sets

all_revisions Archives all revisions.

overwrite Overwrites existing archive file.

include_outputs Includes output files in archive.

include_libraries Includes related Megafunction and
 IP library files.

version_compatible_database Includes version-compatible database
 if supported.

Example Usage ## Default mode: Archive current revisions without output files or libraries
project_archive chiptrip.qar

Archive all revisions without output files or libraries
project_archive chiptrip.qar -all_revisions

Archive current revision with version-compatible database if supported
project_archive chiptrip.qar -version_compatible_database

Same as first one, but overwrite any existing archive file
project_archive chiptrip.qar -overwrite

Include outut files and libraries
project_archive chiptrip.qar -include_outputs -include_libraries

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Error(s) found while archiving the project. See
error message(s) for details.

TCL_ERROR 1 ERROR: Project archive failed. Some files could not be
processed. Refer to the Quartus Prime Archive Log File
(<archive_name>.qarlog).

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.30.25. project_close (::quartus::project_ui)

The following table displays information for the project_close Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax project_close [-h | -help] [-long_help] [-dont_export_assignments]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-dont_export_assignments Do not export assignments to file

Description
Closes an open project.

The assignments created or modified during an open project

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

468

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

are committed to the Quartus Prime Settings File (.qsf) during a
"project_close", unless you use the "-dont_export_assignments"
option.

Example Usage ## Close the project if open
if [is_project_open] {
 project_close
}
Close the project if open
and do not export the assignments
if [is_project_open] {
 project_close -dont_export_assignments
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.30.26. project_exists (::quartus::project_ui)

The following table displays information for the project_exists Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax project_exists [-h | -help] [-long_help] <project_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<project_name> Project name

Description
Checks whether a project exists. Returns 1, if a project exists;
returns 0, otherwise.

Example Usage ## Create project if one does not exist.
Open existing project otherwise.
if [project_exists chiptrip] {
 project_open chiptrip
} else {
 project_new chiptrip
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

469

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.30.27. project_new (::quartus::project_ui)

The following table displays information for the project_new Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax project_new [-h | -help] [-long_help] [-family <family>] [-overwrite] [-part
<part>] [-revision <revision_name>] <project_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-family <family> Family name

-overwrite Option to overwrite existing project and revision

-part <part> Part name

-revision <revision_name> Revision name

<project_name> Project name

Description
Creates and opens a new project with the specified project name.

If the "-revision" option is not specified, the project name
is used to create the revision.

Assignments created or modified by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## Create project "chiptrip" and revision "chiptrip"
project_new chiptrip

Create project "chiptrip" and revision "auto_max"
project_new -revision auto_max chiptrip

Create project "chiptrip" and revision "chiptrip"
Overwrite any Quartus Prime Settings File (.qsf) if it exists
project_new chiptrip -overwrite

Create project "chiptrip" and revision "chiptrip"
Set the FAMILY assignment to Stratix
project_new chiptrip -family Stratix

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The -<string> option must also be used when you
use the -<string> option. Specify both options.

TCL_ERROR 1 ERROR: Can't create project because device and family are
mismatch: <string> and <string>.

TCL_ERROR 1 ERROR: Can't create project because device is not installed:
<string>.

TCL_ERROR 1 ERROR: Can't create project because family requires
specifying the part: <string>.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

470

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Can't create project: <string>. Specify a legal
project name.

TCL_ERROR 1 ERROR: Can't create revision: <string>. Specify a legal
revision name using the -<string> option.

TCL_ERROR 1 ERROR: Can't create revision: <string>. Specify a legal
revision name.

TCL_ERROR 1 ERROR: Can't create settings files for project: <string>.
Make sure the .psf, .csf, and .ssf files are writeable.

TCL_ERROR 1 ERROR: Can't open project: <string>

TCL_ERROR 1 ERROR: Can't remove Quartus Prime Settings File:
<string>. Make sure the file is writeable.

TCL_ERROR 1 ERROR: Can't create project with unknown device:
<string>.

TCL_ERROR 1 ERROR: Can't create project with unknown device family:
<string>.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Project already exists: <string>. Specify a different
project name or use the -overwrite option.

3.1.30.28. project_open (::quartus::project_ui)

The following table displays information for the project_open Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax project_open [-h | -help] [-long_help] [-current_revision] [-
error_on_incompatible_database] [-revision <revision_name>] <project_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-current_revision Option to open the current revision automatically

-
error_on_incompatible_databas
e

Option not to open the project and issue and error if the
database version is incompatible

-revision <revision_name> Revision name

<project_name> Project name

Description
Opens an existing project. To create a new project, use the
"project_new" command.

If the "-revision" option is not specified, the project name
is used to open the revision.

By default, opening the project overwrites the database
created in a different version of the Quartus Prime software.
However, if the "-error_on_incompatible_database" option is

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

471

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

specified, instead of opening the project, an error is issued
when the database version differs from the current version of the
Quartus Prime software.

Example Usage ## Open project "chiptrip" and revision "chiptrip"
project_open chiptrip

Open project "chiptrip" and revision "auto_max"
project_open -revision auto_max chiptrip

Get the current revision before opening
the project with the current revision
set project_name chiptrip
set current_revision [get_current_revision $project_name]
project_open -revision $current_revision $project_name
puts [get_global_assignment -name FAMILY]
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 WARNING: Project is already open: <string>

TCL_ERROR 1 ERROR: Can't open project: <string>. First close the
currently open project: <string>.

TCL_ERROR 1 ERROR: Can't open project: <string>

TCL_ERROR 1 ERROR: Can't set revision: <string>. Make sure there is an
open, active revision name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Cannot open project: <string>. The project is not
compatible with the installed version of the Quartus Prime
software. Opening the project will overwrite the old project
database. If you wish to overwrite the old project database,
make sure to specify the -<string> option.

TCL_ERROR 1 ERROR: Can't open revision: <string> (project: <string>).
The revision is not compatible with the installed version of
the Quartus Prime software. Opening the revision will
overwrite the old revision database. If you wish to overwrite
the old revision database, make sure to specify the -
<string> option.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Revision does not exist: <string>. Specify a legal
revision name using the -<string> option.

TCL_ERROR 1 ERROR: Project does not exist or has illegal name
characters: <string>. Specify a legal project name.

3.1.30.29. project_restore (::quartus::project_ui)

The following table displays information for the project_restore Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax project_restore [-h | -help] [-long_help] [-destination <directory>] [-
overwrite] [-update_included_file_info] <archive_file>

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

472

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-destination <directory> Directory where restored files are placed

-overwrite Option to overwrite files in destination directory

-update_included_file_info Option to update included file information

<archive_file> Archive file name

Description
Restores a Quartus Prime Archive File (.qar) that
contains the project and its related files.

By default, the archive is restored into the current
directory. Use the "-destination" option to restore
the files into a new directory.

By default, the command fails if the archive already
contains files in the destination directory. Use the
"-overwrite" option to overwrite any existing files in
the destination directory.

Example Usage ## Restore archive and expand files into current directory
project_restore chiptrip.qar
or
project_restore chiptrip.qar -destination

Restore archive. Expand files into current directory,
but overwrite any existing files in "."
project_restore chiptrip.qar -destination . -overwrite

Restore project into a "restored" subdirectory
project_restore chiptrip.qar -destination "restored" -overwrite

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Error(s) found while restoring the archive. See
error message(s) for details.

3.1.30.30. remove_all_global_assignments (::quartus::project_ui)

The following table displays information for the remove_all_global_assignments
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax remove_all_global_assignments [-h | -help] [-long_help] [-entity
<entity_name>] -name <name> [-section_id <section id>] [-tag <data>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

473

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Removes all matching global assignments.

The "-name" option is not case sensitive. This option can take
string patterns containing special characters from the set
"*?\[]" as the value. The value is matched using Tcl string
matching.

This Tcl command reads the global assignments found in
the Quartus Prime Settings File (.qsf). This Tcl command filters
the assignments data found in the .qsf and removes the data
based on the values specified by the "-name" option.

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one CLOCK section
each containing its own set of clock assignments. To uniquely
identify sections of this type, a <Section Id> is used.
<Section Id> can be one of three types. It can be the same as
the revision name, or it can be some unique name. The
following is a list of sections requiring a <Section Id> and
the associated <Section Id> description:

Section Id Description
--------------------------- ------------------------------
CHIP Same as revision name
LOGICLOCK_REGION A unique name
EDA_TOOL_SETTINGS A unique name
CLIQUE A unique name
BREAKPOINT A unique name
CLOCK A unique name
AUTO_INSERT_SLD_NODE_ENTITY A unique name

For entity-specific assignments, use the "-entity" option to
remove the assignment(s) from the specified entity. If the
"-entity" option is not specified, the value for the
FOCUS_ENTITY_NAME assignment is used. If the FOCUS_ENTITY_NAME
value is not found, the revision name is used.

Assignments removed by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## Remove all the registered source files

remove_all_global_assignments -name SOURCE_FILE

Using wildcards
remove_all_global_assignments -name SOURCE*

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: <string> global assignment(s) were removed

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

474

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Option -<string> for <string> assignment is illegal.
Specify a legal option or remove the option.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.30.31. remove_all_instance_assignments (::quartus::project_ui)

The following table displays information for the
remove_all_instance_assignments Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax remove_all_instance_assignments [-h | -help] [-long_help] [-entity
<entity_name>] [-from <source>] -name <name> [-section_id <section id>] [-tag
<data>] [-to <destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which assignment belongs

-from <source> Source of the assignment (string pattern is matched using
Tcl string matching)

-name <name> Assignment name (string pattern is matched using Tcl string
matching)

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

-to <destination> Destination of the assignment (string pattern is matched
using Tcl string matching)

Description
Removes all matching instance assignment values.

The "-name" option is not case sensitive.
The "-to" and "-from" options are case sensitive.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

475

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

These options can take string patterns containing special
characters from the set "*?\[]" as values. The values are
matched using Tcl string matching. Note that bus names are
automatically detected and do not need to be escaped. Bus
names have the following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters.
The <bus index> portion is an integer greater than or equal to
zero or it can be the character "*" used for string matching.
Notice that the <bus index> is enclosed by the square
brackets "[" and "]". For example, "a[0]" and "a[*]" are
supported bus names and can be used as follows:

To match index 0 of bus "a", type:
remove_all_instance_assignments -name LOCATION -to a[0]

To match all indices of bus "a", type:
remove_all_instance_assignments -name LOCATION -to a[*]

All other uses of square brackets must be escaped if you do
not intend to use them as string patterns. For example,
to match indices 0, 1, and 2 of the bus "a", type:

remove_all_instance_assignments -name LOCATION -to "a[escape_brackets \[]\[0-2\][escape_brackets
\]]"

For more information about escaping square brackets, type
"escape_brackets -h".

This Tcl command reads the instance assignments found in
the Quartus Prime Settings File (.qsf) and removes this data based
on the values specified by the "-name", "-from", and "-to"
options.

Certain sections in the .qsf can appear more than once.
For example, because there may be more than one clock
used in a project, there may be more than one CLOCK section
each containing its own set of clock assignments. To uniquely
identify sections of this type, a <Section Id> is used.
<Section Id> can be one of three types. It can be the same as
the revision name, or it can be some unique name. The
following is a list of sections requiring a <Section Id> and
the associated <Section Id> description:

Section Id Description
--------------------------- ------------------------------
CHIP Same as revision name
LOGICLOCK_REGION A unique name
EDA_TOOL_SETTINGS A unique name
CLIQUE A unique name
BREAKPOINT A unique name
CLOCK A unique name
AUTO_INSERT_SLD_NODE_ENTITY A unique name

For entity-specific assignments, use the "-entity" option to
remove the assignment(s) from the specified entity. If the
"-entity" option is not specified, the value for the
FOCUS_ENTITY_NAME assignment is used. If the FOCUS_ENTITY_NAME
value is not found, the revision name is used.

Assignments removed by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## Remove all the timing requirements
Use wildcards to catch TSU_REQUIREMENT, TCO_REQUIREMENT,
and others
remove_all_instance_assignments -name *_REQUIREMENT

Remove all the location assignments with
the destination bus name "timeo".
set bus_name "timeo"
remove_all_instance_assignments -name LOCATION -to $bus_name[*]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

476

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: <string> instance assignment(s) were removed

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Assignment is not an instance assignment:
<string> -- it is a global assignment. Specify an instance
assignment name or use the global assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.30.32. remove_all_parameters (::quartus::project_ui)

The following table displays information for the remove_all_parameters Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax remove_all_parameters [-h | -help] [-long_help] [-entity <entity_name>] -name
<name> [-tag <data>] [-to <destination>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-entity <entity_name> Entity to which parameter belongs

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

477

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-name <name> Parameter name (string pattern is matched using Tcl string
matching)

-tag <data> Option to tag data to this assignment

-to <destination> Destination of the parameter (string pattern is matched
using Tcl string matching)

Description
Removes all matching parameters.

The "-name" option is not case sensitive.
The "-to" option is case sensitive.

If the "-to" argument is specified, the function removes
the parameters from the current entity. The parameters are
removed from the PARAMETERS section of the entity. Otherwise,
the function removes the project-wide default parameters
obtained from the DEFAULT_PARAMETERS section.

This Tcl command filters the parameter data found in the
Quartus Prime Settings File (.qsf) and removes the data based on
the values specified by the "-name" and "-to" options. These
options can take string patterns containing special characters
from the set "*?\[]" as values. The values are matched using
Tcl string matching. Note that bus names are automatically
detected and do not need to be escaped. Bus names have the
following format:

<bus name>[<bus index>] or <bus name>[*]

The <bus name> portion is a string of alphanumeric characters.
The <bus index> portion is an integer greater than or equal to
zero or it can be the character "*" used for string matching.
Notice that the <bus index> is enclosed by the square
brackets "[" and "]". For example, "a[0]" and "a[*]" are
supported bus names and can be used as follows:

To match index 0 of bus "a", type:
remove_all_parameters -name * -to a[0]

To match all indices of bus "a", type:
remove_all_parameters -name * -to a[*]

All other uses of square brackets must be escaped if you do
not intend to use them as string patterns. For example,
to match indices 0, 1, and 2 of the bus "a", type:

remove_all_parameters -name * -to "a[escape_brackets \[]\[0-2\][escape_brackets \]]"

For more information about escaping square brackets, type
"escape_brackets -h".

Use the "-entity" option to remove the parameters from the
specified entity. If the "-entity" option is not specified,
the value for the FOCUS_ENTITY_NAME assignment is used. If the
FOCUS_ENTITY_NAME value is not found, the revision name is used.

The parameters removed by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## The following 3 examples remove project-wide,
default parameter values
remove_all_parameters -name WIDTH
remove_all_parameters -name *ID*
remove_all_parameters -name *

The following 3 examples remove entity-specific
parameter values
remove_all_parameters -name inst1 -to SIZE
remove_all_parameters -name inst1 -to *IZ*
remove_all_parameters -name inst1 -to *

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

478

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: <string> parameter(s) were removed

TCL_OK 0 INFO: Removed parameter: <string>

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Parameter does not exist and cannot be removed:
<string>. Specify an existing parameter name.

TCL_ERROR 1 ERROR: Illegal default parameter: <string>. Specify a legal
default parameter name.

TCL_ERROR 1 ERROR: Illegal parameter: <string>. Specify a legal
parameter name.

TCL_ERROR 1 ERROR: An unknown error has occured.

3.1.30.33. resolve_file_path (::quartus::project_ui)

The following table displays information for the resolve_file_path Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax resolve_file_path [-h | -help] [-long_help] <file_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<file_name> Option to specify the file name

Description
Returns the resolved full path of the specified file name.
If the file does not exist, the original file name is
returned.

The Quartus Prime software resolves relative paths by searching
for the file in the following directories in the following
order:

1) Project directory, which is the directory where the
 Quartus Prime Settings File (.qsf) is found.
2) Project database directory, which is the "db" directory
 found under the project directory.
3) Project library directories, which are the directories
 containing the user-specified libraries that are used
 only by the current project.
4) User library directories, which are the directories
 containing the user-specified libraries that are
 used by all Quartus Prime projects.
5) Quartus Prime library directory, which is the directory
 containing Quartus Prime libraries.

Example Usage project_new chiptrip -overwrite

Set one Verilog source file assignment
set_global_assignment -name VERILOG_FILE chiptrip.v

Display the resolved full path of the Verilog

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

479

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

source file assignment
set filename [get_global_assignment -name VERILOG_FILE]
set resolved_fullpath [resolve_file_path $filename]

puts "Full Path: $resolved_fullpath"

Set more Verilog source file assignments
set_global_assignment -name VERILOG_FILE auto_max.v
set_global_assignment -name VERILOG_FILE speed_ch.v
set_global_assignment -name VERILOG_FILE tick_cnt.v
set_global_assignment -name VERILOG_FILE time_cnt.v

Display the resolved full path of all the Verilog
source file assignments
set file_asgns [get_all_global_assignments -name VERILOG_FILE]
foreach_in_collection file_asgn $file_asgns {

 ## Each element in the collection has the following
 ## format: {} {VERILOG_FILE} {<file_name>}

 set filename [lindex $file_asgn 2]
 set resolved_fullpath [resolve_file_path $filename]

 puts "Full Path: $resolved_fullpath"
}

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.30.34. revision_exists (::quartus::project_ui)

The following table displays information for the revision_exists Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax revision_exists [-h | -help] [-long_help] [-project <project_name>]
<revision_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-project <project_name> Project name

<revision_name> Revision name

Description
Checks whether the revision exists for the specified project
or currently open project.

Returns 1, if the revision exists; returns 0, otherwise.

Example Usage ## Check if the specified revision exists
in the specified project
if [revision_exists -ARG(project) chiptrip speed_ch] {
 puts "Revision exists"
} else {
 puts "Revision does not exist"
}

Create revision for the currently open
project if it does not exist
Set the current revision otherwise
project_open chiptrip
if [revision_exists speed_ch] {
 set_current_revision speed_ch
} else {

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

480

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 create_revision speed_ch
}
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Project does not exist or has illegal name
characters: <string>. Specify a legal project name.

TCL_ERROR 1 ERROR: Project name was not specified or open project
does not exist. Open an existing project or specify the
project name.

3.1.30.35. set_current_revision (::quartus::project_ui)

The following table displays information for the set_current_revision Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax set_current_revision [-h | -help] [-long_help] [-force] <revision_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-force Option to open the revision and overwrite the compilation
database if the database version is incompatible.

<revision_name> Revision name

Description
Sets the specified revision name as the current revision. All
assignments created or modified during an open project will also be
saved to the Quartus Prime Settings File (.qsf).

In 8.1 or later versions of Quartus Prime software,

set_current_revision
gives an error when the compilation database version is not
compatible with the current version of Quartus Prime software.
You may specify the "-force" option to avoid the error
and overwrite the database.

Example Usage ## Sets "auto_max" as the current revision
set_current_revision auto_max

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 WARNING: Revision is already the current revision:
<string>. No action is required.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Revision file does not exist: <string>.qsf. Use
delete_revision to delete the revision from the current
project. Then use create_revision to create the revision and
its .qsf before setting <string> as the current revision.

TCL_ERROR 1 ERROR: Revision is not included in the current project:
<string> . Use the create_revision command to create the
revision.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

481

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.30.36. set_global_assignment (::quartus::project_ui)

The following table displays information for the set_global_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax set_global_assignment [-h | -help] [-long_help] [-comment <comment>] [-
disable] [-entity <entity_name>] [-fall] -name <name> [-remove] [-rise] [-
section_id <section id>] [-tag <data>] [<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <comment> Comment

-disable Option to disable assignment

-entity <entity_name> Entity to which to add assignment

-fall Option applies to falling edge

-name <name> Assignment name

-remove Option to remove assignment

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

<value> Assignment value

Description

Sets or removes a global assignment.

Assignments created or modified by using this Tcl
command are not saved to the Quartus Prime Settings File
(.qsf) unless you explicitly call one of the following
two Tcl commands (from the ::quartus::project Tcl
package):

1) export_assignments
2) project_close (unless -dont_export_assignments is
specified as an argument to project_close)

You must save assignment changes before you run
Quartus Prime command-line executables. Note, however,
that the Tcl commands execute_flow and execute_module
(from the ::quartus::flow Tcl package) call
"export_assignments" before they run command-line
executables.

For entity-specific assignments, use the -entity
option to force the assignment to specified entity. If
the -entity option is not specified, the value for the
FOCUS_ENTITY_NAME assignment is used. If the
FOCUS_ENTITY_NAME value is not found, the revision
name is used.

If the Quartus Prime Settings File contains a
USER_LIBRARIES assignment and you call
set_global_assignment to set a SEARCH_PATH or
USER_LIBRARIES assignment, the existing USER_LIBRARIES
assignment expands into one or more SEARCH_PATH
assignments.

Note that values that begin with a dash ("-") should
be enclosed in a backslash followed by a quote. In the
following example, -02 is enclosed by \" at the
beginning and the end.

set_global_assignment -name ARM_CPP_COMMAND_LINE \"-O2\"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

482

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage ## Specify Stratix as the family to use when compiling
set_global_assignment -name FAMILY Stratix

If the family name has empty spaces, use quotes
set_global_assignment -name FAMILY "Stratix GX"

or remove any empty space
set_global_assignment -name FAMILY StratixGX

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: File name <string> exceeds maximum of <string>
characters. Specify a file name with fewer characters.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Option -<string> for <string> assignment is illegal.
Specify a legal option or remove the option.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Value <string> for <string> assignment is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: The -<string> option is not required but was
specified with the value: <string>. Delete the option.

TCL_ERROR 1 ERROR: The -<string> option is required but was not
specified. Specify the required option.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

483

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: An unknown error has occured.

TCL_ERROR 1 ERROR: Assignment <string> cannot be removed -- it has
multiple values. Specify one value to remove or use the
<string> command to remove all values for the assignment.

TCL_ERROR 1 ERROR: Missing <<string>> for <string> assignment.
Specify the required <string>.

3.1.30.37. set_instance_assignment (::quartus::project_ui)

The following table displays information for the set_instance_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax set_instance_assignment [-h | -help] [-long_help] [-comment <comment>] [-
disable] [-entity <entity_name>] [-fall] [-from <source>] -name <name> [-
remove] [-rise] [-section_id <section id>] [-tag <data>] [-to <destination>]
[<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <comment> Comment

-disable Option to disable assignment

-entity <entity_name> Entity to which to add assignment

-fall Option applies to falling edge

-from <source> Source of assignment

-name <name> Assignment name

-remove Option to remove assignment

-rise Option applies to rising edge

-section_id <section id> Section id

-tag <data> Option to tag data to this assignment

-to <destination> Destination of assignment

<value> Assignment value

Description
Sets or removes an instance assignment.

Assignments created or modified by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

For entity-specific assignments, use the "-entity" option to
force the assignment to specified entity. If the "-entity"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

484

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

option is not specified, the value for the FOCUS_ENTITY_NAME
assignment is used. If the FOCUS_ENTITY_NAME value is not found,
the revision name is used.

Example Usage ## Specify a TSU_REQUIREMENT of 2ns from mypin to any register
set_instance_assignment -from "mypin" -to * -name TSU_REQUIREMENT 2ns

Remove the TSU_REQUIREMENT from mypin to all registers
set_instance_assignment -from "mypin" -to * -name TSU_REQUIREMENT -remove

Specify the entity to which the assignment is added,
use the -entity option
This is needed if the top-level entity name is other than
that of the project name
The following command generates a top_level entity
set_instance_assignment -from "mypin" -to * -entity top_level -name TSU_REQUIREMENT 2ns

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Assignment is not an instance assignment:
<string> -- it is a global assignment. Specify an instance
assignment name or use the global assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Value <string> for <string> assignment is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: The -<string> option is not required but was
specified with the value: <string>. Delete the option.

TCL_ERROR 1 ERROR: The -<string> option is required but was not
specified. Specify the required option.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

485

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: An unknown error has occured.

TCL_ERROR 1 ERROR: Assignment <string> cannot be removed -- it has
multiple values. Specify one value to remove or use the
<string> command to remove all values for the assignment.

TCL_ERROR 1 ERROR: Missing <<string>> for <string> assignment.
Specify the required <string>.

3.1.30.38. set_io_assignment (::quartus::project_ui)

The following table displays information for the set_io_assignment Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax set_io_assignment [-h | -help] [-long_help] [-comment <comment>] [-disable] [-
fall] [-io_standard <io standard>] -name <name> [-remove] [-rise] [-tag <data>]
[<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <comment> Comment

-disable Option to disable assignment

-fall Option applies to falling edge

-io_standard <io standard> Option to specify the io standard

-name <name> Assignment name

-remove Option to remove assignment

-rise Option applies to rising edge

-tag <data> Option to tag data to this assignment

<value> Assignment value

Description
Sets or removes an io assignment.

Assignments created or modified by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage ## Specify LVTTL as the IO Standard for OUTPUT_PIN_LOAD assignment
set_io_assignment 30 -name OUTPUT_PIN_LOAD -io_standard LVTTL

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

486

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Assignment is not a global assignment: <string> --
it is an instance assignment. Specify a global assignment
name or use the instance assignment commands.

TCL_ERROR 1 ERROR: Can't find file(s) associated with assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find section information for assignment.
Specify a different assignment name.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: File name <string> exceeds maximum of <string>
characters. Specify a file name with fewer characters.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Option -<string> for <string> assignment is illegal.
Specify a legal option or remove the option.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Value <string> for <string> assignment is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Found two options: -<string> and -<string>.
Choose one of the options.

TCL_ERROR 1 ERROR: The -<string> option is not required but was
specified with the value: <string>. Delete the option.

TCL_ERROR 1 ERROR: The -<string> option is required but was not
specified. Specify the required option.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: Assignment <string> cannot be removed -- it has
multiple values. Specify one value to remove or use the
<string> command to remove all values for the assignment.

TCL_ERROR 1 ERROR: Missing <<string>> for <string> assignment.
Specify the required <string>.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

487

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.30.39. set_location_assignment (::quartus::project_ui)

The following table displays information for the set_location_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax set_location_assignment [-h | -help] [-long_help] [-comment <comment>] [-
disable] [-remove] [-tag <data>] -to <destination> [<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <comment> Comment

-disable Option to disable assignment

-remove Option to remove assignment

-tag <data> Option to tag data to this assignment

-to <destination> Destination of assignment

<value> Assignment value

Description
Sets or removes a location assignment.

Assignments created or modified by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Example Usage set_location_assignment -to dst LOC

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Value <string> for <string> assignment is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Missing destination for assignment. Specify the
destination for the assignment.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Missing <<string>> for <string> assignment.
Specify the required <string>.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

488

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.30.40. set_parameter (::quartus::project_ui)

The following table displays information for the set_parameter Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax set_parameter [-h | -help] [-long_help] [-comment <comment>] [-disable] [-
entity <entity_name>] -name <name> [-remove] [-tag <data>] [-to <destination>]
[<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-comment <comment> Comment

-disable Option to disable parameter

-entity <entity_name> Entity to which to add parameter

-name <name> Parameter name

-remove Option to remove parameter

-tag <data> Option to tag data to this assignment

-to <destination> Destination of parameter

<value> Parameter value

Description
Sets or removes the specified parameter name.

The "-name" option is not case sensitive.
The "-to" option is case sensitive.

The parameters created or modified by using this Tcl command are
not saved to the Quartus Prime Settings File (.qsf) unless you
explicitly call one of the following two Tcl commands:

1) export_assignments
2) project_close (unless "-dont_export_assignments" is specified)

These two Tcl commands reside in the ::quartus::project Tcl
package. You must save assignment changes before you run
Quartus Prime command-line executables. Note, however, that
the Tcl commands "execute_flow" and "execute_module" (part
of the ::quartus::flow Tcl package) automatically call
"export_assignments" before they run command-line executables.

Use the "-entity" option to force the parameter to the specified
entity. If the "-entity" option is not specified, the value for
the FOCUS_ENTITY_NAME assignment is used. If the FOCUS_ENTITY_NAME
value is not found, the revision name is used.

A parameter is an attribute of a megafunction, macrofunction,
or certain primitives that determines the logic created or used
to implement the function. The parameter information can be
used to determine the actual primitives and other subdesigns
needed to implement the logic of the function.

The following general guidelines apply to parameters:

* All logic options can be assigned as parameters for individual
 instances of megafunctions or macrofunctions. For a given
 logic OPTION the precedence for parameters is:

 1) Instance specific logic option settings
 2) Instance specific parameter settings
 3) Project-wide default parameter settings

* You cannot assign a value to the predefined Intel(R)
 parameter DEVICE_FAMILY, which represents the device family
 assigned for the project. However, you can use the parameter
 value in comparisons.

* The predefined Intel LPM_PIPELINE and LATENCY parameters
 can be assigned to an instance of a megafunction or

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

489

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 macrofunction. However, the parameter applies only to that
 instance, and is not inherited by the subdesigns of that
 instance.

* All logic options can be assigned as parameters for individual
 megafunctions or macrofunctions. However, logic options cannot
 be assigned global, project-wide default parameter values.

Example Usage ## Set project-wide, default WIDTH parameter value
set_parameter -name WIDTH 8

Set entity-specific SIZE parameter value
to "my_ram" entity
set_parameter -entity my_ram -name SIZE 16

Specify the same parameter to my_ram
but inside "top_level" entity
set_parameter -entity top_level -to my_ram -name SIZE 16

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Removed parameter: <string>

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Entity does not exist or uses illegal name
characters: <string>. Specify a legal entity name.

TCL_ERROR 1 ERROR: Can't run Tcl command while a process is in
progress: <string>. To run the command, stop the
compilation or simulation; or wait for the compilation or
simulation to complete.

TCL_ERROR 1 ERROR: Value <string> for <string> assignment is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options are mutually exclusive: <string> and
<string>. Specify only one of the two options.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: The -<string> option is not required but was
specified with the value: <string>. Delete the option.

TCL_ERROR 1 ERROR: The -<string> option is required but was not
specified. Specify the required option.

TCL_ERROR 1 ERROR: Parameter does not exist and cannot be removed:
<string>. Specify an existing parameter name.

TCL_ERROR 1 ERROR: An unknown error has occured.

TCL_ERROR 1 ERROR: Missing <<string>> for <string> assignment.
Specify the required <string>.

3.1.30.41. set_power_file_assignment (::quartus::project_ui)

The following table displays information for the set_power_file_assignment Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax set_power_file_assignment [-h | -help] [-long_help] [-remove] [-saf_file
<saf_file>] [-section_id <section_id>] [-to <to>] [-vcd_end_time <vcd_end_time>]
[-vcd_file <vcd_file>] [-vcd_start_time <vcd_start_time>]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

490

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-remove Option to remove assignment

-saf_file <saf_file> SAF file name

-section_id <section_id> Section id

-to <to> Entity to which to apply power input file

-vcd_end_time <vcd_end_time> End time for VCD file parsing

-vcd_file <vcd_file> VCD file name

-vcd_start_time <vcd_start_time> Start time for VCD file parsing

Description
Sets or removes a power input file assignment. Power input file
assignments are specified using multiple global assignments, and
a single instance assignment as illustrated in the following
example:

set_global_assignment -name POWER_INPUT_FILE_NAME "test.vcd" -section_id test.vcd
set_global_assignment -name POWER_INPUT_FILE_TYPE VCD -section_id test.vcd
set_global_assignment -name POWER_VCD_FILE_START_TIME "10 ns" -section_id test.vcd
set_global_assignment -name POWER_VCD_FILE_END_TIME "1000 ns" -section_id test.vcd
set_instance_assignment -name POWER_READ_INPUT_FILE test.vcd -to test_design

The power input file assignment serves as a wrapper for all of the
above assignments. If the "-remove" setting is not set, the
set_power_file_assignment will also make the following assignment
to enable the use of input files:

set_global_assignment -name POWER_USE_INPUT_FILES ON

If you do not specify a "-section_id", a new section identifier is
created for the input file assignment. If a "-section_id" is
specified and it does not already exist, it is used as the new
section identifier. If a "-section_id" is specified and it does
exist, the existing input file assignments are removed and a new
input file assignment is created using the given parameters and
section identifier.

If an entity name given by "-to" is not specified, the input file
assignment applys to the top level design entity.

If the "-remove" setting is used, the input file assignment given
by the "-section_id", "-vcd_file", or "-saf_file" is removed
from the project.

Assignments created or modified by using this Tcl command are
saved to the Quartus Prime Settings File (.qsf).

Example Usage ## Specify an input SAF file applied to the top level entity
A default section will be created
set_power_file_assignment -saf_file test.saf

Specify an input VCD file applied to design_top|counter1
Use the given section_id to create a new section
set_power_file_assignment -vcd_file test.vcd -to design_top|counter1 -section_id test.vcd

Update the previous input VCD file assignment to specify a
start and end time
set_power_file_assignment -vcd_file test.vcd -to design_top|counter1 -vcd_start_time 10ns -
vcd_end_time 100ns -section_id test.vcd

Remove the input SAF file assignment using the file name
set_power_file_assignment -saf_file test.saf -remove

Remove the input VCD file assignment using the section identifier
set_power_file_assignment -section_id test.vcd -remove

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

491

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Can't find active revision name. Make sure there is
an open, active revision name.

TCL_ERROR 1 ERROR: Compiler database does not exist for revision
name: <string>. At the minimum, run Analysis & Synthesis
(quartus_map) with the specified revision name before
using this Tcl command.

TCL_ERROR 1 ERROR: Exactly one of the following file name options must
be specified: -<string> or -<string>.

TCL_ERROR 1 ERROR: If -<string> is set, exactly one of the following
options must be specified: -<string>, -<string> or -
<string>. All other options must not be set.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: -<string> and -<string> cannot be used with -
<string> option.

3.1.30.42. set_user_option (::quartus::project_ui)

The following table displays information for the set_user_option Tcl command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax set_user_option [-h | -help] [-long_help] -name <name> [<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> User option name

<value> User option value

Description
Sets the user option value for the name specified by
the "-name" option. The user option is written to
the quartus2.ini file.

To get a list of all available user option names, use
the "get_all_user_option_names" command.

Example Usage ## Set TALKBACK_ENABLED to "on"
set_user_option -name TALKBACK_ENABLED on

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal user option name: <string>. Specify a legal
user option name. To get a list of legal names, use the
get_all_user_option_names command.

TCL_ERROR 1 ERROR: Illegal user option value: <string>. Specify a legal
user option value.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

492

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.30.43. test_assignment_trait (::quartus::project_ui)

The following table displays information for the test_assignment_trait Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::project_ui on page 441

Syntax test_assignment_trait [-h | -help] [-long_help] -name <name> -trait
<trait_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> Assignment name

-trait <trait_name> Trait name

Description
Checks whether the assignment name has the specified trait.
Returns 1, if the assignment name has the trait;
returns 0, otherwise.

Example Usage ## Test if the assignment name is case-sensitive
if {[test_assignment_trait -name VHDL_FILE -trait CASE_SENSITIVE]} {
 puts "VHDL_FILE assignment is case-sensitive."
} else {
 puts "VHDL_FILE assignment is not case-sensitive."
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Ignored assignment: <string>. The assignment is no
longer supported.

TCL_ERROR 1 ERROR: Value <string> for the -<string> option is illegal.
Specify a legal value.

TCL_ERROR 1 ERROR: Options cannot be specified together: -<string>, -
<string> and -<string>. Specify only one or two of the
three options.

TCL_ERROR 1 ERROR: Illegal assignment name: <string>. Specify a legal
assignment name. To view the list of legal assignment
names, run get_all_assignment_names.

TCL_ERROR 1 ERROR: Illegal trait: <string>. Specify a legal trait name.

3.1.31. ::quartus::qed

The following table displays information for the ::quartus::qed Tcl package:

Tcl Package and Version ::quartus::qed 1.0

Description
This package contains Tcl commands to work in the Quartus Exploration
Dashboard. Commands perform workspace operations,
create and manipulate project and project group objects,
control execution of background Quartus Prime software instances, and
import data from Quartus Prime projects.

Availability This package is available for loading in the following executable:

 quartus_sta

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

493

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Commands qed::add_projects_from_archive (::quartus::qed) on page 494
qed::check_properties (::quartus::qed) on page 495
qed::check_properties_of_projects (::quartus::qed) on page 496
qed::compile (::quartus::qed) on page 497
qed::configure_local_compute_spec (::quartus::qed) on page 497
qed::configure_lsf_compute_spec (::quartus::qed) on page 498
qed::configure_pbspro_compute_spec (::quartus::qed) on page 500
qed::configure_slurm_compute_spec (::quartus::qed) on page 501
qed::configure_ssh_compute_spec (::quartus::qed) on page 502
qed::create_object (::quartus::qed) on page 504
qed::delete_object (::quartus::qed) on page 505
qed::delete_object_report_panel (::quartus::qed) on page 506
qed::disconnect (::quartus::qed) on page 506
qed::find_projects_under_directory (::quartus::qed) on page 507
qed::fork_new_revision (::quartus::qed) on page 508
qed::fork_new_seeds (::quartus::qed) on page 509
qed::generate_report (::quartus::qed) on page 511
qed::get_all_properties_dict (::quartus::qed) on page 511
qed::get_default_group_id (::quartus::qed) on page 512
qed::get_object_report_panel_contents (::quartus::qed) on page 513
qed::get_object_report_panel_names (::quartus::qed) on page 513
qed::get_objects (::quartus::qed) on page 514
qed::get_project_report_panel_names (::quartus::qed) on page 515
qed::get_property (::quartus::qed) on page 516
qed::get_property_of_projects (::quartus::qed) on page 517
qed::get_return_value (::quartus::qed) on page 517
qed::get_user_data (::quartus::qed) on page 518
qed::has_property (::quartus::qed) on page 518
qed::import_report_panel (::quartus::qed) on page 519
qed::import_report_panel_names (::quartus::qed) on page 520
qed::is_connected (::quartus::qed) on page 521
qed::is_workspace_open (::quartus::qed) on page 522
qed::launch_connection (::quartus::qed) on page 522
qed::list_properties (::quartus::qed) on page 524
qed::load_db_state (::quartus::qed) on page 524
qed::open_project (::quartus::qed) on page 525
qed::pop_from_property (::quartus::qed) on page 526
qed::push_to_property (::quartus::qed) on page 527
qed::refresh_reports (::quartus::qed) on page 528
qed::run_analysis (::quartus::qed) on page 528
qed::run_command (::quartus::qed) on page 529
qed::sanitize_workspace (::quartus::qed) on page 530
qed::set_properties (::quartus::qed) on page 530
qed::set_property (::quartus::qed) on page 531
qed::set_user_data (::quartus::qed) on page 532
qed::wait_for_ready (::quartus::qed) on page 532
qed::workspace_close (::quartus::qed) on page 533
qed::workspace_new (::quartus::qed) on page 533
qed::workspace_open (::quartus::qed) on page 534
qed::write_object_reports_to_file (::quartus::qed) on page 535

3.1.31.1. qed::add_projects_from_archive (::quartus::qed)

The following table displays information for the
qed::add_projects_from_archive Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::add_projects_from_archive [-h | -help] [-long_help] [-subdir <subdir>] [-
num_seeds <num_seeds>] [-id_pattern <id_pattern>] [-group <group>] <archive>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-subdir <subdir> Directory name to create and restore the archive into. If
specified, the directory must not yet exist. If unspecified, a
sub-directory named after the archive will be created within
the current directory.

-num_seeds <num_seeds> Number of new seeds to create. Each seed will have its own
associated project in a separate subdirectory.

-id_pattern <id_pattern> Pattern used to generate revision names. \"%BASE_ID%\"
will be replaced with the ID the first project found inside the
archive. \"%SEED%\" will be replaced with the seed value
being assigned to the new revision.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

494

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-group <group> Group ID to add the restored projects to

<archive> Archive file to restore and add to the workspace

Description
Restores a Quartus Prime Pro archive file (.qar) into a fresh directory
and connects the created project to an opened workspace.

Since this command launches remote connections before completing, the
newly created projects must have access to a valid inherited compute
specification, either via the workspace or a group object that is provided
by "-group". See qed::get_inherited_compute_spec_args and qed::launch_connection
for more details.

The "-subdir" argument specifies the name of the fresh directory to create
during the restoration process. If specified, the directory must not yet
exist. If unspecified, a sub-directory named after the archive will be created
within the current directory.

The "-num_seeds" argument controls how many times the archive is restored.
If the value of the "-num_seeds" argument is greater than 1, a separate
directory will be created for each restored project and the SEED global
assignment value will be set to a different value in each project before
this command completes.

The "-id_pattern" option controls each "id" property of the project objects which are created
when this command completes. These IDs must be unique within the workspace. In order to
guarantee this uniqueness, the seed value may be incorporated into the generated ID by including
the substring "%SEED%" into the -id_pattern value. This substring will be replaced with the
unique
seed that will be set once the revision is created. For example, if the original project
had a seed value of 4, -num_seeds 3 is specified, and the -id_pattern argument is
set to "seed_%SEED%", the resulting projects will have IDs of "seed_5", "seed_6" and "seed_7"
respectively. To derive the IDs of the new projects after the archive project's name,
include the substring "%BASE_ID%" in the -id_pattern argument.

Example Usage qed::workspace_new my_workspace
 qed::configure_local_compute_spec my_workspace
 qed::add_projects_from_archive my_archive.qar -num_seeds 3

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.2. qed::check_properties (::quartus::qed)

The following table displays information for the qed::check_properties Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::check_properties [-h | -help] [-long_help] [-checks <checks>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-checks <checks> List of Tcl expressions that evaluate to true for objects to
retrieve. Expressions may use properties as variables of the
same name during the check.

<object> Identifier associated with the object, must be unique

Description
Evalutes a series of expressions that operate on values of object
properties and returns a boolean expression of the result of the
evaluation.

The "qed::check_properties" command simplifies the process of
performing a conditional check on an object for a set of
parameter values. The "-checks" option requires a list of
Tcl expressions, even if you specify only one expression. If you
specify only one expression, make the one expression a list itself
as shown in the examples below.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

495

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each expression uses semantics of the Tcl "expr" command. Within
each expression, access object properties with variables named
according to the desired properties. Accessing object properties within
expressions follows semantics of the Tcl "dict with" command.

Example Usage qed::create_object -type project project_A -user_data {this is some data!}
 qed::create_object -type group group_one -projects {project_A}

 # Checks for the string "this is " appearing in the
 # user_data property of the project_A object.
 # Returns: 1
 qed::check_properties project_A -checks [list {"this is " in $user_data}]
 # Checks for the project group with ID "group_one" existing in
 # the groups property of the project_A object.
 # Returns: 1
 qed::check_properties project_A -checks [list {group_one in $groups}]
 # Checks that the project with ID project_A does not appear in
 # the projects property of the group_one object.
 # Returns: 0
 qed::check_properties group_one -checks [list {project_A ni $projects}]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.3. qed::check_properties_of_projects (::quartus::qed)

The following table displays information for the
qed::check_properties_of_projects Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::check_properties_of_projects [-h | -help] [-long_help] [-checks <checks>]
<object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-checks <checks> List of Tcl expressions that evaluate to true for objects to
retrieve. Expressions may use properties as variables of the
same name during the check.

<object> Identifier associated with the object, must be unique

Description
Evalutes a series of expressions that operate on values of object
properties for all projects in a project group, and returns the
information in a Tcl dict.

The keys of the Tcl dict are the IDs of the projects in the group.
The values are two element lists of the form { <code> <value> }.
If the <code> value is 1, an error occurred checking the property
expression. The <result> contains the received error message.
If the <code> value is 0, the <result> value contains the boolean
expression that is the result of the evaluation.

Refer to help for "qed::check_properties" command for more information.

Example Usage qed::create_object -type project project_A -user_data {this is some data!}
 qed::create_object -type group group_one -projects {project_A}

 # Returns: {project_A {0 1}}
 qed::check_properties_of_projects group_one -checks [list {"this is " in $user_data}]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

496

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.31.4. qed::compile (::quartus::qed)

The following table displays information for the qed::compile Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::compile [-h | -help] [-long_help] [-async] [-load_db_state] [-timeout
<timeout>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-async Flag indicating not to wait for any issued remote commands
to complete. With this flag, the return value is a token that
can be passed to qed::get_return_value. By default, the
return value of the remote command is reproduced
(including any errors)

-load_db_state Flag to load the necessary compilation database state for
the accessor executable once the compile is complete. For
example, if the accessor executable is "quartus_sta", this
initializes the timing netlist

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

<object> Identifier associated with the object, must be unique

Description
Launches a compile on a connected project or group of connected projects.

Use the "-load_db_state" option to prepare the project for deeper
analysis after it opens. The specific operations performed will depend
on the executable used to access the project. For example, if the
project is accessed with "quartus_sta", timing analysis preparation
follows the initialization procedure in the Quartus Prime Pro Timing
Analyzer: creating the timing netlist, reading any SDC files, and
updating the timing netlist.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf -revision
rev_A
 qed::launch_connection project_A -open_project
 qed::compile project_A

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.5. qed::configure_local_compute_spec (::quartus::qed)

The following table displays information for the
qed::configure_local_compute_spec Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::configure_local_compute_spec [-h | -help] [-long_help] [-exe <quartus_sta|
quartus_cdb|quartus_sh>] [-exe_options <exe_options>] [-lm_license_file
<lm_license_file>] [-quartus_rootdir <quartus_rootdir>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exe <quartus_sta|quartus_cdb|
quartus_sh>

Executable to open the project with. Dictates the packages
and commands that will be available to run.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

497

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-exe_options <exe_options> List of options to pass to executable.

-lm_license_file
<lm_license_file>

LM_LICENSE_FILE environment setting

-quartus_rootdir
<quartus_rootdir>

Appropriate Quartus Prime Pro installation folder to access
the project

<object> Identifier associated with the object, must be unique

Description
Sets properties on the specified object to cause background Quartus
Prime Pro software instances to execute on the same (local) machine as
the Quartus Exploration Dashboard is running on.

The "-exe" option specifies the Quartus Prime Pro executable to run.
The supported options are quartus_sta, quartus_cdb, and quartus_sh.

The "-exe_options" option specifies any options passed to the
executable that is specified with the "-exe" option.

The "-quartus_rootdir" option specifies the directory location of the
desired Quartus Prime Pro software installation. This is the root directory
of the software installation, not the bin directory. If you do
not specify a value, the root directory associated with the
Quartus Exploration Dashboard is used.

The "-lm_license_file" option specifies the LM_LICENSE_FILE value
that will be passed to the Quartus Prime Pro software executable. If you
don't know the value, look in the Tools > License Setup dialog in
the Quartus Prime Pro software GUI.

Example Usage qed::configure_local_compute_spec workspace_id -exe quartus_sta -quartus_rootdir /path/to/
acds/quartus

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.6. qed::configure_lsf_compute_spec (::quartus::qed)

The following table displays information for the
qed::configure_lsf_compute_spec Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::configure_lsf_compute_spec [-h | -help] [-long_help] [-exe <quartus_sta|
quartus_cdb|quartus_sh>] [-exe_options <exe_options>] [-env <env>] [-error_file
<error_file>] [-initial_work_dir <initial_work_dir>] [-lm_license_file
<lm_license_file>] [-local_remote_path_map <local_remote_path_map>] [-output_file
<output_file>] [-priority <priority>] [-processor_limit <processor_limit>] [-
quartus_rootdir <quartus_rootdir>] [-queue <queue>] [-resource_requirements
<resource_requirements>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exe <quartus_sta|quartus_cdb|
quartus_sh>

Executable to open the project with. Dictates the packages
and commands that will be available to run.

-exe_options <exe_options> List of options to pass to executable.

-env <env> Comma-separated list of environment variables to pass to
job

-error_file <error_file> File to store standard error output. Use %J or %I to include
job id or index id in the directory or filename

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

498

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-initial_work_dir
<initial_work_dir>

Initial working directory on remote host. The remote host
will start in this directory.

-lm_license_file
<lm_license_file>

LM_LICENSE_FILE environment setting

-local_remote_path_map
<local_remote_path_map>

The shared directory mapping between local and remote
host

-output_file <output_file> File to store standard output. You can include Job id using
%J or Index id %I in the directory or filename

-priority <priority> Job priority on your LSF farm. The higher the number, the
higher the priority

-processor_limit
<processor_limit>

Minimum number of processors, and optionally, a maximum
number of processors for the job

-quartus_rootdir
<quartus_rootdir>

Appropriate Quartus Prime Pro installation folder to access
the project

-queue <queue> One or more comma-separated queues. Check with your
administrator for a list of valid queues for your LSF farm

-resource_requirements
<resource_requirements>

Required resources. Used to restrict to machines with
specific memory requirements

<object> Identifier associated with the object, must be unique

Description
Sets properties on the specified object to cause background Quartus
Prime Pro software instances to execute through the LSF workload
management platform.

Use the following options to configure the LSF settings:
 * -resource_requirements
 * -queue
 * -initial_work_dir
 * -env
 * -local_remote_path_map
 * -priority
 * -output_file
 * -error_file
 * -processor_limit

The "-exe" option specifies the Quartus Prime Pro executable to run.
The supported options are quartus_sta, quartus_cdb, and quartus_sh.

The "-exe_options" option specifies any options passed to the
executable that is specified with the "-exe" option.

The "-quartus_rootdir" option specifies the directory location of the
desired Quartus Prime Pro software installation. This is the root directory
of the software installation, not the bin directory.

The "-lm_license_file" option specifies the LM_LICENSE_FILE value
that will be passed to the Quartus Prime Pro software executable. If you
don't know the value, look in the Tools > License Setup dialog in
the Quartus Prime Pro software GUI.

Example Usage qed::configure_lsf_compute_spec workspace_id -exe quartus_sta

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

499

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.31.7. qed::configure_pbspro_compute_spec (::quartus::qed)

The following table displays information for the
qed::configure_pbspro_compute_spec Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::configure_pbspro_compute_spec [-h | -help] [-long_help] [-exe <quartus_sta|
quartus_cdb|quartus_sh>] [-exe_options <exe_options>] [-additional_args
<additional_args>] [-email <email>] [-env <env>] [-initial_work_dir
<initial_work_dir>] [-lm_license_file <lm_license_file>] [-priority <priority>] [-
quartus_rootdir <quartus_rootdir>] [-queue <queue>] [-resources <resources>]
<object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exe <quartus_sta|quartus_cdb|
quartus_sh>

Executable to open the project with. Dictates the packages
and commands that will be available to run.

-exe_options <exe_options> List of options to pass to executable.

-additional_args
<additional_args>

Additional arguments to pass to the pbspro client when
connecting to remote host

-email <email> List of email addresses to receive job status updates.
Comma separated.

-env <env> A comma separated list of environment variables to pass to
job

-initial_work_dir
<initial_work_dir>

Initial working directory on remote host. The remote host
will start in this directory.

-lm_license_file
<lm_license_file>

LM_LICENSE_FILE environment setting

-priority <priority> Job priority. The higher the number, the higher the priority.

-quartus_rootdir
<quartus_rootdir>

Appropriate Quartus Prime Pro installation folder to access
the project

-queue <queue> Name of the job queue to use

-resources <resources> Architecture, license, and/or memory requirement

<object> Identifier associated with the object, must be unique

Description
Sets properties on the specified object to cause background Quartus
Prime Pro software instances to execute through the PBSPro workload
management platform.

Use the following options to configure the PBSPro settings:
 * -queue
 * -priority
 * -resources
 * -email
 * -additional_args
 * -env
 * -initial_work_dir

The "-exe" option specifies the Quartus Prime Pro executable to run.
The supported options are quartus_sta, quartus_cdb, and quartus_sh.

The "-exe_options" option specifies any options passed to the
executable that is specified with the "-exe" option.

The "-quartus_rootdir" option specifies the directory location of the
desired Quartus Prime Pro software installation. This is the root directory
of the software installation, not the bin directory.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

500

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The "-lm_license_file" option specifies the LM_LICENSE_FILE value
that will be passed to the Quartus Prime Pro software executable. If you
don't know the value, look in the Tools > License Setup dialog in
the Quartus Prime Pro software GUI.

Example Usage qed::configure_pbspro_compute_spec workspace_id -exe quartus_sta

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.8. qed::configure_slurm_compute_spec (::quartus::qed)

The following table displays information for the
qed::configure_slurm_compute_spec Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::configure_slurm_compute_spec [-h | -help] [-long_help] [-exe <quartus_sta|
quartus_cdb|quartus_sh>] [-exe_options <exe_options>] [-additional_args
<additional_args>] [-cluster <cluster>] [-constraint <constraint>] [-
cores_per_socket <cores_per_socket>] [-email <email>] [-env <env>] [-
initial_work_dir <initial_work_dir>] [-licenses <licenses>] [-lm_license_file
<lm_license_file>] [-memory <memory>] [-output <output>] [-partition <partition>]
[-priority <priority>] [-quartus_rootdir <quartus_rootdir>] [-resources
<resources>] [-sockets_per_node <sockets_per_node>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exe <quartus_sta|quartus_cdb|
quartus_sh>

Executable to open the project with. Dictates the packages
and commands that will be available to run.

-exe_options <exe_options> List of options to pass to executable.

-additional_args
<additional_args>

Additional arguments to pass to the slurm client when
connecting to remote host

-cluster <cluster> Comma separated list of clusters to use

-constraint <constraint> Node features required as defined by Slurm administrator

-cores_per_socket
<cores_per_socket>

Number of CPU cores per socket

-email <email> Email address to receive job status updates. Defaults to
submitting user.

-env <env> Comma-separated list of environment variables to pass to
job

-initial_work_dir
<initial_work_dir>

Initial working directory on remote host. The remote host
will start in this directory.

-licenses <licenses> Licenses that need to be allocated for this job

-lm_license_file
<lm_license_file>

LM_LICENSE_FILE environment setting

-memory <memory> Memory requirement per node. Default unit is megabytes

-output <output> Filename to store standard output

-partition <partition> Comma separated list of partitions to use

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

501

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-priority <priority> Job priority. The higher the number, the higher the priority

-quartus_rootdir
<quartus_rootdir>

Appropriate Quartus Prime Pro installation folder to access
the project

-resources <resources> Architecture, license, and/or memory requirement

-sockets_per_node
<sockets_per_node>

Number of CPUs per node

<object> Identifier associated with the object, must be unique

Description
Sets properties on the specified object to cause background Quartus
Prime Pro software instances to execute through the SLURM workload
management platform.

Use the following options to configure the SLURM settings:
 * -cluster
 * -partition
 * -memory
 * -sockets_per_node
 * -cores_per_socket
 * -priority
 * -resources
 * -constraint
 * -email
 * -additional_args
 * -env
 * -initial_work_dir
 * -output
 * -licenses

The "-exe" option specifies the Quartus Prime Pro executable to run.
The supported options are quartus_sta, quartus_cdb, and quartus_sh.

The "-exe_options" option specifies any options passed to the
executable that is specified with the "-exe" option.

The "-quartus_rootdir" option specifies the directory location of the
desired Quartus Prime Pro software installation. This is the root directory
of the software installation, not the bin directory.

The "-lm_license_file" option specifies the LM_LICENSE_FILE value
that will be passed to the Quartus Prime Pro software executable. If you
don't know the value, look in the Tools > License Setup dialog in
the Quartus Prime Pro software GUI.

Example Usage qed::configure_slurm_compute_spec workspace_id -exe quartus_sta

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.9. qed::configure_ssh_compute_spec (::quartus::qed)

The following table displays information for the
qed::configure_ssh_compute_spec Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::configure_ssh_compute_spec [-h | -help] [-long_help] [-exe <quartus_sta|
quartus_cdb|quartus_sh>] [-exe_options <exe_options>] [-additional_args
<additional_args>] [-custom_ssh_port <custom_ssh_port>] -hostnames <hostnames> [-
initial_work_dir <initial_work_dir>] [-jobs_per_host <jobs_per_host>] [-
lm_license_file <lm_license_file>] [-local_remote_path_map
<local_remote_path_map>] [-private_key <private_key>] [-quartus_rootdir
<quartus_rootdir>] [-reverse_tunnel_port <reverse_tunnel_port>] [-ssh_client
<ssh_client>] [-ssh_server <ssh_server>] [-user <user>] <object>

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

502

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-exe <quartus_sta|quartus_cdb|
quartus_sh>

Executable to open the project with. Dictates the packages
and commands that will be available to run.

-exe_options <exe_options> List of options to pass to executable.

-additional_args
<additional_args>

Additional arguments to pass to the SSH client when
connecting to remote host

-custom_ssh_port
<custom_ssh_port>

Custom port to use when making the SSH connection. This
is only needed if the remote host(s) uses a port other than
port 22 for SSH

-hostnames <hostnames> Select servers to use. Supports a comma-separated list of
hostnames, or a value of file:filename, where the named file
contains newline separated hostnames.

-initial_work_dir
<initial_work_dir>

Initial working directory on remote host. The remote host
will start in this directory.

-jobs_per_host <jobs_per_host> Number of jobs each host should run in parallel. Default is 1

-lm_license_file
<lm_license_file>

LM_LICENSE_FILE environment setting

-local_remote_path_map
<local_remote_path_map>

Shared directory mapping between local and remote host.
Format is local_path;remote_path.

-private_key <private_key> Private key associated with the remote host

-quartus_rootdir
<quartus_rootdir>

Appropriate Quartus Prime Pro installation folder to access
the project

-reverse_tunnel_port
<reverse_tunnel_port>

Enable port forwarding and specify a port on the remote
host to be forwarded to the local host. Remote host will
connect to DSE server using
localhost:<reverse_tunnel_port> over the secured ssh
channel.

-ssh_client <ssh_client> Path to the ssh client used to connect to remote host

-ssh_server <ssh_server> Windows only. Specify SSH server used by remote host.
openssh or cygwin

-user <user> Username to login to remote machine

<object> Identifier associated with the object, must be unique

Description
Sets properties on the specified object to cause background Quartus
Prime Pro software instances to connect through the ssh protocol.

The "-hostnames" option specifies a list of hostnames that can be
connected to through the ssh protocol that will execute the background
Quartus Prime Pro software instances. Entries in the list must be
comma-separated and may be formatted as "file:<filename>", where each
file contains a list of newline separated hostnames to consider alongside
any other entries specified.

The "-jobs_per_host" option limits the number of jobs a given host
can be assigned.

The "-custom_ssh_port" option overries the port to use when making
the SSH connection. Only required if the remote host(s) uses a port
other than port 22 for SSH.

The "-private_key" option specifies the private SSH key file to authenticate
and log in to remote host. Use this option if the remote host prompts user for
password when connecting using the ssh client. The corresponding public
key should have been appended to the remote host's
 ~/.ssh/authorized_keys or ~/.ssh/authorized_keys2 files.

The "-private_key" option specifies a private key that is associated
with the remote host. The corresponding pulib key should have been

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

503

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

appending to the remote host's ~/.ssh/authorized_keys or ~/.ssh/authorized_keys2
files.

The "-user" option specifies the user or login name to use when logging in to remote host.
Use this option if the user name on remote host is different from the current user.

The "-ssh_client" option specifies the path to the SSH client to
use when launching the connection. On Linux, it defaults to 'ssh'.
On Windows, it defaults to Cygwin ssh. Windows also supports plink
from the PuTTY package.

The "-additional_arguments" option specifies additional commandline arguments to pass to the SSH
client.

The "-local_remote_path_map" specifies the shared directory mapping
between local and remote host. Format is local_path;remote_path.
Windows to Linux Example:
 [drive:\windows path];[linux path]
 s:\designs\two_reg;/data/usr/designs/two_reg
Linux to Windows Example:
 /data/usr;s:\data\usr

The "-ssh_server" option specifies the server used by the remote host. Examples include openssh
or cygwin.

The "-initial_work_dir" option specifies the directory that the
remote job should start in.

The "-reverse_tunnel_port" option Enables port forwarding and
specifies a port on the remote host to be forwarded to the local
host. Use this if there is a firewall that separates the local host
and the remote host. Remote host will connect to QED server using
localhost:<reverse_tunnel_port> over the secured ssh channel.
The port can be any ephemeral port that is not used by another
process. Set value to 'auto' to let QED to automatically find a free
network port on remote host. Omit this setting to disable port
forwarding.

The "-exe" option specifies the Quartus Prime Pro executable to run.
The supported options are quartus_sta, quartus_cdb, and quartus_sh.

The "-exe_options" option specifies any options passed to the
executable that is specified with the "-exe" option.

The "-quartus_rootdir" option specifies the directory location of the
desired Quartus Prime Pro software installation. This is the root directory
of the software installation, not the bin directory.

The "-lm_license_file" option specifies the LM_LICENSE_FILE value
that will be passed to the Quartus Prime software executable. If you
don't know the value, look in the Tools > License Setup dialog in
the Quartus Prime Pro software GUI.

Example Usage qed::configure_ssh_compute_spec workspace_id -exe quartus_sta -hostnames hostname -
quartus_rootdir /path/to/acds/quartus
 qed::configure_ssh_compute_spec workspace_id -exe quartus_sta -hostnames file:/path/to/
hostnames.txt -quartus_rootdir /path/to/acds/quartus
 qed::configure_ssh_compute_spec workspace_id -exe quartus_sta -hostnames host1,host2 -
quartus_rootdir /path/to/acds/quartus
 qed::configure_ssh_compute_spec workspace_id -exe quartus_sta -hostnames hostname -
quartus_rootdir /path/to/acds/quartus -user username -private_key ~/.ssh/id_rsa

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.10. qed::create_object (::quartus::qed)

The following table displays information for the qed::create_object Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::create_object [-h | -help] [-long_help] -type <project|group> [-user_data
<user_data>] [-groups <groups>] [-qpf_path <qpf_path>] [-revision <revision>] [-
projects <projects>] [-default_group_id <default_group_id>] [<id>]

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

504

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-type <project|group> Type of QED Workspace object

-user_data <user_data> Freetext field to store any interesting metadata on the
object. Use qed::set_user_data and qed::get_user_data to
interact with the value as a dict instead of a string.

-groups <groups> Set of group IDs this project is a member of (Valid only for -
type project)

-qpf_path <qpf_path> Full path to a .qpf file to open (Valid only for -type project)

-revision <revision> Name of the revision to open (Valid only for -type project)

-projects <projects> Set of projects belonging to the group (Valid only for -type
group)

-default_group_id
<default_group_id>

Identifier used for the 'default group' that's created to
house ungrouped projects during sanitize_workspace (Valid
only for -type workspace)

<id> Identifier associated with the object, must be unique

Description
Creates project or project group objects. The command returns the
ID of the newly created object.

The "-type" option is required, and must specify one of project
or group.

Other supported options depend on the type of object you are
creating. The options correspond to property names that are valid
for the type of object you are creating.

Example Usage qed::create_object -type project project_A -qpf_path /path/to/project_A/project.qpf -
revision project_A
 qed::create_object -type project project_B -qpf_path /path/to/project_B/project.qpf -
revision project_B
 qed::create_object -type group both_projects -projects {project_A project_B}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.11. qed::delete_object (::quartus::qed)

The following table displays information for the qed::delete_object Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::delete_object [-h | -help] [-long_help] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<object> Identifier associated with the object, must be unique

Description
Deletes project or project group objects.

The most common reason to delete an object is if you have created
it by mistake. If you added the wrong Quartus Prime Pro project to the
workspace, you can edit its properties to point to the correct
project, or delete the wrong one and add the right one.

Deleting a project object also removes any and all reports you imported
from the project.

Deleting a project group object also removes any and all reports

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

505

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

you created for that project group. Typically those reports combine
or compare data from project reports.

Deleting a project group object does not delete
the project objects that were part of the project group.

Example Usage set id [qed:create_object -type project]
 qed::delete_object $id

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.12. qed::delete_object_report_panel (::quartus::qed)

The following table displays information for the
qed::delete_object_report_panel Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::delete_object_report_panel [-h | -help] [-long_help] -panel_name
<panel_name> <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <panel_name> Name of the report panel to delete

<object> Identifier associated with the object, must be unique

Description
Deletes the specified report panel associated with the given object ID.

Specify the panel name relative to the folder of the object ID.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf
 qed::launch_connection project_A -open_project
 set imported_name [qed::import_report_panel project_A -panel_name "Timing Analyzer||Setup
Summary"]
 qed::delete_object_report_panel project_A -panel_name $imported_name

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.13. qed::disconnect (::quartus::qed)

The following table displays information for the qed::disconnect Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::disconnect [-h | -help] [-long_help] [-async] [-timeout <timeout>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-async Flag indicating not to wait for any issued remote commands
to complete. With this flag, the return value is a token that
can be passed to qed::get_return_value. By default, the
return value of the remote command is reproduced
(including any errors)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

506

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

<object> Identifier associated with the object, must be unique

Description
Closes background instances of the Quartus Prime Pro software associated
with a project object, or projects in a project group.

If you invoke the "qed::disconnect" command and want to extract more
data from remote projects, or execute commands in them, you must use
the "qed::launch_connection" command to re-initiate the connection.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf

 qed::launch_connection project_A

 qed::disconnect project_A

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.14. qed::find_projects_under_directory (::quartus::qed)

The following table displays information for the
qed::find_projects_under_directory Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::find_projects_under_directory [-h | -help] [-long_help] [-project_match
<project_match>] [-directory_match <directory_match>] [-include_all_revisions]
<search_dir>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-project_match <project_match> Pattern to match against the QPF file basenames

-directory_match
<directory_match>

Pattern to match against the QPF file directories

-include_all_revisions Flag to return all revisions of detected projects instead of
the first

<search_dir> Directory to search

Description
Recursively searches a directory for Quartus Prime Pro projects
and returns a list of Tcl dicts, where each dict contains
metadata about the projects that were found. The metadata is
typically used when you add projects to the workspace.

If no Quartus Prime Pro projects are found, the command returns an empty
list.

A Quartus Prime Pro project is considered to be a file with a .qpf
extension.

The "-project_match" and "-directory_match" options use Tcl glob-style
name matching semantics. Supported wildcard characters include * and ?.
The default value of the "-project_match" and "-directory_match"
options is *.

The command recursively finds all files with names matching *.qpf,
starting in the directory specified with the "-search_dir" option.
You must specify a directory with the "-search_dir" option, even
if it is "." (the current directory); there is no default value.
The command applies the directory_match wildcard to the name of each
directory containing a .qpf file, and it applies the project_match
wildcard to the file name of the .qpf file.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

507

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The command extracts metadata for any Quartus Prime Pro projects that
match the "-project_match" and "-directory_match" options. If you
specify the "-include_all_revisions" option, metadata is extracted for
all revisions of each project. If you do not specify the option,
metadata is extracted for only the active revision of each project.

The dict that is returned for each project includes the following
properties: qpf_path is the absolute path of the Quartus Prime Pro project
file, revision is the name of the project revision, version is the
version of the Quartus Prime Pro software last used to open the project,
and id is an automatically-generated unique name for the combination
of that project and revision.

Example Usage qed::find_projects_under_directory "."

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.15. qed::fork_new_revision (::quartus::qed)

The following table displays information for the qed::fork_new_revision Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::fork_new_revision [-h | -help] [-long_help] [-add_to_groups
<add_to_groups>] [-async] [-copy_results] [-id <id>] -revision <revision> [-
timeout <timeout>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add_to_groups <add_to_groups> List of one or more groups to add the forked project object
to. Defaults to the same group(s) as the source project
object.

-async Flag indicating not to wait for any issued remote commands
to complete. With this flag, the return value is a token that
can be passed to qed::get_return_value. By default, the
return value of the remote command is reproduced
(including any errors)

-copy_results Flag to copy the source revision's compilation results into
the new revision

-id <id> Identifier to associate with the new project object, must be
unique

-revision <revision> Name of the new revision to create

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

<object> Identifier associated with the object, must be unique

Description
Creates a new revision within a connected project and initializes a new
project object that may be used to connect to that revision.

Revisions within a Quartus Prime Pro project may be used to isolate and
interact in parallel with multiple different versions of a design. These
differences may include settings or assignments, which includes referencing
different versions of source files to use during compilation.

The project object returned by this utility will not yet be connected to the
remote revision, and the database associated with the revision will not be
complete. Run "qed::launch_connection" and "qed::compile" to generate a
complete database for the new revision.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

508

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The "-revision" option must specify a unique and new name for a revision
to generate within the remote project. This command will return an error if
the revision cannot be created successfully. The new revision will be based on
the revision that the connected project is accessing, which means it inherits
all settings and assignments from that source revision and with no further changes
will produce identical compilation results as compared to that source revision.

The "-id" option controls the "id" property of the project object which is created
when this command completes. If unspecified, a unique ID will be generated and assigned
to the new project.

The "-add_to_groups" option will initialize the new project object's "groups" property
to be a list of pre-existing group(s). If unspecified, the forked project object will
inherit its 'groups' property from the source project object.

The "-copy_results" option initiates a file copy of the compilation results from the
source revision into the new revision. This means the new revision appears as being
fully compiled and prepared for analysis but identical to the source revision until
some future change is made and the revision is recompiled.

Example Usage qed::create_object -type group my_group
 qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf -revision
rev_A -groups my_group
 qed::launch_connection project_A -open_project
 qed::run project_A -cmd "set_global_assignment -name SEED 1"
 qed::fork_new_revision project_A -revision rev_B -id project_B -inherit_groups
 qed::launch_connection project_B -open_project
 qed::run project_B -cmd "set_global_assignment -name SEED 2"

 # Returns: {project_A 1 project_B 2}
 qed::run my_group -cmd "get_global_assignment -name SEED"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.16. qed::fork_new_seeds (::quartus::qed)

The following table displays information for the qed::fork_new_seeds Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::fork_new_seeds [-h | -help] [-long_help] [-id_pattern <id_pattern>] [-
launch_compiles] -num_seeds <num_seeds> [-revision_pattern <revision_pattern>]
<object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id_pattern <id_pattern> Pattern used to generate revision names. \"%ORIGINAL_ID
%\" will be replaced with the current ID of the source
project. \"%SEED%\" will be replaced with the seed value
being assigned to the new revision.

-launch_compiles Flag to compile the forked seeds after changing their SEED
assignment value

-num_seeds <num_seeds> Number of new seeds to create

-revision_pattern
<revision_pattern>

Pattern used to generate revision names.
\"%ORIGINAL_REVISION%\" will be replaced with the
current revision of the source project. \"%SEED%\" will be
replaced with the seed value being assigned to the new
revision.

<object> Identifier associated with the object, must be unique

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

509

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Creates a set of new revisions within a connected project and initializes a new
project object for each one. The new objects are then connected and the value of
the "SEED" global assignment is modified accordingly. Each new object will inherit
its "groups" property from the source project object.

The "-num_seeds" argument dictates how many revisions to create and connect. The seed
values will be the next in line after the value of the source project's seed. For
example, if the source project used a seed of 4 and -num_seeds 3 is specified, the
returned projects will have seeds 5, 6, and 7 set, respectively.

The compilation database associated with the returned projects will not be
complete. Run "qed::compile" to generate a complete database for each
new revision.

The "-revision_pattern" option must specify a unique and new name for each revision
to generate within the remote project. This command will return an error if
a revision cannot be created successfully. In order to guarantee this uniqueness, the
seed value may be incorporated into the generated revision by including the substring
"%SEED%" into the -revision_pattern value. This substring will be replaced with the unique
seed that will be set once the revision is created. For example, if the original project
had a seed value of 4, -num_seeds 3 is specified, and the -revision_pattern argument is
set to "seed_%SEED%", the resulting revisions will be named "seed_5", "seed_6" and "seed_7"
respectively. Note that the revision names are visible via the returned project objects'
"revision" property. To name the new revisions after the original project's revision,
include the substring "%ORIGINAL_REVISION%" in the -revision_pattern argument.

Each new revision will be based on the revision that the connected project is accessing,
which means it inherits all settings and assignments from that source revision except
that it will have a different value set for the "SEED" global assignment.

The "-id_pattern" option controls each "id" property of the project objects which are created
when this command completes. These IDs must be unique within the workspace. In order to
guarantee this uniqueness, the seed value may be incorporated into the generated ID by including
the substring "%SEED%" into the -id_pattern value. This substring will be replaced with the
unique
seed that will be set once the revision is created. For example, if the original project
had a seed value of 4, -num_seeds 3 is specified, and the -id_pattern argument is
set to "seed_%SEED%", the resulting projects will have IDs of "seed_5", "seed_6" and "seed_7"
respectively. To derive the IDs of the new projects after the original project's revision,
include the substring "%ORIGINAL_ID%" in the -id_pattern argument.

The "-launch_compiles" option will automatically launch Quartus Prime Pro compiles on just the
forked seeds after their "SEED" global assignments have been updated. This is equivalent to
creating
a new group that just contains the new project objects and running qed::compile on that group.

Example Usage qed::create_object -type group my_group
 qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf -revision
rev_A -groups my_group
 qed::launch_connection project_A -open_project
 qed::run project_A -cmd "set_global_assignment -name SEED 1"

 # Fork one new seed with a specific ID and revision name
 qed::fork_new_seeds project_A -num_seeds 1 -revision_pattern rev_B -id project_B -
inherit_groups
 qed::launch_connection project_B -open_project

 # Fork several new seeds and derive IDs and revision names from patterns
 qed::fork_new_seeds project_B -num_seeds 3 -revision_pattern rev_B_%SEED% -id
project_B_seed_%SEED% -inherit_groups

 # Returns: {project_A 1 project_B 2 project_B_seed_3 3 project_B_seed_4 4 project_B_seed_5
5}
 qed::run_command my_group -cmd "get_global_assignment -name SEED"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

510

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.31.17. qed::generate_report (::quartus::qed)

The following table displays information for the qed::generate_report Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::generate_report [-h | -help] [-long_help] [-arguments <arguments>] [-
async] [-timeout <timeout>] -type <type> <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-arguments <arguments> Arguments that customize each report

-async Flag indicating not to wait for any issued remote commands
to complete. With this flag, the return value is a token that
can be passed to qed::get_return_value. By default, the
return value of the remote command is reproduced
(including any errors)

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

-type <type> Type of report to generate

<object> Identifier associated with the object, must be unique

Description
This command currently contains no help description.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf
 qed::launch_connection project_A -open_project
 qed::generate_report project_A -type report_timing -arguments "-npaths 100 -from_clock
sys_clk"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.18. qed::get_all_properties_dict (::quartus::qed)

The following table displays information for the qed::get_all_properties_dict
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::get_all_properties_dict [-h | -help] [-long_help] [-set_only] [-
writeable_only] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-set_only Flag indicating that any unset property names should be
filtered out.

-writeable_only Flag indicating that read-only property names should be
filtered out.

<object> Identifier associated with the object, must be unique

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

511

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Returns a Tcl dict representing the properties of the given object.

Keys of the Tcl dict represent the property names valid for the given
object, and values of the Tcl dict represent the associated values of
each property.

When you create an object, some of its properties may not be set; they
may have no value and no default value.
When you use the "-set_only" option, the list of properties returned
is limited to properties that are set.

Some object properties are read-only, and the rest are read/write.
When you use the "-writeable_only" option, the list of
properties returned is limited to properties that are read/write.

Example Usage qed::create_object -type project project_A -user_data {this is some data!}
 qed::get_all_properties_dict project_A -writeable_only

 qed::create_object -type group group_one -projects {project_A}
 qed::get_all_properties_dict group_one -set_only

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.19. qed::get_default_group_id (::quartus::qed)

The following table displays information for the qed::get_default_group_id Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::get_default_group_id [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns the project group ID reserved for the default group.

All projects are required to be in at least one project group. This
requirement is not enforced by the project or project group objects
themselves, but by the "qed::sanitize_workspace" command.

To simplify the experience for new users, creating a project group
is an optional step. However, to satisfy the requirement that all
projects are in at least one project group, a project group may
be automatically created by the "qed::sanitize_workspace" command if no
project group exists. When a project group is created by the
"qed::sanitize_workspace" command, its ID is the default group ID.

Example Usage qed::get_default_group_id

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

512

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.31.20. qed::get_object_report_panel_contents (::quartus::qed)

The following table displays information for the
qed::get_object_report_panel_contents Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::get_object_report_panel_contents [-h | -help] [-long_help] -panel_name
<panel_name> <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-panel_name <panel_name> Name of the report panel to retrieve

<object> Identifier associated with the object, must be unique

Description
Returns the serialized content of an object panel if it exists.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf
 qed::launch_connection project_A -open_project
 set imported_name [qed::import_report_panel project_A -panel_name "Timing Analyzer||Setup
Summary"]
 qed::get_object_report_panel_contents project_A -panel_name $imported_name

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.21. qed::get_object_report_panel_names (::quartus::qed)

The following table displays information for the
qed::get_object_report_panel_names Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::get_object_report_panel_names [-h | -help] [-long_help] [-
include_generated_panels] [-regexp_match <regexp_match>] [-string_match
<string_match>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-include_generated_panels Flag to include QED-generated panels in the output

-regexp_match <regexp_match> Regex to filter all panels, in the style of the \[regexp\]
command

-string_match <string_match> Pattern to filter all panels, in the style of the \[string match
\] command

<object> Identifier associated with the object, must be unique

Description
Returns a Tcl list of report panel names associated with the given
object.

The "-string_match" option supports Tcl glob-style pattern matching.

The "-regexp_match" option supports Tcl regexp pattern matching. You
should enclose your regular expression in curly braces.

The "-include_generated_panels" option control whether report panels
that were generated by the Quartus Exploration Dashboard are included

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

513

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

in the list. If you call the "qed::get_object_report_panel_names"
command with the ID of a project, and do not specify the
"-include_generated_panels" option, the list of names includes only
report panels that were imported from the project.

Typically, report panels associated with a project group are
generated by the Quartus Exploration Dashboard, so you should use the
"-include_generated_panels" option when you run the command with a
project group ID.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf
 qed::launch_connection project_A -open_project
 qed::import_report_panel project_A -panel_name "Timing Analyzer||Setup Summary"
 qed::import_report_panel project_A -panel_name "Timing Analyzer||Hold Summary"
 qed::get_object_report_panel_names

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.22. qed::get_objects (::quartus::qed)

The following table displays information for the qed::get_objects Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::get_objects [-h | -help] [-long_help] [-type <project|group|workspace>] [-
user_data <user_data>] [-groups <groups>] [-qpf_path <qpf_path>] [-revision
<revision>] [-projects <projects>] [-default_group_id <default_group_id>] [-checks
<checks>] [<id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-type <project|group|workspace> Type of QED Workspace object

-user_data <user_data> Freetext field to store any interesting metadata on the
object. Use qed::set_user_data and qed::get_user_data to
interact with the value as a dict instead of a string.

-groups <groups> Set of group IDs this project is a member of (Valid only for -
type project)

-qpf_path <qpf_path> Full path to a .qpf file to open (Valid only for -type project)

-revision <revision> Name of the revision to open (Valid only for -type project)

-projects <projects> Set of projects belonging to the group (Valid only for -type
group)

-default_group_id
<default_group_id>

Identifier used for the 'default group' that's created to
house ungrouped projects during sanitize_workspace (Valid
only for -type workspace)

-checks <checks> List of Tcl expressions that evaluate to true for objects to
retrieve. Expressions may use properties as variables of the
same name during the check.

<id> Identifier associated with the object, must be unique

Description
Returns a Tcl list of project or project group objects that match
the options you specify.

If no objects match, the command returns an empty list.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

514

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage qed::get_objects -type project project_A -user_data "hello world!" -qpf_path /path/to/
project_A/project.qpf -revision project_A
 qed::get_objects -type group my_group -user_data "hello neighbour!" -projects
{project_A}

 # Returns: {project_A my_group}
 qed::get_objects

 # Returns: {project_A}
 qed::get_objects -type project

 # Returns: {my_group}
 qed::get_objects -projects project_A

 # Returns: {project_A my_group}
 qed::get_objects -checks [list {"hello" in $user_data}]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.23. qed::get_project_report_panel_names (::quartus::qed)

The following table displays information for the
qed::get_project_report_panel_names Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::get_project_report_panel_names [-h | -help] [-long_help] [-
include_generated_panels] [-regexp_match <regexp_match>] [-string_match
<string_match>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-include_generated_panels Flag to include QED-generated panels in the output

-regexp_match <regexp_match> Regex to filter all panels, in the style of the \[regexp\]
command

-string_match <string_match> Pattern to filter all panels, in the style of the \[string match
\] command

<object> Identifier associated with the object, must be unique

Description
Returns a multi-level Tcl dict of report panel names associated with the
projects of the given group object. In the event that certain project report
panels across the group only differ by seed-dependent values (e.g. slack
values, Design Assistant violation counts, etc.) they will be grouped together
in the returned dictionary based on a sanitized version of the panel names.

The primary keys in the returned dictionary correspond to these sanitized names,
and each sanitized name maps to a sub-dictionary where the key is a project
that maps to the original, un-sanitized name of the panel associated with that
project. If a panel was imported or generated on some of the group's projects
but not others, only the projects with that panel will appear in the values
associated with that panel's name.

Each un-sanitized panel name associated with a project can be passed to the
"qed::get_object_report_panel_contents" command alongside the project ID the
panel name maps to.

There are several ways to control the panel names which are returned by this command.

The "-string_match" option supports Tcl glob-style pattern matching.

The "-regexp_match" option supports Tcl regexp pattern matching. You
should enclose your regular expression in curly braces.

The "-include_generated_panels" option control whether report panels
that were generated by the Quartus Exploration Dashboard are included

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

515

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

in the list. If you call the "qed::get_project_report_panel_names" command,
and do not specify the "-include_generated_panels" option, the dict
returned includes only report panels that were imported from each project.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/A/project.qpf
 qed::launch_connection project_A -open_project
 qed::create_object -type project project_B -qpf_path /file/path/to/B/project.qpf
 qed::launch_connection project_B -open_project
 qed::create_object -type group both_projects -projects {project_A project_B}
 qed::import_report_panel both_projects -panel_name "Timing Analyzer||Setup Summary"
 qed::import_report_panel project_A -panel_name "Timing Analyzer||Hold Summary"

 # Returns:
 # {
 # "Timing Analyzer||Setup Summary" {
 # project_A "Timing Analyzer||Setup Summary"
 # project_B "Timing Analyzer||Setup Summary"
 # }
 # "Timing Analyzer||Hold Summary" {
 # project_B "Timing Analyzer||Hold Summary"
 # }
 # }
 qed::get_project_report_panel_names both_projects

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.24. qed::get_property (::quartus::qed)

The following table displays information for the qed::get_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::get_property [-h | -help] [-long_help] -property <property> <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-property <property> Name of the property to query

<object> Identifier associated with the object, must be unique

Description
Returns the value of the given property of the object.

If the object does not have the property (the property does not exist),
the command returns a Tcl error.
If the object has the property (the property exists) but the property
is not set, the command returns a Tcl error.

Refer to help for the "qed::has_property" command for how to check
whether a property exists or is set.

Example Usage qed::create_object -type project project_A -user_data {this is some data!}

 # Returns: {this is some data!}
 qed::get_property project_A -property user_data

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

516

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.31.25. qed::get_property_of_projects (::quartus::qed)

The following table displays information for the qed::get_property_of_projects
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::get_property_of_projects [-h | -help] [-long_help] -property <property>
<object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-property <property> Name of the property to query

<object> Identifier associated with the object, must be unique

Description
Gets the value of the given property for all projects in the given
project group and returns the information in a Tcl dict.

The keys of the Tcl dict are the IDs of the projects in the group.
The values are two element lists of the form { <code> <value> }.
If the <code> value is 1, an error occurred reading the property.
The <result> contains the received error message. If the <code>
value is 0, the <result> value contains the value of the property.

Refer to help for the "qed::get_property" command for more information.

Example Usage qed::create_object -type project project_A -user_data {this is some data!}
 qed::create_object -type group group_one -projects {project_A}

 # Returns: {project_A {0 {this is some data!}}}
 qed::get_property_of_projects group_one -property user_data

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.26. qed::get_return_value (::quartus::qed)

The following table displays information for the qed::get_return_value Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::get_return_value [-h | -help] [-long_help] [-return_token <return_token>]
[-timeout <timeout>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-return_token <return_token> Token returned by a previous asynchronous run invocation

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

<object> Identifier associated with the object, must be unique

Description
Returns data from a command that was run without blocking (using
the "-async" option). You must specify the token returned from
another command such as "qed::launch_connection" or "qed::run_command".

Tokens are not interchangeable between objects. The "qed::get_return_value"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

517

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

command returns a Tcl error if the given token was not issued by the
given object. The "qed::get_return_value" command blocks until the return
value

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf
 qed::launch_connection project_A
 set tok [qed::run_command project_A -cmd "after 1000; expr {100 * 100}"]

 # Waits for ~1 second and returns 10000
 qed::get_return_value project_A -return_token $tok

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.27. qed::get_user_data (::quartus::qed)

The following table displays information for the qed::get_user_data Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::get_user_data [-h | -help] [-long_help] -key <key> <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-key <key> Arbitrary key to look up inside the user_data property of the
selected object

<object> Identifier associated with the object, must be unique

Description
Reads the "user_data" property of an object as if it is a dict, and looks up
the value stored at the given key.

It is possible to use this command in conjunction with "qed::set_property -property user_data",
but whenever this method is invoked, any existing value must be a legal Tcl dictionary (which
includes the empty string). "qed::get_property -property user_data" returns the entire value
of the property instead of looking up a single key.

Example Usage qed::create_object -type project project_A
 qed::set_property -property user_data -value [dict create key_one value_1] project_A
 qed::set_user_data -key key_two -value value_2 project_A

 # Returns: {key_one value_1 key_two value_2}
 qed::get_property -property user_data project_A
 # Returns: value_1
 qed::get_user_data -key key_one project_A
 # Returns: value_2
 qed::get_user_data -key key_two project_A

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.28. qed::has_property (::quartus::qed)

The following table displays information for the qed::has_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::has_property [-h | -help] [-long_help] -property <property> [-is_set]
<object>

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

518

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-property <property> Name of the property to check

-is_set Flag indicating that this should only return true if the
property is set to something (including a default value)

<object> Identifier associated with the object, must be unique

Description
Returns a boolean value indicating whether the given property exists
on the specified object.

A property can exist without being set. The "-is_set" option causes
the command to return true only when the given property exists and
is set to any value (including a default value).

You should check for the existence of an object's property before
attempting to modify it, because getting an object property that does
not exist returns a Tcl error.

Example Usage qed::create_object -type project project_A -user_data {this is some data!}

 # Returns: True
 qed::has_property project_A -property qpf_path

 # Returns: False
 qed::has_property project_A -property qpf_path -is_set

 # Returns: True
 qed::has_property project_A -property user_data

 # Returns: True
 qed::has_property project_A -property user_data -is_set

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.29. qed::import_report_panel (::quartus::qed)

The following table displays information for the qed::import_report_panel Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::import_report_panel [-h | -help] [-long_help] [-async] [-panel_name
<panel_name>] [-regexp_match <regexp_match>] [-string_match <string_match>] [-
timeout <timeout>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-async Flag indicating not to wait for any issued remote commands
to complete. With this flag, the return value is a token that
can be passed to qed::get_return_value. By default, the
return value of the remote command is reproduced
(including any errors)

-panel_name <panel_name> Name of the panel to retrieve

-regexp_match <regexp_match> Regex to match against all panels (first match is selected)

-string_match <string_match> Pattern to match against all panels (first match is selected)

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

<object> Identifier associated with the object, must be unique

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

519

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Imports a report panel from a project or projects in a project group
into the workspace.

When you use the "-panel_name" option, you must specify the path to the
report panel, separating report folder names with the "||" separator.
For example, the panel name of the RAM summary report panel is
"Fitter||Place Stage||Fitter RAM Summary".

The "-string_match" option supports Tcl glob-style pattern matching.
When multiple report panels match the "-string_match" pattern, only
the first matching report panel is imported.

The "-regexp_match" option supports Tcl regexp pattern matching. You
should enclose your regular expression in curly braces. When multiple
report panels match the "-regexp_match" option, only the first matching
report panel is imported.

Before you import a report panel, you must have successfully used
the "qed::launch_connection" command to initiate background instances of
the Quartus Prime Pro software, and you must have opened the projects.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf
 qed::launch_connection project_A -open_project
 qed::import_report_panel project_A -panel_name "Timing Analyzer||Setup Summary"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.30. qed::import_report_panel_names (::quartus::qed)

The following table displays information for the
qed::import_report_panel_names Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::import_report_panel_names [-h | -help] [-long_help] [-async] [-folders
<folders>] [-regexp_match <regexp_match>] [-string_match <string_match>] [-
timeout <timeout>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-async Flag indicating not to wait for any issued remote commands
to complete. With this flag, the return value is a token that
can be passed to qed::get_return_value. By default, the
return value of the remote command is reproduced
(including any errors)

-folders <folders> List of top-level folders to import panels from

-regexp_match <regexp_match> Regexp to match against remote panel names before
returning them

-string_match <string_match> Pattern to match against remote panel names before
returning them

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

<object> Identifier associated with the object, must be unique

Description
Imports a list of report panel names from a project or projects in
a project group.

By default, all report panel names are imported.

The "-string_match" option limits the panel names that are imported to

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

520

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

panel names that match a Tcl glob-style pattern.

The "-regexp_match" option limits the panel names that are imported to
panel names that match the given regular expression. Enclose the
regular expression in curly braces.

The "-folders" option limits the panel names that are imported to
panel names that are contained in the given top-level folder names.
Top-level folder names correspond to the folder names in the
compilation report, such as Synthesis, Fitter, and Timing Analyzer.
Specify multiple folder names as a Tcl list, such as
{ Synthesis Fitter "Timing Analyzer" }.

When you call import_report_panel_names with a project object, the
command returns a list of report panel names that match the filters
or folder names. Any errors that occur are returned with standard
Tcl error semantics.

Before you import a report panel, you must have successfully used
the "qed::launch_connection" command to initiate background instances of
the Quartus Prime Pro software, and you must have opened the projects.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf
 qed::launch_connection project_A -open_project
 qed::import_report_panel_names project_A

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.31. qed::is_connected (::quartus::qed)

The following table displays information for the qed::is_connected Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::is_connected [-h | -help] [-long_help] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<object> Identifier associated with the object, must be unique

Description
When you call the command with a project object, the return value is
a boolean value indicating whether the given project
is open in a background Quartus Prime Pro software instance.

When you call the command with a project group object, the return value
is a Tcl dict where the keys are IDs of the projects in the project
group, and the values are the boolean values indicating whether each
separate project is open in a background Quartus Prime Pro software
instance. To determine whether the project group is connected, you must
iterate through the Tcl dict and check each value.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf

 # Returns: false
 qed::is_connected project_A

 qed::launch_connection project_A

 # Returns: true
 qed::is_connected project_A

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

521

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.31.32. qed::is_workspace_open (::quartus::qed)

The following table displays information for the qed::is_workspace_open Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::is_workspace_open [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Checks whether a QED workspace is currently open. Returns 1,
if a workspace is currently open; returns 0, otherwise.

Example Usage qed::is_workspace_open

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.33. qed::launch_connection (::quartus::qed)

The following table displays information for the qed::launch_connection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::launch_connection [-h | -help] [-long_help] [-open_project] [-
open_timeout <open_timeout>] [-force_open] [-load_db_state] [-async] [-timeout
<timeout>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-open_project Flag to open the project once the connection is established

-open_timeout <open_timeout> Timeout for opening the project once the connection is
established (0 = no timeout)

-force_open Flag to use -force when running project_open on the remote
side

-load_db_state Flag to load the necessary compilation database state for
the accessor executable once the connection is established
and the project is open. For example, if the accessor
executable is "quartus_sta", this initializes the timing netlist

-async Flag indicating not to wait for any issued remote commands
to complete. With this flag, the return value is a token that
can be passed to qed::get_return_value. By default, the
return value of the remote command is reproduced
(including any errors)

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

<object> Identifier associated with the object, must be unique

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

522

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Starts one or more instances of the Quartus Prime Pro software running
in the background, to receive commands from the shell where the
workspace is open.

In most cases, you should use the "-open_project" option so that the
Quartus Prime Pro project is opened automatically after the software
instance has started. By default, the command does not open the
Quartus Prime Pro project after starting the instance of the software.

Use the "-timeout" option to specify the maximum time to wait for
the background instance of the Quartus Prime Pro software to start. The
timeout value is specified in seconds, and its default is 0, which
means to wait forever. Specifying "-timeout 0" is equivalent to
not using the "-timeout" option.

Use the "-load_db_state" option to prepare the project for
analysis after it opens. This option has no effect if you do not also
use the "-open_project" option, or if the project has no complete
compliation database. The initialization steps depend on the executable
that is started.

For example, when you use the Timing Analyzer
executable (quartus_sta), loading the compilation database follows the
initialization procedure in the Quartus Prime Timing Analyzer GUI:
 * create the timing netlist
 * read SDC files
 * update the timing netlist

The "-async" option causes the command to returns a token for use
with the "qed::get_return_value" command. By default the command will
wait, or block, until the background instances of the Quartus Prime
software have started, and any project opening or timing initialization
options have completed.

When you call "qed::launch_connection" with a project object without the
"-async" option, the command returns the value of whatever parts
of the initialization flow you have specified. Any errors that occur
starting the background software instance, opening the project, and
initializing timing, are returned with standard Tcl error semantics.

When you call "qed::launch_connection" with a project group object
without specifying the "-async" option, the command returns a Tcl dict where
keys are IDs of the projects in the project group, and the values are
two-element lists of the form { <code> <result> }. If the <code> value
is 1, the "launch_connection" command received an error starting
the background software instance, opening the project, or initializing
timing. When the <code> value is 1, the <result> contains the
received error message. If the <code> value is 0, the
"launch_connection" command was successful for the project, and
the <result> value contains the return value of whatever parts of the
initialization flow you have specified.

Information needed to start the Quartus Prime Pro background
software instances is set through the compute spec, which
is stored in an object property called compute_spec_args.
See qed::get_inherited_compute_spec_args for more details.

You can set the compute spec on the workspace object,
on a project group object, and on individual
project objects. The "qed::launch_connection" command reads
the compute specs with a defined priority to determine how to
start the background software instances. First the
workspace compute spec is read, then a project group compute
spec, then a project compute spec.
If a conflict of compute specs occurs, the compute spec of a
project object overrides the compute spec of the project group
it is in, and the compute spec of a project group overrides the
compute spec of the workspace. This priority allows you to specify
a default compute spec at the workspace level and override or
customize it if necessary for project groups or projects.

Because the Quartus Exploration Dashboard supports a variety of
compute farms, and each type of compute farm has unique,
related requirements, you must use a command unique to each
type of compute farm to configure it. Refer to help for the
appropriate commands described below for details.

 * To execute on the local machine running the Quartus
 Exploration Dashboard, use the "qed::configure_local_compute_spec"
 command
 * To execute through the LSF workload management software,
 use the "qed::configure_lsf_compute_spec" command
 * To execute by connecting to remote machines with the ssh command,
 use the "qed::configure_ssh_compute_spec" command

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

523

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf

 qed::launch_connection project_A

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.34. qed::list_properties (::quartus::qed)

The following table displays information for the qed::list_properties Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::list_properties [-h | -help] [-long_help] [-set_only] [-writeable_only]
<object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-set_only Flag indicating that any unset property names should be
filtered out.

-writeable_only Flag indicating that read-only property names should be
filtered out.

<object> Identifier associated with the object, must be unique

Description
Returns a list of valid properties for the given object.

When you create an object, some of its properties may not be set; they
may have no value and no default value.
When you use the "-set_only" option, the list of properties returned
is limited to properties that are set.

Some object properties are read-only, and the rest are read/write.
When you use the "-writeable_only" option, the list of
properties returned is limited to properties that are read/write.

This is a utility command that makes it easier to find out what
properties are valid for the given object.

Example Usage qed::create_object -type project project_A -user_data {this is some data!}
 qed::list_properties project_A -writeable_only

 qed::create_object -type group group_one -projects {project_A}
 qed::list_properties group_one -set_only

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.35. qed::load_db_state (::quartus::qed)

The following table displays information for the qed::load_db_state Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::load_db_state [-h | -help] [-long_help] [-async] [-timeout <timeout>]
<object>

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

524

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-async Flag indicating not to wait for any issued remote commands
to complete. With this flag, the return value is a token that
can be passed to qed::get_return_value. By default, the
return value of the remote command is reproduced
(including any errors)

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

<object> Identifier associated with the object, must be unique

Description
Prepares an opened project for deeper analysis. The specific operations
performed will depend on the executable used to access the project.
For example, if the project is accessed with "quartus_sta", timing
analysis preparation follows the initialization procedure in the
Quartus Prime Pro Timing Analyzer: creating the timing netlist, reading
any SDC files, and updating the timing netlist.

If the opened project does not have a completed compilation database,
this will return an error.

Use the "-timeout" option to specify the maximum time to wait for
the background instance of the Quartus Prime Pro software to initialize the
executable state on an opened project. The timeout value is specified in seconds,
and its default is 0, which means to wait forever. Specifying "-timeout 0" is
equivalent to not using the "-timeout" option.

The "-async" option causes the command to returns a token for use
with the "get_return_value" command. By default the command will
wait, or block, until the background instances of the Quartus Prime
software have started, and any project opening or timing initialization
options have completed.

When you call "qed::load_db_state" with a project group object
without specifying the "-async" option, the command returns a Tcl dict where
keys are IDs of the projects in the project group, and the values are
two-element lists of the form { <code> <result> }. If the <code> value
is 1, the "load_db_state" command received an error loading the compilation
database state. When the <code> value is 1, the <result> contains
the received error message. If the <code> value is 0, the
"load_db_state" command was successful for the project, and
the <result> value contains a message describing that the process succeeded.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf

 qed::launch_connection project_A
 qed::open_project project_A
 qed::load_db_state project_A

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.36. qed::open_project (::quartus::qed)

The following table displays information for the qed::open_project Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::open_project [-h | -help] [-long_help] [-force_open] [-load_db_state] [-
async] [-timeout <timeout>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-force_open Flag to use -force when running project_open on the remote
side

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

525

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-load_db_state Flag to load the necessary compilation database state for
the accessor executable once the connection is established
and the project is open. For example, if the accessor
executable is "quartus_sta", this initializes the timing netlist

-async Flag indicating not to wait for any issued remote commands
to complete. With this flag, the return value is a token that
can be passed to qed::get_return_value. By default, the
return value of the remote command is reproduced
(including any errors)

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

<object> Identifier associated with the object, must be unique

Description
Use the "-timeout" option to specify the maximum time to wait for
the background instance of the Quartus Prime Pro software to open the project.
The timeout value is specified in seconds, and its default is 0, which
means to wait forever. Specifying "-timeout 0" is equivalent to
not using the "-timeout" option.

Use the "-load_db_state" option to prepare the project for deeper
analysis after it opens. The specific operations performed will depend
on the executable used to access the project. For example, if the
project is accessed with "quartus_sta", timing analysis preparation
follows the initialization procedure in the Quartus Prime Pro Timing
Analyzer: creating the timing netlist, reading any SDC files, and
updating the timing netlist.

The "-async" option causes the command to returns a token for use
with the "get_return_value" command. By default the command will
wait, or block, until the background instances of the Quartus Prime
software have started, and any project opening or timing initialization
options have completed.

When you call "qed::open_project" with a project group object without
specifying the "-async" option, the command returns a Tcl dict where
keys are IDs of the projects in the project group, and the values are
two-element lists of the form { <code> <result> }. If the <code> value
is 1, the "open_project" command received an error opening the project
or initializing the executable state. When the <code> value is 1,
the <result> contains the received error message. If the <code> value is 0,
the "open_project" command was successful for the project, and
the <result> value contains the return value of whatever parts of the
initialization flow you have specified.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf

 qed::launch_connection project_A
 qed::open_project project_A

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.37. qed::pop_from_property (::quartus::qed)

The following table displays information for the qed::pop_from_property Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::pop_from_property [-h | -help] [-long_help] -property <property> -value
<value> [-all] [-allow_missing] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-property <property> Name of the property to set

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

526

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-value <value> Value to set the property to

-all Flag indicating that multiple instances of the value should all
be removed (default: only the first is removed)

-allow_missing Flag to bypass the usual error if the value wasn't already
present in the property's value

<object> Identifier associated with the object, must be unique

Description
Specialized version of the "qed::set_property" command to modify
properties that have list values.

It is equivalent to retrieving the existing property value with the
"qed::get_property" command, removing the value from the returned list,
then calling "qed::set_property" to update the entire list value.

The "-all" argument removes all instances of the value from the list. Without
this flag, only the first instance of a potentially repeated value will be
removed.

The "-allow_missing" argument bypasses the error which is normally thrown
if the value to pop is not present in the list.

The command returns the updated value of the property.

The command returns a Tcl error if the given property does not exist.

Example Usage qed::create_object -type group group_one
 qed::create_object -type group group_two

 # Result: project_A is in groups {group_one}
 qed::create_object -type project project_A -groups {group_one}

 # Result: project_A is in groups {group_one group_two}
 qed::push_to_property project_A -property groups -value group_two

 # Result: project_A is in groups {group_two}
 qed::pop_from_property project_A -property groups -value group_one

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.38. qed::push_to_property (::quartus::qed)

The following table displays information for the qed::push_to_property Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::push_to_property [-h | -help] [-long_help] -property <property> -value
<value> [-unique] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-property <property> Name of the property to set

-value <value> Value to set the property to

-unique Flag indicating that the value shouldn't be appended if
already present in the property

<object> Identifier associated with the object, must be unique

Description
Specialized version of the "qed::set_property" command to modify
properties that have list values.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

527

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

It is equivalent to retrieving the existing property value with the
"qed::get_property" command, appending the value to the returned list,
then calling "qed::set_property" to update the entire list value.

The "-unique" argument prevents the value from being added to the list
if it is already present. Without this flag, the value will be added
to the end of the list regardless of the other values already present.

The command returns the updated value of the property.

The command returns a Tcl error if the given property does not exist.

Example Usage qed::create_object -type group group_one
 qed::create_object -type group group_two

 # Result: project_A is in groups {group_one}
 qed::create_object -type project project_A -groups {group_one}

 # Result: project_A is in groups {group_one group_two}
 qed::push_to_property project_A -property groups -value group_two

 # Result: project_A is in groups {group_two}
 qed::pop_from_property project_A -property groups -value group_one

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.39. qed::refresh_reports (::quartus::qed)

The following table displays information for the qed::refresh_reports Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::refresh_reports [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Causes the report window to update to reflect any changed
project or project group reports.

Example Usage qed::refresh_reports

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.40. qed::run_analysis (::quartus::qed)

The following table displays information for the qed::run_analysis Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::run_analysis [-h | -help] [-long_help] [-arguments <arguments>] [-
list_types] [-type <type>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-arguments <arguments> Arguments that customize each report

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

528

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-list_types Bypass running any analysis and return a list of valid types
to run

-type <type> Type of analysis to run

<object> Identifier associated with the object, must be unique

Description
This command currently contains no help description.

Example Usage # Inside an opened workspace with a compute specification configured:

 qed::create_object -type project project_A -qpf_path /file/path/to/A/project.qpf
 qed::create_object -type project project_B -qpf_path /file/path/to/B/project.qpf
 qed::create_object -type group both_projects -projects {project_A project_B}
 qed::launch_connection group -open_project -load_db_state
 qed::generate_report group -type report_timing -arguments "-npaths 100 -from_clock sys_clk"
 qed::run_analysis group -type aggregate_report_timing_tables

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.41. qed::run_command (::quartus::qed)

The following table displays information for the qed::run_command Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::run_command [-h | -help] [-long_help] [-async] [-timeout <timeout>] -cmd
<cmd> <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-async Flag indicating not to wait for any issued remote commands
to complete. With this flag, the return value is a token that
can be passed to qed::get_return_value. By default, the
return value of the remote command is reproduced
(including any errors)

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

-cmd <cmd> Command to issue to the remote executable

<object> Identifier associated with the object, must be unique

Description
Communicates with background instances of the Quartus Prime Pro software
to run commands and receive return values.

When you call the "qed::run_command" command with a project object, the
command is evaluated by the background instance of the Quartus Prime Pro
software associated with that project. When you call the "qed::run_command"
command with a project group object, the command is evaluated by
the background instances of the Quartus Prime Pro software for all
projects that are in the project group.

Remember Tcl evaluation and variable substitution rules when you
specify the value of the "-cmd" option. Enclosing the
command value in quotes ("<command value>") allows the command
to be interpreted by the Tcl interpreter of the workspace before
it is sent to the background software instances.
Enclosing the command value in curly braces ({<command value>})
delays interpretation until it is received by the background
software instances.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

529

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf
 qed::launch_connection project_A

 qed::run_command project_A -cmd "info hostname"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.42. qed::sanitize_workspace (::quartus::qed)

The following table displays information for the qed::sanitize_workspace Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::sanitize_workspace [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Runs a variety of checks on projects and project groups to ensure
they are in a "clean" state.

After you run the "qed::sanitize_workspace" command, the following
conditions will be true:

* Every project will be part of at least one project group. If you have
 not created a project group, a default project group is created.
* If any project objects exist in the workspace, at least one
 project group will exist. If you have not created a project group
 object, a default project group will be created.
* No empty project groups will exist. Any project group that does not
 contain any projects will be deleted.

You should use the "qed::sanitize_workspace" command after you add
projects to the workspace, create a project group, edit properties of
projects or project groups, or delete objects.

Example Usage qed::sanitize_workspace

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.43. qed::set_properties (::quartus::qed)

The following table displays information for the qed::set_properties Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::set_properties [-h | -help] [-long_help] [-user_data <user_data>] [-groups
<groups>] [-qpf_path <qpf_path>] [-revision <revision>] [-projects <projects>] [-
default_group_id <default_group_id>] [-id <id>] [-from_dict <from_dict>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-user_data <user_data> Freetext field to store any interesting metadata on the
object. Use qed::set_user_data and qed::get_user_data to
interact with the value as a dict instead of a string.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

530

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-groups <groups> Set of group IDs this project is a member of (Valid only for -
type project)

-qpf_path <qpf_path> Full path to a .qpf file to open (Valid only for -type project)

-revision <revision> Name of the revision to open (Valid only for -type project)

-projects <projects> Set of projects belonging to the group (Valid only for -type
group)

-default_group_id
<default_group_id>

Identifier used for the 'default group' that's created to
house ungrouped projects during sanitize_workspace (Valid
only for -type workspace)

-id <id> New identifier to associate with the object, must be unique

-from_dict <from_dict> Dictionary used to set the properties (key = property name,
value = property value)

<object> Identifier associated with the object, must be unique

Description
Allows you to modify multiple properties of an object, with a single
command, after the object has been created.

You must specify the multiple properties and new values in a Tcl dict.

Valid property and value strings depend on the type of object you
are updating.

Calling the "qed::set_properties" command with a dict of size 1 is
equivalent to calling the "qed::set_property" command.

The command returns a Tcl error if any of the dictionary keys do not
exist as properties of the given object.

Example Usage qed::create_object -type project project_A
 qed::set_properties project_a -qpf_path /path/to/project_B/project.qpf -revision project_B

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.44. qed::set_property (::quartus::qed)

The following table displays information for the qed::set_property Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::set_property [-h | -help] [-long_help] -property <property> -value <value>
<object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-property <property> Name of the property to set

-value <value> Value to set the property to

<object> Identifier associated with the object, must be unique

Description
Allows you to modify a property of an object after it is created.

Valid property and value strings depend on the type of object you
are updating.

The "qed::set_properties" command supports setting multiple properties
of one object in a single command.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

531

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The command returns the updated value of the property.

The command returns a Tcl error if the given property does not exist.

Example Usage qed::create_object -type project project_A
 qed::set_property project_a -property qpf_path -value /path/to/project_B/project.qpf

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.45. qed::set_user_data (::quartus::qed)

The following table displays information for the qed::set_user_data Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::set_user_data [-h | -help] [-long_help] -key <key> -value <value> <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-key <key> Arbitrary key to store inside the user_data property of the
selected object

-value <value> Arbitrary value to store inside the user_data property of the
selected object

<object> Identifier associated with the object, must be unique

Description
Modifies the "user_data" property of an object as if it is a dict, inserting or
overwriting the value stored at the given key with the given value.

It is possible to use this command in conjunction with "qed::set_property -property user_data",
but whenever this method is invoked any existing value must be a legal Tcl dictionary (which
includes the empty string).

Example Usage qed::create_object -type project project_A
 qed::set_property -property user_data -value [dict create key_one value_1] project_A
 qed::set_user_data -key key_two -value value_2 project_A

 # Returns: {key_one value_1 key_two value_2}
 qed::get_property -property user_data project_A

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.46. qed::wait_for_ready (::quartus::qed)

The following table displays information for the qed::wait_for_ready Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::wait_for_ready [-h | -help] [-long_help] [-timeout <timeout>] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-timeout <timeout> Optional timeout for waiting for a return value in ms
(default = 0 = no timeout)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

532

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<object> Identifier associated with the object, must be unique

Description
Blocks further script execution until all commands associated with
the given object have completed or timed out.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf
 qed::launch_connection project_A
 qed::run_command project_A -cmd "after 1000; expr {100 * 100}"

 # Waits for ~1 second
 qed::wait_for_ready project_A

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.47. qed::workspace_close (::quartus::qed)

The following table displays information for the qed::workspace_close Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::workspace_close [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Closes an open QED workspace.

Data in the workspace, such as projects, groups, and imported
report panels is automatically saved in a database when the
workspace closes.

Example Usage qed::workspace_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.48. qed::workspace_new (::quartus::qed)

The following table displays information for the qed::workspace_new Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::workspace_new [-h | -help] [-long_help] [-directory <directory>] [-
overwrite] [<id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-directory <directory> Directory to cd into before creating the workspace. This
directory must exist prior to invoking this command.

-overwrite Overwrite any pre-existing workspace database and ensure
a fresh workspace is created

<id> Identifier associated with the object, must be unique

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

533

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Creates and opens a new QED workspace with the specified workspace name.
The command returns the ID of the new QED workspace object.

The "qed::workspace_new" command returns an error if a QED workspace
with the same name exists in the directory. Use the "-overwrite"
option to overwrite the existing workspace.

No QED workspace can be open when you create a new QED workspace;
it is an error if a QED workspace is open when you use the
"qed::workspace_new" command.

Example Usage if { ! [qed::is_workspace_open] } {
 qed::workspace_new my_workspace
 }

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.31.49. qed::workspace_open (::quartus::qed)

The following table displays information for the qed::workspace_open Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::workspace_open [-h | -help] [-long_help] [-force] [<id>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-force Overwrite any pre-existing, non-compatible workspace
database and ensure the workspace opens

<id> Identifier associated with the object, must be unique

Description
Opens an existing QED workspace. To create a new QED workspace, use the
workspace_new command.

A QED workspace is built on a Quartus Prime Pro project, so the
workspace_open command gives an error when the compilation
database version is not compatible with the current version of
the Quartus Prime software. Use the "-force" option to overwrite the
compilation database.

If the specified workspace does not exist, the "qed::workspace_open"
command returns a Tcl error.

Example Usage # my_workspace must exist
 qed::workspace_open my_workspace

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

534

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.31.50. qed::write_object_reports_to_file (::quartus::qed)

The following table displays information for the
qed::write_object_reports_to_file Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qed on page 493

Syntax qed::write_object_reports_to_file [-h | -help] [-long_help] [-append] -file
<output file name> [-include_generated_panels] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to an ASCII file, this option appends the
result to that file. Otherwise, the file will be overwritten.

-file <output file name> Name of output file to be generated

-include_generated_panels Flag to include QED-generated panels in the output

<object> Identifier associated with the object, must be unique

Description
Writes all the report panels associated with the given object to
an ASCII file.

If you specify a project object, and do not use the
"-include_generated_panels" option, only the report panels you imported
from the project are written to the file.

If you have created any new report panels based on any analysis in
the Quartus Exploration Dashboard, you should use the
"-include_generated_panels" option so those generated panels are
written to the file.

Example Usage qed::create_object -type project project_A -qpf_path /file/path/to/project.qpf
 qed::launch_connection project_A -open_project
 qed::import_report_panel project_A -panel_name "Timing Analyzer||Setup Summary"
 qed::write_object_reports_to_file project_A -file project_A_reports.rpt

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.32. ::quartus::qmtf

The following table displays information for the ::quartus::qmtf Tcl package:

Tcl Package and Version ::quartus::qmtf 1.0

Description
This package contains no general description.

Availability This package is not available in any Quartus Prime executable.

Tcl Commands mtf::test (::quartus::qmtf) on page 536

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

535

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.32.1. mtf::test (::quartus::qmtf)

The following table displays information for the mtf::test Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qmtf on page 535

Syntax mtf::test [-h | -help] [-long_help] -action <action>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-action <action> Action to test

Description
Test MTF functions

Example Usage mtf::test -action say_hello

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.33. ::quartus::qshm

The following table displays information for the ::quartus::qshm Tcl package:

Tcl Package and Version ::quartus::qshm 1.0

Description
This package contains no general description.

Availability This package is loaded by default in the following executables:

 qpro_sh
 quartus_sh

Tcl Commands qshm_connect_to_quartus (::quartus::qshm) on page 536
qshm_disconnect_from_quartus (::quartus::qshm) on page 537
qshm_dispose_client (::quartus::qshm) on page 537
qshm_get_hub_key_prefix (::quartus::qshm) on page 538
qshm_get_parent_hub_key (::quartus::qshm) on page 538
qshm_obtain_client (::quartus::qshm) on page 539
qshm_send_request (::quartus::qshm) on page 539
qshm_send_server_state_query (::quartus::qshm) on page 539
qshm_set_context (::quartus::qshm) on page 540

3.1.33.1. qshm_connect_to_quartus (::quartus::qshm)

The following table displays information for the qshm_connect_to_quartus Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qshm on page 536

Syntax qshm_connect_to_quartus [-h | -help] [-long_help] -hub_key_prefix
<hub_key_prefix> -name <name> [-project <project>] [-revision <revision>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-hub_key_prefix
<hub_key_prefix>

hub key prefix

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

536

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-name <name> client name

-project <project> Quartus Prime project

-revision <revision> Quartus Prime project revision

Description
Connects a client with the provided name to a Quartus Prime hub and returns the key of the
dedicated server created by the hub for that client.

Example Usage ## Connect a client with name client1 to a Quarts Prime hub with hub key prefix
hub1
qshm_connect_to_quartus -name client1 -hub_key_prefix hub1 -project <project> -revision
<revision>

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.33.2. qshm_disconnect_from_quartus (::quartus::qshm)

The following table displays information for the qshm_disconnect_from_quartus
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qshm on page 536

Syntax qshm_disconnect_from_quartus [-h | -help] [-long_help] -name <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> client name

Description
Disconnect a client with the specified name from the Quarts Prime it is connected to.

Example Usage ## Disconnect a client with name client1 from the Quarts Prime
qshm_disconnect_from_quartus -name client1

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.33.3. qshm_dispose_client (::quartus::qshm)

The following table displays information for the qshm_dispose_client Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qshm on page 536

Syntax qshm_dispose_client [-h | -help] [-long_help] [-name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> Client name

Description
Dispose and reclaim resources by the client with the specified name.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

537

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage ## Dispose of a client with name client1
qshm_dispose_client -name client1

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.33.4. qshm_get_hub_key_prefix (::quartus::qshm)

The following table displays information for the qshm_get_hub_key_prefix Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qshm on page 536

Syntax qshm_get_hub_key_prefix [-h | -help] [-long_help] [-edition <edition>] [-
qroot_dir <qroot_dir>] [-version <version>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-edition <edition> Quartus Prime edition

-qroot_dir <qroot_dir> Quartus Prime root directory

-version <version> Quartus Prime version

Description
Returns the key prefix for a Quartus Prime hub based on the specified configuration arguments.

Example Usage ## Create an SHM-based server type socket with the port name "trip"
qshm_get_hub_key_prefix -qroot_dir /a/b/c -version 16.1 -edition "Quartus Prime Pro"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.33.5. qshm_get_parent_hub_key (::quartus::qshm)

The following table displays information for the qshm_get_parent_hub_key Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::qshm on page 536

Syntax qshm_get_parent_hub_key [-h | -help] [-long_help] -name <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> client name

Description
Obtains the complete SHM key of the parent hub of the server that is connected to the client
specified by the name argument

Example Usage

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

538

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.33.6. qshm_obtain_client (::quartus::qshm)

The following table displays information for the qshm_obtain_client Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qshm on page 536

Syntax qshm_obtain_client [-h | -help] [-long_help] [-name <name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> Client name

Description
Creates and returns a client for the specified client name.

Example Usage ## Create an SHM-based client type socket with the name "client1"
qshm_obtain_client -name client1

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.33.7. qshm_send_request (::quartus::qshm)

The following table displays information for the qshm_send_request Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qshm on page 536

Syntax qshm_send_request [-h | -help] [-long_help] -cmd <cmd> -name <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cmd <cmd> command string

-name <name> client name

Description
Sends the a request to the client with the specified name and waits to receive a response from
the dedicated server the client is connected to.

Example Usage ## Send a Tcl command to the client with the specified name. The context should
have been set to include the request_type=tcl key value pair.
qshm_send_request -name client1 -cmd "set x 5"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.33.8. qshm_send_server_state_query (::quartus::qshm)

The following table displays information for the qshm_send_server_state_query
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qshm on page 536

Syntax qshm_send_server_state_query [-h | -help] [-long_help] -name <name> -
state_key <state_key>

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

539

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <name> client name

-state_key <state_key> state key string

Description
 Sends the a server state request to the client with the specified name and waits to
receive a response from the state socket of the dedicated server the client is connected to.

Example Usage ## Send a server state command using the client with specified name.
qshm_send_server_state_query -name client1 -state_key device_family

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.33.9. qshm_set_context (::quartus::qshm)

The following table displays information for the qshm_set_context Tcl command:

Tcl Package and
Version

Belongs to ::quartus::qshm on page 536

Syntax qshm_set_context [-h | -help] [-long_help] -key <key> -name <name> -value
<value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-key <key> A context key

-name <name> client name

-value <value> A context value

Description
Sets the a context key value pair for the client with the specified name.

Example Usage ## Set a key value pair request_type=tcl for the client with the specified name.
qshm_set_context -name client1 -key request_type -value tcl

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.34. ::quartus::report

The following table displays information for the ::quartus::report Tcl package:

Tcl Package and Version ::quartus::report 2.1

Description
This package contains a set of Tcl functions for accessing and updating
information in the report database.

Availability This package is loaded by default in the following executables:

 qacv
 quartus_fit
 quartus_ipgenerate
 quartus_sim

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

540

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 quartus_stp

This package is available for loading in the following executables:

 qpro
 qpro_sh
 quartus
 quartus_cdb
 quartus_drc
 quartus_eda
 quartus_map
 quartus_sh
 quartus_si
 quartus_sta
 quartus_syn

Tcl Commands add_row_to_table (::quartus::report) on page 541
create_report_panel (::quartus::report) on page 542
delete_report_panel (::quartus::report) on page 544
get_fitter_resource_usage (::quartus::report) on page 545
get_number_of_columns (::quartus::report) on page 547
get_number_of_rows (::quartus::report) on page 548
get_report_panel_column_index (::quartus::report) on page 549
get_report_panel_data (::quartus::report) on page 550
get_report_panel_id (::quartus::report) on page 552
get_report_panel_names (::quartus::report) on page 553
get_report_panel_row (::quartus::report) on page 554
get_report_panel_row_index (::quartus::report) on page 555
load_report (::quartus::report) on page 556
read_xml_report (::quartus::report) on page 557
refresh_report_window (::quartus::report) on page 558
save_report_database (::quartus::report) on page 558
unload_report (::quartus::report) on page 559
write_report_panel (::quartus::report) on page 560
write_xml_report (::quartus::report) on page 561

3.1.34.1. add_row_to_table (::quartus::report)

The following table displays information for the add_row_to_table Tcl command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax add_row_to_table [-h | -help] [-long_help] [-id <table_id>] [-name
<table_name>] <row>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <table_id> Id of table to update

-name <table_name> Name of table to update

<row> Tcl list of strings to add to table

Description
Adds the list of strings to the table as a row.

Using the panel id provides faster data access than using the
panel name.

Panel ids that you have cached may become outdated or invalid
if the report gets unloaded or reloaded. This error occurs
after compilation or with calls to the "project_close",
"unload_report", and "load_report" commands.

Panel names support wildcards.

The table of content portion of the UI Compilation Report
window shows short panel names for better readability.
However, the panel name used by this command is the full
panel name as shown in the right-hand side frame of the
UI Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

541

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

table of content shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path used by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

Example Usage load_package report
project_open chiptrip
load_report

Set panel name and id
set panel {Fitter||Fitter Settings}
set id [get_report_panel_id $panel]

if {$id != -1} {
 # If panel exists, add a row to it
 add_row_to_table -id $id {{New Field} Yes No}
 # Save the changes to the report database
 save_report_database
} else {
 # Otherwise print an error message
 puts "Error: Table $panel does not exist."
}

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Number of elements conflict. The number of
elements in the added row must be <string>.

TCL_ERROR 1 ERROR: Illegal color: <string>. Specify a color that is
currently supported by add_row_to_table.

TCL_ERROR 1 ERROR: You specified <string> colors for the -<string>
option. However, you must specify <string> colors to match
the number of elements specified for the <<string>>
argument.

TCL_ERROR 1 ERROR: Value specified for -<string> option is not a valid
Tcl list: <string>. Specify a valid Tcl list.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Can't find panel: <string>. Specify an existing
report panel name.

TCL_ERROR 1 ERROR: Report not loaded for revision name: <string>.
Type load_report to load the report.

TCL_ERROR 1 ERROR: Can't access report panel. Use this command only
for report panels with rows or columns.

TCL_ERROR 1 ERROR: Value specified for <row> is not a valid Tcl list:
<string>. Specify <row> as a valid Tcl list.

TCL_ERROR 1 ERROR: add_row_to_table command is not allowed for this
report panel. You cannot add rows to this report panel.

3.1.34.2. create_report_panel (::quartus::report)

The following table displays information for the create_report_panel Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax create_report_panel [-h | -help] [-long_help] [-folder] [-table] <panel_name>

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

542

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-folder Option to create folder

-table Option to create table

<panel_name> Name of the panel to create

Description
Creates a new report panel with the specified name.

If -table option is specified, a table is created.
If -folder option is specified, a folder is created.

The name must be the full path to the new report panel, such as
"Fitter||My Table". If the specified panel is created successfully,
the corresponding panel id is returned.

The table of contents portion of the Compilation Report
window shows short panel names for better readability.
However, the panel name used by this command is the full
panel name as shown in the right-hand side frame of the
Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the
table of contents shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path used by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

Example Usage load_package report
project_open chiptrip
load_report

Set folder name and id
set folder "My Folder"
set folder_id [get_report_panel_id $folder]

Check if specified folder exists. If not, create it.
if {$folder_id == -1} {
 set folder_id [create_report_panel -folder $folder]
}

Set table name and id
set table "$folder||My Table"
set table_id [get_report_panel_id $table]

Check if specified table exists. If so, delete it.
if {$table_id != -1} {
 delete_report_panel -id $table_id
}

Create the specified table and get its id
set table_id [create_report_panel -table $table]

Add Timing Analyzer Summary to the table
add_row_to_table -id $table_id {{Name} {Value}}
add_row_to_table -id $table_id {{Number of Registers} {100}}

Save the changes to the report database
save_report_database

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The database file was not found at: <string>.

TCL_ERROR 1 ERROR: Report folder <string> already exists -- specify a
different report folder name.

TCL_ERROR 1 ERROR: Can't find folder: <string>. Specify an existing
report folder name.

TCL_ERROR 1 ERROR: Illegal color: <string>. Specify a color that is
currently supported by add_row_to_table.

TCL_ERROR 1 ERROR: The input report object is not a table to be the
master table of master details object

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

543

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The parent folder is not master details type
<string>.

TCL_ERROR 1 ERROR: The master details object already has the master
table

TCL_ERROR 1 ERROR: The -orientation option is only supported for -
master_folder panels.

TCL_ERROR 1 ERROR: Options -table, -tcl_table, -sql_table and -folder are
mutually exclusive -- specify only one of the options.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Report object is not a folder: <string>. Specify an
existing report folder name.

TCL_ERROR 1 ERROR: Specify one of the options: -<string> or -<string>.

TCL_ERROR 1 ERROR: Report not loaded for revision name: <string>.
Type load_report to load the report.

TCL_ERROR 1 ERROR: Report panel already exists: <string>. Specify a
different report panel name.

3.1.34.3. delete_report_panel (::quartus::report)

The following table displays information for the delete_report_panel Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax delete_report_panel [-h | -help] [-long_help] [-id <panel_id>] [-name
<panel_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <panel_id> Id of panel to delete

-name <panel_name> Name of panel to delete

Description
Deletes the report panel with the specified id or name.
The panel can either be a report table or report folder.

Using the panel id provides faster data access than using the
panel name.

Panel ids that you have cached may become outdated or invalid
if the report is unloaded or reloaded. This error occurs
after compilation or with calls to the "project_close",
"unload_report", and "load_report" commands.

Panel names support wildcards.

The table of contents portion of the Compilation Report
window shows short panel names for better readability.
However, the panel name used by this command is the full
panel name as shown in the right-hand side frame of the
Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the
table of contents shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path used by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

Example Usage load_package report
project_open chiptrip
load_report

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

544

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Set table name and id
set table "Fitter||My Table"
set table_id [get_report_panel_id $table]

Delete the table if the it already exists
if {$table_id != -1} {
 delete_report_panel -id $table_id
}

Re-create the table
create_report_panel -table $table
add_row_to_table -name $table {{Name} {Value}}
add_row_to_table -name $table {{Number of Registers} {100}}

This time, use table name instead of table id to delete it.
delete_report_panel -name $table

Now, delete a folder
set folder "My Folder"
set folder_id [get_report_panel_id $folder]

Delete it if the specified folder already exists
if {$folder_id != -1} {
 delete_report_panel -id $folder_id
}

Save the changes to the report database
save_report_database

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Found conflicting panel options <string> and
<string>. Specify only one of the options: -name or -id. If
the panel name was not specified, then an unknown option
was detected.

TCL_ERROR 1 ERROR: The delete_report_panel command is not allowed
for this report panel. You cannot delete a report panel
folder.

TCL_ERROR 1 ERROR: Illegal panel id: <string>. Specify a legal panel id.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: The option specified <string> , is unknown.
Recheck the command options.

TCL_ERROR 1 ERROR: Specify one of the options: -name or -id.

TCL_ERROR 1 ERROR: Can't find panel: <string>. Specify an existing
report panel name.

TCL_ERROR 1 ERROR: Report not loaded for revision name: <string>.
Type load_report to load the report.

3.1.34.4. get_fitter_resource_usage (::quartus::report)

The following table displays information for the get_fitter_resource_usage Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax get_fitter_resource_usage [-h | -help] [-long_help] [-alm] [-alut] [-available]
[-io_pin] [-lab] [-le] [-mem_bit] [-percentage] [-reg] [-used] [-utilization]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

545

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-alm Get total adaptive logic modules

-alut Get total Combinational ALUTs

-available Get available resource summary

-io_pin Get total I/O pins

-lab Get total logic array blocks

-le Get total logic elements

-mem_bit Get total memory bits

-percentage Get used resource summary in percentage

-reg Get total registers

-used Get used resource summary

-utilization Get total logic utilization

Description
Gets the Fitter resource usage results.

You must use one of the following options: "-alut", "-reg", "-le",
"-alm", "-lab", "-io_pin", "-mem_bit" or "-resource".

If the above option is not "-resource", you may also optionally use
one of the following options: "-used", "-available" or "-percentage".

Option "-resource" takes resource name as parameter, which supports wildcards.

Example Usage load_package report
project_open chiptrip
load_report

Shortcut of get_fitter_resource_usage command
set cmd get_fitter_resource_usage

Get total registers, logic elements, and DSP block 9-bit elements.
set registers [$cmd -reg]
set alms [$cmd -alm]
set io_pin [$cmd -io_pin -available]
set mem_bit [$cmd -mem_bit -percentage]
set dsp [$cmd -resource "DSP block 9*"]
puts "Registers usage: $registers"
puts "Total used ALMs: $alms"
puts "Total available I/O pins: $io_pin"
puts "Total used memory bits in percentage: ${mem_bit}%"
puts "DSP block 9-bit elements: $dsp"

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Command requires one of the following options: -
alut, -reg, -le, -alm, -lab, -io_pin, mem_bit or -resource.
Specify one of the options.

TCL_ERROR 1 ERROR: Options -used, -available and -percentage can't be
used together. Specify either one or none of the options.

TCL_ERROR 1 ERROR: Option -resource was used with option -used, -
available or -percentage. Use option -resource only.

TCL_ERROR 1 ERROR: Can't find panel: <string>. Make sure the project
was compiled by quartus_fit and the panel was not deleted.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

546

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.34.5. get_number_of_columns (::quartus::report)

The following table displays information for the get_number_of_columns Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax get_number_of_columns [-h | -help] [-long_help] [-id <table_id>] [-name
<table_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <table_id> Id of panel from which to get data

-name <table_name> Name of panel from which to get data

Description
Returns the number of columns for the specified panel.

Using the panel id provides faster data access than using the
panel name.

Panel ids that you have cached may become outdated or invalid
if the report is unloaded or reloaded. This error occurs
after compilation or with calls to the "project_close",
"unload_report", and "load_report" commands.

Panel names support wildcards.

The table of contents portion of the Compilation Report
window shows short panel names for better readability.
However, the panel name used by this command is the full
panel name as shown in the right-hand side frame of the
Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the
table of contents shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path used by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

Example Usage ## Loop through a panel row and print out all its element information

load_package report
project_open chiptrip
load_report

Set panel name and id
set panel {*Input Pins}
set id [get_report_panel_id $panel]
 if {$id == -1} {
 error("Panel not found")
}

Get the number of columns
set col_cnt [get_number_of_columns -id $id]

Set row name and get row index
set rname {*clk1*}
set rindex [get_report_panel_row_index -id $id $rname]
set rname [get_report_panel_data -row $rindex -col 0 -id $id]

puts "\[Input Pins - $rname\]"
for {set i 1} {$i < $col_cnt} {incr i} {
 set result "[get_report_panel_data -row 0 -col $i -id $id]: "
 append result [get_report_panel_data -row $rindex -col $i -id $id]
 puts $result
}

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

547

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Report automatically reloaded because it was not up-
to-date after use of Tcl command execute_flow or
execute_module (which belong to ::quartus::flow package).
No action is required.

TCL_ERROR 1 ERROR: Can't find the top-level panel. Make sure the loaded
report is not empty. You can run a successful compilation to
rebuild the report.

TCL_ERROR 1 ERROR: Can't find panel: <string>. Specify an existing
report panel name.

TCL_ERROR 1 ERROR: Report not loaded for revision name: <string>.
Type load_report to load the report.

TCL_ERROR 1 ERROR: Can't access report panel. Use this command only
for report panels with rows or columns.

3.1.34.6. get_number_of_rows (::quartus::report)

The following table displays information for the get_number_of_rows Tcl command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax get_number_of_rows [-h | -help] [-long_help] [-id <table_id>] [-name
<table_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <table_id> Id of panel from which to get data

-name <table_name> Name of panel from which to get data

Description
Returns the number of rows for the specified panel.

Using the panel id provides faster data access than using the
panel name.

Panel ids that you have cached may become outdated or invalid
if the report is unloaded or reloaded. This error occurs
after compilation or with calls to the "project_close",
"unload_report", and "load_report" commands.

Panel names support wildcards.

The table of contents portion of the Compilation Report
window shows short panel names for better readability.
However, the panel name used by this command is the full
panel name as shown in the right-hand side frame of the
Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the
table of contents shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path used by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

Example Usage ## Loop through a panel and print out all its row information

load_package report
project_open chiptrip
load_report

Set panel name and id
set panel {*Fitter Settings}
set id [get_report_panel_id $panel]

Get the number of rows
set row_cnt [get_number_of_rows -id $id]

for {set i 0} {$i < $row_cnt} {incr i} {
 puts [get_report_panel_row -row $i -id $id]
}

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

548

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Report automatically reloaded because it was not up-
to-date after use of Tcl command execute_flow or
execute_module (which belong to ::quartus::flow package).
No action is required.

TCL_ERROR 1 ERROR: Can't find the top-level panel. Make sure the loaded
report is not empty. You can run a successful compilation to
rebuild the report.

TCL_ERROR 1 ERROR: Can't find panel: <string>. Specify an existing
report panel name.

TCL_ERROR 1 ERROR: Report not loaded for revision name: <string>.
Type load_report to load the report.

TCL_ERROR 1 ERROR: Can't access report panel. Use this command only
for report panels with rows or columns.

3.1.34.7. get_report_panel_column_index (::quartus::report)

The following table displays information for the get_report_panel_column_index
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax get_report_panel_column_index [-h | -help] [-long_help] [-id <table_id>] [-name
<table_name>] <col_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <table_id> Id of panel from which to get column index

-name <table_name> Name of panel from which to get column index

<col_name> Column name

Description
Gets the column index of the specified panel column name.

Column name refers to the specified name in the header row. The
column index is a non-negative integer for an existing column. The
column index is -1 if the column name is not found in the panel.

Using the column index and panel id provides faster data access
than using column name and panel name.

Column indices and panel ids that you have cached may become
outdated or invalid if the report is unloaded or reloaded.
This error occurs after compilation or with calls to the
"project_close", "unload_report", and "load_report" commands.

Column and panel names support wildcards.

The table of contents portion of the Compilation Report
window shows short panel names for better readability.
However, the panel name used by this command is the full
panel name as shown in the right-hand side frame of the
Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the
table of content shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path used by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

549

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage load_package report
project_open chiptrip
load_report

Set panel name and id
set panel {*Input Pins}
set id [get_report_panel_id $panel]

Set column name and index
set cname {Pin #}
set cindex [get_report_panel_column_index -id $id $cname]

Get data out of the specified panel
set clock [get_report_panel_data -id $id -row_name clk1 -col $cindex]
set enable [get_report_panel_data -id $id -row_name enable -col $cindex]

Output results
puts "$cname of clock: $clock"
puts "$cname of enable: $enable"

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.34.8. get_report_panel_data (::quartus::report)

The following table displays information for the get_report_panel_data Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax get_report_panel_data [-h | -help] [-long_help] [-col <column>] [-col_name
<column_name>] [-id <table_id>] [-name <table_name>] [-row <row>] [-row_name
<row_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-col <column> column (or X) coordinate

-col_name <column_name> column (or X) name

-id <table_id> id of panel from which to get data

-name <table_name> Name of panel from which to get data

-row <row> row (or Y) coordinate

-row_name <row_name> row (or Y) name

Description
Returns non-empty data for the specified row and column of
the specified panel. If the data is empty or if the row,
column, or panel do not exist, an error will be generated.
To properly handle the error, make sure to catch the result
as in the following example:

if [catch {set data [get_report_panel_data ...]} result] {
 puts "No data found"
} else {
 puts "Got $data"
}

Using the panel id and row and column indices provides faster
data access than using panel, row, and column names.

Panel ids and row and column indices that you have cached may
become outdated or invalid if the report is unloaded or reloaded.
This error occurs after compilation or with calls to the
"project_close", "unload_report", and "load_report" commands.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

550

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Panel, row, and panel names support wildcards.

The table of contents portion of the Compilation Report
window shows short panel names for better readability.
However, the panel name used by this command is the full
panel name as shown in the right-hand side frame of the
Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the
table of contents shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path used by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

Example Usage load_package report
project_open chiptrip
load_report

Set panel name and id
set panel {Flow Settings}
set id [get_report_panel_id $panel]
Set row name
set rname {Revision Name}

Get row 2 - column 1 data
get_report_panel_data -row 2 -col 1 -id $id
Get row {Revision Name} - column 1 data
get_report_panel_data -row_name $rname -col 1 -id $id
Get row {Revision Name} - column {Setting} data
get_report_panel_data -row_name $rname -col_name Setting -id $id
If unsure the case of a row or column name, use glob-style pattern
get_report_panel_data -row_name {[Rr]evision*} -col_name {[Ss]etting} -id $id

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Report automatically reloaded because it was not up-
to-date after use of Tcl command execute_flow or
execute_module (which belong to ::quartus::flow package).
No action is required.

TCL_ERROR 1 ERROR: Found conflicting column options. Specify either the
-col or -col_name option.

TCL_ERROR 1 ERROR: Found conflicting row options. Specify either the -
row or -row_name option.

TCL_ERROR 1 ERROR: Table is empty. Add rows to the table before
accessing its data.

TCL_ERROR 1 ERROR: Illegal column name: <string>.

TCL_ERROR 1 ERROR: Illegal column number: <string>. Specify a legal
column number from <string> to <string>.

TCL_ERROR 1 ERROR: Illegal row name: <string>.

TCL_ERROR 1 ERROR: Illegal row number: <string>. Specify a legal row
number from <string> to <string>.

TCL_ERROR 1 ERROR: No column option specified.

TCL_ERROR 1 ERROR: Can't retrieve data for row and column number.
Specify a legal row and column number for the command
get_report_panel_data.

TCL_ERROR 1 ERROR: No row option specified.

TCL_ERROR 1 ERROR: Can't access report panel. Use this command only
for report panels with rows or columns.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

551

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.34.9. get_report_panel_id (::quartus::report)

The following table displays information for the get_report_panel_id Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax get_report_panel_id [-h | -help] [-long_help] <name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<name> Name of panel for which to get id

Description
Gets the id of a panel with the specified name.

The panel id is a non-negative integer for an existing panel.
If the specified panel cannot be found, the id is -1.

Using the panel id provides faster data access than using the
panel name.

You can use the "get_report_panel_id" command to check for the
existence of a panel.(Refer to the example under the
"get_report_panel_id" command.)

Panel ids that you have cached may become outdated or invalid
if the report is unloaded or reloaded. This error occurs
after compilation or with calls to the "project_close",
"unload_report", and "load_report" commands.

Panel names support wildcards.

The table of contents portion of the Compilation Report
window shows short panel names for better readability.
However, the panel name used by this command is the full
panel name as shown in the right-hand side frame of the
Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the
table of contents shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path used by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

Example Usage load_package report
project_open chiptrip
load_report

Set panel name
set panel {Fitter||Fitter Settings}
Get the panel id
set id [get_report_panel_id $panel]

if {$id != -1} {
 # If panel exists, add a row to it
 add_row_to_table -id $id {{New Field} Yes No}
 # Save the changes to the report database
 save_report_database
} else {
 # Otherwise print an error message
 puts "Error: Table $panel does not exist."
}

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

552

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.34.10. get_report_panel_names (::quartus::report)

The following table displays information for the get_report_panel_names Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax get_report_panel_names [-h | -help] [-long_help] [-filter_name <filter_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-filter_name <filter_name> filter the returned list to match the specified panel names

Description
Returns a list of panel names for the current report.

The table of contents portion of the Compilation Report
window shows short panel names for better readability.
However, each panel name returned by this command is the
full panel name as shown in the right-hand side frame of the
Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the
table of contents shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path returned by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

Example Usage ## Load report database and write Timing Analyzer Summary
panel to file in HTML format

load_package report
project_open chiptrip
load_report

Set panel name
set fmax_panel "Timing Analyzer Summary"

Iterate through all the accessable panels
foreach panel [get_report_panel_names] {
 # If find the panel '*Timing Analyzer Summary',
 # write its content to file fmax.htm
 if {[string match "*$fmax_panel" $panel] == 1} {
 write_report_panel -file fmax.htm -html $panel
 break
 }
}

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Report automatically reloaded because it was not up-
to-date after use of Tcl command execute_flow or
execute_module (which belong to ::quartus::flow package).
No action is required.

TCL_ERROR 1 ERROR: Illegal report panel type.

TCL_ERROR 1 ERROR: Can't find panel: <string>. Specify an existing
report panel name.

TCL_ERROR 1 ERROR: Report not loaded for revision name: <string>.
Type load_report to load the report.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

553

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.34.11. get_report_panel_row (::quartus::report)

The following table displays information for the get_report_panel_row Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax get_report_panel_row [-h | -help] [-long_help] [-id <table_id>] [-name
<table_name>] [-row <row>] [-row_name <row_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <table_id> Id of panel from which to get data

-name <table_name> Name of panel from which to get data

-row <row> Row (or Y) coordinate

-row_name <row_name> Row (or Y) name

Description
Reports data of the specified panel row.

Using the panel id and row index provides faster data access
than using panel name and row name, respectively.

Panel ids and row indices that you have cached may become outdated
or invalid if the report gets unloaded or reloaded. This error
occurs after compilation or with calls to the "project_close",
"unload_report", and "load_report" commands.

Panel and row names support wildcards.

The table of content portion of the UI Compilation Report
window shows short panel names for better readability.
However, the panel name used by this command is the full
panel name as shown in the right-hand side frame of the
UI Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the
table of content shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path used by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

Example Usage load_package report
project_open chiptrip
load_report

Set panel name and id
set panel {Flow Settings}
set id [get_report_panel_id $panel]
Set row name
set rname {Revision Name}

Get row {Revision Name} data (use panel id)
get_report_panel_row -row_name $rname -id $id
Get row 2 data (use panel id)
get_report_panel_row -row 2 -id $id
Get row 3 data (use panel name)
get_report_panel_row -row 3 -name $panel

Get the last row data
set row_cnt [get_number_of_rows -id $id]
set last_rindex [expr $row_cnt - 1]
get_report_panel_row -row $last_rindex -id $id

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

554

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Report automatically reloaded because it was not up-
to-date after use of Tcl command execute_flow or
execute_module (which belong to ::quartus::flow package).
No action is required.

TCL_ERROR 1 ERROR: Found conflicting row options. Specify either the -
row or -row_name option.

TCL_ERROR 1 ERROR: Table is empty. Add rows to the table before
accessing its data.

TCL_ERROR 1 ERROR: Illegal row name: <string>.

TCL_ERROR 1 ERROR: Illegal row number: <string>. Specify a legal row
number from <string> to <string>.

TCL_ERROR 1 ERROR: No row option specified.

TCL_ERROR 1 ERROR: The option specified <string> , is unknown.
Recheck the command options.

TCL_ERROR 1 ERROR: Can't access report panel. Use this command only
for report panels with rows or columns.

3.1.34.12. get_report_panel_row_index (::quartus::report)

The following table displays information for the get_report_panel_row_index Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax get_report_panel_row_index [-h | -help] [-long_help] [-id <table_id>] [-name
<table_name>] <row_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-id <table_id> Id of panel from which to get row index

-name <table_name> Name of panel from which to get row index

<row_name> Row name

Description
Gets the row index of the specified panel row name.

Row name refers to the first element content of the specified
row. The row index is a non-negative integer for an existing row.
Row index is -1 if the row name is not found in the panel.

Using the row index and panel id provides faster data access
than using row name and panel name.

Row indices and panel ids that you have cached may become outdated
or invalid if the report is unloaded or reloaded. This error
occurs after compilation or with calls to the "project_close",
"unload_report", and "load_report" commands.

Row and panel names support wildcards.

The table of contents portion of the Compilation Report
window shows short panel names for better readability.
However, the panel name used by this command is the full
panel name as shown in the right-hand side frame of the
Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the
table of contents shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path used by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

555

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage load_package report
project_open chiptrip
load_report

Set panel name and id
set panel {*Input Pins}
set id [get_report_panel_id $panel]

Set row name and index
set rname {[Cc]lk1}
set rindex [get_report_panel_row_index -id $id $rname]

Get data out of the specified panel
set pc_str [get_report_panel_data -id $id -row 0 -col 1]
set pin_cnt [get_report_panel_data -id $id -row $rindex -col 1]
set iob_str [get_report_panel_data -id $id -row 0 -col 2]
set io_bank [get_report_panel_data -id $id -row $rindex -col 2]

Output results
puts "$pc_str: $pin_cnt"
puts "$iob_str: $io_bank"

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.34.13. load_report (::quartus::report)

The following table displays information for the load_report Tcl command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax load_report [-h | -help] [-long_help] [-simulator]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-simulator Option to load the Simulation Report. If this option isn't
specified, the Compilation Report is loaded instead.

Description
By default, loads the Compilation Report for the current revision or
the specified revision name. If the -simulator option is
specified, loads the Simulation Report instead.

After the report is loaded or reloaded, the cached panel ids,
and row and column indices may become outdated or invalid.
Intel recommends that you update them before using them.

Example Usage # Load report package
load_package report
Open chiptrip project
project_open chiptrip
Load the current revision report
load_report

Set panel name and id
set panel {Fitter||Fitter Summary}
set id [get_report_panel_id $panel]

Get total registers
set rname {Total [Rr]egisters}
set rindex [get_report_panel_row_index -id $id $rname]
set rname [get_report_panel_data -id $id -row $rindex -col 0]
set data [get_report_panel_data -id $id -row $rindex -col 1]
puts "$rname: $data"

Get total pins
set rname {Total [Pp]ins}
set rindex [get_report_panel_row_index -id $id $rname]
set rname [get_report_panel_data -id $id -row $rindex -col 0]
set data [get_report_panel_data -id $id -row $rindex -col 1]
puts "$rname: $data"

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

556

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Unload the report
unload_report
Close the project
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't load report for revision: <string>. A different,
active revision already exists: <string>. To specify another
active revision name, type set_current_revision <string>.

TCL_ERROR 1 ERROR: Can't find active revision. Specify an active revision
name using set_current_revision <string>.

TCL_ERROR 1 ERROR: Can't find active revision. Specify an active revision
name using set_current_revision <revision name>.

TCL_ERROR 1 ERROR: Revision name does not exist: <string>. Run
Analysis & Synthesis (quartus_map) with the specified
revision name before using this Tcl command.

TCL_ERROR 1 ERROR: Compilation database is newer than the last call to
create_timing_netlist. Use the delete_timing_netlist Tcl
command before using <string>.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Can't load report data for revision name: <string>.
Make sure the report database exists for the specified
revision name.

TCL_ERROR 1 ERROR: Existing report was not unloaded. Ensure that your
load_report commands have matching unload_report
commands.

3.1.34.14. read_xml_report (::quartus::report)

The following table displays information for the read_xml_report Tcl command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax read_xml_report [-h | -help] [-long_help] <filename>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<filename> Name of XML Report Database File from which to read

Description
Creates the current Compilation Report from the specified
XML Report Database File (.xml).

Example Usage # Set project name
set project_name "chiptrip"

load_package report
project_open $project_name

Read XML Report Database File (.xml)
read_xml_report $project_name.xml

load_report

Get all the panel names
puts {All Report Panel Names:}
puts [get_report_panel_names]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

557

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Report read from XML Report Database File:
<string>. No action is required.

TCL_ERROR 1 ERROR: Can't read XML Report Database File: <string> .
Make sure that the file exists and does not contain syntax
errors.

3.1.34.15. refresh_report_window (::quartus::report)

The following table displays information for the refresh_report_window Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax refresh_report_window [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Refresh the Report Window.

Example Usage refresh_report_window

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.34.16. save_report_database (::quartus::report)

The following table displays information for the save_report_database Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax save_report_database [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Saves the report database, including any new report panel.

Example Usage load_package report
project_open chiptrip
load_report

Set panel name and id
set panel {Fitter||Fitter Settings}
set id [get_report_panel_id $panel]

If panel exists, add a row to it. Otherwise, print an error message.
if {$id != -1} {
 add_row_to_table -id $id {{New Field} Yes No}
 # Save the changes to the report database

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

558

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 save_report_database
} else {
 puts "Error: Table $panel does not exist."
}

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Report not loaded for revision name: <string>.
Type load_report to load the report.

3.1.34.17. unload_report (::quartus::report)

The following table displays information for the unload_report Tcl command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax unload_report [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Unloads the report for the current revision or the specified
revision name.

After the report is loaded or reloaded, the cached panel ids,
and row and column indices, may become outdated or invalid.
Intel recommends that you update them before using them.

Example Usage # Load report package
load_package report
Open chiptrip project
project_open chiptrip
Load the current revision report
load_report

Set panel name and id
set panel {Fitter||Fitter Summary}
set id [get_report_panel_id $panel]

Get total registers
set rname {Total [Rr]egisters}
set rindex [get_report_panel_row_index -id $id $rname]
set rname [get_report_panel_data -id $id -row $rindex -col 0]
set data [get_report_panel_data -id $id -row $rindex -col 1]
puts "$rname: $data"

Get total pins
set rname {Total [Pp]ins}
set rindex [get_report_panel_row_index -id $id $rname]
set rname [get_report_panel_data -id $id -row $rindex -col 0]
set data [get_report_panel_data -id $id -row $rindex -col 1]
puts "$rname: $data"

Unload the report
unload_report
Close the project
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

559

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Can't load report for revision: <string>. A different,
active revision already exists: <string>. To specify another
active revision name, type set_current_revision <string>.

TCL_ERROR 1 ERROR: Can't find active revision. Specify an active revision
name using set_current_revision <string>.

TCL_ERROR 1 ERROR: Can't find active revision. Specify an active revision
name using set_current_revision <revision name>.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

3.1.34.18. write_report_panel (::quartus::report)

The following table displays information for the write_report_panel Tcl command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax write_report_panel [-h | -help] [-long_help] [-append] -file <output file name> [-
html] [-id <table_id>] [-name <table_name>] [-xml] [<name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to an ASCII file, this option appends the
result to that file. Otherwise, the file will be overwritten.
This option is not supported for HTML or XML files.

-file <output file name> Name of output file to be generated

-html Option to generate output file in HTML format

-id <table_id> id of panel from which to get data

-name <table_name> Name of panel from which to get data

-xml Option to generate output file in XML format

<name> Name of panel from which to get data

Description
Writes data from the specified report panel to the specified
output file. If the "-html" option is specified, the output file
is generated in HTML format. If the "-xml" option is specified,
the output file is generated in XML format. Otherwise, the output
file is generated in ASCII format.

For ASCII formatted files, "-append" preserves the existing file
and adds the panel to the end. Otherwise, the file is overwritten.
HTML and XML files are always overwritten.

Using the panel id provides faster data access than using the
panel name.

Panel ids that you have cached may become outdated or invalid
if the report is unloaded or reloaded. This error occurs
after compilation or with calls to the "project_close",
"unload_report", and "load_report" commands.

Panel names support wildcards.

The table of contents portion of the Compilation Report
window shows short panel names for better readability.
However, the panel name used by this command is the full
panel name as shown in the right-hand side frame of the
Compilation Report window or the .rpt file of the
corresponding command-line executable. For example, the
table of contents shows the path "Analysis & Synthesis||Summary".
However, the corresponding full path used by this Tcl command
is "Analysis & Synthesis||Analysis & Synthesis Summary".

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

560

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage ## Load report database and write Timing Analyzer Summary
panel to file in HTML format

load_package report
project_open chiptrip
load_report

Set panel name and id
set panel "*Timing Analyzer Summary"
set id [get_report_panel_id $panel]

If the specified panel exists, write it to
fmax.htm and fmax.xml.
Otherwise, print out an error message
if {$id != -1} {
 write_report_panel -file fmax.htm -html -id $id
 write_report_panel -file fmax.xml -xml -id $id
} else {
 puts "Error: report panel could not be found."
}

unload_report
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Successfully generated HTML-Format Report File:
<string>

TCL_OK 0 INFO: Successfully generated output file: <string>

TCL_OK 0 INFO: Successfully generated XML-Format Report File:
<string>

TCL_OK 0 INFO: Report automatically reloaded because it was not up-
to-date after use of Tcl command execute_flow or
execute_module (which belong to ::quartus::flow package).
No action is required.

TCL_ERROR 1 ERROR: Can't create or overwrite file: <string>. Specify a
file name that has write permission.

TCL_ERROR 1 ERROR: Can't find the top-level panel. Make sure the loaded
report is not empty. You can run a successful compilation to
rebuild the report.

TCL_ERROR 1 ERROR: Can't find panel: <string>. Specify an existing
report panel name.

TCL_ERROR 1 ERROR: Report not loaded for revision name: <string>.
Type load_report to load the report.

3.1.34.19. write_xml_report (::quartus::report)

The following table displays information for the write_xml_report Tcl command:

Tcl Package and
Version

Belongs to ::quartus::report on page 540

Syntax write_xml_report [-h | -help] [-long_help] <filename>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<filename> Name of XML Report Database File to which to write

Description
Writes the current Compilation Report or Simulation Report to the specified
XML Report Database File (.xml).

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

561

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage load_package report

set project_name "chiptrip"
project_open $project_name

Create XML Report Database File (.xml)
load_report
file delete -force report.xml
puts [write_xml_report report.xml]
unload_report

Close project
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Report written to XML Report Database File:
<string>. No action is required.

TCL_ERROR 1 ERROR: Can't write XML Report Database File: <string> --
report does not exist. Make sure that an existing report is
loaded. Type load_report -h for more information.

3.1.35. ::quartus::sdc

The following table displays information for the ::quartus::sdc Tcl package:

Tcl Package and Version ::quartus::sdc 1.5

Description
Synopsys Design Constraint (SDC) format is used to specify the design
intent, including the timing and area constraints of the design.
The Timing Analyzer only implements the set of SDC commands
required to specify the timing constraints of the design. For area
constraints, the QSF file should be used.

This package implements the SDC Spec Version 1.5 (June 2005).

Any command in this package can be specified in a Timing Analyzer SDC
file.

Availability This package is loaded by default in the following executable:

 quartus_sta

This package is available for loading in the following executable:

 quartus_fit

Tcl Commands all_clocks (::quartus::sdc) on page 563
all_inputs (::quartus::sdc) on page 563
all_outputs (::quartus::sdc) on page 564
all_registers (::quartus::sdc) on page 564
create_clock (::quartus::sdc) on page 565
create_generated_clock (::quartus::sdc) on page 566
derive_clocks (::quartus::sdc) on page 568
get_cells (::quartus::sdc) on page 568
get_clocks (::quartus::sdc) on page 570
get_nets (::quartus::sdc) on page 571
get_pins (::quartus::sdc) on page 572
get_ports (::quartus::sdc) on page 573
remove_clock_groups (::quartus::sdc) on page 574
remove_clock_latency (::quartus::sdc) on page 574
remove_clock_uncertainty (::quartus::sdc) on page 575
remove_disable_timing (::quartus::sdc) on page 576
remove_input_delay (::quartus::sdc) on page 576
remove_output_delay (::quartus::sdc) on page 577
reset_design (::quartus::sdc) on page 578
set_clock_groups (::quartus::sdc) on page 578
set_clock_latency (::quartus::sdc) on page 579
set_clock_uncertainty (::quartus::sdc) on page 581
set_disable_timing (::quartus::sdc) on page 582
set_false_path (::quartus::sdc) on page 583
set_input_delay (::quartus::sdc) on page 584
set_input_transition (::quartus::sdc) on page 586

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

562

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_max_delay (::quartus::sdc) on page 587
set_max_time_borrow (::quartus::sdc) on page 588
set_min_delay (::quartus::sdc) on page 589
set_multicycle_path (::quartus::sdc) on page 591
set_output_delay (::quartus::sdc) on page 593

3.1.35.1. all_clocks (::quartus::sdc)

The following table displays information for the all_clocks Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax all_clocks [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns a collection of all previously defined clocks in the design.

Example Usage project_open chiptrip
create_timing_netlist
foreach_in_collection clk [all_clocks] {
 puts [get_clock_info -name $clk]
}
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.2. all_inputs (::quartus::sdc)

The following table displays information for the all_inputs Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax all_inputs [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns a collection of all input ports in the design.

Example Usage project_open chiptrip
create_timing_netlist
foreach_in_collection in [all_inputs] {
 puts [get_port_info -name $in]
}
set_input_delay -clock clock1 2.0 [all_inputs]
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

563

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.35.3. all_outputs (::quartus::sdc)

The following table displays information for the all_outputs Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax all_outputs [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns a collection of all output ports in the design.

Example Usage project_open chiptrip
create_timing_netlist
foreach_in_collection out [all_outputs] {
 puts [get_port_info -name $out]
}
set_output_delay -clock clock1 2.0 [all_outputs]
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.4. all_registers (::quartus::sdc)

The following table displays information for the all_registers Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax all_registers [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns a collection of all registers in the design.

Example Usage project_open chiptrip
create_timing_netlist
foreach_in_collection reg [all_registers] {
 puts [get_register_info -name $reg]
}
report_timing -from [all_registers] -to [all_registers]
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

564

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.35.5. create_clock (::quartus::sdc)

The following table displays information for the create_clock Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax create_clock [-h | -help] [-long_help] [-add] [-name <clock_name>] -period
<value> [-waveform <edge_list>] [<targets>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add Adds clock to a node with an existing clock

-name <clock_name> Clock name of the created clock

-period <value> Speed of the clock in terms of clock period

-waveform <edge_list> List of edge values

<targets> List or collection of targets

Description
Defines a clock. If the -name option is not used, the clock name is
the same as the first target in the list or collection. The clock name
is used to refer to the clock in other commands.

The -period option specifies the clock period. It is also possible to
use this option to specify a frequency to define the clock period.
This can be done by using -period option followed by either
<frequency>MHz or "<frequency> MHz". However, this is a Timing
Analyzer-only extension and makes the SDC syntax non-standard.

The -waveform option specifies the rising and falling edges (duty
cycle) of the clock, and is specified as a list of two time values:
the first rising edge and the next falling edge. The rising edge must
be within the range [0, period]. The falling edge must be within one
clock period of the rising edge. The waveform defaults to (0,
period/2).

If a clock with the same name is already assigned to a given target,
the create_clock command will overwrite the existing clock. If a clock
with a different name exists on the given target, the create_clock
command will be ignored unless the -add option is used. The -add
option can be used to assign multiple clocks to a pin or port.

If the target of the clock is internal (i.e. not an input port), the
source latency is zero by default.

If a clock is on a path after another clock, then it blocks or
overwrites the previous clock from that point forward.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type. The
values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See the help for use_timing_analyzer_style_escaping for
details.

Example Usage # Create a simple 10ns with clock with a 60% duty cycle
create_clock -period 10 -waveform {0 6} -name clk [get_ports clk]

Create a clock with a falling edge at 2ns, rising edge at 8ns,
falling at 12ns, etc.
create_clock -period 10 -waveform {8 12} -name clk [get_ports clk]

Assign two clocks to an input port that are switched externally
create_clock -period 10 -name clk100Mhz [get_ports clk]
create_clock -period 6.667 -name clk150Mhz -add [get_ports clk]

Two ways to use MHz to define clock period (Timing Analyzer only)
create_clock -period 250MHz -name clk250MHz [get_ports clk]
create_clock -period "250 MHz" -name clk250MHz [get_ports clk]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

565

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.6. create_generated_clock (::quartus::sdc)

The following table displays information for the create_generated_clock Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax create_generated_clock [-h | -help] [-long_help] [-add] [-divide_by <factor>]
[-duty_cycle <percent>] [-edge_shift <shift_list>] [-edges <edge_list>] [-invert]
[-master_clock <clock>] [-multiply_by <factor>] [-name <clock_name>] [-offset
<time>] [-phase <degrees>] [-source <clock_source>] [<targets>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add Add clock to existing clock node

-divide_by <factor> Division factor

-duty_cycle <percent> Specifies the duty cycle as a percentage of the clock
period--accepts floating point values

-edge_shift <shift_list> List of edge shifts

-edges <edge_list> List of edge values

-invert Invert the clock waveform

-master_clock <clock> Specifies clock of the source node

-multiply_by <factor> Multiplication factor

-name <clock_name> Name of generated clock

-offset <time> Specifies the offset as an absolute time shift

-phase <degrees> Specifies the phase shift in degrees

-source <clock_source> Source node for the generated clock

<targets> List or collection of targets

Description
Defines an internally generated clock. If -name is not specified,
the clock name is the same as the first target in the list or
collection. The clock name is used to refer to the clock in other
commands.

If a clock with the same name is already assigned to a given
target, the create_generated_clock command overwrites the
existing clock. If a clock with a different name exists on the
given target, the create_generated_clock command is ignored
unless the -add option is used. The -add option can be used to
assign multiple clocks to a pin or port, and is recommended be
used with -master_clock option.

The source of the generated clock, specified by -source, is a
port, pin, register, or net in the design. All waveform
modifications are relative to this point. If more than one clock
feeds the source node, the -master_clock option must be used to
specify which clock to modify.

The source latency of the generated clock is based on the clock

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

566

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

network of the generated clock, and not the clock network of the
node specified using -source. This latency is added to any
source latency of the master clock.

If no target is specified, the clock is treated as a virtual clock.
In that case, the source latency of the generated clock will be
equal to the source latency of the master clock, plus any added
latency specified with set_clock_latency.

The -divide_by, -multiply_by, -invert, -duty_cycle, -edges, and
-edge_shift options modify the waveform relative to the waveform
at the source node.

Clock division and multiplication, using -divide_by and
-multiply_by, is performed relative to the first rising
edge. Clock division is based on edges in the master clock
waveform, and scaled if the division is an odd number. Use the
-duty_cycle option to specify the new duty cycle for clock
multiplication. Use the -phase option to specify any phase shift
relative to the new clock period. Use the -offset option to
specify an arbitrary offset or time shift. Use the -invert
option to invert the generated waveform. The -phase and -duty_cycle
options may be specified as a decimal value (e.g. 22.5) or
as a ratio of two numbers (e.g. 45/2). The latter form may
improve Timing Analyzer accuracy when detecting relationships between
related clocks.

Clock generation can also be specified with the -edges and
-edge_shift options. The -edges option accepts a list of three
numbers specifying the master clock edges to use for the first
rising edge, the next falling edge, and next rising edge. Edges
of the master clock are labeled according to the first rising
edge (1), next falling edge (2), next rising edge (3), etc. For
example, a basic clock divider can be specified equivalently
with -divide_by 2 or -edges {1 3 5}. The -edge_shift option
accepts a list of three time values, the amount to shift each of
the three edges.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate
type. The values used must follow standard Tcl or
Timing Analyzer-extension substitution rules. See the help for
use_timing_analyzer_style_escaping for details.

Example Usage # Create a clock and a divide-by-2 generated clock
create_clock -period 10 [get_ports clk]
create_generated_clock -divide_by 2 -source [get_ports clk] -name clkdiv [get_registers clkdiv]

An equivalent generated clock
create_generated_clock -edges {1 3 5} -source [get_ports clk] -name clkdiv [get_registers
clkdiv]

Specify a clock multipler with a 60% duty cycle
create_generated_clock -multiply_by 2 -source [get_ports clk] -duty_cycle 60 [get_pins clkmult|
combout]

Specify an inverted divide-by-2 clock relative to the output of the source clock
create_generated_clock -divide_by 2 -invert -source [get_ports clk] -name nclkdiv
[get_registers clkdiv]

Specify a divide-by-2 clock with a 90-degree phase shift
create_generated_clock -divide_by 2 -phase 90 -source [get_ports clk] -name clkdiv
[get_registers clkdiv]

Create a divide-by-2 generated clock generated off the falling edge of the source clock
create_generated_clock -edges {2 4 6} -source [get_ports clk] -name clkfall_div [get_registers
clkfall_div]

Assign two clocks to an input port that are switched externally,
along with an internal clock divider.
create_clock -period 10 -name clk100Mhz [get_ports clk]
create_clock -period 6.667 -name clk150Mhz -add [get_ports clk]
create_generated_clock -divide_by 2 -name clk50Mhz -source [get_ports clk] -master_clock
clk100Mhz -add [get_registers clkdiv]
create_generated_clock -divide_by 2 -name clk75Mhz -source [get_ports clk] -master_clock
clk150Mhz -add [get_registers clkdiv]

Create a virtual clock, and two generated clocks that derive from it.
This makes the generated clocks related, so crossings between them are not asynchronous.
create_clock -period 10 -name virtual_base
create_generated_clock -master_clock virtual_base -divide_by 2 [get_ports clka]
create_generated_clock -master_clock virtual_base -divide_by 4 [get_ports clkb]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

567

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.7. derive_clocks (::quartus::sdc)

The following table displays information for the derive_clocks Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax derive_clocks [-h | -help] [-long_help] [-no_black_box_sources] -period
<period_value> [-suffix <suffix_string>] [-waveform <edge_list>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-no_black_box_sources Option to disable considering periphery nodes of black box
atoms as possible clock sources when deriving clocks

-period <period_value> Speed of the default clock in terms of clock period

-suffix <suffix_string> Suffix of derived clock names

-waveform <edge_list> List of edge values

Description
Creates a clock on sources of clock pins in the design that do not
already have at least one clock sourcing the clock pin. This command
is equivalent to calling create_clock on each clock source in the
design that does not already have a clock assigned to it.

See the help for create_clock for more information.

Intel does not recommend using this command during final sign-off
analysis of a design. derive_clocks should only be used early in the
design phase when the clocks are not completely known. When possible,
create_clock and create_generated_clock should be used instead.

Example Usage # Automatically create a 10ns, 60% duty cycle clock on all
unconstrained clock sources.
derive_clocks -period 10 -waveform {0 6}

Append a suffix to all derived clock names using the "-suffix" option.
All derived clock names will end with "~my_suffix".
derive_clocks -period 10 -suffix "my_suffix"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.35.8. get_cells (::quartus::sdc)

The following table displays information for the get_cells Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax get_cells [-h | -help] [-long_help] [-compatibility_mode] [-hierarchical] [-
no_duplicates] [-nocase] [-nowarn] [<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

568

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-compatibility_mode Use simple Tcl matching

-hierarchical Specifies use of a hierarchical searching method

-no_duplicates Do not match duplicated cell names

-nocase Specifies case insensitive node name matching

-nowarn Do not issue warning messages about unmatched patterns

<filter> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Returns a collection of cells in the design. All cell names in the
collection match the specified pattern. Wildcards can be used to
select multiple cells at once.

There are three Tcl string matching schemes available with this
command: the default method, the -hierarchical option, and the
-compatibility_mode option.

When you use the default matching scheme, use pipe characters to
separate one hierarchy level from the next. They are treated as
special characters and are taken into account when string matching
with wildcards is performed. When this matching scheme is enabled, the
specified pattern is matched against absolute cell names: the names
that include the entire hierarchical path. A full cell name can
contain multiple pipe characters in it to reflect the hierarchy. All
hierarchy levels in the pattern are matched level by level. Any
included wildcards refer to only one hierarchical level. For example,
"*" and "*|*" produce different collections since they refer to the
highest hierarchical level and second highest hierarchical level
respectively.

When using the -hierarchical matching scheme, pipe characters are
treated as special characters and are taken into account when string
matching with wildcards is performed. This matching scheme forces the
search to proceed recursively down the hierarchy. The specified
pattern is matched against the relative cell names: the immediate
names that do not include any of the hierarchy information. Note that
a short cell name cannot contain pipe characters in it. Any included
wildcards are expanded to match the relative cell names.

The -compatibility_mode matching scheme uses simple Tcl string matching
on full, absolute cell names. Pipe characters are not treated as special
characters when used with wildcards.

The default matching scheme returns cells whose names match the
specified filter and also cells automatically generated by the Quartus
II software from these cells). Use -no_duplicates option to not
include duplicated cells.

The filter for the collection is a Tcl list of wildcards, and must
follow standard Tcl or Timing Analyzer-extension substitution rules. See
help for the use_timing_analyzer_style_escaping command for details.

Example Usage # Find a cell called "reg" using case insensitive search
get_cells -nocase reg
Create a collection of all cells whose names start with "reg"
get_cells reg*
Create a collection of all cells on the highest hierarachical level
set mycollection [get_cells *]
Create a collection of all cells in the design
Output cell names.
foreach_in_collection cell $mycollection {
 puts [get_cell_info -name $cell]
}
set fullcollection [get_cells -hierarchical *]
Output cell IDs and names.
foreach_in_collection cell $fullcollection {
 puts -nonewline $cell
 puts -nonewline ": "
 puts [get_cell_info -name $cell]
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

569

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.35.9. get_clocks (::quartus::sdc)

The following table displays information for the get_clocks Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax get_clocks [-h | -help] [-long_help] [-include_generated_clocks] [-nocase] [-
nowarn] [-of_objects <object_collection>] [<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-include_generated_clocks Includes generated clocks derived from the matched clocks

-nocase Specifies the matching of node names to be case-insensitive

-nowarn Do not issue warning messages when querying for clocks

-of_objects <object_collection> Returns all clocks that target (defined on) or drive
(determine data frequency of) the nodes in the collection.

<filter> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Returns a collection of previously defined clocks in the design. Use a clock
collection as the -from/to argument of a command (such as set_multicycle_path)
to refer to all nodes driven by the clocks in the collection.

The following multicycle constraint applies to all paths ending at registers
driven by clk
set_multicycle_path -to [get_clocks clk] 2

If a filter, which is a Tcl list of wildcards and must follow
standard Tcl or Timing Analyzer-extension substitution rules, is specified, then
get_clocks returns all previously defined clocks whose names match the filter.
See the help for use_timing_analyzer_style_escaping for filter rules.

If you use the -of_objects option, you must provide a collection of registers, ports,
pins, or cells. The get_clocks command returns a collection of all the previously defined
clocks that target these nodes, or if these nodes are not clock targets, all the previously
defined clocks that drive these nodes. You cannot use the -of_objects option with the clock
name filter. Refer to the long help for examples of using the -of_objects option.

Tip: the get_clocks command can be used as part of SDC commands, as well as for reporting.
When it is used as part of SDC commands and includes the -include_generated_clocks option,
the Timing Analyzer needs to analyze the design and may issue warnings about missing clocks.
The missing clocks might still be created later on in the SDC file and are not
necessarily indicative of a problem. Use the -nowarn option in this case to suppress
those warnings. When you use the -nowarn option, pass a node collection generated by another
get_*
 collection command as the filter. This way, warnings directly related to the filter
resolution are
 still posted.

Example Usage # get clocks that begin with 'c' or 'C', and print out their names and periods:
set clocks [get_clocks c* -nocase]
foreach_in_collection clk $clocks {
 set name [get_clock_info -name $clk]
 set period [get_clock_info -period $clk]
 puts "$name: $period"
}

getting the clock that targets a port, and its generated clock:
create_clock -name my_clock -period 10.000 [get_ports CLK_100]
create_generated_clock -name my_gen_clock -divide_by 2 -source [get_ports CLK_100]
[get_registers clk_div_reg]
get_clocks -nowarn -of_objects [get_ports CLK_100] -include_generated_clocks

display the name of the clocks that drive registers beginning with 'reg_':
foreach_in_collection clk_id [get_clocks -nowarn -of_objects [get_registers reg_*]] {
 puts [get_clock_info -name $clk_id]
}

Return Value Code Name Code String Return
continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

570

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Use the -clock_networks_only option only with the
-of_objects option.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.10. get_nets (::quartus::sdc)

The following table displays information for the get_nets Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax get_nets [-h | -help] [-long_help] [-no_duplicates] [-nocase] [-nowarn]
[<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-no_duplicates Do not match duplicated net names

-nocase Specifies case-insensitive node name matching

-nowarn Do not issue warning messages about unmatched patterns

<filter> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Returns a collection of nets in the design. All net names in the
collection match the specified pattern. Wildcards can be used to
select multiple nets at once.

The default matching scheme returns nets whose names match the
specified filter and nets that are automatically generated by the
Quartus Prime software from these nets. Use the -no_duplicates option to
exclude duplicated nets.

The filter for the collection is a Tcl list of wildcards, and must
follow standard Tcl or Timing Analyzer-extension substitution rules. See
help for the use_timing_analyzer_style_escaping command for details.

Example Usage # Find a net called "reg" using case insensitive search
get_nets -nocase reg
Create a collection of all nets whose names start with "reg"
get_nets reg*
Create a collection of all nets in the design
set mycollection [get_nets *]
Output net names.
foreach_in_collection net $mycollection {
 puts [get_net_info -name $net]
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

571

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.35.11. get_pins (::quartus::sdc)

The following table displays information for the get_pins Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax get_pins [-h | -help] [-long_help] [-compatibility_mode] [-hierarchical] [-
no_duplicates] [-nocase] [-nowarn] [<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-compatibility_mode Use simple Tcl matching

-hierarchical Specifies use of a hierarchical searching method

-no_duplicates Do not match duplicated pin names

-nocase Specifies case-insensitive node name matching

-nowarn Do not issue warning messages about unmatched patterns

<filter> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Returns a collection of pins in the design. All pin names in the
collection match the specified pattern. Wildcards can be used to
select multiple pins at once.

There are three Tcl string matching schemes available with this
command: the default method, the -hierarchical option, and the
-compatibility_mode option.

By default, pipe characters are used to separate one hierarchy level
from the next. They are treated as special characters and are taken
into account when string matching with wildcards is performed. When
the default matching scheme is enabled, the specified pattern is
matched against absolute pin names: the names that include the entire
hierarchical path. All hierarchy levels in the pattern are matched
level by level. Pin names of the form <absolute full cell name>|<pin
suffix> are used for matching. Note that a full cell name can contain
multiple pipe characters in it to reflect the hierarchy. Any included
wildcards refer to only one hierarchical level. For example, "*|*" and
"*|*|*" produce different collections since they refer to the highest
hierarchical level and second highest hierarchical level respectively.

When using the -hierarchical matching scheme, pipe characters are
treated as special characters and are taken into account when string
matching with wildcards is performed. This matching scheme forces the
search to proceed recursively through the hierarchy. The specified
pattern is matched against the relative pin names: the immediate names
that do not include any of the hierarchy information. Pin names of
the form <relative short cell name>|<pin suffix> are used for
matching. Note that a short cell name cannot contain pipe
characters. Any included wildcards are expanded to match the relative
pin names. For example, "*" and "*|*" match exactly the same pins
since the former is expanded into the latter.

The -compatibility_mode matching scheme uses simple Tcl string matching
on full, absolute cell names. Pipe characters are not treated as special
characters when used with wildcards.

The default matching scheme returns not only pins whose names match
the specified filter, but also pins duplicated from these pins (refers
to pins are automatically generated by Quartus from the pins). Use
-no_duplicates option to not include duplicated pins.

The filter for the collection is a Tcl list of wildcards, and must
follow standard Tcl or Timing Analyzer-extension substitution rules. See
help for the use_timing_analyzer_style_escaping command for details.

Example Usage # Get regout pin of "reg" cell
get_pins -nocase reg|regout
Create a collection of all pins of "reg" cell
get_pins reg|*
Create a collection of all pins on the highest hierarachical level

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

572

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set mycollection [get_pins *]
Output pin names.
foreach_in_collection pin $mycollection {
 puts [get_pin_info -name $pin]
}
Create a collection of all pins in the design
set fullcollection [get_pins -hierarchical *]
Output pin IDs and names.
foreach_in_collection pin $fullcollection {
 puts -nonewline $pin
 puts -nonewline ": "
 puts [get_pin_info -name $pin]
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.12. get_ports (::quartus::sdc)

The following table displays information for the get_ports Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax get_ports [-h | -help] [-long_help] [-nocase] [-nowarn] [<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-nocase Specifies case-insensitive node name matching

-nowarn Do not issue warning messages about unmatched patterns

<filter> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Returns a collection of ports (design inputs and outputs) in the
design.

The filter for the collection is a Tcl list of wildcards, and must
follow standard Tcl or Timing Analyzer-extension substitution rules. See
help for the use_timing_analyzer_style_escaping command for details.

Example Usage project_open chiptrip
create_timing_netlist

Get all ports starting with "In".
set ports [get_ports In*]
foreach_in_collection port $ports {
 puts [get_port_info -name $port]
}

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

573

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.35.13. remove_clock_groups (::quartus::sdc)

The following table displays information for the remove_clock_groups Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax remove_clock_groups [-h | -help] [-long_help] -all

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all Specify remove all clock group settings

Description
Remove all clock group assignments. This command removes
any clock groups that have been previously set. There is no
way to remove specific groups.

Example Usage project_open top
create_timing_netlist
create_clock -period 10.000 -name clkA [get_ports sysclk[0]]
create_clock -period 10.000 -name clkB [get_ports sysclk[1]]

Set clkA and clkB to be mutually exclusive clocks.
set_clock_groups -exclusive -group {clkA} -group {clkB}
set_clock_groups -exclusive -group {clkC} -group {clkD}

Remove clock groups A, B, C, and D. Result is that there
are no longer any mutually exclusive clocks.
remove_clock_groups -all

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.35.14. remove_clock_latency (::quartus::sdc)

The following table displays information for the remove_clock_latency Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax remove_clock_latency [-h | -help] [-long_help] -source <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-source Specifies the source clock latency

<targets> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Removes clock latency for a given clock or clock target.

There are two types of latency: network and source. Network latency
is the clock network delay between the clock and register clock pins.
Source latency is the clock network delay between the clock and its
source (e.g., a system clock or a base clock of a generated clock).

The Timing Analyzer automatically computes network latencies
for all register and generated clocks. Overriding clock network
latencies is not supported by the Timing Analyzer. Therefore, the
-source option must always be specified. Remove_clock_latency requires
this option as well.

You can apply clock latency to a clock, which affects all targets of

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

574

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the clock, or to a specific clock target. Therefore, you can remove
clock latency from a collection of clocks, or from a collection of
target nodes. remove_clock_latency removes all latencies from a clock
or node, so removing a node's clock latency with respect to a
particular clock, or removing only latencies with particular
conditions is not supported.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type. The
values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See the help for use_timing_analyzer_style_escaping for
details.

Example Usage create_clock -name SYSCLK -period 10.000 [get_ports inclk]
create_generated_clock -name OUTCLK -divide_by 1 -source [get_ports inclk] [get_ports outclk]
create_generated_clock -name FDBKCLK -divide_by 1 -source [get_ports outclk] [get_ports
fdbkclk]

Apply a simple 2.000 ns source latency to the system clock.
set_clock_latency -source 2.000 [get_clocks SYSCLK]

Specify feedback clock latencies between output port outclk
and the output port fdbkclk.
set_clock_latency -source -late -rise 0.800 [get_clocks FDBKCLK]
set_clock_latency -source -late -fall 0.750 [get_clocks FDBKCLK]
set_clock_latency -source -early -rise 0.500 [get_clocks FDBKCLK]
set_clock_latency -source -early -fall 0.460 [get_clocks FDBKCLK]

Remove all clock latency from FDBKCLK
remove_clock_latency -source [get_clocks FDBKCLK]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.15. remove_clock_uncertainty (::quartus::sdc)

The following table displays information for the remove_clock_uncertainty Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax remove_clock_uncertainty [-h | -help] [-long_help] -from <from_clock> -to
<to_clock>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-from <from_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-to <to_clock> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Removes clock uncertainty from a collection of clocks to a collection
of clocks. The source and destination clocks can be any arbitrary
collection of clocks. This command removes all uncertainty between two
clocks. If there does not exist uncertainty between two clocks
specified in remove_clock_uncertainty, the command does nothing for
those two clocks but continues to attempt to remove uncertainty
between other clocks specified.

The values of the -from and -to options are either collections or a
Tcl list of wildcards used to create collections of appropriate types.
The values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See the help for use_timing_analyzer_style_escaping for
details.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

575

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage set_clock_uncertainty -setup -rise_from {clk1 clk2} -fall_to {clk3 clk4} 200ps
set_clock_uncertainty -from {clk5 clk6} -to {clk7 clk8} 300ps
remove_clock_uncertainty -from {clk3 clk5} -to {clk4 clk7}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.35.16. remove_disable_timing (::quartus::sdc)

The following table displays information for the remove_disable_timing Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax remove_disable_timing [-h | -help] [-long_help] [-from <name>] [-to <name>]
<cells>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-from <name> Valid source pin suffix

-to <name> Valid destination pin suffix

<cells> List of cells

Description
Adds a previously disabled edge (arc) back to a given cell(s). If no
-from/-to value is specified, the missing value is substituted by a
"*".

The values of the -from and -to are valid pin suffixes. The
values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See the help for use_timing_analyzer_style_escaping for
details.

Example Usage remove_disable_timing -from datain -to combout A|B
remove_disable_timing -from carryin *

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.17. remove_input_delay (::quartus::sdc)

The following table displays information for the remove_input_delay Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax remove_input_delay [-h | -help] [-long_help] [-blackbox] <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-blackbox Removes an input delay that was assigned to a partition
boundary port.

<targets> Collection or list of input ports

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

576

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Removes input delay from a port. For each input port specified,
removes all input delays for that port. This means that rise, fall,
max, and min delays for each clock and reference pin on the input port
are all removed.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type. The
values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See help for the use_timing_analyzer_style_escaping
command for details.

Example Usage # Simple input delay with the same value for min/max and rise/fall
set_input_delay -clock clk 1.5 [get_ports {in1 in2}]
set_input_delay -clock clk2 1.5 [get_ports {in1 in2}]
set_input_delay -clock clk 1.6 [get_ports {in3 in4}]

Remove input delay on ports in1 and in4,
for all flags and reference ports and flags
remove_input_delay [get_ports {in1 in4}]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Incorrect collection type. Expected a collection of
type <string>.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.18. remove_output_delay (::quartus::sdc)

The following table displays information for the remove_output_delay Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax remove_output_delay [-h | -help] [-long_help] [-blackbox] <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-blackbox Removes an output delay that was assigned to a partition
boundary port.

<targets> Collection or list of output ports

Description
Removes output delay from a port. For each output port specified,
removes all output delays for that port. Rise, fall, max, and min
delays for each clock and reference pin on the output port are all
removed.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type. The
values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See help for the use_timing_analyzer_style_escaping
command for details.

Example Usage # Simple output delay with the same value for min/max and rise/fall
set_output_delay -clock clk 1.5 [get_ports {out1 out2}]
set_output_delay -clock clk2 1.5 [get_ports {out1 out2}]
set_output_delay -clock clk 1.6 [get_ports {out3 out4}]

Remove input delay on ports out1 and out4,
for all flags and reference ports and flags
remove_output_delay [get_ports {out1 out4}]

Return Value Code Name Code String Return
continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

577

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Incorrect collection type. Expected a collection of
type <string>.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.19. reset_design (::quartus::sdc)

The following table displays information for the reset_design Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax reset_design [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Removes all assignments from the design. This includes clocks,
generated clocks, derived clocks, input delays, output delays, clock
latency, clock uncertainty, clock groups, false paths, multicycle
paths, min delays, and max delays. After reset_design is called, the
design should be in the same state as it would be if
create_timing_netlist was just called.

Example Usage # Constrain design
create_clock -name clk -period 4.000 -waveform { 0.000 2.000 } [get_ports clk]
set_input_delay -clock clk2 1.5 [get_ports in*]
set_output_delay -clock clk 1.6 [get_ports out*]
set_false_path -from [get_keepers in] -through [get_nets r1] -to [get_keepers out]

Reset the design to the state that it was in before any constraints were entered
reset_design

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.20. set_clock_groups (::quartus::sdc)

The following table displays information for the set_clock_groups Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_clock_groups [-h | -help] [-long_help] [-asynchronous] [-exclusive] -group
<names> [-logically_exclusive] [-physically_exclusive]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-asynchronous Specify mutually exclusive clocks (such as groups of
primary clocks)

-exclusive Specify mutually exclusive clocks (an alias for the -
logically_exclusive option). Exists for backwards
compatibility.

-group <names> Valid destinations (string patterns are matched using Tcl
string matching)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

578

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-logically_exclusive Specify logically exclusive clocks (meaning they are not
actively used at the same time)

-physically_exclusive Specify physically exclusive clocks (meaning they are not
physically present at the same time)

Description
Clock groups provide a quick and convenient way to specify which
clocks are not related. Asynchronous clocks are those that are
completely unrelated (e.g., have different ideal clock sources).
Logically exclusive clocks are not actively used in the design at
the same time (e.g., multiplexed clocks), but the clock signals may
physically exist on-chip at the same time and therefore may still
influence each other through crosstalk effects. Physically exclusive
clocks, in contrast, cannot be physically present in the device at
the same time (e.g., multiple clocks defined on the same clock pin).

The Timing Analyzer does not currently analyze crosstalk explicitly.
Instead, the timing models use extra guard bands to account for any
potential crosstalk-induced delays. As a result, the Timing Analyzer
currently treats asynchronous, logically_exclusive, and physically_exclusive
clock groups the same. However, different parts of the Timing Analyzer may
treat asynchronous and exclusive groups differently. Any commands that are
affected by clock groups will say so in their help text. But, no
distinction is made between logically and physically exclusive clock groups,
since the only difference between them is how they affect crosstalk.

The result of set_clock_groups is that all clocks in any group are cut
from all clocks in every other group. The use of a single -group option
tells the Timing Analyzer to cut this group of clocks from all other
clocks in the design, including clocks that are created in the future.
This command is similar to calling set_false_path from each clock in every
group to each clock in every other group and vice versa, making
set_clock_groups easier to specify for cutting clock domains. However,
cutting clocks with set_clock_groups also affects the results of some other
commands. Any commands that are affected by clock groups will say so in
their help text.

Example Usage project_open top
create_timing_netlist
create_clock -period 10.000 -name clkA [get_ports sysclk[0]]
create_clock -period 10.000 -name clkB [get_ports sysclk[1]]

Set clkA and clkB to be mutually exclusive clocks.
set_clock_groups -logically_exclusive -group {clkA} -group {clkB}

The previous line is equivalent to the following two commands.
set_false_path -from [get_clocks clkA] -to [get_clocks clkB]
set_false_path -from [get_clocks clkB] -to [get_clocks clkA]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.35.21. set_clock_latency (::quartus::sdc)

The following table displays information for the set_clock_latency Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_clock_latency [-h | -help] [-long_help] [-clock <clock_list>] [-early] [-
fall] [-late] [-rise] -source <delay> <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clock <clock_list> Valid clock destinations (string patterns are matched using
Tcl string matching)

-early Specifies the early clock latency

-fall Specifies the falling transition clock latency

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

579

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-late Specifies the late clock latency

-rise Specifies the rising transition clock latency

-source Specifies the source clock latency

<delay> Latency delay value

<targets> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Specifies clock latency for a given clock or clock
target.

There are two types of latency: network and
source. Network latency is the clock network delay
between the clock and register clock pins. Source
latency is the clock network delay between the clock
and its source (e.g., the system clock or base clock
of a generated clock).

The Timing Analyzer automatically computes
network latencies for all register and generated
clocks. Overriding clock network latencies is not
supported by the Timing Analyzer. Therefore, the
-source option must always be specified.

You can apply clock latency to a clock, which affects
all targets of the clock, or to a specific clock
target. If you specify a specific clock target that is
driven by more than one clock, use the -clock option
to specify which clock to use.Latencies assigned to a
clock target override any latencies assigned to a
clock.

Different clock latencies can be specified for early
(-early) and late (-late) latencies, as well as for
rising edges (-rise) and falling edges (-fall). If
only some combinations are specified, the other
combinations are used by default. For example, if only
a -rise -early latency and a -fall -early latency are
specified, then the -rise -late latency is assumed to
be the same as the -rise -early latency and the -fall
-late latency is assumed to be the same as the -fall
-early latency. If neither -rise nor -fall are used or
neither -early nor -late are used, then the latency
applies to both conditions.

Source latency can also be assigned to generated
clocks. This may be useful for specifying board level
delays from a clock output port to a clock input port
when the clock input port is acting as a feedback
clock.

The value of the targets is either a collection or a
Tcl list of wildcards used to create a collection of
the appropriate type. The values used must follow
standard Tcl or Timing Analyzer-extension substitution
rules. See help for the use_timing_analyzer_style_escaping
command for details.

Example Usage create_clock -name SYSCLK -period 10.000 [get_ports inclk]
create_generated_clock -name OUTCLK -divide_by 1 -source [get_ports inclk] [get_ports outclk]
create_generated_clock -name FDBKCLK -divide_by 1 -source [get_ports outclk] [get_ports
fdbkclk]

Apply a simple 2.000 ns source latency to the system clock.
set_clock_latency -source 2.000 [get_clocks SYSCLK]

Specify feedback clock latencies between output port outclk
and the input port fdbkclk.
set_clock_latency -source -late -rise 0.800 [get_clocks FDBKCLK]
set_clock_latency -source -late -fall 0.750 [get_clocks FDBKCLK]
set_clock_latency -source -early -rise 0.500 [get_clocks FDBKCLK]
set_clock_latency -source -early -fall 0.460 [get_clocks FDBKCLK]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

580

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.35.22. set_clock_uncertainty (::quartus::sdc)

The following table displays information for the set_clock_uncertainty Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_clock_uncertainty [-h | -help] [-long_help] [-add] [-
enable_same_physical_edge] [-fall_from <fall_from_clock>] [-fall_to
<fall_to_clock>] [-from <from_clock>] [-hold] [-rise_from <rise_from_clock>] [-
rise_to <rise_to_clock>] [-setup] [-to <to_clock>] <uncertainty>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add Specifies that this assignment is an addition to the clock
uncertainty derived by derive_clock_uncertainty call

-enable_same_physical_edge Enable setting uncertainty value for same physical clock
edge

-fall_from <fall_from_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-fall_to <fall_to_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-from <from_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-hold Only apply the uncertainty value to hold and removal
checks

-rise_from <rise_from_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-rise_to <rise_to_clock> Valid destinations (string patterns are matched using Tcl
string matching)

-setup Only apply the uncertainty value to setup and recovery
checks

-to <to_clock> Valid destinations (string patterns are matched using Tcl
string matching)

<uncertainty> Uncertainty

Description
Specifies clock uncertainty or skew for clocks for
clock-to-clock transfers. You can specify uncertainty
separately for setup and hold, and you can specify
separate rising and falling clock transitions. If you omit
to specify -setup or -hold, the uncertainty value will be
applied to both analysis types. Similarly, if you omit to
specify rising or falling clock transitions, the uncertainty
value will be applied to both transitions.
The setup uncertainty is subtracted from the data required
time for each applicable path, and the hold
uncertainty is added to the data required time for
each applicable path.

Intel Quartus Prime software computes clock uncertainty for every clock
transfer. For particular transfers, you can use the set_clock_uncertainty
assignment to override the automatically derived value, or you can
specify the -add option to add to the automatically derived value.
Note that the -add option is only relative to the automatically derived
value. If multiple set_clock_uncertainty assignments apply to the same
clock transfer, the later value overrides the earlier ones,
regardless of whether the -add option was used.

Note: The Timing Analyzer does not apply
clock uncertainty to transfers involving the same
physical launch and latch edge (that is, the latch and

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

581

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

launch edges are the same edge of a clock source and
occur at the same time) by default. Such transfers
typically occur in hold analysis, but may also occur in
setup analysis with a multicycle value of 0. You can
use the -enable_same_physical_edge option to override this
behavior.

The values for -from, -to, and similar options are
either collections or a Tcl list of wildcards used to
create collections of appropriate types. The values
used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See the help for
use_timing_analyzer_style_escaping for details.

Example Usage set_clock_uncertainty -setup -rise_from clk1 -fall_to clk2 200ps

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.35.23. set_disable_timing (::quartus::sdc)

The following table displays information for the set_disable_timing Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_disable_timing [-h | -help] [-long_help] [-from <name>] [-to <name>]
<cells>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-from <name> Valid source pin suffix

-to <name> Valid destination pin suffix

<cells> List of cells

Description
Disables a timing edge (arc) from inside a given cell or cells.
Disabling a timing edge prevents timing analysis through that edge.
If either -from or -to (or both) are unspecified, the missing value or
values are replaced by a "*" character.

The values of the -from and -to are valid pin suffixes.
The values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See the help for use_timing_analyzer_style_escaping for
details.

Example Usage set_disable_timing -from datain -to combout A|B
set_disable_timing -from carryin *

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

582

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.35.24. set_false_path (::quartus::sdc)

The following table displays information for the set_false_path Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_false_path [-h | -help] [-long_help] [-fall_from <names>] [-fall_to
<names>] [-from <names>] [-hold] [-latency_insensitive] [-no_synchronizer] [-
rise_from <names>] [-rise_to <names>] [-setup] [-through <names>] [-to
<names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-fall_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-hold Specifies the false_path value (applies only to clock hold or
removal checks)

-latency_insensitive Mark this false path as one that should still be optimized

-no_synchronizer Prevent this false path from triggering a synchronizer

-rise_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Specifies the false_path value (applies only to clock setup or
recovery checks)

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Specifies a false-path exception, removing (or cutting) paths from
timing analysis.

The -from and -to values are collections of clocks, registers, ports,
pins, or cells in the design. If the -from or -to values are not
specified, the collection is converted automatically into [get_keepers
*]. It is worth noting that if the counterpart of the unspecified
collection is a clock collection, it is more efficient to explicitly
specify this collection as a clock collection only if the clock
collection also generates the desired assignment.

Applying exceptions between clocks applies the exception from all
register or ports driven by the -from clock to all registers or ports
driven by the -to clock. Applying exceptions between a pair of clocks
is more efficient than for specific node to node or node to clock
paths.

If the -latency_insensitive flag is set, the Fitter will be allowed to
freely insert additional pipelining stages on any paths that are cut by
the exception. These pipelined stages will be retimed to improve performance,
but the timing requirements of the paths will still be ignored, just like
for ordinary false paths. Without this flag, the Fitter will not perform any
optimizations on the cut paths.

If pin names or collections are used, the -from value must be a clock
pin and the -to value must be any non-clock input pin to a
register. Assignments from clock pins or to and from cells applies to
all registers in the cell or driven by the clock pin.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

583

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The -through values are collections of pins or nets in the design. An
exception applied through a node in the design applies only to paths
through the specified node.
The Timing Analyzer allows you to specify the -through argument multiple times to
describe paths that go through multiple points.
For instance, users can select all paths that go through node X, and then go through node Y.
This helps you narrow down and select the specific paths that you are interested in.

The -rise_from and -fall_from options can be used in place of the
-from destination nodes. The rise or fall value of the option
indicates that the "from" nodes are driven by the rising or falling
edge of the clock that feeds this node, taking into consideration any
logical inversions along the clock path. The -from option is the
combination of both rising and falling "from" nodes. If the "from"
collection is a clock collection, the assignment applies to those
nodes that are driven by the respective rising or falling clock edge.

The -rise_to and -fall_to options behave similarly to the "from"
options described previously. These assignments restrict the given
assignment to only those nodes or clocks that correspond to the
specified rise or fall value, taking into consideration any logical
inversions that are along the clock path.

The -setup and -hold options allow the false path to only be applied
to the corresponding setup/recovery or hold/removal checks. The
default if neither value is specified is to apply the false path to
both -setup and -hold.

The values of the -from, -to, -through, and other similar options are
either collections or a Tcl list of wildcards used to create
collections of appropriate types. The values used must follow standard
Tcl or Timing Analyzer-extension substitution rules. See help for the
use_timing_analyzer_style_escaping command for details.

See help for the set_clock_groups command for information.

Example Usage # Set a false-path between two unrelated clocks
See also set_clock_groups
set_false_path -from [get_clocks clkA] -to [get_clocks clkB]

Set a false-path for a specific path
set_false_path -from [get_pins regA|clk] -to [get_pins regB|aclr]

Set a false-path from a node to a falling clock
set_false_path -from [get_pins regA|clk] -fall_to [get_clocks clkB]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.35.25. set_input_delay (::quartus::sdc)

The following table displays information for the set_input_delay Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_input_delay [-h | -help] [-long_help] [-add_delay] [-blackbox] -clock
<name> [-clock_fall] [-fall] [-max] [-min] [-reference_pin <name>] [-rise] [-
source_latency_included] <delay> <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add_delay Create additional delay constraint instead of overriding
previous constraints

-blackbox Create an assignment for a partition boundary port causing
it to be treated as a port

-clock <name> Clock name

-clock_fall Specifies that input delay is relative to the falling edge of
the clock

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

584

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-fall Specifies the falling input delay at the port

-max Applies value as maximum data arrival time

-min Applies value as minimum data arrival time

-reference_pin <name> Specifies a pin or port in the design to which the input delay
is relative

-rise Specifies the rising input delay at the port

-source_latency_included Specifies that input delay includes added source latency

<delay> Time value

<targets> List of input port type objects

Description
Specifies the data arrival times at the specified input ports relative
the clock specified by the -clock option. The clock must refer to a
clock name in the design.

Input delays can be specified relative to the rising edge (default) or
falling edge (-clock_fall) of the clock.

Input delays can be specified relative to a pin or a port (-reference_pin)
in the clock network. Clock arrival times to the reference pin or port
are added to data arrival times.

If no -reference_pin is specified, if the input delay is specified
relative to a generated clock with a single target, the clock arrival
times to the generated clock are added to the data arrival time. If the
generated clock has multiple targets, the worst case arrival time to
those targets will be used.

Input delays can already include clock source latency. By default the
clock source latency of the related clock is added to the input delay
value, but when the -source_latency_included option is specified, the
clock source latency is not added because it was factored into the
input delay value.

The maximum input delay (-max) is used for clock setup checks or
recovery checks and the minimum input delay (-min) is used for clock
hold checks or removal checks. If only -min or -max (or neither) is
specified for a given port, the same value is used for both.

Separate rising (-rise) and falling (-fall) arrival times at the port
can be specified. If only one of -rise and -fall are specified for a
given port, the same value is used for both.

By default, set_input_delay removes any other input delays to the port
except for those with the same -clock, -clock_fall, and -reference_pin
combination. Multiple input delays relative to different clocks, clock
edges, or reference pins can be specified using the -add_delay option.
Future input delays relative to different clocks, clock edges, or
reference pins that do not specify the -add_delay option will still
remove previous input delays that specified the -add_delay option.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type. The
values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See help for the use_timing_analyzer_style_escaping
command for details.

Example Usage # Simple input delay with the same value for min/max and rise/fall:
1) set on ports with names of the form myin*
set_input_delay -clock clk 1.5 [get_ports myin*]
2) set on all input ports
set_input_delay -clock clk 1.5 [all_inputs]

Input delay with respect to the falling edge of clock
set_input_delay -clock clk -clock_fall 1.5 [get_ports myin*]

Input delays for different min/max and rise/fall combinations
set_input_delay -clock clk -max -rise 1.4 [get_ports myin*]
set_input_delay -clock clk -max -fall 1.5 [get_ports myin*]
set_input_delay -clock clk -min -rise 0.7 [get_ports myin*]
set_input_delay -clock clk -min -fall 0.8 [get_ports myin*]

Adding multiple input delays with respect to more than one clock
set_input_delay -clock clkA -min 1.2 [get_ports myin*]
set_input_delay -clock clkA -max 1.8 [get_ports myin*]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

585

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_input_delay -clock clkA -clock_fall 1.6 [get_ports myin*] -add_delay
set_input_delay -clock clkB -min 2.1 [get_ports myin*] -add_delay
set_input_delay -clock clkB -max 2.5 [get_ports myin*] -add_delay

This is a common mistake where input delays are accidentally removed
set_input_delay -clock clkA -min 0.2 [get_ports myout*]
set_input_delay -clock clkB -min 1.1 [get_ports myout*] -add_delay
The following removes the clkB entry. You need to always use -add_delay
when more than one clock, clock_fall or reference_pin exists
set_input_delay -clock clkA -max 0.8 [get_ports myout*]
The following removes the clkA entry. You need to always use -add_delay
when more than one clock, clock_fall or reference_pin exists
set_input_delay -clock clkB -max 1.5 [get_ports myout*]

Specifying an input delay relative to an external clock output port
set_input_delay -clock clk -reference_pin [get_ports clkout] 0.8 [get_ports myin*]

Specifying an input delay relative to the clock pin of a register
set_input_delay -clock clk -reference_pin [get_pins regA|clk] 0.8 [get_ports myin*]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Incorrect collection type. Expected a collection of
type <string>.

TCL_ERROR 1 ERROR: Options -<string> and -<string> are mutually
exclusive. Specify only one of the two options.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.26. set_input_transition (::quartus::sdc)

The following table displays information for the set_input_transition Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_input_transition [-h | -help] [-long_help] [-clock <name>] [-clock_fall]
[-fall] [-max] [-min] [-rise] <transition> <ports>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clock <name> Clock name

-clock_fall Specifies that input delay is relative to the falling edge of
the clock

-fall Specifies the falling output delay at the port

-max Applies value as maximum data required time

-min Applies value as minimum data required time

-rise Specifies the rising output delay at the port

<transition> Time value

<ports> Collection or list of input or bidir ports

Description
This constraint does not affect calculations performed by
the Timing Analyzer. It only affects PrimeTime analysis.
If you set this constraint in the Timing Analyzer the constraint is
written out to the SDC file when you call write_sdc.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

586

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage set_input_transition 50 [all_inputs]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Incorrect collection type. Expected a collection of
type <string>.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.35.27. set_max_delay (::quartus::sdc)

The following table displays information for the set_max_delay Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_max_delay [-h | -help] [-long_help] [-fall_from <names>] [-fall_to
<names>] [-from <names>] [-no_synchronizer] [-rise_from <names>] [-rise_to
<names>] [-through <names>] [-to <names>] <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-fall_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-no_synchronizer Prevent this max delay from triggering a synchronizer

-rise_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

<value> Time Value

Description
Specifies a maximum delay exception for a given path.

The maximum delay is similar to changing the setup relationship
(latching clock edge - launching clock edge), except that it can be
applied to input or output ports without input or output delays
assigned to them. Maximum delays are always relative to any clock
network delays (if the source or destination is a register) or any
input or output delays (if the source or destination is a port).
Therefore, input delays and clock latencies are added to the data
arrival times. Clock latencies also added to data required times and
output delays are subtracted from data required times.

The -from and -to values are collections of clocks, registers, ports,
pins, or cells in the design. If the -from or -to values are not
specified, the collection is converted automatically into [get_keepers
*]. It is worth noting that if the counterpart to the unspecified
collection is a clock collection, it is more efficient to explicitly
specify this collection as a clock collection but only if the clock
collection also generates the desired assignment.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

587

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Applying exceptions between clocks applies the exception from all
register or ports driven by the -from clock to all registers or ports
driven by the -to clock. Applying exceptions between a pair of clocks
is more efficient than for specific node to node or node to clock
paths.

If pin names or collections are used, the -from value must be a clock
pin and the -to value must be any non-clock input pin to a register.
Assignments from clock pins or to and from cells applies to all
registers in the cell or driven by the clock pin.

The -through values are collections of pins or nets in the design. An
exception applied through a node in the design applies only to paths
through the specified node.
The Timing Analyzer allows you to specify the -through argument multiple times to
describe paths that go through multiple points.
For instance, users can select all paths that go through node X, and then go through node Y.
This helps you narrow down and select the specific paths that you are interested in.

The -rise_from and -fall_from options can be used in place of the
-from destination nodes. The rise or fall value of the option
indicates that the "from" nodes are driven by the rising or falling
edge of the clock that feeds this node taking into consideration any
logical inversions along the clock path. The "-from" option is the
combination of both rising and falling "from" nodes. If the "from"
collection is a clock collection, the assignment applies to those
nodes that are driven by the respective rising or falling clock edge.

The -rise_to and -fall_to options behave similarly to the "from1"
options described previously. These assignments restrict the given
assignment to only those nodes or clocks that correspond to the
specified rise or fall value taking into consideration any logical
inversions that are along the clock path.

The values of the -from, -to, -through, and other similar options are
either collections or a Tcl list of wildcards used to create
collections of appropriate types. The values used must follow standard
Tcl or Timing Analyzer-extension substitution rules. See help for the
use_timing_analyzer_style_escaping command for details.

Example Usage # Apply a 10ns max delay between two unrelated clocks
set_max_delay -from [get_clocks clkA] -to [get_clocks clkB] 10.000

Apply a 2ns max delay for an input port (TSU)
set_max_delay -from [get_ports in[*]] -to [get_registers *] 2.000

Apply a 2ns max delay for an output port (TCO)
set_max_delay -from [get_registers *] -to [get_ports out[*]] 2.000

Apply a 2ns max delay for an input port to an output port (TPD)
set_max_delay -from [get_ports in[*]] -to [get_ports out[*]] 2.000

Apply a 2ns max delay for an input port only to nodes driven by
the rising edge of clock CLK
set_max_delay -from [get_ports in[*]] -rise_to [get_clocks CLK] 2.000

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.35.28. set_max_time_borrow (::quartus::sdc)

The following table displays information for the set_max_time_borrow Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_max_time_borrow [-h | -help] [-long_help] [-exact] <value> <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-exact Forces the time borrowed to be the exact value provided (if
physically possible)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

588

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<value> Time Value

<targets> Collection or list of latches

Description
Specifies the maximum borrowed time for level-sensitive latches. The actual borrowed time
will be determined automatically, but will never exceed the amount you specify. For any
latches without a set_max_time_borrow constraint, no limit will apply (except for the physical
limit of what is possible on the device, as described below).

By using the -exact option, you can bypass the automatic algorithm and specify the exact
amount of borrowing at a given latch. For optimum results, using the automatic algorithm
is recommended (ideally, without any set_max_time_borrow constraints).

Time borrowing is specified with respect to the earliest possible time a signal can be
clocked into the latch node. For example, for a positive latch, if the earliest possible
arrival time of the rising clock edge is 1.025ns, then a signal that has an arrival time
of 1.035ns (where this arrival time already includes the micro-setup time of the latch)
will require at least 0.010ns of time borrowing.

Regardless of how the borrowed time is determined (automatically without a limit, automatically
with a set_max_time_borrow constraint, or manually with a set_max_time_borrow -exact constraint),
the borrowed time can never exceed what is physically possible to borrow on the device.
The maximum amount that can be borrowed is the period of time when the latch is open
(e.g. half the clock period if the clock has a 50% duty cycle), but this time is reduced
by clock propagation time spread and clock uncertainty between the latch-opening and
latch-closing clock edges, and is further reduced by the closing-edge setup time of the latch.
Some of these factors vary from corner to corner, as well as from clock to clock
(if multiple clocks drive the latch).

Time borrowing analysis will only occur in the Timing Analysis (Signoff) stage, or when
manually running the Timing Analyzer. The Fitter will not utilize time borrowing information
and will assume zero time borrowed. Thus, the use of level-sensitive latches with high-speed
clocks is not recommended, unless other constraints (such as set_max_delay) are manually set
to ensure optimal Fitter behavior.

The targets of this command must be level-sensitive latches (all other targets will
be ignored).

The targets can be specified as either a collections or a Tcl list of wildcards
used to create collections of appropriate types. The values used must follow
standard Tcl or Timing Analyzer-extension substitution rules. See help for the
use_timing_analyzer_style_escaping command for details.

Example Usage # Borrow at most 3ns at all "lat*" latches:
set_max_time_borrow 3 [get_registers lat*]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option <string> has illegal value: <string>. Specify
a legal option value.

3.1.35.29. set_min_delay (::quartus::sdc)

The following table displays information for the set_min_delay Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_min_delay [-h | -help] [-long_help] [-fall_from <names>] [-fall_to
<names>] [-from <names>] [-rise_from <names>] [-rise_to <names>] [-through
<names>] [-to <names>] <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-fall_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

589

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-rise_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

<value> Time Value

Description
Specifies a minimum delay exception for a given path.

The minimum delay is similar to changing the hold relationship
(launching clock edge - latching clock edge), except that it can be
applied to input or output ports without input or output delays
assigned to them. Minimum delays are always relative to any clock
network delays (if the source or destination is register) or any input
or output delays (if the source or destination is a port). Therefore,
input delays and clock latencies are added to the data arrival times.
Clock latencies also added to data required times and output delays
are subtracted from data required times.

The -from and -to values are collections of clocks, registers, ports,
pins, or cells in the design. If the -from or -to values are not
specified, the collection is converted automatically into
[get_keepers *]. It is worth noting that if the counterpart of the
unspecified collection is a clock collection, it is more efficient
to explicitly specify this collection as a clock collection, but only
if the clock collection also generates the desired assignment.

Applying exceptions between clocks applies the exception from all
register or ports driven by the -from clock to all registers or
ports driven by the -to clock. Also, applying exceptions between
a pair of clocks is more efficient than for specific node to node or
node to clock paths.

If pin names or collections are used, the -from value must be a
clock pin and the -to value must be any non-clock input pin to
a register. Assignments from clock pins or to and from cells applies
to all registers in the cell or driven by the clock pin.

The -through values are collections of pins or nets in the
design. An exception applied through a node in the design applies
only to paths through the specified node.
The Timing Analyzer allows you to specify the -through argument multiple times to
describe paths that go through multiple points.
For instance, users can select all paths that go through node X, and then go through node Y.
This helps you narrow down and select the specific paths that you are interested in.

The -rise_from and -fall_from options can be used in place of the
destination nodes specified using the -from option. The rise or fall
value of the option indicates that the "from" nodes are driven by the
rising or falling edge of the clock that feeds this node taking into
consideration any logical inversions along the clock path. The -from
option is the combination of both rising and falling "from" nodes. If
the -from collection is a clock collection, the assignment applies to
those nodes that are driven by the respective rising or falling clock
edge.

The -rise_to and -fall_to options behave similarly to the "from"
options described previously. These assignments restrict the given
assignment to only those nodes or clocks that correspond to the
specified rise or fall value taking into consideration any logical
inversions that are along the clock path.

The values of the -from, -to, -through, and other similar options are
either collections or a Tcl list of wildcards used to create
collections of appropriate types. The values used must follow standard
Tcl or Timing Analyzer-extension substitution rules. See help for the
use_timing_analyzer_style_escaping command for details.

Example Usage # Apply a 0ns min delay between two unrelated clocks
set_min_delay -from [get_clocks clkA] -to [get_clocks clkB] 0.000

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

590

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Apply a 0ns min delay for an input port (TH)
set_min_delay -from [get_ports in[*]] -to [get_registers *] -.000

Apply a 0.5ns min delay for an output port (MIN_TCO)
set_min_delay -from [get_registers *] -to [get_ports out[*]] 0.500

Apply a 0.5ns min delay for an input port to an output port (MIN_TPD)
set_min_delay -from [get_ports in[*]] -to [get_ports out[*]] 0.500

Apply a 0.5ns min delay for an input port only to nodes driven by
the falling edge of clock CLK
set_max_delay -from [get_ports in[*]] -fall_to [get_clocks CLK] 0.500

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.35.30. set_multicycle_path (::quartus::sdc)

The following table displays information for the set_multicycle_path Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_multicycle_path [-h | -help] [-long_help] [-end] [-fall_from <names>] [-
fall_to <names>] [-from <names>] [-hold] [-rise_from <names>] [-rise_to
<names>] [-setup] [-start] [-through <names>] [-to <names>] <value>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-end Specifies that the multicycle is relative to the destination
clock waveform (default)

-fall_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-hold Specifies that the multicycle value applies to clock hold or
removal checks

-rise_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Specifies that the multicycle value applies to clock setup or
recovery checks (default)

-start Specifies that the multicycle is relative to the source clock
waveform

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

<value> Number of clock cycles

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

591

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Specifies a multicycle exception for a given set of paths.

Multicycles can be specified relative to the source clock (-start) or
destination clock (-end). This is useful when the source clock and
destination clock are operating at different frequencies. For
example, if the source clock is twice as fast (half period) as the
destination clock, a -start multicycle of 2 is usually required.

Hold multicycles (-hold) are computed relative to setup multicycles
(-setup). The value of the hold multicycle represents the number
clock edges away from the default hold multicycle. The default hold
multicycle value is 0.

The -from and -to values are collections of clocks, registers, ports,
pins, or cells in the design. If the -from or -to values are not
specified, the collection is converted automatically into [get_keepers
*]. It is worth noting that if the counterpart of the unspecified
collection is a clock collection, it is more efficient to explicitly
specify this collection as a clock collection but only if the clock
collection also generates the desired assignment.

Applying exceptions between clocks applies the exception from all
register or ports driven by the -from clock to all registers or ports
driven by the -to clock. Also, applying exceptions between a pair of
clocks is more efficient than for specific node to node or node to
clock paths.

If pin names or collections are used, the -from value must be a clock
pin and the -to value must be any non-clock input pin to a register.
Assignments from clock pins or to and from cells applies to all
registers in the cell or driven by the clock pin.

The -through values are collections of pins or nets in the design.
An exception applied through a node in the design applies only to
paths through the specified node.
The Timing Analyzer allows you to specify the -through argument multiple times to
describe paths that go through multiple points.
For instance, users can select all paths that go through node X, and then go through node Y.
This helps you narrow down and select the specific paths that you are interested in.

The -rise_from and -fall_from options can be used in place of the
"-from" destination nodes. The rise or fall value of the option
indicates that the "from" nodes are driven by the rising or falling
edge of the clock that feeds this node taking into consideration any
logical inversions along the clock path. The "-from" option is the
combination of both rising and falling "from" nodes. If the "from"
collection is a clock collection, the assignment applies to those
nodes that are driven by the respective rising or falling clock edge.

The -rise_to and -fall_to options behave similarly to the "from"
options described previously. These assignments restrict the given
assignment to only those nodes or clocks that correspond to the
specified rise or fall value taking into consideration any logical
inversions that are along the clock path.

The values of the -from, -to, -through, and similar options are either
collections or a Tcl list of wildcards used to create collections of
appropriate types. The values used must follow standard Tcl or
Timing Analyzer-extension substitution rules. See help for the
use_timing_analyzer_style_escaping command for details.

Example Usage create_clock -period 10.000 -name CLK [get_ports clk]
create_generated_clock -divide_by 2 -source [get_ports clk] -name CLKDIV2 [get_registers
clkdiv]

Apply a source multicycle of 2 with a hold multicycle of 1 for all
paths from the CLK domain to the CLKDIV2 domain.
set_multicycle_path -start -setup -from [get_clocks CLK] -to [get_clocks CLKDIV2] 2
set_multicycle_path -start -hold -from [get_clocks CLK] -to [get_clocks CLKDIV2] 1

Apply a multicycle constraint of 3 (with a default hold multicycle of 0) for a
specific path in the design.
set_multicycle_path -end -setup -from [get_pins rega|clk] -to [get_pins regb|*] 3

Apply a multicycle constraint of 2 to a given cell, except for the reset pin.
set_multicycle_path -end -setup -to [get_cells regb] 2
set_multicycle_path -end -setup -to [get_pins regb|aclr] 1

#Apply a multicycle constraint of 3 rising from a clock
set_multicycle_path -end -setup -rise_from [get_clocks CLK] 3

Return Value Code Name Code String Return
continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

592

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option <string> has illegal value: <string>. Specify
a legal option value.

TCL_ERROR 1 ERROR: The <string> value is outside of the legal range.

3.1.35.31. set_output_delay (::quartus::sdc)

The following table displays information for the set_output_delay Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc on page 562

Syntax set_output_delay [-h | -help] [-long_help] [-add_delay] [-blackbox] -clock
<name> [-clock_fall] [-fall] [-max] [-min] [-reference_pin <name>] [-rise] [-
source_latency_included] <delay> <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add_delay Create additional delay constraint instead of overriding
previous constraints

-blackbox Create an assignment for a partition boundary port causing
it to be treated as a port

-clock <name> Clock name

-clock_fall Specifies output delay relative to the falling edge of the
clock

-fall Specifies the falling output delay at the port

-max Applies value as maximum data required time

-min Applies value as minimum data required time

-reference_pin <name> Specifies a pin or port in the design to which the output
delay is relative

-rise Specifies the rising output delay at the port

-source_latency_included Specifies input delay already includes added source latency

<delay> Time value

<targets> Collection or list of output ports

Description
Specifies the data required times at the specified output ports
relative the clock specified by the -clock option. The clock must
refer to a clock name in the design.

Output delays can be specified relative to the rising edge (default)
or falling edge (-clock_fall) of the clock.

Output delays can be specified relative to a pin or a port (-reference_pin)
in the clock network. Clock arrival times to the reference pin or port
are added to the data required time.

If no -reference_pin is specified, if the output delay is specified
relative to a generated clock with a single target, the clock arrival
times to the generated clock are added to the data required time. If the
generated clock has multiple targets, the worst case arrival time to
those targets will be used.

Output delays can include clock source latency. By default the clock
source latency of the related clock is added to the output delay
value, but when the -source_latency_included option is specified, the
clock source latency is not added because it was factored into the
output delay value.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

593

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The maximum output delay (-max) is used for clock setup checks or
recovery checks and the minimum output delay (-min) is used for clock
hold checks or removal checks. If only one of -min and -max (or
neither) is specified for a given port, the same value is used for
both.

Separate rising (-rise) and falling (-fall) required times at the port
can be specified. If only one of -rise and -fall are specified for a
given port, the same value is used for both.

By default, set_output_delay removes any other output delays to the port
except for those with the same -clock, -clock_fall, and -reference_pin
combination. Multiple output delays relative to different clocks, clock
edges, or reference pins can be specified using the -add_delay option.
Future output delays relative to different clocks, clock edges, or
reference pins that do not specify the -add_delay option will still
remove previous output delays that specified the -add_delay option.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type.
The values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See help for the use_timing_analyzer_style_escaping
command for details.

Example Usage # Simple output delay with the same value for min/max and rise/fall:
1) set on ports with names of the form myout*
set_output_delay -clock clk 0.5 [get_ports myout*]
2) set on all output ports
set_output_delay -clock clk 0.5 [all_outputs]

Output delay with respect to the falling edge of clock
set_output_delay -clock clk -clock_fall 0.5 [get_ports myout*]

Output delays for different min/max and rise/fall combinations
set_output_delay -clock clk -max -rise 0.5 [get_ports myout*]
set_output_delay -clock clk -max -fall 0.4 [get_ports myout*]
set_output_delay -clock clk -min -rise 0.4 [get_ports myout*]
set_output_delay -clock clk -min -fall 0.3 [get_ports myout*]

Adding multiple output delays with respect to more than one clock
set_output_delay -clock clkA -min 0.2 [get_ports myout*]
set_output_delay -clock clkA -max 0.8 [get_ports myout*]
set_output_delay -clock clkA -clock_fall 0.6 [get_ports myout*] -add_delay
set_output_delay -clock clkB -min 1.1 [get_ports myout*] -add_delay
set_output_delay -clock clkB -max 1.5 [get_ports myout*] -add_delay

This is a common mistake where output delays are accidentally removed
set_output_delay -clock clkA -min 0.2 [get_ports myout*]
set_output_delay -clock clkB -min 1.1 [get_ports myout*] -add_delay
The following removes the clkB entry. You need to always use -add_delay
when more than one clock, clock_fall or reference_pin exists
set_output_delay -clock clkA -max 0.8 [get_ports myout*]
The following removes the clkA entry. You need to always use -add_delay
when more than one clock, clock_fall or reference_pin exists
set_output_delay -clock clkB -max 1.5 [get_ports myout*]

Specifying an output delay relative to an external clock output port
set_output_delay -clock clk -reference_pin [get_ports clkout] 0.8 [get_ports myout*]

Specifying an output delay relative to the clock pin of a register
set_output_delay -clock clk -reference_pin [get_pins regA|clk] 0.8 [get_ports myout*]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Incorrect collection type. Expected a collection of
type <string>.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

594

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.36. ::quartus::sdc_ext

The following table displays information for the ::quartus::sdc_ext Tcl package:

Tcl Package and Version ::quartus::sdc_ext 2.0

Description
Timing Constraints not defined in the SDC Spec Version 1.5
are implemented in this package.
Any command in this package can be specified in a Timing Analyzer SDC
file.

Availability This package is loaded by default in the following executable:

 quartus_sta

This package is available for loading in the following executable:

 quartus_fit

Tcl Commands derive_clock_uncertainty (::quartus::sdc_ext) on page 595
derive_pll_clocks (::quartus::sdc_ext) on page 596
disable_min_pulse_width (::quartus::sdc_ext) on page 597
get_active_clocks (::quartus::sdc_ext) on page 597
get_fanins (::quartus::sdc_ext) on page 598
get_fanouts (::quartus::sdc_ext) on page 599
get_keepers (::quartus::sdc_ext) on page 601
get_nodes (::quartus::sdc_ext) on page 601
get_partitions (::quartus::sdc_ext) on page 602
get_registers (::quartus::sdc_ext) on page 603
remove_annotated_delay (::quartus::sdc_ext) on page 604
remove_clock (::quartus::sdc_ext) on page 605
reset_timing_derate (::quartus::sdc_ext) on page 605
set_active_clocks (::quartus::sdc_ext) on page 606
set_annotated_delay (::quartus::sdc_ext) on page 606
set_data_delay (::quartus::sdc_ext) on page 608
set_max_skew (::quartus::sdc_ext) on page 610
set_net_delay (::quartus::sdc_ext) on page 612
set_scc_mode (::quartus::sdc_ext) on page 613
set_time_format (::quartus::sdc_ext) on page 614
set_timing_derate (::quartus::sdc_ext) on page 614

3.1.36.1. derive_clock_uncertainty (::quartus::sdc_ext)

The following table displays information for the derive_clock_uncertainty Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax derive_clock_uncertainty [-h | -help] [-long_help] [-add] [-overwrite]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add Adds results to user-defined clock uncertainty assignments

-overwrite Overwrites user-defined clock uncertainty assignments

Description
Applies inter-clock, intra-clock and I/O interface uncertainties based
on timing model characterization. This command calculates and applies
setup and hold clock uncertainties for each clock-to-clock transfer
found in the design. The calculation of the uncertainties is delayed
until the next update_timing_netlist call.

To get I/O interface uncertainty in addition to inter-clock and
intra-clock uncertainties, create a virtual clock to represent an
off-chip clock for input or output delay specification and assign
delays to input/output ports with set_input_delay and set_output_delay
commands that specify the virtual clock.

If set_input_delay and set_output_delay commands specifying a non-

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

595

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

virtual clock are called, derive_clock_uncertainty applies either
inter-clock or intra-clock uncertainty for that clock transfer since
those transfers represent a clock-to-clock domain rather than an
I/O-to-register clock domain.

The set_clock_uncertainty calls will override the derived values for a
source clock and destination clock pair unless either the
set_clock_uncertainty command or the derive_clock_uncertainty command
specified the -add option, in which case the values are added. Specifying
the -overwrite option will instead cause all set_clock_uncertainty commands
to be ignored. Previous set_clock_uncertainty assignments can also be
manually removed by using the remove_clock_uncertainty command.

Note that this command is called automatically and the user only
needs to manually call it to specify the -add or -overwrite options.

Example Usage # create a virtual clock
create_clock -name virtual -period 1

apply input/output delays with the virtual clock to get
I/O interface uncertainties
set_input_delay -clock virtual -add_delay 0 [all_inputs]
set_output_delay -clock virtual -add_delay 0 [all_outputs]

call derive_clock_uncertainty. results will be calculated
at the next update_timing_netlist call
derive_clock_uncertainty

update_timing_netlist

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.36.2. derive_pll_clocks (::quartus::sdc_ext)

The following table displays information for the derive_pll_clocks Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax derive_pll_clocks [-h | -help] [-long_help] [-create_base_clocks] [-
use_net_name]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-create_base_clocks Creates base clocks on input clock ports of the design that
are feeding the PLL

-use_net_name Use net names as clock names

Description
NOTE: This command is no longer supported for Stratix 10 and later families.

Identifies PLLs or similar resources in the design and creates
generated clocks for their output clock pins. Multiple generated
clocks may be created for each output clock pin if the PLL is using
clock switchover, one for the inclk[0] input clock pin and one for the
inclk[1] input clock pin.

By default this command does not create base clocks on input clock
ports that are driving the PLL. When you use the create_base_clocks
option, derive_pll_clocks also creates the base clock on an input
clock port deriving the PLL. This option does not overwrite an
existing clock.

By default the clock name is the same as the output clock pin name.
To use the net name, use the -use_net_name option.

Note that this command is not supported for Stratix 10 and later device
families. The only families that still have support for this command are
Arria 10 and Cyclone 10GX. The reason why this command has been deprecated
is because all PLL clocks are now automatically generated by the SDC files
generated alongside the PLL IP. No user action is required.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

596

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage project_open top
create_timing_netlist

Create the base clock for the input clock port driving the PLL
create_clock -period 10.0 [get_ports sysclk]

Create the generated clocks for the PLL.
derive_pll_clocks

update_timing_netlist

Other user actions
report_timing

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.36.3. disable_min_pulse_width (::quartus::sdc_ext)

The following table displays information for the disable_min_pulse_width Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax disable_min_pulse_width [-h | -help] [-long_help] <targets>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<targets> Elements to disable MPW checks for

Description
Allows you to disable minimum pulse width checks for specified targets.

If the target is a clock collection, all MPW checks along that clock
path will be disabled. Otherwise, MPW checks for the elements in the
passed target collection will be disabled.

Example Usage disable_min_pulse_width -targets reg[*]
disable_min_pulse_width -targets [get_clocks {clkA}]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.36.4. get_active_clocks (::quartus::sdc_ext)

The following table displays information for the get_active_clocks Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax get_active_clocks [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

597

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Returns the collection of active clocks for timing
analysis. The active clocks are the clocks
specified in the most recent call to
set_active_clocks, or all clocks if set_active_clocks
has not been called.

Example Usage # Set some active clocks
set_active_clocks [get_clocks {clk1 clk2 sysclk*}]

Update the active clocks to exclude clk1
set_active_clocks [remove_from_collection [get_active_clocks] [get_clocks clk1]]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.36.5. get_fanins (::quartus::sdc_ext)

The following table displays information for the get_fanins Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax get_fanins [-h | -help] [-long_help] [-asynch] [-clock] [-inverting_paths] [-
no_logic] [-non_inverting_paths] [-stop_at_clocks] [-synch] [-through <names>]
<filter>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-asynch Traverse through asynch edges

-clock Traverse through clock edges

-inverting_paths Only follow inverting combinational paths

-no_logic Do not follow combinational paths

-non_inverting_paths Only follow non-inverting combinational paths

-stop_at_clocks Return clock targets as fanin/fanouts rather than traversing
through them

-synch Traverse through synch edges

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

<filter> Valid starting nodes (string patterns are matched using Tcl
string matching or collection)

Description
Returns a collection of fanin ports, registers (and
optionally clock targets) reachable from the
<filter> in the design. When you supply the -no_logic
option, get_fanins ignores paths that pass through
combinational logic elements other than buffers and
inverters.

NOTE: the -no_logic option does not consider
logic absorbed into the cells of the <filter> nor the
cells of fanin registers, ports or clock targets.

When you use -synch, -asynch, or -clock options,
get_fanins traverses the netlist through corresponding
edges. You can specify more than one of these options.
If you do not specify any of these three

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

598

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

options, the command does not ignore any paths.

When the -non_inverting_paths option is used, no_logic
does not follow any paths that includes odd number of
inverters. Similarly, when the -inverting_paths option
is used, no_logic does not follow any paths that
includes even number of inverters. Both the
-non_inverting_paths and -inverting_paths options
require the -no_logic option and are mutually
exclusive.

When the -through option is used, only the fanins that
can be reached by going through those nodes are
returned.

When -stop_at_clocks is used, combinational clock targets may
be returned (in addition to clock or non-clock registers
and ports), and registers or ports that can only be reached
by traversing through a clock target will not be returned.

The filter for the collection is a Tcl list of
wildcards, and must follow standard Tcl or
Timing Analyzer-extension substitution rules. See the help
for the use_timing_analyzer_style_escaping command for
details.

Example Usage set fanins [get_fanins $item -synch -clock]
foreach_in_collection fanin_keeper $fanins {
 lappend fanin_keeper_list [get_node_info $fanin_keeper -name]
}

set fanins_no_logic [get_fanins $item -no_logic -asynch]
foreach_in_collection fanin_keeper $fanins_no_logic {
 lappend fanin_keeper_list_no_logic [get_node_info $fanin_keeper -name]
}

#-through example
get_fanins inst18 -through inst11

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.36.6. get_fanouts (::quartus::sdc_ext)

The following table displays information for the get_fanouts Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax get_fanouts [-h | -help] [-long_help] [-asynch] [-clock] [-inverting_paths] [-
no_logic] [-non_inverting_paths] [-stop_at_clocks] [-synch] [-through <names>]
<filter>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-asynch Traverse through asynchronous edges

-clock Traverse through clock edges

-inverting_paths Only follow inverting combinational paths

-no_logic Do not follow combinational paths

-non_inverting_paths Only follow non-inverting combinational paths

-stop_at_clocks Return clock targets as fanin/fanouts rather than traversing
through them

-synch Traverse through synchronous edges

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

599

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

<filter> Valid starting nodes (string patterns are matched using Tcl
string matching or collection)

Description
Returns a collection of fanout ports, registers (and
optionally clock targets) reachable from the
<filter> in the design. When the -no_logic option is
used, get_fanouts ignores the paths that pass through
combinational logic elements other than buffers and
inverters.

When you use the -synch, -asynch, or -clock options,
get_fanouts traverses the netlist through corresponding
edges. You can specify more than one of these options.
If you do not specify any of these three
options, the command does not ignore any paths.

When the -non_inverting_paths option is used in
conjunction with the -no_logic option, get_fanouts
does not follow paths that include an odd number
of inverters. Similarly, when the -inverting_paths
option is used in conjunction with the -no_logic
option, get_fanouts does not follow any paths that
include an even number of inverters. Both the
-non_inverting_paths and -inverting_paths options
require the -no_logic option and are mutually
exclusive.

NOTE:
The -no_logic option does not consider logic absorbed
into the cells of the <filter> nor the cells of fanout
registers, ports or clock targets.
The -no_inversion option does not consider inversions
absorbed into synchronous inputs of fanout registers,
as the Intel Quartus Prime software register timing
model always considers these edges as being positive
unate.

When the -through option is used, only the fanouts
that can be reached by going through those nodes are
returned.

When -stop_at_clocks is used, combinational clock targets may
be returned (in addition to clock or non-clock registers
and ports), and registers or ports that can only be reached
by traversing through a clock target will not be returned.

The filter for the collection is a Tcl list of
wildcards, and must follow standard Tcl or
Timing Analyzer-extension substitution rules. See the help
for use_timing_analyzer_style_escaping for details.

Example Usage set fanouts [get_fanouts $item]
foreach_in_collection fanout_keeper $fanouts {
 lappend fanout_keeper_list [get_node_info $fanout_keeper -name]
}

set fanouts_no_logic [get_fanouts $item -no_logic]
foreach_in_collection fanout_keeper $fanouts_no_logic {
 lappend fanout_keeper_list_no_logic [get_node_info $fanout_keeper -name]
}

Using through option to find the fanout registers whose enable input is
connected to the signal while ignoring the inverting paths.
get_fanouts inst1 -no_logic -non_inverting_paths -through [get_pins -hierarchical *|ena]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

600

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.36.7. get_keepers (::quartus::sdc_ext)

The following table displays information for the get_keepers Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax get_keepers [-h | -help] [-long_help] [-no_duplicates] [-nocase] [-nowarn]
[<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-no_duplicates Do not match duplicated keeper names

-nocase Specifies the matching of node names to be case-insensitive

-nowarn Do not issue warning messages about unmatched patterns

<filter> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Returns a collection of non-combinational or "keeper"
nodes in the design.

The default matching scheme returns not only
non-combinational nodes whose names match the
specified filter, but also non-combinational nodes
duplicated from these keepers (refers to cells are
automatically generated by Quartus from these
keepers). Use the -no_duplicates option to exclude
duplicated keepers.

The filter for the collection is a Tcl list of
wildcards, and must follow standard Tcl or
Timing Analyzer-extension substitution rules. See help for
the use_timing_analyzer_style_escaping command for details.

Example Usage project_open chiptrip
create_timimg_netlist

set kprs [get_keepers *reg*]
foreach_in_collection kpr $kprs {
 puts [get_object_info -name $kpr]
}

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.36.8. get_nodes (::quartus::sdc_ext)

The following table displays information for the get_nodes Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax get_nodes [-h | -help] [-long_help] [-include_generated_clocks] [-
no_duplicates] [-nocase] [-nowarn] [-of_clocks] [<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

601

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-include_generated_clocks Includes generated clocks derived from the matched clocks.
This option can only be used in conjunction with the -
of_clocks option.

-no_duplicates Do not match duplicated node names

-nocase Specifies the matching of node names (or clock names if the
-of_clocks option is used) to be case-insensitive

-nowarn Do not issue warning messages about unmatched patterns

-of_clocks Returns nodes that are on the clock domains of the
specified clock names

<filter> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Returns a collection of nodes in the design.

The default matching scheme returns not only nodes
whose names match the specified filter, but also nodes
duplicated from these nodes (refers to cells are
automatically generated by Quartus from these
nodes). Use the -no_duplicates option to not include
duplicated nodes. If the -of_clocks option is used, the
nodes returned are limited to those on the clock domains
of clocks whose names match the specified filter.

The filter for the collection is a Tcl list of
wildcards, and must follow standard Tcl or
Timing Analyzer-extension substitution rules. See help for
the use_timing_analyzer_style_escaping command for details.

Example Usage project_open chiptrip
create_timimg_netlist

set nodes [get_nodes *name*]
foreach_in_collection node $nodes {
 puts [get_object_info -name $node]
}

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The -include_generated_clocks option can only be
used when the -of_clocks option is used as well

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.36.9. get_partitions (::quartus::sdc_ext)

The following table displays information for the get_partitions Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax get_partitions [-h | -help] [-long_help] [-cell] [-hierarchical] [-nocase]
[<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cell Returns a cell collection inside the partitions matching the
<filter>

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

602

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-hierarchical Specifies if hierarchical searching method should be used

-nocase Specifies the matching of node names to be case-insensitive

<filter> Valid partitions (string patterns are matched using Tcl string
matching)

Description
Returns a collection of partitions matching the filter
by default. All partition names in the collection
match the specified pattern. Wildcards can be used to
select multiple partitions at once.

The -cell option creates and returns the collection of
cells found inside the partitions matching the
<filter> instead of returning a partition collection.

There are three Tcl string matching schemes available
with this command: default, -hierarchical, and
-no_case.

When using the default matching scheme, pipe
characters separate one hierarchy level from the
next. They are treated as special characters and are
taken into account when string matching with wildcards
is performed. The default matching scheme does not
force the search to proceed recursively down the
hierarchy.

Using the hierarchical matching scheme forces the
search to proceed recursively down the hierarchy.

The -nocase matching scheme uses case-insensitive
matching behavior.

The filter for the collection is a Tcl list of
wildcards, and must follow standard Tcl or
Timing Analyzer-extension substitution rules. See the help
for use_timing_analyzer_style_escaping for details.

Example Usage #Get the partitions matching the filter
get_partitions *

#Get the collection of cells inside partitions matching the filter
get_partitions * -cell

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: This command is not supported in this version of
the software.

3.1.36.10. get_registers (::quartus::sdc_ext)

The following table displays information for the get_registers Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax get_registers [-h | -help] [-long_help] [-latches] [-no_duplicates] [-nocase]
[-nowarn] [<filter>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-latches Get only latches that match the filter

-no_duplicates Do not match duplicated register names

-nocase Specifies the matching of node names to be case-insensitive

-nowarn Do not issue warning messages about unmatched patterns

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

603

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<filter> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Returns a collection of registers in the design.

The default matching scheme returns not only registers
whose names match the specified filter, but also
returns registers duplicated from these registers
(cells automatically generated from these registers by
the Quartus Prime software). Use the -no_duplicates
option to exclude duplicated registers.

The filter for the collection is a Tcl list of
wildcards, and must follow standard Tcl or
Timing Analyzer-extension substitution rules. See help for
the use_timing_analyzer_style_escaping command for details.

Example Usage project_open chiptrip
create_timing_netlist

set regs [get_registers *reg*]
foreach_in_collection reg $regs {
 puts [get_object_info -name $reg]
}

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.36.11. remove_annotated_delay (::quartus::sdc_ext)

The following table displays information for the remove_annotated_delay Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax remove_annotated_delay [-h | -help] [-long_help] -all

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all Specifies removal of all annotated delays

Description
Removes annotated delays from the design.

Example Usage # annotate delay
set_annotated_delay -net -from [get_pins clk] 0.1
update_timing_netlist

remove all annotated delays
remove_annotated_delay -all
update_timing_netlist

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

604

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.36.12. remove_clock (::quartus::sdc_ext)

The following table displays information for the remove_clock Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax remove_clock [-h | -help] [-long_help] [-all] [<clock_list>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all Removes all clocks from the design

<clock_list> Clock(s) to be removed

Description
Removes the specified clock(s) from the design.

Example Usage # Create a clock and then remove it.
create_clock -period 10 -name CLK [get_ports clk]
remove_clock CLK

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.36.13. reset_timing_derate (::quartus::sdc_ext)

The following table displays information for the reset_timing_derate Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax reset_timing_derate [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Resets all derate factors set on the design.

Example Usage # set timing derate
set_timing_derate -late 0.2 [get_cells *]
update_timing_netlist

reset all derate factors
reset_timing_derate
update_timing_netlist

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

605

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.36.14. set_active_clocks (::quartus::sdc_ext)

The following table displays information for the set_active_clocks Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax set_active_clocks [-h | -help] [-long_help] <clocks>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<clocks> List or collection of clocks

Description
Sets the list of active clocks for timing
analysis. All other clocks not in the list or
collection are considered inactive.

Timing analysis is only performed on active
clocks. All clocks are active by default. Generated
clocks that are generated from inactive clocks are
considered inactive. Therefore, to make a generated
clock active, specify both the parent and generated
clock when calling set_active_clocks.

To reset all clocks to active, call "set_active_clocks
*" or "set_active_clocks [all_clocks]".

The set_active_clocks command does not affect all
reports. For example, inactive clocks are still
reported by report_clocks, report_clock_transfers, and
similar commands.

Example Usage # Only analyze clk1
set_active_clocks [get_clocks clk1]

Only analyze clk2
set_active_clocks [get_clocks clk2]

Analyze all clocks
set_active_clocks [all_clocks]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.36.15. set_annotated_delay (::quartus::sdc_ext)

The following table displays information for the set_annotated_delay Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax set_annotated_delay [-h | -help] [-long_help] [-cell] [-ff] [-fr] [-from
<names>] [-max] [-min] [-net] [-operating_conditions <operating_conditions>] [-rf]
[-rr] [-to <names>] <delay>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cell Specifies that cell delay must be set

-ff Specifies that FF delay must be set

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

606

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-fr Specifies that FR delay must be set

-from <names> Valid source pins or ports (string patterns are matched
using Tcl string matching)

-max Specifies that only max delay should be set

-min Specifies that only min delay should be set

-net Specifies that net delay must be set

-operating_conditions
<operating_conditions>

Operating conditions Tcl object

-rf Specifies that RF delay must be set

-rr Specifies that RR delay must be set

-to <names> Valid destination pins or ports (string patterns are matched
using Tcl string matching)

<delay> The delay value in default time units

Description
Annotates the cell delay between two or more
pins/nodes on a cell, or the interconnect delay
between two or more pins on the same net, in the
current design. Multiple transition edges (rr, fr, rf,
ff) can be specified. If no transition is specified,
then the given delay is assigned to all four
values. If either -from or -to (or both) values are
left unspecified, the missing value or values are
substituted by an "*" character. Options -max and -min
allow users to specify max or only min delay. If
neither -max or -min is specified, both delays are
set. Using this command to reduce delay pessimism
might lead to optimistic results from timing analysis.

The values for -from and -to are either collections or
a Tcl list of wildcards used to create collections of
appropriate types. The values used must follow
standard Tcl or Timing Analyzer-extension substitution
rules. See help for the use_timing_analyzer_style_escaping
command for details.

Delay annotation is deferred until the next time
update_timing_netlist is called. To remove annotated
delays, use remove_annotated_delay command.

This assignment is for timing analysis only, and is
not considered during timing-driven compilation.

Example Usage set_annotated_delay -cell 100 -from A|B|C|datain -to A|B|C|combout -rr -ff
set_annotated_delay -net 100 -to A|carryin
update_timing_netlist

To clear all net delays
set_annotated_delay -net 0
update_timing_netlist

To remove all annotated delay assignments
remove_annotated_delay -all
update_timing_netlist

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

607

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.36.16. set_data_delay (::quartus::sdc_ext)

The following table displays information for the set_data_delay Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax set_data_delay [-h | -help] [-long_help] [-add_latch_clock] [-
add_launch_clock] [-allow_destination_borrowing] [-fall_from <names>] [-
fall_to <names>] [-from <names>] [-get_value_from_clock_period
<src_clock_period|dst_clock_period|min_clock_period|max_clock_period>] [-no_synchronizer]
[-override] [-rise_from <names>] [-rise_to <names>] [-through <names>] [-to
<names>] [-value_multiplier <multiplier>] [<value>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-add_latch_clock Include the latch clock path in timing analysis

-add_launch_clock Include the launch clock path in timing analysis

-allow_destination_borrowing Allow time borrowing at the destination

-fall_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-get_value_from_clock_period
<src_clock_period|dst_clock_period|
min_clock_period|max_clock_period>

Compute constraint as a multiple of the clock period

-no_synchronizer Prevent this data delay from triggering a synchronizer

-override Make this constraint override non-datapath-only setup
constraints, instead of applying it in addition to them
(equivalent to set_data_delay & set_false_path -setup -
no_synchronizer, unless -add_launch_clock is used as well)

-rise_from <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-value_multiplier <multiplier> Value by which the clock period should be multiplied to
compute requirement

<value> Time Value

Description
Specifies a maximum datapath delay exception for a given path.

The maximum delay analysis includes Tco of the launching register,
and Tsu of the latching register. By default, it does not include
clock arrival times at the launching or latching register. To include
launch clock arrival times, use the -allow_launch_clock option. To
include latch clock arrival times, use the -allow_latch_clock option.
If the path starts or ends at a port, the analysis does not
include delays due to set_input_delay or set_output_delay.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

608

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use -get_value_from_clock_period to set the delay requirement
for each path to be equal to the launching or latching clock period,
or whichever of the two has a smaller or larger period.
If -value_multiplier is used, the requirement will be multiplied by
that value. If there are no clocks clocking the endpoints
of the path (such as if the path begins or ends at an unconstrained I/O),
the constraint will be ignored.

The datapath delay constraint is applied in addition to other constraints on
the given path, including the default constraint. Furthermore, the datapath delay
constraint is analyzed independently from other SDC constraints, including
set_false_path and set_clock_groups, and cannot be overridden by other SDC constraints.
For example, you can use set_data_delay to specify an upper limit on logic and routing
delay for paths cut by set_false_path.

To both cut a path for (clock-aware) timing and constrain its datapath delay, the path
must be constrained with both set_false_path and set_data_delay.

The -from and -to values are collections of clocks, registers, ports,
pins, or cells in the design.

Applying exceptions between clocks applies the exception from all
register or ports driven by the -from clock to all registers or ports
driven by the -to clock.

If pin names or collections are used, the -from value must be a clock
pin and the -to value must be any non-clock input pin to a register.
Assignments from clock pins or to and from cells applies to all
registers in the cell or driven by the clock pin.

The -through values are collections of pins or nets in the design. An
exception applied through a node in the design applies only to paths
through the specified node.
the Timing Analyzer allows you to specify the -through argument multiple times to
describe paths that go through multiple points.
For instance, users can select all paths that go through node X, and then go through node Y.
This helps you narrow down and select the specific paths that you are interested in.

The -rise_from and -fall_from options can be used in place of the
-from destination nodes. The rise or fall value of the option
indicates that the "from" nodes are driven by the rising or falling
edge of the clock that feeds this node taking into consideration any
logical inversions along the clock path. The "-from" option is the
combination of both rising and falling "from" nodes. If the "from"
collection is a clock collection, the assignment applies to those
nodes that are driven by the respective rising or falling clock edge.

The -rise_to and -fall_to options behave similarly to the "from"
options described previously. These assignments restrict the given
assignment to only those nodes or clocks that correspond to the
specified rise or fall value taking into consideration any logical
inversions that are along the clock path.

The values of the -from, -to, -through, and other similar options are
either collections or a Tcl list of wildcards used to create
collections of appropriate types. The values used must follow standard
Tcl or Timing Analyzer-extension substitution rules. See help for the
use_timing_analyzer_style_escaping command for details.

If the source of a path with a set_data_delay constraint has any time
borrowed, the delay budget will be reduced by the time borrowed.

By default, the delay budget will not be increased by time borrowed at the
destination of a path constrained by a set_data_delay constraint, and
negative slack on a set_data_delay constraint will not cause time borrowing
to happen. To change this behavior, use the -allow_destination_borrowing
option.

Example Usage # Apply a 10ns max data delay on paths between two unrelated clocks
set_data_delay -from [get_clocks clkA] -to [get_clocks clkB] 10.000

Apply a 2ns max data delay from an input port to any register
set_data_delay -from [get_ports in[*]] -to [get_registers *] 2.000

Require net delay to be at most 90% of the period of the clock driving the inst9 register
set_data_delay -get_value_from_clock_period dst_clock_period -value_multiplier 0.9 -from
[get_clocks clk] -to [get_keepers inst9]

Apply a 2ns max data delay for an input port only to nodes driven by
the rising edge of clock CLK
set_data_delay -from [get_ports in[*]] -rise_to [get_clocks CLK] 2.000

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

609

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.36.17. set_max_skew (::quartus::sdc_ext)

The following table displays information for the set_max_skew Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax set_max_skew [-h | -help] [-long_help] [-fall_from_clock <names>] [-
fall_to_clock <names>] [-from <names>] [-from_clock <names>] [-
get_skew_value_from_clock_period <src_clock_period|dst_clock_period|min_clock_period>]
[-rise_from_clock <names>] [-rise_to_clock <names>] [-skew_value_multiplier
<multiplier>] [-to <names>] [-to_clock <names>] [<skew>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-
get_skew_value_from_clock_per
iod <src_clock_period|
dst_clock_period|min_clock_period>

Compute skew constraint as a multiple of the clock period

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-skew_value_multiplier
<multiplier>

Value by which the clock period should be multiplied to
compute skew requirement

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

<skew> Required skew

Description
Use the set_max_skew constraint to perform maximum
allowable skew analysis between sets of registers or
ports. In order to constrain skew across multiple
paths, all such paths must be defined within a single
set_max_skew constraint. The set_max_skew timing
constraint is not affected by the set_max_delay,
set_min_delay, and set_multicycle_path constraints,
but is affected by the set_clock_groups -exclusive
constraint. Paths between exclusive clocks are not
analyzed for skew, and no two paths are compared for
skew if their clocks are exclusive to each other.
However, paths whose clocks are asynchronous are

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

610

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

still analyzed for skew.

Legal values for the -from and -to options are
collections of clocks, registers, ports, pins,
cells or partitions in a design.

Applying maximum skew constraints between clocks
applies the constraint from all register or ports
driven by the clock specified with the -from option to
all registers or ports driven by the clock specified
with the -to option.

If pin names or collections are used, the -from value
must be a clock pin and the -to value must be any
non-clock input pin to a register. Assignments from
clock pins or to and from cells apply to all registers
contained in the cell or driven by the clock pin.
Similarly, -to and -from partition specifications
apply to all registers in the specified partition.

Max skew analysis includes data arrival times, clock arrival times,
register micro parameters, clock uncertainty, on-die variation and
ccpp removal.

Use -get_skew_value_from_clock_period to set the skew
requirement to be equal to the launching or latching clock
period, or whichever of the two has a smaller period.
If -skew_value_multiplier is used, the requirement is multiplied
by that value. If this option is used, then the positional
skew option may not be set. If the set of skew paths is
clocked by more than one clock, the Timing Analyzer will use the
one with smallest period to compute the skew constraint.

When this constraint is used, results of max skew
analysis are displayed in the Report Max Skew
(report_max_skew) report from the Timing Analyzer.
Since skew is defined between two or more paths, no
results are displayed if the -from/-from_clock and
-to/-to_clock filters satisfy less than two paths.

Example Usage # Constrain the skew on an input port to all registers it feeds
set_max_skew -from [get_ports din] 0.200

Constrain the skew on output bus dout[*]
set_max_skew -to [get_ports dout\[*\]] 0.200

Constrain skew to be less than 90% of the period of any clock in the source
register set
set_max_skew -to [get_keepers inst1|*] -get_skew_value_from_clock_period src_clock_period -
skew_value_multiplier 0.900

Report the results of max skew assignments
report_max_skew -panel_name "Report Max Skew" -npaths 10 -detail path_only

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: <string> is not a valid argument for option -
exclude. Available argument is to_clock

TCL_ERROR 1 ERROR: Following options are missing required arguments:
<string>

TCL_ERROR 1 ERROR: The option -skew_value_multiplier must be a non-
zero floating point number

TCL_ERROR 1 ERROR: The option -skew_value_multiplier may only be
used if -get_skew_value_from_clock_period is used

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

611

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.36.18. set_net_delay (::quartus::sdc_ext)

The following table displays information for the set_net_delay Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax set_net_delay [-h | -help] [-long_help] -from <names> [-
get_value_from_clock_period <src_clock_period|dst_clock_period|min_clock_period|
max_clock_period>] [-max] [-min] [-to <names>] [-value_multiplier <multiplier>]
[<delay>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-from <names> Valid source pins, ports, registers or nets (string patterns
are matched using Tcl string matching)

-get_value_from_clock_period
<src_clock_period|dst_clock_period|
min_clock_period|max_clock_period>

Compute net delay constraint as a multiple of the clock
period

-max Specifies maximum delay

-min Specifies minimum delay

-to <names> Valid destination pins, ports, registers or nets (string
patterns are matched using Tcl string matching)

-value_multiplier <multiplier> Value by which the clock period should be multiplied to
compute net delay requirement

<delay> Required delay

Description
Use the set_net_delay command to query the net delays
and perform minimum or maximum timing analysis across
nets. The -from and -to options can be string patterns
or pin, port, register, or net collections. When pin
or net collection is used, the collection should
include output pins or nets.

If the -to option is unused or if the -to filter is an
"*" character, all the output pins and registers on
timing netlist become valid destination points.

When you use the -min option, slack is calculated by
looking at the minimum delay on the edge. If you use
-max option, slack is calculated with the maximum edge
delay.

Use -get_value_from_clock_period to set the net delay requirement
to be equal to the launching or latching clock period,
or whichever of the two has a smaller or larger period.
If -value_multiplier is used, the requirement will be multiplied by
that value. If the set of nets is clocked by more than one clock,
the Timing Analyzer will use the one with smallest period to compute
the constraint for a -max constraint, and the largest period for
a -min constraint. If there are no clocks clocking the endpoints
of the net (e.g. if the endpoints of the nets are not registers or
constrained ports), then the net delay constraint will be ignored.

Example Usage project_open my_project
create_timing_netlist
read_sdc
update_timing_netlist

add min delay constraint
set_net_delay -min 0.160 -from [get_pins inst9|combout] -to [get_pins *|dataf]

add max delay constraint
set_net_delay -max 0.500 -from inst8|combout

this is same as the previous call
set_net_delay -max 0.500 -from inst8|combout -to *

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

612

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Require net delay to be at most 90% of the period of the clock driving the inst9 register
set_net_delay -max -get_value_from_clock_period dst_clock_period -value_multiplier 0.9 -from
inst8|combout -to [get_keepers inst9]

update_timing_netlist

report_net_delay -panel "Net Delay"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: <string> is not a valid delay value

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: The option -value_multiplier must be a non-zero
floating point number

TCL_ERROR 1 ERROR: The option -value_multiplier may only be used if -
get_value_from_clock_period is used

3.1.36.19. set_scc_mode (::quartus::sdc_ext)

The following table displays information for the set_scc_mode Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax set_scc_mode [-h | -help] [-long_help] [-size <size>] [-use_heuristic]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-size <size> Maximum SCC loop size

-use_heuristic Always use heuristic for SCC processing

Description
Allows you to set maximum Strongly Connected
Components (SCC) loop size or force the Timing
Analyzer to always estimate delays through SCCs.

When the Timing Analyzer encounters a loop of
size greater than the specified maximum SCC loop size,
it uses a heuristic which only estimates delays
through the loop.

If the loop is smaller than the maximum SCC loop size,
a full processing of loops is performed unless the
-use_heuristic option is used.

Example Usage # Make the Timing Analyzer use normal processing for all loops
the size of which is less than or equal to 100. For loops of size
greater than 100, a runtime-saving heuristic will be used
set_scc_mode -size 100

Force the Timing Analyzer to use heuristic for all SCCs
disregarding their size
set_scc_mode -use_heuristic

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

613

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.36.20. set_time_format (::quartus::sdc_ext)

The following table displays information for the set_time_format Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax set_time_format [-h | -help] [-long_help] [-decimal_places <decimal_places>] [-
unit <unit>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-decimal_places <decimal_places> Number of decimal places to use

-unit <unit> Default time unit to use

Description
Sets time format, including time unit and decimal places.

Time units are assumed to be nanoseconds (ns) by default. The "-unit"
option overrides the default time units. Legal time unit values are:
ps, ns, us, ms.

Time units are displayed with three decimal places by default. The
"-decimal_places" option overrides the default number of decimal
places to show.

The smallest resolution of all times units is one picosecond (ps).
Any additional specified precision will be truncated.

Example Usage # Create two clocks with a clock period of 8 nanoseconds.
create_clock -period 8.000 clk1

set_time_format -unit ps -decimal_places 0
create_clock -period 8000 clk2

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The default time unit can be set to ms, us, ns, or
ps. Please specify one of these units instead.

3.1.36.21. set_timing_derate (::quartus::sdc_ext)

The following table displays information for the set_timing_derate Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sdc_ext on page 595

Syntax set_timing_derate [-h | -help] [-long_help] [-cell_delay] [-early] [-late] [-
net_delay] [-operating_conditions <operating_conditions>] <derate_value> [<cells>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cell_delay Specifies that derating factors are only to apply to cell
delays

-early Specifies the minimum derating factor. This factor specifies
how early the signal can arrive

-late Specifies the maximum derating factor. This factor specifies
how late the signal can arrive

-net_delay Specifies that derating factors are only to apply to net
delays

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

614

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-operating_conditions
<operating_conditions>

Operating conditions Tcl object

<derate_value> Timing derate value

<cells> List of cell type objects

Description
Sets the global derate factors for the current
design. The maxmimum and minimum delays of all timing
arcs in the design are multiplied by the factors
specified with the -late and -early options
respectively. Only positive derate factors are
allowed. If neither the -cell_delay nor -net_delay
option is used, the derating factors apply to both
cell and net delays. For net delay derates, the derate
factor is applied to nets driven by matching cells.

Specifying a derate value of less than 1.0 for the
-late option or a derate value of greater than 1.0 for
the -early option reduces delay pessimisim, which
might lead to optimistic results from timing analysis.

The effect of set_timing_derate command is deferred
until the next time update_timing_netlist is
called. To reset derate factors to original values,
use the reset_timing_derate command.

This assignment is for timing analysis only, and is
not considered during timing-driven compilation.

Example Usage set_timing_derate -early 0.9 [get_cells *]
set_timing_derate -late 1.1 [get_cells *]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option -<string> has illegal value: <string>.
Specify a legal option value.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37. ::quartus::sta

The following table displays information for the ::quartus::sta Tcl package:

Tcl Package and Version ::quartus::sta 1.0

Description
This package contains the set of Tcl functions for obtaining
information from the Timing Analyzer.

Availability This package is loaded by default in the following executables:

 quartus_fit
 quartus_sta

Tcl Commands add_to_collection (::quartus::sta) on page 616
check_timing (::quartus::sta) on page 617
create_report_histogram (::quartus::sta) on page 619
create_slack_histogram (::quartus::sta) on page 621
create_timing_netlist (::quartus::sta) on page 623
create_timing_summary (::quartus::sta) on page 626
delete_sta_collection (::quartus::sta) on page 628
delete_timing_netlist (::quartus::sta) on page 628
enable_ccpp_removal (::quartus::sta) on page 629
enable_sdc_extension_collections (::quartus::sta) on page 630
get_available_operating_conditions (::quartus::sta) on page 630
get_cell_info (::quartus::sta) on page 631
get_clock_domain_info (::quartus::sta) on page 632
get_clock_fmax_info (::quartus::sta) on page 633
get_clock_info (::quartus::sta) on page 634

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

615

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_clock_pair_info (::quartus::sta) on page 636
get_datasheet (::quartus::sta) on page 637
get_default_sdc_file_names (::quartus::sta) on page 639
get_edge_info (::quartus::sta) on page 639
get_entity_instances (::quartus::sta) on page 641
get_min_pulse_width (::quartus::sta) on page 641
get_net_info (::quartus::sta) on page 642
get_node_info (::quartus::sta) on page 643
get_object_info (::quartus::sta) on page 644
get_operating_conditions (::quartus::sta) on page 645
get_operating_conditions_info (::quartus::sta) on page 646
get_partition_info (::quartus::sta) on page 647
get_path (::quartus::sta) on page 647
get_path_info (::quartus::sta) on page 649
get_pin_info (::quartus::sta) on page 652
get_point_info (::quartus::sta) on page 653
get_port_info (::quartus::sta) on page 655
get_register_info (::quartus::sta) on page 656
get_timing_paths (::quartus::sta) on page 658
import_sdc (::quartus::sta) on page 660
is_post_syn_sta (::quartus::sta) on page 661
locate (::quartus::sta) on page 661
print_total_sdc_processing_time (::quartus::sta) on page 663
query_collection (::quartus::sta) on page 663
read_sdc (::quartus::sta) on page 664
register_delete_timing_netlist_callback (::quartus::sta) on page 665
remove_from_collection (::quartus::sta) on page 666
report_advanced_io_timing (::quartus::sta) on page 667
report_asynch_cdc (::quartus::sta) on page 667
report_bottleneck (::quartus::sta) on page 669
report_cdc_viewer (::quartus::sta) on page 671
report_clock_fmax_summary (::quartus::sta) on page 672
report_clock_network (::quartus::sta) on page 673
report_clock_transfers (::quartus::sta) on page 675
report_clocks (::quartus::sta) on page 676
report_datasheet (::quartus::sta) on page 677
report_ddr (::quartus::sta) on page 678
report_exceptions (::quartus::sta) on page 679
report_ini_usage (::quartus::sta) on page 683
report_logic_depth (::quartus::sta) on page 684
report_max_clock_skew (::quartus::sta) on page 687
report_max_skew (::quartus::sta) on page 687
report_metastability (::quartus::sta) on page 690
report_min_pulse_width (::quartus::sta) on page 692
report_neighbor_paths (::quartus::sta) on page 693
report_net_delay (::quartus::sta) on page 697
report_net_timing (::quartus::sta) on page 698
report_partitions (::quartus::sta) on page 699
report_path (::quartus::sta) on page 700
report_pipelining_info (::quartus::sta) on page 702
report_register_spread (::quartus::sta) on page 703
report_register_statistics (::quartus::sta) on page 705
report_retiming_restrictions (::quartus::sta) on page 705
report_route_net_of_interest (::quartus::sta) on page 706
report_rskm (::quartus::sta) on page 707
report_sdc (::quartus::sta) on page 708
report_skew (::quartus::sta) on page 708
report_tccs (::quartus::sta) on page 711
report_timing (::quartus::sta) on page 712
report_timing_by_source_files (::quartus::sta) on page 716
report_timing_tree (::quartus::sta) on page 718
report_ucp (::quartus::sta) on page 720
set_operating_conditions (::quartus::sta) on page 721
timing_netlist_exist (::quartus::sta) on page 722
update_timing_netlist (::quartus::sta) on page 723
use_timing_analyzer_style_escaping (::quartus::sta) on page 724
write_sdc (::quartus::sta) on page 725

3.1.37.1. add_to_collection (::quartus::sta)

The following table displays information for the add_to_collection Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax add_to_collection [-h | -help] [-long_help] <collection_obj_1> <collection_obj_2>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<collection_obj_1> First object collection

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

616

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<collection_obj_2> Second object collection

Description
This command takes two collections and returns a new
collection that is a union of the two. The second
collection is allowed to be a string, whereas the
first has to be previously-created collection, either
by passing any of the "get_" functions directly, or by
passing a variable that contains a collection (see code
examples for this command). If a collection is used
for the second argument, the types in the second
collection must be the same as or a subset of the types
in the first collection.

If the first collection consists of keepers, the second
collection can only consist of keepers, registers or ports.
If the first collection consists of partitions, the second
collection can only consist of partitions or cells. If
the first collection consists of nodes, the second collection
can only consist of nodes, keepers, registers, ports, pins,
nets or combinational nodes.

Example Usage set kprs1 [get_keepers b*]
set regs1 [get_registers a*]

set regs_union [add_to_collection $kprs1 $regs1]

#or:
set regs_union [add_to_collection [get_keepers b*] $regs1]

#or even:
set regs_union [add_to_collection $kprs1 a*]

- note that the last statement will actually add all keepers with name a*
not only registers! (will add IOs with name a*, if any)

Get the first 100 nodes in the collection.
query_collection $regs_union -limit 100

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Cannot find specified collection. Specify an existing
collection.

3.1.37.2. check_timing (::quartus::sta)

The following table displays information for the check_timing Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax check_timing [-h | -help] [-long_help] [-append] [-file <name>] [-include
<check_list>] [-panel_name <name>] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-include <check_list> Checks to perform

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

617

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
Checks for problems in the design or problems with
design constraints. The check_timing command performs
a series of different checks based on user-specified
variables and options. There is no default list of
checks. Use the -include option to specify which
checks to perform. You must preceed check_timing with
update_timing_netlist.

The no_clock check reports whether registers have at
least one clock at their clock pin, and that ports
determined to be clocks have a clock assigned to them,
and also checks that PLLs have a clock assignment.

The multiple_clock check verifies that registers have
at most one clock at their clock pin. (When multiple
clocks reach a register clock pin, it is undefined
which clock is used for analysis.

The generated_clock check verifies that generated
clocks are valid. Generated clocks must have a source
that is triggered by a valid clock.

The no_input_delay check verifies that every input
port that is not determined to be a clock has an input
delay assignment.

The no_output_delay check verifies that every output
port has an output delay constraint.

The partial_input_delay check verifies that input
delays are complete, and ensures that input delays
have a rise-min, fall-min, rise-max, and fall-max
portion set.

The partial_output_delay check verifies that output
delays are complete, and makes sure that output delays
have a rise-min, fall-min, rise-max, and fall-max
portion set.

The io_min_max_delay_consistency check verifies that
min delay values specified by set_input_delay or
set_output_delay assignments are less than max delay
values.

The reference_pin check verifies that reference pins
specified in set_input_delay and set_output_delay
using the -reference_pin option are valid. A
reference_pin is valid if the -clock option specified
in the same set_input_delay/set_output_delay command
matches the clock that is in the direct fanin of the
reference_pin. Being in the direct fanin of the
reference_pin means that there must be no keepers
between the clock and the reference_pin.

The latency_override check reports whether the clock
latency set on a port or pin overrides the more
generic clock latency set on a clock. Clock latency
can be set on a clock, where the latency applies to
all keepers clocked by the clock, whereas clock
latency can also be set on a port or pin, where the
latency applies to registers in the fanout of the port
or pin.

The loops check verifies that there are no strongly
connected components in the netlist. These loops
prevent a design from being properly analyzed. The
loops check also reports if loops exist but were
marked so that they would not be traversed.

The latches check reports latches in the design and
warns that latches may not be analyzed properly. For
best results, change your design to remove latches
whenever possible.

The pos_neg_clock_domain check determines if any
register is clocked by both the rising and falling
edges of the same clock. If this scenario is necessary
such as in a clock multiplexer, create two separate
clocks that have similar settings and are assigned to
the same node.

The pll_cross_check checks the clocks that are

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

618

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

assigned to a PLL against the PLL settings defined in
design files. Inconsistent settings or an unmatched
number of clocks associated with the PLL are reported
to the user.

The uncertainty check reports each clock-to-clock
transfer that does not have a clock uncertainty
assignment set between the two clocks. When a device
family has derive_clock_uncertainty support, this
report also checks if a user-defined
set_clock_uncertainty assignment has a less than
recommended clock uncertainty value.

The virtual_clock check reports all unreferenced
virtual clocks. It also reports if design does not
have any virtual clock assignment.

The partial_multicycle check ensures that each setup
multicycle assignment has a corresponding hold
multicycle assignment, and each hold muticycle
assignment has a corresponding setup multicycle
assignment.

The multicycle_consistency check reports all the
multicycle cases where a setup multicycle does not
equal one greater than the hold multicycle. Hold
multicycle assignments are usually one cycle less than
setup multicycle assignments.

The partial_min_max_delay check verifies that each
minimum delay assignment has a corresponding maximum
delay assignment, and vice versa.

The clock_assignments_on_output_ports check reports
all the clock assignments that have been applied to
output ports.

The input_delay_assigned_to_clock check verifies that
no input delay value is set for a clock. Input delays
set on clock ports are ignored because clock-as-data
analysis takes precedence.

The internal_io_delay check reports all the IO delays
that have no specifications for -reference_pin and
-source_latency_included, and -clock is a clock that
is not assigned to a top level input or output port.

Example Usage # Constrain design
create_clock -name clk -period 4.000 -waveform { 0.000 2.000 } [get_ports clk]
set_input_delay -clock clk2 1.5 [get_ports in*]
set_output_delay -clock clk 1.6 [get_ports out*]
set_false_path -from [get_keepers in] -through [get_nets r1] -to [get_keepers out]

Check if there were any problems
check_timing -include {loops latches no_input_delay partial_input_delay}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.3. create_report_histogram (::quartus::sta)

The following table displays information for the create_report_histogram Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax create_report_histogram [-h | -help] [-long_help] [-append] [-color_div
<color_div>] [-color_list <color_list>] [-file <name>] [-max_data <max_data>] [-
min_data <min_data>] [-num_bins <num_bins>] [-panel_name <name>] [-stdout] [-
x_label <x_label>] [-x_unit <x_unit>] [-y_label <y_label>] <data>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

619

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-color_div <color_div> Color divisions for the created histogram

-color_list <color_list> List of colors for painting the created histogram

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-max_data <max_data> Maximum data value of the created histogram

-min_data <min_data> Minimum data value of the created histogram

-num_bins <num_bins> Number of bins

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-x_label <x_label> Text label on x-axis

-x_unit <x_unit> Unit to be displayed on x-axis

-y_label <y_label> Text label on y-axis

<data> List of data to be analyzed

Description
Create a user defined histogram.

Use <data> to specify the data entries to be displayed
on the histogram. It can be a tcl list of either one
of the following two formats or a mix of the two:
{time_integer} or {time_integer number_count}, where
time_integer is an integer possibly with a unit
representing time (default unit is second), and
number_count is a positive integer specifying number
of entries (y value) of the corresponding
time_integer.

Use -num_bins to specify the number of bins, or the
number of bars to be displayed on the histogram.

Use -color_div and -color_list to specify the color of
each bin. -color_div takes a tcl list of
time_integers (see <data> above). Each entry in the
list specifies the upper bound of each color division
and therefore is forced to be a boundary of bins.
-color_list takes a tcl list of colors. Each color in
the list is used in the order specified and if less
color is given than color divisions, the list is
re-used. For example, if specified "-color_div {-1 0
1} -color_list {red green}", then bins below -1 are
red, bins between -1 and 0 are green, bins
between 0 and 1 are red again, and bins larger
than 1 are blue again. Posssible choices of
colors: black, blue, brown, green, grey, light_grey,
orange, purple, red, white. Default -color_div is {0}
and default -color_list is {red blue}.

Use -max_data to specify the upper bound, i.e. largest
number to be included in the histogram.

Use -min_data to specify the lower bound,
i.e. smallest number to be included in the histogram.

Use -panel_name to specify the path and panel name of
the created histogram. e.g. "-panel_name {Folder
1||Histogram 1} creates a histogram named
"Histogram 1" and put it in a folder with the name
"Folder 1".

Use -x_label to specify the text label on x_axis.

Use -y_label to specify the text label on y_axis.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

620

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use -x_unit to specify a text unit to be attached to
x_axis.

Example Usage # create a path-based slack histogram
project_open my_project
create_timing_netlist
read_sdc
update_timing_netlist

get path-based slack data in the format of a tcl list
set data [list]
set paths [get_timing_paths -setup -npaths 1000]
foreach_in_collection path $paths {
 lappend data [get_path_info $path -slack]
}

output data to histogram
create_report_histogram $data -panel_name {Path-based Slack Histogram} -num_bins 20

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option <string> has illegal value: <string>. Specify
a legal option value.

3.1.37.4. create_slack_histogram (::quartus::sta)

The following table displays information for the create_slack_histogram Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax create_slack_histogram [-h | -help] [-long_help] [-all_edges] [-append] [-
clock_name <name>] [-data_delay] [-file <name>] [-hold] [-max_slack
<max_slack>] [-min_slack <min_slack>] [-num_bins <num_bins>] [-panel_name
<name>] [-partition] [-recovery] [-removal] [-setup] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all_edges Consider slacks at all edges, not just at the endpoint nodes
(results in increased memory consumption)

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-clock_name <name> Name of the Clock Domain

-data_delay Data Delay Analysis (only applicable for setup and recovery
analysis)

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-hold Hold Analysis

-max_slack <max_slack> Maximum slack value of the created histogram

-min_slack <min_slack> Minimum slack value of the created histogram

-num_bins <num_bins> Number of bins

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

621

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-partition Show slack count for each of the partition

-recovery Recovery Analysis

-removal Removal Analysis

-setup Setup Analysis

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
Creates a slack histogram in the timing report for the specified clock
domain "-clock_name," showing the number of timing edges within
various ranges of slacks for a clock setup analysis. The histogram
can be named using the "-panel_name" option.

By default, only slack at the endpoint nodes of the timing netlist are
considered. To include slack at all edges in the histogram, use the
"-all_edges" option. This option results in increased memory consumption.

Use the "-setup", "-hold", "-recovery", or "-removal" options to
specify which kind of analysis should be performed. If none is
specified, setup analysis is used by default.

Reports can be directed to the Tcl console ("-stdout", default), a
file ("-file"), the Timing Analyzer graphical interface ("-panel_name"), or
any combination of the three.

The range of reported slack values can be controlled by specifying the
"-min_slack" and "-max_slack" options. The number of bins (histogram
bars) can also be specified using the "-num_bins" option.

Use the "-partition" to show more information about each partition.
A path is in a partition if it's starting point is in the partition.
This option only works for "-panel".

Example Usage project_open top
create_timing_netlist
read_sdc
update_timing_netlist

Create a slack histogram for clk1, defaulting to
the name "Slack Histogram (clk1)"
create_slack_histogram -clock_name clk1

Create a slack histogram for clk2 named "MyHistogram"
create_slack_histogram -clock_name clk2 -panel_name MyHistogram

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Clock node not found or specified. Check valid
clocks

TCL_ERROR 1 ERROR: Value <string> of option <string> is an invalid
slack. Specify a valid slack value.

TCL_ERROR 1 ERROR: The max_slack value is less than or equal to the
min_slack value. Specify a max_slack value that is greater
than the min_slack value.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Number of bins is 0. Specify a number greater than
0.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

622

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.5. create_timing_netlist (::quartus::sta)

The following table displays information for the create_timing_netlist Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax create_timing_netlist [-h | -help] [-long_help] [-force_dat] [-grade <c|i|m|e|
a>] [-model <fast|slow>] [-no_latch] [-post_map] [-post_syn] [-snapshot
<snapshot>] [-speed <speed>] [-temperature <value_in_C>] [-voltage
<value_in_mV>] [-zero_ic_delays] [<operating_conditions>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-force_dat Option to force delay annotation

-grade <c|i|m|e|a> Option to specify temperature grade

-model <fast|slow> Option to specify timing model

-no_latch Option to disable the analysis of latches as synchronous
elements

-post_map Option to perform timing analysis on the post-synthesis
netlist

-post_syn Option to perform timing analysis on the post-synthesis
netlist

-snapshot <snapshot> Snapshot of the design to load

-speed <speed> Speed grade

-temperature <value_in_C> Operating temperature

-voltage <value_in_mV> Operating voltage

-zero_ic_delays Option to set all IC delays to zero

<operating_conditions> Operating conditions Tcl object name string

Description
Creates the timing netlist by annotating the atom
netlist with delay information using post-fitting
results.

Use the -post_syn option to obtain post-synthesis
results.

In Quartus Prime Pro edition, you can use the -snapshot option
to specify which netlist you want to perform timing analysis on.

The create_timing_netlist command skips delay
annotation by default. Use -force_dat to rerun delay
annotation. This is required if any delay annotation
setting is changed in the Quartus Prime project revision
(e.g. OUTPUT_PIN_LOAD).

Use "-model fast" to run the analysis using the fast
corner delay models first. The -temperature,
-voltage, and -speed, options are also available. See
help for set_operating_conditions for details on these
options.

You can use model, temperature and voltage options to
specify operating conditions while creating timing
netlist (temperature and voltage options are not
supported by all families). You can also set operating
conditions by passing an operating conditions object
name as a positional argument to create_timing_netlist
command. After the timing netlist has been created,
you can use set_operating_conditions command to change
timing models without deleting and re-creating the

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

623

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

timing netlist.

Use the -grade option to analyze the design at a
different temperature grade. This option is provided
to support what-if analysis and is not recommended for
final sign-off analysis.

Use the -no_latch option to analyze latches as
combinational loops instead of synchronous elements.

Use the -zero_ic_delays option to set all IC delays in
the netlist to zero.

Example Usage project_open my_top

Create timing netlist before calling
any report functions
create_timing_netlist

Read SDC and update timing
read_sdc
update_timing_netlist

Ready to call report functions
report_timing -npaths 1 -clock_setup

The following command is optional
delete_timing_netlist

project_close

project_open my_top

Report worst case period for -9 speed grade
create_timing_netlist -speed 9

Read SDC and update timing
read_sdc
update_timing_netlist

report_timing -clock_setup -clock_filter clk
delete_timing_netlist

Report hold violation for fastest corner
Use set_operating_conditions instead
create_timing_netlist -model fast

Read SDC and update timing
read_sdc
update_timing_netlist

report_timing -clock_hold -clock_filter clk
delete_timing_netlist

If Delay Annotation has been run for the fast corner
Force Delay Annotation
create_timing_netlist -model fast -force_dat

Read SDC and update timing
read_sdc
update_timing_netlist

report_timing -clock_hold -clock_filter clk
delete_timing_netlist

Report worst case period for post-technology mapping netlist
create_timing_netlist -post_map

Read SDC and update timing
read_sdc
update_timing_netlist

report_timing -clock_setup -clock_filter clk
delete_timing_netlist

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

624

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: The TCL command <string> is not supported in
quartus_fit. It is only supported in quartus_sta. Please use
quartus_sta instead of quartus_fit if you want to use this
TCL command.

TCL_ERROR 1 ERROR: Can't create timing netlist for device family
<string>. Run Analysis and Synthesis (quartus_syn) using
this device family as a value for the --family option before
running the Timing Analyzer (create_timing_netlist).

TCL_ERROR 1 ERROR: The Fast Forward snapshot cannot be used for sign-
off timing analysis. Please see the Fast Forward Timing
Closure Recommendations report for performance
estimates.

TCL_ERROR 1 ERROR: Can't run the Timing Analyzer (quartus_sta) --
Periphery placement (quartus_fit --plan) failed or was not
run. Run I/O Assignment Analysis (quartus_fit --plan)
successfully before running the Timing Analyzer
(create_timing_netlist -post_map).

TCL_ERROR 1 ERROR: Invalid snapshot <string>. Available snapshot(s):
<string>

TCL_ERROR 1 ERROR: Both the -temperature and -voltage options and
their values are required.

TCL_ERROR 1 ERROR: Can't find active revision. Make sure there is an
open, active revision name.

TCL_ERROR 1 ERROR: Could not find the <string> timing netlist on disk.
Please run this fitter stage first, and make sure you have
enabled Optimize Timing in Advanced Fitter Settings.

TCL_ERROR 1 ERROR: Option -no_latch is not supported for the current
family.

TCL_ERROR 1 ERROR: Values entered did not match any valid operating
conditions. Available operating conditions are: <string>

TCL_ERROR 1 ERROR: The <string> device family cannot perform
automatic multi-corner timing analysis because the family
does not support the set_operating_conditions command.

TCL_ERROR 1 ERROR: <string> Device family is not supported by the
Timing Analyzer.

TCL_ERROR 1 ERROR: Illegal value: <string>. Specify an integer ranging
from -999999999 to 999999999 for the option -voltage

TCL_ERROR 1 ERROR: The design has not been fully routed. If you want
to perform Timing Analysis on an earlier netlist please
choose which snapshot to load for analysis. Available
snapshot(s): <string>

TCL_ERROR 1 ERROR: The design has not been fully routed and retimed to
optimize timing. If you want to perform Timing Analysis on
an earlier netlist please choose which snapshot to load for
analysis. Available snapshot(s): <string>

TCL_ERROR 1 ERROR: Can't create timing netlist with -post_map option
for device family <string>. Create timing netlist without the
-post_map OPTION

TCL_ERROR 1 ERROR: Can't create timing netlist with -post_map option
for device family <string>. Run I/O Assignment Analysis
(quartus_fit --plan) successfully before running the Timing
Analyzer (create_timing_netlist -post_map).

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

625

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Use of --post_map and --post_fpp options are not
allowed in hierarchical mode. You can use --snapshot to
specify the database to be used for analysis

TCL_ERROR 1 ERROR: Can't run the Timing Analyzer (quartus_sta) --
Fitter (quartus_fit) failed or was not run. Run the Fitter
(quartus_fit) successfully before running the Timing
Analyzer (create_timing_netlist).

TCL_ERROR 1 ERROR: Can't run the Timing Analyzer (quartus_sta) --
Partition Merge (quartus_cdb --merge) failed or was not
run. Run the Partition Merge (quartus_cdb --merge)
successfully before running the Timing Analyzer
(create_timing_netlist -post_map).

TCL_ERROR 1 ERROR: Can't run the Timing Analyzer (quartus_sta) --
Analysis and Synthesis (quartus_syn) failed or was not run.
Run Analysis and Synthesis (quartus_syn) successfully
before running the Timing Analyzer (create_timing_netlist -
post_map).

TCL_ERROR 1 ERROR: Delay annotation not run. Run delay annotation
before running the Timing Analyzer (quartus_sta).

TCL_ERROR 1 ERROR: You can only specify the -snapshot option when
Hierarchical Design is enabled.

TCL_ERROR 1 ERROR: Pre-fit timing analysis is not supported for the
specified operating conditions. Please use the <string>.

TCL_ERROR 1 ERROR: The Synthesis snapshot cannot currently be used
for timing analysis.

TCL_ERROR 1 ERROR: Timing netlist already exists. Delete the timing
netlist before running this command.

TCL_ERROR 1 ERROR: Unsupported option: <string>.

3.1.37.6. create_timing_summary (::quartus::sta)

The following table displays information for the create_timing_summary Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax create_timing_summary [-h | -help] [-long_help] [-append] [-data_delay] [-file
<name>] [-hold] [-mpw] [-panel_name <name>] [-recovery] [-removal] [-setup] [-
split_by_corner] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-data_delay Data Delay Analysis (only applicable for setup and recovery
analysis)

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-hold Hold Analysis

-mpw Minimum Pulse Width Analysis

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

626

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-recovery Recovery Analysis

-removal Removal Analysis

-setup Setup Analysis (Default)

-split_by_corner When set, running this command with the -panel option
creates a folder containing versions of this report for
selected multiple operating conditions. This option has no
effect when used with the -stdout or -file options.

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
Reports the worst-case Clock Setup and Clock Hold
slacks and endpoint TNS (total negative slack) per
clock domain. Total negative slack is the sum of all
slacks less than zero for either destination registers
or ports in the clock domain. The number of endpoints
in the domain with negative slack is also shown.

This command shows the worst-case slack for each clock
domain. You right click in these reports to run more
detailed reports like Histograms and Report Timing.

By default, this command creates a Setup Summary. This
command can also generate a Hold Summary (-hold),
Recovery Summary (-recovery), Removal Summary
(-removal), or Minimum Pulse Width Summary (-mpw).

The report can be directed to the Tcl console (-stdout,
default), a file (-file), the Timing Analyzer graphical
interface (-panel_name), or any combination of the
three.

Example Usage project_open my_project

Always create the netlist first and process constraints
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

Create Clock Domain Summary
create_timing_summary -panel_name "Setup Summary"
create_timing_summary -hold -panel_name "Hold Summary"

The following command is optional
delete_timing_netlist

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Panel name cannot contain repeated pipe
characters. (||).

TCL_ERROR 1 ERROR: Option <string> has illegal value: <string>. Specify
a legal option value.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

627

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.7. delete_sta_collection (::quartus::sta)

The following table displays information for the delete_sta_collection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax delete_sta_collection [-h | -help] [-long_help] <collection>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<collection> The collection to delete

Description
This function is deprecated since
sta cleans up the memory once the collection
is out of scope.
If you want to force a collection to go out of scope,
use built-in tcl command 'unset'.
Otherwise this function can remove the collection in cache.

Example Usage project_open chiptrip
create_timing_netlist

set nodes [get_nodes Reg*]

...
do some work with the $nodes collection
...

Delete the collection.
delete_sta_collection $nodes

...
do more work
...

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Cannot find specified collection. Specify an existing
collection.

3.1.37.8. delete_timing_netlist (::quartus::sta)

The following table displays information for the delete_timing_netlist Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax delete_timing_netlist [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Use this command to delete a timing netlist previously created using
create_timing_netlist. This should be done at the end of a script or
before calling create_timing_netlist again using different options or
after recompiling the design.

Use the set_operating_conditions command instead of

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

628

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

delete_timing_netlist and create_timing_netlist to change timing
models. This avoids the cost of deleting and re-creating the timing
netlist, and also preserves current timing assignments.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.9. enable_ccpp_removal (::quartus::sta)

The following table displays information for the enable_ccpp_removal Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax enable_ccpp_removal [-h | -help] [-long_help] [-depth <depth>] [-off] [-on]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-depth <depth> maximum clock tree depth for cppp removal

-off Disable this setting.

-on Enable this setting.

Description
Enables (or disables) common clock path pessimism
(CCPP) removal during slack computation. CCPP removal
can improve timing results by removing min/max delay
differences from common portions of clock paths.
Enabling CCPP removal increases the time required to
perform timing analysis.

When specified, the optional depth parameter limits
the clock tree depth used for CCPP removal. This is
generally not applicable to FPGA compilations where
the clock tree is fixed, but for large
designs with potentially deep synthesized clock trees
this can reduce outlier run time.

When not specified, or when specified with a value of
0, the complete clock tree is used for CCPP
removal (i.e. full clock-tree depth).

Example Usage project_open top
create_timing_netlist
read_sdc

Report timing without CCPP removal
report_timing

Enable CCPP removal and re-report timing.
enable_ccpp_removal
report_timing

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

629

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.10. enable_sdc_extension_collections (::quartus::sta)

The following table displays information for the
enable_sdc_extension_collections Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax enable_sdc_extension_collections [-h | -help] [-long_help] [-off] [-on]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-off Disable this setting.

-on Enable this setting.

Description
Enable the support of SDC extension collections, such as keeper,
register and node collections. When enable_sdc_extension_collections
is not used, using these collections causes an error. Default to -on
option.

Example Usage project_open top
enable_sdc_extension_collections -on
create_timing_netlist
read_sdc

report_timing -to_clock clk1

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Found an SDC extension Tcl collection creation
command: <string>. Either switch to an SDC Tcl collection
creation command or turn on
enable_sdc_extension_collections.

TCL_ERROR 1 ERROR: Found an SDC extension collection type: <string>.
Either switch to an SDC collection type or turn on
enable_sdc_extension_collections.

TCL_ERROR 1 ERROR: Found timing netlist in memory. Delete timing
netlist before use this command.

3.1.37.11. get_available_operating_conditions (::quartus::sta)

The following table displays information for the
get_available_operating_conditions Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_available_operating_conditions [-h | -help] [-long_help] [-all] [-compile]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all Returns all available operating conditions

-compile Returns only the operating conditions that are critical to
analyze in the inner loop compilation

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

630

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Returns a Tcl collection of available operating conditions for the
current device. The Tcl collection contains the most extreme operating
conditions within a user-specified junction temperature range. Use
the -all option to return all available operating conditions.

Example Usage
#do report timing for different operating conditions
foreach_in_collection op [get_available_operating_conditions] {
 set_operating_conditions $op
 update_timing_netlist
 report_timing
}

#see detailed information about operating conditions
foreach_in_collection op [get_available_operating_conditions] {
 puts "Delay Model: [get_operating_conditions_info $op -model]"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: VID mode is not supported by part <string>.

3.1.37.12. get_cell_info (::quartus::sta)

The following table displays information for the get_cell_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_cell_info [-h | -help] [-long_help] [-buried_nodes] [-buried_regs] [-
in_pin_names] [-in_pins] [-location] [-name] [-out_pin_names] [-out_pins] [-
pin_names] [-pins] [-type] [-wysiwyg_type] <cell_object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-buried_nodes Return a collection of buried node IDs

-buried_regs Return a collection of buried register IDs

-in_pin_names Return a list of input pin names

-in_pins Return a collection of input pin IDs

-location Return the atom location in device

-name Return the cell name

-out_pin_names Return a list of output pin names

-out_pins Return a collection of output pin IDs

-pin_names Return a list of input and output pin names

-pins Return a collection of input and output pin IDs

-type Return the cell type

-wysiwyg_type Return the WYSIWYG type of the cell

<cell_object> Cell object

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

631

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Gets information about the specified cell (referenced by cell ID).
You can obtain cell using the get_cells Tcl command.

The "-type" option returns "cell".

Options "-name", "-type", "-pin_name", "-in_pin_names",
"-out_pin_names", "-pins", "-clock_pins", "-in_pins", "-out_pins",
"-buried_nodes", "-buried_regs", "-location", and "-wysiwyg_type" are
mutually exclusive.

Example Usage project_open chiptrip
create_timing_netlist
set cells [get_cells]
foreach_in_collection cell $cells {
 puts "[get_cell_info $cell -name]: [get_cell_info $cell -type]"
}
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Options are mutually exclusive: <string>. Specify
only one of the these options.

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

TCL_ERROR 1 ERROR: Cannot find object of ID <string>. Specify an
existing object ID.

TCL_ERROR 1 ERROR: Unsupported object type: <string>. Specify a
supported object type.

3.1.37.13. get_clock_domain_info (::quartus::sta)

The following table displays information for the get_clock_domain_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_clock_domain_info [-h | -help] [-long_help] [-data_delay] [-edge_slack] [-
hold] [-mpw] [-recovery] [-removal] [-setup]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-data_delay Data Delay Analysis (only applicable for setup and recovery
analysis)

-edge_slack Compute edge TNS (this option may significantly increase
memory consumption)

-hold Hold Analysis

-mpw Minimum Pulse Width Analysis

-recovery Recovery Analysis

-removal Removal Analysis

-setup Setup Analysis (Default)

Description

Similar to create_timing_summary, the
get_clock_domain_info command returns a Tcl list of

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

632

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

information about each active clock domain: the clock name,
worst-case slack, endpoint TNS, number of endpoints in the
domain with negative slack, and the timing model for which
the worst-case slack is most critical.

If the edge_slack option is specified, an extra entry for
the edge TNS will be present, placed after the endpoint TNS.
Computing the edge TNS may result in a significant increase
in memory consumption.

TNS is total negative slack, and it is the sum of
all slacks less than zero for either destination
registers or ports in the clock domain (endpoint TNS)
or for all edges affecting the clock domain (edge
TNS).

By default, this command creates a Setup Summary. This
command can also generate a Hold Summary (-hold),
Recovery Summary (-recovery), Removal Summary
(-removal), or Minimum Pulse Width Summary (-mpw).

Example Usage project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

Get domain summary object
set domain_list [get_clock_domain_info -setup]
foreach domain $domain_list {
 set name [lindex $domain 0]
 set slack [lindex $domain 1]
 set keeper_tns [lindex $domain 2]

 puts "Clock $name : Slack = $slack , TNS = $keeper_tns"
}

The following command is optional
delete_timing_netlist

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.14. get_clock_fmax_info (::quartus::sta)

The following table displays information for the get_clock_fmax_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_clock_fmax_info [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Reports potential Fmax for every clock in the design, regardless of
the user-specified clock periods. Fmax is only computed for paths
where the source and destination registers or ports are driven by the
same clock. Paths of different clocks, including generated clocks,
are ignored. For paths between a clock and its inversion, Fmax is
computed as if the rising and falling edges of the clock are scaled
along with fmax, such that the duty cycle (in terms of a percentage)
is maintained.

Restricted Fmax considers hold timing in addition to setup timing, as
well as minimum pulse and minimum period restrictions. Similar to
unrestricted Fmax, the restricted Fmax is computed as if the rising

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

633

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and falling edges of the clock are scaled along with Fmax, such that
the duty cycle (in terms of a percentage) is maintained. Refer to
hold timing reports (e.g., report_timing with the -hold option) or
minimum pulse width reports (report_min_pulse_width) for details about
specific paths, registers, or ports.

This command is similar to report_clock_fmax_summary, except that it
returns the results as a Tcl list for use in Tcl scripts. Each entry
in the list represents one clock domain. Each entry is a Tcl list of
the clock name, fmax (MHz), and restricted Fmax (MHz).

Example Usage project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

Get domain summary object
set domain_list [get_clock_fmax_info]
foreach domain $domain_list {
 set name [lindex $domain 0]
 set fmax [lindex $domain 1]
 set restricted_fmax [lindex $domain 2]

 puts "Clock $name : Fmax = $fmax (Restricted Fmax = $restricted_fmax)"
}

The following command is optional
delete_timing_netlist

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.15. get_clock_info (::quartus::sta)

The following table displays information for the get_clock_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_clock_info [-h | -help] [-long_help] [-child_clocks] [-divide_by] [-
duty_cycle] [-edge_shifts] [-edges] [-fall] [-is_inverted] [-latency] [-
master_clock] [-master_clock_pin] [-max] [-min] [-multiply_by] [-name] [-
nreg_neg] [-nreg_pos] [-offset] [-period] [-phase] [-rise] [-targets] [-type] [-
waveform] <clk_object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-child_clocks Returns a list of child clock names

-divide_by Return the frequency divider (to the base clock)

-duty_cycle Return the duty cycle

-edge_shifts Return a list of edge shifts that the specified edges are to
undergo to yield the final generated clock waveform

-edges Return a list of integer representing edges from the source
clock that are to form edges of the generated clock

-fall Return clock fall latency

-is_inverted Return a boolean value to indicate if the generated clock is
inverted

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

634

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-latency Return clock latency

-master_clock Return the master clock name

-master_clock_pin Return the master clock source pin

-max Return max clock latency

-min Return min clock latency

-multiply_by Return the frequency multiplier (to the base clock)

-name Return the clock name

-nreg_neg Return number of registers negatively clocked by clock

-nreg_pos Return number of registers positively clocked by clock

-offset Return the clock offset

-period Return the clock period

-phase Return the clock phase

-rise Return clock rise latency

-targets Return the clock targets collection

-type Return the clock type

-waveform Return the waveform (rise time and fall time)

<clk_object> Clock object

Description
Returns information about the specified clock (referenced by clock
ID). Clock IDs can be obtained by Tcl commands such as get_clocks.

The "-type" option returns one of "base", "virtual_base", "generated",
"virtual_generated".

Options "-name", "-type", "-period", "-duty_cycle", "-waveform",
"-edges", "-edge_shifts", "-multiply_by", "-divide_by",
"-is_inverted", "-latency", "-master_clock", and "-targets" are
mutually exclusive. The "-latency" option requires a specified "-max"
or "-min" option as well as a "-rise" or "-fall" option.

Example Usage project_open chiptrip
create_timing_netlist
set clocks [get_clocks]
foreach_in_collection clk $clocks {
 puts "[get_clock_info $clk -name]: [get_clock_info $clk -period]"
}
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Options are mutually exclusive: <string>. Specify
only one of the these options.

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

TCL_ERROR 1 ERROR: Cannot find object of ID <string>. Specify an
existing object ID.

TCL_ERROR 1 ERROR: Unsupported object type: <string>. Specify a
supported object type.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

635

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.16. get_clock_pair_info (::quartus::sta)

The following table displays information for the get_clock_pair_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_clock_pair_info [-h | -help] [-long_help] [-fall_from <clk_object>] [-
fall_to <clk_object>] [-false_path] [-from <clk_object>] [-hierarchy] [-hold] [-
rise_from <clk_object>] [-rise_to <clk_object>] [-setup] [-to <clk_object>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-fall_from <clk_object> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to <clk_object> Valid destination clocks (string patterns are matched using
Tcl string matching)

-false_path Return a description of the satisfied false-path-type
assignment applied between the "from" and "to" clocks, if
any

-from <clk_object> Valid source clocks (string patterns are matched using Tcl
string matching)

-hierarchy Return a description the hierarchical relationship between
the "from" and "to" clocks

-hold Return the hold analysis information if you use the "-
false_path" option

-rise_from <clk_object> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to <clk_object> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Return the setup analysis information if you use the "-
false_path" option. The setup analysis relationship is
returned by default

-to <clk_object> Valid destination clocks (string patterns are matched using
Tcl string matching)

Description
The get_clock_pair_info command returns various clock information between two given clocks.

If you specify the "-false_path" option, the command returns a description of the satisfied
false path assignment between the "from" and "to" clocks, which includes clock groups.

If you specify the "-hierarchy" option, the command returns a description of the clock hierarchy
relationship between the two clocks, such as whether the "from" clock is a parent of the "to"
clock.

Use the "-from" option to specify the source clock that you want to query, and use the "-to"
option
to specify the destination clock that you want to query.

When using the "-false_path" option, you can use the "-rise_from" option to specify a source
clock's
rising edge to report on, or use the "-fall_from" option to specify a source clock's falling
edge to
report on. Likewise, you can use the "-rise_to" option to specify a destination clock's rising
edge,
or use the "-fall_to" option to specify a destination clock's falling edge. You can also specify
to
retrieve either the setup or hold false path relationship using the "-setup" or "-hold" option
respectively. By default, the setup relationship is reported.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

636

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage create_clock clkA -period 10
create_generated_clock clkB -source clkA -divide_by 2
create_generated_clock clkC -source clkB -divide_by 2

set_false_path -from clkA -to clkB -latency_insensitive
set_clock_groups -group clkA -group clkC -asynchronous

get_clock_pair_info -from clkA -to clkB -false_path ->
"false_path_latency_insensitive"
get_clock_pair_info -from clkA -to clkC -false_path -> "clock_group_asynchronous"
get_clock_pair_info -from clkA -to clkB -hierarchy -> "parent_child"
get_clock_pair_info -from clkC -to clkA -hierarchy -> "descendant_ancestor"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.17. get_datasheet (::quartus::sta)

The following table displays information for the get_datasheet Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_datasheet [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
This function returns a tcl collection which contains the datasheet
report. Its format is as follows:

{
 { tsu
 { <tsu rise time>
 <tsu fall time>
 <input port>
 <clock port>
 <clock edge>
 <clock reference>
 }
 }

 { th
 { <th rise time>
 <th fall time>
 <input port>
 <clock port>
 <clock edge>
 <clock reference>
 }
 }

 { tco
 { <tco rise time>
 <tco fall time>
 <output port>
 <clock port>
 <clock edge>
 <clock reference>
 }
 }

 { mintco
 { <mintco rise time>
 <mintco fall time>
 <output port>
 <clock port>
 <clock edge>
 <clock reference>
 }
 }

 { tpd
 { <tpd rise-rise time>
 <tpd rise-fall time>
 <tpd fall-rise time>
 <tpd fall-fall time>

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

637

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 <input port>
 <output port>
 }
 }

 { mintpd
 { <mintpd rise-rise time>
 <mintpd rise-fall time>
 <mintpd fall-rise time>
 <mintpd fall-fall time>
 <input port>
 <output port>
 }
 }

 { tzx
 { <tzx rise time>
 <tzx fall time>
 <output port>
 <clock port>
 <clock edge>
 <clock reference>
 }
 }

 { mintzx
 { <mintzx rise time>
 <mintzx fall time>
 <output port>
 <clock port>
 <clock edge>
 <clock reference>
 }
 }

 { txz
 { <tlz time>
 <thz time>
 <output port>
 <clock port>
 <clock edge>
 <clock reference>
 }
 }

 { mintxz
 { <mintlz time>
 <minthz time>
 <output port>
 <clock port>
 <clock edge>
 <clock reference>
 }
 }
}

There are no options for this command, and the data returned
is the same as from the report_datasheet command.

Example Usage project_open proj1
create_timing_netlist
read_sdc
update_timing_netlist

get the datasheet collection
set datasheet [get_datasheet]

loop through contents of datasheet collection
foreach i $datasheet {
 foreach j $i {
 foreach k $j {
 #
 # extract individual items or
 # manipulate as necessary
 #
 }
 }
}

Return Value Code Name Code String Return

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

638

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.18. get_default_sdc_file_names (::quartus::sta)

The following table displays information for the get_default_sdc_file_names Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_default_sdc_file_names [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns the default SDC file name(s) used by the Quartus Prime Compiler
when doing timing-driven optimizations.

Returns the value for the QSF variable SDC_FILE. If multiple
assignments are found, return them as a list If not specified, return
<revision_name>.sdc.

Example Usage project_new test
create_timing_netlist
foreach file [get_default_sdc_file_names] {
 read_sdc $file
}
update_timing_netlist

report_timing

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.19. get_edge_info (::quartus::sta)

The following table displays information for the get_edge_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_edge_info [-h | -help] [-long_help] [-delay] [-delay_type] [-dst] [-ff] [-
fr] [-hslp] [-is_disabled] [-max] [-min] [-name] [-rf] [-rr] [-src] [-type] [-
unateness] <edge_object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-delay Return the delay.

-delay_type Return the type of the delay (ic/cell/loop/user).

-dst Return the destination node ID.

-ff Return the fall-to-fall delay

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

639

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-fr Return the fall-to-rise delay

-hslp Return the HS/LP setting

-is_disabled Return whether the edge has been disabled, so should not
be traversed through

-max Max delay

-min Min delay

-name Return the edge name

-rf Return the rise-to-fall delay

-rr Return the rise-to-rise delay

-src Return the source node ID

-type Return the edge type.

-unateness Return the unateness.

<edge_object> Edge object

Description
Returns information about the specified edge (referenced by edge ID).
Edge IDs can be obtained by Tcl commands such as get_node_info <node_id>
-synch_edges.

The "-type" and "-name" options exist only to keep the interface compliant
with the get_object_info command. The "-type" option returns specific edge
type as "synchronous", "asynchronous", "clock", or "combinational",
while the "-name" option always returns an empty string.

The "-delay" option returns the delay associated to the edge. Use
-max, -min and -rr, -rf, -fr, -ff options to specify the type of returned
delay. One of the -max, -min options must be specified. One of the
-rr, -rf, -fr, -ff options must be specified.

The -hslp option returns the HS/LP setting associated to the edge.

The -unateness option returns the unateness associated to the edge.

The -is_disabled option returns 1 if the edge should not be traversed
through, and 0 if the edge can be traversed through. Disabled edges include
edges in SCC loops and edges that the user has manually cut with the
set_disable_timing command.

Example Usage project_open chiptrip
create_timing_netlist
set nodes [get_pins]
foreach_in_collection node $nodes {
 set node_name [get_node_info -name $node]
 set edges [get_node_info $node -fanout_edges]
 foreach edge $edges {
 # Traverse to the fanout node
 set dst_node [get_edge_info -dst $edge]
 set dst_name [get_node_info -name $dst_node]
 set delay_type [get_edge_info -delay_type $edge]

 set rr_delay [get_edge_info $edge -max -delay -rr]
 set rf_delay [get_edge_info $edge -max -delay -rf]
 set fr_delay [get_edge_info $edge -max -delay -fr]
 set ff_delay [get_edge_info $edge -max -delay -ff]
 puts "Max $delay_type delay of edge $edge, from $node_name to $dst_name: (RR:$rr_delay
RF:$rf_delay FR:$fr_delay FF:$ff_delay)"
 }
}
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option <string> is not allowed to be specified with
option -<string>. Remove the disallowed option.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

640

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Options <string> are exclusively allowed to be
specified with option -<string>. Specify one of the allowed
options.

TCL_ERROR 1 ERROR: Options are mutually exclusive: <string>. Specify
only one of the these options.

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

TCL_ERROR 1 ERROR: Cannot find object of ID <string>. Specify an
existing object ID.

TCL_ERROR 1 ERROR: Option <string> is required to be specified with
option -<string>. Specify a required option.

TCL_ERROR 1 ERROR: Unsupported object type: <string>. Specify a
supported object type.

3.1.37.20. get_entity_instances (::quartus::sta)

The following table displays information for the get_entity_instances Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_entity_instances [-h | -help] [-long_help] [-nowarn] <entity_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-nowarn Do not issue warning messages about missing entities

<entity_name> entity name

Description
Returns a tcl list of all hierarchical instance paths to a named given entity/module.
This can be useful in SDC files which need to be applied to all instances of a module
automatically.

Example Usage get_entity_instances entity_name

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.21. get_min_pulse_width (::quartus::sta)

The following table displays information for the get_min_pulse_width Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_min_pulse_width [-h | -help] [-long_help] [-nworst <number>] [-type <all|
min_period|clock_pulse>] [<targets>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-nworst <number> Specifies the number of pulse width checks to report
(default=1)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

641

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-type <all|min_period|clock_pulse> Option to determine the minimum pulse width analysis type

<targets> Registers or ports

Description
This command returns a Tcl list which contains the minimum
pulse width report. Its format is as follows:

{
 { <slack>,
 <actual width>,
 <required width>,
 <pulse>,
 <clock>,
 <clock edge>,
 <target>
 }
}

Refer to help for the report_min_pulse_width command for help on the
-nworst and -targets options.

Example Usage get_min_pulse_width

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.22. get_net_info (::quartus::sta)

The following table displays information for the get_net_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_net_info [-h | -help] [-long_help] [-name] [-pin] [-type] <net_object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name Return the net name

-pin Return the pin ID of this net

-type Return the net type.

<net_object> Net object

Description
Returns information about the specified net (referenced by net ID).
Net ID's can be obtained by Tcl commands such as get_nets.

The "-type" option returns "net".

The options "-name", "-type", and "-pin" are mutually exclusive.

Example Usage project_open chiptrip
create_timing_netlist

set nets [get_nets]
foreach_in_collection net $nets {
 puts [get_net_info $net -name]
}

delete_timing_netlist
project_close

Return Value Code Name Code String Return
continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

642

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option <string> is not allowed to be specified with
option -<string>. Remove the disallowed option.

TCL_ERROR 1 ERROR: Options <string> are exclusively allowed to be
specified with option -<string>. Specify one of the allowed
options.

TCL_ERROR 1 ERROR: Options are mutually exclusive: <string>. Specify
only one of the these options.

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

TCL_ERROR 1 ERROR: Cannot find object of ID <string>. Specify an
existing object ID.

TCL_ERROR 1 ERROR: Option <string> is required to be specified with
option -<string>. Specify a required option.

TCL_ERROR 1 ERROR: Unsupported object type: <string>. Specify a
supported object type.

3.1.37.23. get_node_info (::quartus::sta)

The following table displays information for the get_node_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_node_info [-h | -help] [-long_help] [-asynch_edges] [-cell] [-clock_edges]
[-fanout_asynch_edges] [-fanout_clock_edges] [-fanout_edges] [-
fanout_synch_edges] [-location] [-name] [-synch_edges] [-type] <node_object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-asynch_edges Return a list of asynchronous edge IDs

-cell Return the host cell

-clock_edges Return a list of clock edge IDs

-fanout_asynch_edges Return a list of asynchronous fanout edge IDs

-fanout_clock_edges Return a list of clock fanout edge IDs

-fanout_edges Return a list of fanout edge IDs

-fanout_synch_edges Return a list of synchronous fanout edge IDs

-location Return the atom location in device

-name Return the node name

-synch_edges Return a list of synchronous edge IDs

-type Return the node type

<node_object> Node object

Description
Gets information about the specified node (referenced by node ID).
Use Tcl commands such as get_nodes to obtain node IDs. The -type
option returns "reg", "port", "pin", "net", or "comb". The -name, -type,

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

643

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-clock_edges, -synch_edges, -asynch_edges, -fanout_edges, -fanout_clock_edges,
-fanout_synch_edges, -fanout_asynch_edges, -cell and
-location options are mutually exclusive.

Example Usage project_open chiptrip
create_timing_netlist
set registers [get_registers]
foreach_in_collection reg $registers {
 puts "[get_node_info $reg -name]: [get_node_info $reg -type]"
}
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

TCL_ERROR 1 ERROR: Cannot find object of ID <string>. Specify an
existing object ID.

TCL_ERROR 1 ERROR: Unsupported object type: <string>. Specify a
supported object type.

3.1.37.24. get_object_info (::quartus::sta)

The following table displays information for the get_object_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_object_info [-h | -help] [-long_help] [-name] [-type] <object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name Return the object name

-type Return the object type

<object> Object

Description
Gets information about the specified object (referenced by object
ID). Object IDs can be obtained by Tcl commands such as get_clocks,
get_ports, get_cells, and others. The -type option returns "clk",
"reg", "port", "cell", "pin", "comb", "net", or "edge". The -name and
-type options are mutually exclusive.

Example Usage project_open chiptrip
create_timing_netlist
set ports [get_ports]
foreach_in_collection port $ports {
 puts [get_object_info $port -name]
}
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Argument <string> is a collection ID that does not
link to any collection. Specify a legal collection ID.

TCL_ERROR 1 ERROR: Argument <string> is an object ID that does not
link to any object. Specify a valid object ID.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

644

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Argument <string> is an empty collection. Specify
one that is a non-empty collection.

TCL_ERROR 1 ERROR: Argument <string> is not a valid object. Specify a
valid object.

TCL_ERROR 1 ERROR: Argument <string> gives an empty collection.
Specify one that gives a non-empty collection.

TCL_ERROR 1 ERROR: Argument <string> gives a collection with more
than one object. Specify one that gives a collection with one
object.

TCL_ERROR 1 ERROR: Argument <string> gives a collection that is not of
<string> type. Specify one that gives a collection of
required type.

TCL_ERROR 1 ERROR: Argument <string> gives an object that is not of
<string> type. Specify one that gives an object of required
type.

TCL_ERROR 1 ERROR: Argument <string> is a collection with more than
one object. Specify a collection with one object.

TCL_ERROR 1 ERROR: Argument <string> is not a collection ID. Specify a
legal collection ID.

TCL_ERROR 1 ERROR: Argument <string> is not an object ID. Specify a
valid object ID.

TCL_ERROR 1 ERROR: Argument <string> is an object filter that matches
more than one object. Specify a filter that matches only one
object.

TCL_ERROR 1 ERROR: Argument <string> is an object filter that matches
no objects. Specify one matches only one object.

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

TCL_ERROR 1 ERROR: Cannot find object of ID <string>. Specify an
existing object ID.

TCL_ERROR 1 ERROR: Unsupported object type: <string>. Specify a
supported object type.

TCL_ERROR 1 ERROR: Argument <string> is a collection that is not of
<string> type. Specify a collection of required type.

TCL_ERROR 1 ERROR: Argument <string> is an object that is not of
<string> type. Specify an object of required type.

TCL_ERROR 1 ERROR: Argument <string> is not <string> <string>.
Specify an argument of the correct type.

3.1.37.25. get_operating_conditions (::quartus::sta)

The following table displays information for the get_operating_conditions Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_operating_conditions [-h | -help] [-long_help] [-for_analysis]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

645

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-for_analysis Get the set of analysis corners instead of the set of
reporting corners

Description
Returns a list of the current operating conditions Tcl objects.

Example Usage puts "Delay Model : [get_operating_conditions_info [get_operating_conditions] -model]"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.26. get_operating_conditions_info (::quartus::sta)

The following table displays information for the get_operating_conditions_info
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_operating_conditions_info [-h | -help] [-long_help] [-display_name] [-
grade] [-is_hold_only] [-model] [-name] [-speed] [-temperature] [-voltage]
<operating_condition>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-display_name Returns the operating conditions display name

-grade Returns the temperature grade of the current device

-is_hold_only Returns whether the operating conditions only support
short-path analysis

-model Returns the operating corner

-name Returns the operating conditions Tcl_Obj name

-speed Returns the speed grade of the current device

-temperature Returns the operating temperature

-voltage Returns the operating voltage

<operating_condition> Operating condition object

Description
Returns information about the operating_conditions Tcl object.

Example Usage
#see detailed information about operating conditions
foreach_in_collection op [get_available_operating_conditions] {
 puts "Delay Model: [get_operating_conditions_info $op -model]"
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

646

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.27. get_partition_info (::quartus::sta)

The following table displays information for the get_partition_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_partition_info [-h | -help] [-long_help] [-child] [-name] [-parent] [-type]
<partition_object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-child Return child partition name(s)

-name Return the partition name

-parent Return parent partition name

-type Return the partition type

<partition_object> Partition object

Description
Gets information about the specified partition (referenced by
partition ID). Partition ID's can be obtained by Tcl commands such as
get_partitions.

The -name, -type, -parent, and -child options are mutually exclusive.

Example Usage project_open chiptrip
create_timing_netlist
set partitions [get_partitions *]
foreach_in_collection partition $partitions {
 puts "[get_partition_info $partition -name]"
}
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

TCL_ERROR 1 ERROR: Cannot find object of ID <string>. Specify an
existing object ID.

TCL_ERROR 1 ERROR: Unsupported object type: <string>. Specify a
supported object type.

3.1.37.28. get_path (::quartus::sta)

The following table displays information for the get_path Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_path [-h | -help] [-long_help] [-fall_from <names>] [-fall_through
<names>] [-fall_to <names>] [-from <names>] [-logic_depth] [-min_path] [-
npaths <number>] [-nworst <number>] [-pairs_only] [-rise_from <names>] [-
rise_through <names>] [-rise_to <names>] [-show_routing] [-through <names>]
[-to <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

647

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-fall_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-logic_depth Option to display the logic depth instead of path delay

-min_path Find the minimum delay path(s)

-npaths <number> Specifies the number of paths to report. The default value is
1 or the same value as nworst, if nworst is specified. Value
of 0 causes all paths to be reported (be wary that this may
be slow)

-nworst <number> Specifies the maximum number of paths to report for each
endpoint. If unspecified, there is no limit. If nworst is
specified, but npaths is not, npaths defaults to the same
value as nworst

-pairs_only When set, paths with the same start and end points are
considered equivalent. Only the longest delay path for each
unique combination is displayed.

-rise_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-show_routing Option to display detailed routing in the path

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Returns a collection of path objects for the longest delay paths
between arbitrary points in the netlist.

This command behaves the same as the report_path command.
However, instead of reporting the paths, it returns a Tcl
collection of path objects. You can retrieve path object data
using the get_path_info and get_point_info commands.

Note that get_path_info does not provide any clock-related
information, required points, or meaningful slack values, for
paths represented by the path objects returned by this function.

For help on the options shared with report_path, see help for the
report_path command.

Example Usage # Define a few helper procedures to print out points
on a path, and the path itself

proc print_point { point } {
 set total [get_point_info $point -total]
 set incr [get_point_info $point -incr]
 set node_id [get_point_info $point -node]
 set type [get_point_info $point -type]
 set rf [get_point_info $point -rise_fall]
 set node_name ""

 if { $node_id ne "" } {

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

648

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set node_name [get_node_info $node_id -name]
 }

 puts [format "%10s %8s %2s %-6s %s" $total $incr $rf $type $node_name]
}

proc print_path { path } {
 puts "Delay : [get_path_info $path -arrival_time]"
 puts ""
 puts [format "%10s %8s %-2s %-6s %s" "Total" "Incr" "RF" "Type" "Name"]
 puts "=="

 foreach_in_collection pt [get_path_info $path -arrival_points] {
 print_point $pt
 }
}

project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

And now simply iterate over the 10 longest delay paths,
printing each as we go.
foreach_in_collection path [get_path -nworst 10] {
 print_path $path
 puts ""
}

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option <string> has illegal value: <string>. Specify
a legal option value.

TCL_ERROR 1 ERROR: Collection type '<string>' is not a valid type for a
through collection. Valid collection types are 'pin' and 'net'

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.29. get_path_info (::quartus::sta)

The following table displays information for the get_path_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_path_info [-h | -help] [-long_help] [-advanced] [-arrival_points] [-
arrival_time] [-borrow_dst] [-borrow_src] [-clock_relationship] [-clock_skew] [-
corner] [-data_delay] [-from] [-from_clock] [-from_clock_is_inverted] [-
hold_end_multicycle] [-hold_start_multicycle] [-latch_time] [-launch_time] [-
num_logic_levels] [-operating_conditions] [-required_points] [-required_time]
[-setup_end_multicycle] [-setup_start_multicycle] [-slack] [-to] [-to_clock] [-
to_clock_is_inverted] [-type] <path_ref>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-advanced Return clock pessimism due to advanced effects

-arrival_points Return a collection of point objects for the arrival path

-arrival_time Return the data arrival time for the path

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

649

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-borrow_dst Return the time borrowed at destination (when the path
ends at a level-sensitive latch)

-borrow_src Return the time borrowed at source (when the path starts
at a level-sensitive latch)

-clock_relationship Return the clock relationship for the path

-clock_skew Return the clock skew for the path

-corner Returns a string indicating the operating conditions at which
the path's delay values are found

-data_delay Return the data delay for the path

-from Return the source node ID

-from_clock Return the source clock ID

-from_clock_is_inverted Return 1 if the source clock is inverted, 0 otherwise

-hold_end_multicycle Return the hold end multicycle for the path

-hold_start_multicycle Return the hold start multicycle for the path

-latch_time Return the latch time for the path

-launch_time Return the launch time for the path

-num_logic_levels Return the number of logic levels on the path between the
to node and from node

-operating_conditions Returns a string indicating the operating conditions at which
the path's delay values are found

-required_points Return a collection of point objects for the required path

-required_time Return the data required time for the path

-setup_end_multicycle Return the setup end multicycle for the path

-setup_start_multicycle Return the setup start multicycle for the path

-slack Return the slack for the path

-to Return the destination node ID

-to_clock Return the destination clock ID

-to_clock_is_inverted Return 1 if the destination clock is inverted, 0 otherwise

-type Return the type of this path. Possible return values are:
"setup", "hold", "recovery", "removal", "max_path",
"min_path"

<path_ref> Path object

Description
Returns information about the referenced timing path
object.

You can generate references to path objects with the
get_timing_paths and get_path functions.

The -type option returns one of the following types:
"setup", "hold", "recovery", "removal", "max_path", or
"min_path".

The -from and -to options return the ID of the nodes
at the start and end, respecitvely, of the arrival
path. If there is no node, an empty string is
returned. The -from node remains the same, regardless of
the level of clock detail provided. It is always the
first node clocked by the -from clock in the data

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

650

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

arrival path. You can use the node ID with the
get_node_info function to obtain additional
information about the node.

The -from_clock and -to_clock options return the ID of
the launching and latching clocks, respectively. If
there is no clock, an empty string is returned. You
can obtain additional information about the clocks
using the get_clock_info function.

Path objects generated by get_path do not have clock
information, required points, or meaningful slack
values.

The -arrival_points and -required_points options
return a collection of point objects for the arrival
and required paths, respectively. By iterating over
the collection, and using the get_point_info function,
you can obtain specific details about each portion of
the path.

If a path was created with additional clock detail,
the elements of the clock path are included in
each collection of points.

The values for the -from, -to, and other options are
either collections or a Tcl list of wildcards used to
create collections of appropriate types. The values
used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See the help for
use_timing_analyzer_style_escaping for details.

When the path starts at a level-sensitive latch, the
-borrow_src option may be used to get the time borrowed
at the source. Similarly, when the path ends at a level-sensitive
latch, -borrow_dst may be used to get the time borrowed at
the destination. When these options are used with anything
other than level-sensitive latches, zero is returned.

For level-sensitive latches, when you use the -launch_time
or -latch_time options, the times reported do not include time borrowed.

The operating condition corresponding to all of a path's delay and time
values can be found using the -corner option.

Example Usage # Define a few helper procedures to print out points
on a path, and the path itself
proc get_clock_string { path clk } {
 set clk_str ""
 set clk_id [get_path_info $path -${clk}_clock]

 if { $clk_id ne "" } {
 set clk_str [get_clock_info $clk_id -name]

 if { [get_path_info $path -${clk}_clock_is_inverted] } {
 append clk_str " (INVERTED)"
 }
 }

 return $clk_str
}

proc print_point { point } {
 set total [get_point_info $point -total]
 set incr [get_point_info $point -incr]
 set node_id [get_point_info $point -node]
 set type [get_point_info $point -type]
 set rf [get_point_info $point -rise_fall]
 set node_name ""

 if { $node_id ne "" } {
 set node_name [get_node_info $node_id -name]
 }

 puts [format "%10s %8s %2s %-6s %s" $total $incr $rf $type $node_name]
}

proc print_path { path } {
 puts "Slack : [get_path_info $path -slack]"
 puts "To Clock : [get_clock_string $path to]"
 puts "From Clock : [get_clock_string $path from]"
 puts ""
 puts [format "%10s %8s %-2s %-6s %s" "Total" "Incr" "RF" "Type" "Name"]
 puts "=="

 foreach_in_collection pt [get_path_info $path -arrival_points] {

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

651

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 print_point $pt
 }
}

project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

And now simply iterate over the 10 worst setup paths, printing each path
foreach_in_collection path [get_timing_paths -npaths 10 -setup] {
 print_path $path
 puts ""
}

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

3.1.37.30. get_pin_info (::quartus::sta)

The following table displays information for the get_pin_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_pin_info [-h | -help] [-long_help] [-is_clock_pin] [-is_in_pin] [-
is_out_pin] [-name] [-net] [-parent_cell] [-suffix] [-type] <pin_object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-is_clock_pin Return true if it is a clock pin, or false otherwise

-is_in_pin Return true if it is an input pin, or false otherwise

-is_out_pin Return true if it is an output pin, or false otherwise

-name Return the pin name

-net Return the net ID if this is an output pin

-parent_cell Return the parent cell ID

-suffix Return the suffix of the pin

-type Return the pin type

<pin_object> Pin object

Description
Gets information about the specified pin (referenced by pin ID). Pin
ID's can be obtained by Tcl commands such as get_pins.

The -type option returns "pin".

Options -name, -type, -parent_cell, -net, -suffix, -is_clock_pin,
-is_in_pin and -is_out_pin are mutually exclusive.

Example Usage project_open chiptrip
create_timing_netlist
set pins [get_pins]
foreach_in_collection pin $pins {
 set pin_name [get_pin_info $pin -name]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

652

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set parent_cell [get_pin_info $pin -parent_cell]
 puts "Pin $pin_name belongs to cell [get_cell_info -name $parent_cell]"
}
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Options are mutually exclusive: <string>. Specify
only one of the these options.

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

TCL_ERROR 1 ERROR: Cannot find object of ID <string>. Specify an
existing object ID.

TCL_ERROR 1 ERROR: Unsupported object type: <string>. Specify a
supported object type.

3.1.37.31. get_point_info (::quartus::sta)

The following table displays information for the get_point_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_point_info [-h | -help] [-long_help] [-edge] [-incremental_delay] [-
location] [-node] [-number_of_fanout] [-rise_fall] [-total_delay] [-type]
<point_ref>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-edge Return the edge ID for the edge associated with this point.
If the point has no edge, this returns an empty string

-incremental_delay Return the incremental delay through this point

-location Return a string indicating the location of the point's node, if
there is one, else an empty string

-node Return the node ID for the node associated with this point.
If the point has no node, this returns an empty string

-number_of_fanout Return the number of fanout that this point has in the
netlist

-rise_fall Return a string indicating the rise_fall type of this point.
Return values are r, f, rr, rf, fr, ff, or an empty string for
undefined

-total_delay Return the total delay of the path at this point. This includes
the incremental delay for the point itself

-type Return a string indicating the type of the point

<point_ref> Point object

Description

Returns information about the referenced timing point object.
References to path objects can be generated using the get_path_info
function.

A point object is the equivalent of a row in a path in the output from
report_timing.

The -node option returns a node ID for the corrsponding node in the

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

653

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

path. For points that do not have a corresponding node (such as
points for the lumped clock network delay, launch time, latch time,
individual routing elements, etc.), the node ID is an empty string. A
non-empty node ID can be used in conjunction with the get_node_info
function to obtain additional information about the node.

The -edge option returns an edge ID for the corresponding edge in the
path. Only points of type "ic", "cell", and "comp" may have edges.
For other point types, an empty string is returned. A non-empty
edge ID can be used in conjunction with the get_edge_info function to
obtain additional information about the edge.

The -total_delay option returns the total delay along the path, up to
and including the current point. The -incremental_delay option
returns the delay incurred by going through this point in the path.
Both delays are formated in terms of the current time units, excluding
the unit string.

The -number_of_fanout option returns the number of fanouts that the
corresponding node has in the timing netlist. If there is no node for
this point, the return value is 0.

The -location option returns a string indicating the location of the
corresponding node in the part. If there is no corresponding node,
this returns an empty string.

The -rise_fall option returns the transition type of this point.

Possible values for -rise_fall are:

 Value Description
 ------- ------------------------------
 (empty) Unknown transition
 r Rising output
 f Falling output
 rr Rising input, rising output
 rf Rising input, falling output
 fr Falling input, rising output
 ff Falling input, falling output

The -type option returns a string indicating the type of delay that
this point represents in the path.

Possible return values for -type are:

 Value Description
 ------- ---
 borrow Time borrowed (for level-sensitive latches)
 cell Cell delay
 clknet Lumped clock network delay
 clksrc Clock source. Used to ensure that the end-point of a
 clock segment is marked in the path when source latency
 is specified, or when the actual path cannot be found.
 comp PLL clock network compensation delay
 ic Interconnect delay
 iext External input delay
 latch Clock latch time
 launch Clock launch time
 loop Lumped combinational loop delay
 oext External output delay
 re Routing element (only for paths generated with the
 -show_routing option)
 srclat Source latency for a clock segment. This appears
 if latency was specified between two clocks, or if a
 path could not be found between them.
 unc Clock uncertainty
 utco Register micro-Tco time
 utsu Register micro-Tsu time
 uth Register micro-Th time

Example Usage # Define a few helper procedures to print out points
on a path, and the path itself
proc get_clock_string { path clk } {
 set clk_str ""
 set clk_id [get_path_info $path -${clk}_clock]

 if { $clk_id ne "" } {
 set clk_str [get_clock_info $clk_id -name]

 if { [get_path_info $path -${clk}_clock_is_inverted] } {
 append clk_str " (INVERTED)"
 }
 }

 return $clk_str
}

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

654

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

proc print_point { point } {
 set total [get_point_info $point -total]
 set incr [get_point_info $point -incr]
 set node_id [get_point_info $point -node]
 set type [get_point_info $point -type]
 set rf [get_point_info $point -rise_fall]
 set node_name ""

 if { $node_id ne "" } {
 set node_name [get_node_info $node_id -name]
 }

 puts [format "%10s %8s %2s %-6s %s" $total $incr $rf $type $node_name]
}

proc print_path { path } {
 puts "Slack : [get_path_info $path -slack]"
 puts "To Clock : [get_clock_string $path to]"
 puts "From Clock : [get_clock_string $path from]"
 puts ""
 puts [format "%10s %8s %-2s %-6s %s" "Total" "Incr" "RF" "Type" "Name"]
 puts "=="

 foreach_in_collection pt [get_path_info $path -arrival_points] {
 print_point $pt
 }
}

project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

And now simply iterate over the 10 worst setup paths, printing each path
foreach_in_collection path [get_timing_paths -npaths 10 -setup] {
 print_path $path
 puts ""
}

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

3.1.37.32. get_port_info (::quartus::sta)

The following table displays information for the get_port_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_port_info [-h | -help] [-long_help] [-edge_rate] [-is_inout_port] [-
is_input_port] [-is_output_port] [-name] [-type] <port_object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-edge_rate Return the edge_rate value

-is_inout_port Return true if it is an inout port, or false otherwise

-is_input_port Return true if it is an input port, or false otherwise

-is_output_port Return true if it is an output port, or false otherwise

-name Return the port name

-type Return the port type

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

655

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<port_object> Port object

Description
Returns information about the specified port (referenced by port ID).
Port ID's can be obtained by Tcl commands such as get_ports. The -type
option returns "port". The -name, -type, -edge_rate, -is_input_port,
-is_output_port and is_inout_port options are mutually exclusive.

Example Usage project_open chiptrip
create_timing_netlist
set ports [get_ports]
foreach_in_collection port $ports {
 set port_type ""
 if [get_port_info $port -is_inout_port] {
 set port_type "bidir"
 } elseif [get_port_info $port -is_input_port {
 set port_type "in"
 } else {
 set port_type "out"
 }
 puts "[get_port_info $port -name]: $port_type"
}
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Options are mutually exclusive: <string>. Specify
only one of the these options.

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

TCL_ERROR 1 ERROR: Cannot find object of ID <string>. Specify an
existing object ID.

TCL_ERROR 1 ERROR: Unsupported object type: <string>. Specify a
supported object type.

3.1.37.33. get_register_info (::quartus::sta)

The following table displays information for the get_register_info Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_register_info [-h | -help] [-long_help] [-asynch_edges] [-clock_edges] [-
delay_type <max_rise|max_fall|min_rise|min_fall>] [-fanout_edges] [-is_latch] [-
is_synchronizer] [-name] [-related_pin <related_pin_value>] [-synch_edges] [-tch]
[-tcl] [-tco] [-th] [-tmin] [-tsu] [-type] <reg_object>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-asynch_edges Return a list of asynchronous edge IDs

-clock_edges Return a list of clock edge IDs

-delay_type <max_rise|max_fall|
min_rise|min_fall>

Specify which type of micro delay to query

-fanout_edges Return a list of fanout edge IDs

-is_latch Return "1" if this is a latch node, or "0" otherwise

-is_synchronizer Return which stage of a synchronizer chain this register is
part of, or "0" if it is not part of a synchronizer chain

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

656

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-name Return the object name

-related_pin <related_pin_value> Specify which register port you want the tsu/th/tco for

-synch_edges Return a list of synchronous edge IDs

-tch Return the Tch value

-tcl Return the Tcl value

-tco Return the Tco value

-th Return the Th value

-tmin Return the Tmin value

-tsu Return the Tsu value

-type Return the object type

<reg_object> Register object

Description
Gets information about the specified register (referenced by register
ID). Register IDs can be obtained by Tcl commands such as
get_registers.

The -type option returns "reg". The -name, -type, -tco, -tsu, -th,
-tch, -tcl, -tmin, -clock_edges, -synch_edges, -asynch_edges, -fanout_edges
and -is_latch options are mutually exclusive.

Example Usage project_open chiptrip
create_timing_netlist
set registers [get_registers]
foreach_in_collection reg $registers {
 set name [get_register_info $reg -name]
 set tco [get_register_info $reg -tco]
 puts "Tco of $name is $tco"
}
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: delay_type is used without specifying the
related_pin. These two options must be used together.

TCL_ERROR 1 ERROR: related_pin is used without specifying the
delay_type. These two options must be used together.

TCL_ERROR 1 ERROR: Object with ID <string> is not an object of type
<string>. Specify the ID of an object with the correct type.

TCL_ERROR 1 ERROR: Cannot find object of ID <string>. Specify an
existing object ID.

TCL_ERROR 1 ERROR: Unsupported object type: <string>. Specify a
supported object type.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

657

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.34. get_timing_paths (::quartus::sta)

The following table displays information for the get_timing_paths Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax get_timing_paths [-h | -help] [-long_help] [-asynch_clock] [-data_delay] [-
detail <summary|path_only|path_and_clock|full_path>] [-fall_from <names>] [-
fall_from_clock <names>] [-fall_through <names>] [-fall_to <names>] [-
fall_to_clock <names>] [-false_path] [-from <names>] [-from_clock <names>]
[-hold] [-inter_clock] [-intra_clock] [-less_than_slack <slack limit>] [-npaths
<number>] [-nworst <number>] [-pairs_only] [-recovery] [-removal] [-rise_from
<names>] [-rise_from_clock <names>] [-rise_through <names>] [-rise_to
<names>] [-rise_to_clock <names>] [-setup] [-show_routing] [-through
<names>] [-to <names>] [-to_clock <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-asynch_clock Only report paths whose launch and latch clock do not share
a common ancestor clock, or were explicitly marked as
asynchronous via clock groups

-data_delay Report only paths that are covered by a data delay
assignment

-detail <summary|path_only|
path_and_clock|full_path>

Option to determine how much detail should be shown in
the path report

-fall_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-false_path Report only paths that are cut by a false path assignment

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-hold Option to report clock hold paths

-inter_clock Only report paths whose launch and latch clock are different

-intra_clock Only report paths whose launch and latch clock are the
same

-less_than_slack <slack limit> Limit the paths reported to those with slack values less than
the specified limit.

-npaths <number> Specifies the number of paths to report (default=1, or the
same value as nworst, if nworst is specified. Value of 0
causes all paths to be reported but be wary that this may be
slow)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

658

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-nworst <number> Specifies the maximum number of paths to report for each
endpoint. If unspecified, there is no limit. If nworst is
specified, but npaths is not, npaths defaults to the same
value as nworst

-pairs_only When set, paths with the same start and end points are
considered equivalent. Only the worst case path for each
unique combination is displayed.

-recovery Option to report recovery paths

-removal Option to report removal paths

-rise_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Option to report clock setup paths

-show_routing Option to display detailed routing in the path

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

Description
Get a collection of path objects for the worst-case paths.

This command behaves the same as the report_timing command.
However, instead of reporting the paths, it returns a Tcl
collection of path objects. You can retrieve path object data
using the get_path_info and get_point_info commands.

For help on the options shared with report_timing, see the
report_timing help page.

Example Usage # Define a few helper procedures to print out points
on a path, and the path itself
proc get_clock_string { path clk } {
 set clk_str ""
 set clk_id [get_path_info $path -${clk}_clock]

 if { $clk_id ne "" } {
 set clk_str [get_clock_info $clk_id -name]

 if { [get_path_info $path -${clk}_clock_is_inverted] } {
 append clk_str " (INVERTED)"
 }
 }

 return $clk_str
}

proc print_point { point } {
 set total [get_point_info $point -total]
 set incr [get_point_info $point -incr]
 set node_id [get_point_info $point -node]
 set type [get_point_info $point -type]
 set rf [get_point_info $point -rise_fall]
 set node_name ""

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

659

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 if { $node_id ne "" } {
 set node_name [get_node_info $node_id -name]
 }

 puts [format "%10s %8s %2s %-6s %s" $total $incr $rf $type $node_name]
}

proc print_path { path } {
 puts "Slack : [get_path_info $path -slack]"
 puts "To Clock : [get_clock_string $path to]"
 puts "From Clock : [get_clock_string $path from]"
 puts ""
 puts [format "%10s %8s %-2s %-6s %s" "Total" "Incr" "RF" "Type" "Name"]
 puts "=="

 foreach_in_collection pt [get_path_info $path -arrival_points] {
 print_point $pt
 }
}

project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

And now simply iterate over the 10 worst setup paths, printing each path
foreach_in_collection path [get_timing_paths -npaths 10 -setup] {
 print_path $path
 puts ""
}

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option <string> has illegal value: <string>. Specify
a legal option value.

TCL_ERROR 1 ERROR: Collection type '<string>' is not a valid type for a
through collection. Valid collection types are 'pin' and 'net'

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.35. import_sdc (::quartus::sta)

The following table displays information for the import_sdc Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax import_sdc [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Reads SDCs from synthesized database directly.

Example Usage project_new test
create_timing_netlist

Read SDC commands
import_sdc

update_timing_netlist

report_timing

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

660

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.36. is_post_syn_sta (::quartus::sta)

The following table displays information for the is_post_syn_sta Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax is_post_syn_sta [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns 1 when post synthesis delays are annotated on the timing netlist

Example Usage if {[is_post_syn_sta]} {
 create_clock ...
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.37. locate (::quartus::sta)

The following table displays information for the locate Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax locate [-h | -help] [-long_help] [-chip] [-classic_tmv] [-color <black|blue|brown|
green|grey|light_grey|orange|purple|red|white>] [-dpp] [-label <label>] [-
no_duplicates] [-rpe] [-rtm] [-tmv] <items>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-chip Locate the object in the Chip Planner

-classic_tmv Locate the object in the Classic Technology Map Viewer

-color <black|blue|brown|green|
grey|light_grey|orange|purple|red|
white>

Specify the color to be used to identify the objects you are
locating

-dpp Locate in the Design Partition Planner

-label <label> Specify a label used to identify the objects you are locating

-no_duplicates Do not locate duplicate objects

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

661

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-rpe Locate in the Resource Property Editor

-rtm Locate in the Hyper-Retiming Viewer

-tmv Locate the object in the Technology Map Viewer

<items> Items to locate. Any collection or object (such as paths,
points, nodes, nets, keepers, registers, etc) may be located
by passing a reference to the corresponding collection or
object.

Description
Locate an object from the Timing Analyzer in another Quartus Prime tool.

With this command, one or more objects, or collections of objects,
can be located in a supported Quartus tool from the Timing Analyzer.

The destination must be specified with one of the following
options:

 Option Destination Tool
 ====== ==============================
 -chip Chip Planner
 -rpe Resource Property Editor
 -rtl RTL Viewer
 -classic_rtl Classic RTL Viewer
 -tmv Technology Map Viewer
 -classic_tmv Classic Technology Map Viewer
 -rtm Hyper-Retiming Viewer
 -dpp Design Partition Planner

The -label option can be used to specify a label for the located
objects. The -color command can be used to specify a color to
be used to identify the located objects in the destination tool.

Example Usage proc prepare_design { } {
 set sleep_for 2000

 create_timing_netlist -risefall

 post_message -type info "Give the GUI some time to catch up to the new netlist. Sleep for
$sleep_for ms"
 after $sleep_for

 read_sdc
 update_timing_netlist
}

prepare_design

Locate all of the nodes in the longest ten paths
into the Resource Property Editor
locate [get_path -npaths 10] -rpe

Locate ten paths into the chip planner, labelling
each one individually.
set path_col [get_timing_paths -npaths 10]
set path_id 0

foreach_in_collection path $path_col {
 incr path_id

 locate -label "Path #$path_id" $path -chip
}

locate all keepers that begin with the letter t
to the Tech Map Viewer
locate [get_keepers t*] -tmv

locate all nodes that begin with the letter a
#
The Timing Analyzer GUI will prompt the user for the
tool to which the nodes should be located.
#
Pause first to allow the previous locations to
appear, as the dialog that pops up, to ask
the user for a location, will block the rest
of the GUI until cleared.

after 5000

post_message -type info "Interactive locate"
locate a*

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

662

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Illegal color: <string>. Specify a color that is
currently supported by the locate command.

TCL_ERROR 1 ERROR: An object or collection matching <string> could not
be found, or was of a type not supported by the locate
command.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.38. print_total_sdc_processing_time (::quartus::sta)

The following table displays information for the
print_total_sdc_processing_time Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax print_total_sdc_processing_time [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns the total processing time as a formatted string.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.39. query_collection (::quartus::sta)

The following table displays information for the query_collection Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax query_collection [-h | -help] [-long_help] [-all] [-limit <limit_value>] [-
list_format] [-report_format] <collection>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-all Return all the collection objects.

-limit <limit_value> Set number of collection objects to return.

-list_format Return collection objects in a list format.

-report_format Return collection objects in a format of one element per
line.

<collection> Object collection

Description
Query collection objects.

Collections can be obtained by Tcl commands such as get_clocks,

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

663

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_ports, get_cells. If neither the -limit nor the -all option is
specified, then first 20 objects (if the collection has more than 20
objects) or all objects (if the collection has less than or equal to
20 objects) are returned.

Example Usage project_open chiptrip
create_timing_netlist

set nodes [get_nodes Reg*]
Get the first 100 nodes in the collection.
query_collection $nodes -limit 100

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Cannot find specified collection. Specify an existing
collection.

3.1.37.40. read_sdc (::quartus::sta)

The following table displays information for the read_sdc Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax read_sdc [-h | -help] [-long_help] [-hdl] [-instance <instance_name>] [-
no_import] [-no_sdc_promotion] [-post_fit] [-post_syn] [-project_relative]
[<file_name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-hdl Read SDC commands embedded in HDL

-instance <instance_name> Name of the block for which we are reading the SDC file

-no_import Do not automatically import RTL SDCs from the netlist

-no_sdc_promotion Disable instance-bound scoping of constraints

-post_fit For post_syn STA. Load SDCs as if in post_fit (Includes
SDC_FILE, HDL Embedded, Entity)

-post_syn For use with STA on fitter snapshots. Load SDCs as if in
post_syn mode

-project_relative If passing in a relative path to a file, interpret that path
relative to the current project\'s directory instead of STA\'s
current directory

<file_name> Name of the SDC file

Description
Reads an SDC file with all current constraints and exceptions.

If an SDC file is specified, read_sdc only reads that SDC file. If
the -hdl option is specified, read_sdc only reads SDC commands that
were embedded in HDL.

If no arguments are specified, read_sdc reads the default SDC files
along with any SDC commands that were embedded in HDL. If one or more
SDC_FILE assignments exists in the QSF, read_sdc reads all of them in
order. Otherwise, read_sdc reads the file <revision>.sdc if it exists.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

664

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage project_new test
create_timing_netlist

Read SDC commands from test_constraints.sdc
read_sdc test_constraints.sdc

Read SDC commands embedded in HDL
read_sdc -hdl

update_timing_netlist

report_timing

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Can't find file <string>

TCL_ERROR 1 ERROR: The provided instance name does not exist in the
current design.

TCL_ERROR 1 ERROR: instance_name must be specified when using
no_sdc_promotion.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.41. register_delete_timing_netlist_callback (::quartus::sta)

The following table displays information for the
register_delete_timing_netlist_callback Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax register_delete_timing_netlist_callback [-h | -help] [-long_help] <body>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<body> Body of the callback to run

Description
Use this command to specify a TCL procedure that runs before the
timing netlist is deleted.

This command can be used to specify a procedure to run, like so:

proc mycallback {

 # This is the body of the delete_timing_netlist callback.
 ...
}
register_delete_timing_netlist_callback mycallback

Or, you may specify the procedure directly:

register_delete_timing_netlist_callback {

 # This is the body of the delete_timing_netlist callback.
 ...
}

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

665

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.42. remove_from_collection (::quartus::sta)

The following table displays information for the remove_from_collection Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax remove_from_collection [-h | -help] [-long_help] <base_collection>
<items_to_remove>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

<base_collection> Collection to remove items from

<items_to_remove> Items to be removed from base_collection

Description
This command takes two collections and returns a new
collection that is the difference of the two,
effectively the second collection subtracted from the
first collection. The second collection can be a
string, but the first has to be previously-created
collection: either by passing any of the "get_"
functions directly, or by passing a variable that
contains a collection (see code examples for
this command). If a collection is used for the
second argument, the types in the second collection
must be the same as or a subset of the types in the
first collection.

If the first collection consists of keepers, the second
collection can only consist of keepers, registers or ports.
If the first collection consists of partitions, the second
collection can only consist of partitions or cells. If
the first collection consists of nodes, the second collection
can only consist of nodes, keepers, registers, ports, pins,
nets or combinational nodes.

Example Usage set a_keeprs [get_keepers a*]
set a1_regs [get_registers a1*]

set keeprs_without_a1 [remove_from_collection $a_keeprs $a1_regs]

#or:
set keeprs_without_a1 [remove_from_collection $a_keeprs [get_registers a1*]]

#or even:
set keeprs_without_a1 [remove_from_collection $a_keeprs a1*]

- note that the last statement will actually remove all keepers with name a1*
not only registers! (will remove IOs with name a1*, if any)

Get the first 100 nodes in the collection.
query_collection $keeprs_without_a1 -limit 100

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Cannot find specified collection. Specify an existing
collection.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

666

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.43. report_advanced_io_timing (::quartus::sta)

The following table displays information for the report_advanced_io_timing Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_advanced_io_timing [-h | -help] [-long_help] [-append] [-file <name>]
[-panel_name <name>] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
This command creates a report containing all of the relevant signal
integrity measurements computed during I/O buffer simulation.

You must perform delay annotation with Advanced I/O Timing enabled
before using this command. This option can be enabled from the
Timing Analyzer Page of the Settings dialog box.

Example Usage project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

Create "Advanced I/O Timing" report panel
report_advanced_io_timing -panel_name "Advanced I/O Timing"

The following command is optional
delete_timing_netlist

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.44. report_asynch_cdc (::quartus::sta)

The following table displays information for the report_asynch_cdc Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_asynch_cdc [-h | -help] [-long_help] [-append] [-asynch_clock] [-detail
<summary|full>] [-fall_from_clock <names>] [-fall_to_clock <names>] [-file
<name>] [-from <names>] [-from_clock <names>] [-inter_clock] [-intra_clock]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

667

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

[-multi_bit_cdc] [-nentries <number>] [-panel_name <name>] [-reset_cdc] [-
rise_from_clock <names>] [-rise_to_clock <names>] [-single_bit_cdc] [-stdout]
[-to <names>] [-to_clock <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-asynch_clock Only report paths whose launch and latch clock do not share
a common ancestor clock, or were explicitly marked as
asynchronous via clock groups

-detail <summary|full> Option to specify how much detail should be shown in the
CDC report

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-inter_clock Only report paths whose launch and latch clock are different

-intra_clock Only report paths whose launch and latch clock are the
same

-multi_bit_cdc Report multi-bit CDC topologies found in the design

-nentries <number> Display up to this number of entries per CDC topology. Only
applicable in full detail mode

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-reset_cdc Report reset CDC topologies found in the design

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-single_bit_cdc Report single-bit CDC topologies found in the design

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

Description
This report displays all Clock-Domain-Crossings (CDC) between asynchronous
clocks in a design.

The report can be directed to the Tcl console ("-stdout", default), a file

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

668

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

("-file"), the Timing Analyzer graphical user interface ("-panel_name"),
or any combination of the three.

By default, this command reports all CDC's in a design. You can limit the analysis
performed by this command to specific CDC source and destination nodes, using the
"-from" and "-to" options. The analysis can also be limited using clocks. Specify the
CDC's source and destination clocks using the "-from_clock" and "-to_clock" options.
Alternatively, specify edges of the clock using "-rise_from_clock", "-fall_from_clock",
"-rise_to_clock", and "-fall_to_clock" options.

To limit the report to only display specific categories of CDC's, use "-multi_bit_cdc"
to report multi-bit CDC buses, "-single_bit_cdc" to report single-bit CDC synchronizers,
and "-reset_cdc" to report asynchronous reset topologies. By default, all
three CDC categories are reported.

Use the "-nentries" option to limit the number of CDC's displayed per CDC topology
type. The topology types fall into one of the three categories above. Run the
report to see all the topology types that are supported.

Use the "-detail" option to specify the desired level of reporting detail.
"summary" generates a table listing only the number of CDC topologies
recognized per category and the total number of crossings for that category.
"full" reports every recognized CDC under each topology type, and is
the default behaviour. In the full report, you can click on each individual CDC in
the Timing Analyzer graphical user interface to view its statistics.

Example Usage # Report all bus CDC's, up to 10 buses per CDC topology type
report_asynch_cdc -buses -nentries 10

Report all CDC's from clkA to clkB
report_asynch_cdc -from_clock clkA -to_clock clkB

Report all synchronizer chains whose source node contains "transfer"
report_asynch_cdc -from *transfer* -synch_chains

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: The current report cannot be run in XML mode. Use
create_timing_netlist to create a non-XML timing netlist.

3.1.37.45. report_bottleneck (::quartus::sta)

The following table displays information for the report_bottleneck Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_bottleneck [-h | -help] [-long_help] [-cmetric <cmetric_name>] [-
details] [-metric <default|tns|num_paths|num_fpaths|num_fanins|num_fanouts>] [-nworst
<number>] [-panel_name <panel_name>] [-stdout] [<paths>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-cmetric <cmetric_name> Custom metric function to evaluate individual nodes

-details Show the detailed information (number of failing edges,
number of fanins, etc)

-metric <default|tns|num_paths|
num_fpaths|num_fanins|
num_fanouts>

Indicate the metric to use to rate individual nodes

-nworst <number> Specifies the maximum number of nodes to report. If
unspecified, there is no limit

-panel_name <panel_name> Sends the results to the panel and specifies the name of the
new panel

-stdout Output the result onto stdout

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

669

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<paths> Paths to be analyzed

Description

Reports bottleneck nodes in a design based on
user-specified criteria for rating each node.

The following considerations are pre-defined

 num_fpaths: (default) returns the number of paths
 that fail timing through the node.

 num_fanins: returns the number of fanin edges from
 the node.

 num_fanouts: returns the number of fanout edges from
 the node.

 num_paths: returns the number of paths through the node.

 tns: returns the total negative slack of all the paths
 through the node.

The paths to be analyzed can be specified by passing the result of any
get_timing_paths call as the last argument to report_bottleneck. If no
paths are specified, report_bottleneck analyzes the worst 1000 setup
paths in the design.

You can also create your own custom criteria for evaluating nodes
based on the combination of the number of fanouts, fanins, failing
paths, and total paths.

To use custom criteria, do the following:

 1. Create a Tcl procedure that takes one argument, "arg",
 for example.

 2. Use "upvar $arg metric" in the procedure.

 3. Calculate the rating based on $metric(tns),
 $metric(num_fanouts), $metric(num_fanins), and $metric(num_fpaths).

 4. Return the rating with "return $rating".

 5. Pass the name of your custom criteria procedure to
 report_bottleneck using the -cmetric option.

Reports can be directed to the Tcl console (-stdout), the Timing Analyzer
graphical interface (-panel), or a combination of the two.

Example Usage project_open my_project
create_timing_netlist
read_sdc
update_timing_netlist

use the worst 500 hold paths
set paths [get_timing_paths -npaths 500 -hold]
report_bottleneck -metric default -panel "Timing Analysis Bottleneck Report - Default Metric"
$paths
report_bottleneck -metric tns -panel "Timing Analysis Bottleneck Report - TNS" $paths
report_bottleneck -metric num_paths -panel "Timing Analysis Bottleneck Report - Number of
Paths" $paths
report_bottleneck -metric num_fpaths -panel "Timing Analysis Bottleneck Report - Number of
Failing Paths" $paths
report_bottleneck -metric num_fanouts -panel "Timing Analysis Bottleneck Report - Number of
Fanouts" $paths

create custom metric and use the worst 2000 setup paths
proc report_bottleneck_custom_metric {arg} {
 # Description: use the number of fanins as the custom metric.
 upvar $arg metric
 set rating $metric(num_fanins)
 return $rating
}

set paths [get_timing_paths -npaths 2000 -setup]
report_bottleneck -cmetric report_bottleneck_custom_metric -panel "Timing Analysis Bottleneck
Report - Custom" $paths

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

670

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.46. report_cdc_viewer (::quartus::sta)

The following table displays information for the report_cdc_viewer Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_cdc_viewer [-h | -help] [-long_help] [-append] [-clock_groups] [-file
<name>] [-from_clock <names>] [-fully_cut] [-hierarchy] [-hold] [-inactive] [-
less_than_slack <slack limit>] [-list] [-panel_name <name>] [-recovery] [-
removal] [-setup] [-show_empty] [-show_non_crossing] [-stdout] [-summary] [-
timed] [-to_clock <names>] [-tree]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-clock_groups Show transfers cut by clock groups

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fully_cut Include transfers where all paths are cut by false path
assignments

-hierarchy When writing to a panel or a non-list file, show child clocks
as nested within their parent clocks

-hold Option to report clock hold paths

-inactive Show transfers between inactive clocks

-less_than_slack <slack limit> Ignore paths with slack values greater or equal to the
specified limit

-list When writing to file, output all clock transfers in a list
instead of a grid

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-recovery Option to report recovery paths

-removal Option to report removal paths

-setup Option to report clock setup paths

-show_empty Include all clocks in the report, even ones that launch/latch
no paths

-show_non_crossing Include transfers that do not cross a clock domain (i.e.
transfers to/from the same clock)

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-summary Do not display slack information

-timed Include all timed transfers (i.e. those not fully cut by false
paths or clock groups)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

671

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-tree Alias for the -hierarchy option

Description

Generates a Clock Domain Crossing Viewer (CDC Viewer) report. It displays
all clock transfers (i.e., data paths between one clock domain and another
clock domain) in a design, as well as data on each transfer: the number of
uncut & cut paths in the transfer, the worst-case and total-negative
slack of the transfer, and the tightest setup/hold/removal/recovery
relationship between the clocks in the transfer.

The report indicates what clock transfers are cut ("false paths") by
set_clock_groups or clock-to-clock set_false_path commands, and which
clock transfers are ignored due to clocks marked as inactive by
set_active_clocks.

The report can be directed to the Tcl console ("-stdout", default), a
file ("-file"), the Timing Analyzer graphical user interface ("-panel_name"),
or any combination of the three. When directed to a panel or a file
without the -list option, the CDC Viewer report will be a grid, where
each cell represents paths transferring between a source and destination
clock. When directed to a panel or an HTML file, the grid is color-
coded to highlight passing, failing, cut, and inactive transfers, as
well as clock groups. When directed to the Tcl console or a file with
the -list option, a list of clock transfers are reported.

The -setup, -hold, -recovery, and -removal options determine the
analysis type of the report, particularly the reporting of false_paths
that apply to only one analysis type. If you do not specify any of
these options, a report is generated for each analysis.

By default, the only transfers that are shown in the report are
ones that participate in clock domain crossings. This means that
transfers to/from the same clock are not shown, even if they fail
timing. To show all transfers, use the -show_all option.

The generated report can be customized by a variety of options. Refer
to the help text of those options for more information.

Example Usage project_open top
create_timing_netlist -skip_dat
report_cdc_viewer -panel_name
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Netlist must be updated. Run update_timing_netlist

3.1.37.47. report_clock_fmax_summary (::quartus::sta)

The following table displays information for the report_clock_fmax_summary Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_clock_fmax_summary [-h | -help] [-long_help] [-append] [-file <name>]
[-panel_name <name>] [-split_by_corner] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

672

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-split_by_corner When set, running this command with the -panel option
creates a folder containing versions of this report for
selected multiple operating conditions. This option has no
effect when used with the -stdout or -file options.

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description

Reports potential fmax for every clock in the design, regardless of
the user-specified clock periods. Fmax is only computed for paths
where the source and destination registers or ports are driven by the
same clock. Paths of different clocks, including generated clocks, are
ignored. For paths between a clock and its inversion, fmax is computed
as if the rising and falling edges of the clock are scaled along with
fmax, such that the duty cycle (in terms of a percentage) is
maintained.

Restricted fmax considers hold timing in addition to setup timing, as
well as minimum pulse and minimum period restrictions. Similar to
unrestricted fmax, the restricted fmax is computed as if the rising
and falling edges of the clock are scaled along with fmax, such that
the duty cycle (in terms of a percentage) is maintained. The "Note"
column reports which analyses restricted fmax. Refer to hold timing
reports (e.g., report_timing with the -hold option) or minimum pulse
width reports generated by the report_min_pulse_width command for
details of specific paths, registers, or ports.

Example Usage project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

Output results in the form of messages
report_clock_fmax_summary
Create "Fmax" report panel
report_clock_fmax_summary -panel_name Fmax
Report both with report panel and messages
report_clock_fmax_summary -panel_name Fmax -stdout

The following command is optional
delete_timing_netlist

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.48. report_clock_network (::quartus::sta)

The following table displays information for the report_clock_network Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_clock_network [-h | -help] [-long_help] [-append] [-file <name>] [-
include_non_clock_paths] [-initial_depth <number>] [-locate_with_routing] [-
panel_name <name>] [-show_full_paths] [-stdout] [-target <names>]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

673

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-include_non_clock_paths Show paths that are potentially in the clock network. These
paths terminate at a register's clock pin but do not start at
a clock source.

-initial_depth <number> Initial clock network depth to report.

-locate_with_routing When locating to a path, also show detailed routing. This is
only shown in Chip Planner.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-show_full_paths Show the full clock paths - do not reduce the table size by
condensing multiple trivial nodes into one row.

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-target <names> Valid nodes in the clock network or clocks (string patterns
are matched using Tcl string matching).

Description
The clock network report shows the netlist topology of clock paths that make up the
clock network in a design. It allows the user to track a clock signal from its
source, through transformations such as PLL's, to the loads that the clock drives.
It also reveals clock relationships by indicating nodes where generated clocks are
defined.

The report can be directed to the Tcl console ("-stdout", default), a file
("-file"), the Timing Analyzer graphical user interface ("-panel_name"),
or any combination of the three.

Use the "-target" option to specify report targets. These can be clocks in the design or
nodes on the clock network, for example PLL outputs. If you specify clocks as targets, the
clock network report uses the clock's target nodes as report targets. The clock network
report then displays all nodes in the clock network that are in the fanin and fanout cones
of the report targets. If no report target is specified, all clock target nodes in the
design are used by default.

Each row in the report may include one node or multiple trivial nodes with singular fanin
and fanout edge. To disable the behaviour of collapsing down trivial nodes into one row, use
the "-show_full_paths" option.

When running the clock network report in the Timing Analyzer GUI, rows in the main table
corresponding to report target nodes are highlighted in light blue. You may click on each
row of the table to view information such as clock frequencies, relationships, and why
this node belongs in the clock network. You may right-click on any row to locate the
node in other Quartus tools such as RTL Viewer. You may also right-click on specific rows
to locate the shortest clock path from the clock source to that node in tools such as RTL
Viewer.

Use the "-initial_depth" option to reduce the height of the report table in the Timing Analyzer
GUI. Rows in the main table that are deeper than the set initial depth are collapsed by
default, but can be manually expanded. If this option is not set, the report determines an
appropriate initial depth to use.

Use the "-include_non_clock_paths" option if a node that you expect to be in the clock network
cannot be found. This option shows nodes that lead into a register's clock pin, but are not
downstream of any known clock source. Furthermore, registers that are not clocked by any clocks
will be shown using this option.

Use the "-locate_with_routing" option to show the routing elements that make up a path when
locating a path to Chip Planner. Only use this option if you use the "-target" option to specify
reporting targets, otherwise the report may be slow to generate.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

674

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage # Report the clock network that feeds into register regA
report_clock_network -panel {Report} -target [get_registers regA]

Report the clock network starting from clk_100 clock, but show only the first 10 levels
report_clock_network -panel {Report} -target [get_clocks clk_100] -initial_depth 10

Report the clock network passing through the combinational node clk_mux|combout.
In the report, include paths that end at a register's clock pin but do not start
at a clock source.
report_clock_network -panel {Report} -target [get_nodes clk_mux|combout] -
include_non_clock_paths

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.49. report_clock_transfers (::quartus::sta)

The following table displays information for the report_clock_transfers Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_clock_transfers [-h | -help] [-long_help] [-append] [-file <name>] [-
hold] [-panel_name <name>] [-recovery] [-removal] [-setup] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-hold Creates a clock transfer summary for hold analysis

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-recovery Creates a clock transfer summary for recovery analysis

-removal Creates a clock transfer summary for removal analysis

-setup Creates a clock transfer summary for setup analysis

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description

Generates a timing report table showing all clock transfers (i.e.,
data paths between one clock domain and another clock domain). The
from and to clocks are shown as well as the number of paths for each
transfer: RR, RF, FR, FF. An RF transfer, for example, occurs when
the source register of path is clocked by the rising edge of its clock
and the destination register is clocked by the falling edge of its
clock.

The report also indicates what clock transfers are cut ("false paths")
by set_clock_groups or clock-to-clock set_false_path commands. For
transfers that are not cut, the number of paths reported does not take
into account paths cut by path-specific set_false_path commands.
Actual path counts may be lower than reported.

The report can be directed to the Tcl console ("-stdout", default), a
file ("-file"), the Timing Analyzer graphical user interface
("-panel_name"), or any combination of the three.

The -setup, -hold, -recovery, and -removal options determine the

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

675

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

analysis type of the report, particularly the reporting of false_paths
that apply to only one analysis type. If you do not specify any of
these options, a report is generated for each analysis.

Example Usage project_open top
create_timing_netlist -skip_dat
report_clock_transfers -panel_name
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Netlist must be updated. Run update_timing_netlist

3.1.37.50. report_clocks (::quartus::sta)

The following table displays information for the report_clocks Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_clocks [-h | -help] [-long_help] [-append] [-desc] [-file <name>] [-
hierarchy] [-panel_name <name>] [-stdout] [-summary] [-tree] [-waveform]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-desc Sort the clocks by name in descending order (ascending
order is default)

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-hierarchy Display a tree view of the clocks

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-summary Create a single table with a summary of each clock

-tree alias for hierarchy

-waveform Display the clocks graphically as waveforms

Description
Report can be directed to the Tcl console ("-stdout", default), a file
("-file"), the Timing Analyzer graphical interface ("-panel_name"), or any
combination of the three.

For stdout/file output, the clock details are reported in two sections.
The first section shows all clocks, their period, and their waveform.
This includes generated clocks after an update_timing_netlist. The
second section shows details for all generated clocks. For the panel
report, both sections are combined into a single report.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

676

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage project_open top
create_timing_netlist
read_sdc
update_timing_netlist

report_clocks

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.51. report_datasheet (::quartus::sta)

The following table displays information for the report_datasheet Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_datasheet [-h | -help] [-long_help] [-append] [-expand_bus] [-file
<name>] [-panel_name <name>] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-expand_bus If set, bus is reported as individual ports

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
This function creates a datasheet report which summarizes the timing
characteristics of the design as a whole. It reports setup (tsu), hold
(th), clock-to-output (tco), minimum clock-to-output (mintco), output
enable (tzx), minimum output enable (mintzx), output disable (txz),
minimum output disable (mintxz), propagation delay (tpd), and minimum
propagation delay (mintpd) times. These delays are reported for each
clock or port for which they are relevant. If there is a case where
there are multiple paths for a clock (for example if there are
multiplexed clocks), then the maximum delay is reported for the tsu, th,
tco, tzx, txz and tpd, and the minimum delay is reported for mintco,
mintzx, mintxz and mintpd.

The datasheet can be outputed to the Tcl console ("-stdout", default),
a file ("-file"), or a report panel ("-panel_name"). Additionally if
the "-file" option is used then the "-append" option can be used to
specify that new data should be written to the end of the specified
file.

Example Usage project_open proj1
create_timing_netlist
read_sdc
update_timing_netlist

Report the datasheet to a report panel
report_datasheet -panel_name Datasheet

Report the datasheet to a file
report_datasheet -file file1.txt

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

677

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.52. report_ddr (::quartus::sta)

The following table displays information for the report_ddr Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_ddr [-h | -help] [-long_help] [-append] [-file <name>] [-panel_name
<name>] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
This command generates custom timing reports for EMIF instantiations.

Example Usage project_new test
create_timing_netlist
read_sdc
update_timing_netlist

report_ddr -panel "Report DDR"

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

678

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.53. report_exceptions (::quartus::sta)

The following table displays information for the report_exceptions Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_exceptions [-h | -help] [-long_help] [-append] [-asynch_clock] [-
clock_groups] [-detail <summary|path_summary|path_only|path_and_clock|full_path>] [-
fall_from_clock <names>] [-fall_to_clock <names>] [-false_path] [-file
<name>] [-from <names>] [-from_clock <names>] [-hold] [-ignored] [-
inter_clock] [-intra_clock] [-less_than_slack <slack limit>] [-max_delay] [-
min_delay] [-multicycle_path] [-npaths <number>] [-num_exceptions <number>]
[-nworst <number>] [-pairs_only] [-panel_name <name>] [-reachability] [-
recovery] [-removal] [-report_clock_groups] [-rise_from_clock <names>] [-
rise_to_clock <names>] [-setup] [-split_by_corner] [-stdout] [-through
<names>] [-to <names>] [-to_clock <names>] [-valid]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-asynch_clock Only report paths whose launch and latch clock do not share
a common ancestor clock, or were explicitly marked as
asynchronous via clock groups

-clock_groups Option to show clock groups in reports. This option also
treats clock groups as timing exceptions

-detail <summary|path_summary|
path_only|path_and_clock|full_path>

Option to determine how much detail should be shown in
the path report

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-false_path Option to report false path exceptions

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-hold Option to report clock hold paths

-ignored Option to report only exceptions that are partially or fully
ignored

-inter_clock Only report paths whose launch and latch clock are different

-intra_clock Only report paths whose launch and latch clock are the
same

-less_than_slack <slack limit> Limit the paths reported to those with slack values less than
the specified limit.

-max_delay Option to report maximum delay exceptions

-min_delay Option to report mininum delay exceptions

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

679

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-multicycle_path Option to report multicycle path exceptions

-npaths <number> Specifies the number of paths to report (default=1, or the
same value as nworst, if nworst is specified. Value of 0
causes all paths to be reported but be wary that this may be
slow)

-num_exceptions <number> Option to only show a certain number of exceptions in the
report

-nworst <number> Specifies the maximum number of paths to report for each
endpoint. If unspecified, there is no limit. If nworst is
specified, but npaths is not, npaths defaults to the same
value as nworst

-pairs_only When set, paths with the same start and end points are
considered equivalent. Only the worst case path for each
unique combination is displayed.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-reachability Option to report a percent value of how many nodes in an
exception's targets are satisfied by the exception

-recovery Option to report recovery paths

-removal Option to report removal paths

-report_clock_groups Option to treat clock groups as exceptions

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Option to report clock setup paths

-split_by_corner When set, running this command with the -panel option
creates a folder containing versions of this report for
selected multiple operating conditions. This option has no
effect when used with the -stdout or -file options.

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-valid Option to report only exceptions that cover valid paths and
have been successfully applied

Description
Reports status and timing analysis results for each timing
exception in your design. A timing exception is one of:
set_false_path, set_multicycle_path, set_min_delay, or
set_max_delay.

The status is relative to the paths covered by the -from, -to,
and other options. A complete timing exception relative to the
values specified for the -from and -to options may not actually
be complete with respect to the full design.

Complete: The exception has not been overridden and is valid
There are paths affected by this exception.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

680

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Partially overridden: The exception includes some paths that
have been overridden by one or more higher-precedence
exceptions.

Fully overridden: All paths affected by this exception have been
overridden by one or more higher-precedence exceptions.

Invalid: No paths are affected by this exception. This occurs
when a timing exception has valid -from, -to, or -through
collections, but there are no actual paths from the -from nodes
to the -to nodes.

Paths will not be analyzed: This exception has no paths for the
given analysis type (setup/hold/recovery/removal). This occurs when
a timing exception has paths, but only for analysis types other
than the type used for the current report.

Use the -valid option to show only exceptions that have the status
of "Complete" or "Partially overridden". These exceptions cover valid
paths and have been successfully applied.

Use the -ignored option to show only exceptions that are partially or
fully ignored. This includes exceptions with the status "Partially
Overridden", "Fully Overridden", "Invalid", as well as any exceptions
that have errors and were not included in the analysis.

Use the -setup (default), -hold, -recovery, or -removal options
to further filter the exceptions reported.

The report can be directed to the Tcl console using -stdout
(default), a file using -file, the Timing Analyzer graphical user
interface using -panel_name, or any combination of those three
options.

You can limit the reporting by this command to specific start
and end points, using the -from and -to options. You can further
limit reporting to clocks using the -from_clock and -to_clock
options, or to specific edges of the clock using the
-rise_from_clock, -fall_from_clock, -rise_to_clock, and
-fall_to_clock options. Additionally, the -through option can be
used to restrict reporting to paths which go through specified
pins or nets.

To determine which timing exceptions override other timing
exceptions, use the same -from and -to options that were used
with the overridden timing exception.

Use the -npaths option to limit the number of paths to report
per timing exception. If you do not specify this option, only
the single worst-case path per timing exception is provided. Use
the -less_than_slack option to limit output to all paths with
slack less than the specified value, up to the number specified
by -npaths.

Use the -nworst option to limit the number of paths reported for
each unique endpoint. If you do not specify this option, the
number of paths reported for each destination node is bounded
only by the -npaths option. If this option is used, but -npaths
is not specified, -npaths defaults to the same value specified
for -nworst.

Use the "-pairs_only" option to filter the output further, restricting
the results to only unique combinations of start and end points.

Use the "-num_exceptions" option to limit the report to only show
a certain number of exceptions. If the limit is not set or set too
high, the report may need to run for extended durations.

Use the "-reachability" option to determine a percentage of how many
start and endpoint pairs given by an exception's -from and -to filters
are satisfied by the exception. If an exception does not have a -from
target, the reachability ratio measures how many of the -to targets are
satisfied by the exception, and vise versa for exceptions without a -to
target. Exceptions without both -from and -to targets are not calculated
for reachability. An exception that targets clocks or uses wildcards that
match many nodes likely has a lower reachability than an exception that
targets specific nodes. To avoid overly-broad exception constraints,
you should use exceptions with a higher reachability value.

Reachability is calculated differently depending on whether the exception
is bus-type. A bus-type exception has both -from and -to options declared,
and they target the same number of nodes. As well, all nodes in the -from option
must be declared together, and all nodes in the -to option must be declared
together. Otherwise, the exception is non-bus type. Bus-type reachability
ratio assumes that each node in the -from target connects with one node in
the -to target. Non-bus type reachability ratio is typically more pessimistic
because it assumes that each node in the -from target connects with every
node in the -to target.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

681

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the -detail option to specify the desired level of report
detail. Specifiying "summary" generates a single table listing
only the highlights of each timing exception (status and
worst-case slack). Specifying "path_summary" generates a table,
per timing exception, listing only the highlights of each
path. Specifying "path_only" reports the path from the source to
the destination without any detail about the clock
path. Instead, the clock network delay is shown as a single
number. This is the default behavior. Specifying
"path_and_clock" extends the arrival and required paths back to
the launch and latch clocks. Specifying "full_path" causes
continued tracing back through generated clocks to the
underlying base clock.

To treat clock groups as timing exceptions (meaning that they
override exceptions with a lower priority), use the
"-report_clock_groups" option.

By default, all exception types are reported, and clock groups are
reported only if the "-report_clock_groups" option is used. Use a
combination of "-false_path", "-multicycle_path", "-max_delay",
"-min_delay", and "-clock_groups" to limit the analysis to specific
exception types. Note that "-clock_groups" option also treats clock
groups as timing exceptions.

False path exceptions (set_false_path) are reported as if the
false path was not applied, similar to the -false_path option
for report_timing.

The values of the "-from", "-to", and "-through" options are
either collections or a Tcl list of wildcards used to create
collections of appropriate types. The values used must follow
standard Tcl or Timing Analyzer-extension substitution rules. See the
help for use_timing_analyzer_style_escaping for details.

Clock-Domains-Crossing Verification:

To view the effects of clock groups on your design, run
"report_exceptions -report_clock_groups". If any pair of clocks
in your design are cut by a set_clock_groups command and NOT
cut by a set_false_path command, the Report shows paths between
that pair of clocks as a clock-to-clock exception.

Example:
set_clock_groups -logically_exclusive -group {clkA clkB} -group {clkC clkD}
report_exceptions -report_clock_groups -npaths 0 -detail path_only

You might want to run "report_exceptions -report_clock_groups" if:

1. You want to check which paths are cut by a set_clock_groups
SDC command.

2. You want to cut clock paths, but don't want to add
set_clock_groups because you're concerned that you might cut
a path incorrectly. With the "report_exceptions
-report_clock_groups" command, you can add set_clock_groups
to split clocks that are truly asynchronous, then add
set_false_path commands to manually cut what you want, and
then verify (in the Report) that no paths were found (since
false paths have priority). If a path is found by the report,
you can correct that without wasting a compilation concentrating
on some unrelated false paths.

3. If you use the set_clock_groups command and have some logic
that is behaving badly and think it's timing related, run the
"report_exceptions -report_clock_groups" command on that
hierarchy to verify whether the correct paths have been cut.

Example Usage # Reports all timing exceptions for a setup analysis.
report_exceptions

Reports all timing exceptions for a hold analysis.
report_exceptions -hold

Reports all timing exceptions affecting input paths for
recovery analysis, reporting the 10 worst paths per exception.
report_exceptions -from [all_inputs] -to [all_registers] \
 -recovery -npaths 10 -detail full_path

Reports all paths affected by timing exceptions, including
all clock-to-clock-paths cut by clock groups.
report_exceptions -report_clock_groups -npaths 0 -detail path_only

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

682

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reports false path exceptions to determine which ones were overridden by clock groups
report_exceptions -false_path -report_clock_groups -npaths 20

Reports only clock groups, multicycle paths, and min delays
report_exceptions -clock_groups -multicycle_path -min_delay

Generate a reachability report that shows 10 exceptions
report_exceptions -reachability -num_exceptions 10

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.54. report_ini_usage (::quartus::sta)

The following table displays information for the report_ini_usage Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_ini_usage [-h | -help] [-long_help] [-append] [-file <name>] [-
panel_name <name>] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
Reports the list of .ini files and variables used
during timing analysis.

Example Usage project_open top
create_timing_netlist
read_sdc
update_timing_netlist

report_ini_usage -panel "INI Usage"

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

683

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.55. report_logic_depth (::quartus::sta)

The following table displays information for the report_logic_depth Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_logic_depth [-h | -help] [-long_help] [-append] [-asynch_clock] [-detail
<histogram|path>] [-fall_from <names>] [-fall_from_clock <names>] [-
fall_through <names>] [-fall_to <names>] [-fall_to_clock <names>] [-file
<name>] [-from <names>] [-from_clock <names>] [-hold] [-inter_clock] [-
intra_clock] [-less_than_slack <slack limit>] [-npaths <number>] [-nworst
<number>] [-pairs_only] [-panel_name <name>] [-recovery] [-removal] [-
rise_from <names>] [-rise_from_clock <names>] [-rise_through <names>] [-
rise_to <names>] [-rise_to_clock <names>] [-setup] [-stdout] [-through
<names>] [-to <names>] [-to_clock <names>] [-topology]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-asynch_clock Only report paths whose launch and latch clock do not share
a common ancestor clock, or were explicitly marked as
asynchronous via clock groups

-detail <histogram|path> Option to determine how much detail should be shown in
the report

-fall_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-hold Option to report clock hold paths

-inter_clock Only report paths whose launch and latch clock are different

-intra_clock Only report paths whose launch and latch clock are the
same

-less_than_slack <slack limit> Limit the paths reported to those with slack values less than
the specified limit.

-npaths <number> Specifies the number of paths to report (default=1, or the
same value as nworst, if nworst is specified. Value of 0
causes all paths to be reported but be wary that this may be
slow)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

684

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-nworst <number> Specifies the maximum number of paths to report for each
endpoint. If unspecified, there is no limit. If nworst is
specified, but npaths is not, npaths defaults to the same
value as nworst

-pairs_only When set, paths with the same start and end points are
considered equivalent. Only the worst case path for each
unique combination is displayed.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-recovery Option to report recovery paths

-removal Option to report removal paths

-rise_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Option to report clock setup paths

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-topology Topology Analysis (using arbitrary path analysis)

Description
Reports a summary showing the distribution of logic depth among the critical
paths. Logic depth typically corresponds to the number of look-up tables (LUTs)
that a path passes through. If a path passes through non-LUT elements such
as RAM or DSP blocks, special rules may apply.

Use the "-setup", "-hold", "-recovery", "-removal", or "-topology" options to
specify which kind of analysis should be performed. In topology analysis,
paths are ordered by logic depth as opposed to slack.

The report can be directed to the Tcl console ("-stdout", default), a
file ("-file"), the Timing Analyzer graphical user interface
("-panel_name"), or any combination of the three.

You can limit the analysis performed by this command to specific
start and end points, using the "-from" and "-to" options. Use the
"-rise_from" and "-fall_from" options to limit the analysis to
endpoints with established high or low starting states. Use the
"rise_to" and "fall_to" options to limit the analysis to
destination points with high or low ending states.

The analysis can be further limited to clocks using the "-from_clock"
and "-to_clock" options, or to specific edges of the clock using the
"-rise_from_clock", "-fall_from_clock", "-rise_to_clock", and
"-fall_to_clock" options.

Additionally, the "-through" option can be used to restrict analysis
to paths which go through specified pins or nets. Use the "rise_through"
and "fall_through" options to limit the analysis to intermediate points

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

685

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

with high or low ending states.

Use "-npaths" to limit the number of paths to report. If you do not
specify this option, 1000 paths with the worst slack are included in
the report. Use the "-less_than_slack" option to limit output to all
paths with slack less than the specified value, up to the number specified
by "-npaths".

Use "-nworst" to limit the number of paths reported for each unique
endpoint. If you do not specify this option, the number of paths
reported for each destination node is bounded only by the "-npaths"
option. If this option is used, but "-npaths" is not specified, then
"-npaths" defaults to the same value specified for "-nworst".

Use the "-pairs_only" option to filter the output further, restricting
the results to only unique combinations of start and end points.

Use the "-detail" option to specify the desired level of report
detail. Specifiying "histogram" generates a summary showing the
distibution of logic depth among the critical paths. A row is
provided for each clock and a column for each logic depth.
Specifying "path" generates a table of paths as rows with a column
coresponding the paths' logic depths similar to the tables
reported by "report_timing" and "report_path".
The default behavior is to report a histogram.

The values of the "-from", "-to", and "-through" options are either
collections or a Tcl list of wildcards used to create collections
of appropriate types. The values used must follow standard Tcl or
Timing Analyzer-extension substitution rules. See the help for
use_timing_analyzer_style_escaping for details.

The following options are not supported for this command:
--ccpp, --summary_view, --show_routing, --show_xtalk, --detail, --false_path

If any of the following filters are provided, then the logic depth distribution
occurs over "n critical paths" rather than "n critical paths per clock"
-from, -to, -through, -from_clock, -to_clock, -rise_from, -fall_from,
-rise_to, -fall_to, -rise_from_clock, -fall_from_clock, -rise_to_clock,
-fall_to_clock, -rise_through, -fall_through

Example Usage project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

report_logic_depth -npaths 1000 -file "logic_depth.txt"

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option <string> has illegal value: <string>. Specify
a legal option value.

TCL_ERROR 1 ERROR: Collection type '<string>' is not a valid type for a
through collection. Valid collection types are 'pin' and 'net'

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

686

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.56. report_max_clock_skew (::quartus::sta)

The following table displays information for the report_max_clock_skew Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_max_clock_skew [-h | -help] [-long_help] [-append] [-detail <summary|
full_path>] [-file <name>] [-less_than_slack <slack limit>] [-npaths <number>] [-
panel_name <name>] [-show_routing] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-detail <summary|full_path> Option to determine how much detail should be shown in
the path report

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-less_than_slack <slack limit> Limit the paths reported to those with slack values less than
the specified limit.

-npaths <number> Specifies the number of paths to report for each latest and
earliest arrival skew result per set_max_skew assignment
(default=1)

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-show_routing Option to display detailed routing in the path report

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
TODO

Example Usage #TODO
report_max_clock_skew

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.57. report_max_skew (::quartus::sta)

The following table displays information for the report_max_skew Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_max_skew [-h | -help] [-long_help] [-append] [-detail <summary|path_only|
path_and_clock|full_path>] [-file <name>] [-less_than_slack <slack limit>] [-npaths
<number>] [-panel_name <name>] [-show_routing] [-stdout]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

687

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-detail <summary|path_only|
path_and_clock|full_path>

Option to determine how much detail should be shown in
the path report

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-less_than_slack <slack limit> Limit the paths reported to those with slack values less than
the specified limit.

-npaths <number> Specifies the number of paths to report for each latest and
earliest arrival skew result per set_max_skew assignment
(default=1)

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-show_routing Option to display detailed routing in the path report

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
Reports max skew analysis results for all set_max_skew
commands in a single report. For each valid
set_max_skew constraint, this command computes skew
with respect to the latest and the earliest arrival of
each path.

By default, "Skew for the Latest Arrival" is computed
by comparing the latest arrival of each path with the
earliest arrival of the path that has the smallest
value for early arrival of all other paths included
in the constraint. Similarly, "Skew for the Earliest
Arrival" is computed by comparing the earliest arrival
of each path with the latest arrival of the path that
has the largest value for late arrival of all other
paths included in the constraint. No path is compared
with itself.

Use the -stdout option to direct the report to the Tcl
console (default), the -file option to write the
report to a file or the -panel_name option to direct
the report to the Timing Analyzer graphical user
interface. You can use these options in any
combination.

Use the -npaths option to limit the number of path
result pairs reported for each set_max_skew
constraint. If you do not specify this option,
report_max_skew only reports the result pair for the
single worst-case path. Use the -less_than_slack
option to limit output to all paths with slack less
than the specified value, up to the number specified
with -npaths.

Use the -detail option to specify the desired level of
report detail. The -detail summary option generates a
single table listing only the highlights of each path
(and is the same as -summary option, which this
replaces. "-detail path_only" (default) reports the
path from the source to the destination without any
detail about the clock path. Instead, the clock
network delay is shown as a single number. "-detail
path_and_clock" extends the arrival and required paths
back to the launch and latch clocks. "-detail
full_path" continues tracing back through generated
clocks to the underlying base clock.

The -show_routing option displays detailed routing
information in the path. Lines marked "IC" without the
option are shown, but only as a placeholder. The
routing elements for that line are broken out

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

688

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

individually and listed before the line.

The return value of this command is a two-element
list. The first number is the number of paths found in
the analysis. The second is the worst-case slack, in
terms of the current default time unit.

The "RF" column in the report output uses a two-letter
symbol to indicate the rise/fall transition that
occurs at that point in the path.

Possible "RF" values are:

 Value Description
 ------- -------------------------------
 (empty) Unknown transition
 R Rising output
 F Falling output
 RR Rising input, rising output
 RF Rising input, falling output
 FR Falling input, rising output
 FF Falling input, falling output

The "Type" column in the report uses a symbol to
indicate what type of delay occurs at that point in
the path.

Possible "Type" values are:

 Value Description
 ------- ---
 CELL Cell delay
 COMP PLL clock network compensation delay
 IC Interconnect delay
 iExt External input delay
 LOOP Lumped combinational loop delay
 oExt External output delay
 RE Routing element (only for paths generated with the
 -show_routing option)
 uTco Register micro-Tco time
 uTsu Register micro-Tsu time
 uTh Register micro-Th time

Example Usage project_open my_project
create_timing_netlist
read_sdc
update_timing_netlist

create max skew constraints
set_max_skew -from [get_ports data_ports[*]] -to [get_keepers *] 0.200
set_max_skew -from [get_keepers *] -to [get_ports output_ports[*]] 0.100

show worst 10 paths for each earliest and latest arrival results
per max_skew assignment assuming that their slack is less than 0.100
report_max_skew -panel_name "Report Max Skew" -npaths 10 -less_than_slack 0.100 -detail
full_path

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

689

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.58. report_metastability (::quartus::sta)

The following table displays information for the report_metastability Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_metastability [-h | -help] [-long_help] [-append] [-file <name>] [-
length <number>] [-max_length <number>] [-min_length <number>] [-nchains
<number>] [-panel_name <name>] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-length <number> Reports only the synchronizer chains of an exact length

-max_length <number> Specifies the maximum length of a chain that appears in the
report (default=no limit)

-min_length <number> Specifies the minimum length of a chain that appears in the
report (default=0)

-nchains <number> Specifies the number of chains to report (default=1)

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
Report can be directed to the Tcl console ("-stdout", default), a file
("-file"), the Timing Analyzer graphical interface ("-panel_name"), or any
combination of the three.

The report_metastability function can be used to estimate the robustness
of asynchronous transfers in your design.

Background

Synchronization register chains should be used when transferring data
between unrelated clock domains to greatly reduce the probability of the
captured data signal becoming metastable. A synchronization register
chain is a sequence of registers with the same clock, that is driven by a pin,
or logic from an unrelated clock domain. The output of all but the last
register in the chain must connect only to the next register, either directly
or indirectly through logic.

When a register is metastable, its output hovers at a voltage between high
and low for a length of time beyond the normal Tco for the register. The
design can fail if subsequent registers that use this metastable signal
latch different values. Therefore, it is important to properly
synchronize data signals to prevent such occurrences.

Output

The report_metastability function generates a list of synchronization
register chains found in the design, and can provide estimates of the Mean
Time Between Failures (MTBF) of each chain. The design MTBF is an estimate
of the overall robustness of the design, computed from the MTBF results from
all synchronization chains with calculated MTBFs. The design MTBF metric is
reported only when the design meets timing. Therefore, it is important to
fully timing constrain your design.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

690

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The typical MTBF result assumes typical silicon characteristics for the
selected device speed grade, with nominal operating conditions.

The worst case MTBF result uses the worst case silicon characteristics for
the selected device speed grade, with worst case operating conditions.

Settings

To get a list of possible synchronization chains, set "Synchronizer
Identification" to AUTO in the Timing Analyzer Page in the Settings
dialog box. This sets the "Synchronizer Identification" QSF
assignment in your QSF file. The Timing Analyzer uses timing constraints to
automatically detect synchronization chains in the design. Metastability
analysis checks for signal transfers between circuitry in unrelated or
asynchronous clock domains, so clock domains must be related correctly
with the timing constraints.

Set the maximum number of registers to consider as part of one
synchronization chain, via the "Synchronization Register Chain Length"
setting under Analysis and Synthesis Page in the Settings dialog box.
The default length is 2. All the registers in a chain (up to this length)
are protected from optimizations that can decrease MTBF.

Note that if you change the "Synchronizer Identification" setting, you
should rerun the Fitter, as this setting can impact some optimization
algorithms.

Use the -nchains option to limit the number of chains to report. If you
do not specify this option, only the single worst-case chain is reported.

To filter the synchronizer chains by their lengths, use the -min_length option
to set the minimum chain length to be reported, and use the -max_length
option to set the maximum chain length to be reported. Alternatively, use
the -length option to report only chains with a specific length.

Report Panels

The MTBF Summary report provides the estimated mean time between failure
for the design. This is an estimate for the overall robustness of the
design in terms of metastability, and it is computed from all available
synchronization chain MTBFs present in the design.

The MTBF metric of automatically identified synchronization chains is not
computed. To compute the MTBF of a synchronization chain, set
"Synchronizer Identification" to "Forced If Asynchronous" or "Forced"
for all registers of the synchronization chain. By explicitly specifying
that this synchronization chain is valid, this chain will then be optimized
during the Fitter, and its MTBF will be computed. Its MTBF will then be
included in the computation of the design MTBF.

The Synchronizer Summary table lists all the synchronization chains
found in your design. It is possible that the analysis performed might
erroneously interpret certain structures, such as shift registers, as
synchronization chains. If some synchronization chains are misidentified
and you wish to remove them from the report, you can turn off analysis of
these paths by making node-based assignments via the Assignment Editor,
set "Synchronizer Identification" to "Off" for the first register in these
synchronization chains. Conversely, if there are synchronization
chains in your design that were not detected, you can set "Synchronizer
Identification" assignment to "Forced If Asynchronous" for all registers in
this chain through the Assignment Editor, and this chain will be
reported if it meets the criteria for being a synchronization chain. This
can often occur if there is logic present between the registers of the
synchronization chain. In the automatic mode of synchronizer identification,
these structures are not considered to be synchronizers. If you want to
force a register to be identified as the head of a synchronizer, set the
"Synchronizer Identification" assignment to "Forced" to the register,
and it will always be identified as the first of a synchronization chain.
This setting should not be applied to the entire design, since this
identifies every register in the design as a synchronizer.

The MTBF estimates assume the data being synchronized is switching at a
toggle rate of 12.5% of the source clock frequency. That is, the estimates
assume that the arriving data signal switches once every 8 source clock
cycles. If multiple clocks apply, the highest frequency is used. If no
source clocks can be determined, then the data rate is taken as 12.5% of
the synchronization clock frequency.

If you know the approximate rate at which the data changes, and would like
to obtain a more accurate MTBF, use the "Synchronizer Toggle Rate" assignment
in the Assignment Editor. Set the data toggle rate, in number of transitions
per second, on the first register of a synchronization chain. The Timing
Analyzer then takes the specified rate into account when computing the MTBF

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

691

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

of that particular chain. You can also apply this assignment to an entity or the
entire design. Since a "Synchronizer Toggle Rate" assignment of 0 indicates
that the data signal never toggles, the affected synchronization chain will
not be reported since it does not affect the relibility of the design.

Example Usage project_open top
create_timing_netlist
read_sdc
update_timing_netlist

report_metastability

Reports only 10 chains that are between 2 and 4 registers long
report_metastability -min_length 2 -max_length 4 -nchains 10

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.59. report_min_pulse_width (::quartus::sta)

The following table displays information for the report_min_pulse_width Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_min_pulse_width [-h | -help] [-long_help] [-append] [-detail <summary|
full_path>] [-file <name>] [-nworst <number>] [-panel_name <name>] [-
show_routing] [-split_by_corner] [-stdout] [-type <all|min_period|clock_pulse>]
[<targets>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-detail <summary|full_path> Option to determine how much detail should be shown in
the report

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-nworst <number> Specifies the number of pulse width checks to report
(default=1)

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-show_routing Option to display detailed routing in the path report

-split_by_corner When set, running this command with the -panel option
creates a folder containing versions of this report for
selected multiple operating conditions. This option has no
effect when used with the -stdout or -file options.

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-type <all|min_period|clock_pulse> Option to determine the minimum pulse width analysis type

<targets> Either clocks or nodes such as ports and registers.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

692

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Reports the results of minimum pulse width and minimum period checks.

A minimum pulse width check verifies that a clock high ("High") or low
("Low") pulse sustains long enough to qualify as a recognizable change
in the clock signal at a register or latch clock pin. A failed minimum pulse
width check indicates that the register or latch may not recognize the clock
transition. Each node in the design is reported twice per clock
for minimum pulse width checks: once for the high pulse and once for
the low pulse. While registers and latches may have a pulse width requirement
greater than zero, other nodes are checked to ensure the pulse does
not collapse entirely.

A minimum period check verifies that the clock period ("Period") is
large enough for the device to operate. Minimum period checks apply
to registers and latches.

The results of the minimum pulse width checks can be output to the
Tcl console ("-stdout," the default), a report panel ("-panel"),
a file ("-file"), or a combination of the three.

Results are sorted from worst-case slack to best-case slack. To limit
the number of checks reported, use the "-nworst" option.

Results can be shown in summary ("-detail summary") or in detail
("-detail full_path," the default), showing the path details for the
clock arrival times and how they affect the actual pulse width.

The value of the targets is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type.
The values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See the help for use_timing_analyzer_style_escaping for
details.

Example Usage project_open top
create_timing_netlist
read_sdc
update_timing_netlist

Report the worst 100 minimum pulse width checks
report_min_pulse_width -nworst 100

Report minimum pulse width checks for the register test_reg[*]
report_min_pulse_width test_reg[*]

Output the previous results to a report panel and a file.
report_min_pulse_width -panel_name "Min Pulse (test_reg)" test_reg[*]

Output the previous results to a file.
report_min_pulse_width -file min_pulse_test_reg.txt test_reg[*]

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.60. report_neighbor_paths (::quartus::sta)

The following table displays information for the report_neighbor_paths Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_neighbor_paths [-h | -help] [-long_help] [-append] [-asynch_clock] [-
enable_complementary] [-extra_info <basic|all|none>] [-fall_from <names>] [-
fall_from_clock <names>] [-fall_through <names>] [-fall_to <names>] [-
fall_to_clock <names>] [-file <name>] [-from <names>] [-from_clock
<names>] [-hold] [-inter_clock] [-intra_clock] [-less_than_slack <slack limit>]
[-neighbor_path_num <number>] [-npaths <number>] [-nworst <number>] [-
pairs_only] [-panel_name <name>] [-recovery] [-removal] [-rise_from <names>]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

693

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

[-rise_from_clock <names>] [-rise_through <names>] [-rise_to <names>] [-
rise_to_clock <names>] [-setup] [-stdout] [-through <names>] [-to <names>] [-
to_clock <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-asynch_clock Only report paths whose launch and latch clock do not share
a common ancestor clock, or were explicitly marked as
asynchronous via clock groups

-enable_complementary Option to enable complementary analysis for the neighbor
paths report

-extra_info <basic|all|none> Option to determine how much detail should be shown in
the Extra Info report

-fall_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-hold Option to report clock hold paths

-inter_clock Only report paths whose launch and latch clock are different

-intra_clock Only report paths whose launch and latch clock are the
same

-less_than_slack <slack limit> Limit the paths reported to those with slack values less than
the specified limit.

-neighbor_path_num <number> Specifies the number of before and after paths for the
neighbor paths report (default=1)

-npaths <number> Specifies the number of paths to report (default=1, or the
same value as nworst, if nworst is specified. Value of 0
causes all paths to be reported but be wary that this may be
slow)

-nworst <number> Specifies the maximum number of paths to report for each
endpoint. If unspecified, there is no limit. If nworst is
specified, but npaths is not, npaths defaults to the same
value as nworst

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

694

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-pairs_only When set, paths with the same start and end points are
considered equivalent. Only the worst case path for each
unique combination is displayed.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-recovery Option to report recovery paths

-removal Option to report removal paths

-rise_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Option to report clock setup paths

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

Description
Reports the most timing-critical paths in the design, including
associated slack and additional path summary information, including
path bounding boxes. Additionally, for each path, shows its most
timing-critical neighbor paths: the path with the worst slack that
fans into the source of the current path (shown on the report as
"Critical Path Before") and the path with the worst slack that fans
out of the destination of the current path (shown as "Critical
Path After"). Note that if a register's output is connected to its
own input, one or both of the neighbor paths may be identical to
the current path. When looking for neighbor paths with the worst
slack, all operating conditions are considered, not just the operating
conditions of the main path itself.

Use the "-setup", "-hold", "-recovery", or "-removal" options to
specify which kind of analysis should be performed.

The report can be directed to the Tcl console ("-stdout", default), a
file ("-file"), the Timing Analyzer graphical user interface
("-panel_name"), or any combination of the three.

You can limit the analysis performed by this command to specific
start and end points, using the "-from" and "-to" options. Use the
"-rise_from" and "-fall_from" options to limit the analysis to
endpoints with established high or low starting states. Use the
"rise_to" and "fall_to" options to limit the analysis to
destination points with high or low ending states.

The analysis can be further limited to clocks using the "-from_clock"
and "-to_clock" options, or to specific edges of the clock using the
"-rise_from_clock", "-fall_from_clock", "-rise_to_clock", and
"-fall_to_clock" options.

Additionally, the "-through" option can be used to restrict analysis
to paths which go through specified pins or nets. Use the "rise_through"
and "fall_through" options to limit the analysis to intermediate points
with high or low ending states.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

695

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use "-npaths" to limit the number of paths to report. If you do not
specify this option, only the single worst-case path is provided. Use
the "-less_than_slack" option to limit output to all paths with slack
less than the specified value, up to the number specified by
"-npaths".

Use "-nworst" to limit the number of paths reported for each unique
endpoint. If you do not specify this option, the number of paths
reported for each destination node is bounded only by the "-npaths"
option. If this option is used, but "-npaths" is not specified, then
"-npaths" defaults to the same value specified for "-nworst".

Use the "-pairs_only" option to filter the output further, restricting
the results to only unique combinations of start and end points.

The values of the "-from", "-to", and "-through" options are either
collections or a Tcl list of wildcards used to create collections
of appropriate types. The values used must follow standard Tcl or
Timing Analyzer-extension substitution rules. See the help for
use_timing_analyzer_style_escaping for details.

The following options are not supported for this command:
--ccpp, --summary_view, --show_routing, --show_xtalk, --false_path

Ideally you should use -panel_name or -file option to get the best
view of the report.

Here is description of each of the rows displayed for each path:

From: Source node in the path
To: Destination node in the path
Launch Clock: Source node clock
Latch Clock: Destination node clock
Relationship: Clock relationship
Slack: Slack on the path
Complement Analysis Slack: Slack of the same path via complement analysis
Number of Paths: Number of paths with the same source and destination nodes
Clock Skew: Clock Skew on the path
Data Delay: Data delay on the path (~ cell delay + interconnect delay
 + misc. delay)
uTCO Delay: input delay
Cell Delay: Cell delay
Interconnect Delay: Wire Delay
Misc. Delay: Other kinds of delay
Uncertainty Delay: Clock uncertainty delay
uTSU Delay: Data stability delay - setup
uTH Delay: Data stability delay - hold
Logic Levels: Logic levels in the path
Max Fanout: Maximum fanout for any node on the path
I/O Crossings: Number of I/O crossings in the path
Number of wires: number of wires encountered on the path
Source/Destination Bounding Box: Co-ordinates covered by source destination blocks
Cell Bounding Box: Co-ordinates covered by cell blocks
Interconnect Bounding Box: Co-ordinates covered by wires
Source/Destination Relative Area: Normalized to 1.0
Cell Relative Area: Ratio of cell area against src/dst bounding area
Interconnect Relative Area: Ration of wire area against src/dst bounding area
Elements on Path: Displays the element type that make up that path
TDB Names Along Path: All the TDB elements that make up the path (only available with
 developer license)
Corner: Describes the corner the path is found in
Complement Analysis Corner: Corner of the complement analysis path found

Example Usage project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

report_neighbor_paths -npaths 10 -file "neighbor_path_analysis.txt"

The following command is optional
delete_timing_netlist

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option <string> has illegal value: <string>. Specify
a legal option value.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

696

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Collection type '<string>' is not a valid type for a
through collection. Valid collection types are 'pin' and 'net'

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.61. report_net_delay (::quartus::sta)

The following table displays information for the report_net_delay Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_net_delay [-h | -help] [-long_help] [-append] [-file <name>] [-nworst
<number>] [-panel_name <name>] [-split_by_corner] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-nworst <number> Specifies the maximum number of paths to report for each
analysis. If unspecified, there is no limit.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-split_by_corner When set, running this command with the -panel option
creates a folder containing versions of this report for
selected multiple operating conditions. This option has no
effect when used with the -stdout or -file options.

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
Reports net delay analysis results based on set_net_delay
commands. Each set_net_delay command is treated as a separate analysis
and report_net_delay reports the results of all set_net_delay
commands in a single report.

The report contains each set_net_delay command with the worst case
slack result followed by the results of each edge matching the
criteria set by that set_net_delay command. These results are ordered
based on the slack value.

Use -nworst option to limit the number of lines reported for a
set_net_delay command.

Example Usage project_open my_project
create_timing_netlist
read_sdc
update_timing_netlist

set_net_delay -min 0.160 -from [get_pins inst9|combout] -to [get_pins *|dataf]
set_net_delay -max 0.500 -from inst8|combout

report_net_delay -panel "Net Delay"

Return Value Code Name Code String Return

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

697

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.62. report_net_timing (::quartus::sta)

The following table displays information for the report_net_timing Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_net_timing [-h | -help] [-long_help] [-append] [-file <name>] [-
nworst_delay <number>] [-nworst_fanout <number>] [-panel_name <name>] [-
stdout] [<name>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-nworst_delay <number> Report worst net delays

-nworst_fanout <number> Report worst fanout nets

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

<name> Signal or collection name

Description
Reports delay and fanout information about a net in the design. A net
corresponds to a cell output pin.

Report can be directed to the Tcl console ("-stdout", default), a file
("-file"), the Timing Analyzer graphical interface ("-panel_name"), or any
combination of the three.

The value of the name is either a collection or a Tcl list of
wildcards used to create a collection of the appropriate type. The
values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See the help for use_timing_analyzer_style_escaping for
details.

Example Usage project_open <design>
create_timing_netlist

Show delay and fanout information for all nets
that match "abc*"
report_net_timing [get_nets abc*]

Report delay and fanout information for the 10
nets showing higher delays
report_net_timing -nworst_delay 10

Report delay and fanout information for the 10
nets showing higher fanout
report_net_timing -nworst_fanout 10

project_close

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

698

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Options -<string> and -<string> are mutually
exclusive. Specify only one of the two options.

TCL_ERROR 1 ERROR: You must open a project before you can use this
command.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Neither of options -<string> or -<string> is
specified. Specify one of the two options.

3.1.37.63. report_partitions (::quartus::sta)

The following table displays information for the report_partitions Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_partitions [-h | -help] [-long_help] [-append] [-file <name>] [-
from_clock <names>] [-nworst <number>] [-panel_name <name>] [-stdout] [-
to_clock <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-nworst <number> Specifies the maximum number of paths to report between
partitions. If unspecified, the limit defaults to 1000

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

Description
Reports timing information related to design partitions.

The report_partitions command analyzes the worst 1000 failing setup paths
in the design by default, but you can optionally set the nworst option to
increase or decrease this number. The from_clock and to_clock arguments
can be used to control how this function finds the paths to be analyzed.

This function reports the number of failing paths within each partition and
the worst-case slack of the paths that are entirely contained within a single partition
in a Partition Timing Overview table.

The function also creates a Partition Timing Details table that lists
the number of failing paths and worst-case slack of paths that feed from
one partition to another partition. This information provides more details
on where the critical paths in the design are with respect to design partitions.

The function also creates a Partition Timing Breakdown table. This table bins the
worst failing paths by all partitions that the path spans, and reports the

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

699

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

number of failing paths and worst case slack for each group of partitions.

This report can be directed to the Tcl console ("-stdout", default),
a file ("-file"), the Timing Analyzer graphical user interface
("-panel_name"), or any combination of the three.

Example Usage
project_open my_project
create_timing_netlist
read_sdc
update_timing_netlist

Report a maximum of 500 failing paths between partitions to the
Timing Analyzer graphical interface and to the Tcl console.
report_partitions -panel_name "Partition Timing Report" -nworst 500 -stdout

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Design partitions are not supported in this project.

3.1.37.64. report_path (::quartus::sta)

The following table displays information for the report_path Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_path [-h | -help] [-long_help] [-append] [-fall_from <names>] [-
fall_through <names>] [-fall_to <names>] [-file <name>] [-from <names>] [-
list_clocks] [-logic_depth] [-min_path] [-npaths <number>] [-nworst <number>]
[-pairs_only] [-panel_name <name>] [-rise_from <names>] [-rise_through
<names>] [-rise_to <names>] [-show_routing] [-split_by_corner] [-stdout] [-
summary] [-through <names>] [-to <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-fall_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-list_clocks Includes the driving clocks associated with the from and to
nodes of each path in the Path Summary table

-logic_depth Option to display the logic depth instead of path delay

-min_path Find the minimum delay path(s)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

700

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-npaths <number> Specifies the number of paths to report (default=1, or the
same value as nworst, if nworst is specified. Value of 0
causes all paths to be reported but be wary that this may be
slow)

-nworst <number> Specifies the maximum number of paths to report for each
endpoint. If unspecified, there is no limit. If nworst is
specified, but npaths is not, npaths defaults to the same as
nworst

-pairs_only When set, paths with the same start and end points are
considered to be equivalent. Only the longest delay path for
each unique combination is displayed.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-rise_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-show_routing Option to display detailed routing in the path

-split_by_corner When set, running this command with the -panel option
creates a folder containing versions of this report for
selected multiple operating conditions. This option has no
effect when used with the -stdout or -file options.

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-summary Create a single table with a summary of each path found

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

Description
Reports the longest delay paths and the corresponding delay value.

The report can be directed to the Tcl console ("-stdout", default),
a file ("-file"), the Timing Analyzer graphical user interface
("-panel_name"), or any combination of the three.

You can limit the analysis performed by this command to specific
start and end points, using the "-from" and "-to" options. Any
node or cell in the design is considered a valid endpoint.
Additionally, the "-through" option can be used to restrict analysis
to paths which go through specified pins or nets. Paths that are
reported can not start before or go beyond a keeper node (register
or port); this restriction considers register pins as combinational
nodes in the design.

Use "-npaths" to limit the number of paths to report. If this
option is not specified, only the single longest delay path is
provided.

Use "-nworst" to limit the number of paths reported for each
unique endpoint. If you do not specify this option, the number
of paths reported for each destination node is bounded only by the
"-npaths" option. If this option is used, but "-npaths" is not
specified, then "-npaths" defaults to the same value specified
for "-nworst".

Use the "-pairs_only" option to filter the output further, restricting
the results to only unique combinations of start and end points.

Use the "-summary" option to generate a single table listing only
the highlights of each path.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

701

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The "-min_path" option finds the minimum delay path(s) rather
than the maximum delay paths which is the default behavior.

The "-show_routing" option displays detailed routing information
in the path. Lines that were marked as "IC" without the option
are still shown, but only as a placeholder. The routing elements
for that line are broken out individually and listed before
the line.

The return value of this command is a two-element list. The
first number is the number of paths found in the analysis. The
second is the longest delay, in terms of the current default
time unit.

The values of the "-from", "-to", "-through" options are either collections
or a Tcl list of wildcards used to create collections of appropriate types.
The values used must follow standard Tcl or Timing Analyzer-extension
substitution rules. See the help for use_timing_analyzer_style_escaping for
details.

Example Usage project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

Report path delay between nodes "foo" and "bar",
reporting the longest delay if a path is found.

set my_list [report_path -from foo -to bar]
set num_paths [lindex $my_list 0]
set longest_delay [lindex $my_list 1]
if { $num_paths > 0 } {
 puts "Longest delay -from foo -to bar is $longest_delay"
}

The following command is optional
delete_timing_netlist

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option <string> has illegal value: <string>. Specify
a legal option value.

TCL_ERROR 1 ERROR: Collection type '<string>' is not a valid type for a
through collection. Valid collection types are 'pin' and 'net'

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.65. report_pipelining_info (::quartus::sta)

The following table displays information for the report_pipelining_info Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_pipelining_info [-h | -help] [-long_help] [-append] [-bus_name
<names>] [-file <name>] [-max_rows <number>] [-min_depth <number>] [-
min_width <number>] [-panel_name <name>] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

702

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-bus_name <names> When set, pipelining report gives detailed information on
the specific bus

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-max_rows <number> Specifies the maximum number of rows to report

-min_depth <number> Specifies the minimum average bus depth

-min_width <number> Specifies the minimum bus width

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
This command reports back-to-back pipelining registers information and collapses
pipelining chains based on which bus they are in.

Use the "-min_depth" option to specify the minimum average depths of pipelining
buses to report. The default value for this field is "3".

Use the "-min_width" option to specify the minimum width of pipelining buses to
report. The default value for this field is "16".

By default, the command reports all of the pipelining buses with average depth
and width over the value specified by "-min_depth" and "-min_width" options.
To help check one pipelining bus in detail, this command also provides detailed
mode. Use the "bus_name" to specify which bus to focus.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.66. report_register_spread (::quartus::sta)

The following table displays information for the report_register_spread Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_register_spread [-h | -help] [-long_help] [-append] [-file <name>] [-
from_clock <names>] [-min_sinks <number>] [-num_registers <number>] [-
panel_name <name>] [-sink_type <endpoint|immediate>] [-spread_type <tension|span|
area|angle|count>] [-stdout] [-to_clock <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

703

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-min_sinks <number> Specifies the minimum number of sinks per register (must
be at least 2)

-num_registers <number> Specifies the top N registers with highest spread

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-sink_type <endpoint|immediate> Determines which sink type [endpoint|immediate] is
analyzed

-spread_type <tension|span|area|
angle|count>

Determines which spread type is analyzed [tension|span|
area|angle|count]

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-to_clock <names> Valid sink clocks (string patterns are matched using Tcl
string matching)

Description
This report analyzes the final placement of a design and strive to
identify registers with sinks that are pulling them in various directions.
These registers are then recommended as candidates for duplication
There are two types of sink: "Immediate Fan-Out" and "Timing Path
Endpoint". There are two types of pull: "Tension" and "Span"

The report can be directed to the Tcl console ("-stdout", default), a
file ("-file"), the Timing Analyzer graphical user interface
("-panel_name"), or any combination of the three.

Use "-sink_type" to specify between endpoints and immediate
fanouts to report on. If not specified, the default reports on
endpoint fanouts.
 Timing Path Endpoints: the nodes (usually registers) that terminate
 timing paths from a register
 Immediate Fanouts: the immediately connected nodes (lookup tables,
 other registers, RAM or DSP blocks, etc.) of the register.

Use "-spread_type" to specify the type of spread to report on, a user
can choose between:
 Tension: the sum over each sink of the distance from it to the
 centroid of all the sinks.
 Span: the maximum 1-dimensional delta between the left/bottom-most
 sink and the right/top-most sink.
 Area: the area covered by a box drawn around the left/bottom-most
 sink and the right/top-most sink.
 Angle: the angular span of the sinks around to the source, defined
 as 360 minus the largest angle between any two angularly-adjacent
 sinks that are each a sufficiently large distance from the source.
 Count: the number of each sink type associated with the source register.

The analysis can be limited to clocks using the "-from_clock" and "-to_clock"
options.

Use "-min_sinks" to filter out any registers with a number of sinks below
the threshold. Span, Area, and Angle have a low sensititivity to sink
count, which can result in registers with a small sink count having a larger
spread score than other registers with more sinks. The minimum number of
sinks must be at least 2 for the spread calculations to work properly.

Use "-num_registers" to limit the number source registers reported.
Registers are reported in decreasing order of the spread type selected
so the top n registers are reported. If you do not specify this
option, the number of source registers displayed is limited to a
maximum of 10.

Example Usage project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

report_register_spread -num_registers 20 -spread_type "tension" -sink_type "endpoint"

project_close

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

704

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Invalid value %u for argument <string>. Specify a
value of at least %u.

3.1.37.67. report_register_statistics (::quartus::sta)

The following table displays information for the report_register_statistics Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_register_statistics [-h | -help] [-long_help] [-append] [-file <name>]
[-panel_name <name>] [-registers_without_clocks] [-stdout] [-
unique_clocks_feeding_registers]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-registers_without_clocks Include a column showing registers with no defined clock on
their clock pin

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-
unique_clocks_feeding_registe
rs

Include a column showing the number of unique clocks
feeding registers clock pins

Description
This command reports reset statistics.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.68. report_retiming_restrictions (::quartus::sta)

The following table displays information for the report_retiming_restrictions
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_retiming_restrictions [-h | -help] [-long_help] [-append] [-file
<name>] [-panel_name <name>] [-stdout]

Arguments -h | -help Short help

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

705

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
This command reports retiming restrictions in a hierarchical form. The report
helps users identify various types of retiming restrictions in each entity. Consider
removing these retiming restrictions to allow retiming optimization to improve
performance.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.69. report_route_net_of_interest (::quartus::sta)

The following table displays information for the report_route_net_of_interest
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_route_net_of_interest [-h | -help] [-long_help] [-append] [-file
<name>] [-num_nets <number>] [-panel_name <name>] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-num_nets <number> Specifies the number of nets of interest to report

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
This command reports nets that router works hardest on.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

706

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.70. report_rskm (::quartus::sta)

The following table displays information for the report_rskm Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_rskm [-h | -help] [-long_help] [-append] [-file <name>] [-panel_name
<name>] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
Reports RSKM for dedicated LVDS circuitry.

In designs that use dedicated LVDS circuitry, receiver input skew
margin (RSKM) is the time margin available before the LVDS receiver
megafunction fails to operate. RSKM is defined as the total time
margin that remains after subtracting the sampling window (SW) size
and the receiver channel-to-channel skew (RCCS) from the time unit
interval (TUI), as expressed in the following formula:

RSKM = (TUI - SW - RCCS) /2

The time unit interval is the LVDS clock period (1/fmax). The sampling
window is the period of time that the input data must be stable to
ensure that the data is successfully sampled by the LVDS receiver
megafunction. The sampling window size varies by device speed
grade. RCCS is the difference between the fastest and slowest data
output transitions, including the tco variation and clock skew. To
obtain an accurate analysis of an LVDS circuit, you should assign an
appropriate input delay to the LVDS receiver megafunction. RCCS is
equal to the difference between maximum input delay and minimum input
delay. If no input delay is set, RCCS defaults to zero.

Example Usage project_open top
create_timing_netlist
read_sdc
update_timing_netlist

Ensure a tccs of 1ns
set_input_delay -max -clock lvds_clk 2ns [get_ports lvds_input]
set_input_delay -min -clock lvds_clk 1ns [get_ports lvds_input]

Show lvds information
report_rskm

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

707

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.71. report_sdc (::quartus::sta)

The following table displays information for the report_sdc Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_sdc [-h | -help] [-long_help] [-append] [-file <name>] [-ignored] [-
panel_name <name>] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-ignored Reports full history of assignments to locate ignored ones

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
Reports all SDC constraints used in the design. Use the -ignored
option to report SDC constraints that were ignored and the reason
they were ignored.

Example Usage project_new test
create_timing_netlist
create_clock -period 10 -name clk10 clk
set_multicycle_path -from [get_cells a] -to [get_cells b]
update_timing_netlist

report_sdc -panel_name sdc_report_panel

report_timing

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.72. report_skew (::quartus::sta)

The following table displays information for the report_skew Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_skew [-h | -help] [-long_help] [-append] [-asynch_clock] [-detail
<summary|path_only|path_and_clock|full_path>] [-fall_from_clock <names>] [-
fall_to_clock <names>] [-file <name>] [-from <names>] [-from_clock
<names>] [-greater_than_skew <slack limit>] [-inter_clock] [-intra_clock] [-

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

708

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

npaths <number>] [-panel_name <name>] [-rise_from_clock <names>] [-
rise_to_clock <names>] [-show_routing] [-stdout] [-through <names>] [-to
<names>] [-to_clock <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-asynch_clock Only report paths whose launch and latch clock do not share
a common ancestor clock, or were explicitly marked as
asynchronous via clock groups

-detail <summary|path_only|
path_and_clock|full_path>

Option to determine how much detail should be shown in
the path report

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-greater_than_skew <slack limit> Limit the paths reported to those with skew values greater
than the specified limit.

-inter_clock Only report paths whose launch and latch clock are different

-intra_clock Only report paths whose launch and latch clock are the
same

-npaths <number> Specifies the number of paths to report for each latest and
earliest arrival skew result (default=1)

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-show_routing Option to display detailed routing in the path report

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

709

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
This report performs skew analysis on selected
paths. As opposed to report generated by
report_max_skew command, this command does not depend
on the existance of set_max_skew assignments. This
report computes skew with respect to the latest and
the earliest arrival of each selected path.

By default, "Skew for the Latest Arrival" is computed
by comparing the latest arrival of each path with the
earliest arrival of the path that has the smallest
value for early arrival of all other paths included
in the constraint. Similarly, "Skew for the Earliest
Arrival" is computed by comparing the earliest arrival
of each path with the latest arrival of the path that
has the largest value for late arrival of all other
paths included in the constraint. No path is compared
with itself.

Use the -stdout option to direct the report to the Tcl
console (default), the -file option to write the
report to a file or the -panel_name option to direct
the report to the Timing Analyzer graphical user
interface. You can use these options in any
combination.

Report skew includes data arrival times, clock arrival times,
register micro parameters, clock uncertainty, on-die variation and
ccpp removal.

Use the -npaths option to limit the number of path
result pairs reported for each set_max_skew
constraint. If you do not specify this option,
report_skew only reports the result pair for the
single worst-case path. Use the -less_than_slack
option to limit output to all paths with skew greater
than the specified value, up to the number specified
with -npaths.

Use the -detail option to specify the desired level of
report detail. "-detail path_only" (default) reports the
path from the source to the destination without any
detail about the clock path. Instead, the clock
network delay is shown as a single number. "-detail
path_and_clock" extends the arrival and required paths
back to the launch and latch clocks. "-detail
full_path" continues tracing back through generated
clocks to the underlying base clock. The "-detail summary"
option is deprecated.

The -show_routing option displays detailed routing
information in the path. Lines marked "IC" without the
option are shown, but only as a placeholder. The
routing elements for that line are broken out
individually and listed before the line.

The return value of this command is a two-element
list. The first number is the number of paths found in
the analysis. The second is the worst-case skew, in
terms of the current default time unit.

The "RF" column in the report output uses a two-letter
symbol to indicate the rise/fall transition that
occurs at that point in the path.

Possible "RF" values are:

 Value Description
 ------- -------------------------------
 (empty) Unknown transition
 R Rising output
 F Falling output
 RR Rising input, rising output
 RF Rising input, falling output
 FR Falling input, rising output
 FF Falling input, falling output

The "Type" column in the report uses a symbol to
indicate what type of delay occurs at that point in
the path.

Possible "Type" values are:

 Value Description
 ------- -------------------------------
 CELL Cell delay
 COMP PLL clock network compensation delay
 IC Interconnect delay

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

710

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 iExt External input delay
 LOOP Lumped combinational loop delay
 oExt External output delay
 RE Routing element (only for paths
 generated with the -show_routing option)
 uTco Register micro-Tco time
 uTsu Register micro-Tsu time
 uTh Register micro-Th time

Example Usage project_open my_project
create_timing_netlist
read_sdc
update_timing_netlist

show worst 10 paths for each earliest and latest arrival results
report_skew -from [get_ports input[*]] -to [get_registers *] -panel_name "Report Skew" -npaths
10 -greater_than_skew 0.100 -detail full_path

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.73. report_tccs (::quartus::sta)

The following table displays information for the report_tccs Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_tccs [-h | -help] [-long_help] [-append] [-file <name>] [-panel_name
<name>] [-stdout]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

Description
Reports TCCS for dedicated LVDS transmitters.

In designs that implement the LVDS I/O standard, transmitter
channel-to-channel skew (TCCS) is the timing difference between the
fastest and slowest output transitions, including tco variations and
clock skew.

Example Usage project_open top
create_timing_netlist
read_sdc
update_timing_netlist

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

711

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Show lvds information
report_tccs

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3.1.37.74. report_timing (::quartus::sta)

The following table displays information for the report_timing Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_timing [-h | -help] [-long_help] [-append] [-asynch_clock] [-data_delay]
[-detail <summary|path_only|path_and_clock|full_path>] [-extra_info <basic|all|none>]
[-fall_from <names>] [-fall_from_clock <names>] [-fall_through <names>] [-
fall_to <names>] [-fall_to_clock <names>] [-false_path] [-file <name>] [-
from <names>] [-from_clock <names>] [-hold] [-inter_clock] [-intra_clock] [-
less_than_slack <slack limit>] [-npaths <number>] [-nworst <number>] [-
pairs_only] [-panel_name <name>] [-recovery] [-removal] [-rise_from <names>]
[-rise_from_clock <names>] [-rise_through <names>] [-rise_to <names>] [-
rise_to_clock <names>] [-setup] [-show_routing] [-split_by_corner] [-stdout] [-
through <names>] [-to <names>] [-to_clock <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-asynch_clock Only report paths whose launch and latch clock do not share
a common ancestor clock, or were explicitly marked as
asynchronous via clock groups

-data_delay Report only paths that are covered by a data delay
assignment

-detail <summary|path_only|
path_and_clock|full_path>

Option to determine how much detail should be shown in
the path report

-extra_info <basic|all|none> Option to determine how much detail should be shown in
the Extra Info report

-fall_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-false_path Report only paths that are cut by a false path assignment

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

712

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-hold Option to report clock hold paths

-inter_clock Only report paths whose launch and latch clock are different

-intra_clock Only report paths whose launch and latch clock are the
same

-less_than_slack <slack limit> Limit the paths reported to those with slack values less than
the specified limit.

-npaths <number> Specifies the number of paths to report (default=1, or the
same value as nworst, if nworst is specified. Value of 0
causes all paths to be reported but be wary that this may be
slow)

-nworst <number> Specifies the maximum number of paths to report for each
endpoint. If unspecified, there is no limit. If nworst is
specified, but npaths is not, npaths defaults to the same
value as nworst

-pairs_only When set, paths with the same start and end points are
considered equivalent. Only the worst case path for each
unique combination is displayed.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-recovery Option to report recovery paths

-removal Option to report removal paths

-rise_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Option to report clock setup paths

-show_routing Option to display detailed routing in the path

-split_by_corner When set, running this command with the -panel option
creates a folder containing versions of this report for
selected multiple operating conditions. This option has no
effect when used with the -stdout or -file options.

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

713

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

Description
Reports the worst-case paths and associated slack.

Use the "-setup", "-hold", "-recovery", or "-removal" options to
specify which kind of analysis should be performed.

The report can be directed to the Tcl console ("-stdout", default), a
file ("-file"), the Timing Analyzer graphical user interface
("-panel_name"), or any combination of the three.

You can limit the analysis performed by this command to specific
start and end points, using the "-from" and "-to" options. Use the
"-rise_from" and "-fall_from" options to limit the analysis to
endpoints with established high or low starting states. Use the
"-rise_to" and "-fall_to" options to limit the analysis to
destination points with high or low ending states.

The analysis can be further limited to clocks using the "-from_clock"
and "-to_clock" options, or to specific edges of the clock using the
"-rise_from_clock", "-fall_from_clock", "-rise_to_clock", and
"-fall_to_clock" options.

Additionally, the "-through" option can be used to restrict analysis
to paths which go through specified pins or nets. Use the "-rise_through"
and "-fall_through" options to limit the analysis to intermediate points
with high or low ending states.

Use "-npaths" to limit the number of paths to report. If you do not
specify this option, only the single worst-case path is provided. Use
the "-less_than_slack" option to limit output to all paths with slack
less than the specified value, up to the number specified by
"-npaths".

Use "-nworst" to limit the number of paths reported for each unique
endpoint. If you do not specify this option, the number of paths
reported for each destination node is bounded only by the "-npaths"
option. If this option is used, but "-npaths" is not specified, then
"-npaths" defaults to the same value specified for "-nworst".

Use the "-pairs_only" option to filter the output further, restricting
the results to only unique combinations of start and end points.

Use the "-detail" option to specify the desired level of report
detail. "-summary" generates a single table listing only the
highlights of each path (and is the same as "-summary" option, which
this replaces). "-path_only" reports the path from the source to the
destination without any detail about the clock path. Instead, the
clock network delay is shown as a single number. This is the default
behavior. "-path_and_clock" extends the arrival and required paths back
to the launch and latch clocks. "-full_path" continues tracing
back through generated clocks to the underlying base clock.

The "-show_routing" option displays detailed routing information in
the path. Lines that were marked as "IC" without the option are still
shown, but only as a placeholder. The routing elements for that line
are broken out individually and listed before the line.

The "-false_path" option reports only those paths that are normally
hidden by false_path assignments or clock to clock cuts. Like the
default report, this option only reports constrained paths.

The "-data_delay" option reports only those paths that are constrained
by set_data_delay. Without this option, such paths are excluded from
the report.

The return value of this command is a two-element list. The first
number is the number of paths found in the analysis. The second is
the worst-case slack, in terms of the current default time unit.

The "RF" column in the report output uses a two-letter symbol to
indicate the rise/fall transition that occurs at that point in the
path.

Possible "RF" values are:

 Value Description
 ------- -------------------------------
 (empty) Unknown transition
 R Rising output
 F Falling output
 RR Rising input, rising output

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

714

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 RF Rising input, falling output
 FR Falling input, rising output
 FF Falling input, falling output

The "Type" column in the report uses a symbol to indicate what type
of delay occurs at that point in the path.

Possible "Type" values are:

 Value Description
 ------- ---
 CELL Cell delay
 COMP PLL clock network compensation delay
 IC Interconnect delay
 iExt External input delay
 LOOP Lumped combinational loop delay
 oExt External output delay
 RE Routing element (only for paths generated with the
 -show_routing option)
 uTco Register micro-Tco time
 uTsu Register micro-Tsu time
 uTh Register micro-Th time

The values of the "-from", "-to", and "-through" options are either
collections or a Tcl list of wildcards used to create collections
of appropriate types. The values used must follow standard Tcl or
Timing Analyzer-extension substitution rules. See the help for
use_timing_analyzer_style_escaping for details.

Example Usage project_open my_project

Always create the netlist first
create_timing_netlist
read_sdc my_project.sdc
update_timing_netlist

Run a setup analysis between nodes "foo" and "bar",
reporting the worst-case slack if a path is found.

set my_list [report_timing -from foo -to bar]
set num_paths [lindex $my_list 0]
set wc_slack [lindex $my_list 1]
if { $num_paths > 0 } {
 puts "Worst case slack -from foo -to bar is $wc_slack"
}

The following command is optional
delete_timing_netlist

project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Option <string> has illegal value: <string>. Specify
a legal option value.

TCL_ERROR 1 ERROR: Collection type '<string>' is not a valid type for a
through collection. Valid collection types are 'pin' and 'net'

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Report database is not open

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

715

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.37.75. report_timing_by_source_files (::quartus::sta)

The following table displays information for the report_timing_by_source_files
Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_timing_by_source_files [-h | -help] [-long_help] [-append] [-
asynch_clock] [-fall_from <names>] [-fall_from_clock <names>] [-fall_through
<names>] [-fall_to <names>] [-fall_to_clock <names>] [-false_path] [-file
<name>] [-from <names>] [-from_clock <names>] [-hold] [-inter_clock] [-
intra_clock] [-less_than_slack <slack limit>] [-npaths <number>] [-nworst
<number>] [-pairs_only] [-panel_name <name>] [-recovery] [-removal] [-
rise_from <names>] [-rise_from_clock <names>] [-rise_through <names>] [-
rise_to <names>] [-rise_to_clock <names>] [-setup] [-stdout] [-through
<names>] [-to <names>] [-to_clock <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-asynch_clock Only report paths whose launch and latch clock do not share
a common ancestor clock, or were explicitly marked as
asynchronous via clock groups

-fall_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-false_path Report only paths that are cut by a false path assignment

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-hold Option to report clock hold paths

-inter_clock Only report paths whose launch and latch clock are different

-intra_clock Only report paths whose launch and latch clock are the
same

-less_than_slack <slack limit> Limit the paths reported to those with slack values less than
the specified limit.

-npaths <number> Specifies the number of paths to report (default=1, or the
same value as nworst, if nworst is specified. Value of 0
causes all paths to be reported but be wary that this may be
slow)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

716

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-nworst <number> Specifies the maximum number of paths to report for each
endpoint. If unspecified, there is no limit. If nworst is
specified, but npaths is not, npaths defaults to the same
value as nworst

-pairs_only When set, paths with the same start and end points are
considered equivalent. Only the worst case path for each
unique combination is displayed.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-recovery Option to report recovery paths

-removal Option to report removal paths

-rise_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Option to report clock setup paths

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

Description
The command groups the most timing critical paths to identify the most timing
critical entities and source files.

Use the "-setup", "-hold", "-recovery", or "-removal" options to
specify which kind of analysis should be performed.

The report can be directed to the Tcl console ("-stdout", default), a
file ("-file"), the Timing Analyzer graphical user interface
("-panel_name"), or any combination of the three.

You can limit the analysis performed by this command to specific
start and end points, using the "-from" and "-to" options. Use the
"-rise_from" and "-fall_from" options to limit the analysis to
endpoints with established high or low starting states. Use the
"-rise_to" and "-fall_to" options to limit the analysis to
destination points with high or low ending states.

The analysis can be further limited to clocks using the "-from_clock"
and "-to_clock" options, or to specific edges of the clock using the
"-rise_from_clock", "-fall_from_clock", "-rise_to_clock", and
"-fall_to_clock" options.

Additionally, the "-through" option can be used to restrict analysis
to paths which go through specified pins or nets. Use the "-rise_through"
and "-fall_through" options to limit the analysis to intermediate points
with high or low ending states.

Use "-npaths" to limit the number of paths to report. If you do not
specify this option, 1000 worst-case paths are provided. Use
the "-less_than_slack" option to limit output to all paths with slack

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

717

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

less than the specified value, up to the number specified by
"-npaths".

Use "-nworst" to limit the number of paths reported for each unique
endpoint. If you do not specify this option, the number of paths
reported for each destination node is bounded only by the "-npaths"
option. If this option is used, but "-npaths" is not specified, then
"-npaths" defaults to the same value specified for "-nworst".

Use the "-pairs_only" option to filter the output further, restricting
the results to only unique combinations of start and end points.

The "-false_path" option reports only those paths that are normally
hidden by false_path assignments or clock to clock cuts. Like the
default report, this option only reports constrained paths.

The values of the "-from", "-to", and "-through" options are either
collections or a Tcl list of wildcards used to create collections
of appropriate types. The values used must follow standard Tcl or
Timing Analyzer-extension substitution rules. See the help for
use_timing_analyzer_style_escaping for details.

The return value of this command is a three-element list. The first
number is the number of paths found in the analysis. The second is
the worst-case slack, in terms of the current default time unit. The
third is the total negative slack across all paths found in the analysis.

Example Usage set my_list [report_timing_by_source_files -setup -npaths 1000 -panel_name {Report Timing by
Source Files}]
set num_paths [lindex $my_list 0]
set wc_slack [lindex $my_list 1]
set tns [lindex $my_list 2]
if { $num_paths > 0 } {
 puts "Analyzed $num_paths paths against their source file(s)."
 puts "Worst-case slack found is $wc_slack."
 puts "Total Negative Slack found is $tns."
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.76. report_timing_tree (::quartus::sta)

The following table displays information for the report_timing_tree Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_timing_tree [-h | -help] [-long_help] [-asynch_clock] [-fall_from
<names>] [-fall_from_clock <names>] [-fall_through <names>] [-fall_to
<names>] [-fall_to_clock <names>] [-from <names>] [-from_clock <names>] [-
hold] [-inter_clock] [-intra_clock] [-less_than_slack <slack limit>] [-npaths
<number>] [-nworst <number>] [-pairs_only] -panel_name <name> [-recovery] [-
removal] [-rise_from <names>] [-rise_from_clock <names>] [-rise_through
<names>] [-rise_to <names>] [-rise_to_clock <names>] [-setup] [-through
<names>] [-to <names>] [-to_clock <names>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-asynch_clock Only report paths whose launch and latch clock do not share
a common ancestor clock, or were explicitly marked as
asynchronous via clock groups

-fall_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

718

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-fall_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-fall_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names> Valid sources (string patterns are matched using Tcl string
matching)

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-hold Option to report clock hold paths

-inter_clock Only report paths whose launch and latch clock are different

-intra_clock Only report paths whose launch and latch clock are the
same

-less_than_slack <slack limit> Limit the paths reported to those with slack values less than
the specified limit.

-npaths <number> Specifies the number of paths to report (default=1, or the
same value as nworst, if nworst is specified. Value of 0
causes all paths to be reported but be wary that this may be
slow)

-nworst <number> Specifies the maximum number of paths to report for each
endpoint. If unspecified, there is no limit. If nworst is
specified, but npaths is not, npaths defaults to the same
value as nworst

-pairs_only When set, paths with the same start and end points are
considered equivalent. Only the worst case path for each
unique combination is displayed.

-panel_name <name> Report panel_name

-recovery Option to report recovery paths

-removal Option to report removal paths

-rise_from <names> Valid sources (string patterns are matched using Tcl string
matching)

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-rise_to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

-setup Option to report clock setup paths

-through <names> Valid through nodes (string patterns are matched using Tcl
string matching)

-to <names> Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <names> Valid destination clocks (string patterns are matched using
Tcl string matching)

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

719

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description
Reports the worst-case paths and associated slack grouped by design
entity. Each entity level indicates the worst-case slack and number
of paths at that level.

Use the "-setup", "-hold", "-recovery", or "-removal" options to
specify which kind of analysis should be performed.

Use the "-panel_name" option to direct the report to the Timing Analyzer
graphical user interface.

You can limit the analysis performed by this command to specific
start and end points, using the "-from" and "-to" options. Use the
"-rise_from" and "-fall_from" options to limit the analysis to
endpoints with established high or low starting states. Use the
"rise_to" and "fall_to" options to limit the analysis to
destination points with high or low ending states.

The analysis can be further limited to clocks using the "-from_clock"
and "-to_clock" options, or to specific edges of the clock using the
"-rise_from_clock", "-fall_from_clock", "-rise_to_clock", and
"-fall_to_clock" options.

Additionally, the "-through" option can be used to restrict analysis
to paths which go through specified pins or nets. Use the "rise_through"
and "fall_through" options to limit the analysis to intermediate points
with high or low ending states.

Use "-npaths" to limit the number of paths to report. If you do not
specify this option, only the single worst-case path is provided. Use
the "-less_than_slack" option to limit output to all paths with slack
less than the specified value, up to the number specified by
"-npaths".

Use "-nworst" to limit the number of paths reported for each unique
endpoint. If you do not specify this option, the number of paths
reported for each destination node is bounded only by the "-npaths"
option. If this option is used, but "-npaths" is not specified, then
"-npaths" defaults to the same value specified for "-nworst".

Use the "-pairs_only" option to filter the output further, restricting
the results to only unique combinations of start and end points.

The values of the "-from", "-to", and "-through" options are either
collections or a Tcl list of wildcards used to create collections
of appropriate types. The values used must follow standard Tcl or
Timing Analyzer-extension substitution rules. See the help for
use_timing_analyzer_style_escaping for details.

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.77. report_ucp (::quartus::sta)

The following table displays information for the report_ucp Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax report_ucp [-h | -help] [-long_help] [-append] [-file <name>] [-panel_name
<name>] [-stdout] [-summary]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten. This option is not
supported for HTML files.

-file <name> Sends the results to an ASCII or HTML file. Depending on
the extension

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

720

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel

-stdout Send output to stdout, via messages. You only need to use
this option if you have selected another output format, such
as a file, and would also like to receive messages.

-summary Generate everything except for the detailed paths panels.

Description
Reports unconstrained paths.

Example Usage project_open chiptrip
create_timing_netlist
read_sdc
update_timing_netlist
report_ucp
delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.78. set_operating_conditions (::quartus::sta)

The following table displays information for the set_operating_conditions Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax set_operating_conditions [-h | -help] [-long_help] [-force_dat] [-grade <c|i|m|
e|a>] [-model <fast|slow>] [-speed <speed>] [-temperature <value_in_C>] [-
voltage <value_in_mV>] [<list_of_operating_conditions>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-force_dat Option to force delay annotation (only done when selecting
an unanalyzed corner)

-grade <c|i|m|e|a> Option to specify temperature grade

-model <fast|slow> Option to specify timing model

-speed <speed> Speed grade

-temperature <value_in_C> Operating temperature

-voltage <value_in_mV> Operating voltage

<list_of_operating_conditions> list or collection of Operating conditions Tcl objects or
names

Description
Use this command to specify operating conditions different from the
initial conditions used to create the timing netlist. When a timing
model is not specified, the slow model is used.

Voltage and temperature options must be used together. These two
options are not available for all devices. The
get_available_operating_conditions command returns the list of
available operating conditions for your device.

Use the -speed option to analyze the design at a different speed grade
of the selected device.

Use the -grade option to analyze the design at a different temperature
grade. This option is provided to support what-if analysis and is not

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

721

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

recommended for final sign-off analysis.

By default, delay annotation is skipped if previously performed. Use
-force_dat to rerun delay annotation.

Example Usage #do report timing for different operating conditions one by one
foreach_in_collection op [get_available_operating_conditions] {
 set_operating_conditions $op
 update_timing_netlist
 report_timing
}

#set aggregated report timing for all operating conditions when corner aggregation is enabled
set_operating_conditions [get_available_operating_conditions]
report_timing

#manually set operating conditions
set_operating_conditions -model fast -temperature 85 -voltage 1200
update_timing_netlist

#change device speed grade and set operating conditions
set_operating_conditions -speed 3 -model slow -temperature 0 -voltage 1100
update_timing_netlist

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Cannot set operating conditions for timing netlist
created from XML file. Run create_timing_netlist.

TCL_ERROR 1 ERROR: Both the -temperature and -voltage options and
their values are required.

TCL_ERROR 1 ERROR: The ability to select multiple operating conditions at
once has been disabled.

TCL_ERROR 1 ERROR: Values entered did not match any valid operating
conditions. Available operating conditions are: <string>

TCL_ERROR 1 ERROR: The <string> device family does not support
set_operating_conditions command.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Illegal value: <string>. Specify an integer ranging
from -999999999 to 999999999 for the option -voltage

TCL_ERROR 1 ERROR: Unsupported option: <string>.

3.1.37.79. timing_netlist_exist (::quartus::sta)

The following table displays information for the timing_netlist_exist Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax timing_netlist_exist [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Checks if the timing netlist exists.

Returns 1, if the timing netlist exists.
Returns 0, otherwise.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

722

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage if {![timing_netlist_exist]} {
 create_timing_netlist
}

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

3.1.37.80. update_timing_netlist (::quartus::sta)

The following table displays information for the update_timing_netlist Tcl
command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax update_timing_netlist [-h | -help] [-long_help] [-dynamic_borrow] [-full] [-
loop_aware_dynamic_borrow] [-no_borrow] [-recompute_borrow]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-dynamic_borrow Use time borrowing values that are correct for the current
clock constraints

-full Forces creation of an updated timing netlist to ensure
correctness

-loop_aware_dynamic_borrow Determine time borrowing values as with the -
dynamic_borrow option with an addition loop-detection
layer to prevent excessive time borrowing in sequential
latch loops

-no_borrow Turn off all time borrowing

-recompute_borrow Recompute optimal time borrowing values

Description
Updates and applies SDC commands to the timing netlist. The
update_timing_netlist command expands and validates generated clocks, warns
about sources in the design that require clock settings, identifies and removes
combinational loops, and warns about undefined input/output delays.

Most Tcl commands (e.g., report_timing) automatically update the timing netlist
when necessary. You can use the update_timing_netlist command explicitly to
control when updating occurs, or to force a full update using the -full option.

The update_timing_netlist command can also be used to control time borrowing
behavior. Time borrowing is a technique whereby certain flip-flops in certain
device families are allowed to have signals that arrive late (thus improving
upstream slack), at the expense of downstream slack. The amount of time
borrowing allowed at each flip-flop is hardware-dependent.

By default, optimal time borrowing values are computed at the end of the Fitter
(Finalize) stage (if enabled by your compilation settings), and these are the
values you will see in the timing reports. To turn off time borrowing support,
use the -no_borrow option. This is not recommended, as it may result in
significantly pessimistic timing results.

If you have changed clock constraints after compiling your design, pre-computed
optimal time borrowing values may no longer be valid. Time borrowing is turned
off for the changed clocks, resulting in pessimistic timing. To get optimal
results once again, run update_timing_netlist with the -recompute_borrow option.
This may take significant time on large designs, but the results are saved and
available the next time you run update_timing_netlist without any time borrowing
options.

The time borrowing optimization algorithm has a few limitation - for example, it
never borrows any time on sources of cross-clock transfers, sources of paths
with set_max_delay or set_max_skew constraints, or in any clock domain
containing at least one level-sensitive latch. If your design is correctly
constrained, you may overcome these limitations and get better timing results
with the -dynamic_borrow option, which calculates time borrowing amounts based
on your actual clock constraints (rather than optimizing for highest FMax within

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

723

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

each clock domain). Note that -dynamic_borrowing is not recommended for
overconstrained designs.

Using the -dynamic_borrow option may result in excessive time borrowing in
sequential loops of level-sensitive latches, potentially leading to worse
downstream slack. If your design contains such loops and you encounter this
behavior, use the -loop_aware_dynamic_borrow option to detect sequential latch
loops when evaluating their borrow amounts. Note that enabling this loop-
detection feature may result in increased memory consumption and significantly
increased runtime for large designs.

Example Usage project_open top
create_timing_netlist
read_sdc
update_timing_netlist

report_timing -to_clock clk1
report_timing -to_clock clk2

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.81. use_timing_analyzer_style_escaping (::quartus::sta)

The following table displays information for the
use_timing_analyzer_style_escaping Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax use_timing_analyzer_style_escaping [-h | -help] [-long_help] [-off] [-on]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-off Disable this setting.

-on Enable this setting.

Description
Use Timing Analyzer-style escaping. (Timing Analyzer-style escaping is enabled by
default.

The values used to create a collection, whether explicitly using a
collection command or implicitly as a value specified as a "-from",
"-to", or similar option to various SDC and report commands, are a Tcl
list of wildcards. This includes a single name with an exact match.
The value must follow standard Tcl substitution rules for Tcl lists
and "string match" as described below, unless using Timing Analyzer-style
escaping (default).

For special characters such as '$', the character must be escaped
using a single '\' character to prevent Tcl from interpreting the word
after '$' as a Tcl variable, such as: Clk\$Signal.

A '\' character itself must be escaped with another '\' as in the '$'
case, must be escaped again for the Tcl list, and must be escaped yet
again for Tcl "string match." The final result is eight '\'
characters, such as: Clk\\\\\\\\Signal.

Using Tcl "list" eliminates one level of escaping, since it
escapes any '\' characters automatically for the Tcl list, such as:
[list Clk\\\\Signal]

Using '{' and '}' characters also eliminates the need for one or two
levels of escaping, since '{' and '}' prevent string substitution in
the contents, such as:
 [List {Clk\\Signal}]

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

724

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 {{Clk\\Signal}}

The use_timing_analyzer_style_escaping option, which is on by default,
allows the user to specify a name containing '\' characters with only
two '\' characters in all cases, such as: Clk\\Signal. The extra '\'
characters required for Tcl list string substitution and "string
match" are added automatically by the Timing Analyzer.

To disable Timing Analyzer style string escaping, call
"use_timing_analyzer_style_escaping -off" before adding any timing
constraints or exceptions.

Example Usage project_open top
use_timing_analyzer_style_escaping -on
create_timing_netlist
set res [get_cells my_test|special_\\reg]
query_collection $res -all

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

3.1.37.82. write_sdc (::quartus::sta)

The following table displays information for the write_sdc Tcl command:

Tcl Package and
Version

Belongs to ::quartus::sta on page 615

Syntax write_sdc [-h | -help] [-long_help] [-expand] [-history] [-valid_exceptions]
<file_name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-expand Generate SDC file by expanding the macros

-history Reports full history of assignments

-valid_exceptions Generate SDC file containing only valid timing exceptions
for debugging purposes

<file_name> Name of output file

Description
Generates an SDC file with all current constraints and
exceptions. When you use the -expand option, derive_clocks,
derive_pll_clocks, derive_lvds_clocks and derive_clock_uncertainty
macros are be expanded to corresponding sdc assignments before they
are written to a file. If you do not use the -expand option, these
macros are preserved.

Use the -valid_exceptions option to generate an SDC file that contains
only valid timing exceptions. Run the report_exceptions command with
the -valid option to see all the valid timing exceptions in your design.

Example Usage project_new test
create_timing_netlist
create_clock -period 10 -name clk10 clk
set_multicycle_path -from [get_cells a] -to [get_cells b]
update_timing_netlist

report_timing

write_sdc my_sdc_file.sdc

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

725

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

delete_timing_netlist
project_close

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: Clock manager is not up-to-date. Run
update_timing_netlist to generate the latest clock manager.

TCL_ERROR 1 ERROR: Timing netlist does not exist. Use
create_timing_netlist to create a timing netlist.

TCL_ERROR 1 ERROR: Open failed: <string>

3.1.38. ::quartus::stp

The following table displays information for the ::quartus::stp Tcl package:

Tcl Package and Version ::quartus::stp 1.0

Description
This package contains the set of Tcl functions for acquiring
Signal Tap data from the Intel device.

Availability This package is loaded by default in the following executables:

 quartus_stp
 quartus_stp_tcl

Tcl Commands close_session (::quartus::stp) on page 726
export_data_log (::quartus::stp) on page 727
open_session (::quartus::stp) on page 728
run (::quartus::stp) on page 729
run_multiple_end (::quartus::stp) on page 730
run_multiple_start (::quartus::stp) on page 731
stop (::quartus::stp) on page 731

3.1.38.1. close_session (::quartus::stp)

The following table displays information for the close_session Tcl command:

Tcl Package and
Version

Belongs to ::quartus::stp on page 726

Syntax close_session [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Saves the current session to the existing Signal Tap File (.stp).

Example Usage #opens signaltap session
open_session -name stp1.stp

#capture data to log named log1, timeout after 5 seconds if no trigger occurs
if { [catch {run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger trigger_1 -
data_log log_1 -timeout 5} err_msg} {
 # Timeout event is thrown as TCL exception
 puts "ERROR: $err_msg"
}

#close signaltap session
close_session

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

726

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Session has been saved in Signal Tap File and closed

TCL_ERROR 1 ERROR: Can't open Signal Tap File for writing. Make sure
Signal Tap File exists, has write permission, and is not
currently being used by another program.

TCL_ERROR 1 ERROR: Session has not been opened. Make sure a session
is open before attempting to close it.

3.1.38.2. export_data_log (::quartus::stp)

The following table displays information for the export_data_log Tcl command:

Tcl Package and
Version

Belongs to ::quartus::stp on page 726

Syntax export_data_log [-h | -help] [-long_help] [-clock_period <clock period>] [-
data_log <data log>] -filename <export file name> [-format <export format>] [-
instance <instance>] [-signal_set <signal set>] [-trigger <trigger>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-clock_period <clock period> The file name of the exported file

-data_log <data log> Name of data log to be exported

-filename <export file name> The file name of the exported file

-format <export format> File format of the exported file

-instance <instance> Name of instance that defines data log

-signal_set <signal set> Name of signal set that defines data log

-trigger <trigger> Name of trigger that defines data log

Description
 Exports the specified data log from the current open
 session into another file in different format.

If a data log is not explicitly specified, the last
 active one is used.

The supported file formats are Comma Separated Value
file (.csv), Value Change Dump file (.vcd), and Table
file (.tbl).

Example Usage #opens signaltap session
open_session -name stp1.stp

#capture data to log named log1, timeout after 5 seconds if no trigger occurs
if { [catch {run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger trigger_1 -
data_log log_1 -timeout 5} err_msg} {
 # Timeout event is thrown as TCL exception
 puts "ERROR: $err_msg"
}

#export data into a VCD file
export_data_log -instance auto_signaltap_0 -signal_set signal_set_1 -trigger trigger_1 -
data_log log_1 -filename log_1.vcd -format vcd

#close signaltap session
close_session

Return Value Code Name Code String Return
continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

727

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Data has been acquired successfully

TCL_ERROR 1 ERROR: Error occured when the specified data log was
exported to a file.

TCL_ERROR 1 ERROR: Instance, signal set, or trigger does not exist. Make
sure the instance, signal set, and trigger exist in the Signal
Tap File.

TCL_ERROR 1 ERROR: Session has not been opened. Make sure a session
is open before attempting to close it.

3.1.38.3. open_session (::quartus::stp)

The following table displays information for the open_session Tcl command:

Tcl Package and
Version

Belongs to ::quartus::stp on page 726

Syntax open_session [-h | -help] [-long_help] -name <.stp file name>

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-name <.stp file name> Signal Tap File (.stp) name

Description
Opens a session from the specified Signal Tap File (.stp).

Example Usage #opens signaltap session
open_session -name stp1.stp

#capture data to log named log1, timeout after 5 seconds if no trigger occurs
if { [catch {run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger trigger_1 -
data_log log_1 -timeout 5} err_msg} {
 # Timeout event is thrown as TCL exception
 puts "ERROR: $err_msg"
}

#close signaltap session
close_session

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Session has been opened from Signal Tap File

TCL_ERROR 1 ERROR: Can't open Signal Tap File for reading. Make sure
the Signal Tap File exists and has read permission.

TCL_ERROR 1 ERROR: Session already open. Close session before
attempting to open it again.

TCL_ERROR 1 ERROR: Signal Tap File contains syntax error. Make sure the
Signal Tap File is formatted correctly before opening. Intel
recommends that you do not manually edit Signal Tap Files,
but use the Signal Tap dialog boxes in the Quartus Prime
GUI.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

728

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.38.4. run (::quartus::stp)

The following table displays information for the run Tcl command:

Tcl Package and
Version

Belongs to ::quartus::stp on page 726

Syntax run [-h | -help] [-long_help] [-bridge <bridge>] [-data_log <data log>] [-
device_name <device name>] [-hardware_name <hardware name>] [-instance
<instance>] [-signal_set <signal set>] [-timeout <timeout>] [-trigger <trigger>]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

-bridge <bridge> Bridge to use instead of the one specified in the stp file

-data_log <data log> Name of data log to be recorded

-device_name <device name> Device to use instead of the one specified in the stp file. Tcl
command, get_device_names, can be used to obtain the
valid hardware names

-hardware_name <hardware name> JTAG programming hardware to use instead of the one
specified in the stp file. Tcl command,
get_hardware_names, can be used to obtain the valid
hardware name

-instance <instance> Name of instance that defines data acquisition

-signal_set <signal set> Name of signal set that defines data acquisition

-timeout <timeout> Timeout period for data acquisition in seconds

-trigger <trigger> Name of trigger that defines data acquisition

Description
Starts data acquisition with the specified conditions in
the session and saves data into the specified data log
within the timeout period.

Example Usage #opens signaltap session
open_session -name stp1.stp

#capture data to log named log1, timeout after 5 seconds if no trigger occurs
if { [catch {run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger trigger_1 -
data_log log_1 -timeout 5} err_msg} {
 # Timeout event is thrown as TCL exception
 puts "ERROR: $err_msg"
}

#close signaltap session
close_session

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Data has been acquired successfully

TCL_ERROR 1 ERROR: JTAG chain in use. Wait for JTAG communication to
finish and run again.

TCL_ERROR 1 ERROR: Data acquisition stopped unexpectedly. Make sure
device is stable and run again.

TCL_ERROR 1 ERROR: Trigger not compatible with device. Download a
design with the current SRAM Object File after recompiling.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

729

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TCL_ERROR 1 ERROR: Instance, signal set, or trigger does not exist. Make
sure the instance, signal set, and trigger exist in the Signal
Tap File.

TCL_ERROR 1 ERROR: Session has not been opened. Make sure a session
is open before attempting to close it.

TCL_ERROR 1 ERROR: Trigger did not occur in timeout period. Make sure
trigger conditions are valid and/or increase timeout period.

3.1.38.5. run_multiple_end (::quartus::stp)

The following table displays information for the run_multiple_end Tcl command:

Tcl Package and
Version

Belongs to ::quartus::stp on page 726

Syntax run_multiple_end [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Defines the end of a set of "run" commands. This command
is used when multiple instances of data acquisition are
started simultaneously. Add "run_multiple_start" before
the set of "run" commands that specify data acquisition.
Add this command after the set of commands.

If "run_multiple_end" is not included, the "run" commands
do not execute.

Example Usage #opens signaltap session
open_session -name stp1.stp

#start acquisition of instance auto_signaltap_0 and auto_signaltap_1 at the same time
#calling run_multiple_end will start all instances run after run_multiple_start call
run_multiple_start
run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger trigger_1 -data_log log_1 -
timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger trigger_1 -data_log log_1 -
timeout 5
if { [catch {run_multiple_end} err_msg} {
 # Timeout event is thrown as TCL exception
 puts "ERROR: $err_msg"
}

#close signaltap session
close_session

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Multiple instances of data acquisition ended
successfully

TCL_ERROR 1 ERROR: Data acquisition stopped unexpectedly. Make sure
device is stable and run again.

TCL_ERROR 1 ERROR: Run multiple instances has not been started. Use
run_multiple_start before using run_multiple_end.

TCL_ERROR 1 ERROR: Session has not been opened. Make sure a session
is open before attempting to close it.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

730

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.38.6. run_multiple_start (::quartus::stp)

The following table displays information for the run_multiple_start Tcl command:

Tcl Package and
Version

Belongs to ::quartus::stp on page 726

Syntax run_multiple_start [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Defines the start of a set of "run" commands. This command
is used when multiple instances of data acquisition are
started simultaneously. Add this command before the set of
"run" commands that specify data acquisition. Add
"run_multiple_end" after the set of commands.

If "run_multiple_end" is not included, the "run" commands
do not execute.

Example Usage #opens signaltap session
open_session -name stp1.stp

#start acquisition of instance auto_signaltap_0 and auto_signaltap_1 at the same time
#calling run_multiple_end will start all instances run after run_multiple_start call
run_multiple_start
run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger trigger_1 -data_log log_1 -
timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger trigger_1 -data_log log_1 -
timeout 5
if { [catch {run_multiple_end} err_msg} {
 # Timeout event is thrown as TCL exception
 puts "ERROR: $err_msg"
}

#close signaltap session
close_session

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Multiple instances of data acquisition started

TCL_ERROR 1 ERROR: Run multiple instances has not ended. Use
run_multiple_end to complete an active call to
run_multiple_start before using run_multiple_start again.

TCL_ERROR 1 ERROR: Session has not been opened. Make sure a session
is open before attempting to close it.

3.1.38.7. stop (::quartus::stp)

The following table displays information for the stop Tcl command:

Tcl Package and
Version

Belongs to ::quartus::stp on page 726

Syntax stop [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Stops all data acquisition.

continued...

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

731

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Usage stop

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_OK 0 INFO: Data acquisition has stopped

TCL_ERROR 1 ERROR: No data acquisition was started. Data acquisition
must be in progress before stopping.

3.1.39. ::quartus::tdc

The following table displays information for the ::quartus::tdc Tcl package:

Tcl Package and Version ::quartus::tdc 1.0

Description
This package contains the set of Tcl functions for obtaining
information from the Timing Analyzer.

Availability This package is loaded by default in the following executables:

 qpro
 quartus
 quartus_fit
 quartus_map
 quartus_pow
 quartus_sta
 quartus_syn

Tcl Commands is_place (::quartus::tdc) on page 732
is_plan (::quartus::tdc) on page 733
is_post_route (::quartus::tdc) on page 733

3.1.39.1. is_place (::quartus::tdc)

The following table displays information for the is_place Tcl command:

Tcl Package and
Version

Belongs to ::quartus::tdc on page 732

Syntax is_place [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns true when called from Fitter during the placer.
(Only supported in Quartus Prime Pro Edition)

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: This command is not supported in the current
software edition.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

732

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.39.2. is_plan (::quartus::tdc)

The following table displays information for the is_plan Tcl command:

Tcl Package and
Version

Belongs to ::quartus::tdc on page 732

Syntax is_plan [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns true when called from Fitter during the plan.
(Only supported in Quartus Prime Pro Edition)

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: This command is not supported in the current
software edition.

3.1.39.3. is_post_route (::quartus::tdc)

The following table displays information for the is_post_route Tcl command:

Tcl Package and
Version

Belongs to ::quartus::tdc on page 732

Syntax is_post_route [-h | -help] [-long_help]

Arguments -h | -help Short help

-long_help Long help with examples and possible return values

Description
Returns true when called from Fitter after router has completed or when post-fitting delays are
annotated.
(Only supported in Quartus Prime Pro Edition)

Example Usage This command currently contains no example usage.

Return Value Code Name Code String Return

TCL_OK 0 INFO: Operation successful

TCL_ERROR 1 ERROR: No project is currently open. Open an existing
project or create a new project.

TCL_ERROR 1 ERROR: This command is not supported in the current
software edition.

3. TCL Commands and Packages

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

733

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2. Tcl Commands and Packages Revision History

The following revision history applies to this chapter:

Table 13. Document Revision History

Document Version Quartus Prime
Version

Changes

2024.04.01 24.1 • Applied phase I Altera rebranding throughout.
• Updated for latest Tcl commands and packages support.

2023.12.04 23.4 • Updated for latest Tcl commands and packages support.

2023.10.02 23.3 • Updated for latest Tcl commands and packages support.

2023.06.26 23.2 • Updated for latest Tcl commands and packages support.

2023.04.03 23.1 • Updated name of Intel Agilex 7 device family.
• Updated for latest Tcl commands and packages support.

2022.12.12 22.4 • Updated for latest Tcl commands and packages support.

2022.09.26 22.3 • Updated for latest Tcl commands and packages support.

2022.06.20 22.2 • Updated for latest Tcl commands and packages support.

2022.03.28 22.1 • Updated for latest Tcl commands and packages support.

2021.12.13 21.4 • Updated for latest Tcl commands and packages support.

2021.10.04 21.3 • Updated for latest Tcl commands and packages support.

2021.03.29 21.1 • Updated for latest Tcl commands and packages support.

2020.12.14 20.4 Initial release of Tcl Commands and Packages reference chapter.

3. TCL Commands and Packages

683432 | 2024.04.01

Quartus Prime Pro Edition User Guide: Scripting Send Feedback

734

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Quartus Prime Pro Edition User Guide Scripting
Archives

For the latest and previous versions of this user guide, refer to Quartus Prime Pro
Edition User Guide: Scripting. If a software version is not listed, the guide for the
previous software version applies.

683432 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683432.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Pro Edition FPGA design flow.

Related Information

• Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime Pro
Edition software, including managing Quartus Prime Pro Edition projects and IP,
initial design planning considerations, and project migration from previous
software versions.

• Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime Pro
Edition software. HDL coding styles and synchronous design practices can
significantly impact design performance. Following recommended HDL coding
styles ensures that Quartus Prime Pro Edition synthesis optimally implements
your design in hardware.

• Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Pro Edition Compiler. The Compiler synthesizes, places, and routes your design
before generating a device programming file.

• Quartus Prime Pro Edition User Guide: Design Optimization
Describes Quartus Prime Pro Edition settings, tools, and techniques that you
can use to achieve the highest design performance in Intel® FPGAs. Techniques
include optimizing the design netlist, addressing critical chains that limit
retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Quartus Prime Pro Edition Programmer, which allows
you to configure Intel® FPGA devices, and program CPLD and configuration
devices, via connection with an Intel® FPGA download cable.

• Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683432 | 2024.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683463.html
https://www.intel.com/content/www/us/en/docs/programmable/683609.html
https://www.intel.com/content/www/us/en/docs/programmable/683082.html
https://www.intel.com/content/www/us/en/docs/programmable/683236.html
https://www.intel.com/content/www/us/en/docs/programmable/683641.html
https://www.intel.com/content/www/us/en/docs/programmable/683039.html
https://www.intel.com/content/www/us/en/docs/programmable/683247.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel® FPGA IP.

• Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking
Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Pro Edition in-system design debugging
tools for real-time verification of your design. These tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. These tools
include System Console, Signal Tap logic analyzer, system debugging toolkits,
In-System Memory Content Editor, and In-System Sources and Probes Editor.

• Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology.

• Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime Pro
Edition software and to perform a wide range of functions, such as managing
projects, specifying constraints, running compilation or timing analysis, or
generating reports.

A. Quartus Prime Pro Edition User Guides

683432 | 2024.04.01

Send Feedback Quartus Prime Pro Edition User Guide: Scripting

737

https://www.intel.com/content/www/us/en/docs/programmable/683834.html
https://www.intel.com/content/www/us/en/docs/programmable/683870.html
https://www.intel.com/content/www/us/en/docs/programmable/683122.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683881.html
https://www.intel.com/content/www/us/en/docs/programmable/683819.html
https://www.intel.com/content/www/us/en/docs/programmable/683243.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683143.html
https://www.intel.com/content/www/us/en/docs/programmable/683768.html
https://www.intel.com/content/www/us/en/docs/programmable/683432.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Scripting%20(683432%202024.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Quartus Prime Pro Edition User Guide: Getting Started
	Contents
	1. Introduction to Quartus® Prime Pro Edition
	1.1. Before You Begin
	1.1.1. Prerequisite Knowledge and Training
	1.1.2. Navigate Content Through Tasks
	1.1.3. Acronyms

	2. Planning FPGA Design for RTL Flow
	2.1. Design Planning
	2.2. Selecting the Design Methodology
	2.2.1. Flat Design Vs. Incremental Block-based Design
	2.2.2. Partial Reconfiguration Design

	2.3. Related Trainings

	3. Selecting a Starting Point for Your Quartus Prime Pro Edition Project
	3.1. Creating a New FPGA Design Project
	3.1.1. Using the Board-Aware Flow
	3.1.1.1. Creating a New Project from a Design Example
	3.1.1.1.1. Family, Device & Board Settings
	3.1.1.1.2. Accessing Pre-Installed Design Examples
	3.1.1.1.3. Accessing Online Design Examples
	Internet Connectivity Options
	Design Examples Options

	3.1.1.1.4. Accessing Downloaded Design Examples

	3.1.1.2. Specifying a Target Board for the Project

	3.2. Migrating Projects from Other Quartus Prime Editions to Quartus Prime Pro Edition
	3.2.1. Keeping Pro Edition Project Files Separate
	3.2.2. Upgrading Project Assignments and Constraints
	3.2.2.1. Modifying Entity Name Assignments
	3.2.2.2. Resolving Timing Constraint Entity Names
	3.2.2.3. Verifying Generated Node Name Assignments
	3.2.2.4. Replace Logic Lock (Standard) Regions
	3.2.2.4.1. Logic Lock Region Assignment Examples

	3.2.2.5. Modifying Signal Tap Logic Analyzer Files
	3.2.2.6. Removing References to .qip Files
	3.2.2.7. Removing Unsupported Feature Assignments

	3.2.3. Upgrading IP Cores and Platform Designer Systems
	3.2.4. Upgrading Non-Compliant Design RTL
	3.2.4.1. Verifying Verilog Compilation Unit
	3.2.4.1.1. Verilog HDL Configuration Instantiation

	3.2.4.2. Updating Entity Auto-Discovery
	3.2.4.3. Ensuring Distinct VHDL Namespace for Each Library
	3.2.4.4. Removing Unsupported Parameter Passing
	3.2.4.5. Removing Unsized Constant from WYSIWYG Instantiation
	3.2.4.6. Removing Non-Standard Pragmas
	3.2.4.7. Declaring Objects Before Initial Values
	3.2.4.8. Confining SystemVerilog Features to SystemVerilog Files
	3.2.4.9. Avoiding Assignment Mixing in Always Blocks
	3.2.4.10. Avoiding Unconnected, Non-Existent Ports
	3.2.4.11. Avoiding Invalid Parameter Ranges
	3.2.4.12. Updating Verilog HDL and VHDL Type Mapping
	3.2.4.13. Converting Symbolic BDF Files to Acceptable File Formats

	3.3. Migrating Your AMD* Vivado* Project to Quartus Prime Pro Edition
	3.4. Migrating Projects Across Operating Systems
	3.4.1. Migrating Design Files and Libraries
	3.4.1.1. Use Relative Paths

	3.4.2. Design Library Migration Guidelines

	3.5. Migrating Project From One Device to Another
	3.6. Related Trainings

	4. Working With Intel FPGA IP Cores
	4.1. IP Catalog and Parameter Editor
	4.1.1. The Parameter Editor

	4.2. Installing and Licensing Intel FPGA IP Cores
	4.2.1. Intel FPGA IP Evaluation Mode
	4.2.1.1. Intel FPGA IP Versioning
	4.2.1.2. Checking the IP License Status

	4.3. IP General Settings
	4.4. Adding IP to IP Catalog
	4.5. Best Practices for Intel FPGA IP
	4.6. Specifying the IP Core Parameters and Options (Quartus Prime Pro Edition)
	4.6.1. Applying Preset Parameters for Specific Applications
	4.6.1.1. Viewing, Applying, and Deleting IP Presets

	4.6.2. Customizing IP Presets
	4.6.2.1. Defining Preset Pin Assignments
	4.6.2.1.1. Defining Preset Pin Assignments in Pin Assignments Tab
	4.6.2.1.2. Defining Preset Pin Assignments in a Pin File

	4.7. IP Core Generation Output (Quartus Prime Pro Edition)
	4.8. Scripting IP Core Generation
	4.9. Modifying an IP Variation
	4.10. Upgrading IP Cores
	4.10.1. Upgrading IP Cores at Command-Line
	4.10.2. Migrating IP Cores to a Different Device
	4.10.3. Troubleshooting IP or Platform Designer System Upgrade

	4.11. Simulating Intel FPGA IP Cores
	4.11.1. Generating IP Simulation Files
	4.11.2. Scripting IP Simulation
	4.11.2.1. Generating a Combined Simulator Setup Script

	4.12. Generating Simulation Files for Platform Designer Systems and IP Variants
	4.13. Synthesizing IP Cores in Other EDA Tools
	4.14. Instantiating IP Cores in HDL
	4.14.1. Example Top-Level Verilog HDL Module
	4.14.2. Example Top-Level VHDL Module

	4.15. Support for the IEEE 1735 Encryption Standard
	4.16. Related Trainings and Resources

	5. Managing Quartus Prime Projects
	5.1. Viewing Basic Project Information
	5.1.1. Using the Compilation Dashboard
	5.1.2. Exploring Quartus Prime Project Contents
	5.1.2.1. Project File Best Practices

	5.1.3. Viewing Design Hierarchy and Adding Missing Source Files
	5.1.4. Viewing Project Reports
	5.1.5. Viewing Project Messages
	5.1.5.1. Viewing Synthesis Warning Messages
	5.1.5.2. Suppressing Message Display
	5.1.5.3. Promoting Critical Warnings to Errors

	5.2. Managing Project Settings
	5.3. Viewing Parameter Settings From the Project Navigator
	5.4. Managing Logic Design Files
	5.4.1. Including Design Libraries
	5.4.2. Creating a Project Copy

	5.5. Managing Timing Constraints
	5.6. Integrating Other EDA Tools
	5.7. Exporting Compilation Results
	5.7.1. Exporting a Version-Compatible Compilation Database
	5.7.2. Importing a Version-Compatible Compilation Database
	5.7.3. Creating a Design Partition
	5.7.4. Exporting a Design Partition
	5.7.5. Reusing a Design Partition
	5.7.6. Viewing Quartus Database File Information
	5.7.6.1. QDB File Attribute Types

	5.7.7. Clearing Compilation Results

	5.8. Archiving Projects
	5.8.1. Manually Adding Files To Archives
	5.8.2. Archiving Projects for Service Requests
	5.8.3. Archiving Projects for External Revision Control
	5.8.3.1. Project Files to Include In External Revision Control

	5.8.4. Creating Database-Only Archives

	5.9. Command-Line Interface
	5.9.1. Project Revision Commands
	5.9.2. Project Archive Commands
	5.9.3. Project Database Commands
	5.9.3.1. quartus_cdb Executables to Manage Version-Compatible Databases

	5.10. Related Trainings

	A. Next Steps After Getting Started
	A.1. Additional Resources
	A.2. Training

	B. Using the Design Space Explorer II
	B.1. Optimizing Project Settings
	B.1.1. Optimizing Settings with Design Space Explorer II
	B.1.1.1. DSE II Computing Resources
	B.1.1.2. DSE II Optimization Parameters
	B.1.1.3. DSE II Result Management

	B.1.2. Optimizing Settings with Project Revisions
	B.1.3. Back-Annotating Optimized Assignments

	B.2. Running DSE II
	B.3. Setting Up Remote Farm Using Design Space Explorer II

	C. Document Revision History for Quartus Prime Pro Edition User Guide Getting Started
	D. Quartus Prime Pro Edition User Guides

	Quartus Prime Pro Edition User Guide: Platform Designer
	Contents
	1. Creating a System with Platform Designer
	1.1. Platform Designer Interface Support
	1.2. Platform Designer System Design Flow
	1.3. Creating or Opening a Platform Designer System
	1.3.1. Specifying the Target FPGA Device or Board for a System
	1.3.2. Specifying Additional Application Memory
	1.3.3. Synchronizing IP File References
	1.3.4. Converting Incompatible Components

	1.4. Using the Board-Aware Flow in Platform Designer
	1.4.1. Accessing FPGA Design Examples
	1.4.2. Specifying the Target Board for a Platform Designer System
	1.4.2.1. Changing the Target Board for a Platform Designer System
	1.4.2.2. Using Board Files
	1.4.2.2.1. Creating a New Board File
	1.4.2.2.2. Create New Board Dialog Box Options
	1.4.2.2.3. Viewing or Deleting Board Files

	1.4.3. Generating Board and Preset Files for Existing Systems
	1.4.3.1. Generating Board and Preset Files for Existing Systems Using Platform Designer
	1.4.3.2. Generating Presets for Existing Systems with Multiple Instances
	1.4.3.3. Generating Board and Presets for Existing Systems Using Command Line
	1.4.3.4. Preset Files Saved

	1.5. Viewing a Platform Designer System
	1.5.1. Viewing the System Hierarchy
	1.5.2. Filtering the System View
	1.5.3. Viewing Clock and Reset Domains
	1.5.3.1. Viewing Clock Domains in a System
	1.5.3.2. Viewing Reset Domains in a System

	1.5.4. Viewing System Connections
	1.5.5. Viewing Avalon Memory-Mapped Domains in a System
	1.5.6. Viewing the System Schematic
	1.5.7. Customizing the Platform Designer Layout
	1.5.8. Changing the Platform Designer Font

	1.6. Adding IP Components to a System
	1.6.1. Modifying IP Parameters
	1.6.1.1. Viewing Component or Parameter Details
	1.6.1.2. Viewing a Component's Block Symbol

	1.6.2. Applying Preset Parameters for Specific Applications
	1.6.2.1. Customizing IP Presets

	1.6.3. Creating IP Presets Targeting Specific Boards
	1.6.3.1. Creating IP Presets
	1.6.3.2. Defining Preset Pin Assignments
	1.6.3.2.1. Defining Preset Pin Assignments in Pin Assignments Tab
	1.6.3.2.2. Defining Preset Pin Assignments in a Pin File

	1.6.3.3. Viewing, Applying, and Deleting IP Presets
	1.6.3.4. Auto-Exporting IP Preset Interfaces and Pins
	1.6.3.5. Editing Pin Assignments for Presets
	1.6.3.6. Viewing IP Presets In Board Catalog

	1.6.4. Applying Presets After Migrating a Board
	1.6.4.1. Comparing and Applying IP Presets

	1.6.5. Adding Third-Party IP Components
	1.6.5.1. IP Search Path Recursive Search
	1.6.5.1.1. IP Search Path Precedence
	1.6.5.1.2. IP Component Description Files

	1.6.5.2. Defining the IP Search Path with Index Files

	1.6.6. Specifying IP Component Instantiation Options
	1.6.6.1. Component Implementation Type Options

	1.6.7. Creating or Opening an IP Core Variant

	1.7. Connecting System Components
	1.7.1. Platform Designer 64-Bit Addressing Support
	1.7.1.1. Support for Avalon Memory Mapped Non-Power of Two Data Widths

	1.7.2. Connecting Hosts and Agents
	1.7.3. Connecting NoC IP in Platform Designer
	1.7.4. Wire-Level Connectivity
	1.7.4.1. Editing Wire-Level Expressions
	1.7.4.2. Wire-Level Expression Syntax
	1.7.4.3. Adding or Removing Ports from Wire-Level Endpoint Interfaces
	1.7.4.4. Scripting Wire-Level Expressions

	1.8. Specifying Interconnect Parameters
	1.8.1. Interconnect Parameters
	1.8.2. Previewing the System Interconnect

	1.9. Correcting Platform Designer System Timing Issues
	1.10. Specifying Signal and Interface Boundary Requirements
	1.10.1. Interface Requirements Tab Fields
	1.10.2. Editing Exported Interface Signal Names

	1.11. Configuring Platform Designer System Security
	1.11.1. System Security Options
	1.11.2. Specifying a Default Avalon Agent or AXI Subordinate
	1.11.3. Accessing Undefined Memory Regions

	1.12. Upgrading Outdated IP Components in Platform Designer
	1.13. Synchronizing System Component Information
	1.13.1. System Info Tab Fields

	1.14. Validating System Integrity
	1.14.1. Validating the System Integrity of Individual Components

	1.15. Preserving System Elements for Debug
	1.16. Generating a Platform Designer System
	1.16.1. Generation Dialog Box Options
	1.16.2. Specifying the Generation ID
	1.16.3. Disabling or Enabling Parallel IP Generation
	1.16.4. Files Generated for Platform Designer Systems
	1.16.5. Generating System Testbench Files
	1.16.5.1. Platform Designer Testbench Files

	1.16.6. Generating Example Designs for IP Components
	1.16.7. Incremental System Generation Example
	1.16.8. Generating the HPS IP Component System View Description File
	1.16.9. Generating Header Files for Host Components

	1.17. Generating Simulation Files for Platform Designer Systems and IP Variants
	1.17.1. Using the Qrun Flow
	1.17.1.1. Specifying Simulation File Generation Settings
	1.17.1.2. Generating the Simulation Model and Setup Scripts
	1.17.1.3. Generating the Testbench System
	1.17.1.4. Generating Example Design Simulation Files

	1.17.2. Adding Assertion Monitors for Simulation

	1.18. Adding a System to an Quartus Prime Project
	1.19. Managing Hierarchical Platform Designer Systems
	1.19.1. Adding a Subsystem to a Platform Designer System
	1.19.2. Viewing and Traversing Subsystem Contents
	1.19.3. Editing a Subsystem
	1.19.4. Saving a Subsystem
	1.19.5. Changing a Component's Hierarchy Level

	1.20. Saving and Archiving Platform Designer Systems
	1.20.1. Saving Platform Designer Systems
	1.20.2. Archiving Platform Designer Systems
	1.20.3. Including Platform Designer Systems in Project Archives
	1.20.3.1. Project Files to Include In External Revision Control

	1.21. Sharing Platform Designer Packaged Subsystems
	1.21.1. User Personas for Packaged Subsystems
	1.21.2. Terminology for Packaged Subsystems
	1.21.3. Creating a New Packaged Subsystem
	1.21.4. Specifying Additional Packaged Subsystem Files
	1.21.5. Modifying the Packaged Subsystem Script
	1.21.6. Instantiating a Packaged Subsystem
	1.21.7. Revising a Packaged Subsystem
	1.21.8. New Packaged Subsystem Dialog Box Options and Controls

	1.22. Comparing Platform Designer Systems and IP components
	1.22.1. Using the System Diff Tool

	1.23. Running System Scripts
	1.24. Creating a System with Platform Designer Revision History

	2. Creating a Board Support Package with BSP Editor
	2.1. Creating a BSP from Platform Designer
	2.1.1. Create New BSP Dialog Box

	2.2. Opening a BSP from Platform Designer
	2.3. Saving a BSP from Platform Designer
	2.4. Exporting a BSP as Tcl from Platform Designer
	2.5. BSP Editor GUI
	2.5.1. Main Tab
	2.5.2. BSP Software Packages Tab
	2.5.3. BSP Drivers Tab
	2.5.4. BSP Linker Script Tab
	2.5.4.1. Linker Section Mappings
	2.5.4.2. Linker Regions

	2.5.5. BSP Enable File Generation Tab
	2.5.6. BSP Target Directory Tab
	2.5.7. Messages Tabs

	2.6. Creating a Board Support Package with BSP Editor Revision History

	3. Creating Platform Designer Components
	3.1. Platform Designer Components
	3.1.1. Platform Designer Interface Support
	3.1.2. Component Structure
	3.1.3. Component File Organization
	3.1.4. Component Versions
	3.1.4.1. Upgrade IP Components to the Latest Version

	3.2. Design Phases of an IP Component
	3.3. Creating IP Components in the Component Editor
	3.3.1. Save an IP Component and Create the _hw.tcl File
	3.3.2. Edit an IP Component with the Platform Designer Component Editor
	3.3.3. Specify IP Component Type Information
	3.3.4. Create an HDL File in the Platform Designer Component Editor
	3.3.5. Defining HDL Parameters in _hw.tcl
	3.3.6. Declaring SystemVerilog Interfaces in _hw.tcl
	3.3.7. Create an HDL File Using a Template in the Platform Designer Component Editor
	3.3.8. Specify Synthesis and Simulation Files in the Platform Designer Component Editor
	3.3.8.1. Specify HDL Files for Synthesis in the Platform Designer Component Editor
	3.3.8.2. Analyze Synthesis Files in the Platform Designer Component Editor
	3.3.8.3. Specify Files for Simulation in the Component Editor
	3.3.8.4. Include an Internal Register Map Description in the .svd for Agent Interfaces Connected to an HPS Component

	3.3.9. Add Signals and Interfaces in the Platform Designer Component Editor
	3.3.10. Specify Parameters in the Platform Designer Component Editor
	3.3.10.1. Valid Ranges for Parameters in the _hw.tcl File
	3.3.10.2. Types of Platform Designer Parameters
	3.3.10.2.1. Platform Designer User Parameters
	3.3.10.2.2. Platform Designer System Information Parameters
	3.3.10.2.3. Parameterized Parameter Widths
	3.3.10.2.4. Platform Designer Derived Parameters

	3.3.10.3. Obtaining Device Trait Information Using PART_TRAIT System Information Parameter
	3.3.10.4. Declare Parameters with Custom _hw.tcl Commands
	3.3.10.5. Validate Parameter Values with a Validation Callback

	3.4. Creating Generic Components in a System
	3.4.1. Adding Generic HDL Component Parameters
	3.4.2. Adding Generic Blackbox Component Parameters
	3.4.3. Adding Generic Component Interfaces and Signals
	3.4.3.1. Mirroring Interfaces in a Generic Component
	3.4.3.2. Cloning Interfaces in a Generic Component
	3.4.3.3. Importing Interfaces to a Generic Component

	3.4.4. Creating a System Template for a Generic Component
	3.4.5. Exporting a Generic Component

	3.5. Exporting HDL Parameters to a System
	3.5.1. HDL Parameters Tab Settings and Controls

	3.6. Scripting Wire-Level Expressions
	3.7. Control Interfaces Dynamically with an Elaboration Callback
	3.8. Control File Generation Dynamically with Parameters and a Fileset Callback
	3.9. Create a Composed Component or Subsystem
	3.10. Add Component Instances to a Static or Generated Component
	3.10.1. Static IP Components
	3.10.2. Generated Components
	3.10.3. Design Guidelines for Adding Component Instances

	3.11. Add IP RTL Core Generated from the Intel oneAPI Base Toolkit
	3.12. Creating Platform Designer Components Revision History

	4. Optimizing Platform Designer System Performance
	4.1. Designing with Avalon and AXI Interfaces
	4.1.1. Designing Streaming Components
	4.1.2. Designing Memory-Mapped Components

	4.2. Using Hierarchy in Systems
	4.3. Using Concurrency in Memory-Mapped Systems
	4.3.1. Implementing Concurrency With Multiple Hosts
	4.3.2. Implementing Concurrency With Multiple Agents
	4.3.3. Implementing Concurrency with DMA Engines

	4.4. Inserting Pipeline Stages to Increase System Frequency
	4.5. Using Bridges
	4.5.1. Using Bridges to Increase System Frequency
	4.5.1.1. Inserting Pipeline Bridges
	4.5.1.1.1. Implementing Command Pipelining (Host-to-Agent)
	4.5.1.1.2. Implementing Response Pipelining (Agent-to-Host)

	4.5.1.2. Using Clock Crossing Bridges

	4.5.2. Using Bridges to Minimize Design Logic
	4.5.2.1. Avoiding Speed Optimizations That Increase Logic
	4.5.2.2. Limiting Concurrency

	4.5.3. Using Bridges to Minimize Adapter Logic
	4.5.3.1. Determining Effective Placement of Bridges
	4.5.3.2. Changing the Response Buffer Depth

	4.5.4. Considering the Effects of Using Bridges
	4.5.4.1. Increased Latency
	4.5.4.1.1. Acceptable Latency Increase
	4.5.4.1.2. Unacceptable Latency Increase

	4.5.4.2. Limited Concurrency
	4.5.4.3. Address Space Translation
	4.5.4.4. Address Coherency

	4.6. Increasing Transfer Throughput
	4.6.1. Using Pipelined Transfers
	4.6.1.1. Using the Maximum Pending Reads Parameter

	4.6.2. Arbitration Shares and Bursts
	4.6.2.1. Differences Between Arbitration Shares and Bursts
	4.6.2.2. Choosing Avalon Memory Mapped Interface Types
	4.6.2.2.1. Simple Avalon Memory Mapped Interfaces
	4.6.2.2.2. Pipelined Avalon Memory Mapped Interfaces
	4.6.2.2.3. Burst Avalon Memory Mapped Interfaces

	4.6.2.3. Avalon Memory Mapped Burst Host Example

	4.7. Reducing Logic Utilization
	4.7.1. Minimizing Interconnect Logic to Reduce Logic Unitization
	4.7.1.1. Creating Dedicated Host and Agent Connections to Minimize Interconnect Logic
	4.7.1.2. Removing Unnecessary Connections to Minimize Interconnect Logic
	4.7.1.3. Simplifying Address Decode Logic

	4.7.2. Minimizing Arbitration Logic by Consolidating Multiple Interfaces
	4.7.2.1. Logic Consolidation Trade-Offs
	4.7.2.2. Consolidating Interfaces

	4.7.3. Reducing Logic Utilization With Multiple Clock Domains
	4.7.4. Duration of Transfers Crossing Clock Domains

	4.8. Reducing Power Consumption
	4.8.1. Reducing Power Consumption With Multiple Clock Domains
	4.8.2. Reducing Power Consumption by Minimizing Toggle Rates
	4.8.3. Reducing Power Consumption by Disabling Logic

	4.9. Reset Polarity and Synchronization in Platform Designer
	4.10. Optimizing Platform Designer System Performance Design Examples
	4.10.1. Avalon Pipelined Read Host Example
	4.10.1.1. Avalon Pipelined Read Host Example Design Requirements
	4.10.1.2. Expected Throughput Improvement

	4.10.2. Multiplexer Examples

	4.11. Optimizing Platform Designer System Performance Revision History

	5. Platform Designer Interconnect
	5.1. Memory-Mapped Interfaces
	5.1.1. Platform Designer Packet Format
	5.1.1.1. Fields in the Platform Designer Packet Format
	5.1.1.2. Transaction Types for Memory-Mapped Interfaces
	5.1.1.3. Platform Designer Transformations

	5.1.2. Interconnect Domains
	5.1.2.1. Using One Domain with Width Adaptation
	5.1.2.2. Using Two Separate Domains

	5.1.3. Avalon Host and AXI Manager Network Interfaces
	5.1.3.1. Avalon Memory Mapped Host Agent
	5.1.3.2. Avalon Memory Mapped Host Translator
	5.1.3.3. AXI Manager Agent
	5.1.3.4. AXI Translator
	5.1.3.5. APB Manager Agent
	5.1.3.6. APB Subordinate Agent
	5.1.3.7. APB Translator
	5.1.3.8. AHB Subordinate Agent
	5.1.3.9. Memory-Mapped Router
	5.1.3.10. Memory-Mapped Traffic Limiter

	5.1.4. Avalon Agent and AXI Subordinate Network Interfaces
	5.1.4.1. Avalon Memory Mapped Agent Translator
	5.1.4.2. AXI Translator
	5.1.4.3. Wait State Insertion
	5.1.4.4. Avalon Memory Mapped Agent Component
	5.1.4.5. AXI Subordinate Agent

	5.1.5. Arbitration
	5.1.5.1. Round-Robin Arbitration
	5.1.5.1.1. Fairness-Based Shares
	5.1.5.1.2. Round-Robin Scheduling

	5.1.5.2. Fixed Priority Arbitration
	5.1.5.2.1. Designate a Platform Designer Agent to Use Fixed Priority Arbitration
	5.1.5.2.2. Fixed Priority Arbitration with AXI Managers and Avalon Memory Mapped Agents

	5.1.6. Memory-Mapped Arbiter
	5.1.7. Datapath Multiplexing Logic
	5.1.8. Width Adaptation
	5.1.8.1. Memory-Mapped Width Adapter
	5.1.8.1.1. AXI Wide-to-Narrow Adaptation
	5.1.8.1.2. AXI Narrow-to-Wide Adaptation

	5.1.9. Burst Adapter
	5.1.9.1. Burst Adapter Implementation Options
	5.1.9.2. Burst Adaptation: AXI to Avalon
	5.1.9.3. Burst Adaptation: Avalon to AXI

	5.1.10. Waitrequest Allowance Adapter
	5.1.11. Read and Write Responses
	5.1.12. Platform Designer Address Decoding

	5.2. Avalon Streaming Interfaces
	5.2.1. Avalon Streaming Adapters
	5.2.1.1. Avalon Streaming Adapter
	5.2.1.1.1. Avalon Streaming Adapter Parameters Common to Source and Sink Interfaces
	5.2.1.1.2. Avalon Streaming Adapter Upstream Source Interface Parameters
	5.2.1.1.3. Avalon Streaming Adapter Downstream Sink Interface Parameters

	5.2.1.2. Channel Adapter
	5.2.1.2.1. Avalon Streaming Channel Adapter Input Interface Parameters
	5.2.1.2.2. Avalon Streaming Channel Adapter Output Interface Parameters
	5.2.1.2.3. Avalon Streaming Channel Adapter Common to Input and Output Interface Parameters

	5.2.1.3. Data Format Adapter
	5.2.1.3.1. Avalon Streaming Data Format Adapter Input Interface Parameters
	5.2.1.3.2. Avalon Streaming Data Format Adapter Output Interface Parameters
	5.2.1.3.3. Avalon Streaming Data Format Adapter Common to Input and Output Interface Parameters

	5.2.1.4. Error Adapter
	5.2.1.4.1. Avalon Streaming Error Adapter Input Interface Parameters
	5.2.1.4.2. Avalon Streaming Error Adapter Output Interface Parameters
	5.2.1.4.3. Avalon Streaming Error Adapter Common to Input and Output Interface Parameters

	5.2.1.5. Timing Adapter
	5.2.1.5.1. Avalon Streaming Timing Adapter Input Interface Parameters
	5.2.1.5.2. Avalon Streaming Timing Adapter Output Interface Parameters
	5.2.1.5.3. Avalon Streaming Timing Adapter Common to Input and Output Interface Parameters

	5.3. Avalon Streaming Credit Interfaces
	5.3.1. Terms and Concepts
	5.3.2. Avalon Streaming Credit Adapters
	5.3.2.1. Avalon Streaming Credit Wide to Narrow Adapter
	5.3.2.1.1. Avalon Streaming Credit Wide to Narrow Adapter Interface Parameters
	5.3.2.1.2. Avalon Streaming Credit Wide to Narrow Adapter Interface Signals

	5.3.2.2. Avalon Streaming Credit Narrow to Wide Adapter
	5.3.2.2.1. Avalon Streaming Credit Narrow to Wide Adapter Interface Parameters
	5.3.2.2.2. Avalon Streaming Credit Narrow to Wide Adapter Interface Signals

	5.3.2.3. Avalon Streaming Credit Max Credit Adapter
	5.3.2.3.1. Avalon Streaming Credit Max Credit Adapter Interface Parameters
	5.3.2.3.2. Avalon Streaming Credit Max Credit Adapter Interface Signals

	5.3.2.4. Avalon Streaming Ready to Credit Adapter
	5.3.2.4.1. Avalon Streaming Ready to Credit Adapter Interface Parameters
	5.3.2.4.2. Avalon Streaming Ready to Credit Adapter Interface Signals

	5.3.2.5. Avalon Streaming Credit to Ready Adapter
	5.3.2.5.1. Avalon Streaming Credit to Ready Adapter Interface Parameters
	5.3.2.5.2. Avalon Streaming Credit to Ready Adapter Interface Signals

	5.3.3. Avalon Streaming Credit Multiplexer
	5.3.3.1. Avalon Streaming Credit Multiplexer Parameters
	5.3.3.2. Avalon Streaming Credit Multiplexer Interface Signals

	5.3.4. Avalon Streaming Credit Demultiplexer
	5.3.4.1. Avalon Streaming Credit Demultiplexer Parameters
	5.3.4.2. Avalon Streaming Credit Demultiplexer Interface Signals

	5.3.5. Avalon Streaming Credit Pipeline Bridge
	5.3.5.1. Avalon Streaming Credit Pipeline Bridge Parameters
	5.3.5.2. Avalon Streaming Credit Pipeline Bridge Interface Signals

	5.4. Interrupt Interfaces
	5.4.1. Individual Requests IRQ Scheme
	5.4.2. Assigning IRQs in Platform Designer
	5.4.2.1. IRQ Bridge
	5.4.2.2. IRQ Mapper
	5.4.2.3. IRQ Clock Crosser
	5.4.2.4. IRQ Fanout

	5.5. Clock Interfaces
	5.5.1. (High Speed Serial Interface) HSSI Clock Interfaces
	5.5.1.1. HSSI Serial Clock Interface
	5.5.1.1.1. HSSI Serial Clock Source
	5.5.1.1.2. HSSI Serial Clock Sink
	5.5.1.1.3. HSSI Serial Clock Connection
	5.5.1.1.4. HSSI Serial Clock Example

	5.5.1.2. HSSI Bonded Clock Interface
	5.5.1.2.1. HSSI Bonded Clock Source
	5.5.1.2.2. HSSI Bonded Clock Sink
	5.5.1.2.3. HSSI Bonded Clock Connection
	5.5.1.2.4. HSSI Bonded Clock Example

	5.6. Reset Interfaces
	5.6.1. Single Global Reset Signal Implemented by Platform Designer
	5.6.2. Reset Controller
	5.6.3. Reset Bridge
	5.6.4. Reset Sequencer
	5.6.4.1. Reset Sequencer Parameters
	5.6.4.2. Reset Sequencer Timing Diagrams
	5.6.4.3. Reset Sequencer CSR Registers
	5.6.4.3.1. Reset Sequencer Status Register
	5.6.4.3.2. Reset Sequencer Interrupt Enable Register
	5.6.4.3.3. Reset Sequencer Control Register
	5.6.4.3.4. Reset Sequencer Software Sequenced Reset Assert Control Register
	5.6.4.3.5. Reset Sequencer Software Sequenced Reset Deassert Control Register
	5.6.4.3.6. Reset Sequencer Software Direct Controlled Resets
	5.6.4.3.7. Reset Sequencer Software Reset Masking

	5.6.4.4. Reset Sequencer Software Flows
	5.6.4.4.1. Reset Sequencer (Software-Triggered) Flow
	5.6.4.4.2. Reset Assert Flow
	5.6.4.4.3. Reset Deassert Flow
	5.6.4.4.4. Reset Assert (Software Sequenced) Flow
	5.6.4.4.5. Reset Deassert (Software Sequenced) Flow

	5.7. Conduits
	5.8. Interconnect Pipelining
	5.8.1. Add Pipeline Stages to the Interconnect Schematic

	5.9. Error Correction Coding (ECC) in Platform Designer Interconnect
	5.10. AMBA 3 AXI Protocol Specification Support (version 1.0)
	5.10.1. Channels
	5.10.1.1. Read and Write Address Channels
	5.10.1.2. Write Data, Write Response, and Read Data Channels
	5.10.1.3. Low Power Channel

	5.10.2. Cache Support
	5.10.2.1. Bufferable
	5.10.2.2. Cacheable (Modifiable)

	5.10.3. Security Support
	5.10.4. Atomic Accesses
	5.10.5. Response Signaling
	5.10.6. Ordering Model
	5.10.6.1. AXI and Avalon Ordering

	5.10.7. Data Buses
	5.10.8. Unaligned Address Commands
	5.10.9. Avalon and AXI Transaction Support
	5.10.9.1. Transaction Cannot Cross 4KB Boundaries
	5.10.9.2. Adjacent Bytelanes with Partial Width Transactions
	5.10.9.3. Handling Read Side Effects

	5.11. AMBA 3 APB Protocol Specification Support (version 1.0)
	5.11.1. Bridges
	5.11.2. Burst Adaptation
	5.11.3. Width Adaptation
	5.11.4. Error Response

	5.12. AMBA 4 AXI Memory-Mapped Interface Support (version 2.0)
	5.12.1. Burst Support
	5.12.2. QoS
	5.12.3. Regions
	5.12.4. Write Response Dependency
	5.12.5. AWCACHE and ARCACHE
	5.12.6. Width Adaptation and Data Packing in Platform Designer
	5.12.7. Ordering Model
	5.12.8. Read and Write Allocate
	5.12.9. Locked Transactions
	5.12.10. Memory Types
	5.12.11. Mismatched Attributes
	5.12.12. Signals

	5.13. AMBA 4 AXI Streaming Interface Support (version 1.0)
	5.13.1. Connection Points
	5.13.1.1. AMBA 4 AXI Streaming Connection Point Parameters
	5.13.1.2. AMBA 4 AXI Streaming Connection Point Signals

	5.13.2. Adaptation

	5.14. AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)
	5.14.1. AMBA 4 AXI-Lite Signals
	5.14.2. AMBA 4 AXI-Lite Optional Port Support and Interconnect
	5.14.3. AMBA 4 AXI-Lite Bus Width
	5.14.4. AMBA 4 AXI-Lite Outstanding Transactions
	5.14.5. AMBA 4 AXI-Lite IDs
	5.14.6. Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-Lite
	5.14.6.1. AMBA 4 AXI-Lite Subordinate Requirements
	5.14.6.2. AMBA 4 AXI-Lite Data Packing

	5.14.7. AMBA 4 AXI-Lite Response Merging

	5.15. Port Roles (Interface Signal Types)
	5.15.1. AXI Manager Interface Signal Types
	5.15.2. AXI Subordinate Interface Signal Types
	5.15.3. AMBA 4 AXI Manager Interface Signal Types
	5.15.4. AMBA 4 AXI Subordinate Interface Signal Types
	5.15.5. AMBA 4 AXI-Stream Manager and Subordinate Interface Signal Types
	5.15.6. AMBA 4 AXI-Lite Signal Support and Limitations
	5.15.6.1. ACE-Lite Transaction Support and Limitations

	5.15.7. APB Interface Signal Types
	5.15.8. Avalon Memory Mapped Interface Signal Roles
	5.15.9. Avalon Streaming Interface Signal Roles
	5.15.10. Avalon Streaming Credit Interface Signal Roles
	5.15.10.1. Synchronous Interface
	5.15.10.2. Typical Data Transfers
	5.15.10.3. Returning the Credits

	5.15.11. Avalon Streaming Credit User Signals
	5.15.11.1. Per-Symbol User Signal
	5.15.11.2. Per-Packet User Signal

	5.15.12. Avalon Clock Source Signal Roles
	5.15.13. Avalon Clock Sink Signal Roles
	5.15.14. Avalon Conduit Signal Roles
	5.15.15. Avalon Tristate Conduit Signal Roles
	5.15.16. Avalon Tri-State Agent Interface Signal Types
	5.15.17. Avalon Interrupt Sender Signal Roles
	5.15.18. Avalon Interrupt Receiver Signal Roles

	5.16. Platform Designer Interconnect Revision History

	6. Platform Designer System Design Components
	6.1. Bridges
	6.1.1. Clock Bridge Intel FPGA IP
	6.1.2. Avalon Memory Mapped Clock Crossing Bridge Intel FPGA IP
	6.1.2.1. Avalon Memory Mapped Clock Crossing Bridge Example
	6.1.2.2. Avalon Memory Mapped Clock Crossing Bridge Parameters

	6.1.3. Avalon Memory Mapped Pipeline Bridge Intel FPGA IP
	6.1.4. Avalon Memory Mapped Unaligned Burst Expansion Bridge Intel FPGA IP
	6.1.4.1. Using the Avalon Memory Mapped Unaligned Burst Expansion Bridge
	6.1.4.2. Avalon Memory Mapped Unaligned Burst Expansion Bridge Parameters
	6.1.4.3. Avalon Memory Mapped Unaligned Burst Expansion Bridge Example

	6.1.5. Bridges Between Avalon and AXI Interfaces
	6.1.6. AXI Bridge Intel FPGA IP
	6.1.6.1. AXI Bridge Signal Types
	6.1.6.2. AXI Bridge Parameters
	6.1.6.3. AXI Bridge Subordinate and Manager Interface Parameters

	6.1.7. AXI Timeout Bridge Intel FPGA IP
	6.1.7.1. AXI Timeout Bridge Stages
	6.1.7.2. AXI Timeout Bridge Parameters

	6.1.8. Address Span Extender Intel FPGA IP
	6.1.8.1. CTRL Register Layout
	6.1.8.2. Address Span Extender Parameters
	6.1.8.3. Calculating the Address Span Extender Agent Address
	6.1.8.4. Using the Address Span Extender
	6.1.8.5. Alternate Options for the Address Span Extender
	6.1.8.6. Nios II Support

	6.2. Error Response Slave Intel FPGA IP
	6.2.1. Error Response Slave Parameters
	6.2.2. Error Response Slave CSR Registers
	6.2.2.1. Error Response Slave Access Violation Service
	6.2.2.2. CSR Interrupt Status Registers
	6.2.2.3. CSR Read Access Violation Log Registers
	6.2.2.4. CSR Write Access Violation Log Registers

	6.2.3. Designating a Default Agent

	6.3. Tri-State Components
	6.3.1. Generic Tri-State Controller Intel FPGA IP
	6.3.2. Tri-State Conduit Pin Sharer Intel FPGA IP
	6.3.3. Tri-State Conduit Bridge Intel FPGA IP

	6.4. Avalon Data Pattern Generator and Checker Intel FPGA IP
	6.4.1. Avalon Data Pattern Generator Intel FPGA IP
	6.4.1.1. Avalon Data Pattern Generator IP Command Interface
	6.4.1.2. Avalon Data Pattern Generator IP Control and Status Interface
	6.4.1.3. Avalon Data Pattern Generator IP Output Interface
	6.4.1.4. Avalon Data Pattern Generator IP Functional Parameter

	6.4.2. Avalon Data Pattern Checker Intel FPGA IP
	6.4.2.1. Avalon Data Pattern Checker IP Input Interface
	6.4.2.2. Avalon Data Pattern Checker IP Control and Status Interface
	6.4.2.3. Avalon Data Pattern Checker IP Functional Parameter
	6.4.2.4. Avalon Data Pattern Checker Input Parameters

	6.4.3. Avalon Data Pattern Generator and Checker IP Software Programming Model
	6.4.3.1. HAL System Library Support
	6.4.3.2. Avalon Data Pattern Generator and Checker IP Files
	6.4.3.3. Avalon Data Pattern Generator and Checker IP Register Maps
	6.4.3.3.1. Avalon Data Pattern Generator IP Control and Status Registers
	6.4.3.3.2. Avalon Data Pattern Generator IP Command Registers
	6.4.3.3.3. Avalon Data Pattern Checker IP Control and Status Registers

	6.4.4. Avalon Data Pattern Generator IP API
	6.4.4.1. data_source_reset()
	6.4.4.2. data_source_init()
	6.4.4.3. data_source_get_id()
	6.4.4.4. data_source_get_supports_packets()
	6.4.4.5. data_source_get_num_channels()
	6.4.4.6. data_source_get_symbols_per_cycle()
	6.4.4.7. data_source_get_enable()
	6.4.4.8. data_source_set_enable()
	6.4.4.9. data_source_get_throttle()
	6.4.4.10. data_source_set_throttle()
	6.4.4.11. data_source_is_busy()
	6.4.4.12. data_source_fill_level()
	6.4.4.13. data_source_send_data()

	6.4.5. Avalon Data Pattern Checker IP API
	6.4.5.1. data_sink_reset()
	6.4.5.2. data_sink_init()
	6.4.5.3. data_sink_get_id()
	6.4.5.4. data_sink_get_supports_packets()
	6.4.5.5. data_sink_get_num_channels()
	6.4.5.6. data_sink_get_symbols_per_cycle()
	6.4.5.7. data_sink_get_enable()
	6.4.5.8. data_sink_set enable()
	6.4.5.9. data_sink_get_throttle()
	6.4.5.10. data_sink_set_throttle()
	6.4.5.11. data_sink_get_packet_count()
	6.4.5.12. data_sink_get_error_count()
	6.4.5.13. data_sink_get_symbol_count()
	6.4.5.14. data_sink_get_exception()
	6.4.5.15. data_sink_exception_is_exception()
	6.4.5.16. data_sink_exception_has_data_error()
	6.4.5.17. data_sink_exception_has_missing_sop()
	6.4.5.18. data_sink_exception_has_missing_eop()
	6.4.5.19. data_sink_exception_signalled_error()
	6.4.5.20. data_sink_exception_channel()

	6.5. Avalon Streaming Splitter Intel FPGA IP
	6.5.1. Avalon Streaming Splitter Intel FPGA IP Backpressure
	6.5.2. Avalon Streaming Splitter Intel FPGA IP Interfaces
	6.5.3. Avalon Streaming Splitter Intel FPGA IP Parameters

	6.6. Avalon Streaming Delay Intel FPGA IP
	6.6.1. Avalon Streaming Delay Intel FPGA IP Reset Signal
	6.6.2. Avalon Streaming Delay Intel FPGA IP Interfaces
	6.6.3. Avalon Streaming Delay Intel FPGA IP Parameters

	6.7. Avalon Streaming Round Robin Scheduler Intel FPGA IP
	6.7.1. Avalon Streaming Round Robin Scheduler IP Almost-Full Status Interface
	6.7.2. Avalon Streaming Round Robin Scheduler IP Request Interface
	6.7.3. Avalon Streaming Round Robin Scheduler IP Operation
	6.7.4. Avalon Streaming Round Robin Scheduler IP Parameters

	6.8. Avalon Packets to Transactions Converter Intel FPGA IP
	6.8.1. Avalon Packets to Transactions Converter IP Interfaces
	6.8.2. Avalon Packets to Transactions Converter IP Operation
	6.8.2.1. Avalon Packets to Transactions Converter IP Data Packet Formats
	6.8.2.2. Avalon Packets to Transactions Converter IP Supported Transactions
	6.8.2.3. Avalon Packets to Transactions IP Converter Malformed Packets

	6.9. Avalon Streaming Pipeline Stage Intel FPGA IP
	6.10. Avalon Streaming Multiplexer and Demultiplexer Intel FPGA IP
	6.10.1. Avalon Streaming Multiplexer and Demultiplexer Software Programming Model
	6.10.2. Avalon Streaming Multiplexer Intel FPGA IP
	6.10.2.1. Avalon Streaming Multiplexer IP Input Interfaces
	6.10.2.2. Avalon Multiplexer IP Output Interface
	6.10.2.3. Avalon Multiplexer IP Parameters

	6.10.3. Avalon Streaming Demultiplexer Intel FPGA IP
	6.10.3.1. Avalon Streaming Demultiplexer IP Input Interface
	6.10.3.2. Avalon Streaming Demultiplexer IP Output Interface
	6.10.3.3. Avalon Streaming Demultiplexer IP Parameters

	6.11. Avalon Streaming Single-Clock and Dual-Clock FIFO Intel FPGA IP
	6.11.1. Interfaces Implemented in FIFO Cores
	6.11.1.1. Avalon Streaming Data Interface
	6.11.1.2. Avalon Memory Mapped Control and Status Register Interface
	6.11.1.3. Avalon Streaming Status Interface

	6.11.2. Avalon Streaming FIFO IP Operating Modes
	6.11.3. Avalon Streaming FIFO IP Buffer Fill Level
	6.11.4. Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
	6.11.5. Avalon Streaming Single Clock and Dual Clock FIFO IP Parameters
	6.11.6. Avalon Streaming Single-Clock FIFO IP Registers

	6.12. Platform Designer System Design Components Revision History

	7. Platform Designer Command-Line Utilities
	7.1. Run the Platform Designer Editor with qsys-edit
	7.2. Scripting IP Core Generation
	7.2.1. qsys-generate Command-Line Options

	7.3. Board-Aware Flow Scripting Support
	7.4. Display Available IP Components with ip-catalog
	7.5. Create an .ipx File with ip-make-ipx
	7.6. Generate Simulation Scripts
	7.7. Generate a Platform Designer System with qsys-script
	7.8. Parameterizing an Instantiated IP Core after save_system Command
	7.9. Validate the Generic Components in a System with qsys-validate
	7.10. Generate an IP Component or Platform Designer System with quartus_ipgenerate
	7.11. Generate an IP Variation File with ip-deploy
	7.12. Archive and Extract Platform Designer Systems with qsys-archive
	7.13. Apply Presets to a New Board
	7.14. Platform Designer Scripting Command Reference
	7.14.1. System
	7.14.1.1. create_system
	7.14.1.2. export_hw_tcl
	7.14.1.3. get_device_families
	7.14.1.4. get_devices
	7.14.1.5. get_module_properties
	7.14.1.6. get_module_property
	7.14.1.7. get_project_properties
	7.14.1.8. get_project_property
	7.14.1.9. load_system
	7.14.1.10. save_system
	7.14.1.11. set_design_id
	7.14.1.12. set_module_property
	7.14.1.13. set_project_property

	7.14.2. Subsystems
	7.14.2.1. get_composed_connections
	7.14.2.2. get_composed_connection_parameter_value
	7.14.2.3. get_composed_connection_parameters
	7.14.2.4. get_composed_instance_assignment
	7.14.2.5. get_composed_instance_assignments
	7.14.2.6. get_composed_instance_parameter_value
	7.14.2.7. get_composed_instance_parameters
	7.14.2.8. get_composed_instances

	7.14.3. Domains and Interfaces
	7.14.3.1. set_domain_assignment
	7.14.3.2. get_domain_assignment
	7.14.3.3. get_domain_assignments
	7.14.3.4. set_interface_assignment
	7.14.3.5. get_interface_assignment
	7.14.3.6. get_interface_assignments
	7.14.3.7. set_postadaptation_assignment
	7.14.3.8. get_postadaptation_assignment
	7.14.3.9. get_postadaptation_assignments

	7.14.4. Instances
	7.14.4.1. add_instance
	7.14.4.2. apply_instance_preset
	7.14.4.3. create_ip
	7.14.4.4. add_component
	7.14.4.5. duplicate_instance
	7.14.4.6. enable_instance_parameter_update_callback
	7.14.4.7. get_instance_assignment
	7.14.4.8. get_instance_assignments
	7.14.4.9. get_instance_documentation_links
	7.14.4.10. get_instance_interface_assignment
	7.14.4.11. get_instance_interface_assignments
	7.14.4.12. get_instance_interface_parameter_property
	7.14.4.13. get_instance_interface_parameter_value
	7.14.4.14. get_instance_interface_parameters
	7.14.4.15. get_instance_interface_port_property
	7.14.4.16. get_instance_interface_ports
	7.14.4.17. get_instance_interface_properties
	7.14.4.18. get_instance_interface_property
	7.14.4.19. get_instance_interfaces
	7.14.4.20. get_instance_parameter_property
	7.14.4.21. get_instance_parameter_value
	7.14.4.22. get_instance_parameter_values
	7.14.4.23. get_instance_parameters
	7.14.4.24. get_instance_port_property
	7.14.4.25. get_instance_properties
	7.14.4.26. get_instance_property
	7.14.4.27. get_instances
	7.14.4.28. is_instance_parameter_update_callback_enabled
	7.14.4.29. remove_instance
	7.14.4.30. set_instance_parameter_value
	7.14.4.31. set_instance_parameter_values
	7.14.4.32. set_instance_property

	7.14.5. Instantiations
	7.14.5.1. add_instantiation_hdl_file
	7.14.5.2. add_instantiation_interface
	7.14.5.3. add_instantiation_interface_port
	7.14.5.4. copy_instance_interface_to_instantiation
	7.14.5.5. get_instantiation_assignment_value
	7.14.5.6. get_instantiation_assignments
	7.14.5.7. get_instantiation_hdl_file_properties
	7.14.5.8. get_instantiation_hdl_file_property
	7.14.5.9. get_instantiation_hdl_files
	7.14.5.10. get_instantiation_interface_assignment_value
	7.14.5.11. get_instantiation_interface_assignments
	7.14.5.12. get_instantiation_interface_parameter_value
	7.14.5.13. get_instantiation_interface_parameters
	7.14.5.14. get_instantiation_interface_port_properties
	7.14.5.15. get_instantiation_interface_port_property
	7.14.5.16. get_instantiation_interface_ports
	7.14.5.17. get_instantiation_interface_property
	7.14.5.18. get_instantiation_interface_properties
	7.14.5.19. get_instantiation_interface_sysinfo_parameter_value
	7.14.5.20. get_instantiation_interface_sysinfo_parameters
	7.14.5.21. get_instantiation_interfaces
	7.14.5.22. get_instantiation_properties
	7.14.5.23. get_instantiation_property
	7.14.5.24. get_loaded_instantiation
	7.14.5.25. import_instantiation_interfaces
	7.14.5.26. load_instantiation
	7.14.5.27. remove_instantiation_hdl_file
	7.14.5.28. remove_instantiation_interface
	7.14.5.29. remove_instantiation_interface_port
	7.14.5.30. save_instantiation
	7.14.5.31. set_instantiation_assignment_value
	7.14.5.32. set_instantiation_hdl_file_property
	7.14.5.33. set_instantiation_interface_assignment_value
	7.14.5.34. set_instantiation_interface_parameter_value
	7.14.5.35. set_instantiation_interface_port_property
	7.14.5.36. set_instantiation_interface_sysinfo_parameter_value
	7.14.5.37. set_instantiation_property

	7.14.6. Components
	7.14.6.1. apply_component_preset
	7.14.6.2. get_component_assignment
	7.14.6.3. get_component_assignments
	7.14.6.4. get_component_documentation_links
	7.14.6.5. get_component_interface_assignment
	7.14.6.6. get_component_interface_assignments
	7.14.6.7. get_component_interface_parameter_property
	7.14.6.8. get_component_interface_parameter_value
	7.14.6.9. get_component_interface_parameters
	7.14.6.10. get_component_interface_port_property
	7.14.6.11. get_component_interface_ports
	7.14.6.12. get_component_interface_property
	7.14.6.13. get_component_interfaces
	7.14.6.14. get_component_parameter_property
	7.14.6.15. get_component_parameter_value
	7.14.6.16. get_component_parameters
	7.14.6.17. get_component_project_properties
	7.14.6.18. get_component_project_property
	7.14.6.19. get_component_property
	7.14.6.20. get_loaded_component
	7.14.6.21. load_component
	7.14.6.22. reload_component_footprint
	7.14.6.23. save_component
	7.14.6.24. set_component_parameter_value
	7.14.6.25. set_component_project_property

	7.14.7. Connections
	7.14.7.1. add_connection
	7.14.7.2. auto_connect
	7.14.7.3. get_connection_parameter_property
	7.14.7.4. get_connection_parameter_value
	7.14.7.5. get_connection_parameters
	7.14.7.6. get_connection_properties
	7.14.7.7. get_connection_property
	7.14.7.8. get_connections
	7.14.7.9. remove_connection
	7.14.7.10. remove_dangling_connections
	7.14.7.11. set_connection_parameter_value

	7.14.8. Top-level Exports
	7.14.8.1. add_interface
	7.14.8.2. get_exported_interface_sysinfo_parameter_value
	7.14.8.3. get_exported_interface_sysinfo_parameters
	7.14.8.4. get_interface_port_property
	7.14.8.5. get_interface_ports
	7.14.8.6. get_interface_properties
	7.14.8.7. get_interface_property
	7.14.8.8. get_interfaces
	7.14.8.9. get_port_properties
	7.14.8.10. remove_interface
	7.14.8.11. set_exported_interface_sysinfo_parameter_value
	7.14.8.12. set_interface_port_property
	7.14.8.13. set_interface_property

	7.14.9. Validation
	7.14.9.1. set_validation_property
	7.14.9.2. sync_sysinfo_parameters
	7.14.9.3. validate_component
	7.14.9.4. validate_component_interface
	7.14.9.5. validate_connection
	7.14.9.6. validate_instance
	7.14.9.7. validate_instance_interface
	7.14.9.8. validate_system
	7.14.9.9. validate_component_footprint
	7.14.9.10. reload_component_footprint

	7.14.10. Miscellaneous
	7.14.10.1. auto_assign_base_addresses
	7.14.10.2. auto_assign_irqs
	7.14.10.3. auto_assign_system_base_addresses
	7.14.10.4. get_parameter_properties
	7.14.10.5. lock_avalon_base_address
	7.14.10.6. send_message
	7.14.10.7. set_use_testbench_naming_pattern
	7.14.10.8. unlock_avalon_base_address
	7.14.10.9. get_testbench_dutname
	7.14.10.10. get_use_testbench_naming_pattern

	7.14.11. Wire-Level Connection Commands
	7.14.11.1. set_wirelevel_expression
	7.14.11.2. get_wirelevel_expressions
	7.14.11.3. remove_wirelevel_expressions

	7.15. Platform Designer Scripting Property Reference
	7.15.1. Connection Properties
	7.15.2. Design Environment Type Properties
	7.15.3. Direction Properties
	7.15.4. Element Properties
	7.15.5. Instance Properties
	7.15.6. Interface Properties
	7.15.7. Message Levels Properties
	7.15.8. Module Properties
	7.15.9. Parameter Properties
	7.15.10. Parameter Status Properties
	7.15.11. Parameter Type Properties
	7.15.12. Port Properties
	7.15.13. Project Properties
	7.15.14. System Info Type Properties
	7.15.15. Units Properties
	7.15.16. Validation Properties
	7.15.17. Interface Direction
	7.15.18. File Set Kind
	7.15.19. Access Type
	7.15.20. Instantiation HDL File Properties
	7.15.21. Instantiation Interface Duplicate Type
	7.15.22. Instantiation Interface Properties
	7.15.23. Instantiation Properties
	7.15.25. VHDL Type

	7.16. Platform Designer Command-Line Utilities Revision History

	8. Component Interface Tcl Reference
	8.1. Platform Designer _hw.tcl Command Reference
	8.1.1. Interfaces and Ports
	8.1.1.1. add_interface
	8.1.1.2. add_interface_port
	8.1.1.3. get_interfaces
	8.1.1.4. get_interface_assignment
	8.1.1.5. get_interface_assignments
	8.1.1.6. get_interface_ports
	8.1.1.7. get_interface_properties
	8.1.1.8. get_interface_property
	8.1.1.9. get_port_properties
	8.1.1.10. get_port_property
	8.1.1.11. set_interface_assignment
	8.1.1.12. set_interface_property
	8.1.1.13. set_port_property
	8.1.1.14. set_interface_upgrade_map

	8.1.2. Parameters
	8.1.2.1. add_parameter
	8.1.2.2. get_parameters
	8.1.2.3. get_parameter_properties
	8.1.2.4. get_parameter_property
	8.1.2.5. get_parameter_value
	8.1.2.6. get_string
	8.1.2.7. load_strings
	8.1.2.8. set_parameter_property
	8.1.2.9. set_parameter_value

	8.1.3. Interconnect Parameters
	8.1.3.1. set_domain_assignment
	8.1.3.2. get_domain_assignment
	8.1.3.3. get_domain_assignments
	8.1.3.4. set_postadaptation_assignment
	8.1.3.5. get_postadaptation_assignment
	8.1.3.6. get_postadaptation_assignments

	8.1.4. Display Items
	8.1.4.1. add_display_item
	8.1.4.2. get_display_items
	8.1.4.3. get_display_item_properties
	8.1.4.4. get_display_item_property
	8.1.4.5. set_display_item_property

	8.1.5. Module Definition
	8.1.5.1. add_documentation_link
	8.1.5.2. get_module_assignment
	8.1.5.3. get_module_assignments
	8.1.5.4. get_module_ports
	8.1.5.5. get_module_properties
	8.1.5.6. get_module_property
	8.1.5.7. send_message
	8.1.5.8. set_module_assignment
	8.1.5.9. set_module_property
	8.1.5.10. add_hdl_instance
	8.1.5.11. package

	8.1.6. Composition
	8.1.6.1. add_instance
	8.1.6.2. add_connection
	8.1.6.3. get_connections
	8.1.6.4. get_connection_parameters
	8.1.6.5. get_connection_parameter_value
	8.1.6.6. get_instances
	8.1.6.7. get_instance_interfaces
	8.1.6.8. get_instance_interface_ports
	8.1.6.9. get_instance_interface_properties
	8.1.6.10. get_instance_property
	8.1.6.11. set_instance_property
	8.1.6.12. get_instance_properties
	8.1.6.13. get_instance_interface_property
	8.1.6.14. get_instance_parameters
	8.1.6.15. get_instance_parameter_property
	8.1.6.16. get_instance_parameter_value
	8.1.6.17. get_instance_port_property
	8.1.6.18. set_connection_parameter_value
	8.1.6.19. set_instance_parameter_value

	8.1.7. Fileset Generation
	8.1.7.1. add_fileset
	8.1.7.2. add_fileset_file
	8.1.7.3. set_fileset_property
	8.1.7.4. get_fileset_file_attribute
	8.1.7.5. set_fileset_file_attribute
	8.1.7.6. get_fileset_properties
	8.1.7.7. get_fileset_property
	8.1.7.8. get_fileset_sim_properties
	8.1.7.9. set_fileset_sim_properties
	8.1.7.10. create_temp_file

	8.1.8. Miscellaneous
	8.1.8.1. check_device_family_equivalence
	8.1.8.2. get_device_family_displayname
	8.1.8.3. get_qip_strings
	8.1.8.4. set_qip_strings

	8.1.9. SystemVerilog Interface Commands
	8.1.9.1. add_sv_interface
	8.1.9.2. get_sv_interfaces
	8.1.9.3. get_sv_interface_property
	8.1.9.4. get_sv_interface_properties
	8.1.9.5. set_sv_interface_property

	8.1.10. Wire-Level Expression Commands
	8.1.10.1. set_wirelevel_expression
	8.1.10.2. get_wirelevel_expressions
	8.1.10.3. remove_wirelevel_expressions

	8.2. Platform Designer _hw.tcl Property Reference
	8.2.1. Script Language Properties
	8.2.2. Interface Properties
	8.2.3. SystemVerilog Interface Properties
	8.2.4. Instance Properties
	8.2.5. Parameter Properties
	8.2.6. Parameter Type Properties
	8.2.7. Parameter Status Properties
	8.2.8. Port Properties
	8.2.9. Direction Properties
	8.2.10. Display Item Properties
	8.2.11. Display Item Kind Properties
	8.2.12. Display Hint Properties
	8.2.13. Module Properties
	8.2.14. Fileset Properties
	8.2.15. Fileset Kind Properties
	8.2.16. Callback Properties
	8.2.17. File Attribute Properties
	8.2.18. File Kind Properties
	8.2.19. File Source Properties
	8.2.20. Simulator Properties
	8.2.21. Port VHDL Type Properties
	8.2.22. System Info Type Properties
	8.2.23. Design Environment Type Properties
	8.2.24. Units Properties
	8.2.25. Operating System Properties
	8.2.26. Quartus.ini Type Properties

	8.3. Component Interface Tcl Reference Revision History

	9. Quartus Prime Pro Edition User Guide: Platform Designer Document Archives
	A. Quartus Prime Pro Edition User Guides

	Intel Quartus Prime Pro Edition User Guide: Design Recommendations
	Contents
	1. Recommended HDL Coding Styles
	1.1. Using Provided HDL Templates
	1.1.1. Inserting HDL Code from a Provided Template

	1.2. Instantiating IP Cores in HDL
	1.3. Inferring Multipliers and DSP Functions
	1.3.1. Inferring Multipliers
	1.3.2. Inferring Multiply-Accumulator and Multiply-Adder Functions

	1.4. Inferring Memory Functions from HDL Code
	1.4.1. Inferring RAM functions from HDL Code
	1.4.1.1. Use Synchronous Memory Blocks
	1.4.1.2. Avoid Unsupported Reset and Control Conditions
	1.4.1.3. Check Read-During-Write Behavior
	1.4.1.4. Controlling RAM Inference and Implementation
	1.4.1.5. Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
	1.4.1.6. Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
	1.4.1.7. Simple Dual-Port, Dual-Clock Synchronous RAM
	1.4.1.8. True Dual-Port Synchronous RAM
	1.4.1.9. Mixed-Width Dual-Port RAM
	1.4.1.10. RAM with Byte-Enable Signals
	1.4.1.11. Specifying Initial Memory Contents at Power-Up

	1.4.2. Inferring ROM Functions from HDL Code
	1.4.3. Inferring Shift Registers in HDL Code
	1.4.3.1. Simple Shift Register
	1.4.3.2. Shift Register with Evenly Spaced Taps

	1.4.4. Inferring FIFOs in HDL Code
	1.4.4.1. Dual Clock FIFO Example in Verilog HDL
	1.4.4.2. Dual Clock FIFO Timing Constraints

	1.5. Register and Latch Coding Guidelines
	1.5.1. Register Power-Up Values
	1.5.1.1. Specifying a Power-Up Value

	1.5.2. Secondary Register Control Signals Such as Clear and Clock Enable
	1.5.3. Latches
	1.5.3.1. Avoid Unintentional Latch Generation
	1.5.3.2. Inferring Latches Correctly

	1.6. General Coding Guidelines
	1.6.1. Tri-State Signals
	1.6.2. Clock Multiplexing
	1.6.3. Adder Trees
	1.6.3.1. Architectures with 6-Input LUTs in Adaptive Logic Modules
	1.6.3.2. Change Adder Tree Styles

	1.6.4. State Machine HDL Guidelines
	1.6.4.1. State Machine Power-Up
	1.6.4.2. Verilog HDL State Machines
	1.6.4.2.1. Verilog-2001 State Machine Coding Example
	1.6.4.2.2. SystemVerilog State Machine Coding Example

	1.6.4.3. VHDL State Machines
	1.6.4.3.1. VHDL State Machine Coding Example

	1.6.5. Multiplexer HDL Guidelines
	1.6.5.1. Intel Quartus Prime Software Option for Multiplexer Restructuring
	1.6.5.2. Multiplexer Types
	1.6.5.2.1. Binary Multiplexers
	1.6.5.2.2. Selector Multiplexers
	1.6.5.2.3. Priority Multiplexers

	1.6.5.3. Implicit Defaults in IF Statements
	1.6.5.4. default or OTHERS CASE Assignment

	1.6.6. Cyclic Redundancy Check Functions
	1.6.6.1. If Performance is Important, Optimize for Speed
	1.6.6.2. Use Separate CRC Blocks Instead of Cascaded Stages
	1.6.6.3. Use Separate CRC Blocks Instead of Allowing Blocks to Merge
	1.6.6.4. Take Advantage of Latency if Available
	1.6.6.5. Save Power by Disabling CRC Blocks When Not in Use
	1.6.6.6. Initialize the Device with the Synchronous Load (sload) Signal

	1.6.7. Comparator HDL Guidelines
	1.6.8. Counter HDL Guidelines

	1.7. Designing with Low-Level Primitives
	1.8. Cross-Module Referencing (XMR) in HDL Code
	1.9. Using force Statements in HDL Code
	1.10. Recommended HDL Coding Styles Revision History

	2. Recommended Design Practices
	2.1. Following Synchronous FPGA Design Practices
	2.1.1. Implementing Synchronous Designs
	2.1.2. Asynchronous Design Hazards

	2.2. HDL Design Guidelines
	2.2.1. Considerations for the Intel Hyperflex FPGA Architecture
	2.2.2. Optimizing Combinational Logic
	2.2.2.1. Avoid Combinational Loops
	2.2.2.2. Avoid Unintended Latch Inference
	2.2.2.3. Avoid Delay Chains in Clock Paths
	2.2.2.4. Use Synchronous Pulse Generators

	2.2.3. Optimizing Clocking Schemes
	2.2.3.1. Register Combinational Logic Outputs
	2.2.3.2. Avoid Asynchronous Clock Division
	2.2.3.3. Avoid Ripple Counters
	2.2.3.4. Use Multiplexed Clocks
	2.2.3.5. Use Gated Clocks
	2.2.3.5.1. Recommended Clock-Gating Methods

	2.2.3.6. Use Synchronous Clock Enables

	2.2.4. Optimizing Physical Implementation and Timing Closure
	2.2.4.1. Planning Physical Implementation
	2.2.4.2. Planning FPGA Resources
	2.2.4.3. Optimizing for Timing Closure
	2.2.4.4. Optimizing Critical Timing Paths

	2.2.5. Optimizing Power Consumption
	2.2.6. Managing Design Metastability

	2.3. Use Clock and Register-Control Architectural Features
	2.3.1. Use Global Reset Resources
	2.3.1.1. Use Synchronous Resets
	2.3.1.2. Using Asynchronous Resets
	2.3.1.3. Use Synchronized Asynchronous Reset

	2.3.2. Use Global Clock Network Resources
	2.3.3. Use Clock Region Assignments to Optimize Clock Constraints
	2.3.3.1. Clock Region Assignments in Intel Stratix 10 Devices
	2.3.3.2. Clock Region Assignments in Intel Arria 10 and Older Device Families

	2.3.4. Avoid Asynchronous Register Control Signals

	2.4. Implementing Embedded RAM
	2.5. Design Assistant Design Rule Checking
	2.5.1. Setting Up Design Assistant
	2.5.1.1. Design Assistant Rule Severity Levels

	2.5.2. Running Design Assistant During Compilation
	2.5.2.1. Opening Design Assistant Rule Help

	2.5.3. Running Design Assistant in Analysis Mode
	2.5.3.1. Launching Design Assistant from Chip Planner
	2.5.3.2. Launching Design Assistant from Timing Analyzer

	2.5.4. Cross-Probing from Design Assistant
	2.5.4.1. Cross-Probing from Design Assistant to Timing Analyzer
	2.5.4.2. Cross-Probing from Design Assistant to Visualization Tools

	2.5.5. Managing Design Assistant Rules
	2.5.5.1. Changing the Default Number of Violations per Rule
	2.5.5.2. Enabling Rules for Specific Compiler Stages
	2.5.5.3. Specifying Rule Parameters for a Specific Compiler Stage
	2.5.5.4. Modifying Rule Severity Levels
	2.5.5.5. Waiving Design Assistant Rules
	2.5.5.5.1. Creating Design Assistant Waivers
	2.5.5.5.2. Design Assistant Waiver Dialog Box
	2.5.5.5.3. Deleting Design Assistant Waivers
	2.5.5.5.4. Design Assistant Waiver Tcl Commands
	2.5.5.5.5. drc::add_waiver Command
	2.5.5.5.6. drc::get_waivers Command
	2.5.5.5.7. drc::report_waivers Command

	2.5.5.6. Design Assistant Tags

	2.5.6. Design Assistant Rule Categories

	2.6. Recommended Design Practices Revision History

	3. Managing Metastability with the Intel Quartus Prime Software
	3.1. Metastability Analysis in the Intel Quartus Prime Software
	3.1.1. Data Synchronization Register Chains
	3.1.2. Identify Synchronizers for Metastability Analysis
	3.1.3. How Timing Constraints Affect Synchronizer Identification and Metastability Analysis

	3.2. Metastability and MTBF Reporting
	3.2.1. Metastability Reports
	3.2.1.1. MTBF Summary Report
	3.2.1.1.1. Typical and Worst-Case MTBF of Design
	3.2.1.1.2. Synchronizer Chains
	3.2.1.1.3. Increasing Available Settling Time

	3.2.1.2. Synchronizer Summary Report
	3.2.1.3. Synchronizer Chain Statistics Report in the Timing Analyzer

	3.2.2. Synchronizer Data Toggle Rate in MTBF Calculation

	3.3. MTBF Optimization
	3.3.1. Synchronization Register Chain Length

	3.4. Reducing Metastability Effects
	3.4.1. Apply Complete System-Centric Timing Constraints for the Timing Analyzer
	3.4.2. Force the Identification of Synchronization Registers
	3.4.3. Set the Synchronizer Data Toggle Rate
	3.4.4. Optimize Metastability During Fitting
	3.4.5. Increase the Length of Synchronizers to Protect and Optimize
	3.4.6. Increase the Number of Stages Used in Synchronizers
	3.4.7. Select a Faster Speed Grade Device

	3.5. Scripting Support
	3.5.1. Identifying Synchronizers for Metastability Analysis
	3.5.2. Synchronizer Data Toggle Rate in MTBF Calculation
	3.5.3. report_metastability and Tcl Command
	3.5.4. MTBF Optimization
	3.5.5. Synchronization Register Chain Length

	3.6. Managing Metastability
	3.7. Managing Metastability with the Intel Quartus Prime Software Revision History

	4. Intel Quartus Prime Pro Edition User Guide: Design Recommendations Archive
	A. Intel Quartus Prime Pro Edition User Guides

	Quartus Prime Pro Edition User Guide: Design Compilation
	Contents
	1. Design Compilation
	1.1. Compilation Overview
	1.1.1. Compilation Flows
	1.1.2. Compilation Hierarchy
	1.1.3. Compilation on a Compute Farm

	1.2. Using the Compilation Dashboard
	1.3. Design Netlist Infrastructure
	1.3.1. DNI Netlist Five-Box Data Model

	1.4. Using the Node Finder
	1.5. Precompiled Component (PCC) Generation Flow
	1.6. Analysis & Elaboration Flow
	1.6.1. Exploring the RTL Analyzer
	1.6.1.1. Sweep Hints Viewer
	1.6.1.2. Object Set Console
	1.6.1.3. Module Interfaces
	1.6.1.4. Bundled Instances
	1.6.1.5. Auto-hide Unconnected Pins
	1.6.1.6. Filtering Ports and Nets
	1.6.1.7. Expand Connections

	1.6.2. Use Case Examples
	1.6.2.1. Scripting Routine Tasks Using Tcl Commands
	1.6.2.2. Traversing the Design Netlist Using Tcl Commands

	1.7. Design Synthesis
	1.7.1. Preparing for Design Synthesis
	1.7.2. Running Synthesis
	1.7.2.1. Preserving Registers During Synthesis
	1.7.2.2. Preserving Signals for Monitoring and Debugging

	1.7.3. Using Synopsys* Design Constraint (SDC) on RTL Files
	1.7.3.1. Registering the SDC-on-RTL SDC File
	1.7.3.2. Applying the SDC-on-RTL Constraints
	1.7.3.3. Inspecting SDC-on-RTL Constraints
	1.7.3.4. Creating Constraints in SDC-on-RTL SDC Files
	1.7.3.5. Using Entity-Based SDC-on-RTL Constraints
	1.7.3.6. Types of SDC Files Used in the Quartus Prime Software
	1.7.3.7. Example: Using SDC-on-RTL Features

	1.7.4. Post-Synthesis Static Timing Analysis (STA)
	1.7.5. Viewing Synthesis Reports
	1.7.6. Viewing Synthesis Dynamic Report

	1.8. Design Place and Route
	1.8.1. Running the Fitter
	1.8.1.1. Fitter Commands
	1.8.1.2. Disabling or Enabling Physical Synthesis Optimization

	1.8.2. Viewing Fitter Reports
	1.8.2.1. Plan Stage Reports
	1.8.2.2. Place Stage Reports
	1.8.2.2.1. Global Signal Visualization Report

	1.8.2.3. Route Stage Reports
	1.8.2.3.1. Global Router Congestion Hotspot Summary Report
	1.8.2.3.2. Global Router Wire Utilization Map Report

	1.8.2.4. Retime Stage Reports
	1.8.2.5. Finalize Stage Reports

	1.9. Incremental Optimization Flow
	1.9.1. Concurrent Analysis During Synthesis or Fitting
	1.9.2. Analyzing Compiler Snapshots
	1.9.2.1. Running Snapshot Viewer
	1.9.2.1.1. Analyzing Failing Paths with Snapshot Viewer
	1.9.2.1.2. Analyzing Clocking with Snapshot Viewer
	1.9.2.1.3. Analyzing High Fan-out Nets with Snapshot Viewer
	1.9.2.1.4. Validating Timing Constraints with Snapshot Viewer
	1.9.2.1.5. Analyzing Congestion with Snapshot Viewer

	1.9.3. Validating Periphery (I/O) after the Plan Stage

	1.10. Fast Forward Compilation Flow
	1.10.1. Step 1: Run Register Retiming
	1.10.2. Step 2: Review Retiming Results
	1.10.2.1. Locate Critical Chains

	1.10.3. Step 3: Run Fast Forward Compile
	1.10.3.1. Fast Forward Compile By Hierarchy
	1.10.3.2. HyperFlex Settings

	1.10.4. Step 4: Review Fast Forward Results
	1.10.4.1. Clock Fmax Summary Report
	1.10.4.2. Fast Forward Details Report

	1.10.5. Step 5: Implement Fast Forward Recommendations
	1.10.6. Retiming Restrictions and Workarounds

	1.11. Full Compilation Flow
	1.11.1. Full Compilation Flow with Temporary Optimization Mode

	1.12. Compilation Monitoring Mode
	1.13. Exporting Compilation Results
	1.13.1. Exporting a Version-Compatible Compilation Database
	1.13.2. Importing a Version-Compatible Compilation Database
	1.13.3. Creating a Design Partition
	1.13.4. Exporting a Design Partition
	1.13.5. Reusing a Design Partition
	1.13.6. Viewing Quartus Database File Information
	1.13.6.1. QDB File Attribute Types

	1.13.7. Clearing Compilation Results

	1.14. Integrating Other EDA Tools
	1.14.1. Generating a VQM Netlist for other EDA Tools

	1.15. Compiler Optimization Techniques
	1.15.1. Compiler Optimization Modes
	1.15.2. Allow Register Retiming
	1.15.3. Automatic Gated Clock Conversion
	1.15.4. Enable Intermediate Fitter Snapshots
	1.15.5. Fast Preserve Option
	1.15.6. Fractal Synthesis Optimization
	1.15.6.1. Enabling or Disabling Fractal Synthesis

	1.16. Synthesis Language Support
	1.16.1. Verilog and SystemVerilog Synthesis Support
	1.16.1.1. Verilog HDL Input Settings (Settings Dialog Box)
	1.16.1.2. Design Libraries
	1.16.1.3. Verilog HDL Configuration
	1.16.1.3.1. Hierarchical Design Configurations

	1.16.1.4. Initial Constructs and Memory System Tasks
	1.16.1.5. Verilog HDL Macros

	1.16.2. VHDL Synthesis Support
	1.16.2.1. VHDL Input Settings (Settings Dialog Box)
	1.16.2.2. VHDL Standard Libraries and Packages
	1.16.2.3. VHDL wait Constructs
	1.16.2.4. VHDL-2019 Conditional Analysis Tool Directives

	1.17. Synthesis Settings Reference
	1.17.1. Advanced Synthesis Settings

	1.18. Fitter Settings Reference
	1.19. Design Compilation Revision History

	2. Reducing Compilation Time
	2.1. Factors Affecting Compilation Results
	2.2. Strategies to Reduce the Overall Compilation Time
	2.2.1. Running the ECO Compilation Flow
	2.2.2. Enabling Multi-Processor Compilation
	2.2.2.1. Processor Base Clock Frequency
	2.2.2.2. Random Access Memory (RAM)
	2.2.2.3. Storage

	2.2.3. Using Block-Based Compilation

	2.3. Reducing Synthesis Time and Synthesis Netlist Optimization Time
	2.3.1. Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time
	2.3.2. Use Appropriate Coding Style to Reduce Synthesis Time

	2.4. Reducing Placement Time
	2.4.1. Placement Effort Multiplier Settings

	2.5. Reducing Routing Time
	2.5.1. Identifying Routing Congestion with the Chip Planner
	2.5.1.1. Areas with Routing Congestion
	2.5.1.2. Congestion due to HDL Coding style

	2.6. Reducing Static Timing Analysis Time
	2.7. Setting Process Priority
	2.8. Reducing Compilation Time Revision History

	3. Quartus Prime Pro Edition User Guide Design Compilation Archives
	A. Quartus Prime Pro Edition User Guides

	Quartus Prime Pro Edition User Guide: Design Optimization
	Contents
	1. Design Optimization Overview
	1.1. Initial FPGA Device Considerations
	1.1.1. Device Migration Considerations

	1.2. Initial Compiler Settings
	1.2.1. Initial I/O Assignment Guidelines
	1.2.2. Initial Timing Constraint Guidelines

	1.3. Optimization Trade-Offs and Limitations
	1.3.1. Area Reduction Trade-Offs
	1.3.2. Critical Path Delay Reduction Trade-Offs
	1.3.3. Power Consumption Reduction Trade-Offs
	1.3.4. Compilation Time Trade-Offs

	1.4. Design Visualization and Optimization Tools
	1.4.1. Design Visualization Tools
	1.4.2. Design Optimization Tools

	1.5. Design Optimization Overview Revision History

	2. Optimizing the Design Netlist
	2.1. When to Use the Netlist Viewers: Analyzing Design Problems
	2.2. Quartus Prime Design Flow with the Netlist Viewers
	2.3. RTL Viewer Overview
	2.3.1. Maximizing Readability in RTL Viewer
	2.3.2. Running the RTL Viewer

	2.4. Technology Map Viewer Overview
	2.5. Netlist Viewer User Interface
	2.5.1. Netlist Navigator Pane
	2.5.2. Properties Pane
	2.5.3. Netlist Viewers Find Pane

	2.6. Schematic View
	2.6.1. Display Schematics in Multiple Tabbed View
	2.6.2. Schematic Symbols
	2.6.3. Select Items in the Schematic View
	2.6.4. Shortcut Menu Commands in the Schematic View
	2.6.5. Filtering in the Schematic View
	2.6.6. View Contents of Nodes in the Schematic View
	2.6.7. Moving Nodes in the Schematic View
	2.6.8. View LUT Representations in the Technology Map Viewer
	2.6.9. Zoom Controls
	2.6.10. Navigating with the Bird's Eye View
	2.6.11. Partition the Schematic into Pages
	2.6.12. Follow Nets Across Schematic Pages

	2.7. Cross-Probing to a Source Design File and Other Quartus Prime Windows
	2.8. Cross-Probing to the Netlist Viewers from Other Quartus Prime Windows
	2.9. Viewing a Timing Path
	2.10. Optimizing the Design Netlist Revision History

	3. Netlist Optimizations and Physical Synthesis
	3.1. Physical Synthesis Optimizations
	3.1.1. Disabling or Enabling Physical Synthesis Optimization
	3.1.2. Physical Synthesis Options

	3.2. Applying Netlist Optimizations
	3.2.1. WYSIWYG Primitive Resynthesis

	3.3. Scripting Support
	3.3.1. Synthesis Netlist Optimizations
	3.3.2. Physical Synthesis Optimizations

	3.4. Netlist Optimizations and Physical Synthesis Revision History

	4. Area Optimization
	4.1. Resource Utilization Information
	4.1.1. Flow Summary Report
	4.1.2. Fitter Reports
	4.1.2.1. Route Stage Reports
	4.1.2.1.1. Nets with Highest Wire Count Report
	4.1.2.1.2. Delay Chain Summary Report
	4.1.2.1.3. Top Congested Hierarchies and Nets Reports
	4.1.2.1.4. Global Route Reports

	4.1.3. Design Assistant Recommendations
	4.1.4. Analysis and Synthesis Reports
	4.1.5. Compilation Messages
	4.1.6. Chip Planner Visualization

	4.2. Optimizing Resource Utilization
	4.2.1. Resource Utilization Issues Overview
	4.2.2. I/O Pin Utilization or Placement
	4.2.2.1. Guideline: Modify Pin Assignments or Choose a Larger Package

	4.2.3. Logic Utilization or Placement
	4.2.3.1. Guideline: Optimize Source Code
	4.2.3.2. Guideline: Optimize Synthesis for Area, Not Speed
	4.2.3.3. Guideline: Restructure Multiplexers
	4.2.3.4. Guideline: Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting
	4.2.3.5. Guideline: Use Register Packing
	4.2.3.6. Guideline: Remove Fitter Constraints
	4.2.3.7. Guideline: Flatten the Hierarchy During Synthesis
	4.2.3.8. Guideline: Re-target Memory Blocks
	4.2.3.9. Guideline: Use Physical Synthesis Options to Reduce Area
	4.2.3.10. Guideline: Retarget or Balance DSP Blocks
	4.2.3.11. Guideline: Use a Larger Device
	4.2.3.12. Guideline: Reduce Global Signal Congestion
	4.2.3.13. Guideline: Report Pipelining Information

	4.2.4. Routing
	4.2.4.1. Guideline: Set Auto Packed Registers to Sparse or Sparse Auto
	4.2.4.2. Guideline: Set Fitter Aggressive Routability Optimizations to Always
	4.2.4.3. Guideline: Increase Router Effort Multiplier
	4.2.4.4. Guideline: Remove Fitter Constraints
	4.2.4.5. Guideline: Optimize Synthesis for Routability
	4.2.4.6. Guideline: Optimize Source Code
	4.2.4.7. Guideline: Use a Larger Device

	4.3. Scripting Support
	4.3.1. Initial Compilation Settings
	4.3.2. Resource Utilization Optimization Techniques

	4.4. Area Optimization Revision History

	5. Timing Closure and Optimization
	5.1. Optimize Multi Corner Timing
	5.2. Optimize Critical Paths
	5.2.1. Viewing Critical Paths

	5.3. Optimize Critical Chains
	5.3.1. Viewing Critical Chains

	5.4. Design Evaluation for Timing Closure
	5.4.1. Review Messages
	5.4.2. Evaluate Fitter Netlist Optimizations
	5.4.3. Evaluate Optimization Results
	5.4.4. Evaluate Resource Usage
	5.4.4.1. Evaluate Global and Non-Global Usage
	5.4.4.2. Evaluate Routing Usage
	5.4.4.3. Evaluate Wires Added for Hold

	5.4.5. Evaluate Other Reports and Adjust Settings Accordingly
	5.4.5.1. Difficulty Packing Design
	5.4.5.2. Review Ignored Assignments
	5.4.5.3. Review Non-Default Settings
	5.4.5.4. Review the Design Floorplan
	5.4.5.5. Adjust Placement Effort
	5.4.5.6. Adjust Fitter Effort
	5.4.5.7. Review Timing Constraints

	5.4.6. Evaluate Clustering Difficulty
	5.4.7. Revise and Recompile

	5.5. Timing Optimization
	5.5.1. Correct Design Assistant Rule Violations
	5.5.2. Implement Fast Forward Timing Closure Recommendations
	5.5.2.1. Retiming Limit Details Report
	5.5.2.1.1. Using the Retiming Limit Details Report

	5.5.2.2. Fast Forward Timing Closure Recommendations
	5.5.2.2.1. Generating Fast Forward Timing Closure Recommendations
	5.5.2.2.2. Implementing Fast Forward Recommendations

	5.5.3. Review Timing Path Details
	5.5.3.1. Report Timing
	5.5.3.2. Report Logic Depth
	5.5.3.3. Report Neighbor Paths
	5.5.3.4. Report Register Spread
	5.5.3.5. Report Route Net of Interest
	5.5.3.6. Report Retiming Restrictions
	5.5.3.7. Report Pipelining Information
	5.5.3.8. Report CDC Viewer
	5.5.3.9. Timing Closure Recommendations
	5.5.3.10. Global Network Buffers
	5.5.3.10.1. Source Location
	5.5.3.10.2. Insertion Delay
	5.5.3.10.3. Fan-Out
	5.5.3.10.4. Global Signal Assignment

	5.5.3.11. Resets and Global Networks
	5.5.3.12. Suspicious Setup
	5.5.3.13. Auto Shift Register Replacement
	5.5.3.14. Clocking Architecture

	5.5.4. Try Optional Fitter Settings
	5.5.4.1. Optimize Hold Timing
	5.5.4.2. Fitter Aggressive Routability Optimization

	5.5.5. Back-Annotating Optimized Assignments
	5.5.6. Optimize Settings with Design Space Explorer II
	5.5.6.1. DSE II Computing Resources
	5.5.6.2. DSE II Optimization Parameters
	5.5.6.3. DSE II Result Management
	5.5.6.4. Running DSE II

	5.5.7. Aggregating and Comparing Compilation Results with Exploration Dashboard
	5.5.7.1. Aggregation Use Case
	5.5.7.2. Comparison Use Case
	5.5.7.3. Exploration Dashboard Object-Property Model
	5.5.7.3.1. Base Exploration Dashboard Properties
	5.5.7.3.2. Project Handle Properties
	5.5.7.3.3. Project Group Objects and Properties
	5.5.7.3.4. Workspace Objects and Properties

	5.5.7.4. Starting the Exploration Dashboard

	5.5.8. I/O Timing Optimization Techniques
	5.5.8.1. I/O Timing Constraints
	5.5.8.2. Optimize IOC Register Placement for Timing Logic Option
	5.5.8.3. Fast Input, Output, and Output Enable Registers
	5.5.8.4. Programmable Delays
	5.5.8.5. Use PLLs to Shift Clock Edges
	5.5.8.6. Use Fast Regional Clock Networks and Regional Clocks Networks
	5.5.8.7. Spine Clock Limitations

	5.5.9. Register-to-Register Timing Optimization Techniques
	5.5.9.1. Optimize Source Code
	5.5.9.2. Improving Register-to-Register Timing
	5.5.9.3. Physical Synthesis Optimizations
	5.5.9.4. Set Power Optimization During Synthesis to Normal Compilation
	5.5.9.5. Optimize Synthesis for Performance, Not Area
	5.5.9.6. Flatten the Hierarchy During Synthesis
	5.5.9.7. Set the Synthesis Effort to High
	5.5.9.8. Change Adder Tree Styles
	5.5.9.9. Duplicate Registers for Fan-Out Control
	5.5.9.9.1. Manual Register Duplication
	5.5.9.9.2. Automatic Register Duplication: Estimated Physical Proximity
	5.5.9.9.3. Automatic Register Duplication: Hierarchical Proximity

	5.5.9.10. Prevent Shift Register Inference
	5.5.9.11. Use Other Synthesis Options Available in Your Synthesis Tool
	5.5.9.12. Fitter Seed
	5.5.9.13. Set Maximum Router Timing Optimization Level
	5.5.9.14. Register-to-Register Timing Analysis
	5.5.9.14.1. Tips for Analyzing Failing Paths
	5.5.9.14.2. Tips for Analyzing Failing Clock Paths that Cross Clock Domains
	5.5.9.14.3. Tips for Critical Path Analysis
	5.5.9.14.4. Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles
	5.5.9.14.5. Global Routing Resources
	5.5.9.14.6. Register RAMS and DSPs

	5.5.10. Metastability Analysis and Optimization Techniques

	5.6. Periphery to Core Register Placement and Routing Optimization
	5.6.1. Setting Periphery to Core Optimizations in the Advanced Fitter Setting Dialog Box
	5.6.2. Setting Periphery to Core Optimizations in the Assignment Editor
	5.6.3. Viewing Periphery to Core Optimizations in the Fitter Report

	5.7. Scripting Support
	5.7.1. Initial Compilation Settings
	5.7.2. I/O Timing Optimization Techniques
	5.7.3. Register-to-Register Timing Optimization Techniques

	5.8. Timing Closure and Optimization Revision History

	6. Analyzing and Optimizing the Design Floorplan
	6.1. Location Assignment Optimization Guidelines
	6.2. Design Floorplan Analysis in Chip Planner
	6.2.1. Starting the Chip Planner
	6.2.2. Chip Planner GUI
	6.2.3. Viewing Design Elements in Chip Planner
	6.2.3.1. Viewing Architecture-Specific Design Information in Chip Planner
	6.2.3.2. Viewing Available Clock Networks in Chip Planner
	6.2.3.3. Viewing Clock Sector Utilization in Chip Planner
	6.2.3.4. Viewing Routing Congestion in Chip Planner
	6.2.3.5. Viewing I/O Banks in Chip Planner
	6.2.3.6. Viewing High-Speed Serial Interfaces (HSSI) in Chip Planner
	6.2.3.7. Viewing Source and Destination Nodes in Chip Planner
	6.2.3.8. Viewing Fan-In and Fan-Out in Chip Planner
	6.2.3.9. Viewing Immediate Fan-In and Fan-Out in Chip Planner
	6.2.3.10. Viewing the Selected Contents in Chip Planner
	6.2.3.11. Viewing the Location and Utilization of Device Resources in Chip Planner
	6.2.3.12. Viewing Module Placement by Cross-Probing to Chip Planner

	6.2.4. Finding Design Elements in the Chip Planner
	6.2.4.1. Find Options (Chip Planner Search)

	6.2.5. Exploring Paths in the Chip Planner
	6.2.5.1. Analyzing Connections for a Path
	6.2.5.2. Locate Path from the Timing Analysis Report to the Chip Planner
	6.2.5.3. Show Delays
	6.2.5.4. Viewing Routing Resources

	6.2.6. Viewing Assignments in the Chip Planner
	6.2.7. Viewing High-Speed and Low-Power Tiles in the Chip Planner
	6.2.8. Viewing Design Partition Placement

	6.3. Defining Logic Lock Placement Constraints
	6.3.1. The Logic Lock Regions Window
	6.3.2. Defining Logic Lock Regions
	6.3.2.1. Defining a Logic Lock Region in Chip Planner
	6.3.2.1.1. Logic Lock Region Properties
	6.3.2.1.2. Snapping to a Region
	6.3.2.1.3. Considerations for Auto Sized Regions

	6.3.2.2. Defining a Logic Lock Region from the Project Navigator
	6.3.2.3. Defining Routing Regions
	6.3.2.4. Defining Empty Logic Lock Regions
	6.3.2.5. Defining Hierarchical Logic Lock Regions

	6.3.3. Customizing the Shape of Logic Lock Regions
	6.3.3.1. Adding a New Shape to a Logic Lock Region
	6.3.3.2. Subtracting Shape from Logic Lock Region
	6.3.3.3. Merging Logic Lock Regions
	6.3.3.4. Defining Noncontiguous Logic Lock Regions

	6.3.4. Assigning Device Pins to Logic Lock Regions
	6.3.5. Viewing Connections Between Logic Lock Regions in Chip Planner
	6.3.6. Example: Placement Best Practices for Arria 10 FPGAs
	6.3.7. Migrating Assignments between Quartus Prime Standard Edition and Quartus Prime Pro Edition

	6.4. Defining Virtual Pins
	6.5. Using Logic Lock Regions in Combination with Design Partitions
	6.5.1. Viewing Design Connectivity and Hierarchy

	6.6. Creating Clock Region Assignments in Chip Planner
	6.6.1. Creating Clock Assignments in Chip Planner
	6.6.1.1. Clock Assignment Properties

	6.6.2. Resizing a Clock Assignment in Chip Planner
	6.6.3. Moving a Clock Assignment in Chip Planner
	6.6.4. Deleting a Clock Region Assignment in Chip Planner
	6.6.5. Assigning a Clock Signal to a Clock Region in Chip Planner

	6.7. Scripting Support
	6.7.1. Creating Logic Lock Assignments with Tcl commands
	6.7.2. Assigning Virtual Pins with a Tcl command
	6.7.3. Logic Lock Region Assignment Examples

	6.8. Analyzing and Optimizing the Design Floorplan Revision History

	7. Using the ECO Compilation Flow
	7.1. ECO Compilation Flow
	7.2. ECO Tcl Script Example
	7.3. Viewing ECO Compilation Reports
	7.4. ECO Commands
	7.4.1. ECO Command Quick Reference
	7.4.2. make_connection
	7.4.3. remove_connection
	7.4.4. modify_lutmask
	7.4.5. adjust_pll_refclk
	7.4.6. modify_io_slew_rate
	7.4.7. modify_io_current_strength
	7.4.8. modify_io_delay_chain
	7.4.9. create_new_node
	7.4.10. remove_node
	7.4.11. place_node
	7.4.12. unplace_node
	7.4.13. create_wirelut

	7.5. ECO Command Limitations
	7.6. Interactive ECO Fitting
	7.6.1. eco_load_design and eco_commit_design Commands

	7.7. Using the ECO Compilation Flow Revision History

	8. Quartus Prime Pro Edition Design Optimization User Guide Archives
	A. Quartus Prime Pro Edition User Guides

	Quartus Prime Pro Edition User Guide: Programmer
	Contents
	1. Quartus® Prime Programmer User Guide
	1.1. Generating Primary Device Programming Files
	1.2. Generating Secondary Programming Files
	1.2.1. Generating Secondary Programming Files (Programming File Generator)
	1.2.1.1. Configuration Modes (Programming File Generator)
	1.2.1.2. Secondary Programming Files (Programming File Generator)

	1.2.2. Generating Secondary Programming Files (Convert Programming File Dialog Box)
	1.2.2.1. Secondary Programming Files (Convert Programming Files)
	1.2.2.2. Configuration Modes (Convert Programming Files)
	1.2.2.3. Debugging the Configuration (Convert Programming Files)

	1.2.3. Generating Secondary Programming Files (Settings: Programming Files Dialog Box)

	1.3. Enabling Bitstream Security for Stratix 10 and Agilex 7 Devices
	1.3.1. Enabling Bitstream Authentication (Programming File Generator)
	1.3.2. Specifying Additional Physical Security Settings (Programming File Generator)
	1.3.3. Enabling Bitstream Encryption (Programming File Generator)

	1.4. Enabling Bitstream Encryption or Compression for Arria 10 and Cyclone 10 GX Devices
	1.5. Generating Programming Files for Partial Reconfiguration
	1.5.1. Generating PR Bitstream Files
	1.5.2. Partial Reconfiguration Bitstream Compatibility Checking
	1.5.3. Raw Binary Programming File Byte Sequence Transmission Examples
	1.5.4. Generating a Merged .pmsf File from Multiple .pmsf Files (Arria 10 and Cyclone 10 GX Designs)

	1.6. Generating Programming Files for Intel FPGA Devices with Hard Processor Systems
	1.6.1. Generating Programming Files for HPS Boot First Boot Flows
	1.6.2. Generating Programming Files for FPGA Configuration First Boot Flows

	1.7. Scripting Support
	1.7.1. quartus_pfg Command Line Tool
	1.7.2. quartus_cpf Command Line Tool
	1.7.2.1. Generating a Partial-Mask SRAM Object File using a Mask Settings File and a SRAM Object File

	1.8. Generating Programming Files Revision History

	2. Using the Quartus Prime Programmer
	2.1. Quartus Prime Programmer
	2.2. Programming and Configuration Modes
	2.3. Basic Device Configuration Steps
	2.4. Specifying the Programming Hardware Setup
	2.4.1. JTAG Chain Debugger Tool
	2.4.1.1. JTAG Chain Integrity Tab
	2.4.1.2. JTAG Chain Debugging Tab

	2.4.2. Editing the Details of an Unknown Device
	2.4.3. Running JTAG Daemon with Linux

	2.5. Programming with Flash Loaders
	2.5.1. Specifying Flash Partitions
	2.5.2. Full Erase of Flash Memory Sectors

	2.6. Verifying the Programming File Source with Project Hash
	2.6.1. Obtaining Project Hash for Arria 10 Devices

	2.7. Using PR Bitstream Security Verification (Stratix 10 Designs)
	2.8. Stand-Alone Programmer
	2.8.1. Stand-Alone Programmer Memory Consumption

	2.9. Programmer Settings Reference
	2.9.1. Device & Pin Options Dialog Box
	2.9.2. More Security Options Dialog Box
	2.9.3. Output Files Tab Settings (Programming File Generator)
	2.9.4. Input Files Tab Settings (Programming File Generator)
	2.9.5. Bitstream Co-Signing Security Settings (Programming File Generator)
	2.9.6. Configuration Device Tab Settings
	2.9.7. Add Partition Dialog Box (Programming File Generator)
	2.9.8. Add Filesystem Dialog Box (Programming File Generator)
	2.9.9. Convert Programming File Dialog Box
	2.9.10. Compression and Encryption Settings (Convert Programming File)
	2.9.11. SOF Data Properties Dialog Box (Convert Programming File)
	2.9.12. Select Devices (Flash Loader) Dialog Box

	2.10. Scripting Support
	2.10.1. The jtagconfig Debugging Tool

	2.11. Using the Quartus Prime Programmer Revision History

	3. Using the HPS Flash Programmer
	3.1. Supported Devices
	3.2. HPS Flash Programmer Command-Line Utility
	3.3. How the HPS Flash Programmer Works
	3.4. Using the Flash Programmer from the Command Line
	3.4.1. HPS Flash Programmer
	3.4.2. HPS Flash Programmer Command Line Examples

	3.5. Supported Memory Devices
	3.6. HPS Flash Programmer User Guide Revision History

	A. Quartus Prime Pro Edition User Guide: Programmer Document Archive
	B. Quartus Prime Pro Edition User Guides

	Intel Quartus Prime Pro Edition User Guide: Block-Based Design
	Contents
	1. Block-Based Design Flows
	1.1. Block-Based Design Terminology
	1.2. Block-Based Design Overview
	1.2.1. Design Block Reuse Overview
	1.2.1.1. Design Block Reuse Examples

	1.2.2. Incremental Block-Based Compilation Overview

	1.3. Design Methodologies Overview
	1.3.1. Top-Down Design Methodology Overview
	1.3.2. Bottom-Up Design Methodology Overview
	1.3.3. Team-Based Design Methodology Overview

	1.4. Design Partitioning
	1.4.1. Planning Partitions for Periphery IP, Clocks, and PLLs
	1.4.2. Creating Design Partitions
	1.4.3. Design Partition Guidelines

	1.5. Design Block Reuse Flows
	1.5.1. Reusing Core Partitions
	1.5.1.1. Step 1: Developer: Create a Design Partition
	1.5.1.2. Step 2: Developer: Compile and Export the Core Partition
	1.5.1.3. Step 3: Developer: Create a Black Box File
	1.5.1.4. Step 4: Consumer: Add the Core Partition and Compile

	1.5.2. Reusing Root Partitions
	1.5.2.1. Step 1: Developer: Create a Reserved Core Partition
	1.5.2.2. Step 2: Developer: Define a Logic Lock Region
	1.5.2.3. Step 3: Developer: Compile and Export the Root Partition
	1.5.2.4. Step 4: Consumer: Add the Root Partition and Compile

	1.5.3. Reserved Core Entity Re-Binding
	1.5.4. Viewing Quartus Database File Information
	1.5.4.1. QDB File Attribute Types

	1.6. Incremental Block-Based Compilation Flow
	1.6.1. Design Abstraction
	1.6.1.1. Empty Partition Clock Source Preservation

	1.7. Setting-Up Team-Based Designs
	1.7.1. Creating a Top-Level Project for a Team-Based Design
	1.7.1.1. Prepare a Design Partition for Project Integration

	1.8. Bottom-Up Design Considerations
	1.9. Debugging Block-Based Designs with the Signal Tap Logic Analyzer
	1.10. Block-Based Design Flows Revision History
	1.11. Intel Quartus Prime Pro Edition User Guide: Block-Based Design Document Archive

	A. Intel Quartus Prime Pro Edition User Guides

	Quartus Prime Pro Edition User Guide: Partial Reconfiguration
	Contents
	1. Creating a Partial Reconfiguration Design
	1.1. What's New In This Version
	1.2. Partial Reconfiguration Terminology
	1.3. Partial Reconfiguration Process Sequence
	1.4. Internal Host Partial Reconfiguration
	1.5. External Host Partial Reconfiguration
	1.6. Partial Reconfiguration Design Flow
	1.6.1. Step 1: Identify Partial Reconfiguration Resources
	1.6.2. Step 2: Create Design Partitions
	1.6.3. Step 3: Floorplan the Design
	1.6.3.1. Applying Floorplan Constraints Incrementally

	1.6.4. Step 4: Add the Partial Reconfiguration Controller Intel FPGA IP
	1.6.4.1. Adding the Partial Reconfiguration Controller Intel FPGA IP
	1.6.4.2. Adding the Partial Reconfiguration Controller Arria 10/Cyclone 10 FPGA IP

	1.6.5. Step 5: Define Personas
	1.6.6. Step 6: Create Revisions for Personas
	1.6.7. Step 7: Compile the Base Revision and Export the Static Region
	1.6.7.1. Understanding PR Logic Utilization Reports

	1.6.8. Step 8: Setup PR Implementation Revisions
	1.6.9. Step 9: Program the FPGA Device
	1.6.9.1. Generating PR Bitstream Files
	1.6.9.2. Generating PR Bitstream Files
	1.6.9.3. Partial Reconfiguration Bitstream Compatibility Checking
	1.6.9.4. Raw Binary Programming File Byte Sequence Transmission Examples
	1.6.9.5. Generating a Merged .pmsf File from Multiple .pmsf Files (Arria 10 and Cyclone 10 GX Designs)

	1.7. Partial Reconfiguration Design Considerations
	1.7.1. Partial Reconfiguration Design Guidelines
	1.7.2. PR Design Timing Closure Best Practices
	1.7.3. PR File Management
	1.7.3.1. Method 1 (Preferred): Specify Unique Entity and File Names for Each Persona
	1.7.3.2. Method 2: Set QSF Assignment for a Parameterized PR Persona

	1.7.4. Evaluating PR Region Initial Conditions
	1.7.5. Creating Wrapper Logic for PR Regions
	1.7.6. Creating Freeze Logic for PR Regions
	1.7.7. Resetting the PR Region Registers
	1.7.8. Promoting Global Signals in a PR Region
	1.7.8.1. Viewing Row Clock Region Boundaries

	1.7.9. Planning Clocks and other Global Routing
	1.7.10. Implementing Clock Enable for On-Chip Memories
	1.7.10.1. Clock Gating

	1.8. Hierarchical Partial Reconfiguration
	1.8.1. Using Parent QDB Files from Different Compiles

	1.9. Partial Reconfiguration Design Timing Analysis
	1.9.1. Running Timing Analysis on Aggregate Revisions

	1.10. Partial Reconfiguration Design Simulation
	1.10.1. Partial Reconfiguration Simulation Flow
	1.10.2. Simulating PR Persona Replacement
	1.10.2.1. altera_pr_persona_if Module
	1.10.2.2. altera_pr_wrapper_mux_out Module
	1.10.2.3. altera_pr_wrapper_mux_in Module

	1.11. Partial Reconfiguration Design Debugging
	1.11.1. Debugging PR Designs with the Signal Tap Logic Analyzer
	1.11.2. Instantiating the Intel Configuration Reset Release Endpoint to Debug Logic IP

	1.12. Partial Reconfiguration Security (Stratix 10 Designs)
	1.12.1. PR Bitstream Security Validation (Stratix 10 Designs)
	1.12.2. PR Bitstream Authentication (Stratix 10 Designs)
	1.12.3. PR Bitstream Encryption (Stratix 10 Designs)

	1.13. PR Bitstream Compression and Encryption (Arria 10 and Cyclone 10 GX Designs)
	1.13.1. Generating an Encrypted PR Bitstream (Arria 10 or Cyclone 10 GX Designs)
	1.13.2. Clock-to-Data Ratio for Bitstream Encryption and Compression (Arria 10 or Cyclone 10 GX Designs)
	1.13.3. Data Compression Comparison

	1.14. Avoiding PR Programming Errors
	1.15. Exporting a Version-Compatible Compilation Database for PR Designs
	1.15.1. Version-Compatible Database Flow for PR Designs
	1.15.2. Generating a Version-Compatible Compilation Database for PR Designs

	1.16. Creating a Partial Reconfiguration Design Revision History

	2. Partial Reconfiguration Solutions IP User Guide
	2.1. Internal and External PR Host Configurations
	2.2. Partial Reconfiguration Controller Intel FPGA IP
	2.2.1. Memory Map
	2.2.2. Parameters
	2.2.3. Ports
	2.2.4. Timing Specifications
	2.2.5. PR Error Recovery
	2.2.5.1. PR Error Recovery Timing Specifications

	2.2.6. Secure Device Manager Firmware Error Reporting
	2.2.6.1. SDM Firmware Error Reporting Timing Specification

	2.3. Partial Reconfiguration Controller Intel Arria® 10/Cyclone® 10 FPGA IP
	2.3.1. Agent Interface
	2.3.2. Reconfiguration Sequence
	2.3.3. Interrupt Interface
	2.3.4. Parameters
	2.3.4.1. Error Detection CRC Requirements

	2.3.5. Ports
	2.3.6. Timing Specifications
	2.3.7. PR Control Block and CRC Block Verilog HDL Manual Instantiation
	2.3.8. PR Control Block and CRC Block VHDL Manual Instantiation
	2.3.8.1. PR Control Block and CRC Block VHDL Component Declaration

	2.3.9. PR Control Block Signals
	2.3.9.1. PR Control Block Signal Timing Diagrams
	2.3.9.1.1. Successful PR Session (Arria 10 Example)
	2.3.9.1.2. Unsuccessful PR Session with Configuration Frame Readback Error (Arria 10 Example)
	2.3.9.1.3. Unsuccessful PR Session with PR_ERROR (Arria 10 Example)
	2.3.9.1.4. Late Withdrawal PR Session (Arria 10 Example)

	2.3.10. Configuring an External Host for Arria 10 or Cyclone 10 GX Designs

	2.4. Partial Reconfiguration External Configuration Controller Intel FPGA IP
	2.4.1. Parameters
	2.4.2. Ports
	2.4.3. Partial Reconfiguration External Controller Intel FPGA IP Timing Specifications
	2.4.4. Configuring an External Host for Agilex 7, Agilex 5, and Stratix 10 Designs

	2.5. Partial Reconfiguration Region Controller Intel FPGA IP
	2.5.1. Registers
	2.5.2. Parameters
	2.5.3. Ports

	2.6. Avalon Memory-Mapped Partial Reconfiguration Freeze Bridge IP
	2.6.1. Parameters
	2.6.2. Interface Ports

	2.7. Avalon Streaming Partial Reconfiguration Freeze Bridge IP
	2.7.1. Parameters
	2.7.2. Ports

	2.8. Generating and Simulating Intel FPGA IP
	2.8.1. Specifying the IP Core Parameters and Options (Quartus Prime Pro Edition)
	2.8.2. Running the Freeze Bridge Update script
	2.8.3. IP Core Generation Output (Quartus Prime Pro Edition)
	2.8.4. Arria 10 and Cyclone 10 GX PR Control Block Simulation Model
	2.8.5. Generating the PR Persona Simulation Model
	2.8.6. Secure Device Manager Partial Reconfiguration Simulation Model
	2.8.6.1. Monitoring the SDM
	2.8.6.2. Simulating Unknown Outputs and Persona Activation
	2.8.6.3. Simulation RBF Required Word Sequence

	2.9. Quartus Prime Pro Edition User Guide: Partial Reconfiguration Archive
	2.10. Partial Reconfiguration Solutions IP User Guide Revision History

	A. Quartus Prime Pro Edition User Guides

	Quartus Prime Pro Edition User Guide: Third-party Simulation
	Contents
	1. FPGA Simulation Basics
	1.1. FPGA Simulation Essential Elements
	1.2. Overview of Simulation Tool Flow
	1.2.1. Compilation Stage
	1.2.2. Elaboration Stage
	1.2.3. Simulation Stage

	1.3. Simulation Tool Flow
	1.3.1. Specifying Logical Libraries
	1.3.1.1. Why Do We Need Logical Library Names?

	1.3.2. Compiling Files Into Library Directories
	1.3.2.1. Inputs to Compilation Commands
	1.3.2.2. Order of Files for Compilation Commands
	1.3.2.3. Compilation Command Line Options
	1.3.2.4. Module Definitions in Library Directories

	1.3.3. The Quartus Prime Simulation Library
	1.3.3.1. The Quartus Prime Simulation Library Compiler
	1.3.3.2. Running the Simulation Library Compiler in a Terminal
	1.3.3.3. Running the Simulation Library Compiler in the GUI
	1.3.3.4. Finding Logical Library Names in Simulation Library Compiler Output

	1.3.4. Understanding Elaboration
	1.3.4.1. Elaboration Binding Phase
	1.3.4.2. Elaboration Checks
	1.3.4.3. Elaboration Options

	1.3.5. Commands To Configure and Run Simulation
	1.3.6. FPGA Simulation Generic Workflow

	1.4. Supported Simulation Flows
	1.5. Supported Hardware Description Languages
	1.6. Supported Simulation Types
	1.7. Supported Simulators
	1.8. Post-Fit Simulation Support by FPGA Family
	1.9. Automating Simulation with the Run Simulation Feature
	1.9.1. Setting Up the Run Simulation Feature
	1.9.1.1. Installation Paths for Supported EDA Simulators (EDA Tool Options Page)
	1.9.1.2. Simulation Options (Board and IP Settings Page)
	1.9.1.3. Simulation Flow Settings (EDA Tool Settings Page)
	1.9.1.4. More EDA Netlist Writer Settings (EDA Tool Settings Page)

	1.9.2. Run RTL Simulation using Run Simulation in Batch Mode (Command-Line)
	1.9.2.1. Specifying Required Simulation Settings for Run Simulation (Batch Mode)
	1.9.2.2. Optional Simulation Settings for Run Simulation (Batch Mode)
	1.9.2.3. Launching Simulation with the Run Simulation Feature
	1.9.2.4. Running RTL Simulation using Run Simulation
	1.9.2.5. Output Directories and Files for Run Simulation

	1.10. Intel FPGA Simulation Basics Revision History

	2. Siemens EDA QuestaSim Simulator Support
	2.1. Quick Start Example (QuestaSim with Verilog)
	2.2. QuestaSim Simulator Guidelines
	2.2.1. Passing Parameter Information from Verilog HDL to VHDL
	2.2.2. Viewing Simulation Messages
	2.2.3. Generating Signal Activity Data for Power Analysis
	2.2.4. Viewing Simulation Waveforms

	2.3. Using the Qrun Flow
	2.3.1. Specifying Simulation File Generation Settings
	2.3.2. Generating the Simulation Model and Setup Scripts
	2.3.3. Generating the Testbench System
	2.3.4. Generating Example Design Simulation Files
	2.3.5. Recommendations for Using Qrun

	2.4. QuestaSim Simulation Setup Script Example
	2.5. Sourcing QuestaSim Simulator Setup Scripts
	2.6. Unsupported Features
	2.7. Siemens EDA QuestaSim Simulator Support Revision History

	3. Synopsys VCS and VCS MX Support
	3.1. Quick Start Example (VCS with Verilog)
	3.2. VCS and VCS MX Guidelines
	3.3. VCS Simulation Setup Script Example
	3.4. Sourcing Synopsys VCS MX Simulator Setup Scripts
	3.5. Sourcing Synopsys VCS Simulator Setup Scripts
	3.6. Synopsys VCS and VCS MX Support Revision History

	4. Aldec Active-HDL and Riviera-PRO Support
	4.1. Quick Start Example (Active-HDL VHDL)
	4.2. Aldec Active-HDL and Riviera-PRO Guidelines
	4.3. Using Simulation Setup Scripts
	4.4. Sourcing Aldec ActiveHDL* or Riviera Pro* Simulator Setup Scripts
	4.5. Aldec Active-HDL and Riviera-PRO * Support Revision History

	5. Cadence Xcelium Parallel Simulator Support
	5.1. Using the Command-Line Interface
	5.2. Generating Simulator Setup Script Templates
	5.3. Sourcing Cadence Xcelium Simulator Setup Scripts
	5.4. Cadence Xcelium Parallel Simulator Support Revision History

	6. Quartus Prime Pro Edition User Guide Third-party Simulation Archive
	A. Quartus Prime Pro Edition User Guides

	Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis
	Contents
	1. Siemens EDA Precision* RTL Synthesis Support
	1.1. About Precision RTL Synthesis Support
	1.2. Precision RTL Integration Flow
	1.2.1. Timing Optimization

	1.3. Intel Device Family Support
	1.4. Precision RTL Generated Files
	1.5. Creating and Compiling a Project in the Precision Synthesis Software
	1.6. Mapping the Design with Precision RTL
	1.6.1. Setting Timing Constraints
	1.6.2. Setting Mapping Constraints
	1.6.3. Assigning Pin Numbers and I/O Settings
	1.6.4. Assigning I/O Registers
	1.6.5. Disabling I/O Pad Insertion
	1.6.5.1. Preventing the Precision RTL Software from Adding I/O Pads
	1.6.5.2. Preventing the Precision RTL Software from Adding an I/O Pad on an Individual Pin

	1.6.6. Controlling Fan-Out on Data Nets

	1.7. Synthesizing the Design and Evaluating the Results
	1.7.1. Obtaining Accurate Logic Utilization and Timing Analysis Reports

	1.8. Guidelines for Intel FPGA IP Cores and Architecture-Specific Features
	1.8.1. Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files
	1.8.2. Instantiating IP Cores With IP Catalog-Generated VHDL Files
	1.8.3. Instantiating Intellectual Property With the IP Catalog and Parameter Editor
	1.8.4. Instantiating Black Box IP Functions With Generated Verilog HDL Files
	1.8.5. Instantiating Black Box IP Functions With Generated VHDL Files
	1.8.6. Inferring Intel FPGA IP Cores from HDL Code
	1.8.6.1. Multipliers
	1.8.6.1.1. Controlling DSP Block Inference for Multipliers

	1.8.6.2. Setting the Use Dedicated Multiplier Option
	1.8.6.3. Setting the dedicated_mult Attribute
	1.8.6.4. Inferring Multiplier-Accumulators and Multiplier-Adders
	1.8.6.5. Controlling DSP Block Inference
	1.8.6.6. Inferring RAM and ROM

	1.9. Siemens EDA Precision* RTL Synthesis Support Revision History

	2. Synopsys Synplify* Support
	2.1. About Synplify Support
	2.2. Synplify Software Integration Flow
	2.3. Hardware Description Language Support
	2.4. Intel Device Family Support
	2.5. Tool Setup
	2.5.1. Specifying the Intel Quartus Prime Software Version

	2.6. Synplify Software Generated Files
	2.7. Design Constraints Support
	2.7.1. Running the Intel Quartus Prime Software Manually With the Synplify-Generated Tcl Script
	2.7.2. Passing Timing Analyzer SDC Timing Constraints to the Intel Quartus Prime Software
	2.7.2.1. Individual Clocks and Frequencies
	2.7.2.2. Input and Output Delay
	2.7.2.3. Multicycle Path
	2.7.2.4. False Path

	2.8. Simulation and Formal Verification
	2.9. Synplify Optimization Strategies
	2.9.1. Using Synplify Premier to Optimize Your Design
	2.9.2. Using Implementations in Synplify Pro or Premier
	2.9.3. Timing-Driven Synthesis Settings
	2.9.3.1. Clock Frequencies
	2.9.3.2. Multiple Clock Domains
	2.9.3.3. Input and Output Delays
	2.9.3.4. Multicycle Paths
	2.9.3.5. False Paths

	2.9.4. FSM Compiler
	2.9.4.1. FSM Explorer in Synplify Pro and Premier

	2.9.5. Optimization Attributes and Options
	2.9.5.1. Retiming in Synplify Pro and Premier
	2.9.5.2. Maximum Fan-Out
	2.9.5.3. Preserving Nets
	2.9.5.4. Register Packing
	2.9.5.5. Resource Sharing
	2.9.5.6. Preserving Hierarchy
	2.9.5.7. Register Input and Output Delays
	2.9.5.8. syn_direct_enable
	2.9.5.9. I/O Standard

	2.9.6. Intel-Specific Attributes
	2.9.6.1. altera_chip_pin_lc
	2.9.6.2. altera_io_powerup
	2.9.6.3. altera_io_opendrain

	2.10. Guidelines for Intel FPGA IP Cores and Architecture-Specific Features
	2.10.1. Instantiating Intel FPGA IP Cores with the IP Catalog
	2.10.1.1. Instantiating Intel FPGA IP Cores with IP Catalog Generated Verilog HDL Files
	2.10.1.2. Instantiating Intel FPGA IP Cores with IP Catalog Generated VHDL Files
	2.10.1.3. Changing Synplify’s Default Behavior for Instantiated Intel FPGA IP Cores
	2.10.1.4. Instantiating Intellectual Property with the IP Catalog and Parameter Editor
	2.10.1.5. Instantiating Black Box IP Cores with Generated Verilog HDL Files
	2.10.1.6. Instantiating Black Box IP Cores with Generated VHDL Files
	2.10.1.7. Other Synplify Software Attributes for Creating Black Boxes

	2.10.2. Including Files for Intel Quartus Prime Placement and Routing Only
	2.10.3. Inferring Intel FPGA IP Cores from HDL Code
	2.10.3.1. Inferring Multipliers
	2.10.3.1.1. Resource Balancing
	2.10.3.1.2. Controlling the DSP Block Inference
	2.10.3.1.3. Signal Level Attribute

	2.10.3.2. Inferring RAM
	2.10.3.3. RAM Initialization
	2.10.3.4. Inferring ROM
	2.10.3.5. Inferring Shift Registers

	2.11. Synopsys Synplify* Support Revision History
	2.12. Intel Quartus Prime Pro Edition User Guide: Third-Party Synthesis Archives

	A. Intel Quartus Prime Pro Edition User Guides

	Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking Tools
	Contents
	1. OneSpin 360 EC-FPGA* Software Support
	2. OneSpin 360 EC-FPGA Software Support Revision History
	A. Intel Quartus Prime Pro Edition User Guides

	Intel Quartus Prime Pro Edition User Guide: Debug Tools
	Contents
	1. System Debugging Tools Overview
	1.1. System Debugging Tools Portfolio
	1.1.1. System Debugging Tools Comparison
	1.1.2. Suggested Tools for Common Debugging Requirements
	1.1.3. Debugging Ecosystem

	1.2. Tools for Monitoring RTL Nodes
	1.2.1. Resource Usage
	1.2.1.1. Overhead Logic
	1.2.1.1.1. For Signal Tap Logic Analyzer
	1.2.1.1.2. For Signal Probe
	1.2.1.1.3. For Logic Analyzer Interface

	1.2.2. Pin Usage
	1.2.2.1. For Signal Tap Logic Analyzer
	1.2.2.2. For Signal Probe
	1.2.2.3. For Logic Analyzer Interface

	1.2.3. Usability Enhancements
	1.2.3.1. Incremental Routing
	1.2.3.2. Automation Via Scripting

	1.3. Stimulus-Capable Tools
	1.3.1. In-System Sources and Probes
	1.3.1.1. Push Button Functionality

	1.3.2. In-System Memory Content Editor
	1.3.2.1. Generate Test Vectors

	1.3.3. System Console
	1.3.3.1. Test Signal Integrity
	1.3.3.2. Board Bring-Up and Verification
	1.3.3.3. Debug with Available Toolkits

	1.4. Virtual JTAG Interface Intel FPGA IP
	1.5. System-Level Debug Fabric
	1.6. SLD JTAG Bridge
	1.6.1. SLD JTAG Bridge Index
	1.6.2. Instantiating the SLD JTAG Bridge Agent
	1.6.3. Instantiating the SLD JTAG Bridge Host

	1.7. Partial Reconfiguration Design Debugging
	1.7.1. Debug Fabric for Partial Reconfiguration Designs
	1.7.1.1. Generation of PR Debug Infrastructure

	1.8. Preserving Signals for Debugging
	1.8.1. Preserve for Debug Overview
	1.8.2. Marking Signals for Debug
	1.8.2.1. Step 1: Enabling Preserve for Debug
	1.8.2.1.1. Enabling Preserve for Debug In Project Settings
	1.8.2.1.2. Enabling Preserve for Debug at Instance Level

	1.8.2.2. Step 2: Implement Preserve for Debug Assignments
	1.8.2.2.1. HDL Implementation
	1.8.2.2.2. Intel Quartus Prime Settings Implementation

	1.8.2.3. Step 3: Locate and Report Preserve for Debug Nodes
	1.8.2.3.1. Locating Preserve for Debug Nodes
	1.8.2.3.2. Reporting Preserve for Debug Nodes

	1.9. System Debugging Tools Overview Revision History

	2. Design Debugging with the Signal Tap Logic Analyzer
	2.1. Signal Tap Logic Analyzer Introduction
	2.1.1. Signal Tap Hardware and Software Requirements

	2.2. Signal Tap Debugging Flow
	2.3. Step 1: Add the Signal Tap Logic Analyzer to the Project
	2.3.1. Creating a Signal Tap Instance with the Signal Tap GUI
	2.3.1.1. Managing Signal Tap Instances

	2.3.2. Creating a Signal Tap Instance by HDL Instantiation
	2.3.2.1. Signal Tap Intel FPGA IP Parameters

	2.4. Step 2: Configure the Signal Tap Logic Analyzer
	2.4.1. Preserving Signals for Monitoring and Debugging
	2.4.2. Preventing Changes that Require Full Recompilation
	2.4.3. Specifying the Clock, Sample Depth, and RAM Type
	2.4.4. Specifying the Buffer Acquisition Mode
	2.4.4.1. Non-Segmented Buffer
	2.4.4.2. Segmented Buffer

	2.4.5. Adding Signals to the Signal Tap Logic Analyzer
	2.4.5.1. Adding Pre-Synthesis or Post-Fit Nodes
	2.4.5.2. Adding Simulator-Aware Signal Tap Nodes
	2.4.5.2.1. Add Simulator-Aware Node Finder Settings

	2.4.5.3. Adding Nios II Processor Signals with a Plug-In
	2.4.5.4. Signals Unavailable for Signal Tap Debugging
	2.4.5.5. Organizing Signals in the Signal Tap Logic Analyzer

	2.4.6. Defining Trigger Conditions
	2.4.6.1. Basic Trigger Conditions
	2.4.6.2. Nested Trigger Conditions
	2.4.6.3. Comparison Trigger Conditions
	2.4.6.3.1. Specifying the Comparison Trigger Conditions

	2.4.6.4. Advanced Trigger Conditions
	2.4.6.4.1. Examples of Advanced Triggering Expressions

	2.4.6.5. Custom Trigger HDL Object
	2.4.6.5.1. Using the Custom Trigger HDL Object
	2.4.6.5.2. Required Inputs and Outputs of Custom Trigger HDL Module
	2.4.6.5.3. Custom Trigger HDL Module Properties

	2.4.6.6. Specify Trigger Position
	2.4.6.6.1. Post-fill Count

	2.4.6.7. Power-Up Triggers
	2.4.6.7.1. Enabling a Power-Up Trigger
	2.4.6.7.2. Configuring Power-Up Trigger Conditions
	2.4.6.7.3. Managing Signal Tap Instances with Run-Time and Power-Up Trigger Conditions

	2.4.6.8. External Triggers
	2.4.6.9. Trigger Condition Flow Control
	2.4.6.10. Sequential Triggering
	2.4.6.10.1. Configuring the Sequential Triggering Flow

	2.4.6.11. State-Based Triggering
	2.4.6.11.1. State-Based Triggering Flow Tab
	2.4.6.11.2. State Machine Pane
	2.4.6.11.3. Resources Pane
	2.4.6.11.4. State Diagram Pane
	2.4.6.11.5. Signal Tap Trigger Flow Description Language
	<state_label>
	<boolean_expression>
	<action_list>
	Buffer Control Actions
	State Transition Action

	Trigger that Skips Clock Cycles after Hitting Condition
	Storage Qualification with Post-Fill Count Value Less than m
	Resource Manipulation Action
	Buffer Control Actions
	State Transition Action

	2.4.6.11.6. State-Based Storage Qualifier Feature
	Storage Qualification Feature for the State-Based Trigger Flow

	2.4.6.12. Trigger Lock Mode

	2.4.7. Specifying Pipeline Settings
	2.4.8. Filtering Relevant Samples
	2.4.8.1. Input Port Mode
	2.4.8.2. Transitional Mode
	2.4.8.3. Conditional Mode
	2.4.8.4. Start/Stop Mode
	2.4.8.5. State-Based Mode
	2.4.8.6. Showing Data Discontinuities
	2.4.8.7. Disable the Storage Qualifier

	2.5. Step 3: Compile the Design and Signal Tap Instances
	2.5.1. Recompiling Only Signal Tap Changes
	2.5.2. Timing Preservation
	2.5.3. Performance and Resource Considerations
	2.5.3.1. Increasing Signal Tap Logic Performance
	2.5.3.2. Reducing Signal Tap Device Resources

	2.6. Step 4: Program the Target Hardware
	2.6.1. Ensure Compatibility Between .stp and .sof Files

	2.7. Step 5: Run the Signal Tap Logic Analyzer
	2.7.1. Changing the Post-Fit Signal Tap Target Nodes
	2.7.2. Runtime Reconfigurable Options
	2.7.3. Signal Tap Status Messages

	2.8. Step 6: Analyze Signal Tap Captured Data
	2.8.1. Viewing Capture Data Using Segmented Buffers
	2.8.2. Viewing Data with Different Acquisition Modes
	2.8.2.1. Continuous Mode and a Storage Qualifier Examples

	2.8.3. Creating Mnemonics for Bit Patterns
	2.8.3.1. Adding Mnemonics with a Plug-In

	2.8.4. Locating a Node in the Design
	2.8.5. Saving Captured Signal Tap Data
	2.8.6. Exporting Captured Signal Tap Data
	2.8.7. Creating a Signal Tap List File

	2.9. Other Signal Tap Debugging Flows
	2.9.1. Signal Tap and Simulator Integration
	2.9.1.1. Generating a Simulation Testbench from Signal Tap Data
	2.9.1.2. Create Simulation Testbench Dialog Box Settings

	2.9.2. Managing Multiple Signal Tap Configurations
	2.9.2.1. Data Log Pane
	2.9.2.2. SOF Manager

	2.9.3. Debugging Partial Reconfiguration Designs with Signal Tap
	2.9.3.1. Signal Tap Guidelines for PR Designs
	2.9.3.2. PR Design Setup for Signal Tap Debug
	2.9.3.2.1. Preparing the Static Region for Signal Tap Debugging
	2.9.3.2.2. Preparing the Base Revision for Signal Tap Debugging
	2.9.3.2.3. Preparing PR Personas for Signal Tap Debugging

	2.9.3.3. Performing Data Acquisition in a PR design

	2.9.4. Debugging Block-Based Designs with Signal Tap
	2.9.4.1. Signal Tap Debugging with a Core Partition
	2.9.4.1.1. Partition Boundary Ports Method
	2.9.4.1.2. Debug a Core Partition through Partition Boundary Ports
	2.9.4.1.3. Export a Core Partition with Partition Boundary Ports
	2.9.4.1.4. Signal Tap HDL Instance Method
	Debug a Core Partition Exported with Signal Tap HDL Instances

	2.9.4.1.5. Export a Core Partition with Signal Tap HDL Instances
	2.9.4.1.6. Debug a Core Partition Exported with Signal Tap HDL Instances

	2.9.4.2. Signal Tap Debugging with a Root Partition
	2.9.4.2.1. Export the Root Partition with SLD JTAG Bridge
	2.9.4.2.2. Debugging an Exported Root Partition and Core Partition Simultaneously using the SLD JTAG Bridge

	2.9.4.3. Compiler Snapshots and Signal Tap Debugging
	2.9.4.3.1. Add Post-Fit Nodes when Reusing a Partition Containing a Synthesis Snapshot

	2.9.5. Debugging Devices that use Configuration Bitstream Security
	2.9.6. Signal Tap Data Capture with the MATLAB MEX Function

	2.10. Signal Tap Logic Analyzer Design Examples
	2.11. Custom State-Based Triggering Flow Examples
	2.11.1. Trigger Example 1: Custom Trigger Position
	2.11.2. Trigger Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	2.12. Signal Tap File Templates
	2.13. Running the Stand-Alone Version of Signal Tap
	2.14. Signal Tap Scripting Support
	2.14.1. Signal Tap Command-Line Options
	2.14.2. Data Capture from the Command Line

	2.15. Signal Tap File Version Compatibility
	2.16. Design Debugging with the Signal Tap Logic Analyzer Revision History

	3. Quick Design Verification with Signal Probe
	3.1. Signal Probe Debugging Flow
	3.1.1. Step 1: Reserve Signal Probe Pins
	3.1.2. Step 2: Assign Nodes to Signal Probe Pins
	3.1.3. Step 3: Connect the Signal Probe Pin to an Output Pin
	3.1.4. Step 4: Compile the Design
	3.1.5. (Optional) Step 5: Modify the Signal Probe Pins Assignments
	3.1.6. Step 6: Run Fitter-Only Compilation
	3.1.7. Step 7: Check Connection Table in Fitter Report

	3.2. Quick Design Verification with Signal Probe Revision History

	4. In-System Debugging Using External Logic Analyzers
	4.1. About the Intel Quartus Prime Logic Analyzer Interface
	4.2. Choosing a Logic Analyzer
	4.2.1. Required Components

	4.3. Flow for Using the LAI
	4.3.1. Defining Parameters for the Logic Analyzer Interface
	4.3.2. Mapping the LAI File Pins to Available I/O Pins
	4.3.3. Mapping Internal Signals to the LAI Banks
	4.3.4. Compiling Your Intel Quartus Prime Project
	4.3.5. Programming Your Intel-Supported Device Using the LAI

	4.4. Controlling the Active Bank During Runtime
	4.4.1. Acquiring Data on Your Logic Analyzer

	4.5. LAI Core Parameters
	4.6. In-System Debugging Using External Logic Analyzers Revision History

	5. In-System Modification of Memory and Constants
	5.1. IP Cores Supporting In System Memory Content Editor
	5.2. Debug Flow with the In-System Memory Content Editor
	5.3. Enabling Runtime Modification of Instances in the Design
	5.4. Programming the Device with the In-System Memory Content Editor
	5.5. Loading Memory Instances to the ISMCE
	5.6. Monitoring Locations in Memory
	5.7. Editing Memory Contents with the Hex Editor Pane
	5.8. Importing and Exporting Memory Files
	5.9. Access Two or More Devices
	5.10. Scripting Support
	5.10.1. The insystem_memory_edit Tcl Package
	5.10.1.1. Getting Information about the insystem_memory_edit Package

	5.11. In-System Modification of Memory and Constants Revision History

	6. Design Debugging Using In-System Sources and Probes
	6.1. Hardware and Software Requirements
	6.2. Design Flow Using the In-System Sources and Probes Editor
	6.2.1. Instantiating the In-System Sources and Probes IP Core
	6.2.2. In-System Sources and Probes IP Core Parameters

	6.3. Compiling the Design
	6.4. Running the In-System Sources and Probes Editor
	6.4.1. In-System Sources and Probes Editor GUI
	6.4.2. Programming Your Device With JTAG Chain Configuration
	6.4.3. Instance Manager
	6.4.4. In-System Sources and Probes Editor Pane
	6.4.4.1. Reading Probe Data
	6.4.4.2. Writing Data
	6.4.4.3. Organizing Data

	6.5. Tcl interface for the In-System Sources and Probes Editor
	6.6. Design Example: Dynamic PLL Reconfiguration
	6.7. Design Debugging Using In-System Sources and Probes Revision History

	7. Analyzing and Debugging Designs with System Console
	7.1. Introduction to System Console
	7.1.1. IP Cores that Interact with System Console
	7.1.2. Services Provided through Debug Agents
	7.1.3. System Console Debugging Flow

	7.2. Starting System Console
	7.2.1. Customizing System Console Startup

	7.3. System Console GUI
	7.3.1. System Console Views
	7.3.1.1. Main View
	7.3.1.1.1. Link Pair View

	7.3.1.2. Autosweep View
	7.3.1.3. Dashboard View
	7.3.1.4. Eye Viewer

	7.3.2. Toolkit Explorer Pane
	7.3.3. System Explorer Pane
	7.3.4. Customizing, Saving, and Resetting the System Console Layout

	7.4. Launching a Toolkit in System Console
	7.4.1. Available System Debugging Toolkits
	7.4.2. Creating Collections from the Toolkit Explorer
	7.4.3. Filtering and Searching Interactive Instances

	7.5. Using System Console Services
	7.5.1. Locating Available Services
	7.5.2. Opening and Closing Services
	7.5.3. Using the SLD Service
	7.5.3.1. SLD Commands

	7.5.4. Using the In-System Sources and Probes Service
	7.5.4.1. In-System Sources and Probes Commands

	7.5.5. Using the Monitor Service
	7.5.5.1. Monitor Commands

	7.5.6. Using the Device Service
	7.5.6.1. Device Commands

	7.5.7. Using the Design Service
	7.5.7.1. Design Service Commands

	7.5.8. Using the Bytestream Service
	7.5.8.1. Bytestream Commands

	7.5.9. Using the JTAG Debug Service
	7.5.9.1. JTAG Debug Commands

	7.6. On-Board Intel FPGA Download Cable II Support
	7.7. MATLAB and Simulink* in a System Verification Flow
	7.7.1. Supported MATLAB API Commands
	7.7.2. High Level Flow

	7.8. System Console Examples and Tutorials
	7.8.1. Nios II Processor Example
	7.8.1.1. Processor Commands

	7.9. Running System Console in Command-Line Mode
	7.10. Using System Console Commands
	7.11. Using Toolkit Tcl Commands
	7.12. Analyzing and Debugging Designs with the System Console Revision History

	8. Intel Quartus Prime Pro Edition User Guide Debug Tools Archives
	A. Intel Quartus Prime Pro Edition User Guides

	Quartus Prime Pro Edition User Guide: Timing Analyzer
	Contents
	1. Timing Analysis Introduction
	1.1. What's New In This Version
	1.2. Timing Analysis Basic Concepts
	1.2.1. Timing Path and Clock Analysis
	1.2.1.1. The Timing Netlist
	1.2.1.2. Timing Paths
	1.2.1.3. Data and Clock Arrival Times
	1.2.1.4. Launch and Latch Edges

	1.2.2. Clock Setup Analysis
	1.2.3. Clock Hold Analysis
	1.2.4. Recovery and Removal Analysis
	1.2.5. Multicycle Path Analysis
	1.2.5.1. Multicycle Clock Hold
	1.2.5.2. Multicycle Clock Setup

	1.2.6. Metastability Analysis
	1.2.7. Timing Pessimism
	1.2.8. Clock-As-Data Analysis
	1.2.9. Multicorner Timing Analysis
	1.2.10. Time Borrowing
	1.2.10.1. Time Borrowing Limitations
	1.2.10.2. Time Borrowing with Latches
	1.2.10.3. Enabling Time Borrowing Optimization

	1.3. Timing Analysis Overview Document Revision History

	2. Using the Quartus Prime Timing Analyzer
	2.1. Using Timing Constraints throughout the Design Flow
	2.2. Timing Analysis Flow
	2.2.1. Step 1: Specify General Timing Analyzer Settings
	2.2.2. Step 2: Specify Timing Constraints
	2.2.2.1. Specifying SDC-on-RTL Timing Constraints
	2.2.2.2. Specifying Conventional SDC Timing Constraints
	2.2.2.3. Specifying Synthesis-Only SDC Timing Constraints

	2.2.3. Step 3: Run the Timing Analyzer
	2.2.3.1. Running Post-Synthesis Early Timing Analysis
	2.2.3.2. Running Post-Fit Timing Analysis
	2.2.3.2.1. Setting the Operating Conditions for Timing Analysis
	2.2.3.2.2. Promoting Critical Warnings to Errors

	2.2.4. Step 4: Analyze Timing Reports
	2.2.4.1. Cross-Probing with Design Assistant
	2.2.4.1.1. Cross-Probing from Design Assistant to Timing Analyzer

	2.2.4.2. Launching Design Assistant from Timing Analyzer
	2.2.4.3. Locating Timing Paths in Other Tools
	2.2.4.4. Correlating Constraints to the Timing Report

	2.3. Applying Timing Constraints
	2.3.1. Recommended Initial Conventional SDC Constraints
	2.3.1.1. Create Clock (create_clock)
	2.3.1.2. Derive PLL Clocks (derive_pll_clocks)
	2.3.1.3. Derive Clock Uncertainty (derive_clock_uncertainty)
	2.3.1.4. Set Clock Groups (set_clock_groups)

	2.3.2. Example Circuit and Conventional SDC File
	2.3.3. SDC File Precedence
	2.3.4. Iteratively Modifying Constraints
	2.3.5. Applying Entity-Bound Timing Constraints
	2.3.5.1. Using Entity-Based SDC-on-RTL Constraints
	2.3.5.1.1. Targeting Constraints to Module Inputs and Outputs
	2.3.5.1.2. Entity Based SDC-on-RTL Constraint Scope
	2.3.5.1.3. Automatic Scope Example for SDC-on-RTL
	2.3.5.1.4. Manual Scope Example for SDC-on-RTL

	2.3.5.2. Using Entity-Bound SDC Files
	2.3.5.2.1. Entity-Bound SDC Constraint Scope
	2.3.5.2.2. Automatic Scope Entity-bound Constraint Example
	2.3.5.2.3. Manual Scope Entity-bound Constraint Example
	2.3.5.2.4. Exporting a Design Partition with Entity-bound Constraints
	2.3.5.2.5. Importing a Design Partition with Entity-bound Constraints

	2.3.6. Constraining Design Partition Ports
	2.3.6.1. Timing Analysis of Imported Compilation Results

	2.3.7. Using Fitter Overconstraints

	2.4. Timing Constraint Descriptions
	2.4.1. Clock Constraints
	2.4.1.1. Creating Base Clocks
	2.4.1.1.1. Automatic Clock Detection and Constraint Creation

	2.4.1.2. Creating Virtual Clocks
	2.4.1.2.1. Specifying I/O Interface Uncertainty
	2.4.1.2.2. I/O Interface Clock Uncertainty Example

	2.4.1.3. Creating Generated Clocks (create_generated_clock)
	2.4.1.3.1. Clock Divider Example (-divide_by)
	2.4.1.3.2. Clock Multiplexer Example

	2.4.1.4. Deriving PLL Clocks
	2.4.1.5. Creating Clock Groups (set_clock_groups)
	2.4.1.5.1. Exclusive Clock Groups (-logically_exclusive or -physically_exclusive)
	2.4.1.5.2. Asynchronous Clock Groups (-asynchronous)
	2.4.1.5.3. set_clock_groups Constraint Tips

	2.4.1.6. Accounting for Clock Effect Characteristics
	2.4.1.6.1. Set Clock Latency (set_clock_latency)
	2.4.1.6.2. Clock Uncertainty

	2.4.1.7. Constraining CDC Paths

	2.4.2. I/O Constraints
	2.4.2.1. Input Constraints (set_input_delay)
	2.4.2.2. Output Constraints (set_output_delay)

	2.4.3. Delay and Skew Constraints
	2.4.3.1. Advanced I/O Timing and Board Trace Model Delay
	2.4.3.2. Maximum Skew (set_max_skew)
	2.4.3.3. Net Delay (set_net_delay)

	2.4.4. Timing Exception Constraints
	2.4.4.1. Timing Exception Precedence
	2.4.4.2. False Paths (set_false_path)
	2.4.4.3. Minimum and Maximum Delays
	2.4.4.4. Multicycle Paths
	2.4.4.4.1. Common Multicycle Applications
	2.4.4.4.2. Relaxing Setup with Multicycle (set_multicyle_path)
	2.4.4.4.3. Accounting for a Phase Shift (-phase)

	2.4.4.5. Multicycle Exception Examples
	2.4.4.5.1. Default Multicycle Analysis
	2.4.4.5.2. End Multicycle Setup = 2 and End Multicycle Hold = 0
	2.4.4.5.3. End Multicycle Setup = 2 and End Multicycle Hold = 1
	2.4.4.5.4. Same Frequency Clocks with Destination Clock Offset
	2.4.4.5.5. Destination Clock Frequency is a Multiple of the Source Clock Frequency
	2.4.4.5.6. Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
	2.4.4.5.7. Source Clock Frequency is a Multiple of the Destination Clock Frequency
	2.4.4.5.8. Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset

	2.4.5. Delay Annotation

	2.5. Timing Report Descriptions
	2.5.1. Report Fmax Summary
	2.5.2. Report Timing
	2.5.3. Report Timing By Source Files
	2.5.4. Report Data Delay
	2.5.5. Report Net Delay
	2.5.6. Report Clocks and Clock Network
	2.5.7. Report Clock Transfers
	2.5.8. Report Metastability
	2.5.9. Report CDC Viewer
	2.5.10. Report Asynchronous CDC
	2.5.11. Report Logic Depth
	2.5.12. Report Neighbor Paths
	2.5.13. Report Register Spread
	2.5.13.1. Registers with High Timing Path Endpoint Tension
	2.5.13.2. Registers with High Immediate Fan-Out Tension

	2.5.14. Report Route Net of Interest
	2.5.15. Report Retiming Restrictions
	2.5.16. Report Register Statistics
	2.5.17. Report Pipelining Information
	2.5.18. Report Time Borrowing Data
	2.5.19. Report Exceptions and Exceptions Reachability
	2.5.20. Report Bottlenecks
	2.5.20.1. Specifying Custom Bottleneck Criteria

	2.5.21. Check Timing
	2.5.22. Report SDC

	2.6. Scripting Timing Analysis
	2.6.1. The quartus_sta Executable
	2.6.2. The quartus_staw Executable
	2.6.3. Collection Commands
	2.6.3.1. Wildcard Characters
	2.6.3.2. Adding and Removing Collection Items
	2.6.3.3. Query of Collections
	2.6.3.4. Using the get_pins Command

	2.7. Using the Quartus Prime Timing Analyzer Document Revision History
	2.8. Quartus Prime Pro Edition User Guide: Timing Analyzer Archive

	A. Quartus Prime Pro Edition User Guides

	Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
	Contents
	1. Power Analysis
	1.1. Power Analysis Tools
	1.2. Running the Power Analyzer
	1.3. Specifying Power Analyzer Input
	1.3.1. Settings for Power Analysis
	1.3.2. Specifying Signal Activity Data
	1.3.2.1. Using Simulation Signal Activity Data in Power Analysis
	1.3.2.1.1. Generating Signal Activity Data for Power Analysis
	1.3.2.1.2. Generating Standard Delay Output for Power Analysis
	1.3.2.1.3. Simulation Glitch Filtering

	1.3.2.2. Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
	1.3.2.2.1. RTL Simulation Limitation

	1.3.2.3. Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities
	1.3.2.4. Signal Activities from User Defaults Only

	1.3.3. Specifying the Default Toggle Rate
	1.3.4. Specifying Toggle Rates for Specific Nodes
	1.3.4.1. Clock Node Toggle Rates

	1.3.5. Avoiding Simulation Node Name Match

	1.4. Viewing Power Analysis Reports
	1.5. Power Analysis in Modular Design Flows
	1.5.1. Complete Design Simulation Power Analysis Flow
	1.5.2. Modular Design Simulation Power Analysis Flow
	1.5.3. Multiple Simulation Power Analysis Flow
	1.5.4. Overlapping Simulation Power Analysis Flow
	1.5.5. Partial Design Simulation Power Analysis Flow
	1.5.5.1. Specifying Start and End Time for Signal Activity Calculations

	1.5.6. Vectorless Estimation Power Analysis Flow

	1.6. Scripting Support
	1.6.1. Running the Power Analyzer from the Command–Line

	1.7. Power Analysis Revision History

	2. Power Optimization
	2.1. Factors Affecting Power Consumption
	2.1.1. Design Activity and Power Analysis
	2.1.2. Device Selection
	2.1.3. Environmental Conditions
	2.1.4. Device Resource Usage
	2.1.4.1. Number, Type, and Loading of I/O Pins
	2.1.4.2. Number and Type of Hard Logic Blocks
	2.1.4.3. Number and Type of Global Signals

	2.1.5. Signal Activity
	2.1.5.1. Toggle Rate
	2.1.5.2. Static Probability

	2.2. Design Space Explorer II for Power-Driven Optimization
	2.3. Power-Driven Compilation
	2.3.1. Power-Driven Synthesis
	2.3.1.1. Memory Block Optimization
	2.3.1.2. Power-Aware Logic Mapping
	2.3.1.3. Power-Aware Memory Balancing

	2.3.2. Power-Driven Fitter
	2.3.3. Area-Driven Synthesis
	2.3.4. Gate-Level Register Retiming
	2.3.5. Quartus Prime Compiler Settings
	2.3.6. Assignment Editor Options

	2.4. Design Guidelines
	2.4.1. Clock Power Management
	2.4.1.1. Clock Gating
	2.4.1.1.1. Root Clock Gate
	2.4.1.1.2. Sector Clock Gate
	2.4.1.1.3. I/O PLL Clock Gate

	2.4.1.2. Clock Enable in Memory Blocks
	2.4.1.3. LAB Clock Power
	2.4.1.3.1. LAB-Wide Clock Enable Example

	2.4.1.4. Clock Enables
	2.4.1.5. Global Signals
	2.4.1.5.1. Viewing Clock Details in the Chip Planner

	2.4.1.6. Merge Clocks

	2.4.2. Pipelining and Retiming
	2.4.3. Architectural Optimization
	2.4.4. I/O Power Guidelines
	2.4.5. Dynamically Controlled On-Chip Terminations (OCT)
	2.4.6. Memory Optimization (M20K/MLAB)
	2.4.6.1. Implementation
	2.4.6.2. Rd/Wr Enables

	2.4.7. DDR Memory Controller Settings
	2.4.8. DSP Implementation
	2.4.9. Reducing High-Speed Tile (HST) Usage
	2.4.10. Unused Transceiver Channels
	2.4.11. Periphery Power reduction XCVR Settings
	2.4.11.1. Transceiver Settings
	2.4.11.2. I/O Current Strength

	2.5. Power Optimization Advisor
	2.5.1. Set Realistic Timing Constraints
	2.5.1.1. Find Timing Information

	2.5.2. Appropriate Device Family
	2.5.3. Dynamic Power
	2.5.4. Static Power
	2.5.5. Appropriate I/O Standards
	2.5.6. Use RAM Blocks
	2.5.7. Shut Down RAM Blocks
	2.5.8. Clock Enables on Logic
	2.5.9. Pipeline Logic to Reduce Glitching

	2.6. Power Optimization Revision History

	3. Power Analysis and Optimization Document Archive
	A. Quartus Prime Pro Edition User Guides

	Quartus Prime Pro Edition User Guide: Design Constraints
	Contents
	1. Constraining Designs
	1.1. Specifying Design Constraints in the GUI
	1.1.1. Global Constraints and Assignments
	1.1.2. Node, Entity, and Instance-Level Constraints
	1.1.2.1. Specify Instance-Specific Constraints in Assignment Editor
	1.1.2.1.1. Specifying Multi-Dimensional Bus Constraints

	1.1.2.2. Specify NoC Constraints in NoC Assignment Editor
	1.1.2.2.1. NoC Assignment Editor Interface Controls
	1.1.2.2.2. Troubleshooting NoC Assignment Editor

	1.1.2.3. Specify I/O Constraints in Pin Planner
	1.1.2.4. Plan Interface Constraints in Interface Planner and Tile Interface Planner
	1.1.2.5. Adjust Constraints with the Chip Planner
	1.1.2.6. Constraining Designs with the Design Partition Planner

	1.1.3. Probing Between Components of the Quartus Prime GUI
	1.1.4. Specifying Timing Constraints

	1.2. Constraining Designs with Tcl Scripts
	1.2.1. Create a Project and Apply Constraints
	1.2.2. Assigning a Pin
	1.2.3. Generating Quartus Prime Settings Files
	1.2.4. Synopsys Design Constraint (.sdc) Files
	1.2.5. Tcl-only Script Flows

	1.3. A Fully Iterative Scripted Flow
	1.4. Constraining Designs Revision History

	2. Interface Planning
	2.1. Using Interface Planner
	2.1.1. Interface Planner User Interface
	2.1.1.1. Flow Controls
	2.1.1.2. Home Tab Controls
	2.1.1.3. Assignments Tab Controls
	2.1.1.4. Plan Tab Controls
	2.1.1.5. Reports Tab Controls

	2.1.2. Interface Planner General Tool Flow
	2.1.2.1. Step 1: Setup and Synthesize the Project
	2.1.2.2. Step 2: Initialize Interface Planner
	2.1.2.3. Step 3: Update Plan with Project Assignments
	2.1.2.4. Step 4: Plan Periphery Placement
	2.1.2.4.1. Plan Clock Networks
	2.1.2.4.2. Saving & Loading Floorplans

	2.1.2.5. Step 5: Report Placement Data
	2.1.2.6. Step 6: Validate and Export Plan Constraints

	2.1.3. Interface Planner NoC Tool Flow
	2.1.3.1. Placing NoC Design Elements Using Interface Planner
	2.1.3.1.1. Recommended Placement Order for NoC Elements in Interface Planner
	2.1.3.1.2. High-Speed Interconnect NoC Locations in Interface Planner

	2.1.4. Interface Planner Reports
	2.1.4.1. Report Summary
	2.1.4.2. Report Pins
	2.1.4.3. Report HSSI Channels
	2.1.4.4. Report Clocks
	2.1.4.5. Report Periphery Locations
	2.1.4.6. Report Cell Connectivity
	2.1.4.7. Report Instance Assignments
	2.1.4.8. Report NoC Performance

	2.2. Using Tile Interface Planner
	2.2.1. Tile Interface Planner Terminology
	2.2.2. Tile Interface Planner Tool Flow
	2.2.2.1. Step 1: Instantiate IP and Run Design Analysis
	2.2.2.2. Step 2: Initialize Tile Interface Planner
	2.2.2.3. Step 3: Update Plan with Project Assignments
	2.2.2.4. Step 4: Create a Tile Plan
	2.2.2.4.1. Placing IP Components
	2.2.2.4.2. Constraining IP Building Blocks

	2.2.2.5. Step 5: Save Tile Plan Assignments
	2.2.2.6. Step 6: Run Logic Generation and Design Synthesis

	2.2.3. Constraining Dynamic Reconfiguration IP
	2.2.3.1. Defining a Dynamic Reconfiguration Group
	2.2.3.2. Assigning Dynamic Reconfiguration Group Placement

	2.2.4. Tile Interface Planner GUI Reference
	2.2.4.1. Flow Controls
	2.2.4.2. Home Tab
	2.2.4.3. Assignments Tab Controls
	2.2.4.4. Plan Tab Controls
	2.2.4.4.1. Design Tree and Filters
	2.2.4.4.2. Reconfiguration Groups View
	2.2.4.4.3. Legal Locations Pane

	2.2.4.5. Tcl Console Window

	2.3. Interface Planning Revision History

	3. Managing Device I/O Pins
	3.1. I/O Planning Overview
	3.1.1. Basic I/O Planning Flow
	3.1.2. Integrating PCB Design Tools
	3.1.3. Intel FPGA Device and I/O Terminology

	3.2. Assigning I/O Pins
	3.2.1. Assigning to Exclusive Pin Groups
	3.2.2. Assigning Slew Rate and Drive Strength
	3.2.3. Assigning I/O Banks
	3.2.4. Changing Pin Planner Highlight Colors
	3.2.5. Showing I/O Lanes
	3.2.6. Assigning Differential Pins
	3.2.6.1. Overriding I/O Placement Rules on Differential Pins

	3.2.7. Entering Pin Assignments with Tcl Commands
	3.2.8. Entering Pin Assignments in HDL Code
	3.2.8.1. Using Low-Level I/O Primitives

	3.3. Importing and Exporting I/O Pin Assignments
	3.3.1. Importing and Exporting for PCB Tools
	3.3.2. Migrating Assignments to Another Target Device

	3.4. Validating Pin Assignments
	3.4.1. I/O Assignment Validation Rules
	3.4.2. I/O Assignment Analysis
	3.4.2.1. Early I/O Assignment Analysis Without Design Files
	3.4.2.2. I/O Assignment Analysis With Design Files
	3.4.2.3. Overriding Default I/O Pin Analysis

	3.4.3. Understanding I/O Analysis Reports

	3.5. Verifying I/O Timing
	3.5.1. Running Advanced I/O Timing
	3.5.1.1. Board Trace Models
	3.5.1.2. Defining the Board Trace Model
	3.5.1.3. Modifying the Board Trace Model
	3.5.1.4. Specifying Near-End vs Far-End I/O Timing Analysis
	3.5.1.5. Advanced I/O Timing Analysis Reports

	3.5.2. Adjusting I/O Timing and Power with Capacitive Loading

	3.6. Viewing Routing and Timing Delays
	3.7. Scripting API
	3.7.1. Generate Mapped Netlist
	3.7.2. Reserve Pins
	3.7.3. Set Location
	3.7.4. Exclusive I/O Group
	3.7.5. Slew Rate and Current Strength

	3.8. Managing Device I/O Pins Revision History

	4. Quartus Prime Pro Edition User Guide: Design Constraints Document Archives
	A. Quartus Prime Pro Edition User Guides

	Quartus Prime Pro Edition User Guide: PCB Design Tools
	Contents
	1. Signal Integrity Analysis with Third-Party Tools
	1.1. Signal Integrity Analysis with Third-Party Tools
	1.1.1. What's New In This Version
	1.1.2. Signal Integrity Simulations with HSPICE and IBIS Models

	1.2. I/O Model Selection: IBIS or HSPICE
	1.3. FPGA to Board Signal Integrity Analysis Flow
	1.3.1. Create I/O and Board Trace Model Assignments
	1.3.2. Customize the Output Files
	1.3.3. Set Up and Run Simulations in Third-Party Tools
	1.3.4. Interpret Simulation Results

	1.4. Simulation with IBIS Models
	1.4.1. IBIS Model Access and Customization Flows
	1.4.2. Elements of an IBIS Model
	1.4.3. Customizing IBIS Models
	1.4.3.1. Generate Custom IBIS Models with the EDA Netlist Writer GUI
	1.4.3.1.1. Board Level Signal Integrity Analysis Settings

	1.4.3.2. Customizing Downloaded or Installed IBIS Model Files for Agilex FPGA Portfolio Devices
	1.4.3.3. Customizing Downloaded IBIS Models for Stratix 10 Devices, Arria 10 Devices, and Cyclone 10 GX Devices

	1.4.4. Design Simulation Using the Siemens EDA HyperLynx* Software
	1.4.5. Configuring LineSim to Use Intel IBIS Models
	1.4.6. Integrating Intel IBIS Models into LineSim Simulations
	1.4.7. Running and Interpreting LineSim Simulations

	1.5. Simulation with HSPICE Models
	1.5.1. Supported Devices and Signaling
	1.5.2. Accessing HSPICE Simulation Kits
	1.5.3. The Double Counting Problem in HSPICE Simulations
	1.5.3.1. Defining the Double Counting Problem
	1.5.3.2. The Solution to Double Counting

	1.5.4. HSPICE Writer Tool Flow
	1.5.4.1. Applying I/O Assignments
	1.5.4.2. Enabling HSPICE Writer Using Assignments
	1.5.4.3. Naming Conventions for HSPICE Files
	1.5.4.4. Invoking HSPICE Writer
	1.5.4.5. Invoking HSPICE Writer from the Command Line
	1.5.4.6. Customizing Automatically Generated HSPICE Decks

	1.5.5. Running an HSPICE Simulation
	1.5.6. Interpreting the Results of an Output Simulation
	1.5.7. Interpreting the Results of an Input Simulation
	1.5.8. Viewing and Interpreting Tabular Simulation Results
	1.5.9. Viewing Graphical Simulation Results
	1.5.10. Making Design Adjustments Based on HSPICE Simulations
	1.5.11. Sample Input for I/O HSPICE Simulation Deck
	1.5.11.1. Header Comment
	1.5.11.2. Simulation Conditions
	1.5.11.3. Simulation Options
	1.5.11.4. Constant Definition
	1.5.11.5. Buffer Netlist
	1.5.11.6. Drive Strength
	1.5.11.7. I/O Buffer Instantiation
	1.5.11.8. Board Trace and Termination
	1.5.11.9. Stimulus Model
	1.5.11.10. Simulation Analysis

	1.5.12. Sample Output for I/O HSPICE Simulation Deck
	1.5.12.1. Header Comment
	1.5.12.2. Simulation Conditions
	1.5.12.3. Simulation Options
	1.5.12.4. Constant Definition
	1.5.12.5. I/O Buffer Netlist
	1.5.12.6. Drive Strength
	1.5.12.7. Slew Rate and Delay Chain
	1.5.12.8. I/O Buffer Instantiation
	1.5.12.9. Board and Trace Termination
	1.5.12.10. Double-Counting Compensation Circuitry
	1.5.12.11. Simulation Analysis

	1.5.13. Advanced Topics
	1.5.13.1. PVT Simulations
	1.5.13.2. Hold Time Analysis
	1.5.13.3. I/O Voltage Variations
	1.5.13.4. Correlation Report

	1.6. Signal Integrity Analysis with Third-Party Tools Document Revision History

	2. Reviewing Printed Circuit Board Schematics with the Quartus Prime Software
	2.1. Reviewing Quartus Prime Software Settings
	2.1.1. Device and Pins Options Dialog Box Settings
	2.1.1.1. Configuration Settings
	2.1.1.2. Unused Pin Settings
	2.1.1.3. Dual-Purpose Pins Settings
	2.1.1.4. Voltage Settings
	2.1.1.5. Error Detection CRC Settings

	2.2. Reviewing Device Pin-Out Information in the Fitter Report
	2.3. Reviewing Compilation Error and Warning Messages
	2.4. Using Additional Quartus Prime Software Features
	2.5. Using Additional Quartus Prime Software Tools
	2.5.1. Pin Planner

	2.6. Reviewing Printed Circuit Board Schematics with the Quartus Prime Software Revision History

	3. Siemens EDA PCB Design Tools Support
	3.1. Integrating with DxDesigner
	3.1.1. DxDesigner Project Settings
	3.1.2. Creating Schematic Symbols in DxDesigner

	3.2. Siemens EDA PCB Design Tools Support Revision History

	4. Cadence Board Design Tools Support
	4.1. Cadence PCB Design Tools Support
	4.2. Product Comparison
	4.3. FPGA-to-PCB Design Flow
	4.3.1. Integrating Intel FPGA Designs

	4.4. Setting Up the Quartus Prime Software
	4.4.1. Generating a .pin File

	4.5. FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
	4.5.1. Creating Symbols
	4.5.1.1. Cadence Allegro PCB Librarian Part Developer Tool
	4.5.1.1.1. Cadence Allegro PCB Librarian Part Developer Tool in the Design Flow
	4.5.1.1.2. Import and Export Wizard
	4.5.1.1.3. Editing and Fracturing Symbol
	4.5.1.1.4. Updating FPGA Symbols

	4.5.2. Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software

	4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
	4.6.1. Creating a Cadence Allegro Design Entry CIS Project
	4.6.2. Generating a Part
	4.6.3. Generating Schematic Symbol
	4.6.4. Splitting a Part
	4.6.5. Instantiating a Symbol in a Design Entry CIS Schematic
	4.6.6. Intel Libraries for the Cadence Allegro Design Entry CIS Software
	4.6.6.1. Using the Intel-provided Libraries with your Cadence Allegro Design Entry CIS Project

	4.7. Cadence Board Design Tools Support Revision History

	5. Quartus Prime Pro Edition User Guide: PCB Design Tools Document Archives
	A. Quartus Prime Pro Edition User Guides

	Quartus Prime Pro Edition User Guide: Scripting
	Contents
	1. Command Line Scripting
	1.1. Benefits of Command-Line Executables
	1.2. Command-Line Scripting Help
	1.3. Project Settings with Command-Line Options
	1.3.1. Option Precedence

	1.4. Compilation with quartus_sh --flow
	1.4.1. Resuming a Compilation with quartus_sh --flow
	1.4.2. Temporarily Overriding the Compiler Optimization Mode

	1.5. Text-Based Report Files
	1.6. Using Command-Line Executables in Scripts
	1.7. Common Scripting Examples
	1.7.1. Create a Project and Apply Constraints
	1.7.2. Check Design File Syntax
	1.7.3. Create a Project and Synthesize a Netlist Using Netlist Optimizations
	1.7.4. Archive and Restore Projects
	1.7.5. Update Memory Contents Without Recompiling
	1.7.6. Create Device Configuration Files
	1.7.7. Fit a Design Using Multiple Seeds

	1.8. The QFlow Script
	1.8.1. --partition Option

	1.9. Command-Line Scripting Revision History

	2. Tcl Scripting
	2.1. Tool Command Language
	2.2. The Quartus Prime Tcl Console Window
	2.3. Quartus Prime Tcl Packages
	2.3.1. Loading Tcl Packages
	2.3.2. Quartus Prime Tcl API Help
	2.3.2.1. Command-Line Options
	2.3.2.1.1. Run a Tcl Script
	2.3.2.1.2. Interactive Shell Mode
	2.3.2.1.3. Evaluate as Tcl

	2.4. Tcl Design Flow Controls
	2.4.1. Creating Projects and Making Assignments
	2.4.2. Compiling Designs
	2.4.2.1. The flow Package
	2.4.2.2. Compile All Revisions

	2.4.3. Reporting
	2.4.3.1. Saving Report Data in csv Format

	2.4.4. Timing Analysis

	2.5. Automating Script Execution
	2.5.1. Execution Example
	2.5.2. Controlling Processing
	2.5.3. Displaying Messages

	2.6. Other Scripting Features
	2.6.1. Natural Bus Naming
	2.6.2. Short Option Names
	2.6.3. Collection Commands
	2.6.3.1. The foreach_in_collection Command
	2.6.3.2. The get_collection_size Command

	2.6.4. Node Finder Commands
	2.6.4.1. Design Entry (all names) Filter
	2.6.4.2. Pins: assigned Filter
	2.6.4.3. Pins: unassigned Filter
	2.6.4.4. Pins: input Filter
	2.6.4.5. Pins: output Filter
	2.6.4.6. Pins: bidirectional Filter
	2.6.4.7. Pins: virtual Filter
	2.6.4.8. Pins: all Filter
	2.6.4.9. Pins: all & Registers: post-fitting Filter
	2.6.4.10. Ports: partition
	2.6.4.11. Entity instance: pre-synthesis Filter
	2.6.4.12. Registers: pre-synthesis Filter
	2.6.4.13. Registers: post-fitting Filter
	2.6.4.14. Post-synthesis Filter
	2.6.4.15. Post-Compilation Filter
	2.6.4.16. Signal Tap: pre-synthesis Filter
	2.6.4.17. Signal Tap: post-fitting Filter

	2.6.5. The get_names Command
	2.6.6. The post_message Command
	2.6.7. Accessing Command-Line Arguments
	2.6.7.1. The cmdline Package

	2.6.8. The quartus() Array

	2.7. The Quartus Prime Tcl Shell in Interactive Mode Example
	2.8. The tclsh Shell
	2.9. Tcl Scripting Basic Examples
	2.9.1. Hello World Example
	2.9.2. Variables
	2.9.3. Substitutions
	2.9.3.1. Variable Value Substitution
	2.9.3.2. Nested Command Substitution
	2.9.3.3. Backslash Substitution

	2.9.4. Arithmetic
	2.9.5. Lists
	2.9.6. Arrays
	2.9.7. Control Structures
	2.9.8. Procedures
	2.9.9. File I/O
	2.9.10. Syntax and Comments
	2.9.11. External References

	2.10. Tcl Scripting Revision History

	3. TCL Commands and Packages
	3.1. TCL Commands and Packages Summary
	3.1.1. ::quartus::backannotate
	3.1.1.1. get_back_annotation_assignments (::quartus::backannotate)
	3.1.1.2. logiclock_back_annotate (::quartus::backannotate)

	3.1.2. ::quartus::board
	3.1.2.1. activate_link (::quartus::board)
	3.1.2.2. check_online_design_validity (::quartus::board)
	3.1.2.3. deploy_par_file (::quartus::board)
	3.1.2.4. download_par_file (::quartus::board)
	3.1.2.5. get_board_design_path (::quartus::board)
	3.1.2.6. get_board_devkits (::quartus::board)
	3.1.2.7. get_board_families (::quartus::board)
	3.1.2.8. get_board_info (::quartus::board)
	3.1.2.9. get_board_vendors (::quartus::board)
	3.1.2.10. get_design_description (::quartus::board)
	3.1.2.11. get_design_development_kits (::quartus::board)
	3.1.2.12. get_design_documents_info (::quartus::board)
	3.1.2.13. get_design_download_link (::quartus::board)
	3.1.2.14. get_design_families (::quartus::board)
	3.1.2.15. get_design_info (::quartus::board)
	3.1.2.16. get_design_quartus_versions (::quartus::board)
	3.1.2.17. get_design_rich_description (::quartus::board)
	3.1.2.18. get_ui_file (::quartus::board)
	3.1.2.19. launch_qsys (::quartus::board)
	3.1.2.20. load_design_info (::quartus::board)
	3.1.2.21. reset_board_info (::quartus::board)

	3.1.3. ::quartus::bpps
	3.1.3.1. bpps::apply_assignments (::quartus::bpps)
	3.1.3.2. bpps::check_plan (::quartus::bpps)
	3.1.3.3. bpps::export_constraints_to_qsf (::quartus::bpps)
	3.1.3.4. bpps::get_cell_info (::quartus::bpps)
	3.1.3.5. bpps::get_device (::quartus::bpps)
	3.1.3.6. bpps::get_hdbpath_from_id (::quartus::bpps)
	3.1.3.7. bpps::get_id_from_hdbpath (::quartus::bpps)
	3.1.3.8. bpps::get_location_info (::quartus::bpps)
	3.1.3.9. bpps::get_placement (::quartus::bpps)
	3.1.3.10. bpps::get_placement_info (::quartus::bpps)
	3.1.3.11. bpps::get_placements (::quartus::bpps)
	3.1.3.12. bpps::get_placements_of_group (::quartus::bpps)
	3.1.3.13. bpps::harden_cell (::quartus::bpps)
	3.1.3.14. bpps::harden_cells (::quartus::bpps)
	3.1.3.15. bpps::initialize (::quartus::bpps)
	3.1.3.16. bpps::load_floorplan (::quartus::bpps)
	3.1.3.17. bpps::place_cells (::quartus::bpps)
	3.1.3.18. bpps::read_tpl_placement (::quartus::bpps)
	3.1.3.19. bpps::remove_invalid_reports (::quartus::bpps)
	3.1.3.20. bpps::report_all (::quartus::bpps)
	3.1.3.21. bpps::report_cell_connectivity (::quartus::bpps)
	3.1.3.22. bpps::report_cell_placement_reasons (::quartus::bpps)
	3.1.3.23. bpps::report_cells (::quartus::bpps)
	3.1.3.24. bpps::report_clocks (::quartus::bpps)
	3.1.3.25. bpps::report_legal_cell_locations (::quartus::bpps)
	3.1.3.26. bpps::report_location_types (::quartus::bpps)
	3.1.3.27. bpps::report_locations (::quartus::bpps)
	3.1.3.28. bpps::report_regions (::quartus::bpps)
	3.1.3.29. bpps::report_summary (::quartus::bpps)
	3.1.3.30. bpps::reset_plan (::quartus::bpps)
	3.1.3.31. bpps::save_floorplan (::quartus::bpps)
	3.1.3.32. bpps::save_pin_assignments (::quartus::bpps)
	3.1.3.33. bpps::select_dr_ips (::quartus::bpps)
	3.1.3.34. bpps::set_mode (::quartus::bpps)
	3.1.3.35. bpps::shutdown (::quartus::bpps)
	3.1.3.36. bpps::soften_cell (::quartus::bpps)
	3.1.3.37. bpps::soften_cells (::quartus::bpps)
	3.1.3.38. bpps::undo_last_placement (::quartus::bpps)
	3.1.3.39. bpps::unplace_cells (::quartus::bpps)
	3.1.3.40. bpps::update_pdpw (::quartus::bpps)
	3.1.3.41. bpps::validate_placement (::quartus::bpps)
	3.1.3.42. bpps::write_plan (::quartus::bpps)
	3.1.3.43. bpps::write_tpl_placement (::quartus::bpps)

	3.1.4. ::quartus::chip_planner
	3.1.4.1. check_node (::quartus::chip_planner)
	3.1.4.2. close_chip_planner (::quartus::chip_planner)
	3.1.4.3. design_has_ace_support (::quartus::chip_planner)
	3.1.4.4. design_has_encrypted_ip (::quartus::chip_planner)
	3.1.4.5. get_info_parameters (::quartus::chip_planner)
	3.1.4.6. get_iports (::quartus::chip_planner)
	3.1.4.7. get_node_by_name (::quartus::chip_planner)
	3.1.4.8. get_node_info (::quartus::chip_planner)
	3.1.4.9. get_nodes (::quartus::chip_planner)
	3.1.4.10. get_oports (::quartus::chip_planner)
	3.1.4.11. get_port_by_type (::quartus::chip_planner)
	3.1.4.12. get_port_info (::quartus::chip_planner)
	3.1.4.13. get_sp_pin_list (::quartus::chip_planner)
	3.1.4.14. get_tile_power_setting (::quartus::chip_planner)
	3.1.4.15. read_netlist (::quartus::chip_planner)
	3.1.4.16. set_batch_mode (::quartus::chip_planner)

	3.1.5. ::quartus::dcmd_dni
	3.1.5.1. dni::add_to_collection (::quartus::dcmd_dni)
	3.1.5.2. dni::all_clocks (::quartus::dcmd_dni)
	3.1.5.3. dni::all_fanin (::quartus::dcmd_dni)
	3.1.5.4. dni::all_fanout (::quartus::dcmd_dni)
	3.1.5.5. dni::all_inputs (::quartus::dcmd_dni)
	3.1.5.6. dni::all_outputs (::quartus::dcmd_dni)
	3.1.5.7. dni::all_registers (::quartus::dcmd_dni)
	3.1.5.8. dni::append_to_collection (::quartus::dcmd_dni)
	3.1.5.9. dni::color (::quartus::dcmd_dni)
	3.1.5.10. dni::copy_collection (::quartus::dcmd_dni)
	3.1.5.11. dni::create_clock (::quartus::dcmd_dni)
	3.1.5.12. dni::current_design (::quartus::dcmd_dni)
	3.1.5.13. dni::current_instance (::quartus::dcmd_dni)
	3.1.5.14. dni::delete_stale_sandboxes (::quartus::dcmd_dni)
	3.1.5.15. dni::filter_collection (::quartus::dcmd_dni)
	3.1.5.16. dni::get_cells (::quartus::dcmd_dni)
	3.1.5.17. dni::get_clocks (::quartus::dcmd_dni)
	3.1.5.18. dni::get_designs (::quartus::dcmd_dni)
	3.1.5.19. dni::get_generated_clocks (::quartus::dcmd_dni)
	3.1.5.20. dni::get_nets (::quartus::dcmd_dni)
	3.1.5.21. dni::get_pins (::quartus::dcmd_dni)
	3.1.5.22. dni::get_ports (::quartus::dcmd_dni)
	3.1.5.23. dni::get_property (::quartus::dcmd_dni)
	3.1.5.24. dni::highlight (::quartus::dcmd_dni)
	3.1.5.25. dni::index_collection (::quartus::dcmd_dni)
	3.1.5.26. dni::is_dni_mode (::quartus::dcmd_dni)
	3.1.5.27. dni::is_dni_mode_for_developer_testing (::quartus::dcmd_dni)
	3.1.5.28. dni::list_properties (::quartus::dcmd_dni)
	3.1.5.29. dni::load_design (::quartus::dcmd_dni)
	3.1.5.30. dni::read_sdc (::quartus::dcmd_dni)
	3.1.5.31. dni::remove_from_collection (::quartus::dcmd_dni)
	3.1.5.32. dni::selection (::quartus::dcmd_dni)
	3.1.5.33. dni::set_property (::quartus::dcmd_dni)
	3.1.5.34. dni::set_time_format (::quartus::dcmd_dni)
	3.1.5.35. dni::set_time_unit (::quartus::dcmd_dni)
	3.1.5.36. dni::sizeof_collection (::quartus::dcmd_dni)
	3.1.5.37. dni::sort_collection (::quartus::dcmd_dni)
	3.1.5.38. dni::unload_design (::quartus::dcmd_dni)
	3.1.5.39. dni::write_sdc (::quartus::dcmd_dni)

	3.1.6. ::quartus::design
	3.1.6.1. design::commit_design (::quartus::design)
	3.1.6.2. design::convert_partition (::quartus::design)
	3.1.6.3. design::create_assignment (::quartus::design)
	3.1.6.4. design::delete_assignments (::quartus::design)
	3.1.6.5. design::disable_assignments (::quartus::design)
	3.1.6.6. design::enable_assignments (::quartus::design)
	3.1.6.7. design::export_design (::quartus::design)
	3.1.6.8. design::export_partition (::quartus::design)
	3.1.6.9. design::extract_metadata (::quartus::design)
	3.1.6.10. design::get_assignment_info (::quartus::design)
	3.1.6.11. design::get_assignment_names (::quartus::design)
	3.1.6.12. design::get_assignments (::quartus::design)
	3.1.6.13. design::get_entity_names (::quartus::design)
	3.1.6.14. design::get_instances (::quartus::design)
	3.1.6.15. design::import_design (::quartus::design)
	3.1.6.16. design::import_partition (::quartus::design)
	3.1.6.17. design::list_valid_snapshot_names (::quartus::design)
	3.1.6.18. design::load_design (::quartus::design)
	3.1.6.19. design::report_assignments (::quartus::design)
	3.1.6.20. design::set_assignment_info (::quartus::design)

	3.1.7. ::quartus::device
	3.1.7.1. get_family_list (::quartus::device)
	3.1.7.2. get_part_info (::quartus::device)
	3.1.7.3. get_part_list (::quartus::device)
	3.1.7.4. report_device_info (::quartus::device)
	3.1.7.5. report_family_info (::quartus::device)
	3.1.7.6. report_part_info (::quartus::device)

	3.1.8. ::quartus::dni_sdc
	3.1.8.1. dni::create_generated_clock (::quartus::dni_sdc)
	3.1.8.2. dni::remove_clock_groups (::quartus::dni_sdc)
	3.1.8.3. dni::remove_clock_latency (::quartus::dni_sdc)
	3.1.8.4. dni::remove_clock_uncertainty (::quartus::dni_sdc)
	3.1.8.5. dni::remove_disable_timing (::quartus::dni_sdc)
	3.1.8.6. dni::remove_input_delay (::quartus::dni_sdc)
	3.1.8.7. dni::remove_output_delay (::quartus::dni_sdc)
	3.1.8.8. dni::set_clock_groups (::quartus::dni_sdc)
	3.1.8.9. dni::set_clock_latency (::quartus::dni_sdc)
	3.1.8.10. dni::set_clock_uncertainty (::quartus::dni_sdc)
	3.1.8.11. dni::set_data_delay (::quartus::dni_sdc)
	3.1.8.12. dni::set_disable_timing (::quartus::dni_sdc)
	3.1.8.13. dni::set_false_path (::quartus::dni_sdc)
	3.1.8.14. dni::set_input_delay (::quartus::dni_sdc)
	3.1.8.15. dni::set_input_transition (::quartus::dni_sdc)
	3.1.8.16. dni::set_max_delay (::quartus::dni_sdc)
	3.1.8.17. dni::set_max_skew (::quartus::dni_sdc)
	3.1.8.18. dni::set_max_time_borrow (::quartus::dni_sdc)
	3.1.8.19. dni::set_min_delay (::quartus::dni_sdc)
	3.1.8.20. dni::set_multicycle_path (::quartus::dni_sdc)
	3.1.8.21. dni::set_net_delay (::quartus::dni_sdc)
	3.1.8.22. dni::set_operating_conditions (::quartus::dni_sdc)
	3.1.8.23. dni::set_output_delay (::quartus::dni_sdc)
	3.1.8.24. dni::set_sense (::quartus::dni_sdc)
	3.1.8.25. dni::set_timing_derate (::quartus::dni_sdc)

	3.1.9. ::quartus::drc
	3.1.9.1. drc::add_check_op (::quartus::drc)
	3.1.9.2. drc::add_check_parameter (::quartus::drc)
	3.1.9.3. drc::add_object (::quartus::drc)
	3.1.9.4. drc::add_object_with_properties (::quartus::drc)
	3.1.9.5. drc::add_property (::quartus::drc)
	3.1.9.6. drc::add_rule (::quartus::drc)
	3.1.9.7. drc::add_rule_violation (::quartus::drc)
	3.1.9.8. drc::add_violation_record (::quartus::drc)
	3.1.9.9. drc::add_waiver (::quartus::drc)
	3.1.9.10. drc::check_design (::quartus::drc)
	3.1.9.11. drc::delete_waivers (::quartus::drc)
	3.1.9.12. drc::get_objects (::quartus::drc)
	3.1.9.13. drc::get_option (::quartus::drc)
	3.1.9.14. drc::get_property (::quartus::drc)
	3.1.9.15. drc::get_stage_info (::quartus::drc)
	3.1.9.16. drc::get_waivers (::quartus::drc)
	3.1.9.17. drc::list_properties (::quartus::drc)
	3.1.9.18. drc::report_waivers (::quartus::drc)
	3.1.9.19. drc::set_option (::quartus::drc)
	3.1.9.20. drc::set_property (::quartus::drc)
	3.1.9.21. drc::should_run_drc (::quartus::drc)
	3.1.9.22. drc::update_check_op (::quartus::drc)
	3.1.9.23. drc::update_rule (::quartus::drc)

	3.1.10. ::quartus::eco
	3.1.10.1. adjust_pll_refclk (::quartus::eco)
	3.1.10.2. create_new_node (::quartus::eco)
	3.1.10.3. create_wirelut (::quartus::eco)
	3.1.10.4. eco_reroute (::quartus::eco)
	3.1.10.5. eco_unload_design (::quartus::eco)
	3.1.10.6. fitter_report_timing (::quartus::eco)
	3.1.10.7. fitter_timing_summary (::quartus::eco)
	3.1.10.8. get_available_snapshots (::quartus::eco)
	3.1.10.9. get_eco_checkpoint (::quartus::eco)
	3.1.10.10. get_loaded_snapshot (::quartus::eco)
	3.1.10.11. get_lutmask_equation (::quartus::eco)
	3.1.10.12. get_node_location (::quartus::eco)
	3.1.10.13. make_connection (::quartus::eco)
	3.1.10.14. modify_io_current_strength (::quartus::eco)
	3.1.10.15. modify_io_delay_chain (::quartus::eco)
	3.1.10.16. modify_io_slew_rate (::quartus::eco)
	3.1.10.17. modify_lutmask (::quartus::eco)
	3.1.10.18. place_node (::quartus::eco)
	3.1.10.19. remove_connection (::quartus::eco)
	3.1.10.20. remove_node (::quartus::eco)
	3.1.10.21. report_connections (::quartus::eco)
	3.1.10.22. report_legal_locations (::quartus::eco)
	3.1.10.23. report_nodes_at_location (::quartus::eco)
	3.1.10.24. eco::report_partitions (::quartus::eco)
	3.1.10.25. report_ports (::quartus::eco)
	3.1.10.26. report_routing (::quartus::eco)
	3.1.10.27. report_unplaced_nodes (::quartus::eco)
	3.1.10.28. restore_eco_checkpoint (::quartus::eco)
	3.1.10.29. unplace_node (::quartus::eco)
	3.1.10.30. update_mif_files (::quartus::eco)

	3.1.11. ::quartus::external_memif_toolkit
	3.1.11.1. apply_setting (::quartus::external_memif_toolkit)
	3.1.11.2. calibrate_termination (::quartus::external_memif_toolkit)
	3.1.11.3. configure_driver (::quartus::external_memif_toolkit)
	3.1.11.4. create_connection_report (::quartus::external_memif_toolkit)
	3.1.11.5. create_toolkit_report (::quartus::external_memif_toolkit)
	3.1.11.6. driver_margining (::quartus::external_memif_toolkit)
	3.1.11.7. establish_connection (::quartus::external_memif_toolkit)
	3.1.11.8. generate_eye_diagram (::quartus::external_memif_toolkit)
	3.1.11.9. get_connection_commands (::quartus::external_memif_toolkit)
	3.1.11.10. get_connection_info (::quartus::external_memif_toolkit)
	3.1.11.11. get_connection_interfaces (::quartus::external_memif_toolkit)
	3.1.11.12. get_connection_report_info (::quartus::external_memif_toolkit)
	3.1.11.13. get_connection_report_types (::quartus::external_memif_toolkit)
	3.1.11.14. get_connection_types (::quartus::external_memif_toolkit)
	3.1.11.15. get_connections (::quartus::external_memif_toolkit)
	3.1.11.16. get_device_names (::quartus::external_memif_toolkit)
	3.1.11.17. get_hardware_names (::quartus::external_memif_toolkit)
	3.1.11.18. get_setting_types (::quartus::external_memif_toolkit)
	3.1.11.19. get_toolkit_report_types (::quartus::external_memif_toolkit)
	3.1.11.20. initialize_connections (::quartus::external_memif_toolkit)
	3.1.11.21. link_project_to_device (::quartus::external_memif_toolkit)
	3.1.11.22. read_setting (::quartus::external_memif_toolkit)
	3.1.11.23. reindex_connections (::quartus::external_memif_toolkit)
	3.1.11.24. reset_tg2 (::quartus::external_memif_toolkit)
	3.1.11.25. run_connection_command (::quartus::external_memif_toolkit)
	3.1.11.26. set_active_interface (::quartus::external_memif_toolkit)
	3.1.11.27. set_stress_pattern (::quartus::external_memif_toolkit)
	3.1.11.28. terminate_connection (::quartus::external_memif_toolkit)
	3.1.11.29. terminate_connections (::quartus::external_memif_toolkit)
	3.1.11.30. unlink_project_from_device (::quartus::external_memif_toolkit)
	3.1.11.31. write_connection_target_report (::quartus::external_memif_toolkit)

	3.1.12. ::quartus::fif
	3.1.12.1. check (::quartus::fif)
	3.1.12.2. dump (::quartus::fif)
	3.1.12.3. dump_cram_frame (::quartus::fif)
	3.1.12.4. dump_mem (::quartus::fif)
	3.1.12.5. dump_pr_bitstream (::quartus::fif)
	3.1.12.6. generate (::quartus::fif)
	3.1.12.7. get_frame_count (::quartus::fif)
	3.1.12.8. get_frame_size (::quartus::fif)
	3.1.12.9. get_sector_information_sdm_based_fpga (::quartus::fif)
	3.1.12.10. get_sensitive_location (::quartus::fif)
	3.1.12.11. get_sensitive_location_sdm_based_fpga (::quartus::fif)
	3.1.12.12. setup (::quartus::fif)
	3.1.12.13. setup_sdm_based_fpga (::quartus::fif)
	3.1.12.14. terminate (::quartus::fif)

	3.1.13. ::quartus::flng
	3.1.13.1. flng::add_object (::quartus::flng)
	3.1.13.2. flng::add_property (::quartus::flng)
	3.1.13.3. flng::bind_flow (::quartus::flng)
	3.1.13.4. flng::delete_object (::quartus::flng)
	3.1.13.5. flng::get_default_flow_run_name (::quartus::flng)
	3.1.13.6. flng::get_flow_list (::quartus::flng)
	3.1.13.7. flng::get_next_available_id (::quartus::flng)
	3.1.13.8. flng::get_object (::quartus::flng)
	3.1.13.9. flng::get_objects (::quartus::flng)
	3.1.13.10. flng::get_option (::quartus::flng)
	3.1.13.11. flng::get_property (::quartus::flng)
	3.1.13.12. flng::get_task_command (::quartus::flng)
	3.1.13.13. flng::get_task_status_property (::quartus::flng)
	3.1.13.14. flng::init_repository (::quartus::flng)
	3.1.13.15. flng::list_properties (::quartus::flng)
	3.1.13.16. flng::monitor_flow (::quartus::flng)
	3.1.13.17. flng::run_flow (::quartus::flng)
	3.1.13.18. flng::run_flow_command (::quartus::flng)
	3.1.13.19. flng::set_option (::quartus::flng)
	3.1.13.20. flng::set_property (::quartus::flng)
	3.1.13.21. flng::write_task_assignment_digest (::quartus::flng)
	3.1.13.22. flng::write_task_checkpoint_written (::quartus::flng)
	3.1.13.23. flng::write_task_finished (::quartus::flng)
	3.1.13.24. flng::write_task_started (::quartus::flng)

	3.1.14. ::quartus::flow
	3.1.14.1. execute_flow (::quartus::flow)
	3.1.14.2. execute_module (::quartus::flow)
	3.1.14.3. get_flow_templates (::quartus::flow)
	3.1.14.4. get_status_db_property (::quartus::flow)
	3.1.14.5. write_flow_assignment_digest (::quartus::flow)
	3.1.14.6. write_flow_finished (::quartus::flow)
	3.1.14.7. write_flow_started (::quartus::flow)
	3.1.14.8. write_flow_template (::quartus::flow)

	3.1.15. ::quartus::insystem_memory_edit
	3.1.15.1. begin_memory_edit (::quartus::insystem_memory_edit)
	3.1.15.2. end_memory_edit (::quartus::insystem_memory_edit)
	3.1.15.3. get_editable_mem_instances (::quartus::insystem_memory_edit)
	3.1.15.4. read_content_from_memory (::quartus::insystem_memory_edit)
	3.1.15.5. save_content_from_memory_to_file (::quartus::insystem_memory_edit)
	3.1.15.6. update_content_to_memory_from_file (::quartus::insystem_memory_edit)
	3.1.15.7. write_content_to_memory (::quartus::insystem_memory_edit)

	3.1.16. ::quartus::insystem_source_probe
	3.1.16.1. end_insystem_source_probe (::quartus::insystem_source_probe)
	3.1.16.2. get_insystem_source_probe_instance_info (::quartus::insystem_source_probe)
	3.1.16.3. read_probe_data (::quartus::insystem_source_probe)
	3.1.16.4. read_source_data (::quartus::insystem_source_probe)
	3.1.16.5. start_insystem_source_probe (::quartus::insystem_source_probe)
	3.1.16.6. write_source_data (::quartus::insystem_source_probe)

	3.1.17. ::quartus::interactive_synthesis
	3.1.17.1. analyze_files (::quartus::interactive_synthesis)
	3.1.17.2. check_rtl_connections (::quartus::interactive_synthesis)
	3.1.17.3. dissolve_rtl_partition (::quartus::interactive_synthesis)
	3.1.17.4. dynamic_report (::quartus::interactive_synthesis)
	3.1.17.5. elaborate (::quartus::interactive_synthesis)
	3.1.17.6. get_entities (::quartus::interactive_synthesis)
	3.1.17.7. get_rtl_partition_name (::quartus::interactive_synthesis)
	3.1.17.8. get_rtl_partitions (::quartus::interactive_synthesis)
	3.1.17.9. init_synthesis_constraints_propagation_reporter (::quartus::interactive_synthesis)
	3.1.17.10. link_rtl_design (::quartus::interactive_synthesis)
	3.1.17.11. print_ipxact (::quartus::interactive_synthesis)
	3.1.17.12. report_rtl_assignments (::quartus::interactive_synthesis)
	3.1.17.13. report_rtl_parameters (::quartus::interactive_synthesis)
	3.1.17.14. report_rtl_stats (::quartus::interactive_synthesis)
	3.1.17.15. reset_rtl_design (::quartus::interactive_synthesis)
	3.1.17.16. sasic (::quartus::interactive_synthesis)
	3.1.17.17. save_rtl_design (::quartus::interactive_synthesis)
	3.1.17.18. set_sasic_handoff_flow (::quartus::interactive_synthesis)
	3.1.17.19. synthesize (::quartus::interactive_synthesis)
	3.1.17.20. uniquify (::quartus::interactive_synthesis)
	3.1.17.21. write_rtl_report (::quartus::interactive_synthesis)

	3.1.18. ::quartus::ipdrc
	3.1.18.1. ipdrc::get_device_speed (::quartus::ipdrc)
	3.1.18.2. ipdrc::get_ip_hpaths (::quartus::ipdrc)
	3.1.18.3. ipdrc::get_ip_name (::quartus::ipdrc)
	3.1.18.4. ipdrc::get_ip_pma_modulation (::quartus::ipdrc)
	3.1.18.5. ipdrc::get_ip_speed (::quartus::ipdrc)
	3.1.18.6. ipdrc::get_ip_type (::quartus::ipdrc)
	3.1.18.7. ipdrc::get_ip_xcvr_type (::quartus::ipdrc)
	3.1.18.8. ipdrc::set_ip_info (::quartus::ipdrc)

	3.1.19. ::quartus::ipgen
	3.1.19.1. clear_ip_generation_dirs (::quartus::ipgen)
	3.1.19.2. generate_ip_file (::quartus::ipgen)
	3.1.19.3. generate_project_ip_files (::quartus::ipgen)
	3.1.19.4. get_project_ip_files (::quartus::ipgen)

	3.1.20. ::quartus::iptclgen
	3.1.20.1. compute_pll (::quartus::iptclgen)
	3.1.20.2. generate_vhdl_simgen_model (::quartus::iptclgen)
	3.1.20.3. parse_hdl (::quartus::iptclgen)
	3.1.20.4. parse_tcl (::quartus::iptclgen)

	3.1.21. ::quartus::jtag
	3.1.21.1. close_device (::quartus::jtag)
	3.1.21.2. device_dr_shift (::quartus::jtag)
	3.1.21.3. device_ir_shift (::quartus::jtag)
	3.1.21.4. device_lock (::quartus::jtag)
	3.1.21.5. device_run_test_idle (::quartus::jtag)
	3.1.21.6. device_unlock (::quartus::jtag)
	3.1.21.7. device_virtual_dr_shift (::quartus::jtag)
	3.1.21.8. device_virtual_ir_shift (::quartus::jtag)
	3.1.21.9. get_device_names (::quartus::jtag)
	3.1.21.10. get_hardware_names (::quartus::jtag)
	3.1.21.11. open_device (::quartus::jtag)

	3.1.22. ::quartus::logic_analyzer_interface
	3.1.22.1. begin_logic_analyzer_interface_control (::quartus::logic_analyzer_interface)
	3.1.22.2. change_bank_to_output_pin (::quartus::logic_analyzer_interface)
	3.1.22.3. end_logic_analyzer_interface_control (::quartus::logic_analyzer_interface)
	3.1.22.4. get_current_state_of_output_pin (::quartus::logic_analyzer_interface)
	3.1.22.5. tristate_output_pin (::quartus::logic_analyzer_interface)

	3.1.23. ::quartus::misc
	3.1.23.1. checksum (::quartus::misc)
	3.1.23.2. disable_natural_bus_naming (::quartus::misc)
	3.1.23.3. enable_natural_bus_naming (::quartus::misc)
	3.1.23.4. escape_brackets (::quartus::misc)
	3.1.23.5. foreach_in_collection (::quartus::misc)
	3.1.23.6. get_collection_size (::quartus::misc)
	3.1.23.7. get_environment_info (::quartus::misc)
	3.1.23.8. get_message_count (::quartus::misc)
	3.1.23.9. init_tk (::quartus::misc)
	3.1.23.10. load (::quartus::misc)
	3.1.23.11. load_package (::quartus::misc)
	3.1.23.12. post_message (::quartus::misc)
	3.1.23.13. qerror (::quartus::misc)
	3.1.23.14. qexec (::quartus::misc)
	3.1.23.15. qexit (::quartus::misc)
	3.1.23.16. record_tcl_cmd (::quartus::misc)
	3.1.23.17. stopwatch (::quartus::misc)

	3.1.24. ::quartus::names
	3.1.24.1. get_assignment (::quartus::names)
	3.1.24.2. set_assignment (::quartus::names)

	3.1.25. ::quartus::periph
	3.1.25.1. periph::check_plan (::quartus::periph)
	3.1.25.2. periph::get_cell_info (::quartus::periph)
	3.1.25.3. periph::get_cells (::quartus::periph)
	3.1.25.4. periph::get_location_info (::quartus::periph)
	3.1.25.5. periph::get_placement_info (::quartus::periph)
	3.1.25.6. periph::get_placements (::quartus::periph)
	3.1.25.7. blueprint::initialize (::quartus::periph)
	3.1.25.8. periph::load_floorplan (::quartus::periph)
	3.1.25.9. periph::place_cells (::quartus::periph)
	3.1.25.10. periph::remove_invalid_reports (::quartus::periph)
	3.1.25.11. periph::report_all (::quartus::periph)
	3.1.25.12. periph::report_cell_connectivity (::quartus::periph)
	3.1.25.13. periph::report_cell_placement_reasons (::quartus::periph)
	3.1.25.14. periph::report_cells (::quartus::periph)
	3.1.25.15. periph::report_clocks (::quartus::periph)
	3.1.25.16. periph::report_legal_cell_locations (::quartus::periph)
	3.1.25.17. periph::report_location_types (::quartus::periph)
	3.1.25.18. periph::report_locations (::quartus::periph)
	3.1.25.19. periph::report_noc_performance (::quartus::periph)
	3.1.25.20. periph::report_regions (::quartus::periph)
	3.1.25.21. periph::report_summary (::quartus::periph)
	3.1.25.22. periph::reset_plan (::quartus::periph)
	3.1.25.23. periph::save_floorplan (::quartus::periph)
	3.1.25.24. periph::set_clock_type (::quartus::periph)
	3.1.25.25. blueprint::shutdown (::quartus::periph)
	3.1.25.26. periph::undo_last_placement (::quartus::periph)
	3.1.25.27. periph::unplace_cells (::quartus::periph)
	3.1.25.28. periph::update_pdpw (::quartus::periph)
	3.1.25.29. periph::update_plan (::quartus::periph)
	3.1.25.30. periph::write_plan (::quartus::periph)

	3.1.26. ::quartus::pfg
	3.1.26.1. test (::quartus::pfg)

	3.1.27. ::quartus::proj_asgn
	3.1.27.1. create_revision (::quartus::proj_asgn)
	3.1.27.2. generate_project_tcl (::quartus::proj_asgn)
	3.1.27.3. get_name_info (::quartus::proj_asgn)
	3.1.27.4. get_names (::quartus::proj_asgn)
	3.1.27.5. get_top_level_entity (::quartus::proj_asgn)
	3.1.27.6. is_fitter_in_qhd_mode (::quartus::proj_asgn)

	3.1.28. ::quartus::project
	3.1.28.1. close_side_revision (::quartus::project)
	3.1.28.2. create_revision (::quartus::project)
	3.1.28.3. delete_revision (::quartus::project)
	3.1.28.4. execute_assignment_batch (::quartus::project)
	3.1.28.5. export_assignments (::quartus::project)
	3.1.28.6. generate_project_tcl (::quartus::project)
	3.1.28.7. get_all_assignment_names (::quartus::project)
	3.1.28.8. get_all_assignments (::quartus::project)
	3.1.28.9. get_all_global_assignments (::quartus::project)
	3.1.28.10. get_all_instance_assignments (::quartus::project)
	3.1.28.11. get_all_parameters (::quartus::project)
	3.1.28.12. get_all_quartus_defaults (::quartus::project)
	3.1.28.13. get_all_user_option_names (::quartus::project)
	3.1.28.14. get_assignment_info (::quartus::project)
	3.1.28.15. get_assignment_name_info (::quartus::project)
	3.1.28.16. get_current_project (::quartus::project)
	3.1.28.17. get_current_revision (::quartus::project)
	3.1.28.18. get_database_version (::quartus::project)
	3.1.28.19. get_global_assignment (::quartus::project)
	3.1.28.20. get_instance_assignment (::quartus::project)
	3.1.28.21. get_location_assignment (::quartus::project)
	3.1.28.22. get_name_info (::quartus::project)
	3.1.28.23. get_names (::quartus::project)
	3.1.28.24. get_parameter (::quartus::project)
	3.1.28.25. get_project_directory (::quartus::project)
	3.1.28.26. get_project_revisions (::quartus::project)
	3.1.28.27. get_revision_description (::quartus::project)
	3.1.28.28. get_top_level_entity (::quartus::project)
	3.1.28.29. get_user_option (::quartus::project)
	3.1.28.30. is_database_version_compatible (::quartus::project)
	3.1.28.31. is_fitter_in_qhd_mode (::quartus::project)
	3.1.28.32. is_project_open (::quartus::project)
	3.1.28.33. open_side_revision (::quartus::project)
	3.1.28.34. project_archive (::quartus::project)
	3.1.28.35. project_clean (::quartus::project)
	3.1.28.36. project_close (::quartus::project)
	3.1.28.37. project_exists (::quartus::project)
	3.1.28.38. project_new (::quartus::project)
	3.1.28.39. project_open (::quartus::project)
	3.1.28.40. project_restore (::quartus::project)
	3.1.28.41. remove_all_global_assignments (::quartus::project)
	3.1.28.42. remove_all_instance_assignments (::quartus::project)
	3.1.28.43. remove_all_parameters (::quartus::project)
	3.1.28.44. resolve_file_path (::quartus::project)
	3.1.28.45. revision_exists (::quartus::project)
	3.1.28.46. set_current_revision (::quartus::project)
	3.1.28.47. set_global_assignment (::quartus::project)
	3.1.28.48. set_high_effort_fmax_optimization_assignments (::quartus::project)
	3.1.28.49. set_instance_assignment (::quartus::project)
	3.1.28.50. set_io_assignment (::quartus::project)
	3.1.28.51. set_location_assignment (::quartus::project)
	3.1.28.52. set_parameter (::quartus::project)
	3.1.28.53. set_power_file_assignment (::quartus::project)
	3.1.28.54. set_revision_description (::quartus::project)
	3.1.28.55. set_user_option (::quartus::project)
	3.1.28.56. test_assignment_trait (::quartus::project)

	3.1.29. ::quartus::project2
	3.1.29.1. quartus::close_project (::quartus::project2)
	3.1.29.2. quartus::open_project (::quartus::project2)

	3.1.30. ::quartus::project_ui
	3.1.30.1. assignment_group (::quartus::project_ui)
	3.1.30.2. delete_revision (::quartus::project_ui)
	3.1.30.3. execute_assignment_batch (::quartus::project_ui)
	3.1.30.4. export_assignments (::quartus::project_ui)
	3.1.30.5. get_all_assignment_names (::quartus::project_ui)
	3.1.30.6. get_all_assignments (::quartus::project_ui)
	3.1.30.7. get_all_global_assignments (::quartus::project_ui)
	3.1.30.8. get_all_instance_assignments (::quartus::project_ui)
	3.1.30.9. get_all_parameters (::quartus::project_ui)
	3.1.30.10. get_all_quartus_defaults (::quartus::project_ui)
	3.1.30.11. get_all_user_option_names (::quartus::project_ui)
	3.1.30.12. get_assignment_info (::quartus::project_ui)
	3.1.30.13. get_assignment_name_info (::quartus::project_ui)
	3.1.30.14. get_current_project (::quartus::project_ui)
	3.1.30.15. get_current_revision (::quartus::project_ui)
	3.1.30.16. get_global_assignment (::quartus::project_ui)
	3.1.30.17. get_instance_assignment (::quartus::project_ui)
	3.1.30.18. get_location_assignment (::quartus::project_ui)
	3.1.30.19. get_parameter (::quartus::project_ui)
	3.1.30.20. get_project_directory (::quartus::project_ui)
	3.1.30.21. get_project_revisions (::quartus::project_ui)
	3.1.30.22. get_user_option (::quartus::project_ui)
	3.1.30.23. is_project_open (::quartus::project_ui)
	3.1.30.24. project_archive (::quartus::project_ui)
	3.1.30.25. project_close (::quartus::project_ui)
	3.1.30.26. project_exists (::quartus::project_ui)
	3.1.30.27. project_new (::quartus::project_ui)
	3.1.30.28. project_open (::quartus::project_ui)
	3.1.30.29. project_restore (::quartus::project_ui)
	3.1.30.30. remove_all_global_assignments (::quartus::project_ui)
	3.1.30.31. remove_all_instance_assignments (::quartus::project_ui)
	3.1.30.32. remove_all_parameters (::quartus::project_ui)
	3.1.30.33. resolve_file_path (::quartus::project_ui)
	3.1.30.34. revision_exists (::quartus::project_ui)
	3.1.30.35. set_current_revision (::quartus::project_ui)
	3.1.30.36. set_global_assignment (::quartus::project_ui)
	3.1.30.37. set_instance_assignment (::quartus::project_ui)
	3.1.30.38. set_io_assignment (::quartus::project_ui)
	3.1.30.39. set_location_assignment (::quartus::project_ui)
	3.1.30.40. set_parameter (::quartus::project_ui)
	3.1.30.41. set_power_file_assignment (::quartus::project_ui)
	3.1.30.42. set_user_option (::quartus::project_ui)
	3.1.30.43. test_assignment_trait (::quartus::project_ui)

	3.1.31. ::quartus::qed
	3.1.31.1. qed::add_projects_from_archive (::quartus::qed)
	3.1.31.2. qed::check_properties (::quartus::qed)
	3.1.31.3. qed::check_properties_of_projects (::quartus::qed)
	3.1.31.4. qed::compile (::quartus::qed)
	3.1.31.5. qed::configure_local_compute_spec (::quartus::qed)
	3.1.31.6. qed::configure_lsf_compute_spec (::quartus::qed)
	3.1.31.7. qed::configure_pbspro_compute_spec (::quartus::qed)
	3.1.31.8. qed::configure_slurm_compute_spec (::quartus::qed)
	3.1.31.9. qed::configure_ssh_compute_spec (::quartus::qed)
	3.1.31.10. qed::create_object (::quartus::qed)
	3.1.31.11. qed::delete_object (::quartus::qed)
	3.1.31.12. qed::delete_object_report_panel (::quartus::qed)
	3.1.31.13. qed::disconnect (::quartus::qed)
	3.1.31.14. qed::find_projects_under_directory (::quartus::qed)
	3.1.31.15. qed::fork_new_revision (::quartus::qed)
	3.1.31.16. qed::fork_new_seeds (::quartus::qed)
	3.1.31.17. qed::generate_report (::quartus::qed)
	3.1.31.18. qed::get_all_properties_dict (::quartus::qed)
	3.1.31.19. qed::get_default_group_id (::quartus::qed)
	3.1.31.20. qed::get_object_report_panel_contents (::quartus::qed)
	3.1.31.21. qed::get_object_report_panel_names (::quartus::qed)
	3.1.31.22. qed::get_objects (::quartus::qed)
	3.1.31.23. qed::get_project_report_panel_names (::quartus::qed)
	3.1.31.24. qed::get_property (::quartus::qed)
	3.1.31.25. qed::get_property_of_projects (::quartus::qed)
	3.1.31.26. qed::get_return_value (::quartus::qed)
	3.1.31.27. qed::get_user_data (::quartus::qed)
	3.1.31.28. qed::has_property (::quartus::qed)
	3.1.31.29. qed::import_report_panel (::quartus::qed)
	3.1.31.30. qed::import_report_panel_names (::quartus::qed)
	3.1.31.31. qed::is_connected (::quartus::qed)
	3.1.31.32. qed::is_workspace_open (::quartus::qed)
	3.1.31.33. qed::launch_connection (::quartus::qed)
	3.1.31.34. qed::list_properties (::quartus::qed)
	3.1.31.35. qed::load_db_state (::quartus::qed)
	3.1.31.36. qed::open_project (::quartus::qed)
	3.1.31.37. qed::pop_from_property (::quartus::qed)
	3.1.31.38. qed::push_to_property (::quartus::qed)
	3.1.31.39. qed::refresh_reports (::quartus::qed)
	3.1.31.40. qed::run_analysis (::quartus::qed)
	3.1.31.41. qed::run_command (::quartus::qed)
	3.1.31.42. qed::sanitize_workspace (::quartus::qed)
	3.1.31.43. qed::set_properties (::quartus::qed)
	3.1.31.44. qed::set_property (::quartus::qed)
	3.1.31.45. qed::set_user_data (::quartus::qed)
	3.1.31.46. qed::wait_for_ready (::quartus::qed)
	3.1.31.47. qed::workspace_close (::quartus::qed)
	3.1.31.48. qed::workspace_new (::quartus::qed)
	3.1.31.49. qed::workspace_open (::quartus::qed)
	3.1.31.50. qed::write_object_reports_to_file (::quartus::qed)

	3.1.32. ::quartus::qmtf
	3.1.32.1. mtf::test (::quartus::qmtf)

	3.1.33. ::quartus::qshm
	3.1.33.1. qshm_connect_to_quartus (::quartus::qshm)
	3.1.33.2. qshm_disconnect_from_quartus (::quartus::qshm)
	3.1.33.3. qshm_dispose_client (::quartus::qshm)
	3.1.33.4. qshm_get_hub_key_prefix (::quartus::qshm)
	3.1.33.5. qshm_get_parent_hub_key (::quartus::qshm)
	3.1.33.6. qshm_obtain_client (::quartus::qshm)
	3.1.33.7. qshm_send_request (::quartus::qshm)
	3.1.33.8. qshm_send_server_state_query (::quartus::qshm)
	3.1.33.9. qshm_set_context (::quartus::qshm)

	3.1.34. ::quartus::report
	3.1.34.1. add_row_to_table (::quartus::report)
	3.1.34.2. create_report_panel (::quartus::report)
	3.1.34.3. delete_report_panel (::quartus::report)
	3.1.34.4. get_fitter_resource_usage (::quartus::report)
	3.1.34.5. get_number_of_columns (::quartus::report)
	3.1.34.6. get_number_of_rows (::quartus::report)
	3.1.34.7. get_report_panel_column_index (::quartus::report)
	3.1.34.8. get_report_panel_data (::quartus::report)
	3.1.34.9. get_report_panel_id (::quartus::report)
	3.1.34.10. get_report_panel_names (::quartus::report)
	3.1.34.11. get_report_panel_row (::quartus::report)
	3.1.34.12. get_report_panel_row_index (::quartus::report)
	3.1.34.13. load_report (::quartus::report)
	3.1.34.14. read_xml_report (::quartus::report)
	3.1.34.15. refresh_report_window (::quartus::report)
	3.1.34.16. save_report_database (::quartus::report)
	3.1.34.17. unload_report (::quartus::report)
	3.1.34.18. write_report_panel (::quartus::report)
	3.1.34.19. write_xml_report (::quartus::report)

	3.1.35. ::quartus::sdc
	3.1.35.1. all_clocks (::quartus::sdc)
	3.1.35.2. all_inputs (::quartus::sdc)
	3.1.35.3. all_outputs (::quartus::sdc)
	3.1.35.4. all_registers (::quartus::sdc)
	3.1.35.5. create_clock (::quartus::sdc)
	3.1.35.6. create_generated_clock (::quartus::sdc)
	3.1.35.7. derive_clocks (::quartus::sdc)
	3.1.35.8. get_cells (::quartus::sdc)
	3.1.35.9. get_clocks (::quartus::sdc)
	3.1.35.10. get_nets (::quartus::sdc)
	3.1.35.11. get_pins (::quartus::sdc)
	3.1.35.12. get_ports (::quartus::sdc)
	3.1.35.13. remove_clock_groups (::quartus::sdc)
	3.1.35.14. remove_clock_latency (::quartus::sdc)
	3.1.35.15. remove_clock_uncertainty (::quartus::sdc)
	3.1.35.16. remove_disable_timing (::quartus::sdc)
	3.1.35.17. remove_input_delay (::quartus::sdc)
	3.1.35.18. remove_output_delay (::quartus::sdc)
	3.1.35.19. reset_design (::quartus::sdc)
	3.1.35.20. set_clock_groups (::quartus::sdc)
	3.1.35.21. set_clock_latency (::quartus::sdc)
	3.1.35.22. set_clock_uncertainty (::quartus::sdc)
	3.1.35.23. set_disable_timing (::quartus::sdc)
	3.1.35.24. set_false_path (::quartus::sdc)
	3.1.35.25. set_input_delay (::quartus::sdc)
	3.1.35.26. set_input_transition (::quartus::sdc)
	3.1.35.27. set_max_delay (::quartus::sdc)
	3.1.35.28. set_max_time_borrow (::quartus::sdc)
	3.1.35.29. set_min_delay (::quartus::sdc)
	3.1.35.30. set_multicycle_path (::quartus::sdc)
	3.1.35.31. set_output_delay (::quartus::sdc)

	3.1.36. ::quartus::sdc_ext
	3.1.36.1. derive_clock_uncertainty (::quartus::sdc_ext)
	3.1.36.2. derive_pll_clocks (::quartus::sdc_ext)
	3.1.36.3. disable_min_pulse_width (::quartus::sdc_ext)
	3.1.36.4. get_active_clocks (::quartus::sdc_ext)
	3.1.36.5. get_fanins (::quartus::sdc_ext)
	3.1.36.6. get_fanouts (::quartus::sdc_ext)
	3.1.36.7. get_keepers (::quartus::sdc_ext)
	3.1.36.8. get_nodes (::quartus::sdc_ext)
	3.1.36.9. get_partitions (::quartus::sdc_ext)
	3.1.36.10. get_registers (::quartus::sdc_ext)
	3.1.36.11. remove_annotated_delay (::quartus::sdc_ext)
	3.1.36.12. remove_clock (::quartus::sdc_ext)
	3.1.36.13. reset_timing_derate (::quartus::sdc_ext)
	3.1.36.14. set_active_clocks (::quartus::sdc_ext)
	3.1.36.15. set_annotated_delay (::quartus::sdc_ext)
	3.1.36.16. set_data_delay (::quartus::sdc_ext)
	3.1.36.17. set_max_skew (::quartus::sdc_ext)
	3.1.36.18. set_net_delay (::quartus::sdc_ext)
	3.1.36.19. set_scc_mode (::quartus::sdc_ext)
	3.1.36.20. set_time_format (::quartus::sdc_ext)
	3.1.36.21. set_timing_derate (::quartus::sdc_ext)

	3.1.37. ::quartus::sta
	3.1.37.1. add_to_collection (::quartus::sta)
	3.1.37.2. check_timing (::quartus::sta)
	3.1.37.3. create_report_histogram (::quartus::sta)
	3.1.37.4. create_slack_histogram (::quartus::sta)
	3.1.37.5. create_timing_netlist (::quartus::sta)
	3.1.37.6. create_timing_summary (::quartus::sta)
	3.1.37.7. delete_sta_collection (::quartus::sta)
	3.1.37.8. delete_timing_netlist (::quartus::sta)
	3.1.37.9. enable_ccpp_removal (::quartus::sta)
	3.1.37.10. enable_sdc_extension_collections (::quartus::sta)
	3.1.37.11. get_available_operating_conditions (::quartus::sta)
	3.1.37.12. get_cell_info (::quartus::sta)
	3.1.37.13. get_clock_domain_info (::quartus::sta)
	3.1.37.14. get_clock_fmax_info (::quartus::sta)
	3.1.37.15. get_clock_info (::quartus::sta)
	3.1.37.16. get_clock_pair_info (::quartus::sta)
	3.1.37.17. get_datasheet (::quartus::sta)
	3.1.37.18. get_default_sdc_file_names (::quartus::sta)
	3.1.37.19. get_edge_info (::quartus::sta)
	3.1.37.20. get_entity_instances (::quartus::sta)
	3.1.37.21. get_min_pulse_width (::quartus::sta)
	3.1.37.22. get_net_info (::quartus::sta)
	3.1.37.23. get_node_info (::quartus::sta)
	3.1.37.24. get_object_info (::quartus::sta)
	3.1.37.25. get_operating_conditions (::quartus::sta)
	3.1.37.26. get_operating_conditions_info (::quartus::sta)
	3.1.37.27. get_partition_info (::quartus::sta)
	3.1.37.28. get_path (::quartus::sta)
	3.1.37.29. get_path_info (::quartus::sta)
	3.1.37.30. get_pin_info (::quartus::sta)
	3.1.37.31. get_point_info (::quartus::sta)
	3.1.37.32. get_port_info (::quartus::sta)
	3.1.37.33. get_register_info (::quartus::sta)
	3.1.37.34. get_timing_paths (::quartus::sta)
	3.1.37.35. import_sdc (::quartus::sta)
	3.1.37.36. is_post_syn_sta (::quartus::sta)
	3.1.37.37. locate (::quartus::sta)
	3.1.37.38. print_total_sdc_processing_time (::quartus::sta)
	3.1.37.39. query_collection (::quartus::sta)
	3.1.37.40. read_sdc (::quartus::sta)
	3.1.37.41. register_delete_timing_netlist_callback (::quartus::sta)
	3.1.37.42. remove_from_collection (::quartus::sta)
	3.1.37.43. report_advanced_io_timing (::quartus::sta)
	3.1.37.44. report_asynch_cdc (::quartus::sta)
	3.1.37.45. report_bottleneck (::quartus::sta)
	3.1.37.46. report_cdc_viewer (::quartus::sta)
	3.1.37.47. report_clock_fmax_summary (::quartus::sta)
	3.1.37.48. report_clock_network (::quartus::sta)
	3.1.37.49. report_clock_transfers (::quartus::sta)
	3.1.37.50. report_clocks (::quartus::sta)
	3.1.37.51. report_datasheet (::quartus::sta)
	3.1.37.52. report_ddr (::quartus::sta)
	3.1.37.53. report_exceptions (::quartus::sta)
	3.1.37.54. report_ini_usage (::quartus::sta)
	3.1.37.55. report_logic_depth (::quartus::sta)
	3.1.37.56. report_max_clock_skew (::quartus::sta)
	3.1.37.57. report_max_skew (::quartus::sta)
	3.1.37.58. report_metastability (::quartus::sta)
	3.1.37.59. report_min_pulse_width (::quartus::sta)
	3.1.37.60. report_neighbor_paths (::quartus::sta)
	3.1.37.61. report_net_delay (::quartus::sta)
	3.1.37.62. report_net_timing (::quartus::sta)
	3.1.37.63. report_partitions (::quartus::sta)
	3.1.37.64. report_path (::quartus::sta)
	3.1.37.65. report_pipelining_info (::quartus::sta)
	3.1.37.66. report_register_spread (::quartus::sta)
	3.1.37.67. report_register_statistics (::quartus::sta)
	3.1.37.68. report_retiming_restrictions (::quartus::sta)
	3.1.37.69. report_route_net_of_interest (::quartus::sta)
	3.1.37.70. report_rskm (::quartus::sta)
	3.1.37.71. report_sdc (::quartus::sta)
	3.1.37.72. report_skew (::quartus::sta)
	3.1.37.73. report_tccs (::quartus::sta)
	3.1.37.74. report_timing (::quartus::sta)
	3.1.37.75. report_timing_by_source_files (::quartus::sta)
	3.1.37.76. report_timing_tree (::quartus::sta)
	3.1.37.77. report_ucp (::quartus::sta)
	3.1.37.78. set_operating_conditions (::quartus::sta)
	3.1.37.79. timing_netlist_exist (::quartus::sta)
	3.1.37.80. update_timing_netlist (::quartus::sta)
	3.1.37.81. use_timing_analyzer_style_escaping (::quartus::sta)
	3.1.37.82. write_sdc (::quartus::sta)

	3.1.38. ::quartus::stp
	3.1.38.1. close_session (::quartus::stp)
	3.1.38.2. export_data_log (::quartus::stp)
	3.1.38.3. open_session (::quartus::stp)
	3.1.38.4. run (::quartus::stp)
	3.1.38.5. run_multiple_end (::quartus::stp)
	3.1.38.6. run_multiple_start (::quartus::stp)
	3.1.38.7. stop (::quartus::stp)

	3.1.39. ::quartus::tdc
	3.1.39.1. is_place (::quartus::tdc)
	3.1.39.2. is_plan (::quartus::tdc)
	3.1.39.3. is_post_route (::quartus::tdc)

	3.2. Tcl Commands and Packages Revision History

	4. Quartus Prime Pro Edition User Guide Scripting Archives
	A. Quartus Prime Pro Edition User Guides

